WO2002046664A1 - Refrigerateur - Google Patents

Refrigerateur Download PDF

Info

Publication number
WO2002046664A1
WO2002046664A1 PCT/JP2001/010761 JP0110761W WO0246664A1 WO 2002046664 A1 WO2002046664 A1 WO 2002046664A1 JP 0110761 W JP0110761 W JP 0110761W WO 0246664 A1 WO0246664 A1 WO 0246664A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
oil
pipe
oil return
state
Prior art date
Application number
PCT/JP2001/010761
Other languages
English (en)
French (fr)
Inventor
Kenji Tanimoto
Masaaki Takegami
Kazuyoshi Nomura
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to AU2002221094A priority Critical patent/AU2002221094A1/en
Publication of WO2002046664A1 publication Critical patent/WO2002046664A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a refrigeration apparatus, and more particularly, to a refrigeration apparatus including two compressors.
  • Background Art Fine 1
  • some air conditioners have a refrigerant circuit in which an outdoor unit and an indoor unit are connected, as disclosed in Japanese Patent Application Laid-Open No. H10-I324.
  • the outdoor unit is configured as a so-called twin-type compressor, and includes a compression mechanism in which the first compressor and the second compressor are connected in parallel.
  • the refrigerant sucked into each compressor exchanges heat with the oil (lubricating oil) in the compressor dome.
  • the oil lubricating oil
  • a part of the heat of the refrigerant is used for cooling the oil, so that there is a problem that the cooling capacity is reduced.
  • the present invention has been made in view of the above points, and has as its object to improve COP, and in particular, to expand its capacity during cooling operation. Disclosure of the invention
  • the first invention comprises a refrigerant circuit (15) in which a heat source unit (11) and a utilization unit (12, 13) are connected so that refrigerant can circulate.
  • Refrigeration equipment includes a high-pressure dome-type first compressor (41) operated at a constant capacity and a high-pressure dome-type second compressor (42) whose operation capacity is adjusted in multiple stages. ) Is connected in parallel with the compression mechanism (40).
  • an oil separator (51) is provided on the discharge side of the compression mechanism (40), and the oil separator (51) and the suction side of the compression mechanism (40) are connected to each other.
  • An oil return pipe ( ⁇ 2) for returning the oil separated by the oil separator (51) to the compression mechanism (40) is connected between the oil return pipe (52) and the oil return pipe (52).
  • An oil return opening / closing mechanism (53) is provided.
  • the third invention is the second invention, wherein the oil return opening / closing mechanism (53) and the oil leveling opening / closing mechanism are provided when both the first compressor (41) and the second compressor (42) are driven. (55) is synchronized to perform oil return control that switches between a communication state and a cutoff state at predetermined intervals.
  • the oil return control is prohibited before the first compressor (41) is driven while the second compressor (42) is driven. ing.
  • the oil equalizing opening / closing mechanism (55) is operated immediately before the first compressor (41) is driven while the second compressor (42) is driven. It is configured to maintain communication.
  • the sixth invention when the first compressor (41) and the second compressor (42) are both driven, the minimum capacity operation of the second compressor (42) is reduced.
  • the driving of the first compressor (41) is temporarily stopped, and the operating capacity of the second compressor (42) is increased.
  • a seventh invention is the third invention, in the third invention, when only the second compressor (42) is driven, the oil return opening / closing mechanism (53) with the oil equalizing opening / closing mechanism (55) shut off. Only at a predetermined interval, only the communication state and the cutoff state are switched.
  • the oil equalizing opening / closing mechanism (55) is shut off. Only the oil return opening / closing mechanism (53) is switched between the communication state and the cutoff state at a predetermined interval in the state.
  • the oil equalizing opening / closing mechanism (55) is held in a shut-off state.
  • a tenth aspect of the present invention is directed to the second aspect, wherein the oil return pipe (52) is provided with a cooling mechanism (56) for cooling the oil.
  • the first invention is configured such that in the second invention, a cooling mechanism (57) for cooling oil is provided in the oil equalizing pipe (54).
  • the oil separator (51) includes a discharge pipe (1) in which refrigerant discharged from the first compressor (41) and the second refrigerant (42) flows together. 44) It is provided in the main pipe part.
  • the end of the oil return pipe (52) on the compression mechanism (40) side is connected to a suction pipe (43) connected to the first compressor (41). It is configured to be connected to the suction branch pipe (43a).
  • the suction branch pipe (43a) of the suction pipe (43) connected to the first compressor (41) and the second branch (43) are connected.
  • the suction pipe (43) and the suction branch pipe (43b) of the suction pipe (43) are configured to be freely circulated to each other. That is, in the present invention, the compression mechanism (40) is activated, for example, from the second compressor (42). Then, when the second compressor (42) is started, the oil equalizing opening / closing mechanism (55) is kept in a shut-off state.
  • the oil return opening / closing mechanism (53) and the oil leveling opening / closing mechanism (55) are both kept in a shut-off state for a predetermined time.
  • the oil equalizing opening / closing mechanism (55) is brought into a communicating state.
  • the oil return opening and closing mechanism (53) and the oil leveling opening and closing mechanism (55) are Performs oil return control that switches between the communication state and the cutoff state at intervals. That is, the first compressor (41) and the second compressor (42) are both driven, the oil return opening and closing mechanism (53) and the oil leveling opening and closing mechanism (55) are Performs oil return control that switches between the communication state and the cutoff state at intervals. That is, the first compressor
  • the oil inside the (41) and the second compressor (42) flows out together with the refrigerant, and is separated by the oil separator (51).
  • the oil of the oil separator (51) is once returned from the oil return pipe (52) to the first compressor (41).
  • the oil is cooled by the cooling mechanism (56, 57) in the middle of the oil return pipe () and the oil equalizing pipe ( 5 ).
  • the operation capacity of the second compressor (42) is increased, the amount of oil discharged to the refrigerant circuit (15) is increased, and the amount of oil in the oil separator (51) is increased. Perform oil leveling.
  • both the first compressor (41) and the second compressor (42) are composed of a high-pressure dome, COP (coefficient of performance) can be improved.
  • each compressor (41, 42) is compressed without exchanging heat with the oil in the compressor dome.
  • the heat of the suction refrigerant is not used for cooling the oil, and the compressed high-pressure refrigerant exchanges heat with the oil in the compressor dome. And some condense. Therefore, COP during cooling operation can be improved.
  • the oil return opening / closing mechanism (53) and the oil leveling opening / closing mechanism (55) are synchronized with each other. in order that as switched to the cutoff state to the communicating state at intervals, the oil can be returned reliably to the first compressor (41) and the second compressor (4 2).
  • the refrigerant flowing out of the first compressor (41) and the second compressor (42) is collected by the oil separator (51), and the oil of the oil separator (51) is collected. Return the oil from the oil return pipe (52) to the first compressor (41). Thereafter, the oil-equalizing pipe surplus oil of the first compressor (41) (5 4) from the second compressor back to (42), and to perform the oil return accurately.
  • the oil return opening / closing mechanism (53) and the oil leveling opening / closing mechanism (55) are both kept in a shut-off state.
  • oil can be accumulated in the oil separator (5 1), when the first compressor (41) is started, the oil separator (51) to the ball reliably first compressor Tsutaabura (41) Can be returned to.
  • the oil equalizing opening / closing mechanism (55) is maintained in the communicating state immediately before the first compressor (41) is driven, it is possible to prevent a starting failure. That is, the internal pressure of the first compressor (41) can be reduced, and the refrigerant stagnated in the oil can be removed, so that starting failure can be prevented.
  • the driving of the first compressor (41) is temporarily stopped, and the second compressor (41) is stopped. Since the operating capacity of (42) is increased, it is possible to accurately level oil. That is, during the minimum capacity operation of the second compressor (42), a small amount of oil flows out from the second compressor (42) to the refrigerant circuit (15), and a large amount of oil accumulates in the second compressor (42). Become. Therefore, the capacity of the second compressor (42) is temporarily increased, the amount of oil discharged to the refrigerant circuit (15) is increased, and the oil is leveled.
  • the oil equalizing opening / closing mechanism (55) is maintained in a shut-off state, so that the oil of the first compressor (41) is supplied to the second compressor (41). 42) is reliably prevented from being inhaled. .
  • FIG. 1 is a refrigerant circuit diagram of an air conditioner showing an embodiment of the present invention.
  • FIG. 2 is an enlarged configuration diagram showing a compression mechanism.
  • FIG. 3 is a timing chart showing characteristics of the oil return control.
  • FIG. 4 is a timing chart showing another oil return control characteristic.
  • FIG. 5 is a flowchart showing a driving operation of the compression mechanism.
  • the air conditioner (10) constitutes a refrigeration system, and is configured to switch between a cooling operation and a heating operation.
  • the air conditioner (10) includes one outdoor unit (11) that is a heat source side unit. It is equipped with two indoor units (12, 13), which are user-side units, and is configured in a so-called multi-type.
  • the air conditioner (10) includes a refrigerant circuit (15) and a controller (90) as control means.
  • indoor units (12, 13) there are two indoor units (12, 13). This is merely an example, and the number of indoor units may be determined as appropriate according to the capacity and use of the outdoor unit (11) (including one unit).
  • the refrigerant circuit (15) includes one outdoor circuit (20) that is a heat source side circuit, two indoor circuits (60 and 65) that are use side circuits, and a liquid side connection pipe (16) that is a connection pipe. It consists of a gas-side connecting pipe (17). Two indoor circuits (60, 65) are connected in parallel to the outdoor circuit (20) via a liquid side communication pipe (16) and a gas side communication pipe (17).
  • the outdoor circuit (20) is housed in an outdoor unit (11).
  • the outdoor circuit (20) includes a compression mechanism (40), a four-way switching valve (21), an outdoor heat exchanger (22), a receiver (23), an outdoor expansion valve (24), and a liquid side shutoff valve (25). And a gas side shutoff valve (26).
  • the compression mechanism (40) has a first compressor (41) and a second compressor (42) connected in parallel, and is configured as a so-called pane-type compressor.
  • the first compressor (41) and the second compressor (42) are both high-pressure dome hermetic scroll compressors. That is, the first compressor (41) and the second compressor (42) are configured by housing a compression element and an electric motor for driving the compression element in a cylindrical housing.
  • the high-pressure gas refrigerant compressed by the compression element is temporarily discharged into a high-pressure dome (closed vessel), and the high-pressure refrigerant in the high-pressure dome
  • the gas is configured to be discharged to the outside.
  • oil refrigeration machine oil
  • the first compressor (41) is a compressor having a fixed capacity in which the motor is always driven at a fixed rotation speed.
  • the second compressor (42) is a variable capacity compressor in which the number of revolutions of the electric motor is changed stepwise or continuously in multiple stages. That is, in the second compressor (42), the rotation speed of the electric motor is controlled by the inverter.
  • the entire capacity of the compression mechanism (40) is variably adjusted by driving and stopping the first compressor (41) and changing the capacity of the second compressor (42). Specifically, until the required capacity of the compression mechanism (40) exceeds a predetermined value, the first compressor is operated while the capacity of the second compressor (42) is preferentially adjusted first. When the pressure exceeds, the capacity of the second compressor (42) is adjusted while operating the two compressors with the first compressor (41) also started.
  • the compression mechanism (40) includes a suction pipe (43) and a discharge pipe (44).
  • the suction pipe (43) has an inlet end connected to a first port of the four-way switching valve (21), and an outlet end branched into two suction branch pipes (43a, 43b).
  • the suction branch pipes (43a, 43b) are connected to the suction side of each compressor (41, 42). Note that the two suction branch pipes (43a, 43b) are configured to be freely circulated to each other.
  • the discharge pipe (44) has an inlet end branched into two discharge branch pipes (44a, 44b) and an outlet end connected to a second port of the four-way switching valve (21).
  • the discharge branch pipes (44a, 44b) are connected to the discharge sides of the compressors (41, 42).
  • the discharge branch pipe (44a) connected to the first compressor (41) is provided with a discharge-side check valve (45).
  • the discharge-side check valve (45) allows only the flow of the refrigerant in the direction flowing out of the first compressor (41).
  • the compression mechanism (40) includes an oil separator (5 1) the oil return pipe (52) and the oil equalizing tube and (54).
  • the oil separator (51) includes a main pipe portion of a discharge pipe (44) in which refrigerant discharged from the first compressor (41) and the second refrigerant (42) flow together. It is provided in.
  • the oil separator (51) is for separating oil from refrigerant discharged from the compressor (41, 2).
  • One end of the oil return pipe (52) is connected to an oil separator (51), and the other end is connected to a suction branch pipe (43a) of the first compressor (41).
  • the oil return solenoid valve (53) opens and closes so as to communicate with and shut off the oil return pipe (52).
  • One end of the oil equalizing pipe ( 54 ) is connected to the first compressor ( 4 "0), and the other end is connected to a suction branch pipe (43b) of the second compressor (42).
  • Each compression It is for averaging the amount of oil stored in the housing of the machine (41, 42), and is equipped with an oil leveling solenoid valve (55) that is an oil leveling mechanism. That is, the oil equalizing pipe (54) is configured to supply surplus oil to the second compressor (42) when the stored oil in the first compressor (41) becomes equal to or more than a predetermined amount.
  • the oil equalizing solenoid valve ( 55 ) opens and closes to open and close the oil equalizing pipe (54).
  • the third port of the four-way switching valve (21) is connected to the gas side shut-off valve (26) by a pipe, and the fourth port is connected to the upper end of the outdoor heat exchanger (22) by a pipe. .
  • the four-way switching valve (21) has a state where the first port and the third port communicate with each other and the second port and the fourth port communicate with each other (a state shown by a solid line in FIG. 1). The state is switched to a state in which the port and the fourth port communicate with each other and the second port and the third port communicate with each other (a state shown by a broken line in FIG. 1).
  • the switching operation of the four-way switching valve (21) reverses the direction of circulation of the refrigerant in the refrigerant circuit (15). That is, in the refrigerant circuit (15), the direction of circulation of the refrigerant is reversible.
  • the receiver (23) is a cylindrical container for storing a refrigerant.
  • the receiver (23) and the outdoor expansion valve (24), which is a heat source side expansion mechanism, are provided in a rectifier circuit (30).
  • the rectifier circuit (30) is composed of a purge circuit (31) having four check valves, and a one-way passage (32) through which refrigerant flows only in one direction, and includes an outdoor heat exchanger (22) and a liquid side. Located between the shut-off valve (25).
  • the first connection end of the four connection ends of the bridge circuit (31) is connected to the lower end of the outdoor heat exchanger (22), and the second connection end of the bridge circuit (31) is connected to the liquid side. Connected to shutoff valve (25).
  • the third connection terminal and the fourth connection terminal of the bridge circuit (31) are connected to both ends of a one-way passage (32).
  • the -direction passage (32) is connected to the receiver (23) and the outdoor expansion valve (24) in order from the upstream side so that the refrigerant flows only from the receiver (23) to the outdoor expansion valve (24). It is configured.
  • the outdoor heat exchanger (22) exchanges heat between the refrigerant circulating in the refrigerant circuit (15) and the outdoor air.
  • the outdoor circuit (20) is provided with a vent pipe (35) and a pressure equalizing pipe (37).
  • One end of the gas vent pipe (35) is connected to the upper end of the receiver (23), the other end is connected to the suction pipe (4 3).
  • the gas vent pipe (35) forms a communication passage for introducing the gas refrigerant of the receiver (23) to the suction side of each of the compressors (41, 42).
  • the degassing pipe (35) is provided with a degassing solenoid valve (36).
  • the gas venting solenoid valve (36) constitutes an opening / closing mechanism for interrupting the flow of the gaseous medium in the gas venting pipe (35).
  • the pressure equalizing pipe (37) is connected between the gas release solenoid valve (36) and the receiver (23) in the gas release pipe (35), and the other end is connected to the discharge pipe (44). I have. Further, the equalizing pipe (37) is provided with a check valve (38) for equalizing, which permits only the flow of the refrigerant from one end to the other end.
  • the pressure equalizing pipe (37) allows the gas refrigerant to escape when the outside temperature rises abnormally while the air conditioner (10) is stopped and the pressure in the receiver (23) becomes too high. This is to prevent the rupture. Therefore, the refrigerant does not flow through the pressure equalizing pipe (37) during the operation of the air conditioner (10).
  • One indoor circuit (60, 65) is provided for each indoor unit (12, 13). Specifically, the first indoor circuit (60) is stored in the first indoor unit (12), and the second indoor circuit (65) is stored in the second indoor unit (13).
  • the first indoor circuit (60) includes a first indoor heat exchanger (61) as a use side heat exchanger, and the second indoor circuit (65) includes a second indoor heat exchange as a use side heat exchanger. It has a vessel (66).
  • the first indoor heat exchanger (61) and the second indoor heat exchanger (66) are constituted by cross-fin type fin-and-tube heat exchangers. Each indoor heat exchanger (61, 66) exchanges heat between the refrigerant circulating in the refrigerant circuit (15) and the indoor air. .
  • liquid side communication pipe (16) One end of the liquid side communication pipe (16) is connected to a liquid side shutoff valve (25).
  • the other end of the liquid side communication pipe (16) is branched into two, and the first branch pipe is connected to the first indoor heat exchanger (61) in the first indoor circuit (60),
  • the branch pipe is connected to the second indoor heat exchanger (66) in the second indoor circuit (65).
  • Above gas side station One end of the tube (17) is connected to the gas side shutoff valve (26).
  • the other end of the gas side communication pipe (17) is branched into two, and the first branch pipe is connected to the first indoor heat exchanger (61) in the first indoor circuit (60).
  • the second branch pipe is connected to the second indoor heat exchanger (66) in the second indoor circuit (65).
  • the outdoor unit (11) is provided with an outdoor fan (70).
  • the outdoor fan (7) is for sending outdoor air to the outdoor heat exchanger (22).
  • each of the first and second indoor units (12, 13) is provided with an indoor fan (80).
  • the indoor fan (80) is for sending indoor air to the indoor heat exchangers (61, 66).
  • the air conditioner (10) is provided with temperature and pressure sensors and the like.
  • the outdoor unit (11) is provided with an outdoor temperature sensor (71) for detecting the temperature of outdoor air.
  • the outdoor heat exchanger (22) is provided with an outdoor heat exchange temperature sensor (72) for detecting the temperature of the heat transfer tube.
  • a low pressure sensor (74) for detecting the refrigerant pressure is provided.
  • the discharge pipe (44) of the compression mechanism (40) has a discharge temperature sensor (75) for detecting the discharge refrigerant temperature of the compression mechanism (40), and a discharge refrigerant pressure of the compression mechanism (40).
  • a high pressure sensor (76) and a high pressure switch (77) for detection are provided.
  • Each of the indoor units (12, 13) is provided with one indoor temperature sensor (81) for detecting the temperature of indoor air.
  • Each of the indoor heat exchangers (61, 66) is provided with one indoor heat exchange temperature sensor (82) for detecting the heat transfer tube temperature.
  • a gas-side temperature sensor (83) for detecting the temperature of the gas refrigerant flowing through the indoor circuit (60, 65) is provided. are provided one by one.
  • the controller (90) controls the operation of the air conditioner (10) in response to a signal from the sensors or a command signal from a remote controller or the like. Specifically, the controller (90) adjusts the opening of the outdoor expansion valve (24), switches the four-way switching valve (21), and opens and closes the gas release solenoid valve (36). The above controller (90) also controls the capacity of the compression mechanism (40).
  • the controller (90) is provided with oil control means (91) for performing oil return control.
  • the oil control means (91) When the first compressor (41) and the second compressor (42) are both driven, the oil control means (91) operates the oil return solenoid valve (53) and the oil equalization solenoid valve (55).
  • the oil return control that switches between the communication state and the cutoff state at predetermined intervals in synchronization with the oil return control is performed.
  • the basic control of the oil control means (91) is performed, for example, after the oil return solenoid valve (53) and the oil equalizing solenoid valve (55) are both opened for 10 seconds, and then the oil return solenoid valve (53) is opened. ) And the oil equalizing solenoid valve (55) are closed for 20 minutes, and this operation is repeated.
  • the oil control means (91) after returning once through oil return pipe (5 2) to the oil separator of an oil (51) the first compressor (41), said first compressor (41 ) To return to the second compressor (42) via the oil equalizing pipe (54).
  • the oil control means (91) prohibits oil return control before the first compressor (41) is driven while the second compressor (42) is driven. In other words, this prohibition control keeps the oil return solenoid valve (53) and the oil equalization solenoid valve (55) in a closed state for a predetermined time before the first compressor (41) is driven.
  • the oil control means (91) keeps the oil equalizing solenoid valve (55) in a communicating state immediately before the first compressor (41) is driven while the second compressor (42) is driven. Performs control immediately before driving. That is, this drive linear control keeps the oil equalizing solenoid valve (55) open for 10 seconds to reduce the internal pressure of the first compressor (41).
  • the oil control means (91) continues the minimum displacement operation of the second compressor (42) for a predetermined time. Then, the drive of the first compressor (41) is temporarily stopped, and the correction control for increasing the operation capacity of the second compressor (42) is performed. That is, during the minimum capacity operation of the second compressor (42), less oil is discharged from the second compressor (42) to the refrigerant circuit (15), and more oil is accumulated in the second compressor (42). Thus, the oil control means (91) temporarily increases the capacity of the second compressor (42), increases the amount of oil discharged to the refrigerant circuit (15), and performs leveling.
  • the oil control means (91) is in a state where only the second compressor (42) is driven. In this state, only the oil return solenoid valve (53) performs low-capacity control to switch between the communicating state and the shut-off state at a predetermined interval while the oil equalizing solenoid valve (55) is in the shut-off state. That is, in this low-capacity control, the oil equalizing solenoid valve (55) is kept closed since the first compressor (41) is stopped.
  • the oil control means (91) shuts off the oil equalizing solenoid valve (55).
  • Abnormal control is performed in which only the oil return solenoid valve (53) switches between the communication state and the cutoff state at predetermined intervals. That is, this abnormality control is performed by closing the oil equalizing solenoid valve (55) so that the high-pressure gas refrigerant does not flow to the second compressor (42) because the inside of the first compressor (41) is in a high pressure state. Hold as it is.
  • the oil control means (91) performs a start control in which the oil equalizing solenoid valve (55) is kept in a shut-off state when the second compressor (42) is started. That is, in this start control, since the first compressor (41) is stopped, the oil equalizing solenoid valve (55) is kept closed.
  • the air conditioner (10) described above performs a vapor compression refrigeration cycle by circulating the refrigerant in the refrigerant circuit (15) while changing its phase.
  • the air conditioner (10) switches between the cooling operation and the heating operation by reversing the direction of circulation of the refrigerant in the refrigerant circuit (15).
  • a cooling operation is performed in which the indoor heat exchangers (61, 66) become evaporators.
  • the four-way switching valve (21) is in the state shown by the solid line in FIG.
  • the outdoor expansion valve (24) is adjusted to a predetermined opening, the degassing solenoid valve (36) is kept closed, and the oil return solenoid valve (53) and the oil equalizing solenoid valve (55) are opened and closed as appropriate.
  • the refrigerant compressed by the compression mechanism (40) flows through the discharge pipe (44) and the four-way switching valve (21) to the outdoor heat exchanger (22).
  • the refrigerant releases heat to outdoor air and condenses.
  • the condensed refrigerant flows through the bridge circuit (31) and the one-way passage (32), expands at the outdoor expansion valve (24), and closes the liquid side communication pipe ( 16 ). Flows.
  • the refrigerant in the liquid side communication pipe (1S) is divided into two indoor circuits (60, 65), and in each indoor heat exchanger (61, 66), absorbs heat from indoor air and evaporates. That is, the indoor air is cooled in the indoor heat exchangers (61, 66).
  • the evaporated refrigerant flows through the gas side communication pipe (17), and after joining, flows into the outdoor circuit (20). Thereafter, the refrigerant passes through the four-way switching valve (21), returns to the compression mechanism (40) through the suction pipe (43). Such circulation of the refrigerant is repeated.
  • a heating operation is performed in which the indoor heat exchangers (61, 66) become condensers.
  • the four-way switching valve (21) is in the state shown by the broken line in FIG.
  • the outdoor expansion valve (24) is adjusted to a predetermined opening, and the oil return solenoid valve (53) and the oil equalizing solenoid valve (55) are opened and closed appropriately.
  • the gas venting solenoid valve (36) is always kept open during the heating operation.
  • the refrigerant flows in the refrigerant circuit (15) in a direction basically opposite to that in the cooling operation.
  • the refrigerant radiates heat to indoor air and condenses, absorbs heat from outdoor air and evaporates, and heats the room. The details of the flow of the solvent are omitted.
  • the activation of the compression mechanism (40) is performed from the second compressor (42).
  • the oil control means (91) performs start control while keeping the oil equalizing solenoid valve (55) in a shut-off state. That is, since the first compressor (41) is stopped at present, the oil equalizing solenoid valve (55) is kept closed.
  • the second compressor (42) is controlled from the lowest capacity (lowest frequency) to the highest capacity (highest frequency) according to the air conditioning load.
  • the oil control means (91) sets only the oil return solenoid valve (53) to the communicating state at a predetermined interval while keeping the oil equalizing solenoid valve (55) in the shut-off state.
  • the oil return solenoid valve (53) repeats, for example, opening for 10 seconds and closing for 20 minutes.
  • the oil (lubricating oil) inside the second compressor (42) flows out together with the refrigerant into the discharge pipe (44) and is separated by the oil separator (51). .
  • the oil return solenoid valve (53) is opened, the separated oil passes through the oil return pipe (52), returns from the suction pipe (43) to the second compressor (42), and this oil return operation is performed. Repeated.
  • the oil control means (91) inhibits the oil return control before the first compressor (41) is driven while the second compressor (42) is driven (point D in FIG. 3). reference). That is, in the prohibition control, before the first compressor (41) is driven, the oil return solenoid valve (53) and the oil equalizing solenoid valve (55) are both kept closed for a predetermined time.
  • the oil control means (91) keeps the oil equalizing solenoid valve (55) in communication with the second compressor (42) immediately before driving the first compressor (41) while the second compressor (42) is driven. Carry out the control just before driving (see point E in Fig. 3). That is, the oil equalizing solenoid valve (55) is opened for 10 seconds to reduce the internal pressure of the first compressor (41).
  • the oil control means (91) performs the oil return electromagnetic operation while the first compressor (41) and the second compressor (42) are both driven.
  • the oil return control is performed so that the valve (53) and the oil equalizing solenoid valve (55) are synchronously switched between a communication state and a cutoff state at predetermined intervals. For example, after the oil return solenoid valve (53) and the oil equalization solenoid valve (55) were both opened for 10 seconds, both the oil return solenoid valve (53) and the oil equalization solenoid valve (55) were closed. The closed state is performed for 20 minutes, and this operation is repeated.
  • Oil control means (91) returns once to the oil separator (5 1) oil return oil pipe (5 2) the first compressor and through the intake branch pipe (4J3a) from (41). Then returned to the first compressor (41) through oil equalizing pipe (54) from the second compressor (4 2).
  • step ST1 the state where the first compressor (41) is driven and the second compressor (42) is driven at the minimum capacity has continued for 20 minutes. Is determined.
  • step ST1 the determination in step ST1 becomes YES, the process proceeds to step ST2, and the drive of the first compressor (41) is temporarily stopped. Then, the operation for increasing the operation capacity of the second compressor (42) is performed for 5 minutes. That is, when the second compressor (42) operates at the minimum capacity, less oil is discharged from the second compressor (42) to the refrigerant circuit (15), and more oil is accumulated in the second compressor (42). . Therefore, the capacity of the second compressor (42) is temporarily increased, the amount of oil discharged to the refrigerant circuit (15) is increased, and the amount of oil in the oil separator (51) is increased to equalize the oil.
  • step ST2 proceeds from step ST2 to step ST3, returns to the original state, drives the first compressor (41), and drives the second compressor (42) with the minimum capacity. This operation is repeated.
  • the oil control means (91) drives only the first compressor (41) as shown at point G in FIG.
  • Abnormal control is performed in which only the oil return solenoid valve (53) switches between the communicating state and the blocking state at predetermined intervals while keeping the 55) in the blocking state (see point H in Figure 3). That is, since the inside of the first compressor (41) is in a high pressure state, the oil equalizing solenoid valve (55) is kept closed so that the high pressure gas refrigerant does not flow to the second compressor (42).
  • the oil return solenoid valve (53) repeats, for example, opening for 10 seconds and closing for 20 minutes.
  • both the first compressor (41) and the second compressor (42) are configured by the high-pressure dome, the COP (coefficient of performance) can be improved. That is, the refrigerant sucked into the first compressor (41) and the second compressor (42) is compressed without exchanging heat with oil in the compressor dome. As a result, during the cooling operation, the calorie of the suction refrigerant is not used for cooling the oil, and the compressed high-pressure refrigerant exchanges heat with the oil in the compressor dome to partially condense. Therefore, COP during cooling operation is improved.
  • the oil return solenoid valve (53) and the oil equalization solenoid valve (55) are synchronized with each other by a predetermined amount. Since the state is switched between the communication state and the cutoff state at intervals of, the oil can be surely returned to the first compressor (41) and the second compressor (42).
  • the refrigerant flowing out of the first compressor (41) and the second compressor (42) is collected by the oil separator (51), and the oil of the oil separator (51) is collected. Return the oil from the oil return pipe (52) to the first compressor (41). After that, the surplus oil of the first compressor (41) is returned from the oil equalizing pipe (54) to the second compressor (42) so that the oil can be accurately returned.
  • the oil return solenoid valve (53) and the oil equalization solenoid valve (55) are both kept closed.
  • the oil can be stored in the oil separator (51), and when the first compressor (41) is started, the oil collected in the oil separator (51) is reliably stored in the first compressor (41). Can be returned.
  • the oil equalizing solenoid valve (55) is kept in a communicating state immediately before the first compressor (41) is driven, it is possible to prevent poor starting. In other words, the internal pressure of the first compressor (41) can be reduced, and the solvent trapped in the oil can be removed, so that starting failure can be prevented.
  • the driving of the first compressor (41) is temporarily stopped, and the second compressor (41) is stopped. Since the operating capacity of (42) is increased, it is possible to accurately level oil. That is, during the minimum capacity operation of the second compressor (42), the second compressor (42) Less oil is discharged to the medium circuit (15), and more oil is accumulated in the second compressor (42). Therefore, the capacity of the second compressor (42) is temporarily increased, the amount of oil discharged to the refrigerant circuit (15) is increased, and the oil is leveled.
  • the oil return solenoid valve (53) is shut off with the oil equalizing solenoid valve (55) shut off. Since only the switch is made between the communication state and the cutoff state at a predetermined interval, the leakage of the high-pressure refrigerant to the second compressor (42) can be reliably prevented.
  • the oil in the oil separator (51) is once returned from the oil return pipe (52) to the first compressor (41), and is returned from the first compressor (41) via the oil equalizing pipe (54). It is being returned to the second compressor (42).
  • the oil return pipe (52) and the oil equalizing pipe (54) are provided with heat exchangers (56, 57) as a cooling mechanism to cool the oil with outside air. You may.
  • the internal temperatures of the first compressor (41) and the second compressor (42) can be reduced.
  • the reliability of the compression mechanism (40) can be improved, and the operating range can be expanded.
  • the compression function can be improved.
  • the present invention may have the following configuration in addition to the above embodiment.
  • the present invention can be applied to any refrigerating apparatus that performs a vapor compression type refrigerating cycle, other than an air conditioner.
  • the present invention provides a user-side unit It can also be applied to a system in which an indoor unit of an air conditioner and a refrigerator or freezer are connected in parallel.
  • the refrigeration apparatus according to the present invention is useful for an air conditioner

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

明 冷凍装置 技術分野
本発明は、 冷凍装置に関し、 特に、 2台の圧縮機を備えた冷凍装置に係るも のである。 背景技術 細 1
従来より、 空気調和装置には、 特開平 I 0— I 3 2 4 0 6号公報に開示され ているように、 室外ュニットと室内ュニットとが接続された冷媒回路を備えてい るものがある。 上記室外ユニットは、 いわゆるツイン型圧縮機に構成され、 第 I 圧縮機と第 2圧縮機とが並列に接続された圧縮機構を備えている。
そして、 上記第 I圧縮機と第 2圧縮機とを駆動停止して空調能力を制御する ようにしている。
-解決課題 - 上述したように、 従来のヅイン型圧縮機の圧縮機構は、 第 I圧縮機と第 2圧 縮機とが共に低圧ドームで構成されていた。 したがって、 C O P (成績係数) が 悪いという問題がつた。
つまり、 各圧縮機に吸い込まれた冷媒が圧縮機ドーム内の油 (潤滑油) と熱 交換する。 この結果、 冷房運転時において、 冷媒熱量の一部が油の冷却に使用さ れるので、 冷房能力が低下するという問題があった。
本発明は、 斯かる点に鑑みて成されたもので、 C O Pの向上を図ることを目 的とし、 特に、 冷房運転時の能力の拡大を図ることを目的とするものである。 発明の開示
具体的に、 図 Iに示すように、 第 Iの発明は、 熱源ユニッ ト (11 ) と利用 ユニッ ト (12, 13) とが冷媒循環可能に接続されて成る冷媒回路 (15) を備え た冷凍装置を対象としている。 そして、 上記熱源ユニッ ト (11 ) には、 一定容 量で運転される高圧ドーム型の第 1圧縮機 (41 ) と、 運転容量が多段に調整さ れる高圧ドーム型の第 2圧縮機 (42) とが並列に接続されて成る圧縮機構 (40) が設けられている。
また、 第 2の発明は、 第 1の発明において、 圧縮機構 (40) の吐出側に油 分離器 (51 ) が設けられ、 該油分離器 (51 ) と圧縮機構 (40) の吸込み側との 間には、 油分離器 (51 ) で分離された油を圧縮機構 (40) に戻す油戻し管 (δ2) が接続され、 該油戻し管 (52) には、 連通状態と遮断状態とに切り換わる油戻 し開閉機構 (53) が設けられた構成としている。 更に、 第 1圧縮機 (41 ) と第 2圧縮機 (42) の吸込み側との間には、 第 1圧縮機 (41 ) に貯留された油が所 定以上になると、余剰の油を第 2圧縮機(42)の吸込み側に供給する均油管(54) が接続され、 該均油管 (54) には、 連通状態と遮断状態とに切り換わる均油閧 閉機構 (55) が設けられている。
また、 第 3の発明は、 第 2の発明において、 第 1圧縮機 (41 ) と第 2圧縮機 (42) とが共に駆動しているときには、 油戻し開閉機構 (53) と均油開閉機構 ( 55) とが同期して所定の間隔で連通状態と遮断状態とに切り換わる油戻し制 御を行う構成としている。
また、 第 4の発明は、 第 3の発明において、 第 2圧縮機 (42) が駆動してい る状態で第 1圧縮機 (41 ) が駆動する前には、 油戻し制御を禁止する構成とし ている。
また、 第 5の発明は、 第 3の発明において、 第 2圧縮機 (42) が駆動してい る状態で第 1圧縮機 (41 ) が駆動する直前には、 均油開閉機構 (55) を連通状 態に保持する構成としている。
また、 第 6の発明は、 第 3の発明において、 第 1圧縮機 (41 ) と第 2圧縮機 (42) とが共に駆動しているときには、 第 2圧縮機 (42) の最低容量運転が所 定時間継続すると、 第 1圧縮機 (41 ) の駆動を一旦停止し、 第 2圧縮機 (42) の運転容量を増大させる構成としている。
また、 第 7の発明は、 第 3の発明において、 第 2圧縮機 (42) のみが駆動し ているときには、 均油開閉機構 (55) を遮断状態のまま油戻し開閉機構 (53) のみを所定の間隔で連通状態と遮断状態とに切り換える構成としている。
また、 第 8の発明は、 第 3の発明において、 第 2圧縮機 (42) が異常停止し、 第 1圧縮機 (41 ) のみが駆動しているときには、 均油開閉機構 (55) を遮断状 態のまま油戻し開閉機構 (53) のみを所定の間隔で連通状態と遮断状態とに切 り換える構成としている。
また、 第 9の発明は、 第 3の発明において、 第 2圧縮機 (42) が起動する際 には、 均油開閉機構 (55) を遮断状態に保持する構成としている。
また、 第 1 0の発明は、 第 2の発明において、 油戻し管 (52) に油を冷却す る冷却機構 (56) が設けられた構成としている。
また、 第 1 1の発明は、 第 2の発明において、 均油管 (54) に油を冷却する 冷却機構 (57) が設けられた構成としている。
また、 第 1 2の発明は、 第 2の発明において、 油分離器 (51 ) は、 第 1圧縮 機 (41 ) と第 2圧縮機 (42) との吐出冷媒が合流して流れる吐出管 (44) の主 管部分に設けられた構成としている。
また、 第 1 3の発明は、 第 2の発明において、 油戻し管(52)の圧縮機構(40) 側の端部は、 第 1圧縮機 (41 ) に接続される吸入管 (43) の吸入枝管 (43a) に 接続された構成としている。
また、 第 1 4の発明は、 第 1 3の発明において、 第 1圧縮機 (41 ) に接続さ れる吸入管(43)の吸入枝管(43a)と第 2圧縮機(42)に接続される吸入管(43) の吸入枝管 (43b) とが相互に流通自在に構成されたものである。 すなわち、 本発明では、 圧縮機構(40) の起動は、 例えば、 第 2圧縮機(42) から行われる。 そして、 該第 2圧縮機 (42) を起動する際、 均油開閉機構 (55) を遮断状態に保持する。
続いて、 上記第 2圧縮機 (42) の駆動時において、 均油開閉機構 (55) を 遮断状態のまま油戻し開閉機構 (53) のみを所定の間隔で連通状態と遮断状態 とに切り換える。 つまり、 この状態において、 第 1圧縮機 (41 ) が停止してる ので、 均油開閉機構 (55) を遮断状態に保持する。 この場合、 第 2圧縮機 (42) が駆動しているので、 第 2圧縮機 (42) の内部の油は、 冷媒と共に流出し、 油 分離器 (51 ) で分離される。 この分離された油は、 油戻し開閉機構 (53) が開 くと、 油戻し管 (52) を通り、 第 2圧縮機 (42) に戻る。 その際、 上記油は、 油戻し管 (52) の途中で冷却機構 (56) で冷却される。
その後、 第 1圧縮機 (41 ) の駆動を開始する際、 油戻し開閉機構 (53) と 均油開閉機構 (55) を共に遮断状態に所定時間の間維持する。 また、 上記第 1 圧縮機 (41 ) を駆動する直前において、 均油開閉機構 (55) を連通状態にする。
上記第 1圧縮機 (41 ) と第 2圧縮機 (42) とが共に駆動している状態にお いて、 油戻し開閉機構 (53) と均油開閉機構 (55) とが同期して所定の間隔で 連通状態と遮断状態とに切り換わる油戻し制御を行う。 つまり、 上記第 1圧縮機
(41 ) 及び第 2圧縮機 (42) の内部の油は、 冷媒と共に流出し、 油分離器 (51 ) で分離される。 この油分離器 (51 ) の油を油戻し管 (52) から第 1圧縮機 (41 ) に一旦戻す。 その後、 該第 1圧縮機 (41 ) から均油管 (54) を介して第 2圧縮 機 (42) に戻す。 その際、 上記油は、 油戻し管 ( ) 及び均油管 (5 の途中 で冷却機構 (56, 57) で冷却される。
上記第 1圧縮機 (41 ) と第 2圧縮機 (42) とが共に駆動している状態にお いて、第 2圧縮機(42) の最低容量運転が所定時間継続すると、 第 1圧縮機(41 ) の駆動を一旦停止し、 第 2圧縮機 (42) の運転容量を増大させ、 冷媒回路 (15) に吐出する油を多くし、 油分離器 (51 ) などの油量を多くし、 均油を行う。
—方、 上記第 2圧縮機 (42) が異常停止すると、 第 1圧縮機 (41 ) のみを 駆動し、 均油開閉機構 (55) を遮断状態のまま油戻し開閉機構 (53) のみが所 定の間隔で連通状態と遮断状態とに切り換わる。 一発明の効果一
したがって、 本発明によれば、 上記第 1圧縮機 (41 ) と第 2圧縮機 (42) とを共に高圧ドームで構成したために、 C O P (成績係数) を向上させることが できる。
つまり、 各圧縮機 (41 , 42) に吸い込まれた冷媒が圧縮機ドーム内の油と 熱交換することなく圧縮される。 この結果、 冷房運転時において、 吸入冷媒の熱 量が油の冷却に使用されず、 圧縮された高圧冷媒が圧縮機ドーム内の油と熱交換 して一部が凝縮する。 よって、 冷房運転時の C O Pを向上させることができる。 また、 上記第 1圧縮機 (41 ) と第 2圧縮機 (42) とが共に駆動している状 態において、 油戻し開閉機構 (53) と均油開閉機構 (55) とが同期して所定の 間隔で連通状態と遮断状態とに切り換わるようにしたために、 油を第 1圧縮機 (41 ) と第 2圧縮機 (42) とに確実に戻すことができる。
従来、 低圧ドームの 2台の圧縮機を備えたヅイン型圧縮機では、 2つの圧縮 機ドームに均油管 (54) を接続していた。 しかしながら、 この方式では、 高圧 ドームの 2台の圧縮機を備えた場合、 油戻しを正確に行うことができない。
そこで、 本実施形態では、 上記第 1圧縮機 (41 ) 及び第 2圧縮機 (42) か ら流出した冷媒を油分離器 (51 ) で捕集し、 この油分離器 (51 ) の油を油戻し 管 (52) から第 1圧縮機 (41 ) に一旦戻す。 その後、 該第 1圧縮機 (41 ) の余 剰の油を均油管 (54) から第 2圧縮機 (42) に戻し、 油戻しを正確に行うよう にしている。
また、 上記第 1圧縮機 (41 ) が駆動する前は、 油戻し開閉機構 (53) と均 油開閉機構 (55) とを共に遮断状態に維持する。 この結果、 油を油分離器 (51 ) に溜めることができ、 第 1圧縮機 (41 ) が起動した際、 油分離器 (51 ) に溜ま つた油を確実に第 1圧縮機 (41 ) に戻することができる。
また、 上記第 1圧縮機 (41 ) が駆動する直前に均油開閉機構 (55) を連通 状態に保持するようにしたために、 起動不良を防止することができる。 つまり、 第 1圧縮機 (41 ) の内部圧力を低下させると共に、 油に寝込んだ冷媒を除くこ とができるので、 起動不良を防止することができる。
また、 上記第 1圧縮機 (41 ) が駆動すると共に、 第 2圧縮機 (42) の最低 容量運転が所定時間継続すると、 第 1圧縮機 (41 ) の駆動を一旦停止し、 第 2 圧縮機 (42) の運転容量を増大させるので、 均油を正確に行うことができる。 つまり、 上記第 2圧縮機 (42) の最低容量運転時は、 第 2圧縮機 (42) から冷 媒回路 (15) に流出する油が少なく、 第 2圧縮機 (42) に溜まる油が多くなる。 そこで、 上記第 2圧縮機 (42) の容量を一旦増大し、 冷媒回路 (15) に吐出す る油を多くし、 均油を行うようにしている。
また、 上記第 2圧縮機 (42) のみが駆動している状態において、 均油開閉 機構 (55) を遮断状態のまま油戻し開閉機構 (53) のみが所定の間隔で連通状 態と遮断状態とに切り換わるようにしているので、 油を確実に第 2圧縮機 (42) に戻すことができる。
また、 上記第 2圧縮機 (42) が異常停止し、 第 1圧縮機 (41 ) のみが駆動 しているときには、 均油開閉機構 (55) を遮断状態のまま油戻し開閉機構 (53) のみが所定の間隔で連通状態と遮断状態とに切り換わるようにしたために、 第 2 圧縮機 (42) への高圧冷媒の漏れを確実に防止することができる。
また、 上記第 2圧縮機 (42) が起動する際、 均油開閉機構 (55) が遮断状 態に保持されるようにしたために、 第 1圧縮機 (41 ) の油を第 2圧縮機 (42) が吸入することが確実に防止される。 .
また、 上記油戻し管 (52) 又は均油管 (54) に油の冷却機構 (56, 57) を 設けるようにすると、 第 1圧縮機 (41 ) 及び第 2圧縮機 (42) の内部温度を低 下させることができる。 この結果、 圧縮機構 (40) の信頼性を向上させること ができると共に、 運転範囲の拡大を図ることができる。 更に、 圧縮機構 (40) の吸入冷媒の日体積を小さくすることができるので、 圧縮機能力の向上を図るこ とができる。 図面の簡単な説明
図 1は、 本発明の実施形態を示す空気調和装置の冷媒回路図である。
図 2は、 圧縮機構を示す拡大構成図である。
図 3は、 油戻し制御の特性を示すタイミング図である。
図 4は、 他の油戻し制御の特性を示すタイミング図である。
図 5は、 圧縮機構の駆動動作を示すフロー図である。 発明を実施するための最良の形態
以下、 本発明の実施形態を図面に基づいて詳細に説明する。
図 1に示すように、 空気調和装置 (10) は、 冷凍装置を構成し、 冷房運転 と暖房運転とを切り換えて行うように構成されている。
上記空気調和装置(10)は、熱源側ュニットである 1台の室外ュニヅ ト (11 ) と利用側ユニッ トである 2台の室内ユニッ ト (12, 13) とを備え、 いわゆるマ ルチ型に構成されている。 また、 上記空気調和装置 (10) は、 冷媒回路 (15) と制御手段であるコントローラ (90) とを備えている。
尚、 本実施形態では室内ユニッ ト (12 , 13) を 2台としている。 これは一 例であり、 室内ユニッ トの台数は、 室外ユニッ ト (11 ) の能力や用途に応じて 適宜定めればよい ( 1台の場合も含む)。
上記冷媒回路 (15) は、 熱源側回路である 1つの室外回路 (20) と、 利用 側回路である 2つの室内回路 (60, 65) と、 連絡配管である液側連絡管 (16) 及びガス側連絡管 (17) とにより構成されている。 該室外回路 (20) には、 液 側連絡管 (16) 及びガス側連絡管 (17) を介して 2つの室内回路 (60, 65) が 並列に接続されている。
上記室外回路 (20) は、 室外ユニット (11 ) に収納されている。 上記室外 回路 (20) は、 圧縮機構 (40) と四路切換弁 (21 ) と室外熱交換器 (22) とレ シーバ (23) と室外膨張弁 (24) と液側閉鎖弁 (25) とガス側閉鎖弁 (26) と を備えている。
上記圧縮機構 (40) は、 第 1圧縮機 (41 ) と第 2圧縮機 (42) が並列に接 続され、 いわゆるヅイン型圧縮機に構成されている。 該第 1圧縮機 (41 ) 及び 第 2圧縮機 (42) は、 何れも高圧ドームの密閉型のスクロール圧縮機である。 つまり、 上記第 1圧縮機 (41 ) 及び第 2圧縮機 (42) は、 圧縮要素と該圧縮要 素を駆動する電動機とを、 円筒状のハウジングに収納して構成されている。
また、 上記第 1圧縮機 (41 ) 及び第 2圧縮機 (42) は、 圧縮要素で圧縮さ れた高圧ガス冷媒が一旦高圧ドーム (密閉容器) 内に吐出され、 この高圧ドーム 内の高圧冷媒ガスが外部に吐出されるように構成されている。 更に、 上記第 1圧 縮機 (41 ) 及び第 2圧縮機 (42) は、 油 (冷凍機油) が高圧ドームの底部に貯 留されている。
上記第 1圧縮機 (41 ) は、 電動機が常に一定回転数で駆動される一定容量 の圧縮機である。 上記第 2圧縮機 (42) は、 電動機の回転数が段階的に又は連 続的に多段に変更される容量可変の圧縮機である。つまり、上記第 2圧縮機(42) は、 ィンバ一夕によって電動機の回転数が制御されている。 上記圧縮機構(40)は、 第 1圧縮機(41 )の駆動及び停止と第 2圧縮機(42) の容量変更とによって、全体容量が可変に調整される。具体的に、圧縮機構(40) に要求される能力が所定値を越えるまでは、 先に優先的に第 2圧縮機 (42) の 容量を調整しながら 1台で運転し、 その後、 所定値を越えると第 1圧縮機 (41 ) も起動した状態として 2台で運転を行いながら第 2圧縮機 (42) の容量を調整 する。
上記圧縮機構 (40) は、 吸入管 (43) 及び吐出管 (44) を備えている。 該 吸入管 (43) は、 その入口端が四路切換弁 (21 ) の第 1のポートに接続され、 その出口端が 2つの吸入枝管 (43a, 43b) に分岐されている。該吸入枝管(43a, 43b) が各圧縮機 (41, 42) の吸入側に接続されている。 尚、 上記 2つの吸入枝 管 (43a, 43b) は、 互いに流通自在に構成されている。
上記吐出管 (44) は、 その入口端が 2つの吐出枝管 (44a, 44b) に分岐さ れ、 その出口端が四路切換弁 (21 ) の第 2のポートに接続されている。 上記吐 出枝管 (44a, 44b) が各圧縮機 (41 , 42) の吐出側に接続されている。 該第 1 圧縮機 (41 ) に接続される吐出枝管 (44a) には、 吐出側逆止弁 (45) が設けら れている。 この吐出側逆止弁 (45) は、 第 1圧縮機 (41 ) から流出する方向へ の冷媒の流通のみを許容する。
また、 上記圧縮機構 (40) は、 油分離器 (51 ) と油戻し管 (52) と均油管 (54) とを備えている。 該油分離器 (51 ) は、 図 2にも示すように、 第 1圧縮 機 (41 ) と第 2圧縮機 (42) との吐出冷媒が合流して流れる吐出管 (44) の主 管部分に設けられている。 該油分離器 (51 ) は、 圧縮機 (41 , 2) の吐出冷媒 から油を分離するためのものである。 上記油戻し管 (52) の一端は、 油分離器 (51 ) に接続され、 他端は、 第 1圧縮機 (41 ) の吸入枝管 (43a) に接続されて いる。上記油戻し管(½)は、油分離器(51 )で分離された油を、圧縮機(41 , 42) の吸入側へ戻すためのものであって、 油戻し開閉機構である油戻し電磁弁 (53) を備えている。 該油戻し電磁弁 (53) は、 油戻し管 (52) を連通及び遮断する ように開閉する。
上記均油管 (54) の一端は、 第 1圧縮機 (4"0 に接続され、 他端は、 第 2 圧縮機 (42) の吸入枝管 (43b) に接続されている。 該均油管 (54) は、 各圧縮 機 (41 , 42) のハウジング内に貯留される油の量を平均化するためのものであ つて、 均油開閉機構である均油電磁弁 (55) を備えている。 つまり、 上記均油 管 (54) は、 第 1圧縮機 (41 ) の貯留油が所定以上になると、 余剰の油を第 2 圧縮機 (42) に供給するように構成されている。 上記均油電磁弁 (55) は、 均 油管 (54) を連通及び遮断するように開閉する。
上記四路切換弁 (21 ) の第 3のポートは、 ガス側閉鎖弁 (26) と配管接続 され、 その第 4のポートは、 室外熱交換器 (22) の上端部と配管接続されてい る。 上記四路切換弁 (21 ) は、 第 1のポートと第 3のポートが連通し且つ第 2 のポートと第 4のポートが連通する状態 (図 1に実線で示す状態) と、 第 1のポ 一トと第 4のポートが連通し且つ第 2のポ一トと第 3のポートが連通する状態 (図 1に破線で示す状態) とに切り換わる。 この四路切換弁 (21 ) の切換動作 によって、 冷媒回路 (15) における冷媒の循環方向が反転する。 つまり、 冷媒 回路 (15) は、 冷媒の循環方向が可逆に構成されている。
上記レシーバ (23) は、 円筒状の容器であって、 冷媒を貯留するためのも のである。 該レシーバ (23) と熱源側膨張機構である上記室外膨張弁 (24) と は、 整流回路 (30) に設けられている。 該整流回路 (30) は、 4つの逆止弁を 有するプリヅジ回路 (31 ) と、 一方向にのみ冷媒が流れる一方向通路 (32) と より構成され、 室外熱交換器 (22) と液側閉鎖弁 (25) との間に設けられてい る。
上記ブリッジ回路 (31 ) の 4つの接続端のうちの第 1の接続端は、 室外熱 交換器 (22) の下端部に接続され、 ブリッジ回路 (31 ) の第 2の接続端は、 液 側閉鎖弁 (25) に接続されている。
上記プリッジ回路(31 )の第 3の接続端と第 4の接続端は、一方向通路(32) の両端が接続されている。 該ー方向通路 (32) は、 上流側からレシーバ (23) と室外膨張弁 (24) とが順に接続され、 冷媒がレシーバ (23) から室外膨張弁 (24) に向かう方向にのみ流れるように構成されている。
上記熱源側熱交換器である室外熱交換器 (22) は、 クロスフィン式のフィ ン · アンド ■チューブ型熱交換器により構成されている。 該室外熱交換器 (22) は、 冷媒回路 (15) を循環する冷媒と室外空気とを熱交換させる。 更に、 上記室外回路 (20) には、 ガス抜き管 (35) と均圧管 (37) とが設 けられている。 該ガス抜き管 (35) の一端は、 レシーバ (23) の上端部に接続 され、 他端は、 吸入管 (43) に接続されている。 該ガス抜き管 (35) は、 レシ —バ (23) のガス冷媒を各圧縮機 (41 , 42) の吸入側へ導入するための連通路 を構成している。 上記ガス抜き管 (35) には、 ガス抜き電磁弁 (36) が設けら れている。 該ガス抜き電磁弁 (36) は、 ガス抜き管 (35 ) におけるガス泠媒の 流れを断続するための開閉機構を構成している。
上記均圧管(37)の一端は、 ガス抜き管(35) におけるガス抜き電磁弁(36) とレシ一バ ( 23) の間に接続され、 他端は、 吐出管 (44) に接続されている。 また、 上記均圧管 (37) には、 その一端から他端に向かう冷媒の流通のみを許 容する均圧用逆止弁 (38) が設けられている。 上記均圧管 (37) は、 空気調和 装置 (10) の停止中に外気温が異常に上昇してレシーバ (23) の圧力が高くな りすぎた場合に、 ガス冷媒を逃がしてレシーバ (23) が破裂するのを防止する ためのものである。従って、 空気調和装置(10)の運転中において、均圧管(37) を冷媒が流れることはない。
上記室内回路 (60, 65) は、 各室内ュニッ ト (12 , 13 ) に 1つずつ設けら れている。 具体的には、 第 1室内回路 (60) が第 1室内ュニッ ト (12) に収納 され、 第 2室内回路 (65) が第 2室内ユニット (13) に収納されている。
上記第 1室内回路 (60) は、 利用側熱交換器である第 1室内熱交換器 (61 ) を備え、 第 2室内回路 (65) は、 利用側熱交換器である第 2室内熱交換器 (66) を備えている。
上記第 1室内熱交換器 (61 ) 及び第 2室内熱交換器 (66) は、 クロスフィ ン式のフィン■アンド ·チューブ型熱交換器により構成されている。 各室内熱交 換器 (61 , 66) は、 冷媒回路 (15) を循環する冷媒と室内空気とを熱交換させ る。 .
上記液側連絡管 (16) の一端は、 液側閉鎖弁 (25) に接続されている。 該 液側連絡管 (16) の他端側は、 2つに分岐され、 第 1の分岐管が第 1室内回路 ( 60) における第 1室内熱交換器 (61 ) に接続され、 第 2の分岐管が第 2室内 回路 (65) における第 2室内熱交換器 (66) に接続されている。 上記ガス側連 絡管 (17) の一端は、 ガス側閉鎖弁 (26) に接続されている。 該ガス側連絡管 ( 17) の他端側は、 2つに分岐され、 第 1の分岐管が第 1室内回路 (60) にお ける第 1室内熱交換器 (61 ) に接続され、 第 2の分岐管が第 2室内回路 (65) における第 2室内熱交換器 (66) に接続されている。
上記室外ユニッ ト (11 ) には、 室外ファン (70) が設けられている。 該室 外ファン (7 ) は、 室外熱交換器 (22) へ室外空気を送るためのものである。 一方、 第 1 , 第 2室内ユニッ ト (12 , 13) には、 それぞれ室内ファン (80) が 設けられている。 該室内ファン (80) は、 室内熱交換器 (61 , 66) へ室内空気 を送るためのものである。
上記空気調和装置 (10) には、 温度や圧力のセンサ等が設けられている。 具体的に、 上記室外ユニッ ト (11 ) には、 室外空気の温度を検出するための室 外温度センサ (71 ) が設けられている。 上記室外熱交換器 (22) には、 伝熱管 温度を検出するための室外熱交換温度センサ (72) が設けられている。 上記圧 縮機構 (40) の吸入管 (43) には、 該圧縮機構 (40) の吸入冷媒温度を検出す るための吸入温度センサ (73) と、 圧縮機構 (40) の吸入冷媒圧力を検出する ための低圧圧力センサ (74) とが設けられている。 また、 上記圧縮機構 (40) の吐出管 (44) には、 該圧縮機構 (40) の吐出冷媒温度を検出するための吐出 温度センサ (75) と、 圧縮機構 (40) の吐出冷媒圧力を検出するための高圧圧 力センサ (76) 及び高圧圧力スィツチ (77) とが設けられている。
上記各室内ユニッ ト (12, 13) には、 室内空気の温度を検出するための室 内温度センサ (81 ) が 1つずつ設けられている。 上記各室内熱交換器 (61 , 66) には、 伝熱管温度を検出するための室内熱交換温度センサ (82) が 1つずっ設 けられている。 各室内回路 (60, 65) における室内熱交換器 (61 , 66) の上端 近傍には、 室内回路 (60, 65) を流れるガス冷媒温度を検出するためのガス側 温度センサ (83) が 1つずつ設けられている。
上記コントローラ (90) は、 上記のセンサ類からの信号やリモコン等から の指令信号を受けて空気調和装置 (10) の運転制御を行うものである。 具体的 に、 上記コントローラ (90) は、 室外膨張弁(24)の開度調節、 四路切換弁(21 ) の切換、 ガス抜き電磁弁(36)の開閉操作を行う。 また、上記コントローラ (90) は、 圧縮機構 (40) の容量制御も行う。
上記コントローラ (90) には、 油戻し制御を行う油制御手段 (91 ) が設け られている。
該油制御手段 (91 ) は、 第 1圧縮機 (41 ) と第 2圧縮機 (42) とが共に駆 動している状態において、 油戻し電磁弁 (53) と均油電磁弁 (55) とが同期し て所定の間隔で連通状態と遮断状態とに切り換わる油戻し制御を行う。 この油制 御手段 (91 ) の基本制御は、 例えば、 油戻し電磁弁 (53) と均油電磁弁 (55) が共に開口した開状態を 1 0秒間行った後、 油戻し電磁弁 (53) と均油電磁弁 (55) が共に閉鎖した閉状態を 2 0分間行い、 この動作が繰り返される。
つまり、 上記油制御手段 (91 ) は、 油分離器 (51 ) の油を第 1圧縮機 (41 ) に油戻し管 (52) を介して一旦戻した後、 該第 1圧縮機 (41 ) から均油管 (54) を介して第 2圧縮機 (42) に戻すように制御する。
また、 上記油制御手段 (91 ) は、 第 2圧縮機 (42) が駆動している状態で 第 1圧縮機 (41 ) が駆動する前に油戻し制御を禁止する。 つまり、 この禁止制 御は、 第 1圧縮機(41 ) が駆動する前は、 油戻し電磁弁(53) と均油電磁弁(55) が共に閉鎖した閉状態に所定時間維持する。
また、 上記油制御手段 (91 ) は、 第 2圧縮機 (42) が駆動している状態で 第 1圧縮機 (41 ) が駆動する直前に均油電磁弁 (55) を連通状態に保持する駆 動直前制御を行う。 つまり、 この駆動直線制御は、 均油電磁弁 (55) を 1 0秒 の間、 開状態にして第 1圧縮機 (41 ) の内部圧力を低下させる。
また、 上記油制御手段 (91 ) は、 第 1圧縮機 (41 ) と第 2圧縮機 (42) と が共に駆動しているときには、 第 2圧縮機 (42) の最低容量運転が所定時間継 続すると、 第 1圧縮機 (41 ) の駆動を一旦停止し、 第 2圧縮機 (42) の運転容 量を増大させる補正制御を行う。 つまり、 第 2圧縮機 (42) の最低容量運転時 は、 第 2圧縮機 (42) から冷媒回路 (15) に吐出する油が少なく、 第 2圧縮機 (42) に溜まる油が多くなる。 そこで、 上記油制御手段 (91 ) は、 第 2圧縮機 (42) の容量を一旦増大し、 冷媒回路 (15) に吐出する油を多くし、 均油を行 うようにしている。
また、 上記油制御手段 (91 ) は、 第 2圧縮機 (42) のみが駆動している状 態において、 均油電磁弁 (55) を遮断状態のまま油戻し電磁弁 (53) のみが所 定の間隔で連通状態と遮断状態とに切り換わる低能力制御を行う。 つまり、 この 低能力制御は、 第 1圧縮機 (41 ) が停止してるので、 均油電磁弁 (55) を閉状 態に保持する。
また、 上記油制御手段 (91 ) は、 第 2圧縮機 (42) が異常停止し、 第 1圧 縮機 (41 ) のみが駆動しているときには、 均油電磁弁 (55) を遮断状態のまま 油戻し電磁弁 (53) のみが所定の間隔で連通状態と遮断状態とに切り換わる異 常制御を行う。 つまり、 この異常制御は、 第 1圧縮機 (41 ) の内部が高圧状態 であるので、高圧ガス冷媒が第 2圧縮機(42)に流れないように均油電磁弁(55) を閉状態のままに保持する。
また、 上記油制御手段 (91 ) は、 第 2圧縮機 (42) が起動する際、 均油電 磁弁 (55) が遮断状態に保持される起動制御を行う。 つまり、 この起動制御は、 第 1圧縮機 (41 ) が停止してるので、 均油電磁弁 (55) を閉状態に保持する。
〈運転動作〉
次に、 上述した空気調和装置 (10) は、 冷媒回路 (15) において冷媒が相 変化しつつ循環して蒸気圧縮式の冷凍サイクルを行う。 また、 上記空気調和装置 ( 10) は、 冷媒回路 (15) における冷媒の循環方向を反転させることで冷房運 転と暖房運転とを切り換えて行う。
一冷房運転一
冷房運転時には、 室内熱交換器 (61 , 66) が蒸発器となる冷却動作が行わ れる。 この冷房運転時において、 四路切換弁 (21 ) は、 図 1に実線で示す状態 となる。 室外膨張弁 (24) は所定の開度に調節され、 ガス抜き電磁弁 (36) は 閉鎖状態に保持され、 油戻し電磁弁 (53) 及び均油電磁弁 (55) は適宜開閉さ れる。 これら弁操作は、 コントローラ (90) により行われる。
圧縮機構 (40) で圧縮された冷媒は、 吐出管 (44) 及び四路切換弁 (21 ) を通って室外熱交換器 (22) に流れる。 該室外熱交換器 (22) において、 冷媒 が室外空気へ放熱して凝縮する。 この凝縮した冷媒は、 ブリッジ回路 (31 ) 及 び一方向通路 (32) を流れ、 室外膨張弁 (24) で膨張して液側連絡管 (16) を 流れる。
この液側連絡管 (1S) の冷媒は、 2つの室内回路 (60, 65) に分かれ、 各 室内熱交換器 (61, 66) において、 室内空気から吸熱して蒸発する。 つまり、 室内熱交換器 (61 , 66) では、 室内空気が冷却される。 蒸発した冷媒は、 ガス 側連絡管 (17) を流れ、 合流した後に室外回路 (20) に流入する。 その後、 冷 媒は、 四路切換弁 (21 ) を通過し、 吸入管 (43) を通って圧縮機構 (40) に戻 る。 このような冷媒の循環が繰り返される。
一暖房運転一
暖房運転時には、 室内熱交換器 (61 , 66) が凝縮器となる加熱動作が行わ れる。 この暖房運転時において、 四路切換弁 (21 ) は、 図 1に破線で示す状態 となる。 室外膨張弁 (24) は所定の開度に調節され、 油戻し電磁弁 (53) 及び 均油電磁弁 (55) は適宜開閉される。 ガス抜き電磁弁 (36) は、 加熱動作が行 われている間は常に開放状態に保持される。これら弁操作は、 コントロ一ラ(90) により行われる。
この場合、 冷媒は、 冷媒回路 (15) 内を冷房運転時とは基本的に逆方向に 流れる。 つまり、 冷媒は、 室内空気に放熱して凝縮し、 室外空気から吸熱して蒸 発し、 室内が加熱される。 尚、 泠媒の流れの詳細は省略する。
—油戻し動作—
次に、上記冷房運転及び暖房運転における圧縮機構(40)の第 1圧縮機(41 ) 及び第 2圧縮機 (42) の油戻し制御について説明する。
図 3及び図 4に示すように、 圧縮機構 (40) の起動は、 第 2圧縮機 (42) から行われる。 先ず、 A点において、 第 2圧縮機 (42) を起動すると、 油制御 手段 (91 ) は、 均油電磁弁 (55) を遮断状態に保持して起動制御を行う。 つま り、 現在は、 第 1圧縮機 (41 ) が停止してるので、 均油電磁弁 (55) を閉状態 に保持する。
続いて、 上記第 2圧縮機 (42) を最低容量 (最低周波数) から最高容量 (最 高周波数) まで空調負荷に対応して制御する。 その際、 上記油制御手段 (91 ) は、 図 3の B点で示すように、 均油電磁弁 (55) を遮断状態のまま油戻し電磁 弁 (53) のみを所定の間隔で連通状態と遮断状態とに切り換わる低能力制御を 行う。 つまり、 現在、 第 1圧縮機 (41 ) が停止してるので、 均油電磁弁 (55) を閉状態に保持する。 上記油戻し電磁弁 (53) は、 例えば、 1 0秒開き、 2 0 分度閉じる動作を繰り返す。
この第 2圧縮機 (42) が駆動すると、 第 2圧縮機 (42) の内部の油 (潤滑 油) は、 冷媒と共に吐出管 (44) に流出し、 油分離器 (51 ) で分離される。 こ の分離さ lた油は、 油戻し電磁弁 (53) が開くと、 油戻し管 (52) を通り、 吸 入管 (43) から第 2圧縮機 (42) に戻り、 この油戻し動作が繰り返される。
その後、 空調負荷が増大し、 第 2圧縮機 (42) では容量が不足すると、 第 1圧縮機 (41 ) の駆動を開始する (図 3の C点参照)。
その際、 上記油制御手段 (91 ) は、 第 2圧縮機 (42) が駆動している状態 で第 1圧縮機 (41 ) が駆動する前に油戻し制御を禁止する (図 3の D点参照)。 つまり、 この禁止制御は、 第 1圧縮機(41 )が駆動する前は、 油戻し電磁弁(53) と均油電磁弁 (55) が共に閉鎖した閉状態に所定時間維持する。
また、 上記油制御手段 (91 ) は、 第 2圧縮機 (42) が駆動している状態で 第 1圧縮機 (41 ) を駆動する直前において、 均油電磁弁 (55) を連通状態に保 持する駆動直前制御を行う (図 3の E点参照)。 つまり、 均油電磁弁 (55) を 1 0秒の間、 開状態にして第 1圧縮機 (41 ) の内部圧力を低下させる。
その後、 上記油制御手段 (91 ) は、 図 3の: F点に示すように、 第 1圧縮機 (41 ) と第 2圧縮機 (42) とが共に駆動している状態において、 油戻し電磁弁 (53) と均油電磁弁 (55) とが同期して所定の間隔で連通状態と遮断状態とに 切り換わる油戻し制御を行う。 例えば、 油戻し電磁弁 (53) と均油電磁弁 (55) が共に開口した開状態を 1 0秒間行った後、 油戻し電磁弁 (53) と均油電磁弁 (55) が共に閉鎖した閉状態を 2 0分間行い、 この動作が繰り返される。
つまり、 上記第 1圧縮機 (41 ) 及び第 2圧縮機 (42) の内部の油 (潤滑油) は、 冷媒と共に吐出管 (44) に流出し、 油分離器 (51 ) で分離される。 油制御 手段 (91 ) は、 油分離器 (51 ) の油を油戻し管 (52) から吸入枝管 (4J3a) を介 して第 1圧縮機(41 ) に一旦戻す。 その後、 該第 1圧縮機(41 ) から均油管(54) を介して第 2圧縮機 (42) に戻す。
上記第 1圧縮機 (41 ) と第 2圧縮機 (42) とが共に駆動している状態にお いて、 油制御手段 (91 ) は、 第 2圧縮機 (42) の最低容量運転が所定時間継続 すると、 第 1圧縮機 (41 ) の駆動を一旦停止し、 第 2圧縮機 (42) の運転容量 を増大させる補正制御を行う。 つまり、 図 5に示すように、 ステップ S T 1にお いて、 上記第 1圧縮機 (41 ) が駆動し、 第 2圧縮機 (42) が最低容量で駆動し ている状態が 2 0分継続したか否かが判定する。
この第 2圧縮機 (42) の最低容量運転が 2 0分継続するまで、 上述の動作 が繰り返される。 一方、 上記第 2圧縮機 (42) の最低容量運転が 2 0分継続す ると、 ステップ S T 1の判定が Y E Sとなり、 ステップ S T 2に移り、 第 1圧縮 機 (41 ) の駆動を一旦停止し、 第 2圧縮機 (42) の運転容量を増大させる運転 を 5分間実行する。 つまり、 第 2圧縮機 (42) の最低容量運転時は、 第 2圧縮 機 (42) から冷媒回路 (15) に吐出する油が少なく、 第 2圧縮機 (42) に溜ま る油が多くなる。 そこで、 上記第 2圧縮機 (42) の容量を一旦増大し、 冷媒回 路 (15) に吐出する油を多くし、 油分離器 (51 ) などの油量を多くし、 均油を 行う。
その後、 上記ステップ S T 2からステヅプ S T 3に移り、 元の状態に戻し、 第 1圧縮機 (41 ) を駆動し、 第 2圧縮機 (42) を最低容量で駆動する。 この動 作を繰り返す。
一方、 上記第 2圧縮機 (42) が異常停止すると、 油制御手段 (91 ) は、 図 4の G点に示すように、 第 1圧縮機 (41 ) のみを駆動し、 均油電磁弁 (55) を 遮断状態のまま油戻し電磁弁 (53) のみが所定の間隔で連通状態と遮断状態と に切り換わる異常制御を行う (図 3の H点参照)。 つまり、 第 1圧縮機 (41 ) の 内部が高圧状態であるので、 高圧ガス冷媒が第 2圧縮機 (42) に流れないよう に均油電磁弁 (55) を閉状態のままに保持する。 上記油戻し電磁弁 (53) は、 例えば、 1 0秒開き、 2 0分度閉じる動作を繰り返す。
〈実施形態の劾果〉
以上のように、 本実施形態によれば、 第 1圧縮機 (41 ) と第 2圧縮機 (42) とを共に高圧ドームで構成したために、 C O P (成績係数) を向上させることが できる。 つまり、 上記第 1圧縮機 (41 ) と第 2圧縮機 (42) とに吸い込まれた冷媒 が圧縮機ドーム内の油と熱交換することなく圧縮される。 この結果、 冷房運転時 において、 吸入冷媒の熱量が油の冷却に使用されず、 圧縮された高圧冷媒が圧縮 機ドーム内の油と熱交換して一部が凝縮する。 よって、 冷房運転時の C O Pが向 上する。
また、 上記第 1圧縮機 (41 ) と第 2圧縮機 (42) とが共に駆動している状 態において、 油戻し電磁弁 (53) と均油電磁弁 (55) とが同期して所定の間隔 で連通状態と遮断状態とに切り換わるようにしたために、 油を第 1圧縮機 (41 ) と第 2圧縮機 (42) とに確実に戻すことができる。
従来、 低圧ドームの 2台の圧縮機を備えたヅイン型圧縮機では、 2つの圧縮 機ドームに均油管 (54) を接続していた。 しかしながら、 この方式では、 高圧 ドームの 2台の圧縮機を備えた場合、 油戻しを正確に行うことができない。
そこで、 本実施形態では、 上記第 1圧縮機 (41 ) 及び第 2圧縮機 (42) か ら流出した冷媒を油分離器 (51 ) で捕集し、 この油分離器 (51 ) の油を油戻し 管 (52) から第 1圧縮機 (41 ) に一旦戻す。 その後、 該第 1圧縮機 (41 ) の余 剰の油を均油管 (54) から第 2圧縮機 (42) に戻し、 油戻しを正確に行うよう にしている。
また、 上記第 1圧縮機 (41 ) が駆動する前は、 油戻し電磁弁 (53) と均油 電磁弁 (55) が共に閉鎖した状態に維持する。 この結果、 油を油分離器 (51 ) に溜めることができ、 第 1圧縮機 (41 ) が起動した際、 油分離器 (51 ) に溜ま つた油を確実に第 1圧縮機 (41 ) に戻することができる。
また、 上記第 1圧縮機 (41 ) が駆動する直前に均油電磁弁 (55) を連通状 態に保持するようにしたために、 起動不良を防止することができる。 つまり、 第 1圧縮機 (41 ) の内部圧力を低下させると共に、 油に寝込んだ泠媒を除くこと ができるので、 起動不良を防止することができる。
また、 上記第 1圧縮機 (41 ) が駆動すると共に、 第 2圧縮機 (42) の最低 容量運転が所定時間継続すると、 第 1圧縮機 (41 ) の駆動を一旦停止し、 第 2 圧縮機 (42) の運転容量を増大させるので、 均油を正確に行うことができる。 つまり、 上記第 2圧縮機 (42) の最低容量運転時は、 第 2圧縮機 (42) から冷 媒回路 (15) に吐出する油が少なく、 第 2圧縮機 (42) に溜まる油が多くなる。 そこで、 上記第 2圧縮機 (42) の容量を一旦増大し、 冷媒回路 (15) に吐出す る油を多くし、 均油を行うようにしている。
また、 上記第 2圧縮機 (42) のみが駆動している状態において、 均油電磁 弁 (55) を遮断状態のまま油戻し電磁弁 (53) のみが所定の間隔で連通状態と 遮断状態とに切り換わるようにしているので、 油を確実に第 2圧縮機 (42) に 戻すことができる。
また、 上記第 2圧縮機 (42) が異常停止し、 第 1圧縮機 (41 ) のみが駆動 しているときには、 均油電磁弁 (55) を遮断状態のまま油戻し電磁弁 (53) の みが所定の間隔で連通状態と遮断状態とに切り換わるようにしたために、 第 2圧 縮機 (42) への高圧冷媒の漏れを確実に防止することができる。
また、 上記第 2圧縮機 (42) が起動する際、 均油電磁弁 (55) が遮断状態 に保持されるようにしたために、 第 1圧縮機 (41 ) の油を第 2圧縮機 (42) が 吸入することが確実に防止される。 一他の実施形態一
上記実施形態においては、 油分離器 (51 ) の油を油戻し管 (52) から第 1 圧縮機 (41 ) に一旦戻し、 該第 1圧縮機 (41 ) から均油管 (54) を介して第 2 圧縮機 (42) に戻すようにしている。 しかしながら、 図 2の 1点鎖線でに示す ように、 油戻し管 (52) 及び均油管 (54) に冷却機構である熱交換器 (56, 57) を設け、 油を外気で冷却するようにしてもよい。
この場合、 上記第 1圧縮機 (41 ) 及び第 2圧縮機 (42) の内部温度を低下 させることができる。 この結果、 圧縮機構 (40) の信頼性を向上させることが できると共に、 運転範囲の拡大を図ることができる。 更に、 圧縮機構 (40) の 吸入冷媒の日体積を小さくすることができるので、 圧縮機能力の向上を図ること ができる。
また、 本発明は、 上記実施形態の他、 以下のような構成としてもよい。 つま り、 本発明は、 蒸気圧縮式の冷凍サイクルを行う冷凍装置であれば、 空気調和装 置以外であっても適用することが可能である。 また、 本発明は、 利用側ユニット として空調機の室内ュニヅ トと冷蔵庫や冷凍庫を並列に接続したシステムにも適 用可能である。 産業上の利用可能性
以上のように、本発明に係る冷凍装置は、空気調和装置に有用であり、特に、
2台の圧縮機を備えたも空気調和装置に適している。

Claims

請 求 の 範 囲
1 . 熱源ユニッ ト (11 ) と利用ユニッ ト (12, 13) とが冷媒循環可能に接続さ れて成る冷媒回路 (15) を備えた冷凍装置であって、
上記熱源ユニッ ト (11 ) には、 一定容量で運転される高圧ドーム型の第 1 圧縮機 (41 ) と、 運転容量が多段に調整される高圧ドーム型の第 2圧縮機 (42) とが並列に接続されて成る圧縮機構 (40) が設けられている
ことを特徴とする冷凍装置。
2 . 請求項 1において、
圧縮機構(40)の吐出側には、 油分離器(51 ) が設けられ、 該油分離器(51 ) と圧縮機構 (40) の吸込み側との間には、 油分離器 (51 ) で分離された油を圧 縮機構 (40) に戻す油戻し管 (52) が接続され、 該油戻し管 (52) には、 連通 状態と遮断状態とに切り換わる油戻し開閉機構 (53) が設けられる一方、
第 1圧縮機 (41 ) と第 2圧縮機 (42) の吸込み側との間には、 第 1圧縮機 (41 ) に貯留された油が所定以上になると、 余剰の油を第 2圧縮機 (42) の吸 込み側に供給する均油管 (54) が接続され、 該均油管 (54) には、 連通状態と 遮断状態とに切り換わる均油開閉機構 (55) が設けられている
ことを特徴とする冷凍装置。
3 . 請求項 2において、
第 1圧縮機 (41 ) と第 2圧縮機 (42) とが共に駆動しているときには、 油 戻し開閉機構 (53) と均油開閉機構 (55) とが同期して所定の間隔で連通状態 と遮断状態とに切り換わる油戻し制御を行う
ことを特徴とする冷凍装置。
4 . 請求項 3において、
第 2圧縮機 (42) が駆動している状態で第 1圧縮機 (41 ) が駆動する前に は、 油戻し制御を禁止する ことを特徴とする冷凍装置。
5 . 請求項 3において、
第 2圧縮機 (42) が駆動している状態で第 1圧縮機 (41 ) が駆動する直前 には、 均油開閉機構 (55) を連通状態に保持する
ことを特徴とする冷凍装置。
6 . 請求項 3において、
第 1圧縮機 (41 ) と第 2圧縮機 (42) とが共に駆動しているときには、 第 2圧縮機 (42) の最低容量運転が所定時間継続すると、 第 1圧縮機 (41 ) の駆 動を一旦停止し、 第 2圧縮機 (42) の運転容量を増大させる
ことを特徴とする冷凍装置。
7 . 請求項 3において、
第 2圧縮機 (42) のみが駆動しているときには、 均油開閉機構 (55) を遮 断状態のまま油戻し開閉機構 (53) のみを所定の間隔で連通状態と遮断状態と に切り換える
ことを特徴とする冷凍装置。
8 . 請求項 3において、
第 2圧縮機 (42) が異常停止し、 第 1圧縮機 (41 ) のみが駆動していると きには、 均油開閉機構 (5δ) を遮断状態のまま油戻し開閉機構 (53) のみを所 定の間隔で連通状態と遮断状態とに切り換える
ことを特徴とする冷凍装置。
9 . 請求項 3において、
第 2圧縮機 (42) .が起動する際には、 均油開閉機構 (55) を遮断状態に保 持する
ことを特徴とする冷凍装置。
1 0 . 請求項 2において、
油戻し管 (52) には、 油を冷却する冷却機構 (56) が設けられている ことを特徴とする冷凍装置。
1 1 . 請求項 2において、
均油管 (54) には、 油を冷却する冷却機構 (57) が設けられている ことを特徴とする冷凍装置。
1 2 . 請求項 2において、
油分離器 (δ1 ) は、 第 1圧縮機 (41 ) と第 2圧縮機 (42) との吐出冷媒が 合流して流れる吐出管 (44) の主管部分に設けられている
ことを特徴とする冷凍装置。
1 3 . 請求項 2において、
油戻し管 (52) の圧縮機構 (40) 側の端部は、 第 1圧縮機 (41 ) に接続さ れる吸入管 (43) の吸入枝管 (43a) に接続されている
ことを特徴とする冷凍装置。
1 4 . 請求項 1 3において、
第 1圧縮機 (41 ) に接続される吸入管 (43) の吸入枝管 (43a) と第 2圧縮 機 (42) に接続される吸入管 (43) の吸入枝管 (43b) とは、 相互に流通自在に 構成されている
ことを特徴とする冷凍装置。
PCT/JP2001/010761 2000-12-08 2001-12-07 Refrigerateur WO2002046664A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002221094A AU2002221094A1 (en) 2000-12-08 2001-12-07 Refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000374315A JP3750520B2 (ja) 2000-12-08 2000-12-08 冷凍装置
JP2000-374315 2000-12-08

Publications (1)

Publication Number Publication Date
WO2002046664A1 true WO2002046664A1 (fr) 2002-06-13

Family

ID=18843528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010761 WO2002046664A1 (fr) 2000-12-08 2001-12-07 Refrigerateur

Country Status (3)

Country Link
JP (1) JP3750520B2 (ja)
AU (1) AU2002221094A1 (ja)
WO (1) WO2002046664A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1548379A1 (en) * 2003-12-24 2005-06-29 Samsung Electronics Co., Ltd. Refrigerating apparatus and control method thereof
WO2007082844A2 (de) * 2006-01-13 2007-07-26 BSH Bosch und Siemens Hausgeräte GmbH Kühlungssystem für elektrischen kühlschrank
WO2017036230A1 (zh) * 2015-09-01 2017-03-09 珠海格力电器股份有限公司 压缩机模块及多模块机组、多模块机组均油控制方法
CN108139119A (zh) * 2015-10-08 2018-06-08 三菱电机株式会社 制冷循环装置
CN112648754A (zh) * 2020-12-14 2021-04-13 青岛海信日立空调系统有限公司 一种空调循环系统及其循环方法
US20220042727A1 (en) * 2019-09-13 2022-02-10 Carrier Corporation Hvac unit with expansion device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100339666C (zh) * 2004-06-22 2007-09-26 游可方 变负载多机热泵系统
JP4591402B2 (ja) * 2006-04-20 2010-12-01 ダイキン工業株式会社 冷凍装置
FR2983257B1 (fr) 2011-11-30 2018-04-13 Danfoss Commercial Compressors Dispositif de compression, et systeme thermodynamique comprenant un tel dispositif de compression
JP2014066488A (ja) * 2012-09-27 2014-04-17 Panasonic Corp 空気調和装置
JP6187514B2 (ja) * 2015-03-20 2017-08-30 ダイキン工業株式会社 冷凍装置
US11149992B2 (en) * 2015-12-18 2021-10-19 Sumitomo (Shi) Cryogenic Of America, Inc. Dual helium compressors

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01131850A (ja) * 1987-11-13 1989-05-24 Toshiba Corp 空気調和装置
JPH07127932A (ja) * 1993-11-09 1995-05-19 Kubota Corp ヒートポンプ装置
JPH0742065Y2 (ja) * 1990-05-18 1995-09-27 三菱重工業株式会社 圧縮機ユニット
JPH085169A (ja) * 1994-06-21 1996-01-12 Matsushita Refrig Co Ltd 空気調和機
JP2865707B2 (ja) * 1989-06-14 1999-03-08 株式会社日立製作所 冷凍装置
JP2000046418A (ja) * 1998-07-30 2000-02-18 Matsushita Electric Ind Co Ltd インバータ式空気調和機
WO2001006181A1 (fr) * 1999-07-21 2001-01-25 Daikin Industries, Ltd. Dispositif refrigerant

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01131850A (ja) * 1987-11-13 1989-05-24 Toshiba Corp 空気調和装置
JP2865707B2 (ja) * 1989-06-14 1999-03-08 株式会社日立製作所 冷凍装置
JPH0742065Y2 (ja) * 1990-05-18 1995-09-27 三菱重工業株式会社 圧縮機ユニット
JPH07127932A (ja) * 1993-11-09 1995-05-19 Kubota Corp ヒートポンプ装置
JPH085169A (ja) * 1994-06-21 1996-01-12 Matsushita Refrig Co Ltd 空気調和機
JP2000046418A (ja) * 1998-07-30 2000-02-18 Matsushita Electric Ind Co Ltd インバータ式空気調和機
WO2001006181A1 (fr) * 1999-07-21 2001-01-25 Daikin Industries, Ltd. Dispositif refrigerant

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1548379A1 (en) * 2003-12-24 2005-06-29 Samsung Electronics Co., Ltd. Refrigerating apparatus and control method thereof
WO2007082844A2 (de) * 2006-01-13 2007-07-26 BSH Bosch und Siemens Hausgeräte GmbH Kühlungssystem für elektrischen kühlschrank
WO2007082844A3 (de) * 2006-01-13 2007-09-20 Bsh Bosch Siemens Hausgeraete Kühlungssystem für elektrischen kühlschrank
WO2017036230A1 (zh) * 2015-09-01 2017-03-09 珠海格力电器股份有限公司 压缩机模块及多模块机组、多模块机组均油控制方法
CN108139119A (zh) * 2015-10-08 2018-06-08 三菱电机株式会社 制冷循环装置
EP3361184A4 (en) * 2015-10-08 2018-09-19 Mitsubishi Electric Corporation Refrigeration cycle device
CN108139119B (zh) * 2015-10-08 2020-06-05 三菱电机株式会社 制冷循环装置
EP3693680A1 (en) * 2015-10-08 2020-08-12 Mitsubishi Electric Corporation Refrigeration cycle apparatus
US10767912B2 (en) 2015-10-08 2020-09-08 Mitsubishi Electric Corporation Refrigeration cycle apparatus
US20220042727A1 (en) * 2019-09-13 2022-02-10 Carrier Corporation Hvac unit with expansion device
CN112648754A (zh) * 2020-12-14 2021-04-13 青岛海信日立空调系统有限公司 一种空调循环系统及其循环方法
CN112648754B (zh) * 2020-12-14 2023-07-14 青岛海信日立空调系统有限公司 一种空调循环系统及其循环方法

Also Published As

Publication number Publication date
AU2002221094A1 (en) 2002-06-18
JP3750520B2 (ja) 2006-03-01
JP2002174463A (ja) 2002-06-21

Similar Documents

Publication Publication Date Title
JP6935720B2 (ja) 冷凍装置
EP2083230B1 (en) Air conditioning system
JP5402027B2 (ja) 空気調和機
JP2010175190A (ja) 空気調和機
JP5173857B2 (ja) 空気調和装置
JP3750520B2 (ja) 冷凍装置
CN114270113B (zh) 热源机组及制冷装置
US20220221200A1 (en) Refrigeration apparatus
JP2007232265A (ja) 冷凍装置
JP4449139B2 (ja) 冷凍装置
JP2004170023A (ja) 多室形空気調和機の制御方法
JP2005214575A (ja) 冷凍装置
JP3668750B2 (ja) 空気調和装置
JP2000249385A (ja) 冷凍装置
JP4082040B2 (ja) 冷凍装置
JP3714348B2 (ja) 冷凍装置
JP3555575B2 (ja) 冷凍装置
JP2003106609A (ja) 冷凍装置
US11573039B2 (en) Heat source unit and refrigeration apparatus
JP2002243307A (ja) 空気調和装置
JP3698132B2 (ja) 空気調和装置
JP2002243319A (ja) 空気調和装置
CN114341571B (zh) 制冷装置
WO2017094172A1 (ja) 空気調和装置
JP4086719B2 (ja) 空気調和装置及び空気調和装置の制御方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN IN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase