WO2002045581A1 - Relation between breast cancer and estrogen by body surface real-time signal - Google Patents

Relation between breast cancer and estrogen by body surface real-time signal Download PDF

Info

Publication number
WO2002045581A1
WO2002045581A1 PCT/JP2001/010253 JP0110253W WO0245581A1 WO 2002045581 A1 WO2002045581 A1 WO 2002045581A1 JP 0110253 W JP0110253 W JP 0110253W WO 0245581 A1 WO0245581 A1 WO 0245581A1
Authority
WO
WIPO (PCT)
Prior art keywords
breast cancer
frequency
normal
time
estrogen
Prior art date
Application number
PCT/JP2001/010253
Other languages
French (fr)
Japanese (ja)
Inventor
Michiko Yagi
Zenro Nihei
Takayuki Osanai
Yukiko Koike
Original Assignee
Kabushiki Kaisya Advance
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisya Advance filed Critical Kabushiki Kaisya Advance
Priority to JP2002547375A priority Critical patent/JPWO2002045581A1/en
Publication of WO2002045581A1 publication Critical patent/WO2002045581A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/7257Details of waveform analysis characterised by using transforms using Fourier transforms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof

Definitions

  • the present invention relates to the relationship between breast cancer and estrogen using body surface real-time signals.
  • Breast cancer is a typical hormone-dependent tumor. Therefore, endocrine diagnosis and treatment are performed for diagnosis and treatment of breast cancer. One of them is the method of measuring estrogen (ES) and its receptor (ER), which has attracted attention in recent years. In addition, there are other methods for diagnosing breast tumors such as ultrasound, NMR measurement, and bioelectrical impedance measurement.
  • ES estrogen
  • ER receptor
  • the frequency time-series analysis method of the real-time signal waveform of the present method uses the frequency response in response to the biological activity of the living body. This method analyzes the time-varying pattern. This method analyzes the relationship between the physiological activity and the complex network of frequency. In order to apply this study to diagnosis, many cases (100 or more patients) and time and Basic knowledge of frequency analysis is required as an absolute condition. Based on these conditions, the relationship between bioactivity and frequency must be clarified. For that purpose, the relationship with the physiological activity must be examined for each frequency of 1 Hz. Therefore, applying this method to diagnosis requires time and detailed basic research.
  • Figure 1 is a Draf showing the frequency (FFT) spectra of normal individuals and patients with papillary ductal carcinoma.
  • FIG. 2 is a diagram showing a relationship between upper left and left outer breast cancer and frequency.
  • FIG. 3 is a diagram showing a relationship between upper right, right inner and right outer breast cancer and frequency.
  • FIG. 4 is a graph showing a time-series pattern in a low frequency region of breast cancer and a normal person
  • Figures 4A-1 and 4A-2 show the time series patterns obtained from the upper breasts of 25-35 year old breast cancer patients and normals
  • Figures 4B-1 and 4B-2 show the time-series patterns obtained from the outer breasts of 25-35 year old breast cancer patients and normals
  • Figures 4C-1 and 4C-2 show the time series patterns obtained from the upper breasts of breast cancer patients and normals between the ages of 40 and 50,
  • FIGS.4D-1 to 4D-4 show time series patterns obtained from the outer breasts of breast cancer patients aged 40 to 50 years and normals
  • Figures 4E-1 and 4E-2 show the time series patterns obtained from the upper breasts of 50- to 60-year-old breast cancer patients and normal persons,
  • Figures 4F-1 and 4F-2 show 50 to 60 year old breast cancer patients and Shows a time series pattern obtained from the outer breast of a normal person
  • Figures 4G-1 and 4G-2 show the time series patterns obtained from the upper breasts of breast cancer patients and normals between the ages of 60 and 76.
  • Figures 4H-1 and 4H-2 show the time series patterns obtained from the outer breasts of breast cancer patients and normals between the ages of 60 and 76.
  • Figure 5A is a Draf showing the 5.7.373 Hz time series of the lower left breast of a normal person (66 years old).
  • FIG. 5B is a graph showing a 58.594 Hz time series of estrogen-treated lower left lower breast cancer patient (66 years old).
  • FIG. 6A is a graph showing a transient spike time series (E mn) of 68.359 Hz on the first day of the menstrual cycle (ES minimum value) of a normal person (28 years old).
  • FIG. 6B is a graph showing a 68.359 Hz bispike time series (Emax) of a normal person (28 years old) at 12 days after the menstrual cycle (maximum ES).
  • FIG. 7A is a Draf showing the 50.49 Hz time series of a lower right breast cancer patient (48 years old).
  • FIG. 7B shows the time-course of 50.49 Hz of Tamoxifen administration (20 mg / day) lower right breast cancer patient (48 years old: same person as 7A).
  • FIG. 7C is a graph showing the 64.679 Hz time series of a right posterior breast cancer patient (30 years old).
  • FIG. 7D shows the 6.4.697 Hz time series of Tamoxifen administration (20 mg / day) right posterior breast cancer patient (30 years old).
  • FIG. 8 is a diagram schematically showing the relationship between non-voltage-dependent calcium channels and breast cancer.
  • FIG. 9 is a diagram showing the positions of the electrodes.
  • FIG. 10 is a schematic configuration of a signal processing device according to one embodiment of the present invention.
  • a surface electrode was placed on the body surface of a breast cancer patient and a normal human at the same age and position as the patient (see Fig. 9; , B is approximately 3 to 5 cm).
  • the signals responding to the electrodes were input to an oscilloscope for biological signal analysis (Nihon Kohden Memory Oscilloscope VC-11) and A / D converted.
  • FFT analysis of the signal wave was performed, and time series analysis was performed for each frequency of the FFT peak value for normal and breast cancer up to 170 Hz. In this case, if the normal person is the same as breast cancer, analyze the same FFT peak value or the peak value near it and compare the normal and cancer did.
  • Group A 70-80% A 'group, 50-70% B group, 20-40% B 'Group, only one case was classified into Group C.
  • each group is extracted as a group with one feature in the frequency range of 10 to 17 Hz, and this is connected to a line to form a group. .. '688 ⁇ 016 899 ⁇ 606 06-900 ⁇ 906
  • Table 3 shows the relationship between each tissue image and the common frequency for each tissue image of ductal carcinoma.
  • Ductal carcinoma is invasive cancer in which cancer cells have invaded the stroma.
  • ductal carcinoma Histological features of ductal carcinoma were classified into papillary ductal carcinoma, solid ductal carcinoma and hard carcinoma
  • Papillary duct carcinoma (Papi 1 lotubular carcinoma)
  • Solid cancerous nests are those that show exclusion or swelling growth to surrounding tissues.
  • Cancer foci consist of solid growth of medullary or obscure small ducts in the glandular cavities. Demonstrates relatively clear boundaries to surrounding tissues almost all around the cancerous lesion
  • Hard cancer includes two from its origin. One is a narrowly defined hard carcinoma with extremely few intraductal carcinoma foci and advanced interstitial invasion, and the other is derived from papillary duct carcinoma or solid ductal carcinoma and has diffuse interstitial invasion. Predominate II
  • the common frequency in each histological image in the table is the frequency (A group) that appears in common with a probability of 80% or more in cases.
  • the number shown at the right end of the table is the common frequency probability (%) with respect to the number of cases.
  • Hard cancer has a high probability of commonality due to few cases, and has many common frequencies. However, the probability of commonality decreases as the number of cases increases.
  • time series analysis and autocorrelation analysis of signal waveforms were performed for each extracted common frequency to further prove the reliability of the common frequency of each breast cancer site and each tissue image shown in the table and figure. In comparison, we searched for differences from normal.
  • Fig.4 Area of burst signals in the 9.766Hz time series of left (L) and ri ht () up and out breasts in B-cancer and women
  • the signal processing device of the present invention includes a pair of electrodes 1 for detecting an electric signal from a living body, an amplifier 2 for amplifying the electric signal obtained at the electrode 1, a Fourier transform of the amplifier output to a specific frequency, A specific frequency component detection circuit 3 for detecting a signal of a component (mainly a frequency of '10 Hz or less), and integrates the output of the detection circuit up to a predetermined time (for example, FIG.
  • the value of POWER on the vertical axis is integrated with respect to the time from 0.000 msec on the left end of the horizontal axis to 466 7 2.000 msec on the right end.)
  • the combination configuration of the comparison circuit 7 for comparing and outputting the data of the comparison result is an example. Wear. Needless to say, these circuits may be configured in the form of software that can realize the functions by a computer.
  • the above configuration is only an example, and a specific frequency
  • the time-series change of the turn is displayed on the monitor, and it can be used as an auxiliary means for the doctor's diagnosis.
  • the starting frequency of this retraction is between 10 and 32 Hz for both normal and breast cancer as shown in Fig. 4, but it is often between 10 and 26 Hz for normal and for breast cancer.
  • Frequency attraction is a self-regulatory mechanism required for cell stabilization.
  • Spike (twin-spike) vibration appears between 30 and 7 OHz.
  • Fig. 4 Spike vibration includes transient spike (Transient) and twin-spike (Bisp.). Except for transient spikes at 60 to 70 years of age, bilateral spikes appear in both left (L) and right (R) cancers in most age groups.
  • Estrogen (ES) -ES receptor (ER) binds to R0CC and D0CC in these Ca "ch. And mobilizes Ca2 + from the endoplasmic reticulum, and the (Ca2 + ) i Are reported to activate MAPK to form a cascade of —transcriptional activity—nuclear gene activation.From these literature reports and the results of this study, burst oscillations in the 9.766 Hz time series described above (item III) are reported. Explaining the difference between the normal (B0S) area and breast cancer, ES-binding protein decreases and blood free estrogen (f-ES) increases after menopause (after age 45) in breast cancer and normal subjects.
  • f-ES blood free estrogen
  • f-ES Since f-ES has a small molecular weight, it can freely pass through cells, enter the cytoplasm, and bind to the tpsi.
  • B0S time-series burst oscillation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

Information on presence of a cancer is obtained by producing time-series signals for a predetermined period of the signals of a specific frequency region in a body surface real-time signal and by determining the area of the time-series signals.

Description

細 者  Person
体表面リアルタイム信号による乳癌とエス トロゲンの関係 (技術分野)  Relationship between breast cancer and estrogen using body surface real-time signals (Technical field)
本発明は、 体表面リアルタイム信号による乳癌とエス トロゲンの 関係に関する。  The present invention relates to the relationship between breast cancer and estrogen using body surface real-time signals.
(従来の技術) (Conventional technology)
乳癌はホルモン依存性の代表的な腫瘍である。 従って乳癌の診 断及び治療には内分泌的診断及び治療が行われている。 その一つに 近年注目されているエス トロゲン (ES) 及びその受容体 (ER) 測定 法がある。 この他に超音波, N M R測定及び生体電気インピーダン ス測定等による乳腺腫瘍診断方法がある。  Breast cancer is a typical hormone-dependent tumor. Therefore, endocrine diagnosis and treatment are performed for diagnosis and treatment of breast cancer. One of them is the method of measuring estrogen (ES) and its receptor (ER), which has attracted attention in recent years. In addition, there are other methods for diagnosing breast tumors such as ultrasound, NMR measurement, and bioelectrical impedance measurement.
しかし, これらの方法は乳癌の固型化した組織像に対する信号 の応答に対する診断法であるのに対して本法のリアルタイム信号波 形の周波数時系列解析法は生体の生理活性に応答した周波数の時間 変化パターンを解析する方法であり, これは生理活性と周波数の複 雑なネッ トワークの関係を解析するため本研究を診断に応用するに は多くの症例(患者数 100例以上) と時間及び周波数解析の基礎知識 を絶対条件として必要とする。 これらの条件を基軸として生理活性 と周波数の関係を明かにしなければならない。 そのためには 1 H z 毎の周波数について生理活性との関係を調べなければならない。 従 つて本法を診断に適用するには時間をかけて緻密な基礎研究を必要 とする。  However, these methods are diagnostic methods for the response of the signal to the solidified tissue image of breast cancer, whereas the frequency time-series analysis method of the real-time signal waveform of the present method uses the frequency response in response to the biological activity of the living body. This method analyzes the time-varying pattern. This method analyzes the relationship between the physiological activity and the complex network of frequency. In order to apply this study to diagnosis, many cases (100 or more patients) and time and Basic knowledge of frequency analysis is required as an absolute condition. Based on these conditions, the relationship between bioactivity and frequency must be clarified. For that purpose, the relationship with the physiological activity must be examined for each frequency of 1 Hz. Therefore, applying this method to diagnosis requires time and detailed basic research.
(発明の要約) (Summary of the Invention)
これまでの基礎研究の結果を以下に示す如く, 本法によって生理 活性即ち乳癌とエス トロゲン (ES) 及び細胞内カルシウム (C a2 + ) i との関係が見い出されたので本法について申請する。 As shown below, the results of basic research have shown that the bioactivity of breast cancer and estrogen (ES) and intracellular calcium (C a 2 + ) i Because the relationship was found, apply for this law.
1 - 100Hz の低周波数領域において乳癌におけるエス トロゲン ( ES) と細胞内カルシウム (Ca2 + ) i との関係を示す周波数領域が得 られた。 この領域の周波数の時系列パターンはバース ト振動 (B0S ) を含む振動応答, スパイク応答及び高周波数領域において持続性 の 3応答形式を示した。 これらの応答パターンは, 生理活性との関 係において細胞膜のホスフォイノシトール-カスケード ( Phospho inositide cascade) を含む種々受容体 (ホルモン, 免疫等) 剌激 による細胞内カルシウム (Ca2 + ) i 代謝活性様の動態変化を示した 。 この (Ca2 + ) i の変動が信号波を誘起している。 このことは生体 信号波を構成する周波数成分は生体の生理活性を反映している事を 示す。 即ち, 現在行われているデジタル-画像化顕微鏡(Didi l im aging microscopy) を用いた蛍光色素による細胞内カルシウム (Ca 2 + ) i の多くの研究結果と一致したことから, 従来までは細胞内力 ルシゥム (Ca2 + ) i 代謝の研究は in vitro (細胞外) での顕微鏡下 での研究でしか成功していなく, 生体全体の代謝回路 (cascade) を含めたリアルタイムでの測定法の研究が待たれていた。 この期待 に即応したのが本研究におけるリアルタイムでの生体信号波形解析 より得られる周波数の時系列解析法である。 In the low frequency range of 1-100Hz, a frequency range showing the relationship between estrogen (ES) and intracellular calcium (Ca2 + ) i in breast cancer was obtained. The time series pattern of the frequency in this region showed three types of response: vibration response including burst vibration (B0S), spike response, and persistence in the high frequency region. These response patterns indicate that intracellular calcium (Ca 2+ ) i metabolic activity by stimulation of various receptors (hormones, immunity, etc.) including the phosphoinositol cascade of the cell membrane in relation to physiological activities Kinetic changes. This fluctuation of (Ca 2 + ) i induces a signal wave. This indicates that the frequency components constituting the biological signal wave reflect the biological activity of the living body. In other words, the results were consistent with the results of many studies on intracellular calcium (Ca 2+ ) i using fluorescent dyes using digital imaging microscopy. Research on lucidum (Ca 2+ ) i metabolism has been successful only under in vitro (extracellular) microscopic research, and research on real-time measurement methods including the metabolic circuit (cascade) of whole organisms has not been successful. I was waiting. In response to this expectation, the time series analysis method of frequencies obtained from real-time biological signal waveform analysis in this study.
この時系列解析によって 1 — 100Hz の低周波数領域において乳癌 患者と正常人とのエス トロゲン (ES) 及び細胞内カルシウム (Ca2 + ) i 代謝に特徴がある事が見い出された。 即ち, 両者の特徴は年齢 , 癌位置によって相違があるが, 20— 30, 30 - 40, 40 - 50, 50 - 60 , 60— 76歳の各年齢層において 1 一 15Hz の低周波数領域の時系列 パターンでバーストオシレーシヨ ン (B0S) の面積に相違が示され た(図 4), (表 4)。 This time series analysis revealed that estrogen (ES) and intracellular calcium (Ca 2+ ) i metabolism between breast cancer patients and normal subjects were characteristic in the low frequency range of 1-100 Hz. In other words, the characteristics of the two are different depending on the age and the location of the cancer, but in the low frequency range of 115 Hz in each age group of 20-30, 30-40, 40-50, 50-60, and 60-76 years. The difference in the area of the burst oscillation (B0S) was shown in the sequence pattern (Fig. 4), (Table 4).
また, パース ト上の振動構造が乳癌では正常に比べ大体全例にお いて弱いことが両者の相違の特徴である。 これは各年齢における E S 及び ES -受容体 (ER) に対する (Ca2 + ) i 応答の相違と考えられ る (考察参照) 。 10— 35Hz 領域では正常, 乳癌共に周波数の引き 込み (Entraimen が起こりバース ト振動 (B0S) からスパイク型 ( 一過性と双スパイク) に移行する (図 4 ) 。 この引き込みの開始及 び終了する周波数は年齢によって正常と乳癌に相違がある。 この引 き込み領域は正常に比べ乳癌では広い高周波数領域に及びその範囲 が広い。 更に引き込みが続きバース ト振動 (B0S) から一過性のス パイク (Transient) 或いは双スパイク (Bisp. ) に変わる (図 4, 最下段)。 In addition, the vibrational structure on the perspective is almost the same in breast cancer than in normal cases. Weakness is a feature of the difference between the two. This may be due to differences in (Ca 2+ ) i responses to ES and ES-receptor (ER) at each age (see discussion). In the 10-35 Hz region, both normal and breast cancers shift in frequency (entraimen occurs and burst oscillation (B0S) shifts to a spike type (transient and twin spikes) (Fig. 4). The frequency is different between normal and breast cancer depending on the age.This entrainment region is broader and broader in breast cancer than in normal, and the range is wider. Turns into a pike (Transient) or a twin spike (Bisp.) (Fig. 4, bottom).
正常では双スパイク (Bisp. ) に比べ一過性 (Transient) のスパ イクが多いが, 乳癌では Bisp.が多い。 しかし年齢が 60歳以上に なると正常, 乳癌共に Bisp.が現れなくなるが 70歳を過ぎても非 常に健康な正常人或いは, 内分泌療法で ES療法を受けている 60歳 以上の乳癌患者に Bisp.が現れる (図 4. G. H, 図 5 )。 又, 月経周 期におけるエス トロゲン (ES) の変動において初日 ± 1 日では ES は最低値 (Emin) を示し, 12日後で最高値 (Emax) を示すというテ キス 卜 (定説) に従い, 27— 55歳の一過性のスパイクしか現れない 正常人について Emin, Emax の両日の時系列パターンを比較すると , Emin 初日では一過性のスパイクが現れるのに対して同一人の Em ax (12日後) では双スパイク (Bisp. ) が現れる (図 6 ) 。 更に第 3の例としてエス トロゲン受容体 (ER) の拮抗剤であるタモキシフ ェン (Tamoxifen: Tx) 投与効果を調べると, Τχ.投与によって双ス パイク (Bisp. ) の一部或いは全部が消失する (図 7 ) 。 この三つ の症例から時系列における双スパイクパターン (Bisp. ) は, エス トロゲン (ES) → 膜エス トロゲン受容体 (ER) 刺激 → (Ca2 + ) i 遊離の活性化のメカニズムによると解釈された。 以上, 本研究における乳房 (正常) 及び乳癌の体表面リ ム信号の周波数時系列解析は正常及び乳癌における上記エス トロゲ ン-カスケード (cascade)を反映していることを示した。 従って将来 本法, 即ちリアルタイム信号による周波数の時系列解析法を用いて '種々生理活性の研究及び病態の診断に応用されることが期待される 。 従って本法が世に広く利用されることと信じここに申請する。 Normally, there are more transient spikes than twin spikes (Bisp.), But there are more Bisps in breast cancer. However, when the age is over 60 years old, Bisp. Does not appear in both normal and breast cancer. However, Bisp. Appears (Fig. 4. GH, Fig. 5). According to the text (conventional theory) that in the fluctuation of estrogen (ES) during menstrual cycle, ES shows the lowest value (Emin) on the first day ± 1 day, and shows the highest value (Emax) after 12 days. When comparing the time series patterns of Emin and Emax for a normal person who only shows a transient spike at 55 years of age, a transient spike appears on the first day of Emin, but the same person's Em ax (12 days later) Then, a double spike (Bisp.) Appears (Fig. 6). Furthermore, as a third example, the effect of administration of tamoxifen (Tx), an estrogen receptor (ER) antagonist, was examined. Τχ. Partial or complete disappearance of the bispike (Bisp.) Due to administration. (Figure 7). From these three cases, the bispike pattern (Bisp.) In the time series was interpreted as a mechanism of estrogen (ES) → membrane estrogen receptor (ER) stimulation → activation of (Ca 2 + ) i release. Was. As described above, the frequency time series analysis of the body surface rim signal of breast (normal) and breast cancer in this study showed that the above-mentioned estrogen-cascade in normal and breast cancer was reflected. Therefore, in the future, this method, that is, the time-series analysis method of frequency using real-time signals, is expected to be applied to the study of various physiological activities and the diagnosis of disease states. Therefore, I believe that this law will be widely used in the world and apply here.
(図面の簡単な説明) (Brief description of drawings)
図 1は、 正常人と乳頭腺管癌患者の周波数 (F F T) スペク トル を示すダラフである。  Figure 1 is a Draf showing the frequency (FFT) spectra of normal individuals and patients with papillary ductal carcinoma.
図 2は、 左上側および左外側乳癌と周波数の関係を示す図である 図 3は、 右上側、 右内側および右外側乳癌と周波数の関係を示す 図である。  FIG. 2 is a diagram showing a relationship between upper left and left outer breast cancer and frequency. FIG. 3 is a diagram showing a relationship between upper right, right inner and right outer breast cancer and frequency.
図 4は、 乳癌および正常人の低周波領域の時系列パターンを示す グラフであり、  FIG. 4 is a graph showing a time-series pattern in a low frequency region of breast cancer and a normal person,
図 4 A— 1および図 4 A— 2は、 2 5〜 3 5歳の乳癌患者および 正常人の上部乳房から得た時系列パターンを示し、  Figures 4A-1 and 4A-2 show the time series patterns obtained from the upper breasts of 25-35 year old breast cancer patients and normals,
図 4 B— 1および図 4 B— 2は、 2 5〜 3 5歳の乳癌患者および 正常人の外側乳房から得た時系列パターンを示し、  Figures 4B-1 and 4B-2 show the time-series patterns obtained from the outer breasts of 25-35 year old breast cancer patients and normals,
図 4 C一 1および図 4 C— 2は、 4 0〜 5 0歳の乳癌患者および 正常人の上部乳房から得た時系列パターンを示し、  Figures 4C-1 and 4C-2 show the time series patterns obtained from the upper breasts of breast cancer patients and normals between the ages of 40 and 50,
図 4 D— 1乃至図 4 D— 4は、 4 0〜 5 0歳の乳癌患者および正 常人の外側乳房から得た時系列パターンを示し、  FIGS.4D-1 to 4D-4 show time series patterns obtained from the outer breasts of breast cancer patients aged 40 to 50 years and normals,
図 4 E— 1および図 4 E— 2は、 5 0〜 6 0歳の乳癌患者および 正常人の上部乳房から得た時系列パターンを示し、  Figures 4E-1 and 4E-2 show the time series patterns obtained from the upper breasts of 50- to 60-year-old breast cancer patients and normal persons,
図 4 F— 1および図 4 F— 2は、 5 0〜 6 0歳の乳癌患者および 正常人の外側乳房から得た時系列パターンを示し、 Figures 4F-1 and 4F-2 show 50 to 60 year old breast cancer patients and Shows a time series pattern obtained from the outer breast of a normal person,
図 4 G— 1およぴ図 4 G— 2は、 6 0歳〜 7 6歳の乳癌患者およ び正常人の上部乳房から得た時系列パターンを示し、  Figures 4G-1 and 4G-2 show the time series patterns obtained from the upper breasts of breast cancer patients and normals between the ages of 60 and 76.
図 4 H— 1および図 4 H— 2は、 6 0歳〜 7 6歳の乳癌患者およ び正常人の外側乳房から得た時系列パターンを示す。  Figures 4H-1 and 4H-2 show the time series patterns obtained from the outer breasts of breast cancer patients and normals between the ages of 60 and 76.
図 5 Aは、 正常人 ( 6 6歳) 左前下部乳房の 5 7. 3 7 3 H z時 系列を示すダラフである。  Figure 5A is a Draf showing the 5.7.373 Hz time series of the lower left breast of a normal person (66 years old).
図 5 Bは、 ェス トロゲン投与左前下部乳癌患者 ( 6 6歳) の 5 8 . 5 9 4 H z時系列を示すグラフである。  FIG. 5B is a graph showing a 58.594 Hz time series of estrogen-treated lower left lower breast cancer patient (66 years old).
図 6 Aは、 正常人 ( 2 8歳) の月経周期初日 (E S最小値) にお ける 6 8. 3 5 9 H zの一過性スパイク時系列 ( Em i n) を示す グラフである。  FIG. 6A is a graph showing a transient spike time series (E mn) of 68.359 Hz on the first day of the menstrual cycle (ES minimum value) of a normal person (28 years old).
図 6 Bは、 正常人 ( 2 8歳) の月経周期 1 2 日後 (E S最大値) における 6 8. 3 5 9 H zの双スパィク時系列 (Em a x) を示す グラフである。  FIG. 6B is a graph showing a 68.359 Hz bispike time series (Emax) of a normal person (28 years old) at 12 days after the menstrual cycle (maximum ES).
図 7 Aは、 右下乳癌患者 ( 4 8歳) の 5 0. 0 4 9 H z時系列を 示すダラフである。  FIG. 7A is a Draf showing the 50.49 Hz time series of a lower right breast cancer patient (48 years old).
図 7 Bは、 T am o x i f e n投与 ( 2 0 m g /日) 右下乳癌患 者 ( 4 8歳 : 7 Aと同一人) の 5 0. 0 4 9 H z時系列を示す。  FIG. 7B shows the time-course of 50.49 Hz of Tamoxifen administration (20 mg / day) lower right breast cancer patient (48 years old: same person as 7A).
図 7 Cは、 右後乳癌患者 ( 3 0歳) の 6 4. 6 7 9 H z時系列を 示すグラフである。  FIG. 7C is a graph showing the 64.679 Hz time series of a right posterior breast cancer patient (30 years old).
図 7 Dは、 T am o x i f e n投与 ( 2 0 m g /日) 右後乳癌患 者 ( 3 0歳) の 6 4. 6 9 7 H z時系列を示す。  FIG. 7D shows the 6.4.697 Hz time series of Tamoxifen administration (20 mg / day) right posterior breast cancer patient (30 years old).
図 8は、 非電位依存性のカルシウムチャンネルと乳癌の関係を概 略的に示す図である。  FIG. 8 is a diagram schematically showing the relationship between non-voltage-dependent calcium channels and breast cancer.
図 9は、 電極の位置を示す図である。  FIG. 9 is a diagram showing the positions of the electrodes.
図 1 0は、 本発明の 1実施形態にかかる信号処理装置の概略構成 を示すブロック図である。 FIG. 10 is a schematic configuration of a signal processing device according to one embodiment of the present invention. FIG.
(実施例) (Example)
Note : 本法が生理活性の研究及び病気の診断に利用, 応用され るためには in vitro での生理活性測定対象に電極を挿入してその 信号波の周波数解析を同時に行い, 両者の関係を明かにしなければ ならないことを付け加え助言する。 目的  Note: In order for this method to be used and applied to the study of bioactivity and the diagnosis of disease, an electrode is inserted into the bioactivity measurement target in vitro, the frequency of the signal wave is analyzed simultaneously, and the relationship between the two is determined. He advises on what needs to be clarified. Purpose
生体では代謝による化学変化を電気信号に変換し, その信号を体 表面から発散させている。 脳波, 心電図, 筋電図では, その信号を とらえている。 今回, 乳癌におけるホルモン, エス トロゲン (ES) と細胞内カルシウム (Ca2 + ) i との関係について体表面リアルタイ ム信号波の周波数解析 (時系列解析) を行い, 正常人 (病歴のない 健康人) と比較して両者の相違を見い出すことを目的とする。 方法 In living organisms, chemical changes due to metabolism are converted into electrical signals, and the signals are emitted from the body surface. EEG, ECG, and EMG capture that signal. In this study, we performed frequency analysis (time-series analysis) of body surface real-time signal waves on the relationship between hormones, estrogen (ES), and intracellular calcium (Ca 2+ ) i in breast cancer. The purpose is to find differences between the two. Method
キツセィコムテックの生体信号波形解析ソフ ト (BIMUTASII) を 用いて, 乳癌患者及び患者と同年代, 同位置の正常人の体表に表面 電極をはり (図 9参照 電極間は約 3 c mで、 a, bは、 おおよそ 3〜 5 c mの箇所) , 電極に応答した信号を生体信号解析用オシ口 スコープ (日本光電メモリオシロスコープ VC— 11) に入力させて, A/D 換した。  Using a biological signal waveform analysis software (BIMUTASII) from Kitssei Comtech, a surface electrode was placed on the body surface of a breast cancer patient and a normal human at the same age and position as the patient (see Fig. 9; , B is approximately 3 to 5 cm). The signals responding to the electrodes were input to an oscilloscope for biological signal analysis (Nihon Kohden Memory Oscilloscope VC-11) and A / D converted.
信号波の FFT 解析を行い, 1 一 70Hz までは正常及び乳癌につい て各々 FFT のピーク値の各周波数について時系列解析を行った。 この場合正常人のそれは乳癌と同じ場合は同じ FFT ピーク値につ いて或いはその近傍のピーク値について解析を行い正常と癌を比較 した。 FFT analysis of the signal wave was performed, and time series analysis was performed for each frequency of the FFT peak value for normal and breast cancer up to 170 Hz. In this case, if the normal person is the same as breast cancer, analyze the same FFT peak value or the peak value near it and compare the normal and cancer did.
100Hz 以上になると FFT のピーク値が多くなるので正常 2チヤ ンネル, 癌 2チャンネル合計 4チャンネルを並列表示して, 癌部と 同年代の同位置の正常人 (病歴のない健康人) のスペク トルを比較 し, 正常及び癌部と対称位置 (非癌部位) には出現せず, 癌部のみ に出現する周波数を 1 〜 5000Hz にわたり抽出した (図 1 ) 。 抽出 した周波数を各位置 (左右一上, 内側, 外側乳房) 及び各組織像 ( 乳頭腺管癌, 充実腺管癌, 硬癌) 毎に各症例数と周波数の関係を表 示して, その表より更に症例共通の周波数を抽出する。 これを癌各 位置及び各組織像の同年代, 同位置共通の周波数 (共通周波数) と する。 共通周波数の性質を調べるために周波数の時系列解析及び信 号波の自己相関を調べ正常と乳癌を比較した。 結果  Since the peak value of the FFT increases when the frequency exceeds 100 Hz, a total of 4 normal channels and 2 cancer channels are displayed in parallel, and the spectrum of a normal person (healthy healthy person with no medical history) at the same position as the cancer part is displayed. In comparison, the frequencies that do not appear at the symmetrical position (non-cancerous part) of the normal and cancerous parts (non-cancerous parts) and that appear only at the cancerous part were extracted over 1 to 5000 Hz (Fig. 1). The extracted frequencies are shown for each position (top left, right, inside, and outside breast) and for each histological image (papillary duct carcinoma, solid duct carcinoma, and hard carcinoma), and the relationship between the number of cases and the frequency is shown. Further, frequencies common to the cases are extracted. This is the same age of each cancer location and each tissue image, and the common frequency (common frequency) at the same location. To investigate the nature of the common frequency, time series analysis of the frequency and autocorrelation of the signal wave were performed, and normal and breast cancer were compared. Result
I . 正常と乳癌の周波数特性  I. Frequency characteristics of normal and breast cancer
上記方法の項で述べた如く, 正常人と乳癌患者から得られたリア ルタイムでの表面電位波形を FFT 解析して各々の周波数特性を得 た。 この正常及び癌患者の周波数特性スペク トル (FFTスペク トル ) を並列表示して正常と癌とを比較した (図 1 ) 。 方法の項参照。  As described in the method section above, real-time surface potential waveforms obtained from normal persons and breast cancer patients were subjected to FFT analysis to obtain their frequency characteristics. The frequency characteristic spectrum (FFT spectrum) of the normal and cancer patients was displayed in parallel to compare the normal and cancer patients (FIG. 1). See method section.
I I . 乳癌の位置及び組織像に対する共通周波数の確率分布 I I. Probability distribution of common frequency for location and histology of breast cancer
乳癌の各位置及び各組織像における共通周波数の確率 ( % ) が 8 0 %以上を Aグループ, 70— 80 %を A 'グループ, 50— 70 %を Bグル ープ, 20— 40 %を B 'グループ, 症例 1例のみを Cグループに分類 した。  Group A, 70-80% A 'group, 50-70% B group, 20-40% B 'Group, only one case was classified into Group C.
伹し各グループの周波数範囲は 10〜17Hz の周波数領域内に 1つ の特徴をもつダル一プとして抽出し, これを募線で結んで 1つのグ .. '688 ·016卜 899 ·606 06 - 900 ·906 The frequency range of each group is extracted as a group with one feature in the frequency range of 10 to 17 Hz, and this is connected to a line to form a group. .. '688 · 016 899 · 606 06-900 · 906
'006 · H6S 'OZIP '069 ·γ0ί ~69£ SOIPS L ΟίΡ  '006H6S' OZIP '069γ0ί ~ 69 £ SOIPS L ΟίΡ
' U8 'Lm-0 'S9S - '986 "8S Ι -ζίΖ 'SS  'U8' Lm-0 'S9S-' 986 "8S Ι -ζίΖ 'SS
'L08'800L-080'Z00L '986'SS9-99 9-S S'SS9 '93 L 89-886 "S8S '£98*60L-8^9'80L-L02-90L ,V'L08'800L-080'Z00L' 986'SS9-99 9-S S'SS9 '93 L 89-886 "S8S '£ 98 * 60L-8 ^ 9'80L-L02-90L, V
9/ :,V •8 · ιοε- δε·9ΐοε-ζε L 's ιοε-916 ·ε LOS-S69 Ί ιοε '9/S : V Ί08·0 -083·69-65ε·89 'LIJ'£S-06 マ S '986'(Η-99 6 V 9 / :, V • 8 · ιοε- δε9ΐοε-ζε L 's ιοε-916 -06 M S '986' (Η-99 6 V
-696^-292 '896 - 0 96 ' 168 'Zm- L9 · 19 -696 ^ -292 '896-0 96' 168 'Zm- L919
'ZL5-19SV-Z52'09Z '689 '9SE - O'SSS ' 5'0 0 - S98'9£0 'ZL6-606£ 'SS0 -90^-^8 ^ΟΖε-ε 19 ·εθΖ8 'Ζ ΠΟΐε ' ^-8S98-900-9S9£  'ZL5-19SV-Z52'09Z' 689 '9SE-O'SSS' 5'0 0-S98'9 £ 0 'ZL6-606 £' SS0 -90 ^-^ 8 ^ ΟΖε-ε 19 · εθΖ8 'Ζ ΠΟΐε '^ -8S98-900-9S9 £
' 6 9 S-L£0'ZS 'Z8 ·90Ζε-995 S0Z2~5Z I ' 0ZS 65'騰  '6 9 S-L £ 0'ZS' Z890Ζε-995 S0Z2 ~ 5Z I '0ZS 65'
'9LZ'LSn '£L2 -81^-266 -9L^ ' SS-03£2-9e£-6L£2 '£68'6£IZ-0SZ'9£ '982 602-^8 '6803  '9LZ'LSn' £ L2 -81 ^ -266 -9L ^ 'SS-03 £ 2-9e £ -6L £ 2' £ 68'6 £ IZ-0SZ'9 £ '982 602- ^ 8' 6803
'3½'8161-^09-9161-£82"9161 'Lll -0 8 L-968 ·8981 '689 '9S81-8 Z - S8 L '80S 'S 9 i~L Z 'm 1-990 ·£ 9 L  '3½'8161- ^ 09-9161- £ 82 "9161' Lll -0 8 L-968 · 8981 '689' 9S81-8 Z-S8 L '80S' S 9 i ~ LZ 'm 1-990 · £ 9 L
'68 '80S i-2H -90SL 'L 6 'OZ -90S 90 '99  '68 '80S i-2H -90SL' L 6 'OZ -90S 90 '99
' -S2£ i-zn ·ε t ' ε '892ト 698 sdz 1-8 9 -m I '-S2 £ i-zn ・ ε t' ε '892 698 sdz 1-8 9 -m I
'6Z -nL-20VBH. ' 168 ·2 - 6 'Ot Όε - £ S-OLS 'ZZS-890 'OZS '6Z -nL-20VBH.' 1682-6 'Ot Όε-£ S-OLS' ZZS-890 'OZS
' 6' ε-οο5·ζιε
Figure imgf000010_0001
'6' ε-οο5ζιε
Figure imgf000010_0001
'086' 01-8【£'101 'Ζ8Γ18-9 £ ·6 '2£6 · S-06 S-OZZ · IS '698 ·51 , V : v • I L£ ·819Ζ-060 · L LSZ-698 ·5 L — 8 9 ^LSZ V  '086' 01-8 【£ '101' Ζ8Γ18-9 £ · 6 '2 £ 6 · S-06 S-OZZ · IS' 698 · 51, V: v • IL £ · 819Ζ-060 · L LSZ-698 · 5 L — 8 9 ^ LSZ V
凝 マ 胁 ^ 歸丁邕 ·ν Ν ^
° ¾っ獯 2 ¾ ^ G) 一 -, V? - V ¾ 2】 2 ' T拏° Pop 2 ¾ ^ G) One-, V? -V ¾ 2】 2 'Talla
。 つ ::〗 ε ' z m ^ z . One::〗 ε 'z m ^ z
¾ -¾" ' 1 :2 凝鹩谫 jQ¾喜 ¾ ¾¾ ¾Wコ °¾っ拏 一/ If  ¾ -¾ "'1: 2 coagulation jQ¾ 喜 ¾ ¾¾ ¾Wko ° Phalla I / If
CSZOT/lOdf/X3d 'SSfr · L66f-½Z '066卜 0 ·686 '98 -m^- -ZOGP '8εΖ ·6 卜 810 '8 - 9ZS 'St '8 - £P-LQZ -CSZOT / lOdf / X3d 'SSfrL66f-½Z' 066 u 0 686 '98 -m ^--ZOGP '8εΖ 6 u 810' 8-9ZS 'St' 8-£ P-LQZ-
'9ΐ·ε· 9ε-96ο·ε 9ε'9ΐε 9ε-96οε 9ε
' IZL ·8ε - 00S 'L n-6S0 '9ζ 2 ' L · LS0£-9L£ ·6Κ)£-960 ·8 0£ 'IZL8ε-00S' L n-6S0 '9ζ 2' LLS0 £ -9L £ 6Κ) £ -960
' IZS 'm- 10£■ S882-6S8 ·088Ζ '96 L 'OO^Se '969Z 'OSZ · L£02-620 "O£02-608 "8202 '806 ·089 L-889 ·6£9 L ' 6S '80S l-£LS "Z0£ l-ZSに 90£ I '689 ' L£2L-8f2 'SZZ l-LZO SZZl ' Z9 ·98 - 280 · 81 L 'OLL -886-828 ·986 '662 · L£9-i98 '8ZSS16 '9Ζ8 'S6V09l-LlZ'6Sl-9S8'9SL 'SZi' L- '9L '6 T0S - 8 '5½·8-ΗΗ·9 V /ε : ,ν •0Ζ0 '2 ε L-0S8 ,0 £ 1-629 ·69£ L ャ / : V • 'ZSに 9S-は '£S 'UL'29-06 'ZS '06 - OZZ'IS V  'IZS' m- 10 £ ■ S882-6S8 088Ζ '96 L 'OO ^ Se' 969Z 'OSZ L £ 02-620 "O £ 02-608" 8202' 806 · 089 L-889 · 6 £ 9 L '6S' 80S l- £ LS "Z0 £ l-ZS 90 £ I '689' L £ 2L-8f2 'SZZ l-LZO SZZl' Z9 98-28081 L 'OLL -886-828 662L £ 9-i98 '8ZSS16' 9Ζ8 'S6V09l-LlZ'6Sl-9S8'9SL' SZi 'L-' 9L '6 T0S-8' 5½8-ΗΗ9 V / ε:, ν 2 ε L-0S8, 0 £ 1-629 · 69 £ L // V • 'ZS 9S- is' £ S 'UL'29-06' ZS '06-OZZ'IS V
備 '90S ' 6·Equipment '90S' 6
'90S'896£- 90'996£ Όΐ6'ζεΑε-689·ιεζε 'LS6-669£- 0LS- .698 '90S'896 £-90'996 £ Όΐ6'ζεΑε-689 · ιεζε' LS6-669 £-0LS- .698
'9££'69S£-SU-89S£  '9 ££' 69S £ -SU-89S £
'698 '8282-8^1 282 '286-18 2-'698' 8282-8 ^ 1 282 '286-18 2-
'Sは' 99 ''66UU 9922--88ZZ99--66999922 ' 16 - I '68 'S' 99 '' 66UU 9922--88ZZ99--66999922 '16-I '68
£ '2881  £ '2881
'LZe'S0S-0£6"20S 'SZ9'06£- 0 68£ 'ZZ8 "86-9S9 "Z6 '.168 'Ζ8 'm-9L-^89SL '6£ Z9-816'S9 '816 'S9-Z69 9 'Z69 · 9-9SZ 9 II : V 'OLZ'IS '828'8卜 09' 'Z09 · - 8S ·9 ' £'8L- 698'Sl V 'LZe'S0S-0 £ 6 "20S' SZ9'06 £-0 68 £ 'ZZ8" 86-9S9 "Z6' .168 'Ζ8' m-9L- ^ 89SL '6 £ Z9-816'S9' 816 ' S9-Z69 9 'Z69 · 9-9SZ 9 II: V' OLZ'IS '828'8 U 09' 'Z09 ·-8S · 9' £ '8L-698'Sl V
'Ζ6^ SZLZ- Z "82Z2-0£8 '^ΖΙΙ 'SSS '8 2- £ 8 ' ^ 'SL8 ' ΐΖ-ΪΪΖ ' ΙΠΖ 'Ζ6 ^ SZLZ- Z "82Z2-0 £ 8' ^ ΖΙΙ 'SSS' 8 2- £ 8 '^' SL8 'ΐΖ-ΪΪΖ' ΙΠΖ
'ZQL'OZZi- 'Lill ε/ε· : ν ll6£-00 -6V6 L6£-6ZL-96£ V 'ZQL'OZZi-' Lill ε / ε ·: ν l l6 £ -00 -6V6 L6 £ -6ZL-96 £ V
eS30I/l0df/X3d 以上の乳癌位置と周波数の関係を図示すると図 2及び 3の如くで ある。 eS30I / l0df / X3d Figures 2 and 3 show the relationship between the above breast cancer position and frequency.
次に乳腺管癌の組織像別に各組織像と共通周波数との関係を表 3 に示す。  Next, Table 3 shows the relationship between each tissue image and the common frequency for each tissue image of ductal carcinoma.
B. 組織像と共通周波数  B. Tissue image and common frequency
乳腺管癌は浸潤癌であって癌細胞が間質に浸潤しているものをい Ό。  Ductal carcinoma is invasive cancer in which cancer cells have invaded the stroma.
乳腺管癌の組織像は乳頭腺管癌, 充実腺管癌及び硬癌に分類した  Histological features of ductal carcinoma were classified into papillary ductal carcinoma, solid ductal carcinoma and hard carcinoma
1. 乳頭腺管癌 (Papi 1 lotubular carcinoma) 1. Papillary duct carcinoma (Papi 1 lotubular carcinoma)
乳頭状増殖および管腔形成を特徴とする癌, ならびに面疱癌 (CO medo car-cinoma) が含まれる。 ときに癌組織の一部で充実性増殖 をまじえる。  Includes cancers characterized by papillary growth and luminal formation, and squamous cell carcinoma (CO medo car-cinoma). Occasionally, solid growth may occur in some cancer tissues.
2. 充実腺管癌 (Solid-tubular carcinoma) 2. Solid-tubular carcinoma
充実性の癌巣が周辺組織に対して圧排性ないし膨張性発育を示す ものをいう。  Solid cancerous nests are those that show exclusion or swelling growth to surrounding tissues.
癌巣は髄様ないし腺腔の不明瞭な小腺管の充実性増殖よりなる。 癌巣のほぼ全周において周辺組織に対して比較的明瞭な境界を示す  Cancer foci consist of solid growth of medullary or obscure small ducts in the glandular cavities. Demonstrates relatively clear boundaries to surrounding tissues almost all around the cancerous lesion
3. 硬癌 (Scirrhous carcinoma) 3. Hard cancer (Scirrhous carcinoma)
癌細胞が個々ばらばらに, あるいは小塊状ないし索状となって間 質に浸潤し, 多少とも間質結合織の増殖を伴うものをいう。 硬癌は , その成り立ちから二つを含む。 一つは狭義の硬癌で乳管内癌巣部 分が極めて少なく, 間質浸潤の高度なもの, ほかは乳頭腺管癌ない しは充実腺管癌由来で, びまん性の間質浸潤が面積的に優位を占め II A type of cancer cells in which the cancer cells are dispersed individually or in small chunks or cords and infiltrate the interstitium, accompanied by the proliferation of interstitial connective tissue. Hard cancer includes two from its origin. One is a narrowly defined hard carcinoma with extremely few intraductal carcinoma foci and advanced interstitial invasion, and the other is derived from papillary duct carcinoma or solid ductal carcinoma and has diffuse interstitial invasion. Predominate II
• O慕ト £6 786f-0t6 86^-689 ·• O ト £ 6 786f-0t6 86 ^ -689 ·
'688'016^- 899 ·606卜 9S ·£06 'S ) '969卜 6Ζ2 '9m'688'016 ^-899 606 g 9S £ 06' S) '969 g 6Ζ2' 9m
' 0· - L08'S '989 OS£^- S9£'6 'λθに 0 - S ' SOL - 660'0--L08'S' 989 OS £ ^-S9 £ '6' λθ 0-S 'SOL-660
Figure imgf000013_0001
Figure imgf000013_0001
'8 zs ε- ε ε- s'9 ε- ZS'SL '6W0L2£- H)6'L0Z£- 89'ΟΟΖε  '8 zs ε- ε ε- s'9 ε- ZS'SL' 6W0L2 £-H) 6'L0Z £-89'ΟΟΖε
'806 -0e63-i9f 826Z-SZ0-936Z 'Z8S ·9ΗΖ-89Ε·6ε/.3-.εθ·8ε/.3 '806 -0e63-i9f 826Z-SZ0-936Z' Z8S9ΗΖ-89Ε6ε / .3-.εθ8ε / .3
'608-eS92-88S-2S92 Z9'SL£2- '(US ·60εΖ-806 'SOSZ - 889 'WSE '608-eS92-88S-2S92 Z9'SL £ 2-' (US60εΖ-806 'SOSZ-889' WSE
'392 -8022-l£0- 022-06S ^ΟΖΖ ' L -9L9L-066 · 9 l-mマ L9 L-8ZS UL9t -60Z · 6£ - 886 · LZ^ 1-928 ' L- S(H ' SS  '392 -8022-l £ 0- 022-06S ^ ΟΖΖ' L -9L9L-0669 lm L9 L-8ZS UL9t -60Z6 £-886LZ ^ 1-928 'L-S (H' SS
'S88 · - W9 ·οε - ε ·6 I· LZO - L-Si' I -£ZZl ' 0 'L IZ L-8S Villi 'S88 · -W9 · οε-ε · 6 ILZO-L-Si' I-£ ZZl '0' L IZ L-8S Villi
'256-ZLOl-LLL' Ol-- 9εε-690ΐ l^- \- ^ -nvzm '256-ZLOl-LLL' Ol-- 9εε-690ΐ l ^-\-^ -nvzm
' 8'6£8-0W' e£8-66Z · 1.88 '0L6 ' 09—69 'S09-68S ·009 '8'6 £ 8-0W' e £ 8-66Z · 1.88 '0L6' 09-69 'S09-68S · 009
-69 i-m-zd ι-εε Ί08 ·οん -6S£ ·89-6εΐ 9 '816 9- 69 ' 9-9SZ '29 ε/ε: ν '06 S- 6HT0S- 09· - 8ε·9 '99に -^ 6·ε卜 Γ '8 9' ト V · ε -69 im-zd ι-εε Ί08 οn -6S £ 89-9εΐ 9 '816 9-69' 9-9SZ '29 ε / ε: ν '06 S-6HT0S- 09--8ε9 '99 Ni-^ 6 · ε Γ '8 9' to V · ε
'S8Z'M)6卜 9S -2 e -l9 '膽 'S8Z'M) 6 u 9S -2 e -l9
'S6£ -m^-ZZL葛 '816 ·0 i69 'B '86Ζ 9£^-23£ '09ε卜 0L6 - SS '060 1S2-698 'SlS2-^9 · LSZ 'BIZ '81^-266 'diU-iLL ' i  'S6 £ -m ^ -ZZL kuzu' 816 ・ 0 i69 'B '86 Ζ 9 £ ^ -23 £ '09 ε 0L6-SS' 060 1S2-698 'SlS2- ^ 9 · LSZ' BIZ '81 ^ -266 ' diU-iLL 'i
'9L6'8£LL-969-A8U '9L6'8 £ LL-969-A8U
'is5-5^p-9S£- -sn-e 'ζβ -uz-m•nz-mz-zzz- -zzz 'is5-5 ^ p-9S £--sn-e' ζβ -uz-m • nz-mz-zzz- -zzz
Λ: ν '8Z8 '8卜 09' - 2 ' '£Sに εΖ-698·51 V Λ: ν '8Z8' 8 U 09 '-2' '£ S for εΖ-69851 V
'0££ '£L6卜 688 ·016ト 899 '606 '0 ££' £ L6 688 016 899 '606
-L^ '806^- 33 ' 06 -900 ·906卜 S8 ^ -m ' - L - L06 06 "668^  -L ^ '806 ^-33' 06 -900 · 906 S8 ^ -m '-L-L06 06 "668 ^
'06S ' 0 - 69S 'εθ - 8 L 'ZOL^-LU ·669 'SiLS '609卜 S L '809ー½6 ·909卜  '06S' 0-69S 'εθ-8 L' ZOL ^ -LU · 669 'SiLS' 609 g S L '809 ー ½6 · 909 g
'688'099£- 899'6S9£- Ζ· S9£-900'9S9£-S8え^ S9S- ε·Ζ59ε-εΖΙ'·159ε  '688'099 £-899'6S9 £ -ΖS9 £ -900'9S9 £ -S88 ^ S9S-ε 59ε-εΖΙ'159ε
'899 -60^-22270^-900 '90 - ' - £ 0 Ζ '099 '9ΖεΖ- 6£ -mi-LLL · 13EZ-ZSS -02£2-9££ '6182  '899 -60 ^ -22270 ^ -900 '90-'-£ 0 Ζ '099' 9ΖεΖ- 6 £ -mi-LLL13EZ-ZSS -02 £ 2-9 ££ '6182
' L08-0Z-08S "69-69£ ·89-6£ l'L9 6/2: V 'ZS6 ·½- 06 '89 'ΫΙ-ΙΟΖ 71-986 ·0ト 992 '6-5½ ·8 V  'L08-0Z-08S "69-69 £ 89-6 £ l'L9 6/2: V' ZS6½-06 '89 'ΫΙ-ΙΟΖ 71-986 0to 992' 6-5½8 V
° ¾ ¾ ω <^ eS20l/I0df/X3J 表中の各組織像における共通周波数は症例中 80 %以上の確率で 共通に現れる周波数 (Aグループ) を示した。 表中の右端に示した 数字は症例数に対する共通周波数確率 (%) である。 ° ¾ ¾ ω <^ eS20l / I0df / X3J The common frequency in each histological image in the table is the frequency (A group) that appears in common with a probability of 80% or more in cases. The number shown at the right end of the table is the common frequency probability (%) with respect to the number of cases.
硬癌は症例が少ないため共通性の確率が高く, 共通周波数が多い 。 但し症例が増すと共通性の確率は減少する。  Hard cancer has a high probability of commonality due to few cases, and has many common frequencies. However, the probability of commonality decreases as the number of cases increases.
以上, 表, 図に示した乳癌各部位及び各組織像の共通周波数の信 頼性を更に証明するために抽出された各共通周波数について時系列 解析及び信号波形の自己相関解析を行い, 正常のそれと比較し, 正 常との相違を検索した。  As described above, time series analysis and autocorrelation analysis of signal waveforms were performed for each extracted common frequency to further prove the reliability of the common frequency of each breast cancer site and each tissue image shown in the table and figure. In comparison, we searched for differences from normal.
I I I . 正常及び乳癌の F F Tピーク周波数の時系列 方法の項で述べた如く 1 一 70Hz までは正常及び乳癌共に FFT の ピ一ク値について時系列解析を行った。 100Hz 以上になると乳癌で は共通周波数について解析を行い, 正常人では乳癌の共通周波数近 傍の周波数について時系列解析を行った。 1 —70Hz低周波数領域で 正常と乳癌に特徴が見い出されたのでこの周波数領域について時系 列解析を行った。 I I I. Time series analysis of FFT peak frequency of normal and breast cancer As described in the method section, up to 117 Hz, time series analysis was performed on peak values of FFT for both normal and breast cancer. At frequencies above 100 Hz, analysis was performed for common frequencies in breast cancer, and for normal subjects, time-series analysis was performed for frequencies near the common frequency for breast cancer. 1 Normal and breast cancer features were found in the low frequency range of 1-70 Hz, and time series analysis was performed for this frequency range.
1 一 15Hz領域の時系列パターンは年齢と位置によつて異なるが図 4に示す如く, 25— 35歳の上部 (up) 及び外側 (ou t ) 乳癌では生 体が発生する周波数に対応してバース ト型振動 (B0S) を示すのに 対して正常では振動型が多い。  1 The time series pattern in the 15 Hz region varies with age and position, but as shown in Fig. 4, in the case of 25-35 year-old upper (up) and outer (out) breast cancer, it corresponds to the frequency at which organisms occur. In contrast to the burst type vibration (B0S), there are many vibration types under normal conditions.
40歳以上の年齢層になると大体バース ト型になる。 このバース ト 型振動(B0S)は正常と乳癌でその面積に相違が示された (図 4 , 表 4 ) 。 その理由は考察の項で述べる如く, パース ト型振動 (B0S) の面積はエス トロゲン (ES) に応答した小胞体 (ER) からの Ca2 + - 遊離 (re l eas e) 量 ( [Ca2 + ] i ) に依存した量と考える。 図 4は B0S を代表する 3.662 と 9.766Hz の二つの周波数を選んだ。 1—9.7 66Hz までは生体が発生する周波数とバース トに上乗り した周波数 がー致する。 9.766Hz 以上の周波数になると周波数の引き込み現象 が起きる。 従って正常と乳癌のバース ト振動 (B0S) の面積は 9.76 6Hz 時系列の総 power をそれに対応する時間で除した値 (power, s ec~ 1 =∑ po er/Σ t (ms) ) として表し, この値 (面積, seer1) 、 即 ち単位時間あたりの平均出力 (power) 、 を正常と乳癌で比較したIf you are over the age of 40, it is almost burst type. This burst type oscillation (B0S) showed a difference in area between normal and breast cancer (Fig. 4, Table 4). As explained in the discussion, the area of the oscillating type (B0S) is determined by the amount of Ca 2+ -released (releas) from the endoplasmic reticulum (ER) in response to estrogen (ES). 2 + ] i). Figure 4 shows B0S We chose two frequencies, 3.662 and 9.766Hz, which are representative of 1-9.7 Up to 66Hz, the frequency generated by the living organism and the frequency of riding on the burst match. At frequencies above 9.766 Hz, a frequency pull-in phenomenon occurs. Therefore, the area of the burst oscillation (B0S) between normal and breast cancer is expressed as the total power of the 9.76 6 Hz time series divided by the corresponding time (power, sec ~ 1 = ∑ po er / Σ t (ms)). , This value (area, seer 1 ), that is, the average power per unit time (power), was compared between normal and breast cancer
(表 4) 表 4. 左(し), 右(R)—上及び外側乳房と乳癌における 9.766Hz 時系列の burst signals の面Table 4. Left (right), right (R) —surface of 9.766 Hz time series of burst signals in upper and outer breast and breast cancer.
Fig.4 Area of burst signals in the 9.766Hz time series of left(L) and ri ht( ) up and out breasts in B-cancer and Ν· women Fig.4 Area of burst signals in the 9.766Hz time series of left (L) and ri ht () up and out breasts in B-cancer and women
u p.  u p.
Figure imgf000015_0001
Figure imgf000015_0001
Area indicates power, sec"1 (∑po er/∑time (ms)) Area indicates power, sec " 1 (∑po er / ∑time (ms))
up up breast and breast cancer,  up up breast and breast cancer,
out out breast and breast cancer.  out out breast and breast cancer.
* denotes exceptional igh value. 表 4は上部 (up) 及び外側 (out) 乳房 (正常) 及び乳癌の年齢 に対する 9.766Hz 時系列のバース ト型振動 (B0S) の面積 (power, sec" 1 ) を示す * indicates exceptional igh value. Table 4 shows the area (power, sec " 1 ) of the 9.766Hz time series burst type oscillation (B0S) for the upper (up) and outer (out) breasts (normal) and the age of breast cancer.
乳癌の各年齢別の症例が少ないので面積値の標準偏差 (standard deviation)を示さなかったが, 結果として表 4に示す如く, 上部 (up) 癌及び乳房 (正常) では両者共に左側 (L) が右側 (R) に比 較して約 10倍程度高い値を示す。 また, 乳癌と正常について両左側 (L) と右側 (R) を比較するといずれも乳癌の方が正常よりも高値 を示し, 左側 (L) では乳癌は正常に比較して約 10倍高く, 右側 (R ) では約 4倍高い値を示す。 尚, これらの面積値は年齢に差がみら れないが, 70歳以上では乳癌では低い値を示すが, 正常ではむしろ 高値を示す。 他方, 外側 (out) 乳癌では上部 (up) 癌とは逆に右 側 (R) が左側 (L) より約 10倍大きい。 また, 乳癌と正常の両左側 Because there were few cases of breast cancer at each age, there was no standard deviation of the area value. However, as shown in Table 4, both the upper (up) cancer and the breast (normal) left (L) Indicates a value about 10 times higher than the right side (R). Comparing the left side (L) and the right side (R) for breast cancer and normal, both show higher values for breast cancer than for normal. On the left side (L), breast cancer is about 10 times higher than normal and on the right side. (R) shows about 4 times higher value. There is no difference in these area values with age, but the value is low in breast cancers over 70 years old, but rather high in normal. On the other hand, in outer (out) breast cancer, the right side (R) is about 10 times larger than the left side (L), contrary to the upper (up) cancer. Also, both left side of breast cancer and normal
(L) を比較すると, 両者に大きな差はなく, 乳癌の方がやや大き い程度である。 このことは左外側は心筋の影響を考慮させられるが 真意は分からない。 しかし両右側 (R) では乳癌が正常に比較して 約 70倍大きい値を示す。 Comparing (L), there is no significant difference between the two, with breast cancer being slightly larger. This allows the left side to consider the effects of the myocardium, but does not know what it is. However, on both right sides (R), breast cancer shows a value about 70 times larger than normal.
図 4において各グラフの横軸が、 0から出発し、 1 7 5. 2 0 0 m s e c間隔ごとの経時的数値を示しているのは、 (1- b) Lと R、 In FIG. 4, the horizontal axis of each graph starts from 0 and shows the time-dependent numerical value at each 17.5.200 msec interval. (1-b) L and R,
(1— c) Lと R、 ( 2 -b) Lと R、 (2-c) Lと: R、 (3-b) Lと R、 (4-a) L、 (4-c) Lと R、 (5-c) R、 (5-d) Lと R、 (6-d) Lと Rゝ (7-d) L と R、 (8-d) し (9— c) Lと R、 (10-c) Lと R、 (11-c) Lと R、 (1 2-c) R、 (16-d) R、 (20-d) R、 (27-c) Lと R、 (26-c) と ( 27-b) Lと IL (28-c) Lと R、 (31-b) Lと R、 (32-b) Lと Rである。 各グラフの横軸が、 0から出発し、 2 0 4. 4 0 0 m s e c間隔 ごとの経時的数値を示しているのは、 ( 8 — d ) 尺と ( 1 2 — c ) Lである。 その他のグラフの横軸に示した値は、 0から出発し、 1 4 6. 0 0 O m s e c間隔ごとの経時的数値を示している。 (1—c) L and R, (2-b) L and R, (2-c) L and: R, (3-b) L and R, (4-a) L, (4-c) L And R, (5-c) R, (5-d) L and R, (6-d) L and R ゝ (7-d) L and R, (8-d) then (9—c) L R, (10-c) L and R, (11-c) L and R, (12-c) R, (16-d) R, (20-d) R, (27-c) L and R , (26-c) and (27-b) L and IL, (28-c) L and R, (31-b) L and R, and (32-b) L and R. It is (8-d) scale and (12-c) L that the horizontal axis of each graph indicates the time-dependent numerical values at intervals of 20.400 msec starting from 0. The values shown on the abscissa of the other graphs start from 0 and indicate the values over time at intervals of 1460.000 msec.
図 4におけるバース ト型振動とは、 例えば時系列パターンの一つ であって、 主に 3. 6 6 2 H z、 9. 7 6 6 H z の乳ガン (B r e e a s t C a n e e r ) 患者のデータに見られる様な、 定期的に 短い時間だけパワーが 0 またはそれに近い部位まで低下するパター ンを示す。 スパイクとは、 棘状のするどい波形のことである。  The burst type vibration in Fig. 4 is, for example, one of the time-series patterns, and is mainly used for data of patients with breast cancer (Breeast Caneer) of 3.662 Hz and 9.766 Hz. It shows a pattern where the power periodically drops to zero or near zero, as can be seen. A spike is a spike-like undulating waveform.
以上より症例は少ないが正常と乳癌における 9.766Hz 時系列の 面積 (power, sec—リ に明らかな差が示されたことは今後症例を増 して両者の閾値 (thre-sh-old) を求めることによって, 9.766Hz 時系列のバ一ス ト信号の面積 (power, sec—1) をもって乳癌の診断 が出来る可能性を示した。 From the above, there are few cases, but there is a clear difference in the area (power, sec—) of the 9.766 Hz time series between normal and breast cancer. The case (thre-sh-old) for both cases will be calculated in future. As a result, the possibility of diagnosing breast cancer using the area of the 9.766 Hz time-series burst signal (power, sec- 1 ) was shown.
本発明の信号処理装置は、 生体から電気信号を検出するための一 対の電極 1、 当該電極 1で得られた電気信号を増幅する増幅器 2、 この増幅器出力を例えばフーリェ変換して特定の周波数成分 (主に' 1 0 H z以下の周波数) の信号を検出する特定周波数成分検出回路 3、 該検出回路出力を予め設定された所定時間まで積算する (例え ば図 4 ( 2 - a ) Lの場合、 横軸の左端の 0. 0 0 0 msecから右端 の 4 6 7 2. 0 0 0 msec迄の時間に対する縦軸の P OWE Rの値を 積算する) 積算回路 4、 前記積算回路で得られた積算値を、 前記の 所定時間を示す値で除算する除算回路 5、 前記除算回路 5で得られ たデータを、 予め記録回路 6などに記録した、 正常と認められる値 を示すデータと比較し、 比較結果のデータを出力する比較回路 7の 組み合わせ構成が例示できる。 これらの回路は、 コンピュ一夕によ つてその機能を実現できるソフ トウェアの形で構成されていても良 いことは勿論である。  The signal processing device of the present invention includes a pair of electrodes 1 for detecting an electric signal from a living body, an amplifier 2 for amplifying the electric signal obtained at the electrode 1, a Fourier transform of the amplifier output to a specific frequency, A specific frequency component detection circuit 3 for detecting a signal of a component (mainly a frequency of '10 Hz or less), and integrates the output of the detection circuit up to a predetermined time (for example, FIG. 4 (2-a) L In the case of, the value of POWER on the vertical axis is integrated with respect to the time from 0.000 msec on the left end of the horizontal axis to 466 7 2.000 msec on the right end.) A dividing circuit 5 for dividing the obtained integrated value by the value indicating the predetermined time, data obtained by the dividing circuit 5 being recorded in advance in a recording circuit 6 or the like, and data indicating a value recognized as normal. The combination configuration of the comparison circuit 7 for comparing and outputting the data of the comparison result is an example. Wear. Needless to say, these circuits may be configured in the form of software that can realize the functions by a computer.
上記構成はあくまで例示であって、 図 4のような特定の周波数パ ターンの時系列的変化をモニターに表示する構成とし、 医師の診断 の補助的手段として用いることもできる。 The above configuration is only an example, and a specific frequency The time-series change of the turn is displayed on the monitor, and it can be used as an auxiliary means for the doctor's diagnosis.
IV. 周波数の引き込み (Entraiment of freguency) IV. Entraiment of freguency
1 — 1 0 Hz間の時系列は生体信号波形の F F T周波数とバース ト 振動 (B0S)上の振動数が一致するが 1 0 Hz以上の周波数になると η In the time series between 1 and 10 Hz, the FFT frequency of the biological signal waveform and the frequency on the burst vibration (B0S) match, but when the frequency exceeds 10 Hz, η
1 ίの引き込みが起こる。 1 mm of retraction occurs.
この引き込みの開始周波数は図 4に示す如く正常及び乳癌共に 1 0 - 3 2 Hz間にあるが, 正常では 1 0 — 2 6 Hz間に多く, 乳癌では The starting frequency of this retraction is between 10 and 32 Hz for both normal and breast cancer as shown in Fig. 4, but it is often between 10 and 26 Hz for normal and for breast cancer.
2 5 - 3 0 Hz間にあって正常の方が周波数の引き込みが早く起こる 傾向にある。 There is a tendency for the frequency to be pulled faster when the frequency is normal between 25-30 Hz.
この引き込みは正常, 乳癌共に 1 ◦一 3 0 Hz間以外に 0 — 5 0 0 0 Hz間で繰り返し起こっている。  This retraction is repeated between 0 and 500 Hz in addition to between 1 and 130 Hz for both normal and breast cancer.
周波数の引き込みは細胞が安定化するために必要な自己制御機構 である。  Frequency attraction is a self-regulatory mechanism required for cell stabilization.
V.スパイク信号 (Spike Signal)  V. Spike Signal
バース ト振動 (B0S)から周波数の引き込みが始まるとそれに続き When frequency pull-in starts from burst oscillation (B0S), it continues
3 0 — 7 OHz.間に スパイク (双スパイク) 振動が現れる (図 4 ) スパイク振動には一過性のスパイク (Transient)と双スパイク ( Bisp. )があり, 乳癌では 4 0— 5 0 と 6 0 — 7 0歳の一過性のスパ イクを除き大体の各年齢層の左 (L) , 右 (R) 両方癌に双スパイ クが現れる。 Spike (twin-spike) vibration appears between 30 and 7 OHz. (Fig. 4) Spike vibration includes transient spike (Transient) and twin-spike (Bisp.). Except for transient spikes at 60 to 70 years of age, bilateral spikes appear in both left (L) and right (R) cancers in most age groups.
他方, 正常では各年齢層に一過性一と双一スパイクの両方が現れ るが, 4 0— 5 0、 6 0 — 7 0歳の年齢層には Bisp.が出ず一過性 のスパイクのみが現れる。 この場合, 6 0 — 7 0歳の一過性のスパ イクは上述の乳癌の場合と同じである。 この双スパイク信号は図 5 , 6 , 7で説明した如くエス トロゲン (E S ) —エス トロゲン受容 体 (E R) 応答による細胞内カルシュゥム (Ca2 + ) iの動態を示す ことがほぼ明らかになつた。 On the other hand, in the normal case, both transient ones and bi-one spikes appear in each age group. However, in the age group of 40 to 50 and 60 to 70 years old, transient spikes without Bisp. Only appears. In this case, a 60-70 year old transient spike is the same as for breast cancer described above. Figure 5 shows this twin spike signal. As described in pp. 6, 6 and 7, it was almost clear that the kinetics of intracellular calcium (Ca2 + ) i in response to the estrogen (ES) -estrogen receptor (ER) response.
これまでの研究結果より, 一過性及び双スパイクの生理的発生 機構とその制御が癌化へのシグナルとなることより, これに関して は今後の研究に待つことにする。  Based on the results of previous studies, the physiological mechanisms of transient and twin spikes and their control are signals for canceration, and we will await further research on this.
乳癌は非興奮生の細胞であるため形質膜上のカルシュゥムチヤン ネル(Ca2 + ch. )は非電位依存性の Ca2 + c である (vol tage insensi tive Ca2 + channel) この非電位依存性 Ca2 + ch. には G—蛋白と共 役した cli. (G- protein coupled receptor) ,受容体作動性 Ca2 + cli. ( ROCC)と小胞体が枯渴化したとき作動する Ca2 + ch. (D0CC: 小胞体中 の Ca2 +が全部放出した状態) の 3種が知られている (図 8 ) 。 図 8 は文献と本研究結果から推定した模式図である。 Since breast cancer is a non-excitable cell, the calcium channel on the plasma membrane (Ca 2 + ch.) Is a non-voltage-dependent Ca 2 + c (voltage insensitive Ca 2 + channel). The voltage-dependent Ca 2 + ch. Is activated when cli. (G-protein coupled receptor), G 2 -protein and receptor-operated Ca 2 + cli. (ROCC) and ER die Three species of Ca 2 + ch. (D0CC: a state in which all Ca 2 + in the endoplasmic reticulum is released) are known (FIG. 8). Figure 8 is a schematic diagram estimated from the literature and the results of this study.
乳癌はこれらの Ca" ch.の中, R0CCと; D0CCにエス トロゲン (E S ) — E S受容体 (E R) が結合して小胞体から Ca2 + を動員し, そ の (Ca2 + ) iが MAPKを活性化して —転写活性—核遺伝子活性化の cascadeを形成すると報告されている。 これらの文献上の報告と本 研究の結果から上述 (項目 III) の 9.766Hz時系列におけるバース ト振動 (B0S)の面積の正常と乳癌との相違を説明すると, 乳癌及び 正常人の閉経 ( 4 5歳以後) 後では E S—結合蛋白が少なくなり血 中の遊離エストロゲン (f- ES)が増加する。 この f- ESは分子量が小 さいため細胞を自由に通過して細胞質内に入り一種の mitogenとし て小胞体上の夕プシガルジン (Tapsigargin: Tg. )受容体 (Tg. R)に 結合して Tg. と同程度に小胞体から Ca2 +を放出する。 従って i-ESの 増加に伴い小胞体からの Ca2 + ) iの releaseが増加する。 その結果, 遊離した (Ca2 + ) i量に応じて 1 一 1 0 Hz.の低周波数領域における 時系列のバース ト振動 (B0S)の面積に影響を与える 乳癌では正常 に比べ B0Sの面積が大きいことは遊離のエス トロゲン (f- ES)が正常 より多いことを示し, その結果 (Ca2 + ) i が多量に細胞内に蓄積し て Ca2 +代謝のホメ ォス夕シス (homeostasis)が崩れて異常に MAPK を刺激することになり これより下流の代謝系が異常をきたし癌化へ と進行するものと考えられる。 Estrogen (ES) -ES receptor (ER) binds to R0CC and D0CC in these Ca "ch. And mobilizes Ca2 + from the endoplasmic reticulum, and the (Ca2 + ) i Are reported to activate MAPK to form a cascade of —transcriptional activity—nuclear gene activation.From these literature reports and the results of this study, burst oscillations in the 9.766 Hz time series described above (item III) are reported. Explaining the difference between the normal (B0S) area and breast cancer, ES-binding protein decreases and blood free estrogen (f-ES) increases after menopause (after age 45) in breast cancer and normal subjects. Since f-ES has a small molecular weight, it can freely pass through cells, enter the cytoplasm, and bind to the tpsi. Receptor (Tg. R) on the endoplasmic reticulum as a kind of mitogen. tg. to release the Ca 2 + from the endoplasmic reticulum to the same extent. Therefore Ca 2 +) i from the endoplasmic reticulum with increasing i-ES release is increased. As a result, Influences the area of time-series burst oscillation (B0S) in the low frequency region of 110 Hz depending on the amount of released (Ca 2+ ) i. This indicates that the amount of free estrogen (f-ES) is higher than normal. As a result, a large amount of (Ca 2 + ) i accumulates in the cells, and the homeostasis of Ca 2 + metabolism is disrupted. It is thought that MAPK is stimulated abnormally, and that the metabolic system downstream from this will become abnormal and progress to cancer.

Claims

請 求 の 範 囲 The scope of the claims
1 . 検出された体表面リアルタイム信号中の特定の周波数領域の 時系列を検出し、 当該時系列の面積を得ることで癌情報を検出する 方法。 1. A method of detecting a time series of a specific frequency region in a detected real-time body surface signal and detecting cancer information by obtaining an area of the time series.
2 . 生体より電気的信号を検出する為の検出手段、 前記検出手段 で検出された信号より特定の周波数成分を検出する周波数成分検出 手段、 前記周波数成分検出手段で得られた周波数成分における特定 の面積情報を検出し、 所定の閾値と比較する比較手段よりなる、 体 表面リアルタイム信号による乳癌とエス トロゲンの関係に基づく生 体信号処理装置。  2. Detection means for detecting an electrical signal from a living body, frequency component detection means for detecting a specific frequency component from the signal detected by the detection means, specific frequency component obtained by the frequency component detection means A biological signal processing apparatus based on the relationship between breast cancer and estrogen based on a real-time body surface signal, comprising a comparing means for detecting area information and comparing the detected area information with a predetermined threshold value.
3 . 前記特定の周波数成分がバース ト型振動を有する請求項 2 に 記載の体表面リアルタイム信号による乳癌とエス トロゲンの関係に 基づく生体信号処理装置。  3. The biological signal processing apparatus based on the relationship between breast cancer and estrogen according to the real-time body surface signal according to claim 2, wherein the specific frequency component has a burst type vibration.
PCT/JP2001/010253 2000-11-22 2001-11-22 Relation between breast cancer and estrogen by body surface real-time signal WO2002045581A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002547375A JPWO2002045581A1 (en) 2000-11-22 2001-11-22 Relationship between breast cancer and estrogen by body surface real-time signal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000356496 2000-11-22
JP2000-356496 2000-11-22

Publications (1)

Publication Number Publication Date
WO2002045581A1 true WO2002045581A1 (en) 2002-06-13

Family

ID=18828739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010253 WO2002045581A1 (en) 2000-11-22 2001-11-22 Relation between breast cancer and estrogen by body surface real-time signal

Country Status (2)

Country Link
JP (1) JPWO2002045581A1 (en)
WO (1) WO2002045581A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573623A (en) * 1980-06-10 1982-01-09 Tokyo Shibaura Electric Co Apparatus for detecting abnormal cell
JPS5772627A (en) * 1980-10-21 1982-05-07 Tokyo Shibaura Electric Co Apparatus for detecting abnormal cell
JPS61122851A (en) * 1984-09-26 1986-06-10 サウスウエスト・リサ−チ・インステイチユ−ト Method and apparatus for performing non-invasion test of breast
JPS63158462A (en) * 1986-09-29 1988-07-01 ベイラー カレッジ オブ メディシン Urea derivative dna coupling inspection method for estrogen receptor protein determination

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573623A (en) * 1980-06-10 1982-01-09 Tokyo Shibaura Electric Co Apparatus for detecting abnormal cell
JPS5772627A (en) * 1980-10-21 1982-05-07 Tokyo Shibaura Electric Co Apparatus for detecting abnormal cell
JPS61122851A (en) * 1984-09-26 1986-06-10 サウスウエスト・リサ−チ・インステイチユ−ト Method and apparatus for performing non-invasion test of breast
JPS63158462A (en) * 1986-09-29 1988-07-01 ベイラー カレッジ オブ メディシン Urea derivative dna coupling inspection method for estrogen receptor protein determination

Also Published As

Publication number Publication date
JPWO2002045581A1 (en) 2004-04-08

Similar Documents

Publication Publication Date Title
EP1600104B1 (en) Determination of biological conditions using impedance measurements
Halter et al. The correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: initial clinical experience
US6813515B2 (en) Method and system for examining tissue according to the dielectric properties thereof
CN101365382B (en) Diagnosis for skin disease using impedance measurements
TW201039798A (en) Switch probe for multiple electrode measurement of impedance
JP2010512190A (en) A platform for detecting changes in tissue content and / or structure using closed loop control in mammalian organisms
Teysseire et al. Dermoscopic features of subungual squamous cell carcinoma: a study of 44 cases
US9386937B2 (en) Impedance techniques in tissue-mass detection and characterization
US9445742B2 (en) Electrical impedance techniques in tissue-mass detection and characterization
Di Meo et al. Correlation between dielectric properties and women age for breast cancer detection at 30 GHz
El-Shenawee Electromagnetic imaging for breast cancer research
US20080171949A1 (en) Intraoperative electromagnetic apparatus and related technology
WO2002045581A1 (en) Relation between breast cancer and estrogen by body surface real-time signal
JP2022525112A (en) Devices, systems, and methods for tissue analysis, position-fixing, and treatment with synchrotron radiation.
TW202045215A (en) Tissue detection devices, systems and methods
JP2013526886A (en) Diagnostic and screening methods for electrical signs for hidden diseases
Twelves et al. Phosphorus-31 metabolism of human breast—an in vivo magnetic resonance spectroscopic study at 1.5 Tesla
Shah et al. High prevalence of hypothyroidism in male patients with cutaneous melanoma
Yung et al. Transcutaneous computed bioconductance measurement in lung cancer: a treatment enabling technology useful for adjunctive risk stratification in the evaluation of suspicious pulmonary lesions
Maderal et al. Use of epidermal grafting for treatment of depigmented skin in piebaldism
RU2144786C1 (en) Distant control noninvasive method for diagnosing biological object state
US9468758B2 (en) Wound diagnosis
Fadanvis et al. Management of phyllodes tumour (Arbuda): A case report
US20230277115A1 (en) Diagnosis and treatment of pelvic conditions
RU2308880C2 (en) Method for investigating radiation emitted by living organism for diagnosing cancerogenesis processes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002547375

Country of ref document: JP

122 Ep: pct application non-entry in european phase