WO2002053029A1 - Electrical impedance tomography - Google Patents

Electrical impedance tomography Download PDF

Info

Publication number
WO2002053029A1
WO2002053029A1 PCT/GB2001/005636 GB0105636W WO02053029A1 WO 2002053029 A1 WO2002053029 A1 WO 2002053029A1 GB 0105636 W GB0105636 W GB 0105636W WO 02053029 A1 WO02053029 A1 WO 02053029A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductivity
distribution
flow
sensor
equation
Prior art date
Application number
PCT/GB2001/005636
Other languages
French (fr)
Inventor
Mi Wang
Wuliang Yin
Original Assignee
University Of Leeds
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0031854A external-priority patent/GB0031854D0/en
Priority claimed from GB0120772A external-priority patent/GB0120772D0/en
Application filed by University Of Leeds filed Critical University Of Leeds
Priority to DE60134173T priority Critical patent/DE60134173D1/en
Priority to EP01272705A priority patent/EP1347706B1/en
Priority to US10/250,327 priority patent/US6940286B2/en
Priority to CA002472220A priority patent/CA2472220A1/en
Publication of WO2002053029A1 publication Critical patent/WO2002053029A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/24Investigating the presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/20Investigating the presence of flaws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0536Impedance imaging, e.g. by tomography

Definitions

  • This invention relates to a method of measuring the distribution of electrical impedance of a multi-phase flow using an electrically conductive ring electrode, and to a method of determining the internal structure of a body which utilises such a method and a computer programme product adapted for determining the internal structure of a body.
  • the invention further relates to an apparatus adapted to measure the distribution of electrical impedance of a multi-phase flow using an electrically conductive ring electrode.
  • This invention relates in general to electrical impedance tomography (EIT), and in particular to a new sensor construction and apparatus, a sensing strategy and an algorithm for measuring flow with electrically continuous and discontinuous conductivity phase, such as the oil/gas/water multiphase flow and the bubbling formation or foam construction.
  • EIT electrical impedance tomography
  • the major features of this invention are to employ an electrically conductive ring with a conductivity value higher than that of the principle flow [Figure 1] as a tomographic sensor to supply a continuously electric current flow to the sensing domain, generate a more homogeneous imaging sensitivity distribution over the sensing domain and provide a smooth sensing surface without the obstruction effects to the flow.
  • a PI/2 sensing strategy as an additional part of the invention further improves the imaging sensitivity distribution and an image reconstruction algorithm accompanied with the invention provides a practical solution for eliminating hardware noise in EIT applications.
  • the object of the invention is to provide a sensing method and apparatus with an improved imaging sensitivity distribution for measuring the electrical impedance distribution in a principle flow with an electrically continuous or discontinuous phase and a practically applicable accurate reconstruction algorithm for flow measurement.
  • the ring electrode may have a much higher conductivity compared to-the- principle . flow or materials to be measured and it is employed as said a ring electrode of a part of the sensor body. A more homogeneous electric field distribution can be produced if the conductivity of the electrical conductive ring is much higher than that of the target content.
  • the electrically conductive ring may be made of solid substances such as a kind of metal, conductive rubber or ceramics.
  • a number of electrical contacts may be embedded into the conductive ring electrode in good electrical contact with the outside wall of the ring electrode or penetrated through the wall of the ring electrode in good electrical contact with the wall.
  • the size of the contacts can be very small and the amount of the contacts can be installed to be much more than those in previous sensors.
  • the sensitivity distribution is relatively intensified at a particulate interested area in the whole sensing domain, based on a specific sensing strategy or a combination of a basic set of independent measurements.
  • the sensor geometry and its conductivity can be optimized for the objective that the condition number of the sensitivity matrix becomes less and the sensitivity field becomes more homogenous.
  • the method of the invention may be especially useful in determining the structure of, for example, process materials, such as a process fluid or a part of a human body, with electrically continuous phase such as that in a miscible liquid or discontinuous phase such as that in a foam formation or a half filled horizontal oil/water/gas stratified flow.
  • process materials such as a process fluid or a part of a human body
  • electrically continuous phase such as that in a miscible liquid or discontinuous phase such as that in a foam formation or a half filled horizontal oil/water/gas stratified flow.
  • the method may be extended to a sensor with discrete electrode structure using an external resistor network connecting all electrodes. Furthermore a multi-step image reconstruction algorithm using an error processing method is employed to reconstruct the conductivity distribution.
  • s jk denotes the sensitivity coefficient at pixel k under the measurement-projection j
  • P denotes the maximum number of measurements
  • w denotes the maximum number of pixels
  • ⁇ k and ⁇ k are the conductivity and conductivity change at pixel k, respectively
  • V j and AV are in respect to the reference voltage and the voltage change at measurement-proj ectiony .
  • FIG 1 illustrates the basic construction of the invention
  • Figure 2 illustrates a traditional EIT sensor under a stratified flow
  • Figure 3 illustrates a flange construction of the sensor
  • Figure 4 shows two simulated electric field distributions with equi-potential lines from the sensor with discrete electrodes
  • Figure 5 shows two simulated electric field distributions with equi-potential lines from the sensor with an electrically conductive ring with conductivity ten times as that of the principle flow/material to be measured
  • Figure 6 shows an extension of the invention using a resistor network for a sensor with discrete electrode construction
  • Figure 7 shows a sensing strategy with a ⁇ /2 (90°) separation angle for measurement and excitation
  • Figure 8 is the sensitivity distribution from the voltage measurement opposite to the current excitation using the ⁇ /2 sensing strategy
  • Figure 9 is the overall sensitivity map using the ⁇ /2 sensing strategy
  • Figure 10 is the sensitivity distribution from the voltage measurement opposite to the current excitation using the adj acent sensing strategy
  • Figure 11 is the overall sensitivity map using adjacent sensing strategy
  • Figure 12 is the definition of the sensor geometry
  • Figure 13 shows a comparison of sensitivity of two sensors at the elements across the -diameter;
  • Figure 14 demonstrates the distribution of the illness measure (condition number);
  • Figure 15 gives the illness curve (a conductivity ratio of 1 stands for conventional sensor);
  • Figure 16 shows alternative constructions of the conductive sensor
  • Figure 17 is a flow chart of SCG reconstruction procedure
  • Figure 18 is reconstructed images from simulated data with large conductivity distribution difference, (a) conductivity set-up with two conductivity values, 0.11 and 0.14 mS/cm, (b) image obtained from the MSBP, (c) image obtained from the
  • Figure 19 is reconstructed images for investigating imaging distiguishability.
  • Figure 20 is a schematic layout of the 20 meters flow loop used for the experiment
  • Figure 21 is reconstructed 2D images in respect to typical air cavity formation in the flow loop;
  • Figure 22 is a sequence of cross section images of a human hand in 5.16mS/cm brine, which were reconstructed using STM dgorithrn with three steps of inversion; founded,- himself--.
  • Figure 23 shows 3-D hand images interpolated from the 2-D EIT images given in Figure 22 and then iso-surfaced with a cutting value 3.3mS/cm (Spyglass vl.01).
  • the electrically conductive ring sensor basically consists of an electrically conductive ring 1 , a number of electrical contacts 2, a target content 3 , a number of electrical excitation sources 4 and a number of voltage measurement devices 5 [Figure 1].
  • the electrically conductive ring 1 is made of solid substances such as a kind of metals or alternatively, other electrically conductive materials such as conductive rubber or ceramic-metal with a conductivity value much higher than that of the content 3 to be measured.
  • the electrically conductive ring acts as an 'continuos electrode' to distribute the electrical current flow and generate an electric field for mapping the impedance distribution of the content 3 due to applying currents from the metallic contacts 2.
  • the metallic contacts 2 are embedded into the electrically conductive ring in good electrical contact with the outside wall of the electrically conductive ring.
  • these contacts 2 may be very small since a low common voltage on the contacts is produced from the high conductive ring 1 and there is no effects of electrode-electrolyte interface between these contacts 2 and the electrically conductive ring 1 if the ring is made of solid substance. Therefore, the amount of the contacts to be installed could be much more than the number of discrete electrodes in the conventional sensors.
  • a number of electrical excitation sources such as the currents or voltages 4, are applied to one or more electrical contacts 2. Boundary voltages or currents are also measured from the electrical contacts 2.
  • a continuous electric field distribution presents along the inner surface of the electrically conductive ring that is in electrical contact with the target content 3.
  • the target content 3 may be a process fluid with electrically continuous phase, such as that in a miscible liquid mixing, or with electrically disconf inuous phases, such as those in oil- water-gas flow or froth formation [figure 2]. Since no discrete electrode directly contact to the target content 3, the excitation and measurement will not get into saturation under a certain current value when a part of the inner sensing surface loses an electrical contact to the principle flow.
  • Figure 3 illustrates its flange configuration. A more homogeneous electric field distribution can be produced if the conductivity of the electrically conductive ring 1 is higher than that of the target content 3.
  • the field-stream lines can be derived from the equal-potential lines based on the orthogonal method. Therefore, the simulation demonstrates that the electric field intensity distribution generated from the electrically conductive ring sensor are more uniform than that generated from a discrete electrode sensor if the conductivity of the ring 1 is high than the conductivity of the target content 3.
  • the resistor network 9 plays a similar role as the electrically conductive ring 1, which bypasses and re-distributes currents in case of the current excitation electrodes blocked by a discontinuous fluid or bubbles, and produces a more homogeneous electric field than that produced from -a conventional discrete electrode sensor.
  • Figure 6 shows the extension for the sensor with discrete electrodes.
  • the measurement relationship between one and other sensing strategies for a 4- electrode measurement protocol can be derived as Equation 1 & 2 based on the reciprocity theorem [Geselowitz, IEEE Trans. Biomed. Eng. BME-18], which may be summarised as 'with a 4-electrode measurement protocol
  • the boundary measurements and the sensitivity atrix for an alternative sensing strategy can be derived from the complete set of independent measurements and the sensitivity matrix obtained from a known sensing strategy'.
  • the measurements based on the alternative sensing strategy can not generate any more new information than that given from the complete set of independent measurements, but could produce a different signal-to-noise ratio and a different sensitivity distribution over the imaging domain.
  • a general form of the boundary voltage relationship between an alternative 4-electrode sensing strategy and adjacent sensing strategy can be expressed as Equation 1, which derives mutual impedance or boundary voltages for an alternative • 4-electrode sensing strategy from those for adjacent electrode pair strategy.
  • ZJJ(I MN ) represents the mutual impedance obtained from voltage measured between electrode / and J when current presents between electrode M and N.
  • the sensitivity matrix of an alternative sensing strategy can also be derived from algebraic combination of the sensitivity matrix obtained from a complete set of independent measurements because a linear approximation is adopted in the calculation of the sensitivity matrix, and the linear relationship between the two sets of boundary voltages exist (Equation 1). Derivation to a new sensitivity matrix for an alternative strategy from the sensitivity matrix of adjacent electrode pair strategy is given in Equation 2.
  • S It £I M ⁇ N represents the sensitivity coefficient at pixel, k, obtained from the measurement and excitation position where the voltage is measured between Electrode I and J when current presents between electrode and N.
  • the overall sensitivity distribution in Figure 9 is more homogenous as well, compared to that given in Figure 11, which demonstrates that a much improved total-sensitivity distribution over the sensing area has been produced.
  • the results of the alternative sensing strategy imply that the imaging sensitivity can be relatively intensified or attenuated at a particulate interested area in the whole imaging domain.
  • the sensitivity matrix for such specific distribution can be derived from either the alternative sensing strategy or the particulate combination of the sensitivity matrix derived from a known basic set of independent measurements (e.g. adjacent electrode pair sensing strategy).
  • the sensor geometry and its conductivity value can be further optimised. It is found that the ill conditioning of the sensitivity matrix (essentially Jacobean matrix) is related to the non-homogeneity of the sensitivity field. The bigger the condition number of the sensitivity matrix is, the more non-homogeneous the sensitivity field is. The smallest sensitivity is related to the central elements with largest related to periphery elements [Yorkey, et al, IEEE Trans. Biomed. Eng., BME 34(11), 1987]. Take the condition number as the optimum objective, we can optimize the conductive ring sensor against different thickness and conductivity of the conductive ring sensor.
  • Figure 12 shows the sensor geometry used during the optimum design.
  • sixteen electrical contacts are distributed around the conductive ring, possessing half of the • circumference of the external side of the ring.
  • the ring itself has an internal diameter of 5cm.
  • the conductive ring thickness, t was varied during the simulations.
  • the value of t was assumed to be 0.2cm, 0.6cm, 0.8cm, and 1.0cm.
  • the conductivity of the ring is also a variable ranging from 0.1 lms/cm to 0.66ms/cm.
  • the sensor was assumed filled with water with a conductivity of 0.1 lms/cm.
  • FIG. 13 A comparison of sensitivity distribution across the diameter is shown in figure 13, where the current is injected from electrode 1 and 2 with measurements taken from electrodes 9 and 10.
  • the distribution in the conductive ring sensor shows more homogenous than that in traditional sensors.
  • the important parameters are the ratio of the conductivity and thickness of the ring to those of the material filling the sensor, rather than their absolute values.
  • the numerical results for one case could be obtained from another case by appropriate scaling if the same conductivity and thickness ratio were used in simulations.
  • a sensitivity matrix for a commonly used adjacent sensing protocol [Brown et al, Proc. LEE Int. Conf. on Electric and Magnetic field in Med. and Bio, 1985] is computed and condition number calculated for each conductivity and thicknessette,- himself--. rempli-
  • Figure 14 shows the distribution of the condition number of the sensitivity matrix when the thickness and conductivity of the conductive ring sensor varies.
  • the illness measure is not a monotonously decreasing function of the thickness and conductivity of the conductive ring sensor.
  • the condition number curve is shown in Figure 15. It is found that the illness measure reaches its minimum at the conductivity of 0.66ms/cm.
  • the optimal parameters of the conductive ring should be 0.55ms/cm and 4mm for the conductivity and the thickness respectively.
  • the senor can also be constructed from a conductive disk 11. A hole is drilled in the center of the disk and a layer of metallic coating serving as electrode contacts 2 is made around the ring. [Figure 16a].
  • the disk shape sensor can also be configured into a flange or a washer from 18 [Figure 16c].
  • PCB 15 can be made to integrate the electrical contacts 2, wiring 13 and connector 12 [ Figure 16b]. Another advantage of this configuration is its flexibility for replacing the conducive ring once it is contaminated such as in food or pharmaceutical applications.
  • the conductive sensor can be made in a micro- or nano- scale using micro-machine technology or integrated circuit fabrication technologies.
  • the sensor can also be fabricated integrated with its processing circuits on a single silicon chip.
  • Equation 5 the sensitivity coefficient, s, for each discrete pixel is given by Equation 5 [Murai, et al, IEEE Trans. BME-32, 1985], where ⁇ is a discrete area at k.
  • ⁇ AB , ⁇ CD are potentials measured from ports A ⁇ B and C-D in response to the present of currents I and I , respectively.
  • / is the measurement-projection location and k is the pixel number
  • s k denotes the sensitivity coefficient at pixel k under the measurement-projection/
  • P denotes the maximum number of measurements
  • w denotes the maximum number of pixels
  • V j and AV ⁇ are in respect to the reference voltage and the voltage change at measurement-proj ectiony .
  • Forward solution in the multi-step inverse solution is used for producing an error vector for each step inversion. It also up-dates the sensitivity matrix for next step inverse solution.
  • Sensitivity matrix can be derived directly from the nodal voltages obtained from the forward solution [Yorkey, et al, IEEE Trans. BME-34, 1987, Murai, et al, IEEE Trans. BME-32, 1985].
  • the actual current value used in the solution is not significant as long as the value doesn't vary in whole process since only relative changes of the boundary voltage measurements are employed in following inverse solution.
  • Equation 7 The solution of a FEM model presenting a 2D cross-section of a process vessel with Neumann boundary conditions in addition to a single Dirichlet condition to avoid singularity can be solved by Equation 7 utilising a linear approximation given by Yorkey et al and Murai et al.[Yorkey, et al, LEEE Trans. BME-34. 1987, Murai, et al, LEEE Trans. BME-32, 1985].
  • Yv c (7)
  • Y, v, c denotes the global conductance matrix, the nodal voltage vector, and the nodal current vector respectively.
  • ⁇ and ⁇ ' are actual conductivity distribution at the moment of acquiring the reference voltage V and measurement.
  • V. ⁇ f ) and k n are estimated conductivity values for simulating ⁇ and ⁇ .
  • the conductivity updating also can be based on an approximation of the inverse relation (Eq.13 based on IPx &l/(l-x) at x ⁇ l), which can improve the convergence speed for both positive and negative changes in conductivity.
  • the physical definition may follow the basic principle of linear back projection: the relative change of the boundary voltage measurements is linearly back-projected to each pixel between two equipotential lines in the case of the equipotential back projection [Baber et al, Applied potential tomography', J. Phys. E: Sci. Instrum., 17,1984], or over whole domain in the case of the SBP [Kotre, Physiology Measurements, 15, Suppl. 2A 1992].
  • the sum of the products of the relative change and the weight factor/sensitivity coefficient at each pixel normalised by the sum of their weight factors/sensitivity coefficients that are derived from all possible boundary measurements, approximately presents the relative change of the conductivity at this pixel.
  • Electrode positions at the 224 element mesh also has an 11.25° anticlockwise rotation compared to those in the simulated set-ups with 104 element mesh.
  • FIG.18 a A set-up with a complex conductivity distribution, as shown in Fig.18 a, is reconstructed as Figs. 18b and 18c from the SBP and EEDORS algorithms respectively. It is obvious that the SBP algorithm could not deliver an accurate image for this set-up (Fig.18b). Both the EIDORS (Fig.18c) and SCG (Fig.l8d & f) can reconstruct the complexity of the set-up. The image obtained from five steps of the SCG solution (Fig.18c) provides a conductivity error of 3.32% and a boundary voltage error of 0.055%. The discretisation error caused by applying different mesh is reflected in Fig.3f.
  • Fig.19 Two Objects' were located along a radius of a mesh (Fig.19a). For the set-up, SBP can image the presence of the two objects but could not distinguish them (Fig.19b). The edge of the objects' image is also merged with the boundary. The image obtained from EIDORS (Fig.19c) gives a better presentation about the object location with a clear separation from the boundary but is incapable of distinguishing between the two objects. SCG can clearly distinguish between the two objects although a certain artificial background noise presents (Fig.l9d & f).
  • the single step method solution is be further simplified by obtaining an approximation of the inverse of s (s is the normalised sensitivity matrix) and therefore the whole computation for reconstructing a single image only involves a multiplication of a matrix and a vector.
  • s is the normalised sensitivity matrix
  • equation (15) has to be transformed to equation (16) by applying minimization to equation (15).
  • equation (16) cannot be solved using direct inverse method aiming to an accurate solution.
  • iterative methods involves much larger computation load than direct inverse methods by which an inverse matrix for s r s can be obtained, and the solution to equation (16) only involves a multiplication of a matrix (s r s) "1 • s r with an vector e .
  • Multiphase flow exists in many industrial processes.
  • the phase distribution and information about the processes [Chhabra et al, Non-newtonian flow in the process industiies - fundamentals and engineering applications, Butterworth-Heinemann, Oxford, 1999].
  • its behaviour is extremely complex, which presents a great challenge to the study of the flow mechanisms and the measurement of multiphase flow.
  • Both single modality and multi-modality imaging have been reported [Dyakowski et al, Powder Technol. 104, 1999; Hoyle et al, Proc. 1st World Congress on Industrial Process Tomography, Buxton, UK, 1999] as a means to identify flow regimes in two-phase flow.
  • the water flows were scaled with an accumulating tank during the experiments to get water flow rate and mean velocity. At the mean time, a number of photographs were recorded as visual presentations of these different flow regimes.
  • Two-dimensional (2D) slice images were sequentially reconstructed. Some reconstructed images in respect to typical air cavities in the flow loop are shown in Figure 21, where the blue areas represent the air cavities or low conductivity regions and the red areas represent the water or high conductivity regions.
  • a cutting value of 3.3mS/cm was apphed to extract the surface of the hand skin as an iso-surface using Spyglass vl.OO.
  • An outline of the human hand has been successfully extracted as shown in Figure 23. Some distortions can also be found, which may be caused by the electrode noise, the unstable position of the hand during the scanning and the 3-D effect of electrical field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Materials For Medical Uses (AREA)

Abstract

Methods and apparatus for obtaining a representation of the distribution of electrical impedance within a multiphase flow with an electrically continuous or discontinuous principle flow (3) contained within an electrically conductive solid ring electrode (1), comprising providing a plurality of mutually spaced electrical contacts (2) mounted at the outside wall of the ring and electrically contacted with the ring, applying currents or voltages (4) to the ring from the electrical contacts (2), generating a more homogeneous electric field distribution within the material (3), measuring voltage or current (5) distribution along the ring from other electrical contacts (2), relatively intensifying the imaging sensitivity at the central area of the sensing domain using a π/2 angle sensing strategy and reconstructing the representation of the impedance distribution using CG method with an error processing strategy.

Description

Electrical Impedance Tomography
This invention relates to a method of measuring the distribution of electrical impedance of a multi-phase flow using an electrically conductive ring electrode, and to a method of determining the internal structure of a body which utilises such a method and a computer programme product adapted for determining the internal structure of a body.
The invention further relates to an apparatus adapted to measure the distribution of electrical impedance of a multi-phase flow using an electrically conductive ring electrode.
This invention relates in general to electrical impedance tomography (EIT), and in particular to a new sensor construction and apparatus, a sensing strategy and an algorithm for measuring flow with electrically continuous and discontinuous conductivity phase, such as the oil/gas/water multiphase flow and the bubbling formation or foam construction.
A number of sensor construction methods for EIT were proposed in previous patents, which were comprise of placing an array of spaced electrodes in direct contact with the human body or process fluid [GB2119520, GB2160323, US4617939], or in indirect contact with the human body coupled with electrolyte [GB2019579], a sponger [WO98/23204] or any other suitable liquid medium [US4486835] with conductivity matched to the typical expected conductivity of the object being measured. To obtain better distinction between a known conductivity and an unknown conductivity change in a body, a sensing method of the best pattern of currents was disclosed in US4920490 and US5272624, and a sensor arrangement using a number of electrically conductive compartment electrodes each separated from neighbouring compartments by an insulating partition was disclosed in O98/23204. It has become known to apply EIT to vessels and pipelines made of electrically non-conductive material, such as acrylic or other plastic materials, or made of electrically conductive metallic materials (WO 95/24155). In the process applications of EIT, it was also known that the electrodes were mounted inside the vessels or pipelines, and electrically insulated from one another, so as to be directly in electrical contact with the contents within.
It is clear that previous EIT methods were based on utilising a number of discrete electrodes mounted at spaced locations of the wall, which had to be electrically insulated from one another and in electrical contact with body or material contained within the wall whether the wall is electrically non-conductive or conductive. The coupling materials used between the electrodes and the human body in the indirect contact method from previous knowledge, such as the electrolyte and sponger, were purely purposed as an electrical coupling medium with a conductivity value comparable to that of the volume to be measured, which were neither suitable for flow measurement nor functioned as a part of sensing strategy for improving the measurement capability. The limitations from the discrete electrode structure have been observed in following aspects. Firstly, it can not provide a correct measurement from a fluid with a discontinuous phase of electrical conductivity since some of these electrodes have lost their electrical contact with the conductive phase of the fluid, e.g. a half filled horizontal stratified flow or a foam construction with a large bubbling formation [M. Wang and C. J. Young, Chem. Eng. Science, 54(5), 1999]. Secondly, it generates a very non-uniform distribution of the imaging sensitivity because high dense currents are always present at the domains near to the current injecting and sinking electrodes. The limited contact area of the electrodes also produces a large common voltage, which highly reduces the signal-to-noise ratio for the differential measurement adopted in most cases. In addition, it is difficult to present data with high repeatability from a sensor with discrete electrodes since the unstable performance of the contact impedance or the electrode-electrolyte interfaces. Finally, the intrusive construction of the electrodes in these sensors has obvious difficulties from its installation for satisfying most industrial environments. The major features of this invention are to employ an electrically conductive ring with a conductivity value higher than that of the principle flow [Figure 1] as a tomographic sensor to supply a continuously electric current flow to the sensing domain, generate a more homogeneous imaging sensitivity distribution over the sensing domain and provide a smooth sensing surface without the obstruction effects to the flow. A PI/2 sensing strategy as an additional part of the invention further improves the imaging sensitivity distribution and an image reconstruction algorithm accompanied with the invention provides a practical solution for eliminating hardware noise in EIT applications.
Brief Description
The object of the invention is to provide a sensing method and apparatus with an improved imaging sensitivity distribution for measuring the electrical impedance distribution in a principle flow with an electrically continuous or discontinuous phase and a practically applicable accurate reconstruction algorithm for flow measurement.
Thus according to the invention we provide a method of measuring the distribution of electrical impedance of a multi-phase flow, of which the principal flow has an electrically continuous or discontinuous phase, using an electrically conductive ring electrode, characterised in that the ring electrode uses a PI/2 sensing strategy.
The ring electrode may have a much higher conductivity compared to-the- principle . flow or materials to be measured and it is employed as said a ring electrode of a part of the sensor body. A more homogeneous electric field distribution can be produced if the conductivity of the electrical conductive ring is much higher than that of the target content. The electrically conductive ring may be made of solid substances such as a kind of metal, conductive rubber or ceramics.
A number of electrical contacts may be embedded into the conductive ring electrode in good electrical contact with the outside wall of the ring electrode or penetrated through the wall of the ring electrode in good electrical contact with the wall. The size of the contacts can be very small and the amount of the contacts can be installed to be much more than those in previous sensors. The sensitivity distribution is relatively intensified at a particulate interested area in the whole sensing domain, based on a specific sensing strategy or a combination of a basic set of independent measurements.
The sensor geometry and its conductivity can be optimized for the objective that the condition number of the sensitivity matrix becomes less and the sensitivity field becomes more homogenous.
The method of the invention may be especially useful in determining the structure of, for example, process materials, such as a process fluid or a part of a human body, with electrically continuous phase such as that in a miscible liquid or discontinuous phase such as that in a foam formation or a half filled horizontal oil/water/gas stratified flow.
The method may be extended to a sensor with discrete electrode structure using an external resistor network connecting all electrodes. Furthermore a multi-step image reconstruction algorithm using an error processing method is employed to reconstruct the conductivity distribution.
According to a yet further feature of the invention we provide a computer programme product adapted for determining the internal structure of a body with electrical impedance tomography characterised in that the programme includes the use of the algorithm
(Λσk«σk, j = 1, 2, ..., P) (Equation 6)
Figure imgf000005_0001
Where/ is the measurement-projection location and k is the pixel number, sjk denotes the sensitivity coefficient at pixel k under the measurement-projection j, P denotes the maximum number of measurements, w denotes the maximum number of pixels, σk and Δσk are the conductivity and conductivity change at pixel k, respectively, and
Vj and AV are in respect to the reference voltage and the voltage change at measurement-proj ectiony .
The solution of above equation can be implemented by assembling an inverse matrix using finite-step CG method so that the on-line image reconstruction only involves the multiplication of a matrix and a vector.
We also provide an apparatus adapted to measure the distribution of electrical impedance of a multi-phase flow of which the principal flow has an electrically continuous or discontinuous phase, using an electrically conductive ring electrode characterised in that the ring electrode is adapted to use a PI/2 sensing strategy.
Detailed Description
The invention will now be illustrated by way of example only and with reference to the accompanying drawings, in which
Figure 1 illustrates the basic construction of the invention;
Figure 2 illustrates a traditional EIT sensor under a stratified flow;
Figure 3 illustrates a flange construction of the sensor;
Figure 4 shows two simulated electric field distributions with equi-potential lines from the sensor with discrete electrodes; Figure 5 shows two simulated electric field distributions with equi-potential lines from the sensor with an electrically conductive ring with conductivity ten times as that of the principle flow/material to be measured;
Figure 6 shows an extension of the invention using a resistor network for a sensor with discrete electrode construction; Figure 7 shows a sensing strategy with a π/2 (90°) separation angle for measurement and excitation; Figure 8 is the sensitivity distribution from the voltage measurement opposite to the current excitation using the π/2 sensing strategy;
Figure 9 is the overall sensitivity map using the π/2 sensing strategy;
Figure 10 is the sensitivity distribution from the voltage measurement opposite to the current excitation using the adj acent sensing strategy;
Figure 11 is the overall sensitivity map using adjacent sensing strategy; Figure 12 is the definition of the sensor geometry;
Figure 13 shows a comparison of sensitivity of two sensors at the elements across the -diameter; Figure 14 demonstrates the distribution of the illness measure (condition number); Figure 15 gives the illness curve (a conductivity ratio of 1 stands for conventional sensor);
Figure 16 shows alternative constructions of the conductive sensor; Figure 17 is a flow chart of SCG reconstruction procedure; Figure 18 is reconstructed images from simulated data with large conductivity distribution difference, (a) conductivity set-up with two conductivity values, 0.11 and 0.14 mS/cm, (b) image obtained from the MSBP, (c) image obtained from the
EIDORS with 6 steps of solution (Tikhonov regularisation parameter lxl 0~3), (d, f) images obtained from the SCG with 5 steps of solution and 20 iterations taken in the GCG for solving each inverse function, (e) reconstruction convergence from (d).
Figure 19 is reconstructed images for investigating imaging distiguishability. (a) conductivity set-up with two conductivity values, 0.055 and 0.11 mS/cm, (b) image obtained from the MSBP, (c) image obtained from the EIDORS with 6-steps of solution (Tikhonov regularisation parameter lxl0"6), (d, f) image obtained from the SCO with 20 steps of solution and 20 iterations taken in the GCG for solving each inverse solution, (e) reconstruction convergence from (d);
Figure 20 is a schematic layout of the 20 meters flow loop used for the experiment;
Figure 21 is reconstructed 2D images in respect to typical air cavity formation in the flow loop; Figure 22 is a sequence of cross section images of a human hand in 5.16mS/cm brine, which were reconstructed using STM dgorithrn with three steps of inversion; „,-„--.„-
PCT/GBOl/05636
Figure 23 shows 3-D hand images interpolated from the 2-D EIT images given in Figure 22 and then iso-surfaced with a cutting value 3.3mS/cm (Spyglass vl.01).
The electrically conductive ring sensor basically consists of an electrically conductive ring 1 , a number of electrical contacts 2, a target content 3 , a number of electrical excitation sources 4 and a number of voltage measurement devices 5 [Figure 1].
The electrically conductive ring 1 is made of solid substances such as a kind of metals or alternatively, other electrically conductive materials such as conductive rubber or ceramic-metal with a conductivity value much higher than that of the content 3 to be measured. The electrically conductive ring acts as an 'continuos electrode' to distribute the electrical current flow and generate an electric field for mapping the impedance distribution of the content 3 due to applying currents from the metallic contacts 2. The metallic contacts 2 are embedded into the electrically conductive ring in good electrical contact with the outside wall of the electrically conductive ring. The size of these contacts 2 may be very small since a low common voltage on the contacts is produced from the high conductive ring 1 and there is no effects of electrode-electrolyte interface between these contacts 2 and the electrically conductive ring 1 if the ring is made of solid substance. Therefore, the amount of the contacts to be installed could be much more than the number of discrete electrodes in the conventional sensors. A number of electrical excitation sources, such as the currents or voltages 4, are applied to one or more electrical contacts 2. Boundary voltages or currents are also measured from the electrical contacts 2. A continuous electric field distribution presents along the inner surface of the electrically conductive ring that is in electrical contact with the target content 3. The target content 3 may be a process fluid with electrically continuous phase, such as that in a miscible liquid mixing, or with electrically disconf inuous phases, such as those in oil- water-gas flow or froth formation [figure 2]. Since no discrete electrode directly contact to the target content 3, the excitation and measurement will not get into saturation under a certain current value when a part of the inner sensing surface loses an electrical contact to the principle flow. Figure 3 illustrates its flange configuration. A more homogeneous electric field distribution can be produced if the conductivity of the electrically conductive ring 1 is higher than that of the target content 3. Comparisons of the potential distributions generated from a sensor with discrete electrodes (Figure 4a and 4b) and the electrically conductive ring sensor (Figure 5a and 5b) are given, which were simulated using Ansoft Maxwell 2D simulator [Version 1-7-66, 1996, Ansoft Corporation]. In the simulation, the conductivity of the electrically conductive ring was ten times as that of the target content. The potential distributions in Figure 4a and 5 a were generated from a current excitation between an adjacent electrode/contact pair. Figure 4b and 5b are potential distributions relating to an opposite electrode/contact pair excitation position. The potential distributions in Figure 5 a and 5b are more equal-spaced than those given in Figure 4a and 4b. It is well known that the field-stream lines can be derived from the equal-potential lines based on the orthogonal method. Therefore, the simulation demonstrates that the electric field intensity distribution generated from the electrically conductive ring sensor are more uniform than that generated from a discrete electrode sensor if the conductivity of the ring 1 is high than the conductivity of the target content 3.
With the previous sensor construction [Figure 6], a number of discrete electrodes 6 were intrusively embedded into a non-conductive vessel 7 with good electrical insulation between each other and electrically contact the target content 3. For a fluid with discontinuous phases of electrical conductivity, such as a half filled horizontal stratified flow or a foam construction with a large bubbling formation, it could not provide sufficient measurements since some of electrodes have lost their electrical contact with the conductive phase of the fluid [Figure 2]. But for a conductive ring sensor, the current is always continuous even in situation like figure 2. As an extension of the invention, a resistor network 8 is proposed for such sensors with discrete electrode structure to perform a completed set of measurements. These electrodes are connected with the resistor network 8 using electrically conductive wires 9. The resistor network 9 plays a similar role as the electrically conductive ring 1, which bypasses and re-distributes currents in case of the current excitation electrodes blocked by a discontinuous fluid or bubbles, and produces a more homogeneous electric field than that produced from -a conventional discrete electrode sensor. Figure 6 shows the extension for the sensor with discrete electrodes.
The measurement relationship between one and other sensing strategies for a 4- electrode measurement protocol can be derived as Equation 1 & 2 based on the reciprocity theorem [Geselowitz, IEEE Trans. Biomed. Eng. BME-18], which may be summarised as 'with a 4-electrode measurement protocol, the boundary measurements and the sensitivity atrix for an alternative sensing strategy can be derived from the complete set of independent measurements and the sensitivity matrix obtained from a known sensing strategy'. The measurements based on the alternative sensing strategy can not generate any more new information than that given from the complete set of independent measurements, but could produce a different signal-to-noise ratio and a different sensitivity distribution over the imaging domain. A general form of the boundary voltage relationship between an alternative 4-electrode sensing strategy and adjacent sensing strategy can be expressed as Equation 1, which derives mutual impedance or boundary voltages for an alternative • 4-electrode sensing strategy from those for adjacent electrode pair strategy.
Figure imgf000010_0001
CEquation 1}
(1 < M < N < I < J ≤ number of electrode )
Where ZJJ(IMN) represents the mutual impedance obtained from voltage measured between electrode / and J when current presents between electrode M and N.
The sensitivity matrix of an alternative sensing strategy can also be derived from algebraic combination of the sensitivity matrix obtained from a complete set of independent measurements because a linear approximation is adopted in the calculation of the sensitivity matrix, and the linear relationship between the two sets of boundary voltages exist (Equation 1). Derivation to a new sensitivity matrix for an alternative strategy from the sensitivity matrix of adjacent electrode pair strategy is given in Equation 2.
-V-l J-l sU,k M,N ) = ∑_ ZJ s,,M,k ( ,m+ι ) (Equation 2) (1 ≤ M < N < 1 < J≤ number of electrodes )
Where SIt£IMιN) represents the sensitivity coefficient at pixel, k, obtained from the measurement and excitation position where the voltage is measured between Electrode I and J when current presents between electrode and N.
Based on Equation 2, a sensitivity distribution with improved homogeneity, especially at the central area, has been found from a sensing strategy that the angle between two electrodes/contacts for measurement and excitation is π/2. This π/2 spaced sensing strategy is demonstrated in Figure 7, which gives a total of 72 independent measurements. Figure 8 shows one of the sensitivity maps relating to the measurement position opposite to the current injection. Summing the coefficients from the seventy-two normalised sensitivity maps at each pixel, it gives an overall sensitivity distribution as Figure 9. To compare the sensitivity homogeneity, two related sensitivity maps obtained from adjacent sensing strategy are given in Figure 9 and Figure 10. It can be seen that Figure 8 gives a more homogenous sensitivity band across the central area, compared to Figure 10. The overall sensitivity distribution in Figure 9 is more homogenous as well, compared to that given in Figure 11, which demonstrates that a much improved total-sensitivity distribution over the sensing area has been produced. The results of the alternative sensing strategy imply that the imaging sensitivity can be relatively intensified or attenuated at a particulate interested area in the whole imaging domain. The sensitivity matrix for such specific distribution can be derived from either the alternative sensing strategy or the particulate combination of the sensitivity matrix derived from a known basic set of independent measurements (e.g. adjacent electrode pair sensing strategy).
The sensor geometry and its conductivity value can be further optimised. It is found that the ill conditioning of the sensitivity matrix (essentially Jacobean matrix) is related to the non-homogeneity of the sensitivity field. The bigger the condition number of the sensitivity matrix is, the more non-homogeneous the sensitivity field is. The smallest sensitivity is related to the central elements with largest related to periphery elements [Yorkey, et al, IEEE Trans. Biomed. Eng., BME 34(11), 1987]. Take the condition number as the optimum objective, we can optimize the conductive ring sensor against different thickness and conductivity of the conductive ring sensor.
Figure 12 shows the sensor geometry used during the optimum design. Here, sixteen electrical contacts are distributed around the conductive ring, possessing half of the circumference of the external side of the ring. The ring itself has an internal diameter of 5cm. The conductive ring thickness, t, was varied during the simulations. The value of t was assumed to be 0.2cm, 0.6cm, 0.8cm, and 1.0cm. The conductivity of the ring is also a variable ranging from 0.1 lms/cm to 0.66ms/cm. The sensor was assumed filled with water with a conductivity of 0.1 lms/cm.
A comparison of sensitivity distribution across the diameter is shown in figure 13, where the current is injected from electrode 1 and 2 with measurements taken from electrodes 9 and 10. The distribution in the conductive ring sensor shows more homogenous than that in traditional sensors.
It is worth to mention that the important parameters are the ratio of the conductivity and thickness of the ring to those of the material filling the sensor, rather than their absolute values. For example, the numerical results for one case could be obtained from another case by appropriate scaling if the same conductivity and thickness ratio were used in simulations.
A sensitivity matrix for a commonly used adjacent sensing protocol [Brown et al, Proc. LEE Int. Conf. on Electric and Magnetic field in Med. and Bio, 1985] is computed and condition number calculated for each conductivity and thickness „,-„--.„-
PCT/GBOl/05636
value. Figure 14 shows the distribution of the condition number of the sensitivity matrix when the thickness and conductivity of the conductive ring sensor varies.
From figure 14, we could find that within a modest range of conductivity, the illness measure (the condition number) decreases with the increase of the conductivity and the thickness of the conductive ring sensor, as was confirmed by visualisation with Maxwell 2D simulations.
It is important to note that the illness measure is not a monotonously decreasing function of the thickness and conductivity of the conductive ring sensor. As an example, when the thickness of the conductive ring sensor is fixed at 1, and the conductivity of the conductive ring sensor is a variable, the condition number curve is shown in Figure 15. It is found that the illness measure reaches its minimum at the conductivity of 0.66ms/cm. In Figure 14, apparently, the optimal parameters of the conductive ring should be 0.55ms/cm and 4mm for the conductivity and the thickness respectively.
In addition to the traditional "tube" shape sensor configuration, the sensor can also be constructed from a conductive disk 11. A hole is drilled in the center of the disk and a layer of metallic coating serving as electrode contacts 2 is made around the ring. [Figure 16a].
The disk shape sensor can also be configured into a flange or a washer from 18 [Figure 16c]. In order to facilitate the wiring, PCB 15 can be made to integrate the electrical contacts 2, wiring 13 and connector 12 [Figure 16b]. Another advantage of this configuration is its flexibility for replacing the conducive ring once it is contaminated such as in food or pharmaceutical applications.
Following the idea above, the conductive sensor can be made in a micro- or nano- scale using micro-machine technology or integrated circuit fabrication technologies. The sensor can also be fabricated integrated with its processing circuits on a single silicon chip.
The sensitivity theorem deduced by Geselowitz [IEEE Trans. BME-18, 1971] and later refined by Lehr [IEEE Trans. BME-19, 1972] for a two ports system can be expressed in discrete domain as Equation 3 [Murai, et al, IEEE Trans. BMB-32, 1985] and Equation 4 [Wang, et al, Chem. Eng. Comm. N175, 1999], ass-iming the conductivity change is much smaller than the original value (Acη « σ and
-neglecting-the high, order terms and supposing that the conductivity distribution is composed from w small uniform 'patches' or pixels. In this case, the sensitivity coefficient, s, for each discrete pixel is given by Equation 5 [Murai, et al, IEEE Trans. BME-32, 1985], where ^ is a discrete area at k.
Z = Σ σks ,Ψ,k (Equation 3) i=l w z = -∑σ kSφ,Ψ,k (Equation 4) k=l vφ φ v ψψ dηk (Equation 5)
J where ψAB, φCD are potentials measured from ports A~B and C-D in response to the present of currents I and I , respectively.
In practical applications of electrical impedance tomography, image reconstruction was highly affected by the electrode modelling error and the measurement noise. In practice, it was hard to make the electrode system fully consistent (e.g. geometry, electrode-electrolyte interface, installation environment, etc.). Quality of data acquired under industrial environment was also decayed by industrial and instrumental noises.
Normalisation procedure has been employed in almost all back-projection algorithms. The normalisation procedure, as given in Equation 6, can be derived from dividing Equation 3 by Equation 4,
1: ((Aσk«σk? i = l, 2> ..., P) (6)
Figure imgf000015_0001
Where / is the measurement-projection location and k is the pixel number, s k denotes the sensitivity coefficient at pixel k under the measurement-projection/, P denotes the maximum number of measurements, w denotes the maximum number of pixels, σ^-and l ^f--ire-the-conductiyJtv_and conductivity change atjπxel k, respectively, and Vj and AV} are in respect to the reference voltage and the voltage change at measurement-proj ectiony .
The problem of conductivity distribution is of a nonlinear type. As the sensitivity theorem is based on a linear approximation with a condition Aσk«σk, therefore, an iterative approach was employed in many cases to approach the true value. Both forward and inverse solution procedures have to be employed in the multi-step solution, which are used for error estimation and updating, and resulting a step solution respectively. Conjugate gradients (CG) method is utilised to solution the linear equations in both forward and inverse problems. In this patent this method is named as sensitivity theorem based inverse solution using conjugate gradient methods (SCG).
Forward solution in the multi-step inverse solution is used for producing an error vector for each step inversion. It also up-dates the sensitivity matrix for next step inverse solution. Sensitivity matrix can be derived directly from the nodal voltages obtained from the forward solution [Yorkey, et al, IEEE Trans. BME-34, 1987, Murai, et al, IEEE Trans. BME-32, 1985]. The actual current value used in the solution is not significant as long as the value doesn't vary in whole process since only relative changes of the boundary voltage measurements are employed in following inverse solution. The solution of a FEM model presenting a 2D cross-section of a process vessel with Neumann boundary conditions in addition to a single Dirichlet condition to avoid singularity can be solved by Equation 7 utilising a linear approximation given by Yorkey et al and Murai et al.[Yorkey, et al, LEEE Trans. BME-34. 1987, Murai, et al, LEEE Trans. BME-32, 1985].
Yv = c (7) where Y, v, c denotes the global conductance matrix, the nodal voltage vector, and the nodal current vector respectively.
Based on the expression given by Eq.6 and the assumption of a homogenous conductivity distribution, σD, at the time of taking reference V, the inverse solution in the multi-step approach is given by Eq.8 in the form of matrix notation,
γ = -s_1 - e (8) where the elements of the normalised sensitivity matrix s""1 at the iteration n, the vector of conductivity relative change rat pixel k, and the vector of boundary relative change e at projection j axe denoted as Eq.9, Eq.lO and Eq.ll, respectively. The conductivity is updated by Eq.12.
Figure imgf000016_0001
β V Vj(σ) H)
Figure imgf000016_0002
where σ and σ' are actual conductivity distribution at the moment of acquiring the reference voltage V and measurement. V. σf ) and k n are estimated conductivity values for simulating σ and σ .
Since conductivity is inversely related to voltage, the conductivity updating also can be based on an approximation of the inverse relation (Eq.13 based on IPx &l/(l-x) at x<l), which can improve the convergence speed for both positive and negative changes in conductivity.
Figure imgf000017_0001
Noting the validating condition Aσ« σ, the s ^ σ^) in response to u] (σ )' as well as the regularisation procedure in the linear approximation Eq.6, Eq.l l thus decomposes to
Figure imgf000017_0002
where the "^i0') and * <»h UJ (< ) are the estimated reference voltage and updated measurement voltage in respect to the conductivity distribution σ„0 and σ ° . After a number of steps of updating the conductivity distribution and the sensitivity matrix, the decomposed boundary relative change or error vector in Eq.14 will be minimised. It is thought the non-linear inverse solution has been reached when the norm of the error vector is sufficiently small.
The procedure of multi-step iteration is performed as follows.
(1) Pre-compute the assumed boundary voltage vector and the sensitivity matrix, u(^), s(d*>)
(2) Measure the boundary voltage profiles and produce the relative change vector,
Figure imgf000017_0003
(j = l,2, ...,P)
(3) Pre-set the iteration control factors for the minimum convergence error, εs, the maximum number of inverse steps, δs, and the maximum number of iterations, δc, for the GCG.
(4) Initiate the first estimations for the error function vector and the conductivity vector,
Figure imgf000018_0001
(5) Normalise the sensitivity matrix (the iteration steps n is from 1 to δs)
Figure imgf000018_0002
(6) Solve the inverse problem using the GCG method and then update the relative change in the conductivity vector (Maximum Iteration = δ ), γ = — s "l • e
(7) Update the conductivity vector, d**1) = tfw - (l + y<"+,))
(8) Solve the forward problem using the ordinary CG method to update the boundary voltage vector and sensitivity matrix, u( <"+1)); s(c^+1))
(9) Update the error vector, *> _ . _____«
10) Check the control factors to determine whether one of them has been reached,
Figure imgf000018_0003
< εs or Steps > δs ? (11) If the convergence or the number of maximum iterations is not reached, the process jumps to step (5) until one of these conditions is reached. To summarise the procedure, its flowchart is given as Figure 17.
The sensitivity coefficient back-projection approximation method (SBP), utilising a normalised transpose matrix of the sensitivity matrix obtained from Eq.5 as a weighting matrix, was first refined for ERT by Kotre [Kotre, Physiology Measurements-15,-Suppl.-2AT-9-9-2].jr e„approximationhas been successfully applied to many industrial applications [Williams et al, Process tomography — principles, techniques and applications, Butterworth-Heinemann Ltd., 1995] due to its good anti-noise capability and fast solution speed. The physical definition may follow the basic principle of linear back projection: the relative change of the boundary voltage measurements is linearly back-projected to each pixel between two equipotential lines in the case of the equipotential back projection [Baber et al, Applied potential tomography', J. Phys. E: Sci. Instrum., 17,1984], or over whole domain in the case of the SBP [Kotre, Physiology Measurements, 15, Suppl. 2A 1992]. The sum of the products of the relative change and the weight factor/sensitivity coefficient at each pixel, normalised by the sum of their weight factors/sensitivity coefficients that are derived from all possible boundary measurements, approximately presents the relative change of the conductivity at this pixel.
To investigate the accuracy and the limitation of the multi-step solution, a sequence of images were reconstructed from simulated data. A part of these results are presented in this patent. Only the adjacent sensing strategy [Brown et al, Proc. LEE Int. Conf. on Electric and Magnetic field in Med. And Bio., 1985] was employed in these simulations. All references were taken from a homogeneous set-up with a conductivity of 0.1 ImS/cm. Meshes with 104 and 224 triangle pixels were used for simulating boundary voltages from these conductivity set-ups. To investigate the discretization error and mesh adaptability of the algorithm, some images were „,-„--.„-
PCT/GBOl/05636
reconstructed using the mesh with 224 elements for data simulated using the mesh with 104 element. Electrode positions at the 224 element mesh also has an 11.25° anticlockwise rotation compared to those in the simulated set-ups with 104 element mesh.
Considering the importance of the SBP in current applications, these simulated data were also reconstructed using the SBP. A mesh with 316 square pixels was employed for the SBP algorithm. The electrode position at the square mesh has an 11.25° anticlockwise rotation compared to those in the simulated set-ups with the 104 element mesh.
To assess the imaging capability of the SCG algorithm, a Newton-Raphson method based algorithm with Tikhonov regularisation [Vaukonen, Scientific Abstracts of 2nd EPSRC Engineering Network Meeting, UCL, London, 2000], named as EIDORS (EIT and Diffuse Optical Tomography Reconstruction Software, UMIST 2000), is introduced to reconstruct a part of these data. These images are reconstructed using a mesh with 492 elements and parameters of the simulated contact impedance=0.005Ω/cm, Tikhonov regularization parameter=0.001 and the iteration number=6. The electrode position also has a clockwise rotation compared to the simulation set-up. The original simulated data are directly used for reconstructing images with the EIDORS. However, the data obtained from real measurements have to be regularised by applying the products of relative changes and the standard boundary voltages from a homogeneous set-up in the EIDORS.
A set-up with a complex conductivity distribution, as shown in Fig.18 a, is reconstructed as Figs. 18b and 18c from the SBP and EEDORS algorithms respectively. It is obvious that the SBP algorithm could not deliver an accurate image for this set-up (Fig.18b). Both the EIDORS (Fig.18c) and SCG (Fig.l8d & f) can reconstruct the complexity of the set-up. The image obtained from five steps of the SCG solution (Fig.18c) provides a conductivity error of 3.32% and a boundary voltage error of 0.055%. The discretisation error caused by applying different mesh is reflected in Fig.3f.
Imaging distinguishability of these algorithms was investigated and the results are given in Fig.19. Two Objects' were located along a radius of a mesh (Fig.19a). For the set-up, SBP can image the presence of the two objects but could not distinguish them (Fig.19b). The edge of the objects' image is also merged with the boundary. The image obtained from EIDORS (Fig.19c) gives a better presentation about the object location with a clear separation from the boundary but is incapable of distinguishing between the two objects. SCG can clearly distinguish between the two objects although a certain artificial background noise presents (Fig.l9d & f).
Increasing the number of steps to solve the non-linear problem may improve the imaging accuracy. However, the most significant contribution is from the first step, which has already been shown in previous convergence graphs. Therefore, in practice, a single step solution would be widely acceptable for the balance of the imaging accuracy and speed.
The single step method solution is be further simplified by obtaining an approximation of the inverse of s (s is the normalised sensitivity matrix) and therefore the whole computation for reconstructing a single image only involves a multiplication of a matrix and a vector. The detailed information is provided as following.
The inverse solution can be denoted by equation (15) in a matrix form
e = -s ■ γ (Equation 15)
Where s is the normalized sensitivity matrix, γ the conductivity relative change vector, and e the boundary relative change vector. Since s is neither square nor positively definite, direct solution to equation (15) using CG method would not exist. Ln order to be solved, equation (15) has to be transformed to equation (16) by applying minimization to equation (15).
— sT e = - —sT— sγ (Equation 1 )
With srs presenting a very large condition number, equation (16) cannot be solved using direct inverse method aiming to an accurate solution. An iterative method with -fmite-steps-g-i-ves-equation--r -6--an-approximation.sj3juti_ n,-which serves as a kind of regularization. Although being able to provide a sensible solution to equation (16), iterative methods involves much larger computation load than direct inverse methods by which an inverse matrix for s rs can be obtained, and the solution to equation (16) only involves a multiplication of a matrix (sr s)"1 • sr with an vector e .
A.method of obtaining (sτ s)~l using CG method and therefore providing a one-step solution to equation (16) is presented, having the advantages of both lower computation load and a sensible solution.
To simplify notations, let A=(s s) , and form n equations in (17).
(Equation 17)
Figure imgf000022_0001
Figure imgf000022_0002
Solving equations (17) using CG method with finite steps (typically 20), we can get vectors, xl, x2, x3 xn, which can be assembled into [xl, x2, xn], an approximation of (sτs ~~1 . Knowing s , (sτs)~1 -sτ can be pre-calculated and therefore equation (16) can be solved in one step. Let T*=(sτs)~]- • Iτ , then the reconstruction process can be denoted as: σ = σ0 * (l + y) = σ0 * (l -r'e) (18)
Application 1
Multiphase flow exists in many industrial processes. The phase distribution and
Figure imgf000023_0001
information about the processes [Chhabra et al, Non-newtonian flow in the process industiies - fundamentals and engineering applications, Butterworth-Heinemann, Oxford, 1999]. However its behaviour is extremely complex, which presents a great challenge to the study of the flow mechanisms and the measurement of multiphase flow. Both single modality and multi-modality imaging have been reported [Dyakowski et al, Powder Technol. 104, 1999; Hoyle et al, Proc. 1st World Congress on Industrial Process Tomography, Buxton, UK, 1999] as a means to identify flow regimes in two-phase flow. A direct imaging method for characterising gas-water flow based on a simple 4-electrode technique was proposed [Seleghim et al, Meas. Sci. Technol. 9 1998]. Solid concentration distribution can be imaged using electrical resistance tomography (ERT) and its local velocity profile could be interpreted by applying cross-correlation method for a twin-plane sensing system in a full-filled pipe flow [Lucas et al, Journal of Flow Measurement and Instrumentation, 10, 4,1999]. However, most previous flow applications using conventional electrical resistance tomography were only applied for vertical pipes or horizontal pipes in the absence of large gas bubbles. Signal saturation will occur for a half-filled pipe flow, such as churn flow in a horizontal flow loop, since part of electrodes lose their electrical contacts with the electrically conductive fluid. Imaging methods based on the electrical conductive ring sensing strategy has been used for measuring the two-phase flow with 'electrically continuous' and 'discontinuous' phases. As a preliminary test, several examples of identifying flow regimes using this technique are presented A 20 m flow loop (inner diameter, 50mm) fitted with ERT sensors was employed for the experiments. A schematic diagram and overview of the flow loop are given in Figure 20. Mains tap-water (conductivity = 0.304mS/cm) was used as the liquid phase and air, were introduced into the flow loop from a mixing jet-pump. Measurements were performed at ambient temperature. By controlling the air flow- rate at the air inlet of the jet-pump, different flow regimes were generated in the low part of the flow loop.
The exp_eriments_were performed under different air flow-rates of 0.5m3/h, 1.5m3/h, 2.5m3/h, 3.5m3/h and the one less than 0.5m3/h in regard to the productions of slug flow, slug-churn flow, churn flow and bubbly flow regimes. The water flows were scaled with an accumulating tank during the experiments to get water flow rate and mean velocity. At the mean time, a number of photographs were recorded as visual presentations of these different flow regimes.
Two-dimensional (2D) slice images were sequentially reconstructed. Some reconstructed images in respect to typical air cavities in the flow loop are shown in Figure 21, where the blue areas represent the air cavities or low conductivity regions and the red areas represent the water or high conductivity regions.
Application 2
As an interesting test, a human hand was scanned using an EIT system. A 14.8cm diameter vessel fitted with one 16-electrode ring sensor and filled with 5.16mS/cm brine was employed. The adjacent electrode sensing strategy was applied with a pair of 10mA@9.6kHz sinusoidal currents for the test. The image data was made up of 15 measurement data sets acquired as the hand moved along the axial direction of the phantom while the water volume was kept the same. The signal-to-noise-ratio (SNR, here is the repeatability of reference voltage) was checked, which was within a maximum error 0.5%. Fifteen 2D images were reconstructed with the SCG [Figure 22]. These fifteen 2D SCG images were further interpolated to a 3D hand image. A cutting value of 3.3mS/cm was apphed to extract the surface of the hand skin as an iso-surface using Spyglass vl.OO. An outline of the human hand has been successfully extracted as shown in Figure 23. Some distortions can also be found, which may be caused by the electrode noise, the unstable position of the hand during the scanning and the 3-D effect of electrical field.

Claims

Claims
1. A method of measuring the distribution of electrical impedance of a multi-phase flow, of which the principal flow has an electrically continuous or discontinuous phase, using an electrically conductive ring electrode, characterised in that the ring electrode uses a π/2 sensing strategy.
2. . A, method according to Claim 1 characterised in that the ring electrode has a much higher conductivity compared to the principle flow or materials to be measured and it is employed as a ring electrode of a part comprised as part of a sensor body.
3. A method according to Claim 1 charaterised in that a more homogeneous electric field distribution is produced by maintaining the conductivity of the electrical conductive ring electrode at a higher level than that of the multiphase flow.
4. A method according to Claim 1 characterised in that the electrically conductive ring is made of solid substances selected from metal, conductive rubber and ceramics or a combination of the aforesaid.
5. A method according to Claim 1 characterised in that a number of electrical contacts are embedded into the conductive ring electrode in good electrical contact with an Outside wall of the ring electrode or penetrated through the wall of the ring electrode in good electrical contact with the wall.
6. A method according to Claim 1 characterised in that the size of the contacts is small.
7. A method according to Claim 1, characterised in that the sensitivity distribution of the voltage measurement is relatively intensified at a specific area in the whole of the sensing domain.
8. A method according to Claim 1 characterised in that the intensified sensitivity matrix is derived from the specific sensing strategy, or a combination from a basic sensitivity matrix.
9. A method according to claim 8 characterised in that the basic sensitivity matrix is derived from equations 1 and 2.
10. A method according to Claim 1 characterised in that a π/2 spaced sensing strategy with a 90° separation angle for measurement excitation is employed to further improve the homogeneity and the relative intensity of the sensitivity distribution at the central area of the sensing domain.
11. A method according to Claim 1 characterised in that the target is selected from a process material, a process fluid and a part of a human body.
12. A method according to claim 10 characterised in that the electrically continuous phase is a miscible liquid or the discontinuous phase such is in a foam formation or a half filled horizontal oil/water/gas stratified flow.
13. A method according to Claim 1 characterised in that the method is extended to a sensor with discrete electrode structure using an external resistor network connecting all electrodes.
14. A method according to Claim 1 characterised in that the geometry and the conductivity of the conductive ring sensor is optimized using the illness measure of the sensitivity matrix.
15. A method according to Claim 1 characterised in that a conductive disk is used to construct the sensor, with PCB as its connection.
16. A method according to Claim 1 characterised in that the conductive sensor is made in micro-scale.
17. A method according to Claim 15 characterised in that the micro-scale conductive sensor is made on silicon chips.
18. A method according to Claim 16 characterised in that the micro-scale conductive sensor is integrated with a measurement and processing circuit.
19. A method according to Claim 1 characterised in that a multi-step image reconstruction -ugorithm using an error processing method is employed to reconstruct the conductivity distribution.
20. A method according to Claim 18 characterised in that equation 8 is used.
21. A method according to Claim 18 characterised in that the error processing method uses the difference between the relative changes of the forward solutions and the measured results.
22. A method according to claim 20 characterised in that equation 14 is used.
23. A method according to Claim 18 characterised in that the CG method is used to solve linear equation in implementing both inverse solution and forward solution.
24. A method according to Claiml 8 characterised in that an image solution is performed using a single step to prove an approximated conductivity distribution.
25. A method according to claim 23 characterised in that equation 17 is used.
26. A method according to Claim 21 characterised in that the single step method involves only a multiplication of a matrix and a vector.
27. A method according to claim 25 characterised in that equation 18 is used.
28. An apparatus adapted to measure the distribution of electrical impedance of a multi-phase flow of which the principal flow has an electrically continuous or discontinuous phase, using an electrically conductive ring electrode characterised in that the ring electrode is adapted to use a π/2 sensing strategy.
29. A computer program product adapted for determining the internal structure of a body with electrical impedance tomography characterised in that the programme includes the use of the algorithms as given by the equation 8 and 17.
30. A method of determining the internal structure of a body which utilises a method according to Claim 1.
PCT/GB2001/005636 2000-12-30 2001-12-28 Electrical impedance tomography WO2002053029A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE60134173T DE60134173D1 (en) 2000-12-30 2001-12-28 ELECTRICAL IMPEDANCE TOMOGRAPHY
EP01272705A EP1347706B1 (en) 2000-12-30 2001-12-28 Electrical impedance tomography
US10/250,327 US6940286B2 (en) 2000-12-30 2001-12-28 Electrical impedance tomography
CA002472220A CA2472220A1 (en) 2000-12-30 2001-12-28 Electrical impedance tomography

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB0031854.3 2000-12-30
GB0031854A GB0031854D0 (en) 2000-12-30 2000-12-30 Electrical impedance tomography for flow measurement
GB0120772A GB0120772D0 (en) 2001-08-25 2001-08-25 Electrical impedance tompgraphy for flow measurement
GB0120772.9 2001-08-25

Publications (1)

Publication Number Publication Date
WO2002053029A1 true WO2002053029A1 (en) 2002-07-11

Family

ID=26245509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2001/005636 WO2002053029A1 (en) 2000-12-30 2001-12-28 Electrical impedance tomography

Country Status (6)

Country Link
US (1) US6940286B2 (en)
EP (1) EP1347706B1 (en)
AT (1) ATE395866T1 (en)
CA (1) CA2472220A1 (en)
DE (1) DE60134173D1 (en)
WO (1) WO2002053029A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10238824A1 (en) * 2002-08-23 2004-03-11 Forschungszentrum Jülich GmbH Method and device for the rapid tomographic measurement of the electrical conductivity distribution in a sample
WO2004077036A1 (en) * 2003-02-26 2004-09-10 Commonwealth Scientific And Industrial Research Organisation Method and apparatus for characterising multiphase fluid mixtures
WO2011039416A1 (en) * 2009-09-29 2011-04-07 Numcore Oy Three dimensional imaging of a mass flow
JP2011141872A (en) * 2010-01-05 2011-07-21 General Electric Co <Ge> Electrical network analysis on multiphase system
EP2395347A1 (en) * 2010-06-10 2011-12-14 General Electric Company Device and method for performing electrical impedance tomography
US8102182B2 (en) 2007-10-11 2012-01-24 University Of Utah Research Foundation Systems and methods for measuring the electrical properties of a microparticle
WO2012072880A1 (en) * 2010-11-30 2012-06-07 Metso Automation Oy Measurement of amount of solid in suspension
US8508238B2 (en) 2010-08-12 2013-08-13 General Electric Company System and method for performing electrical impedance tomography
CN105675658A (en) * 2016-01-13 2016-06-15 天津大学 Electrical resistance tomography sensor with built-in conductor ring
DE102016114611A1 (en) 2016-08-07 2018-02-08 Karl-Heinz Fromm Electrode arrangement, in particular for the electrical impedance tomography
US10371656B2 (en) 2014-09-15 2019-08-06 University Of Leeds Tomography apparatus and method
US10732017B2 (en) 2014-09-15 2020-08-04 University Of Leeds Tomography apparatus, multi-phase flow monitoring system, and corresponding methods
EP3698713A1 (en) 2019-02-20 2020-08-26 Löwenstein Medical Technology S.A. System for detecting a patient's respiratory effort
CN114062435A (en) * 2021-10-21 2022-02-18 北京工业大学 Flexible sensor with sensitivity correction function based on electrical impedance imaging principle
CN114216933A (en) * 2021-12-16 2022-03-22 北京航空航天大学 Gas-liquid two-phase flow measuring device and method suitable for open-area flow field

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8532735B2 (en) 2003-04-15 2013-09-10 Koninklijke Philips N.V. Device and method for examination and use of an electrical field in an object under examination containing magnetic particles
US20050243087A1 (en) * 2004-04-30 2005-11-03 Shmuel Aharon GPU-based Finite Element
US7701227B2 (en) * 2005-01-05 2010-04-20 Rensselaer Polytechnic Institute High precision voltage source for electrical impedance tomography
US7991243B2 (en) * 2005-02-03 2011-08-02 Koninklijke Philips Electronics N.V. Radial adaptive filter for metal artifact correction
CA2609111C (en) 2005-07-01 2016-10-18 Scott Chetham A method and apparatus for performing impedance measurements in accordance with determining an electrode arrangement using a displayed representation
JP5607300B2 (en) 2005-07-01 2014-10-15 インぺディメッド リミテッド Apparatus and method for performing impedance measurements on an object
US20100292603A1 (en) * 2005-09-21 2010-11-18 Beth Israel Deaconess Medical Center, Inc. Electrical Impedance Myography
US9724012B2 (en) 2005-10-11 2017-08-08 Impedimed Limited Hydration status monitoring
CN100362341C (en) * 2005-12-22 2008-01-16 天津大学 Compound array sensor of ERT/ECT bimodel state imaging system
WO2007088517A2 (en) 2006-02-01 2007-08-09 Ecole Polytechnique Federale De Lausanne (Epfl) Apparatus for manipulating, modifying and characterizing particles in a micro channel
CN100401044C (en) * 2006-03-21 2008-07-09 天津大学 Double mode electric imaging system sensor and image rebuilding method based on said sensor
NO324812B1 (en) * 2006-05-05 2007-12-10 Multi Phase Meters As Method and apparatus for tomographic multiphase flow measurements
CN100549684C (en) * 2007-04-18 2009-10-14 天津大学 Image rebuilding method based on Square double mode self-calibration sensor
AU2008241356B2 (en) 2007-04-20 2013-10-03 Impedimed Limited Monitoring system and probe
JP5542050B2 (en) 2007-08-09 2014-07-09 インぺディメッド リミテッド Impedance measurement method and apparatus
US8386010B2 (en) * 2008-10-23 2013-02-26 Covidien Lp Surgical tissue monitoring system
SE533704C2 (en) 2008-12-05 2010-12-07 Flatfrog Lab Ab Touch sensitive apparatus and method for operating the same
CA2777797A1 (en) 2009-10-26 2011-05-05 Impedimed Limited Fluid level indicator determination
US9585593B2 (en) 2009-11-18 2017-03-07 Chung Shing Fan Signal distribution for patient-electrode measurements
US8536883B2 (en) 2010-04-29 2013-09-17 Schlumberger Technology Corporation Method of measuring a multiphase flow
TW201203052A (en) * 2010-05-03 2012-01-16 Flatfrog Lab Ab Touch determination by tomographic reconstruction
CN102274025B (en) * 2011-05-30 2012-11-28 郑州大学 Multi-electrode electrical impedance tomography data acquisition system
US8892379B2 (en) 2011-06-30 2014-11-18 General Electric Company System and method for soft-field reconstruction
US9989453B2 (en) * 2011-08-23 2018-06-05 Cidra Corporate Services, Inc. Tomographic determination of scale build-up in pipes and other tanks, cells, vessels or containers
US8963562B2 (en) 2011-08-31 2015-02-24 General Electric Company Transducer configurations and methods for transducer positioning in electrical impedance tomography
CN103946696A (en) * 2011-11-30 2014-07-23 通用电气公司 High-side current measurement technique for multi-phase fluid
AU2012351988B2 (en) 2011-12-14 2017-05-04 Impedimed Limited Devices, systems and methods for determining the relative spatial change in subsurface resistivities across frequencies in tissue
US10168835B2 (en) 2012-05-23 2019-01-01 Flatfrog Laboratories Ab Spatial resolution in touch displays
CN103018284B (en) * 2012-12-14 2015-05-13 北京航空航天大学 Four-terminal electrical impedance tomography method based on two-terminal impedance measurement mode
WO2014168567A1 (en) 2013-04-11 2014-10-16 Flatfrog Laboratories Ab Tomographic processing for touch detection
WO2015005847A1 (en) 2013-07-12 2015-01-15 Flatfrog Laboratories Ab Partial detect mode
CN103604993B (en) * 2013-09-12 2017-01-04 陕西航天导航设备有限公司 Electric installation dynamic contact resistance test equipment and method of testing
WO2015108480A1 (en) 2014-01-16 2015-07-23 Flatfrog Laboratories Ab Improvements in tir-based optical touch systems of projection-type
WO2015108479A1 (en) 2014-01-16 2015-07-23 Flatfrog Laboratories Ab Light coupling in tir-based optical touch systems
JP6423183B2 (en) * 2014-06-25 2018-11-14 株式会社Ihi Tomography measurement method
US10161886B2 (en) 2014-06-27 2018-12-25 Flatfrog Laboratories Ab Detection of surface contamination
CN107209608A (en) 2015-01-28 2017-09-26 平蛙实验室股份公司 Dynamic touch isolates frame
US10318074B2 (en) 2015-01-30 2019-06-11 Flatfrog Laboratories Ab Touch-sensing OLED display with tilted emitters
WO2016130074A1 (en) 2015-02-09 2016-08-18 Flatfrog Laboratories Ab Optical touch system comprising means for projecting and detecting light beams above and inside a transmissive panel
CN107250855A (en) 2015-03-02 2017-10-13 平蛙实验室股份公司 Optical component for optical coupling
EP3387516B1 (en) 2015-12-09 2022-04-20 FlatFrog Laboratories AB Improved stylus identification
US10781687B2 (en) 2015-12-16 2020-09-22 Halliburton Energy Services, Inc. Electrical impedance tomography using a switchable array
GB2546522B (en) * 2016-01-21 2020-02-12 Atout Process Ltd Method and apparatus for measuring flows
CN105954351B (en) * 2016-04-11 2019-03-26 中国石油大学(华东) Based on electromagnetism-acoustical coupling oil-water two-phase flow process tomographic imaging method
DE102016223029A1 (en) 2016-11-22 2018-05-24 Leibniz-Institut Für Festkörper-Und Werkstoffforschung Dresden E.V. THREE-DIMENSIONAL TOMOGRAPH
EP3545392A4 (en) 2016-11-24 2020-07-29 FlatFrog Laboratories AB Automatic optimisation of touch signal
KR20240012622A (en) 2016-12-07 2024-01-29 플라트프로그 라보라토리즈 에이비 An improved touch device
US10963104B2 (en) 2017-02-06 2021-03-30 Flatfrog Laboratories Ab Optical coupling in touch-sensing systems
US10481737B2 (en) 2017-03-22 2019-11-19 Flatfrog Laboratories Ab Pen differentiation for touch display
WO2018182476A1 (en) 2017-03-28 2018-10-04 Flatfrog Laboratories Ab Touch sensing apparatus and method for assembly
CN117311543A (en) 2017-09-01 2023-12-29 平蛙实验室股份公司 Touch sensing device
WO2019172826A1 (en) 2018-03-05 2019-09-12 Flatfrog Laboratories Ab Improved touch-sensing apparatus
CN112889016A (en) 2018-10-20 2021-06-01 平蛙实验室股份公司 Frame for touch sensitive device and tool therefor
KR102241035B1 (en) * 2018-11-16 2021-04-16 경희대학교 산학협력단 Screening apparatus using multi-channel array electrode probe and operating method thereof
US20220007958A1 (en) * 2018-11-28 2022-01-13 Northwestern University High resolution two-dimensional resistance tomography
WO2020153890A1 (en) 2019-01-25 2020-07-30 Flatfrog Laboratories Ab A videoconferencing terminal and method of operating the same
US12056316B2 (en) 2019-11-25 2024-08-06 Flatfrog Laboratories Ab Touch-sensing apparatus
DE102020100980A1 (en) 2020-01-16 2021-07-22 Endress+Hauser SE+Co. KG Method for determining and / or monitoring at least one property of a medium
JP2023512682A (en) 2020-02-10 2023-03-28 フラットフロッグ ラボラトリーズ アーベー Improved touch detector
US11536676B2 (en) 2020-10-02 2022-12-27 Triad National Security, Llc Characterization of fluid inside pipe using multi frequency electrical signal
CN113724349A (en) * 2021-07-30 2021-11-30 神华上航疏浚有限责任公司 Horizontal pipeline flow velocity calculation method and device, computer equipment and storage medium
US11754520B2 (en) * 2021-08-26 2023-09-12 Beihang University Dynamic impedance imaging system
CN113945609B (en) * 2021-10-13 2024-03-19 中国人民解放军国防科技大学 ERT sensor for high-speed rail contact line abrasion detection

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2813068A1 (en) 1978-03-25 1979-10-04 Philips Patentverwaltung METHOD AND DEVICE FOR DETERMINING INTERNAL BODY STRUCTURES
IL62861A (en) 1981-05-13 1988-01-31 Yeda Res & Dev Method and apparatus for carrying out electric tomography
GB8415236D0 (en) 1984-06-14 1984-07-18 Univ Sheffield Tomography
US4617939A (en) 1982-04-30 1986-10-21 The University Of Sheffield Tomography
GB2119520B (en) 1982-04-30 1985-05-15 Brian Hilton Brown Tomography
US4920490A (en) 1988-01-28 1990-04-24 Rensselaer Polytechnic Institute Process and apparatus for distinguishing conductivities by electric current computed tomography
US5272624A (en) 1990-10-02 1993-12-21 Rensselaer Polytechnic Institute Current patterns for impedance tomography
JP3759606B2 (en) 1994-03-11 2006-03-29 ビーティージー・インターナショナル・リミテッド Electrical impedance tomography
CA2191285A1 (en) * 1996-11-26 1998-05-26 Philip Maurice Church Electrode arrangement for electrical impedance tomography system

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DICKIN F ET AL: "ELECTRICAL RESISTANCE TOMOGRAPHY FOR PROCESS APPLICATIONS", MEASUREMENT SCIENCE AND TECHNOLOGY, IOP PUBLISHING, BRISTOL, GB, vol. 7, no. 3, 1 March 1996 (1996-03-01), pages 247 - 260, XP000580971, ISSN: 0957-0233 *
SELEGHIM P ET AL: "DIRECT IMAGING OF TWO-PHASE FLOWS BY ELECTRICAL IMPEDANCE MEASUREMENTS", MEASUREMENT SCIENCE AND TECHNOLOGY, IOP PUBLISHING, BRISTOL, GB, vol. 9, no. 9, September 1998 (1998-09-01), pages 1492 - 1500, XP000853082, ISSN: 0957-0233 *
TAI R C V ET AL: "An experimental electrical impedance tomography system", PROCEEDINGS OF THE REGION TEN CONFERENCE (TENCON). BEIJING, OCT. 19 - 21, 1993, BEIJING, IAP, CN, vol. 3, 19 October 1993 (1993-10-19), pages 1005 - 1008, XP010113650, ISBN: 0-7803-1233-3 *
WANG M ET AL: "Modelling and analysis of electrically conducting vessels and pipelines in electrical resistance process tomography", IEE PROCEEDINGS: SCIENCE, MEASUREMENT AND TECHNOLOGY, IEE, STEVENAGE, HERTS, GB, vol. 142, no. 4, 1 July 1995 (1995-07-01), pages 313 - 22, XP006004428, ISSN: 1350-2344 *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6943553B2 (en) 2002-08-23 2005-09-13 Forschungszentrum Julich Gmbh Method and apparatus for rapid tomographic measurements of the electrical conductivity distribution of a sample
DE10238824A1 (en) * 2002-08-23 2004-03-11 Forschungszentrum Jülich GmbH Method and device for the rapid tomographic measurement of the electrical conductivity distribution in a sample
WO2004077036A1 (en) * 2003-02-26 2004-09-10 Commonwealth Scientific And Industrial Research Organisation Method and apparatus for characterising multiphase fluid mixtures
US7983864B2 (en) 2003-02-26 2011-07-19 Commonwealth Scientific & Industrial Research Organisation Method and apparatus for characterising multiphase fluid mixtures
US8102182B2 (en) 2007-10-11 2012-01-24 University Of Utah Research Foundation Systems and methods for measuring the electrical properties of a microparticle
EA024212B1 (en) * 2009-09-29 2016-08-31 Ототек Оюй Three dimensional imaging of a mass flow
CN102713592B (en) * 2009-09-29 2014-09-17 奥图泰公司 Three dimensional imaging of a mass flow
WO2011039416A1 (en) * 2009-09-29 2011-04-07 Numcore Oy Three dimensional imaging of a mass flow
CN102713592A (en) * 2009-09-29 2012-10-03 奥图泰公司 Three dimensional imaging of a mass flow
AU2010302548B2 (en) * 2009-09-29 2013-08-15 Metso Outotec Finland Oy Three dimensional imaging of a mass flow
JP2011141872A (en) * 2010-01-05 2011-07-21 General Electric Co <Ge> Electrical network analysis on multiphase system
EP2343538A3 (en) * 2010-01-05 2012-09-26 General Electric Company Electrical network analysis of a multiphase system
CN102183547A (en) * 2010-01-05 2011-09-14 通用电气公司 Electrical network analysis of a multiphase system
CN102183547B (en) * 2010-01-05 2014-11-19 通用电气公司 Electrical network analysis of a multiphase system
EP2395347A1 (en) * 2010-06-10 2011-12-14 General Electric Company Device and method for performing electrical impedance tomography
US8508238B2 (en) 2010-08-12 2013-08-13 General Electric Company System and method for performing electrical impedance tomography
EP2646797A4 (en) * 2010-11-30 2015-06-17 Metso Automation Oy Measurement of amount of solid in suspension
CN103238053A (en) * 2010-11-30 2013-08-07 美卓自动化有限公司 Measurement of amount of solid in suspension
US9207228B2 (en) 2010-11-30 2015-12-08 Valmet Automation Oy Measurement of amount of solid in suspension
WO2012072880A1 (en) * 2010-11-30 2012-06-07 Metso Automation Oy Measurement of amount of solid in suspension
EP2646797A1 (en) * 2010-11-30 2013-10-09 Metso Automation Oy Measurement of amount of solid in suspension
US10371656B2 (en) 2014-09-15 2019-08-06 University Of Leeds Tomography apparatus and method
US10732017B2 (en) 2014-09-15 2020-08-04 University Of Leeds Tomography apparatus, multi-phase flow monitoring system, and corresponding methods
CN105675658A (en) * 2016-01-13 2016-06-15 天津大学 Electrical resistance tomography sensor with built-in conductor ring
WO2018028725A1 (en) 2016-08-07 2018-02-15 Ingenieurbüro Fromm Electrode assembly, in particular for electrical impedance tomography
DE102016114611A1 (en) 2016-08-07 2018-02-08 Karl-Heinz Fromm Electrode arrangement, in particular for the electrical impedance tomography
EP3698713A1 (en) 2019-02-20 2020-08-26 Löwenstein Medical Technology S.A. System for detecting a patient's respiratory effort
US11723549B2 (en) 2019-02-20 2023-08-15 Loewenstein Medical Technology S.A. System for capturing respiratory effort of a patient
CN114062435A (en) * 2021-10-21 2022-02-18 北京工业大学 Flexible sensor with sensitivity correction function based on electrical impedance imaging principle
CN114216933A (en) * 2021-12-16 2022-03-22 北京航空航天大学 Gas-liquid two-phase flow measuring device and method suitable for open-area flow field
CN114216933B (en) * 2021-12-16 2023-11-24 北京航空航天大学 Gas-liquid two-phase flow measuring device and method suitable for open-area flow field

Also Published As

Publication number Publication date
US20040130338A1 (en) 2004-07-08
EP1347706A1 (en) 2003-10-01
DE60134173D1 (en) 2008-07-03
US6940286B2 (en) 2005-09-06
ATE395866T1 (en) 2008-06-15
EP1347706B1 (en) 2008-05-21
CA2472220A1 (en) 2002-07-11

Similar Documents

Publication Publication Date Title
US6940286B2 (en) Electrical impedance tomography
Borsic Regularisation methods for imaging from electrical measurements
Wang Inverse solutions for electrical impedance tomography based on conjugate gradients methods
Gunes et al. A comparison between electrical capacitance tomography and displacement-current phase tomography
EP2483672B1 (en) Three dimensional imaging of a mass flow
Adler et al. Electrical impedance tomography.
Mueller et al. A reconstruction algorithm for electrical impedance tomography data collected on rectangular electrode arrays
Heikkinen et al. Real time three-dimensional electrical impedance tomography applied in multiphase flow imaging
Wang et al. A highly adaptive electrical impedance sensing system for flow measurement
CN109690260B (en) Displacement current phase tomography for lossy media imaging
Yang et al. Image reconstruction for electrical impedance tomography using enhanced adaptive group sparsity with total variation
CN101794453B (en) Reconstruction method of node mapping image based on regression analysis
CN102540276B (en) Soft field tomography system and method
Kim et al. Image reconstruction using voltage–current system in electrical impedance tomography
Liu et al. A bilateral constrained image reconstruction method using electrical impedance tomography and ultrasonic measurement
Korjenevsky Electric field tomography for contactless imaging of resistivity in biomedical applications
Wang et al. Estimating homogeneous reference frame for absolute electrical impedance tomography through measurements and scale feature
Dimas et al. An efficient point-matching method-of-moments for 2D and 3D electrical impedance tomography using radial basis functions
Heikkinen et al. Modelling of internal structures and electrodes in electrical process tomography
Heikkinen et al. Electrical process tomography with known internal structures and resistivities
Murphy et al. Electrical impedance tomography with non-stationary electrodes
Ru et al. Neural networks in electrical capacitance tomography (ECT)-based interface detection
Savolainen et al. An electrical impedance tomography measurement system for experimental use
Abbasi et al. A non-iterative linear inverse solution for the block approach in EIT
Ruan et al. Experimental evaluation of two iterative reconstruction methods for induced current electrical impedance tomography

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001272705

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001272705

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10250327

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2472220

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWG Wipo information: grant in national office

Ref document number: 2001272705

Country of ref document: EP