WO2002055898A1 - Piezoelectric actuator - Google Patents
Piezoelectric actuator Download PDFInfo
- Publication number
- WO2002055898A1 WO2002055898A1 PCT/GB2002/000108 GB0200108W WO02055898A1 WO 2002055898 A1 WO2002055898 A1 WO 2002055898A1 GB 0200108 W GB0200108 W GB 0200108W WO 02055898 A1 WO02055898 A1 WO 02055898A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- piezo
- force
- transmission means
- force transmission
- brake
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 33
- 230000008602 contraction Effects 0.000 claims description 4
- 230000002459 sustained effect Effects 0.000 description 7
- 238000013459 approach Methods 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D65/00—Parts or details
- F16D65/14—Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
- F16D65/16—Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
- F16D65/18—Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/0095—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing combined linear and rotary motion, e.g. multi-direction positioners
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/02—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
- H02N2/021—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors using intermittent driving, e.g. step motors, piezoleg motors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/10—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
- H02N2/101—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using intermittent driving, e.g. step motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2121/00—Type of actuator operation force
- F16D2121/18—Electric or magnetic
- F16D2121/28—Electric or magnetic using electrostrictive or magnetostrictive elements, e.g. piezoelectric elements
Definitions
- the present invention relates to an apparatus for actuating a brake.
- a known vehicle brake arrangement comprises a disc fixed for rotation with a wheel and a brake clamping mechanism comprising a tappet which is mechanically actuated to bring brake pads into contact with the disc and to apply a force between the pads and the disc to provide frictional braking.
- Piezo-electric devices which change size and/or shape when energised by application of an electric current are known for applying a mechanical actuating force over a short distance.
- an apparatus for actuating a brake comprising force transmission means for transmitting force to a friction pad of a brake, at least one piezo-electric device operable when energised to change shape and/or size so as to apply a force to the force transmission means in a direction for actuating the brake, and retaining means operable to resist movement of the force transmission means in an opposite direction.
- the retaining means is a ratchet device.
- the ratchet device may comprise a mechanical device.
- the mechanical device may comprise a ratchet member and a biasing means biasing the ratchet member into engagement with the force transmission means for resisting movement thereof.
- the ratchet member may have a sharp edge for engaging the force transmission means.
- expansion of the piezo-electric device causes the ratchet member to move out of engagement with the force transmission means, and contraction of the piezo-electric device permits the biasing means to move the ratchet member into engagement with the force transmission means.
- the apparatus comprises a support and a portion of the force transmission means passes through an opening in the support, the piezo-electric device being interposed between said portion and the support so as to act against the support when applying force to the force transmission means.
- the piezo-electric device extends circumferentially around said portion.
- the piezo-electric device may comprise a plurality of piezo-electric members arranged around said portion.
- the apparatus comprises at least one oppositely-acting piezo-electric device operable to overcome the biasing force. This permits movement of the force transmission means in the opposite direction for releasing the brake.
- the oppositely-acting piezo-electric device is also operable to apply force to move the force transmission means in the opposite direction.
- the ratchet device comprises at least one further piezo-electric device operable to change shape and/or size so as to continue the application of force to the force transmission means in the direction for actuating the brake.
- the apparatus comprises a structural element and a shaft of the force transmission means passes through an opening in the structural element, the or each piezo-electric device being interposed between the shaft and the structural element such that, when energised, the or each piezo-electric device changes shape and/or size so as to act against the structural element and cause force to be applied to the force transmission means in at least one direction.
- the direction or directions may be axial and/or tangential and/or radial with respect to the shaft.
- the apparatus comprises a plurality of piezo-electric devices, each device being associated with a respective one of a plurality of device groups, the devices in each group being energisable together, by connection to an oscillating power supply with a phase difference between the supply to associated groups, to change size and or shape in groups, sequentially, thereby to apply force for actuating a brake.
- Braking force may be applied continuously by making use of dynamic response characteristics of piezo-electric devices. Phased expansion of groups permits force applied to be sustained at close to the maximum available from each group because as force applied by a first group starts to diminish, force applied by a second group approaches the maximum.
- the piezo-electric device may be operable to be energised by application of an electric voltage controlled by a controller, for example a microprocessor.
- the controller may be operable to respond to electrical signals fed back to it from the brake so as to adjust the level of the voltage applied to the piezoelectric device.
- the controller is also operable to adjust the released position of the force transmission means so as to compensate for wear of the brake pads.
- Piezo-electric devices have a rapid response to application of an energising voltage. This facilitates the provision of high frequency application and removal of voltage to provide rapid actuation of the brake. Frictional braking results in the generation of heat, and piezo-electric elements may be selected which retain their operating characteristics over a wide temperature range.
- the apparatus described above allows electrical energy to be transformed directly into brake clamping force. A relatively small number of components is required, resulting in a compact, light-weight brake actuator assembly, and reducing manufacturing costs. Energy usage is low as there are few moving components when compared, for example, with electric motor actuators. The use of electrical voltages facilitates rapid and accurate control.
- Figure 1 is a schematic representation of a portion of a brake having an actuator according to a First embodiment
- Figure 2 shows a detail of the actuator of figure 1;
- Figures 3a and 3b respectively show alternative conditions of a portion of an actuator according to a second embodiment
- Figure 4a is a sectional elevation of the actuator of figures 3a and 3b;
- Figure 4b is a cross-sectional view along A-A in figure 4a;
- Figure 5 shows a brake having an actuator according to a third embodiment
- Figure 6 is a graph showing force applied by the piezo-electric elements of the actuator of figure 5 against time.
- a brake 10 comprises a disc 12 and brake pads 16 operable to clamp the disc 12 to apply a braking force thereto.
- Brake pads 16 are actuated by force transmission means in the form of a tappet 18 and an actuator 24.
- Tappet 18 has a reduced diameter portion 20 passing through an opening 21 in a support 22.
- the support 22 is fixed to a frame 14.
- the frame 14 may be slidably mounted to a body member of a vehicle (not shown) with the disc 12 fixed for rotation with a wheel of the vehicle.
- the actuator 24 is housed within a circumferentially extending recess 23 in a surface of the support 22 which defines the opening 21.
- the actuator 24 comprises a first piezo-electric device 26, retaining means in the form of a ratchet member 28, resilient biasing means in the form of a spring 32, and a second piezo-electric device 34.
- the first piezo-electric device 26 is disposed between the support 22 and the reduced diameter portion 20, abutting a first surface 25 of the recess 23, which surface faces towards the direction of actuation of the brake 10 (to the left as shown in figure 2).
- the ratchet member 28 has a sharp edge 30 for engaging the reduced diameter portion 20, permitting movement of the tappet 18 in the direction of actuation and resisting movement of tappet 18 in the opposite direction by biting into the reduced diameter portion 20.
- the spring 32 biases the ratchet member 28 into engagement with the reduced diameter portion 20.
- the second piezo-electric device 34 is disposed between the support 22 and the reduced diameter portion 20, in abutment with the ratchet member 28.
- the second piezo-electric device 34 abuts a second surface 27 of the recess 23, which surface faces away from the direction of actuation of the brake 10.
- the first and second piezo-electric devices 26, 34 extend around the reduced diameter portion 20 and may comprise a plurality of piezo-electric elements.
- the piezo-electric devices 26, 34 respond rapidly to application and removal of an energising voltage (or current) controlled by a controller, for example a microprocessor (not shown).
- Ratchet member 28 is a self-locking device. Many suitable mechanical devices will be apparent to the skilled person.
- a voltage is applied to the first piezo-electric device 26 causing it to expand, acting against the support 22.
- the action of the first piezo-electric device 26 against the first surface 25 applies force to the reduced diameter portion 20 so as to move the tappet 18 in the direction of actuation. Removal of the voltage causes the first piezo-electric device 26 to contract, removing force between the support 22 and the tappet 18.
- first piezo-electric devices 26, disposed between the housing and the shaft may be used to provide the actuating force.
- a voltage is applied to the second piezo-electric device 34 causing it to expand and urge the ratchet member 28 to overcome the biasing action of the spring 32 so as to move the ratchet member 28 out of engagement with the reduced diameter portion 20.
- the action of the first piezo-electric device 26 against the second surface 27 applies force to the reduced diameter portion 20 so as to move the tappet 18 in the opposite direction (to the right in figure 2), Further movement to release the brake 10 is provided by repeatedly expanding and contracting the second piezo-electric device 34.
- the controller adjusts the level of the voltages applied to the first and second piezo-electric devices 26, 34, in response to sensor signals from the brake, to ensure that the level of force applied to the tappet 18 is maintained during braking and to enable the position of the tappet 18 on release of the brake to be adjusted to compensate for wear of the brake pads 16.
- a further brake actuating means comprises a shaft 40 passing through an opening 41 in a structural element 42.
- the structural element 42 forms part of a brake and is similar to the support 22 of figure 1.
- Shaft 40 forms part of a tappet.
- a plurality of sets of piezo-electric devices, 43, 44, 45, in this example three, are disposed between a radially outer surface of the shaft 40 and a radially inner surface of the structural element 42 defining the opening 41.
- the sets of piezo-electric devices 43, 44, 45 respond rapidly to application and removal of an energising voltage.
- a controller (not shown), for example a microprocessor, is provided for controlling the application and removal of the energising voltage.
- a first set of piezo-electric devices 43 are energised so as to change shape in a predetermined manner so as to act against the structural element 42 and apply force to the shaft 40 tending to move the shaft 40 in an axial direction as shown in figure 3 a.
- a second set of piezo-electric devices 44 are energised so as to change shape in a predetermined manner so as to apply force to the shaft 40 in the same direction.
- the energising voltage is removed from the first set of piezo-electric devices 43 so that they return to their original shape, but the shaft 40 is prevented from moving in the opposite direction due to force applied by the second set of piezo-electric devices 44.
- a third set of piezo-electric devices 45 is then energised to apply force to the shaft 40, and the energising voltage removed from the second set of piezo-electric devices 44.
- the first set of piezo-electric devices 43 are then energised again, and the sequence repeated for as long as application of force is required.
- the shaft 40 and opening 41 are substantially coaxially aligned.
- a plurality of piezo-electric devices, shown generally as 47 are disposed between the radially inner surface, defining the opening 41 in structural element 42, and the radially outer surface of shaft 40.
- First and second sub-sets of piezo-electric devices 48, 49 are arranged to change size and/or shape when energised so as to act against the radially inner surface of structural element 42 applying a torque to the shaft 40.
- a large angle of rotation or sustained application of torque is provided by repeated energisation, in sequence, of the sub-sets of piezo-electric devices 48, 49.
- Some of the plurality of piezo-electric devices 47 may be arranged to provide axial force to the shaft 40 and others arranged to provide torque so that a combined axial and rotational force can be provided by selectively expanding the piezo-electric devices, 47, 48, 49. Additionally, some of the piezo-electric devices 47 may be arranged to provide lateral force in a first radial direction, and others to provide lateral force in a second radial direction perpendicular to the first radial direction. Application of the lateral forces in either or both radial directions facilitates adjustment of the position of the shaft 40 relative to the structural element 42.
- Rapid response characteristics of the piezo-electric devices 47, 48, 49 enable a high frequency of application and removal of the voltage to he used to provide rapid actuation and adjustment of the brake. Actuation and adjustment is controlled by the controller through the timing and levels of voltages applied to the piezo-electric devices 47, 48, 49, in response to signals from sensors (not shown) on the brake.
- a further brake arrangement 50 comprises a brake disc 51 and brake pads 52 operable to clamp the disc 51 to apply a braking force thereto.
- the brake pads 52 are actuated by expansion of first and second groups of piezo-electric devices 56, 58 disposed between laterally outer surfaces of the brake pads 52 and laterally inner surfaces of a housing 54.
- the piezo-electric devices 56, 58 respond rapidly to an applied voltage, which is coriu i d by a controller, for example a microprocessor (not shown).
- Each group of piezo-electric devices 56, 58 is connected to an oscillating voltage supply. A phase difference is provided between the voltage supplied to the first group 56 and the voltage supplied to the second group 58.
- the first group of piezo-electric devices 56 is expanded to apply force to the brake pads 52 as the applied voltage rises. Expansion of the second group of piezo-electric devices 58 to apply force occurs later, due to the phase difference between the applied voltages, and while the first group of piezo- electric devices 56 contracts as the applied voltage falls. Force to the brake pads 52 is sustained by the repeated alternate expansion and contraction of the groups of piezo-electric devices 56, 58, in sequence, due to the phase-shifted oscillating voltages. Rapid response characteristics of the piezo-electric devices 56, 58, enable a high frequency of oscillation of the voltage to be used to provide rapid actuation of the brake.
- FIG. 6 is a graph showing the amplitude of the force applied 66 as a function of time 67 in a configuration comprising four groups of piezo-electric devices connected to phase-shifted oscillating voltages. The amplitudes of the forces applied by each group of piezo-electric devices is shown by the four lines 61, 62, 63, 64. The combined effect is to produce an actuating force shown by line 65 which is sustained with only a small variation 68 over a period of time.
- the braking force may be sustained by making use of the dynamic characteristics of the piezo-electric devices.
- the sequential expansion of the "groups of piezo-electric devices, due to the phase-shifted voltage supplies, ensures that during actuation of the brake, the actuating force is close to the maximum available.
- the level of the voltage applied to the piezo-electric devices in the groups 56, 58 is controlled by the controller in response to feedback signals from the brake to the controller.
- Each piezo-electric device in the groups 56, 58 applies force to an associated area of brake pad 52.
- the force applied to the associated area of the brake pad 52 may be adjusted, thereby adjusting the pressure distribution across the brake pad 52 to compensate for the effects of pad wear.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Braking Arrangements (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/250,881 US20050067236A1 (en) | 2001-01-12 | 2002-01-11 | Piezoelectric actuator |
EP02716127A EP1362195A1 (en) | 2001-01-12 | 2002-01-11 | Piezoelectric actuator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0100860.6 | 2001-01-12 | ||
GBGB0100860.6A GB0100860D0 (en) | 2001-01-12 | 2001-01-12 | Apparatus for actuating a brake |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002055898A1 true WO2002055898A1 (en) | 2002-07-18 |
Family
ID=9906736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2002/000108 WO2002055898A1 (en) | 2001-01-12 | 2002-01-11 | Piezoelectric actuator |
Country Status (4)
Country | Link |
---|---|
US (1) | US20050067236A1 (en) |
EP (1) | EP1362195A1 (en) |
GB (1) | GB0100860D0 (en) |
WO (1) | WO2002055898A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009132875A1 (en) * | 2008-04-28 | 2009-11-05 | Robert Bosch Gmbh | Piezoelectric drive device, and method for operating the same |
US8104586B2 (en) | 2005-02-25 | 2012-01-31 | Otis Elevator Company | Elevator motor brake torque measurement device |
DE102010042593A1 (en) | 2010-10-18 | 2012-04-19 | Robert Bosch Gmbh | Brake for vehicle has braking element, where braking element is provided between two opposing brake shoes, and actuator extends through multiple openings in brake shoes and braking element |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO327968B1 (en) * | 2003-10-31 | 2009-11-02 | Teeness Asa | Device for damping vibration and outbuilding of tools and / or workpieces |
FR2922504B1 (en) * | 2007-10-18 | 2010-03-05 | Renault Sas | BRAKE DEVICE WITH PERISTALTIC ACTUATORS |
DE102020106741A1 (en) * | 2020-03-12 | 2021-09-16 | Physik Instrumente (PI) GmbH & Co KG | 6-axis positioning system with locking component |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4623044A (en) * | 1983-12-22 | 1986-11-18 | Jidosha Kiki Co., Ltd. | Brake apparatus |
EP0292562A1 (en) * | 1986-12-03 | 1988-11-30 | JGC Corporation | Drive unit and motor device using the same |
EP0518262A2 (en) * | 1991-06-10 | 1992-12-16 | Rockwell International Corporation | Linear actuator |
US5341056A (en) * | 1991-01-18 | 1994-08-23 | The United States Of America As Represented The Secretary Of The Navy | Magnetostrictive motor system |
JPH08177900A (en) * | 1994-12-26 | 1996-07-12 | Asmo Co Ltd | Brake device |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1319331C (en) * | 1987-04-17 | 1993-06-22 | Kouhei Yamatoh | Brake device |
US5090518A (en) * | 1990-05-31 | 1992-02-25 | General Motors Corporation | Brake control system |
US5865455A (en) * | 1995-08-02 | 1999-02-02 | Taylor; William Gregory | Wheelchair |
US5678664A (en) * | 1995-09-28 | 1997-10-21 | Dico, Inc. | Trailer break-away device |
DE19601757A1 (en) * | 1996-01-19 | 1997-07-24 | Hydraulik Ring Gmbh | Actuating device for braking a vehicle, preferably a motor vehicle |
DE19601983C1 (en) * | 1996-01-20 | 1997-07-24 | Continental Ag | Brake system for a motor vehicle |
US6315092B1 (en) * | 1997-11-21 | 2001-11-13 | Continental Teves Ag & Co., Ohg | Electromechanically actuated disc brake |
NL1010575C2 (en) * | 1998-11-17 | 2000-05-18 | Skf Eng & Res Centre Bv | Screw actuator with lubricant dosage, and caliper. |
US6830141B1 (en) * | 2003-05-23 | 2004-12-14 | General Motors Corporation | Friction-based clutch actuation system |
-
2001
- 2001-01-12 GB GBGB0100860.6A patent/GB0100860D0/en not_active Ceased
-
2002
- 2002-01-11 WO PCT/GB2002/000108 patent/WO2002055898A1/en not_active Application Discontinuation
- 2002-01-11 EP EP02716127A patent/EP1362195A1/en not_active Withdrawn
- 2002-01-11 US US10/250,881 patent/US20050067236A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4623044A (en) * | 1983-12-22 | 1986-11-18 | Jidosha Kiki Co., Ltd. | Brake apparatus |
EP0292562A1 (en) * | 1986-12-03 | 1988-11-30 | JGC Corporation | Drive unit and motor device using the same |
US5341056A (en) * | 1991-01-18 | 1994-08-23 | The United States Of America As Represented The Secretary Of The Navy | Magnetostrictive motor system |
EP0518262A2 (en) * | 1991-06-10 | 1992-12-16 | Rockwell International Corporation | Linear actuator |
JPH08177900A (en) * | 1994-12-26 | 1996-07-12 | Asmo Co Ltd | Brake device |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 11 29 November 1996 (1996-11-29) * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8104586B2 (en) | 2005-02-25 | 2012-01-31 | Otis Elevator Company | Elevator motor brake torque measurement device |
WO2009132875A1 (en) * | 2008-04-28 | 2009-11-05 | Robert Bosch Gmbh | Piezoelectric drive device, and method for operating the same |
DE102010042593A1 (en) | 2010-10-18 | 2012-04-19 | Robert Bosch Gmbh | Brake for vehicle has braking element, where braking element is provided between two opposing brake shoes, and actuator extends through multiple openings in brake shoes and braking element |
Also Published As
Publication number | Publication date |
---|---|
GB0100860D0 (en) | 2001-02-21 |
US20050067236A1 (en) | 2005-03-31 |
EP1362195A1 (en) | 2003-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5155179B2 (en) | Piezoelectric motors used in vehicle drive systems and actuators | |
US5144187A (en) | Piezoelectric motor | |
US20020074901A1 (en) | Double bimorph electromechanical element | |
US4854424A (en) | Piezoelectric brake device | |
US8011559B2 (en) | Active material-augmented vibration welding system and method of use | |
JP2002218773A (en) | Driver | |
US6836056B2 (en) | Linear motor having piezo actuators | |
Newton et al. | A linear piezoelectric motor | |
US20050067236A1 (en) | Piezoelectric actuator | |
EP1869338B1 (en) | Electric brake having parking brake function | |
JPS62171457A (en) | Linear actuator | |
EP1350275B1 (en) | Double electromechanical element | |
CA2521307C (en) | Apparratus and process for optimizing work from a smart material actuator product | |
JP4898104B2 (en) | Electromechanical brake actuator | |
US8803986B2 (en) | Vibration actuator, and lens barrel and camera provided with the vibration actuator | |
US20050006949A1 (en) | Brake actuator apparatus and method for actuating a brake | |
JP3837183B2 (en) | Disc brake device | |
CA2089091C (en) | Clamping device for magnetostrictive bodies | |
JP7497429B2 (en) | Rotary actuator and method for operating such a rotary actuator - Patents.com | |
JP2794706B2 (en) | Vibration actuator | |
JPH0563672B2 (en) | ||
KR100316579B1 (en) | Micro-stepping motor using magnetostrictive actuators | |
JPH05292761A (en) | Holding mechanism for actuator employing piezoelectric element | |
Headings et al. | Stiffness Controlled Piezoelectric Stick-Slip Actuator for Rapid Positioning Applications | |
JPH05111096A (en) | Mechanism for expanding fine displacement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2002716127 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2002716127 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10250881 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2002716127 Country of ref document: EP |