WO2002042534A1 - Feuille de fibres de carbone et son procede de production - Google Patents

Feuille de fibres de carbone et son procede de production Download PDF

Info

Publication number
WO2002042534A1
WO2002042534A1 PCT/JP2001/010186 JP0110186W WO0242534A1 WO 2002042534 A1 WO2002042534 A1 WO 2002042534A1 JP 0110186 W JP0110186 W JP 0110186W WO 0242534 A1 WO0242534 A1 WO 0242534A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber sheet
carbon fiber
oxidized
sheet
compression
Prior art date
Application number
PCT/JP2001/010186
Other languages
English (en)
French (fr)
Inventor
Kenji Shimazaki
Shintaro Tanaka
Original Assignee
Toho Tenax Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co., Ltd. filed Critical Toho Tenax Co., Ltd.
Priority to US10/181,986 priority Critical patent/US6812171B2/en
Priority to EP01997581A priority patent/EP1273685B1/en
Priority to JP2002545230A priority patent/JP3868903B2/ja
Priority to DE2001629118 priority patent/DE60129118T2/de
Priority to CA 2397559 priority patent/CA2397559C/en
Publication of WO2002042534A1 publication Critical patent/WO2002042534A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N7/00Flexible sheet materials not otherwise provided for, e.g. textile threads, filaments, yarns or tow, glued on macromolecular material
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/44Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads with specific cross-section or surface shape
    • D03D15/46Flat yarns, e.g. tapes or films
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/10Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/10Scrim [e.g., open net or mesh, gauze, loose or open weave or knit, etc.]
    • Y10T442/102Woven scrim
    • Y10T442/133Inorganic fiber-containing scrim
    • Y10T442/134Including a carbon or carbonized fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2352Coating or impregnation functions to soften the feel of or improve the "hand" of the fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2361Coating or impregnation improves stiffness of the fabric other than specified as a size
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2926Coated or impregnated inorganic fiber fabric
    • Y10T442/2984Coated or impregnated carbon or carbonaceous fiber fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/609Cross-sectional configuration of strand or fiber material is specified
    • Y10T442/611Cross-sectional configuration of strand or fiber material is other than circular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • Y10T442/642Strand or fiber material is a blend of polymeric material and a filler material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/643Including parallel strand or fiber material within the nonwoven fabric
    • Y10T442/645Parallel strand or fiber material is inorganic [e.g., rock wool, mineral wool, etc.]

Definitions

  • Carbon fiber sheet Method for producing the same
  • the present invention relates to a carbon fiber sheet obtained by firing a polyacrylonitrile-based oxidized fiber sheet, and a method for producing the same. More specifically, it has a high carbon fiber content, is thin, has excellent shapeability, and has excellent conductivity in the thickness direction, and is suitable as a current-carrying material such as a grounding material and a battery electrode material.
  • the present invention relates to a sheet and a manufacturing method thereof.
  • the carbon fiber sheet is suitable for use as an electrode material for batteries such as a polymer electrolyte fuel cell, a redox cell, a zinc bromine battery, and a zinc chloride battery, and as an electrode material for electrolysis such as an electrode material for salt electrolysis. It is.
  • carbon molded articles, carbon fiber woven fabrics, carbon fiber nonwoven fabrics and the like have been known as carbon fiber sheets for such uses.
  • a carbon fiber reinforced carbon material (c / c paper) is known as a sheet-shaped and high bulk density carbon molded article (Japanese Patent No. 2584449, Japanese Patent Application Laid-Open No. 6 3-2 222 078 publication).
  • This sheet is obtained by forming a carbon fiber chip, impregnating the formed carbon fiber chip with a phenol resin, etc. to obtain a phenol resin composite material, and further impregnating the phenol resin composite material with the phenol resin. It is manufactured by carbonizing resin and the like.
  • this sheet Since this sheet is manufactured by press molding using a mold, it has excellent thickness accuracy and surface smoothness. However, this sheet is not flexible and cannot be rolled. For this reason, it is not suitable for applications that require long sheets.
  • Carbon fiber fabric is known as a flexible sheet-like carbon material.
  • the woven fabric include filament woven fabric (Japanese Patent Application Laid-Open No. 4-28130, Japanese Patent Application Laid-Open No. 7-118898) and spun yarn woven fabric (Japanese Patent Application Laid-Open No. 10-28082). No. 46).
  • One of the features is that they are soft enough to be rolled and easy to handle in applications such as storage and use as long objects.
  • Filament fabric is made by weaving carbon fiber bundles.
  • the number of carbon fibers constituting the carbon fiber bundle varies.
  • the direction of the carbon fiber axis is basically parallel to the fabric surface direction. For this reason, the electrical resistance in the woven fabric surface direction is low, but the electrical resistance in the woven fabric thickness direction is high.
  • a spun yarn fabric a polyacrylonitrile (PAN) -based oxidized fiber spun yarn is used to produce an oxidized fiber fabric, which is baked and carbon fiber spun. It is known to use a yarn fabric.
  • the spun carbon fiber yarn fabric is generally more flexible than the carbon fiber filament fabric.
  • the electrical resistance in the thickness direction can be expected to be lower than that of the carbon fiber filament fabric. Further, the manufacturing cost is lower than that of the above-mentioned cZc.
  • a spun yarn woven fabric a carbon fiber woven fabric obtained by cutting a PAN-based carbon fiber into a predetermined length and weaving it has been proposed (Japanese Patent Application Laid-Open No. 10-280246).
  • this fabric has a low bulk density. If compression processing is performed to increase the bulk density, the carbon fiber fabric will be pulverized.
  • non-woven carbon fiber fabrics are obtained by subjecting PAN-based oxidized fibers to a water jet-jet treatment, a 21-dollar punch treatment, etc. to produce an oxidized fiber non-woven fabric and firing the woven fabric itself.
  • the number of fibers whose axis is oriented in the thickness direction is larger than that of carbon fiber reinforced carbon sheet.
  • the carbon fiber non-woven fabric can be expected to have a smaller electrical resistance value in the thickness direction than the carbon fiber reinforced carbon sheet.However, since the conventional oxidized fiber non-woven fabric generally has a low bulk density, it is baked. The electrical resistance in the thickness direction of the carbon fiber nonwoven fabric obtained by the above method is still high for applications such as electrodes.
  • Japanese Patent Application Laid-Open No. 91119052 discloses a method of manufacturing an oxidized fiber nonwoven fabric in which a web is made of PAN-based oxidized fiber, and this is subjected to a water jet treatment. A method is described. However, the nonwoven fabric obtained by this method has a low bulk density.
  • Japanese Patent Laid-Open Publication No. Hei 9-5111802 discloses a two-region stable fiber having an inner core region made of a thermoplastic polymer composition and an outer coating region made of a carbonaceous material surrounding the inner core region. It discloses techniques for manufacturing woven fabrics and felts. The specific gravity of the two-region stable fiber is relatively low at 1.20 to 1.32. Fabrics and felts produced using these fibers have a low bulk density. Disclosure of the invention
  • the present inventors examined the specifications of the spun oxidized fiber yarn and the oxidized fiber sheet, and further examined applying a resin treatment and a pressure treatment to the oxidized fiber sheet. As a result, they have found that a carbon fiber sheet having a higher bulk density, a moderate flexibility, and a lower electric resistance value in the thickness direction than before can be manufactured, and the present invention has been completed.
  • An object of the present invention is that it is suitable as a current-carrying material such as a grounding material and a battery electrode material, has a high bulk density, has an appropriate flexibility, has a small electric resistance value in a thickness direction, and has a small thickness.
  • An object of the present invention is to provide a carbon fiber sheet excellent in shape and a method for producing the same.
  • the flatness (L 2 / L 1) of the single fiber represented by the maximum diameter (L 1) of the cross section of the single fiber and the minimum diameter (L 2) of the single fiber is 0.
  • the carbon fiber sheet according to [2] which is 2 to 0.7.
  • the polyacrylonitrile-based oxidized fiber sheet contains 0.2 to 5% by mass of a resin, and then contains the resin.
  • the polyacrylonitrile oxidized fiber sheet is subjected to a compression treatment in the thickness direction under the condition of 150 to 300 t :, 5 to: LOOMPa to obtain a bulk density of 0.40 to 0.80 g / cm. 3, the compression process of the compression ratio 4 0-7 5% obtained oxide fiber sheet in which the production of the carbon fiber sheet according to and firing (1) the oxidation fiber Sea Bok was then compressed Method.
  • the oxidized fiber sheet since the oxidized fiber sheet is subjected to the compression treatment under specific conditions, the oxidized fiber sheet can be suitably compression-molded, and by firing this, the bulk density is high and suitable for continuous processing.
  • An appropriately flexible carbon fiber sheet can be obtained. Since the carbon fiber sheet manufactured in this manner has a low electric resistance in the thickness direction, it is suitable as a current-carrying material such as a grounding material and a battery electrode material.
  • the starting material for producing the carbon fiber sheet of the present invention is a PAN-based oxidized fiber.
  • the PAN-based fiber preferably contains 90 to 98% by mass of an acrylonitrile monomer unit and 2 to 10% by mass of a comonomer unit.
  • a comonomer unit examples include alkyl acrylates such as methyl acrylate and vinyl monomers such as acrylamide and diconic acid.
  • the PAN-based fiber is subjected to a flame-resistant treatment to produce a PAN-based oxidized fiber.
  • the anti-oxidation treatment is carried out in air at an initial oxidation temperature of 220 to 250 ° C for 10 minutes, and then at a heating rate of 0.2 to 0.9 to reach a maximum temperature of 250 to 280 in minutes. It is preferable to raise the temperature and maintain the temperature for 5 to 30 minutes.
  • the PAN-based oxidized fiber having the following properties is produced by the PAN-based fiber's flame-proof treatment.
  • the fineness of the PAN-based oxidized fiber is preferably from 0.55 to 2.4 dtex. If the fineness is less than 0.55 dtex, the yarn strength of the single fiber is low, and yarn breakage occurs during spinning. If the fineness exceeds 2.4 dteX, the target number of twists cannot be obtained during spinning, and the spun yarn strength decreases. As a result, spun yarns and fluff are generated when fabrics are manufactured, making fabric manufacture difficult.
  • the fineness of the PAN-based oxidized fibers is also preferably in the above range.
  • the cross-sectional shape of the oxidized fiber may be any shape such as a circular shape and a flat shape.
  • the fiber specific gravity of the PAN-based oxidized fiber is preferably 1.34 to 1.43. If the fiber specific gravity is less than 1.34, the surface of the oxidized fiber sheet will be Direction uneven contraction easily occurs. On the other hand, when the ratio exceeds 1.43, the single fiber elongation of the oxidized fiber decreases. The spun yarn produced using this has low strength. Also, it is difficult to reduce the thickness of the oxidized fiber sheet by a compression process described later. It is difficult to obtain the thin carbon fiber sheet specified in the present invention even if the insufficiently compressed oxide fiber sheet is fired. Clip rate, number of clips
  • the PAN-based oxidized fiber preferably has a crimp ratio of 8 to 25% and a crimp number of 2.4 to 8.1 keno cm. If the crimp ratio is less than 8%, the fibers are less entangled with each other, and yarn breakage occurs during spinning. If it exceeds 25%, the strength of the single fiber decreases and spinning is difficult. If the number of crimps is less than 2.4 / cm, yarn breakage will occur during spinning. If the number of crimps exceeds 8.1 cm, the strength of the single fiber decreases, and fiber breakage tends to occur during crimping.
  • the dry strength of the PAN-based oxidized fiber is preferably 0.9 gZd tex or more. If it is less than 0.9 gZd tex, the processability during production of the oxidized fiber sheet will be reduced. Dry elongation
  • the dry elongation of the PAN-based oxidized fiber is preferably 8% or more. If the dry elongation is less than 8%, the processability during the production of the oxidized fiber sheet decreases. Nodule strength
  • the knot strength of PAN-based oxidized fiber is 0.5 to: 1.8 gZd tex is preferred. If the knot strength is less than 0.5 gZd tex, the processability during the production of the oxidized fiber sheet is reduced, and the strengths of the obtained oxidized fiber sheet and carbon fiber sheet are further reduced. If the knot strength exceeds 1.8 g / d tex, it is difficult to manufacture it. Nodule elongation
  • the knot elongation of the PAN-based oxidized fiber is preferably 5 to 15%. If the knot elongation is less than 5%, the processability during the production of the oxidized fiber sheet decreases, and the strength of the obtained oxidized fiber sheet and carbon fiber sheet also decreases. If the knot elongation exceeds 15%, it is difficult to manufacture it.
  • the average cut length of the PAN-based oxidized fiber is preferably 25 to 65 mm. Outside this range, yarn breakage tends to occur during spinning.
  • the PAN-based oxidized fiber is spun by a conventional method to produce a PAN-based oxidized fiber spun yarn. Is spun to produce a spun yarn composed of a 20- to 50-count single yarn or a twin yarn having an upper burning number and a lower burning number of 200 to 900 times / m.
  • the number of burns of the spun yarn is preferably from 200 to 900 times. Outside this range, the strength at the time of spinning decreases, and it becomes difficult to process the fabric using the strength.
  • Manufacture of oxidized fiber sheet In the present invention, an oxidized fiber sheet is produced using the PAN-based oxidized fiber or its spun yarn.
  • Examples of the type of the oxidized fiber sheet include an oxidized fiber nonwoven fabric, an oxidized fiber felt, and an oxidized fiber spun yarn fabric.
  • the thickness of the oxidized fiber sheet is preferably from 0.3 to 2.0 mm. If the thickness of the oxidized fiber sheet is less than 0.3 mm, the oxidized fiber sheet cannot be sufficiently compressed when performing a compression treatment described later, and a high bulk density oxidized fiber sheet cannot be obtained. When the thickness of the oxidized fiber sheet exceeds 2.0 mm, the electrical resistance value in the thickness direction of the obtained carbon fiber sheet increases.
  • the bulk density of the oxidized fiber sheet is preferably 0. 0 7 ⁇ 0. 4 0 gcm 3 , is 0. 0 8 ⁇ 0. 3 9 g Roh cm 3 more preferred.
  • the bulk density is less than 0.07 gZcm 3 , a carbon fiber sheet having a target bulk density cannot be obtained.
  • the bulk density exceeds 0.40 cm 3 , the strength of the carbon fiber sheet is reduced and the desired flexibility cannot be obtained.
  • the oxidized fiber sheet is then made to contain a resin, if necessary.
  • the oxidized fiber sheet is subjected to a compression treatment in the thickness direction, thereby obtaining a compressed oxidized fiber sheet. This compression treatment imparts flatness to the carbon fibers at the intersections of the carbon fibers, as described later.
  • the compression treatment is easier than in the case where no resin is contained, and a thinner oxidized fiber sheet having a high bulk density can be obtained.
  • the oxidized fiber sheet that has been subjected to the compression process expands somewhat in the thickness direction during carbonization described later. By containing resin This expansion can be minimized.
  • the effect of suppressing the expansion of the resin works, and a thinner carbon fiber sheet having a higher bulk density can be obtained.
  • Examples of a method of including a resin in the oxidized fiber sheet include a method in which the oxidized fiber sheet is immersed in a resin bath having a predetermined concentration and then dried.
  • the content of the resin is preferably from 0.2 to 5.0% by mass, more preferably from 0.3 to 4.0% by mass, based on the oxidized fiber.
  • the resin adhesion amount is less than 0.2% by mass, there is no effect of adding the resin. If it exceeds 5.0% by mass, it will be hardened at the time of firing in the next step, lose its flexibility, and generate fine powder.
  • Examples of the concentration of the resin bath include 0.1 to 2.5% by mass.
  • the resin has the effect of bonding the oxidized fibers to each other during the compression treatment and minimizing the expansion of the oxidized fiber sheet.
  • the resin include thermoplastic resins such as polyvinyl alcohol (PVA), polyvinyl acetate, polyester, and polyacrylate, thermosetting resins such as epoxy resin and phenol resin, and cellulose such as carboxymethyl cellulose (CMC). System derivatives.
  • PVA, CMC, epoxy resin, and polyacrylate which have a high viscosity during the compression treatment and a high adhesive ability, are particularly preferable.
  • the resin bath is obtained by dissolving or dispersing these resins in an organic solvent or water.
  • Examples of the method of compressing the oxidized fiber sheet include a method of compressing the sheet using a hot press, a calendar roller, or the like.
  • the compression temperature is preferably 150 to 300, more preferably 17
  • the compression treatment temperature is less than 150, the compression treatment is insufficient and a high bulk density compressed oxidized fiber sheet cannot be obtained. If the temperature exceeds 300 ° C., the strength of the obtained compressed oxidized fiber sheet is reduced.
  • the compression processing pressure is 10 to 100 MP when resin processing is not performed. a is preferable, and more preferably 15 to 90 MPa.
  • the compression pressure is less than 10 MPa, the compression is insufficient and a high bulk density compressed oxidized fiber sheet cannot be obtained. If the compression processing pressure exceeds 100 MPa, the oxidized fibers are damaged, and the strength of the obtained compressed oxidized fiber sheet is reduced. As a result, it is difficult to continuously perform firing.
  • the compression processing pressure in the case of performing the resin processing is preferably 5 to 100 MPa.
  • the compression treatment time of the oxidized fiber sheet is preferably within 3 minutes, more preferably 0.1 second to 1 minute. Even if the compression treatment is performed for a longer time than 3 minutes, the fibers are not further compressed and the fiber is rather damaged.
  • the compression ratio is preferably 40 to 75%.
  • the compression ratio C is defined by the following equation. t a indicates the thickness of the oxidized fiber sheet before compression, and t b indicates the thickness of the oxidized fiber sheet after compression.
  • the compression treatment atmosphere is preferably air or an inert gas atmosphere such as nitrogen.
  • the bulk density of the compressed oxidized fiber sheet produced in this manner is preferably 0.40 to 0.80 gcm 3 , particularly preferably 0.50 to 0.70 gZ cm 3, and the bulk density is 0.4. If it is less than 0 gZcm 3 , the resulting carbon fiber sheet will have reduced electrical conductivity. On the other hand, if the bulk density exceeds 0.80 g / cm 3 , the obtained compressed oxidized fiber sheet becomes hard and lacks appropriate flexibility, so that carbonization becomes difficult.
  • the compression treatment flattens the oxidized fibers at their respective intersections.
  • the longitudinal axis of the cross section of the oxidized fiber at the intersection is almost parallel to the oxidized fiber sheet surface become.
  • the compressed oxidized fiber sheet produced by the above method is then fired without or with the application of compression pressure to obtain a PAN-based carbon fiber sheet.
  • the calcination is performed by heating the compressed oxidized fiber at 130 to 2500 in an atmosphere of an inert gas such as nitrogen, helium, or argon.
  • the heating rate until the heating temperature is reached is preferably 200 ° CZ or less, more preferably 170 ° CZ or less.
  • the heating rate exceeds 200 minutes, the growth rate of the X-ray crystallite size of the carbon fiber increases, but the fiber strength decreases, and a large amount of fine carbon fiber powder is easily generated.
  • the heating time of the compressed oxidized fiber sheet at a heating temperature of 1300 to 2500 is preferably within 30 minutes, particularly preferably about 0.5 to 20 minutes.
  • the thickness of the carbon fiber sheet thus produced is 0.15 to 1.0 mm, and the bulk density of the carbon fiber sheet is 0.15 to 0.45 gZcm 3 , more preferably 0.2 1 to 0.43 gZ cm 3 , and at least the intersection of carbon fibers is flat.
  • This flat shape is formed during the compression treatment of the oxidized fiber sheet.
  • the flattened shape of the cross section of the carbon fiber gives the carbon fiber sheet an appropriate flexibility, a high bulk density, and a low electric resistance value.
  • the major axis direction of the cross section of the carbon fiber at the intersection of the carbon fibers is substantially parallel to the surface of the carbon fiber sheet.
  • the ratio of the angle between the longitudinal direction of the cross section of the intersection of the carbon fibers and the surface of the carbon fiber sheet within 30 degrees is 60% or more, preferably 80% or more.
  • Flatness of carbon fiber constituting carbon fiber sheet of the present invention (L 2 / L 1) Is preferably 0.2 to 0.7 at the intersection of carbon fibers.
  • the portion of the carbon fiber other than the intersection of the carbon fibers may be flat or have another shape, but the flatness is preferably small.
  • the flatness (L 2 ZL 1) of the carbon fiber in a portion other than the intersection of the fibers in the carbon fiber sheet includes at least a portion exceeding 0.7.
  • the flatness of the carbon fiber at the fiber intersection is less than 0.2, the fiber strength is reduced and fine powder is easily generated, which is not preferable.
  • the flatness of the carbon fiber can be determined, for example, by observing a cross section orthogonal to the axis of the carbon fiber at the fiber intersection with an electron microscope.
  • the flatness can be determined by measuring the maximum diameter (L 1) and the minimum diameter (L 2) of the cross section of a single fiber and calculating the ratio (L 1 ZL 2).
  • the carbon fiber content in the carbon fiber sheet of the present invention is 95% by mass or more, preferably 96% by mass or more.
  • the carbon fiber content is less than 95% by mass, the degree of feel of the carbon fiber sheet becomes too high than the target, and the compression deformation rate becomes low.
  • the thickness deformation rate (compression deformation rate) of the carbon fiber sheet of the present invention is 10 to 35%.
  • the compression deformation rate is calculated as described below.
  • Compression deformation rate [(B 1-B 2) / B 1] X 1 0 0
  • B1 thickness at 2.8 kPa pressure
  • B2 1. thickness at OMPa pressure If the compressive deformation rate of the carbon fiber sheet is less than 10%, join it with other members When assembled in a battery or the like, the change in thickness is too small, the fitting with other members becomes poor, and the contact resistance increases, which is not preferable. If the compressive deformation rate of the carbon fiber sheet is more than 35%, the thickness is excessively changed, and the dimensional stability is poor when incorporated as a battery, which is not preferable.
  • the X-ray crystallite size of the carbon fibers constituting the carbon fiber sheet is preferably 1.3 to 3.5 nm.
  • the electrical resistance in the thickness direction of the carbon fiber sheet increases.
  • the resistance value in the thickness direction is not more than 6.Om ⁇ , preferably not more than 4.5 ⁇ .
  • the crystallite size exceeds 3.5 nm, the conductivity of the carbon fiber sheet increases, and the electrical resistance in the thickness direction decreases.
  • the flexibility of the carbon fiber sheet decreases, embrittlement proceeds, the strength of the single fiber decreases, and the strength of the sheet itself decreases. Therefore, when the obtained carbon fiber sheet is further processed, fine powder is generated during the processing.
  • the X-ray crystallite size is adjusted by adjusting the firing temperature and heating rate. Electrical resistance in the thickness direction
  • the electric resistance in the thickness direction can be adjusted by the X-ray crystallite size, bulkiness, etc. as described above.
  • the electrical resistance in the thickness direction is preferably 6. ⁇ or less. If the electrical resistance in the thickness direction is larger than 6. ⁇ , when used as a current-carrying material, heat may be generated and the carbon material may be embrittled. Texture
  • the degree of hand of the carbon sheet of the present invention is 5 to 70 g. If the texture is less than 5 g, the carbon fiber sheet is too soft and the handleability is poor. Further, when the texture exceeds 70 g, the rigidity of the carbon fiber sheet increases. For this reason, it becomes impossible to pass through the roller in the post-process of the continuous production process of the carbon fiber sheet, and in this case, it is difficult to perform a continuous post-treatment. Compressive strength
  • the compressive strength of the carbon fiber sheet of the present invention is preferably 4 MPa or more, particularly preferably 4.5 MPa or more.
  • the compressive strength of the carbon fiber sheet of the present invention is preferably 4 MPa or more, particularly preferably 4.5 MPa or more.
  • the compressive strength indicates the maximum load (yield point of the load due to carbon fiber breakage) required when the carbon fiber sheet is compressed at 1 mm / min.
  • the carbon fiber sheet is particularly excellent as an electrode material for a polymer electrolyte fuel cell.
  • a carbon fiber sheet is used as an electrode material for a polymer electrolyte fuel cell will be described.
  • a polymer electrolyte fuel cell is formed by stacking tens to hundreds of single cells. Each unit cell is composed of the following layers.
  • Second layer electrode material carbon fiber sheet
  • the carbon fiber sheet of the present invention is formed thinly, and the separation is performed as high as the separation.
  • a single cell is formed by inserting between molecular electrolyte membranes and integrating them under pressure.
  • the pressure at the time of pressurization and integration is 0.5 to 4.0 MPa, and the electrode material is compressed in the thickness direction under the pressure.
  • the carbon fiber sheet used for the electrode material preferably has a thickness of 0.15 to 0.60 mm.
  • the thickness of the carbon fiber sheet is smaller than 0.15 mm, the sheet strength is reduced, and the workability such as cutting and elongation during processing is liable to be remarkably reduced. Also, the compressive deformation rate is low, and the thickness deformation rate under pressure of 1.0 MPa does not exceed 10%.
  • the thickness of the carbon fiber sheet is greater than 0.6 mm, it is difficult to reduce the size of the battery when assembling the battery with the separator.
  • the compression deformation rate of the carbon fiber sheet is preferably from 10 to 35%. If the compressive deformation rate of the carbon fiber sheet is smaller than 10%, it is not preferable because the polymer electrolyte membrane is likely to be damaged or its thickness is changed.
  • the electrode material used to form a single cell by integrating it with the separator will fill the grooves of the separator, preventing the reaction gas from moving. It is not preferable because it hinders.
  • the bulk density of the carbon fiber sheet is preferably 0.15 to 0.45 cm 3 . If the bulk density of the carbon fiber sheet is lower than 0.15 gZcm 3 , the compressive deformation rate of the carbon fiber sheet increases, and a material having a compressive deformation rate of 35% or less cannot be obtained.
  • the carbon fiber sheet used for the electrode material for the polymer electrolyte fuel cell needs to have the above physical properties. The reason for this is that it is necessary to change the thickness appropriately so that the pressure buffer effect can be exerted under pressure during the formation of a single cell.
  • the carbon fiber sheet used for the electrode material for the polymer electrolyte fuel cell has not only the above-mentioned appropriate physical properties relating to the thickness, bulk density, and compressive deformation rate, but also has a basis weight of 30 to 150 g / g. m 2 is preferred.
  • the basis weight of the carbon fiber sheet is lower than 30 g / m 2 , it is not preferable because the sheet strength decreases and the electric resistance in the thickness direction increases. If the basis weight of the carbon fiber sheet is higher than 150 gZm 2 , the gas permeability and the diffusivity are undesirably reduced.
  • the carbon fiber sheet for an electrode material for a polymer electrolyte fuel cell preferably has a compressive strength of 4.5 MPa or more and a compressive modulus of 14 MPa to 56 MPa.
  • the compressive strength of the carbon fiber sheet is less than 4.5 MPa, it is not preferable because carbon fine powder is generated at the time of pressurizing and integrating the single cells.
  • the compression modulus of the carbon fiber sheet is less than 14 MPa, the compression deformation is not less than 35%, which is not preferable.
  • ⁇ Thickness> The thickness of the oxidized fiber sheet or carbon fiber sheet when a load of 2.8 kPa is applied to a 3 Omm diameter disk.
  • Oxidized fiber sheet or carbon fiber sheet was vacuum-dried for 1 hour at 11 O, and the weight per unit area was obtained by dividing the basis weight by the thickness.
  • ⁇ Degree of feel> A 100 mm long, 25.4 mm wide carbon fiber sheet is placed on a slit of width W (mm) such that the length direction is perpendicular to the slit.
  • ⁇ Tensile strength> A carbon fiber sheet with a width of 25.4 mm and a length of 120 mm or more is fixed to a jig with a distance between chucks of 100 mm, and the carbon fiber sheet is fixed at a speed of 30 mm / min. The value obtained by converting the breaking strength when pulled into a 10 mm width.
  • Test pieces of carbon fiber sheets of 5 cm square were laminated to a thickness of about 5 mm, compressed at a compression speed of 100 mmZmin, and each physical property was measured.
  • Sample form Plural samples are stacked so that the peak intensity after the baseline correction processing is 500 000 cps or more.
  • the flatness of the carbon fiber other than the fiber intersection is the flatness of the carbon fiber measured at an intermediate point between the intersection and the intersection.
  • Fineness 2.2 dtex, specific gravity 1.42, number of crimps 4.9 cm, crimp rate 11%, core rate 50%, average force length 51% PAN-based oxidized fiber stapling was spun to obtain a 34-count double yarn having a top twist of 600 times / m and a bottom twist of 600 times Zm.
  • a plain weave having a weave density of 15.7 yarns / cm in both warp and weft was produced.
  • the basis weight was 200 g Zm 2 and the thickness was 0.55 mm.
  • This oxidized fiber spun yarn woven fabric was treated with an aqueous solution (concentration: 0.1% by mass) of an aqueous solution (concentration: 0.1 mass%, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) and untreated fabric.
  • the oxidized fiber spun yarn woven fabric was manufactured by performing a compression treatment while changing the temperature and the pressure. Then, it was baked at 200 ° C. for 1.5 minutes in a nitrogen atmosphere to obtain a carbon fiber spun yarn woven fabric having the characteristics shown in Table 1.
  • PVA adhesion amount (% by mass) 0.0 0.0 0.0 1.0 1.0 1.0 Compression treatment temperature (in) 160 200 290 160 160 250
  • the oxidized fiber spun yarn fabric used in Example 1 was treated with an aqueous solution (concentration: 1% by mass) of an aqueous solution of polyacrylic acid ester (trade name: Marposol W-60D, manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd.) to reduce the amount of resin adhered. 3 mass%. Then, it was compressed at a temperature of 25 Ot :, a pressure of 50 MPa, a compression ratio of 63%, and a thickness of 0.32 mm. A compressed oxidized fiber spun yarn woven fabric having a bulk density of 0.54 gZcm 3 was obtained. Then, it was baked at 1750 ° C. for 2 minutes in a nitrogen atmosphere.
  • an aqueous solution concentration: 1% by mass
  • polyacrylic acid ester trade name: Marposol W-60D, manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd.
  • the basis weight was 120 gZm 2
  • the thickness was 0.35 mm
  • the bulk density was 0.28 g Z cm 3
  • the electrical resistance in the thickness direction was 2.3 ⁇
  • the tensile strength was 80 NZ cm
  • the compressive strength was 5.6
  • a carbon fiber spun yarn woven fabric having an MPa, a compression deformation rate of 21%, and a feel of 23 g was obtained.
  • Table 2 shows the physical properties of the carbon fiber spun yarns.
  • the oxidized fiber spun yarn woven fabric used in Example 1 was treated with an aqueous dispersion (0.6% by mass) of an aqueous dispersion of an epoxy resin (trade name: Dicfine EN_0270, manufactured by Dainichi Ink Chemical Industry Co., Ltd.) , Dried.
  • the resin adhesion amount was 2% by mass.
  • the resulting temperature 2 0 0, pressure 4 0 MP a, compressed by the compression ratio 50%, thickness 0. 2 8 mm, the compressed oxidized fiber spun yarn fabric having a bulk density of 0. 5 5 g / cm 3 was.
  • it was baked at 1150 ° C. for 2 minutes in a nitrogen atmosphere.
  • the basis weight was 120 gZm 2
  • the thickness was 30 mm
  • the bulk density was 0.40 g / cm 3
  • the electrical resistance in the thickness direction was 3.4 ⁇
  • the tensile strength was 90 NZcm
  • the compressive strength was 4.5 MPa
  • Table 2 shows the characteristic values of the carbon fiber spun yarn fabric.
  • the oxidized fiber spun yarn woven fabric used in Example 1 was subjected to a compression treatment at a temperature of 200: a pressure of 40 MPa, a compression ratio of 64%, a thickness of 0.35 mm, and a bulk density of 0.57 gZ.
  • a compressed oxidized fiber spun yarn fabric of cm 3 was obtained. Then, in a nitrogen atmosphere 1 It was baked at 750 ° C. for 2 minutes.
  • the basis weight 1 26 gZm 2 , the thickness 0.41 mm, the bulk density 0.3 1 g / cm 3 , the electric resistance in the thickness direction 3.2 mQ, the tensile strength 1 200 NZ cm, and the compressive strength 5 A carbon fiber spun yarn woven fabric with a compressibility of 7 MPa, a compressive deformation of 31%, a texture of 17 g, a carbon fiber content of 100%, a crystallite size of 2.1 nm, and a fiber specific gravity of 1.74 was obtained. .
  • the oxidized fiber spun yarn woven fabric used in Example 1 was subjected to a compression treatment at a temperature of 200: a pressure of 40 MPa, a compression ratio of 64%, a thickness of 0.35 mm, and a bulk density of 0.57 gZ.
  • a compressed oxidized fiber spun yarn fabric of cm 3 was obtained. Then, it was baked at 250 in a nitrogen atmosphere for 2 minutes.
  • the basis weight is 1 16 gZm 2
  • the thickness is 0.4 lmm
  • the bulk density is 0.28 g / cm 3
  • the electric resistance in the thickness direction is 1.8 ⁇
  • the tensile strength is 70 N / cm
  • the compressive strength is 4 .5MPa
  • compression deformation rate 13%
  • feel degree 23g carbon fiber content 100%
  • crystallite size 3.1nm carbon fiber specific gravity 1.83 .
  • the oxidized fiber spun yarn woven fabric used in Example 1 was treated with an aqueous solution of PVA (trade name: Gohsenol GH—23, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) (concentration: 0.1% by mass), or the untreated fabric was treated with temperature.
  • the oxidized fiber spun yarn woven fabric was manufactured by changing the pressure and the compression process. Then, it was baked at 2000 ° C. for 1.5 minutes in a nitrogen atmosphere to obtain a carbon fiber spun yarn woven fabric having the characteristics shown in Table 3.
  • Basis weight l OO gZm 2 the thickness of 0. 5 1 mm der ivy.
  • This oxidized fiber spun yarn woven fabric is treated with an aqueous solution (concentration: 0.1% by mass) of PVA (trade name: Gosensenol GH—23, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) to reduce the amount of attached PVA to 0.5% by mass. %.
  • PVA trade name: Gosensenol GH—23, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
  • Temperature 2 0 0 ° C, pressure 4 0 MP a which is compressed by the compression ratio 6 5%, thickness 0. 2 8 mm, bulk density 0. 3 6 g / cm 3 compression oxide fiber spun yarn fabric I got Then, it was baked at 2000 in a nitrogen atmosphere for 1.5 minutes.
  • the basis weight was 60 g / m 2
  • the thickness was 0.3 l mm
  • the bulk density was 0.19 g Z cm 3
  • the electrical resistance in the thickness direction was 5.8 m ⁇
  • the tensile strength was 30 NZ cm
  • the compression was A carbon fiber spun yarn woven fabric having a strength of 3.2 MPa, a compressive deformation rate of 40%, and a feel of 20 g was obtained.
  • Table 4 shows the characteristic values of the carbon fiber spun yarn fabric.
  • the oxidized fiber spun yarn fabric was treated with an aqueous solution of CMC (Cerogen EP, a trade name of Daiichi Kogyo Chemical Co., Ltd.) (concentration: 0.9% by mass) and dried. The attached amount was 3% by mass.
  • This woven fabric was compressed at a temperature of 250 ° C, a pressure of 80 MPa, and a compressibility of 61% to obtain an oxidized fiber sheet having a thickness of 0.43 mm and a bulk density of 0.67 gZ cm 3 . . Thereafter, the compressed oxidized fiber spun yarn woven fabric was fired in a nitrogen atmosphere at 210 ° C. for 2 minutes.
  • the basis weight was 180 g / thickness 0.48 mm, the bulk density 0.38 gZc m 3 , and the electrical resistance in the thickness direction.
  • a carbon fiber spun yarn woven fabric having a resistance value of 5.7 ⁇ , a tensile strength of 210 N / cm, a compressive strength of 5.3 MPa, a compressive deformation rate of 7%, and a feel of 83 g was obtained.
  • Table 4 shows the characteristic values of the carbon fiber spun yarn fabric. Table 4
  • Fineness 2.3 dte X, specific gravity 1.38, number of crimps 4.5 pcs Zcm, crimp rate 12%, core rate 56%, average cut length 51 mm PAN-based oxidized fiber step was processed into a nonwoven fabric.
  • the basis weight was ISO gZm 2 , and the thickness was 0.80 mm.
  • this nonwoven fabric was subjected to a compression treatment without or after the resin treatment to obtain a compressed oxidized fiber nonwoven fabric. Thereafter, carbonization was performed at 2000 ° C. in a nitrogen atmosphere to obtain a carbon fiber sheet having a compression deformation ratio in the range of 10 to 35%.
  • the oxidized fiber nonwoven fabric used in Examples 11 to 13 was subjected to compression treatment without or after resin treatment according to each temperature and pressure condition as shown in Table 6. Manufactured. Then 1.5 minutes at 2000 ° C During firing, a carbon fiber nonwoven fabric having the characteristics shown in Table 6 was obtained.
  • the x mark in the table indicates a defective part. The same applies to the following table.
  • a PAN-based oxidized fiber staple with an average force length of 51 mm was processed by force and nonwoven fabric (thickness 1.1 mm, basis weight 15.5 gm 2 , bulk density 0. l gZ cm 3 ) was prepared.
  • the obtained nonwoven fabric was continuously compressed using a heated metal roller.
  • the roller temperature was 200 ° C.
  • the compression pressure was 2 O MPa
  • the compression processing time was 2 seconds.
  • Table 7 shows the physical properties of the obtained carbon fiber nonwoven fabric.
  • Example 14 The same nonwoven fabric as in Example 14 was compressed under different compression treatment conditions, and then fired. Table 7 shows the results.
  • Fineness 2.5 dtex, specific gravity 1.35, core ratio 90%, number of crimps 4.5 pcs Zcm, crimp ratio 11%, dry strength 2.8 g / dtex, dry elongation 27% after the PAN-based oxidation fiber staple bets length 5 1 mm were carded by Waugh evening one jet method and nonwoven (thickness 1 mm, basis weight 1 5 2 g / m 2, bulk density 0. 1 4 g / cm 3 ) was prepared.
  • the obtained non-woven fabric was pressed using a metal roller heated to a temperature of 370 ° C.
  • Compression processing was performed continuously at 58 MPa and a processing time of 10 seconds.
  • Table 8 shows the physical properties of the obtained carbon fiber nonwoven fabric.
  • the nonwoven fabric was prepared by the War-Jet method (thickness: 1.1 mm, basis weight: 160 g / m, bulk density: 0.1 l S gZ cm 3 ) Was prepared.
  • the obtained nonwoven fabric was continuously subjected to a compression treatment at a pressure of 25 MPa and a treatment time of 1 second using a metal roller heated to a temperature of 200 t :.
  • this compressed oxidized fiber nonwoven fabric (thickness 0.90 mm, bulk density 0.11 g / cm 3 ) was continuously fired in a nitrogen atmosphere at a processing temperature of 140 O: for a processing time of 1 minute. .
  • Table 8 shows the physical properties of the obtained carbon fiber nonwoven fabric.
  • the carbon fiber nonwoven fabric obtained in Comparative Example 11 is thick, has a high electric resistance, and has a flatness of 0.87 (the flatness other than the carbon fiber intersection is 1.0000). ), And the target flatness carbon fiber sheet could not be obtained.
  • the oxidized fiber spun yarn woven fabric (both plain and woven, 17 yarns / cm, thickness 0.9 mm, basis weight 230 gZm 2 , bulk density 0.26 gcm 3 ) is heated to a temperature of 200 °. Using a metal roller heated to C, compression was performed continuously at a pressure of 2 OMPa and a processing time of 1 second.
  • the compressed oxidized fiber spun yarn fabric (thickness 0.45 mm, bulk density 0.35 g / cm 3 ) was continuously fired at 140 ° C. for 1 minute in a nitrogen atmosphere. .
  • Table 9 shows the physical properties of the obtained carbon fiber spun yarn fabric.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)
  • Paper (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

明細書
炭素繊維シート、 その製造方法
技術分野
本発明は、 ポリアクリロニトリル系酸化繊維シートを焼成して得られ る炭素繊維シート、 及びその製造方法に関する。 更に詳述すれば、 炭素 繊維含有率が高く、 薄く、 賦形性に優れており、 更に厚さ方向の導電性 に優れており、 接地材料や電池電極材料等の通電材料として好適な炭素 繊維シート、 及びその製造方法に関する。
この炭素繊維シートは、 高分子電解質型燃料電池、 レドックスフ口一 電池、 亜鉛臭素電池、 亜鉛塩素電池等の電池用電極材ゃ、 食塩電解用電 極材等の電気分解用電極材に用いて好適である。
背景技術
通電性を有し、 耐腐食性に優れたシート状の炭素材料をアース接地材 料や電池電極材料に用いる開発が進められている。 このような用途に用 いる炭素シートに要求される特性としては、 シートの厚さ方向の電気抵 抗値が小さいことがある。
また、 特に炭素繊維シートを電池の電極材料として用いる場合、 近年 電池の小型化、 軽量化が進む中で、 これに対応できるように、 炭素繊維 シート自体の厚さを薄くすると共に、 高嵩密度化する必要がある。 これ らは、 炭素材料の厚さ方向の電気抵抗値を減少させる。
従来、 このような用途の炭素繊維シートとして、 炭素成形体、 炭素繊 維織物、 炭素繊維不織布等が知られている。
シート状で高嵩密度の炭素成形体としては、 炭素繊維強化炭素材 ( c / cペーパー) が知られている (特許第 2 5 8 4 4 9 7号公報、 特開昭 6 3 - 2 2 2 0 7 8号公報)。 このシートは、 炭素繊維チヨ ップを抄造し た後、 抄造した炭素繊維チヨ ップにフエノール樹脂等を含浸させてフエ ノール樹脂複合材を得、 更にフエノール樹脂複合材に含浸させたフエノ ール樹脂等を炭素化することにより製造している。
このシートは、 金型を用いるプレス成形により製造するため、 厚さ精 度と表面平滑性に優れている。 しかし、 このシートは柔軟性に乏しいの で、 巻物状にすることができない。 このため、 長いシートを必要とする 様な用途には不向きである。
また、 脆性が高いことから、 運搬や加工の際に生じる衝撃等により、 容易に破損が起きる。 更に、 製造コス トが高く、 通電材料として大量に 用いる場合は、 高価なものになる。 炭素繊維強化炭素性シートの脆性が 高く、 柔軟性が乏しい理由は、 含浸させた樹脂の炭化分が多量に存在す るからである。
柔軟性を保ったまま高嵩密度のシートを得るには、 シートに占める炭 素繊維の含有率を高くすることが必要である。
柔軟性を持ったシート状炭素材料としては、 炭素繊維織物が知られて いる。 織物には、 フィ ラメント織物 (特開平 4 _ 2 8 1 0 3 7.号公報、 特開平 7— 1 1 8 9 8 8号公報) と、 紡績糸織物 (特開平 1 0— 2 8 0 2 4 6号公報) とがある。
これらは、 巻物状に出来る程度に柔らかく、 保管や長尺物として用いる 用途に於て取扱い性が良いことが、 その特徴の一つとして挙げられる。
フイ ラメント織物は炭素繊維束を織って織物にしたものである。 炭素 繊維束を構成する炭素繊維の数は種々である。このフィ ラメント織物は、 炭素繊維軸の方向が基本的に織物面方向と平行である。 このため、 織物 面方向の電気抵抗値は低いが、 織物厚さ方向の電気抵坊値は高い。
一方、 紡績糸織物としては、 ポリアクリロニトリル (P A N ) 系酸化 繊維紡績糸を用いて酸化繊維織物を作り、 これを焼成して炭素繊維紡績 糸織物としたものが知られている。 この炭素繊維紡績糸織物は、 一般的 に炭素繊維フィ ラメント織物よりも柔軟である。 また、 紡績糸は短繊維 を撚り合せているため、 炭素繊維フィラメント織物よりも厚さ方向の電 気抵抗値が低くなることが期待出来る。 また、 製造コストは、 前記 c Z cぺ一パ一よりも安価である。
しかしながら、 従来の炭素繊維紡績糸織物は一般的に嵩密度が低い。 従って、厚さ方向の電気抵抗値も前記 C / Cペーパーよりも低いものの、 導電性が要請される電極等の用途に対しては依然として電気抵抗値は高 い。
また、 紡績糸織物として、 P A N系炭素繊維を所定の長さに切断し、 これを製織した炭素繊維織物が提案されている (特開平 1 0— 2 8 0 2 4 6号公報)。 しかし、 この織物は嵩密度が低い。 嵩密度を高めるため圧 縮加工すると、 炭素繊維織物は微粉碎化してしまう。
炭素繊維織物と同等に柔軟で取扱い性の良い炭素繊維シートとして、 炭素繊維不織布がある。 このものは、 打抜き加工を施した場合、 その形 状を c / cペーパーや炭素繊維織物に比べて保持しやすく、 更にそれら に比べて製造工程が簡単で、 安価に製造できる。 一般に、 炭素繊維不織 布は、 P A N系酸化繊維にウォー夕一ジェッ ト処理、 二一ドルパンチ処 理等を施すことにより酸化繊維不織布を作製し、 そのものを焼成するこ とにより得られるので、 繊維軸が厚さ方向を向いた繊維が炭素繊維強化 炭素性シートに比べて多い。 このため炭素繊維不織布は炭素繊維強化炭 素性シートよりも厚さ方向の電気抵抗値が小さくなることを期待できる, しかしながら、 従来の酸化繊維不織布は一般的に嵩密度が低いので、 このものを焼成して得られる炭素繊維不織布の厚さ方向の電気抵抗値は. 電極等の用途に対しては依然として高い。
例えば、 特開平 9 一 1 1 9 0 5 2号公報には、 P A N系酸化繊維でゥ エブを作り、 これをウォータージエツ ト処理する酸化繊維不織布の製造 方法が記載されている。 しかし、 この方法で得られる不織布は嵩密度が 低い。
特表平 9 - 5 1 1 8 0 2号公報は、 熱可塑性ポリマー組成物からなる 内部コア領域と、 それを取囲む炭素質材料からなる外部被覆領域とを有 する二領域安定繊維を用いて織物やフェルトを製造する技術を開示して いる。 この二領域安定繊維の比重は 1. 2 0〜 1. 3 2で比較的低い。 この繊維を用いて製造した織物やフェルトは嵩密度が低い。 発明の開示
本発明者等は酸化繊維紡績糸や酸化繊維シートの仕様を検討し、 さら に酸化繊維シートに樹脂処理や圧力処理を施すことを検討した。 その結 果、 従来よりも高嵩密度で、 適度な柔軟性があり、 厚さ方向の電気抵抗 値の低い炭素繊維シートを製造できることを見いだし、 本発明を完成す るに至った。
本発明の目的とするところは、 接地材料や電池電極材等の通電材料と して好適であって、 高嵩密度で、 適度な柔軟性があり、 厚さ方向の電気 抵抗値が小さく、 賦形性に優れた炭素繊維シー卜及びその製造方法を提 供することにある。
本発明は、 以下に記載するものである。
〔 1〕 厚さ 0. 1 5〜; L . Omm、 嵩密度 0. 1 5〜 0. 4 5 g
/ c m3, 炭素繊維含有率 9 5質量%以上、 圧縮変形率 1 0〜 3 5 %、 電気抵抗値 6 πιΩ以下、 風合度 5〜 7 0 gの炭素繊維シート。
〔2〕 繊維交差部分の単繊維の断面形状が扁平であり、 かつ断面 の長軸方向が炭素繊維シート表面と略平行である炭素繊維シート。
〔3〕 繊維交差部分において、 単繊維の断面の最大直径 (L 1 ) と、 単繊維の断面の最小直径 (L 2 ) とで示される単繊維の扁平度 (L 2 /L 1 ) が 0. 2〜 0. 7である 〔 2〕 に記載の炭素繊維シート。 〔4〕 炭素繊維シートの繊維交差部分以外において、 単繊維の扁 平度 (L 2 ZL 1 ) が 0. 7を超える部分を少なく とも含む 〔 2〕 に記 載の炭素繊維シート。
〔 5〕 ポリアクリロニトリル系酸化繊維シートを焼成する炭素繊 維シ一卜の製造方法において、 ポリアクリロニトリル系酸化繊維シート を 1 5 0〜3 0 0 °C、 1 0〜: L O O MP aの条件下で厚さ方向に圧縮処 理して嵩密度が 0. 4 0〜0. 8 0 g Z c m3、 圧縮率 4 0〜 7 5 %の 圧縮処理をした酸化繊維シ一トを得、 次いで前記圧縮処理した酸化繊維 シートを焼成することを特徴とする 〔 1〕 に記載の炭素繊維シートの製 造方法。
〔 6〕 ポリアクリロニトリル系酸化繊維シートを焼成する炭素繊 維シー卜の製造方法において、 ポリアクリロニトリル系酸化繊維シ一ト に 0. 2〜5質量%の樹脂を含有させ、 次いで前記樹脂を含有させたポ リアクリロニトリル酸化繊維シートを 1 5 0〜3 0 0 t:、 5〜: L O O M P aの条件下で厚さ方向に圧縮処理して嵩密度が 0. 4 0〜0. 8 0 g /c m3, 圧縮率 4 0〜7 5 %の圧縮処理をした酸化繊維シー トを得、 その後圧縮処理した前記酸化繊維シー卜を焼成することを特徴とする 〔 1〕 に記載の炭素繊維シートの製造方法。
本発明においては、 酸化繊維シートを特定の条件で圧縮処理するよう にしたので、 酸化繊維シートを好適に圧縮成形でき、 これを焼成するこ とにより、 嵩密度が高く、 且つ連続処理に適した適度に柔軟性のある炭 素繊維シートを得ることが出来る。 このようにして製造した炭素繊維シ 一卜は、 厚さ方向の電気抵抗が低いので、 アース接地材料、 電池電極材 等の通電材料として好適なものである。 発明を実施するための最良の形態
以下、 本発明について詳細に説明する。 酸化繊維
本発明炭素繊維シートを製造する際の出発原料は P AN系酸化繊維で ある。
P AN系繊維は、ァクリ ロ二トリルモノマー単位を 9 0〜 9 8質量%、 コモノマ一単位を 2〜 1 0質量%含有するものが好ましい。 コモノマー としては、ァクリル酸メチルエステル等のァクリル酸アルキルエステル、 アクリルアミ ド、 ィ夕コン酸等のビニルモノマーが例示できる。
本発明においては、 上記 P AN系繊維を耐炎化処理して P AN系酸化 繊維を製造するものである。 耐炎化処理は、 空気中、 初期酸化温度 2 2 0〜 2 5 0 °Cで 1 0分間処理後、 昇温速度 0. 2〜 0. 9で 分で最高 温度 2 5 0〜 2 8 0 まで昇温し、 この温度で 5〜 3 0分間保持する条 件が好ましい。 上記 PAN系繊維の耐炎化処理により、 以下に示す性状 の P AN系酸化繊維を製造するものである。
P AN系酸化繊維の繊度は 0. 5 5〜 2. 4 d t e xが好ましい。 繊 度が 0. 5 5 d t e x未満場合、 単繊維の糸強力が低く、 紡績加工時に 糸切れを生ずる。 繊度が 2. 4 d t e Xを超える場合、 紡績時に目標の 撚り数が得られず、 紡績糸強度が低下する。 その結果、 織物を製造する ときに紡績糸の切断や毛羽が発生し、 織物製造が困難になる。 PAN系 酸化繊維を用いて酸化繊維不織布、 酸化繊維フェルト等の酸化繊維シー トを製造する場合、 P AN系酸化繊維の繊度も同様に上記範囲が好まし い。
酸化繊維の断面形状は、 円状、 扁平状等の任意の形状でよい。 繊維比重
P AN系酸化繊維の繊維比重は、 1. 34〜 1. 4 3が好ましい。 繊 維比重が 1. 34未満の場合、 酸化繊維シートの焼成時にシートの面方 向の収縮ムラが生じやすい。 また、 1. 4 3を超える場合、 酸化繊維の 単繊維伸度が低下する。 これを用いて製造する紡績糸は、 強度が低くな る。 また、 後述する圧縮処理により酸化繊維シートの厚さを低減させる ことが難しい。 不十分に圧縮した酸化繊維シートを焼成しても本発明で 規定する薄物の炭素繊維シートを得難い。 クリ ンプ率、 クリ ンプ数
PAN系酸化繊維を紡績する場合及び不織布加工する場合、 予めクリ ンプ加工を行う。この場合、 PAN系酸化繊維のクリ ンプ率は 8〜 2 5 % クリンプ数は 2. 4〜 8. 1ケノ c mが好ましい。 クリンプ率が 8 %未 満場合、 繊維同士の絡み合いが少ないため、 紡績加工時糸切れを生ずる。 2 5 %を超える場合、 単繊維強度が低下し、 紡績加工が難しい。 クリン プ数が 2. 4ケ/ c m未満の場合、 紡績加工時に糸切れが生じる。 また クリンプ数が 8. 1ケ c mを超える場合、 単繊維強度が低下し、 クリ ンプ加工時に繊維切れが生じやすい。
酸化繊維不織布、 酸化繊維フェルト等の酸化繊維シートを製造する場 合も同様である。 乾強度
P AN系酸化繊維の乾強度は 0. 9 gZd t e x以上が好ましい。 0. 9 gZd t e x未満の場合、 酸化繊維シー卜の製造時の加工性が低下す る。 乾伸度
P AN系酸化繊維の乾伸度は 8 %以上が好ましい。 乾伸度が 8 %未満 の場合は、 酸化繊維シー卜の製造時の加工性が低下する。 結節強度
P AN系酸化繊維の結節強度は 0. 5〜: 1. 8 gZd t e xが好まし い。 結節強度が 0. 5 gZd t e x未満の場合、 酸化繊維シートの製造 時の加工性が低下し、 更に得られる酸化繊維シート及び炭素繊維シート の強度が低下する。 また結節強度が 1. 8 g/d t e xを超えるものは、 その製造自体が困難である。 結節伸度
P A N系酸化繊維の結節伸度は 5〜 1 5 %が好ましい。 結節伸度が 5 %未満の場合、 酸化繊維シートの製造時の加工性が低下し、 更に得ら れる酸化繊維シート及び炭素繊維シー卜の強度が低下する。 また結節伸 度が 1 5 %を超えるものは、 その製造自体が困難である。
酸化繊維を紡績する場合は、 P AN系酸化繊維の平均カツ ト長は 2 5 〜 6 5 mmが好ましい。 この範囲外では、 紡績時に糸切れを生じ易くな る。
P AN系酸化繊維紡績糸の製造
上記 P AN系酸化繊維を用いて紡績糸を製造する場合、 まず上記 P A N系酸化繊維を常法により紡績して P AN系酸化繊維紡績糸を製造する, 次に、 この紡績糸を用い、 これを精紡して、 上燃り及び下燃り数が 2 0 0〜 9 0 0回/ mの 2 0〜 5 0番手単糸もしくは双糸で構成された紡績 糸を製造する。
紡績糸の燃り数は、 2 0 0〜 9 0 0回 が好ましい。 この範囲外で は、 紡績時の強度が低下し、 これを用いて織物加工をすることが難しく なる。 酸化繊維シートの製造 本発明においては、 上記 P AN系酸化繊維又はその紡績糸を用いて酸 化繊維シートを製造する。
酸化繊維シー卜の種類としては、 酸化繊維不織布、 酸化繊維フェルト、 酸化繊維紡績糸織物等が例示できる。
酸化繊維シートの厚さは 0. 3〜 2. 0 mmが好ましい。 酸化繊維シ 一卜の厚さが 0. 3 mm未満の場合、 後述する圧縮処理を行う際に充分 圧縮できず、 高嵩密度の酸化繊維シートが得られない。 また、 酸化繊維 シートの厚さが 2. 0 mmを超える場合、 得られる炭素繊維シートの厚 さ方向の電気抵抗値が高くなる。
酸化繊維シートの嵩密度は 0. 0 7〜 0. 4 0 g c m3が好ましく、 0. 0 8〜 0. 3 9 gノ c m3がより好ましい。 嵩密度が 0. 0 7 gZ c m 3未満の場合は、 目標とする嵩密度の炭素繊維シートを得られない。 また嵩密度が 0. 4 0 c m3を超える場合は炭素繊維シートの強度 低下や、 目標とする柔軟性が得られない。
シートの製造方法としては、 それ自体当業者に公知の酸化繊維シー ト の製造方法を適宜採用できる。 圧縮酸化繊維シー卜の製造
本発明においては、 次いで上記酸化繊維シ一トに必要により樹脂を含 有させ.る。 樹脂を含有させた後、 又は樹脂を含有させることなく、 酸化 繊維シートを厚さ方向に圧縮処理し、 これにより圧縮酸化繊維シートを 得る。 この圧縮処理により、 後述するように、 炭素繊維の交差部におい て炭素繊維に偏平さが付与される。
酸化繊維シートに樹脂を含有させる場合は、 樹脂を含有させない場合 に比べて圧縮処理がより容易になり、 より薄くて高嵩密度の酸化繊維シ ートを得ることができる。 一般的に、 圧縮処理した酸化繊維シートは後 述する炭素化時に厚さ方向に多少膨張する。 樹脂を含有させることによ り、 この膨張を最小限に抑制できる。 酸化繊維シートに樹脂を含有させ ると、 この樹脂の膨張抑制作用が働き、 より薄くて嵩密度の高い炭素繊 維シー卜が得られる。
上記酸化繊維シートに樹脂を含有させる方法としては、 所定濃度の樹 脂浴に酸化繊維シートを浸潰させた後乾燥させる方法を例示できる。 樹 脂の含有量は、 酸化繊維に対して 0. 2〜 5. 0質量%が好ましく、 0. 3〜4. 0質量%がより好ましい。 樹脂付着量が 0. 2質量%未満の場 合は、 樹脂の添加効果が無い。 5. 0質量%を超える場合は、 次工程の 焼成時に硬くなり、 柔軟性が失われ、 微粉末が発生する。 樹脂浴の濃度 としては、 0. 1〜 2. 5質量%が例示できる。
樹脂は、 圧縮処理時に酸化繊維同士を接着して、 酸化繊維シートの膨 張を最小限に抑制する作用を示す。 樹脂としては、 例えばポリビニルァ ルコール(P VA)、 ポリ酢酸ビニル、 ポリエステル、 ポリアクリル酸ェ ステル等の熱可塑性樹脂、 エポキシ樹脂、 フエノール樹脂等の熱硬化性 樹脂、 カルボキシメチルセルローズ(CMC)等のセルロース系誘導体が 挙げられる。 これらの樹脂のうち、 圧縮処理時の粘性が高く、 接着能力 が高い PVA、 CMC, エポキシ樹脂、 ポリアクリル酸エステルが特に 好ましい。 樹脂浴は、 これら樹脂を有機溶媒や水に溶解又は分散させた ものである。
酸化繊維シートの圧縮処理方法としては、 ホッ トプレスやカレンダ一 ローラー等を用いて圧縮する方法が例示できる。
圧縮処理温度は、 1 5 0〜 3 0 0 が好ましく、 より好ましくは 1 7
0〜 2 5 0 である。 圧縮処理温度が 1 5 0で未満の場合、 圧縮処理が 不十分で高嵩密度の圧縮酸化繊維シー卜を得ることが出来ない。 また、 3 0 0 °Cを超える場合、 得られる圧縮酸化繊維シートの強度低下が起き る。
圧縮処理圧力は、 樹脂処理を行っていない場合は、 1 0〜 1 0 0 MP aが好ましく、 より好ましくは 1 5〜 9 0 MP aである。 圧縮処理圧力 が 1 0 MP a未満の場合は圧縮が不十分で、 高嵩密度の圧縮酸化繊維シ —卜を得ることが出来ない。 また、 圧縮処理圧力が l O O MP aを超え る場合、 酸化繊維に損傷が生じ、 得られる圧縮酸化繊維シートの強度が 低下する。 その結果、 焼成を連続的に行うことが困難になる。 樹脂処理 を行っている場合は、 前述の樹脂の接着作用と膨張抑制作用により、 樹 脂処理を行っていない場合よりも低い圧力でも目的とする嵩密度の炭素 繊維シートを得ることができる。 樹脂処理を行っている場合の圧縮処理 圧力は、 5〜 1 0 0 M P aが好ましい。
酸化繊維シートの圧縮処理時間は、 好ましくは 3分間以内、 より好ま しくは 0. 1秒〜 1分間である。 3分間よりも長時間圧縮処理を行って も、 更に圧縮されず、 かえって繊維の損傷が激しくなる。
圧縮率は 4 0〜 7 5 %が好ましい。
圧縮率 Cを下記式で定義する。 t aは圧縮前の酸化繊維シートの厚さ を、 t bは圧縮後の酸化繊維シートの厚さを示す。
C (%) = 1 0 0 X t b/ t a
圧縮処理雰囲気は空気中、 または窒素等の不活性ガス雰囲気が好まし い。
このようにして製造した圧縮酸化繊維シー卜の嵩密度は 0.4 0〜 0. 8 0 g c m3が好ましく、 特に 0. 5 0〜 0. 7 0 gZ c m3が好まし レ 嵩密度が 0. 4 0 gZc m3未満の場合、 得られる炭素繊維シート の通電性が低下する。 また、 嵩密度が 0. 8 0 g/c m3を超える場合、 得られる圧縮酸化繊維シートは硬くなり、 適度の柔軟性がないので炭素 化処理が困難になる。
上記圧縮処理により、 酸化繊維はそれらの各交差部で偏平になる。 交差部における酸化繊維の断面長軸方向は略酸化繊維シー卜面と平行 になる。
炭素繊維シー卜の製造
本発明においては、次いで上記方法で製造した圧縮酸化繊維シ一トを、 圧縮圧力を加えることなく、 又は加えながら焼成し、 PAN系炭素繊維 シートを得る。
焼成は、 窒素、 ヘリウム、 アルゴン等の不活性ガス雰囲気下、 1 30 0〜2 50 0 で圧縮酸化繊維を加熱することにより行う。 なお、 上記 加熱温度に到達するまでの昇温速度は 2 00 °CZ分以下が好ましく、 1 70°CZ分以下がより好ましい。昇温速度が 200 分を超える場合、 炭素繊維の X線結晶子サイズの成長速度は向上するが、 繊維強度が低下 し、 炭素繊維の微粉末が多量に発生し易くなる。
加熱温度 1 3 00〜2 500 における圧縮酸化繊維シー卜の加熱時 間は 30分間以内が好ましく、 特に 0. 5〜20分程度が望ましい。 炭素繊維シート
このようにして製造した炭素繊維シートの厚さは 0. 1 5〜 1. 0m m、 炭素繊維シートの嵩密度は 0. 1 5〜0. 45 gZcm3で、 より 好ましくは 0. 2 1〜0. 43 gZ cm3であり、 かつ少なくとも炭素 繊維同志の交差部が偏平になっている。 この偏平の形状は、 酸化繊維シ 一卜の圧縮処理時に形成される。 炭素繊維の交差部形状が偏平になるこ とにより、 炭素繊維シートに適度の柔軟性と、 高い嵩密度と、 低い電気 抵抗値とが付与される。
炭素繊維同志の交差部における炭素繊維の断面長軸方向は、 略炭素繊 維シート表面と平行である。 通常、 炭素繊維の交差部の断面長軸方向と 炭素繊維シート表面とのなす角度が 30度以内のものの割合は、 60 % 以上、 好ましくは 80 %以上である。
本発明の炭素繊維シートを構成する炭素繊維の扁平度 (L 2 /L 1 ) は炭素繊維同志の交差部で 0. 2〜 0. 7であることが好ましい。 炭素繊維同志の交差部分以外の炭素繊維の部分は、 扁平その他の形状 であっても良いが、 扁平の程度が少ないことが好ましい。 具体的には、 炭素繊維シート内の繊維同志の交差部分以外の部分において、 炭素繊維 の扁平度 (L 2 ZL 1 ) は 0. 7を超える部分を少なくとも含むことが 好ましい。
繊維交差部分における炭素繊維の扁平度が 0. 2未満の場合は、 繊維 強度が低下し、 微粉末が発生し易いので好ましくない。
繊維交差部分における炭素繊維の扁平度が 0. 7を超える場合は、 厚 さの薄い高嵩密度のシートを得難いので、 好ましくない。
この炭素繊維の扁平度は、 例えば繊維交差部分における炭素繊維の軸 に直交する断面を電子顕微鏡で観察して求めることができる。 偏平度は 単繊維の断面の最大直径 (L 1 ) と最小直径 (L 2 ) とを測定し、 その 比率 (L 1 ZL 2) を算出することにより求めることができる。 炭素繊維含有率
本発明の炭素繊維シート中の炭素繊維含有率は 9 5質量%以上、 好ま しくは 9 6質量%以上である。 炭素繊維含有率が 9 5質量%未満の場合 は、 炭素繊維シートの風合度が目標よりも高くなり過ぎると共に、 圧縮 変形率が低くなる。
炭素繊維含有率は、 酸化繊維シートの未処理品と、 前記酸化処理シー 卜と同一質量の酸化繊維シートに樹脂処理を施したものとをそれぞれ焼 成した後、 これらの質量を測定し、 下式により炭素繊維含有率を算出す る。 炭素繊維含有率 (質量%) = 1 0 0 XC 2 /C 1
C 1 :樹脂処理した酸化繊維シートを焼成した後の質量 C 2 : 樹脂処理をしていない酸化繊維シートを焼成した後の質量 圧縮変形率
本発明の炭素繊維シートの厚さの変形率(圧縮変形率)は 1 0〜 3 5 % である。
圧縮変形率は、 以下に記載するようにして算出する。
炭素繊維シートを 5 c m角に切り出し、 圧力 2. 8 k P aでの厚さを 測定後、 更に圧力 1. O MP aでの厚さを測定し、 下記式により圧縮変 形率を算出する。 圧縮変形率 = [(B 1 - B 2 ) /B 1 ] X 1 0 0
B 1 : 2. 8 k P a圧力での厚さ、 B 2 : 1. O MP a圧力での厚さ 炭素繊維シートの圧縮変形率が 1 0 %より小さい場合は、 他部材と接 合させて電池等に組込んだ場合、 厚さ変化が少なすぎるために、 他部材 とのフィティングが悪くなり、 接触抵抗が増加するため、 好ましくない。 炭素繊維シートの圧縮変形率が 3 5 %より大きい場合は、 厚さの変化 を起しすぎ、 電池として組込んだ場合に寸法安定性に劣るため、 好まし くない。
X線結晶子サイズ
炭素繊維シートを構成する炭素繊維の X線結晶子サイズは 1. 3〜 3. 5 nmが好ましい。 結晶子サイズが 1. 3 nm未満の場合、 炭素繊維シ 一卜の厚さ方向の電気抵抗値が増加する。 厚さ方向の抵抗値は 6. Om Ω以下であり、 好ましくは 4. 5ιηΩ以下である。 また、 結晶子サイズ が 3. 5 nmを超える場合、 炭素繊維シートの導電率は高くなり、 厚さ 方向の電気抵抗値は低下する。 しかし、 炭素繊維シートの柔軟性が低下 し、 脆化が進んで単繊維強度が低下し、 シート自体の強度が低下する。 このため、 得られた炭素繊維シートを更に加工する場合は、 その加工時 に微粉末の発生を生ずる。
X線結晶子サイズの調整は焼成温度、 昇温速度を調節する事により行 う。 厚さ方向の電気抵抗値
厚さ方向の電気抵抗値は、 前述のように X線結晶子サイズ、 嵩蜜度等 により調整できる。
厚さ方向電気抵抗値は、 通電材料として用いる場合は、 6. ΟιηΩ以 下が好ましい。 厚さ方向電気抵抗値が 6. ΟπιΩより大きいと、 通電材 料として用いる場合、 発熱し、 炭素材料の脆化が起こる場合がある。 風合い度
本発明炭素シー卜の風合い度は 5〜 7 0 gである。 風合い度が 5 g未 満の場合、 炭素繊維シー卜が柔らかすぎるため取り扱い性が悪い。 また、 風合い度が 7 0 gを超える場合、 炭素繊維シートの剛直性が増加する。 このため炭素繊維シートの連続製造工程の後工程でローラーを通すこと ができなくなり、 この場合は連続的な後処理を行うことが困難になる。 圧縮強度
本発明炭素繊維シートの圧縮強度は 4 MP a以上、 特に 4. 5 MP a以上であることが好ましい。 圧縮強度が 4 MP a未満の炭素繊維シー トは、 炭素繊維シート製造工程の後工程でニップローラ一等を用いて加 圧する工程を経由させる必要がある場合、 これらの加工工程で炭素繊維 シートの切断、 微粉末の発生を起すので好ましくない。
圧縮強度は、 1 mm/m i nで炭素繊維シートを圧縮した時に要する 最大荷重 (炭素繊維の破壊による荷量の降伏点) を表す。 高分子電解質型燃料電池用電極材
上記炭素繊維シ一トは、 高分子電解質型燃料電池用電極材として特に 優れたものである。 以下、 炭素繊維シートを高分子電解質型燃料電池用 電極材として用いる場合に付き説明する。
高分子電解質型燃料電池は、単セルを数十〜数百層積層して構成する。 各単セルは下記の各層で構成している。
一層目 セパレー夕一
二層目 電極材 (炭素繊維シート)
三層目 高分子電解質膜
四層目 電極材 (炭素繊維シート)
五層目 セパレー夕一 本発明の炭素繊維シートを高分子電解質型燃料電池用電極材として用 いて単セルを形成する場合は、 炭素繊維シートを薄く形成し、 これをセ パレ一夕一と高分子電解質膜の間に挿入し、 これらを加圧一体化するこ とにより単セルを形成する。 この加圧一体化時の圧力は 0. 5〜 4. 0 MP aであり、 電極材は、 該圧力下において、 厚さ方向に圧縮される。 電極材に用いる炭素繊維シートは、 厚さが 0. 1 5〜 0. 6 0 mmの ものが好ましい。
炭素繊維シートの厚さが 0. 1 5 mmより薄い場合は、 シート強度が 低下して加工時における切断、 伸びが発生し易くなる等の加工性の低下 が著しくなる。 また、 圧縮変形率が低く 1. 0 MP a加圧時の厚さ変形 率が 1 0 %以上にならない。
炭素繊維シートの厚さが 0. 6 0 mmより厚い場合は、 セパレーター と一体化して電池を組立てる時、 電池の小型化が難しくなる。
炭素繊維シートの圧縮変形率は 1 0〜 3 5 %が好ましい。 炭素繊維シー卜の圧縮変形率が 1 0 %より小さい場合は、 高分子電解 質膜の損傷や厚さの変化を起し易いので好ましくない。
炭素繊維シートの圧縮変形率が 3 5 %より大きい場合は、 セパレ一夕 等と一体化して単セルを形成する際の電極材がセパレ一夕一の溝を埋め てしまい、 反応ガスの移動を妨げるので好ましくない。
炭素繊維シートの嵩密度は 0. 1 5〜 0. 4 5 c m3が好ましい。 炭素繊維シートの嵩密度が 0. 1 5 gZc m3より低いと、 炭素繊維 シー卜の圧縮変形率が高くなり、 圧縮変形率が 3 5 %以下の素材が得ら れない。
炭素繊維シートの嵩密度が 0. 4 5 gZc m3より高いと、 電極中の ガスの透過性が低下し、 その結果電池特性を低下させる。
高分子電解質型燃料電池用電極材に用いる炭素繊維シートは上記の物 性値を備えている必要がある。 その理由は、 単セル形成時の加圧下にお いて圧力緩衝効果を発揮できる程度の適度の厚さの変化が必要であるか らである。
高分子電解質型燃料電池用電極材に用いる炭素繊維シートは、上記の、 厚さ、 嵩密度、 及び圧縮変形率に関する適正な物性を有することに加え て、 目付が 3 0〜 1 5 0 g/m2であることが好ましい。
炭素繊維シ一卜の目付が 3 0 g/m2より低い場合は、 シー ト強度が 低下したり厚さ方向の電気抵抗値が増加したりするので好ましくない。 炭素繊維シートの目付が 1 5 0 gZm2より高い場合は、 ガス透過性、 拡散性が低下するので好ましくない。
高分子電解質型燃料電池用電極材用炭素繊維シートは、 更に圧縮強度 が 4. 5 MP a以上であり、 圧縮弾性率が 1 4MP a〜 5 6 MP aであ ることが好ましい。
炭素繊維シートの圧縮強度が 4. 5 MP a未満の場合は、 単セルの加 圧一体化時に炭素微粉末が発生するので好ましくない。 炭素繊維シートの圧縮弾性率が 1 4MP a未満の場合は、 圧縮変形率 が 3 5 %未満にならないので好ましくない。
炭素繊維シートの圧縮弾性率が 5 6 MP aを超える場合は、 圧縮変形 率が 1 0 %未満になり易いので好ましくない。 実施例
以下、 実施例により本発明を更に具体的に説明するが、 本発明はこれ ら実施例に限定されるものではない。 なお、 炭素繊維シートの各物性の 測定方法は次の通りである。
<厚さ > 直径 3 O mmの円板で 2. 8 k P aの荷重を負荷したとき の酸化繊維シート又は炭素繊維シー卜の厚さ。
ぐ嵩密度 > 酸化繊維シート又は炭素繊維シートを 1 1 O 、 1時間 真空乾燥した後の目付を厚さで除して求めた。
<風合い度 > 幅 W (mm) のスリ ッ トの上に、 長さ 1 0 0 mm、 幅 2 5. 4 mmの炭素繊維シートを長さ方向がスリツ 卜と垂直になるよう に配置する。 幅 2 mm長さ 1 0 0 mmの金属プレー卜でこの炭素繊維シ ートをスリッ ト間に深さ 1 5 mmまで 3 mm/ s e cの速さで押込むと きの金属プレートに負荷する最大荷量。 尚、 スリ ッ ト幅 Wは、 炭素繊維 シートの厚さ T (mm) に対し、 WZT= 1 0〜 1 2となるように調整 する。
<引張強度 > チヤック間距離 1 0 0 mmの治具に、 幅 2 5. 4 mm, 長さ 1 2 0 mm以上の炭素繊維シートを、 固定し、 速度 3 0 mm/m i nで炭素繊維シートを引張ったときの破断強度を 1 0 mm幅に換算した 値。
<圧縮強度 > 1 mmZm i nで炭素繊維シ一トを圧縮した時に要す る最大荷重 (炭素繊維の破壊による荷重の降伏点)。 ぐ炭素繊維含有率 >
酸化繊維シー卜の未処理品と、 前記酸化処理シー卜と同一質量の酸化 繊維シートに樹脂処理を施したものとをそれぞれ焼成した後、 これらの 質量を測定し、下式により炭素繊維シー卜の炭素繊維含有率を算出した。 炭素繊維含有率 (%) = 1 0 0 X C 2 /C 1
C 1 :樹脂処理した酸化繊維シートを焼成した後の質量
C 2 :樹脂処理をしていない酸化繊維シートを炭素化した後の質量
<圧縮強度 ·弾性率〉
5 c m角の炭素繊維シー卜の試験片を厚さ約 5 mmに積層し、 圧縮速 度 1 0 0 mmZm i nで圧縮し、 各物性を測定した。
<厚さ方向電気抵抗値 > 5 c m角の炭素繊維シートを二枚の平板電 極で挟み、 1 0 k P a荷重時の電気抵抗値を測定した。
<結晶子サイズの測定方法 >
結晶子サイズ L cは、 広角 X線回折装置の測定デ一夕 ( 2 0 = 2 6 ° 付近のピーク) を用いて、 以下に示すシエラ一の式から算出した。。
L c (n m)= 0. l k A //3 c o s θ
ここで、 kは装置定数 (本実施例、 及び比較例においては 0. 9 )、 λ は X線波長 ( 0. 1 5 4 n m)、 ;3は 2 0 = 2 6 ° 付近のピーク半値幅、 Θはピーク位置 ) である。
測定条件
設定管電圧 : 4 0 k V
設定管電流 : 3 0 mA
測定範囲 : 1 0〜 4 0 °
サンプリング間隔 : 0. 0 2 ° スキヤン速度: 4 ° /分
積算回数 : 1回
試料の形態: ベースライン補正処理後のピーク強度が 5 0 0 0 c p s以上となるように、 試料を複数枚重ねる。
ぐ酸化繊維、 及び炭素繊維の比重 >
ェ夕ノール置換法により測定した。
<炭素繊維の扁平度 >
炭素繊維シートの繊維交差部分及び繊維交差部分以外の炭素繊維の繊 維軸に垂直断面の電子顕微鏡写真 (倍率 5 0 0 0倍) を撮影した。 この 顕微鏡写真に写る繊維の最小直径と最大直径を測定し、 下記式により算 出した。
炭素繊維の扁平度 = L 2 / L 1
L 1 : 炭素繊維断面における最大直径
L 2 : 炭素繊維断面における最小直径
なお、 繊維交差部分以外の炭素繊維の扁平度は、 交差部分と交差部分 との中間点において測定した炭素繊維の扁平度である。
<酸化繊維のコア率 >
一方向に引き揃えた酸化繊維を、 溶融させたポリエチレン又はヮック スで固定した後、 繊維軸方向に垂直に幅 (T ) 1 . 5〜 2 . 0 m mの長 さで切取った。 切取った固定繊維片 (複数) をプレパラートに乗せ、 照 度 1 . 5〜 2 . 5 X 1 0 3ルックスの光を照射し、 光照射側と反対側か ら倍率 1 0 0 0倍で顕微鏡写真の撮影を行う。 得られた顕微鏡写真を観 察し、 繊維断面の中心部 (明部) と繊維断面の外縁部 (暗部) とのニ領 域 (明暗部) を識別することができる固定繊維片を選択し、 その繊維直 径 (L ) 及び繊維内部 (明部) の直径 (R ) を測定する。 これらの値を 用いて下式よりコア率を算出した。 コア率 (%) = 1 0 0 X (R/L) 実施例 1〜 6
繊度 2. 2 d t e x、 比重 1. 4 2、 クリンプ数 4. 9ケ c m、 ク リンプ率 1 1 %、 コア率 5 0 %、 平均力ッ ト長 5 1 mmの P AN系酸化 繊維ステ一プルを紡績し、 上撚り 6 0 0回/ m、 下撚り 6 0 0回 Zmの 3 4番手双糸を得た。 次に、 この紡績糸を用いて経、 緯共に織り密度が 1 5. 7本/ c mの平織りを作製した。 目付は 2 0 0 g Zm2、 厚さは 0. 5 5 mmであつた。
この酸化繊維紡績糸織物を P VA (日本合成化学工業 (株) 製 商品 名ゴ一セノール GH— 2 3) 水溶液 (濃度 0. 1質量%) を用いて処理 したもの、 及び未処理のものを、 温度と圧力を変えて圧縮処理して圧縮 酸化繊維紡績糸織物を製造した。 その後、窒素雰囲気中 2 0 0 0 °Cで 1 · 5分間焼成し、 表 1に示す特性の炭素繊維紡績糸織物を得た。
実施例 1 2 3 4 5 6
P VA処理 なし なし なし あり あり あり
PVA付着量 (質量%) 0.0 0.0 0.0 1.0 1.0 1.0 圧縮処理 温度 (で) 160 200 290 160 160 250
圧力 (MPa) 20 40 90 20 40 80 圧縮酸化繊維シート
(mm) 0.38 0.35 0.32 0.30 0.27 0.26 嵩密度 g/cm3 0.53 0.57 0.63 0.66 0.74 0.77 圧縮率 (%) 69 64 58 55 49 45 目付 g/m 2 120 120 120 120 120 120 灰系 厚 ώ mm 0.43 0.41 0.38 0.33 0.31 0.30 繊維シ 嵩密度 g/cm"" 0.28 0.29 0.32 0.36 0.39 0.40 ート 電気抵抗値 Πΐ Ω 2.5 2.0 1.9 3.7 3.6 3.4
引張強度 N/cm 140 100 60 110 90 70 圧縮強度 MPa 5.3 5.1 5.6 5.1 5.1 4.8 圧縮変形率 (%) 32 28 26 18 15 14 風合い度 g 19 18 18 32 29 25 炭素繊維含有率 質量% 100 100 100 99.9 99.9 99.9 結晶子サイス' nm 2.4 2.4 2.4 2.4 2.4 2.4 繊維比重 1.79 1.79 1.79 1.79 1.79 1.79
実施例 7
実施例 1で用いた酸化繊維紡績糸織物を、ポリァクリル酸エステル(松 本油脂製薬 (株) 製 商品名マーポゾール W— 6 0 D) 水溶液 (濃度 1 質量%) で処理して樹脂の付着量を 3質量%とした。 次いで、 温度 2 5 Ot:、 圧力 5 0 MP a、 圧縮率 6 3 %で圧縮処理し、.厚さ 0. 3 2 mm 嵩密度 0. 54 gZc m3の圧縮酸化繊維紡績糸織物を得た。 次いで窒 素雰囲気中 1 7 5 0 °Cで 2分間焼成した。 この結果、 目付 1 20 gZm 2、 厚さ 0. 3 5mm、 嵩密度 0. 2 8 g Z c m 3、 厚さ方向電気抵抗値 2. 3 πιΩ、 引張強度 8 0 NZ c m、 圧縮強度 5. 6 MP a、 圧縮変形 率 2 1 %、 風合い度 2 3 gの炭素繊維紡績糸織物を得た。 炭素繊維紡績 糸織物の物性値を表 2に示した。
実施例 8
実施例 1で用いた酸化繊維紡績糸織物を、 水分散エポキシ樹脂 (大日 本ィンキ化学工業 (株) 製 商品名 ディ ックファイン EN _ 0 2 7 0 ) 水溶液 ( 0. 6質量%) で処理後、 乾燥した。 樹脂付着量は 2質量%で あった。 次いで、 温度 2 0 0 、 圧力 4 0 MP a、 圧縮率 5 0 %で圧縮 処理し、 厚さ 0. 2 8 mm、 嵩密度 0. 5 5 g / c m 3の圧縮酸化繊維 紡績糸織物を得た。 次いで窒素雰囲気中 1 15 0 °Cで 2分間焼成した。 この結果、 目付 120 gZm2 、 厚さ 3 0mm、 嵩密度 0. 4 0 g /c m3, 厚さ方向電気抵抗値 3. 4πιΩ、 引張強度 9 0 NZ c m、 圧 縮強度 4. 5 M P a、 圧縮変形率 1 5 %、 風合い度 2 3 gの炭素繊維紡 績糸織物を得た。 炭素繊維紡績糸織物の特性値を表 2に示した。
表 2
Figure imgf000025_0001
実施例 9
実施例 1で用いた酸化繊維紡績糸織物を、 温度 2 0 0 :、 圧力 4 0 M P a、 圧縮率 6 4 %で圧縮処理し、 厚さ 0. 3 5 mm、 嵩密度 0. 5 7 gZ c m3の圧縮酸化繊維紡績糸織物を得た。 その後、 窒素雰囲気中 1 7 5 0 °Cで 2分間焼成した。 この結果、 目付 1 2 6 gZm2、 厚さ 0. 4 1 mm、 嵩密度 0. 3 1 g / c m 3、 厚さ方向電気抵抗値 3. 2mQ, 引張強度 1 2 0 NZ c m、 圧縮強度 5. 7 MP a、 圧縮変形率 3 1 %、 風合い度 1 7 g、 炭素繊維含有率 1 0 0 %、 結晶子サイズ 2. 1 nm、 繊維比重 1. 7 4の炭素繊維紡績糸織物を得た。
実施例 1 0
実施例 1で用いた酸化繊維紡績糸織物を、 温度 2 0 0 :、 圧力 4 0 M P a、 圧縮率 6 4 %で圧縮処理し、 厚さ 0. 3 5 mm、 嵩密度 0. 5 7 gZ c m3の圧縮酸化繊維紡績糸織物を得た。 その後、 窒素雰囲気中 2 2 5 0でで 2分間焼成した。 この結果、 目付 1 1 6 gZm2、 厚さ 0. 4 l mm、 嵩密度 0. 2 8 g / c m 3、 厚さ方向電気抵抗値 1. 8πιΩ、 引張強度 7 0 N/c m、 圧縮強度 4. 5 MP a、 圧縮変形率 1 3 %、 風 合い度 2 3 g、 炭素繊維含有率 1 0 0 %、 結晶子サイズ 3. 1 nm、 炭 素繊維比重 1. 8 3の炭素繊維を得た。
比較例 1〜 4
実施例 1で用いた酸化繊維紡績糸織物を P V A (日本合成化学工業 (株) 製 商品名ゴーセノール GH— 2 3) 水溶液 (濃度 0. 1質量%) で処理し、 または未処理のものを温度と圧力を変えて圧縮処理して圧縮 酸化繊維紡績糸織物を製造した。 その後、 窒素雰囲気中 2 0 0 0 °Cで 1. 5分間焼成し、 表 3に示す特性の炭素繊維紡績糸織物を得た。
表 3
比較例 3 4
P VA処理 なし なし なし あり
P VA付着] (質量%) 0.0 0.0 0.0
圧縮処理 温度 (°c) なし 20 400 400
圧力 (MPa) 150 150 圧縮酸化繊維シート
厚さ (mm) 0.55 0.49 0.23 0.21 嵩密度 g/ c m 0.53 0.57 0.87 0.95
100 89 42 38
圧縮率 (%) 目付 g/m 120 120 120 120 繊維シ 厚さ mm 0.55 0.54 0.31 0.23
一卜
嵩密度 gZcm 0.22 0.22 0.39 0.52 電気抵抗値 m Ω 2.6 2.6 1.8 3.5
引張強度 NZ cm 180 150 20 10
圧縮強度 MPa 5.8 4.2 3.1
圧縮変形率 % 45 41 19 8
風合い度 g 19 19 21 26
炭素繊維含有率 質量% 100 100 100 99.9 結晶子サイス' nm 2.4 2.4 2.4 2.4
繊維比重 1.79 1.79 1.79 1.79
比較例 5
繊度 1. 7 d t e X、 比重 4 1、 クリンプ数 2. 9ケ Zc m、 ク リンブ率 1 4 %、 平均カツ ト長 5 1 mmの P AN系酸化繊維ステ一プル を紡績し、 上燃り 4 0 0回 Zm 下撚り 5 0 0回/ mの 3 0番手双糸を 得た。 次に、 この紡績糸を用いて経、 緯共に織り密度が 7. 1本 Zc m の平織りを作製した。 目付は l O O gZm2、 厚さは 0. 5 1 mmであ つた。 この酸化繊維紡績糸織物を P V A (日本合成化学工業(株)製 商 品名ゴ一セノール GH— 2 3 ) 水溶液 (濃度 0. 1質量%) で処理して、 P V Aの付着量を 0. 5質量%とした。 温度 2 0 0 °C、 圧力 4 0 MP a、 圧縮率 6 5 %でこれを圧縮処理し、 厚さ 0. 2 8 mm、 嵩密度 0. 3 6 g/ c m3の圧縮酸化繊維紡績糸織物を得た。 その後、 窒素雰囲気中 2 0 0 0でで 1. 5分間焼成した。 その結果、 目付 6 0 g/m2、 厚さ 0. 3 l mm、 嵩密度 0. 1 9 g Z c m 3、 厚さ方向電気抵抗値 5. 8 m Ω , 引張強度 3 0 NZ c m、 圧縮強度 3. 2 MP a , 圧縮変形率 4 0 %、 風 合い度 2 0 gの炭素繊維紡績糸織物を得た。 炭素繊維紡績糸織物の特性 値を表 4に示した。
比較例 6
繊度 1. 5 d、 比重 4 1、 クリンプ数 3. 7ケ Zc m、 クリンプ 率 1 4 %、 コア率 6 0 %、 平均カッ ト長 5 1 mmの P AN系酸化繊維ス テーブルを紡績し、 上撚り 5 5 0回ノ m、 下撚り 6 0 0回 Zmの 40番 手双糸を得た。 次に、 この紡績糸を用いて経、 緯共に織り密度が 3 3本 Z c mの平織りを作製した。 目付は 3 0 0 g Zm2、 厚さは 0. 7 1 m mであった。 この酸化繊維紡績糸織物を CMC (第一工業薬品 (株) 製 商品名 セロゲン E P) 水溶液 (濃度 0. 9質量%) で処理後、 乾燥し た。 付着量は 3質量%であった。 この織物を温度 2 5 0 °C、 圧力 8 0 M P a、 圧縮率 6 1 %で圧縮処理し、 厚さ 0. 4 3 mm、 嵩密度 0. 6 7 gZ c m3の酸化繊維シートを得た。 その後、 圧縮酸化繊維紡績糸織物 を窒素雰囲気中 2 1 0 0°Cで 2分間焼成した。 その結果、 目付 1 8 0 g / 厚さ 0. 4 8 mm、 嵩密度 0. 3 8 gZc m3、 厚さ方向電気抵 抗値 5. 7 πιΩ、 引張強度 2 1 0 N / c m、 圧縮強度 5. 3 M P a、 圧 縮変形率 7 %、 風合い度 8 3 gの炭素繊維紡績糸織物を得た。 炭素繊維 紡績糸織物の特性値を表 4に示した。 表 4
Figure imgf000029_0001
実施例 1 1〜 1 3
繊度 2. 3 d t e X , 比重 1.3 8、 クリンプ数 4. 5ケ Zc m、 クリ ンプ率 1 2 %、 コア率 5 6 %、 平均カッ ト長 5 1 mmの P AN系酸化繊 維ステ一プルを不織布加工した。 目付は I S O gZm2, 厚さは 0. 8 0 mmであつた。
この不織布を表 5に示すように樹脂処理をすることなく、 又は樹脂処 理後、 圧縮処理して圧縮酸化繊維不織布を得た。 その後、 窒素雰囲気下 で 2 0 0 0 °Cにて炭素化することにより、 1 0〜 3 5 %の範囲の圧縮変 形率を有する炭素繊維シートを得た。
表 5
Figure imgf000030_0001
比較例 7 〜 9
実施例 1 1 〜 1 3で用いた酸化繊維不織布を表 6に示すように樹脂処 理をすることなく、 又は樹脂処理後、 各温度と圧力条件により、 圧縮処 理して圧縮酸化繊維不織布を製造した。 その後、 2 0 0 0 °Cで 1 . 5分 間焼成し、 表 6に示す特性の炭素繊維不織布を得た。
表 6
Figure imgf000032_0001
表中 x印は不良個所を示す。 以下の表にっレ ^ても同様である。
実施例 1 4
繊度 2. 5 d t e X、 比重 1.3 5、 クリンプ数 3. 9ケ Zc m、 コア 5 5 %、 クリンプ率 1 1 %、 乾強度 2. 5 g / d t e x、 乾伸度 2 4 % 平均力ット長 5 1 mmの P AN系酸化繊維ステ一プルを力一ド加工し、 ウォー夕ージエツ ト法により不織布 (厚さ 1. 1 mm、 目付 1 5 5 g m2、 嵩密度 0. l gZ c m3) を作製した。
得られた不織布を、 加熱した金属ローラ一を用いて連続的に圧縮処理 した。 ローラー温度は 2 0 0 °C、 圧縮圧力 2 O MP a、 圧縮処理時間 2 秒であった。
次いで、 この圧縮酸化繊維不織布 (厚さ 0. 4 5 mm、 嵩密度 0. 3
4 g/ c m3) を、 窒素雰囲気下、 処理温度 1 4 0 0 、 処理時間 1分 間で連続的に焼成した。
得られた炭素繊維不織布の物性を表 7に示す。
実施例 1 5
実施例 1 4と同じ不織布を圧縮処理条件を変えて圧縮し、 次いで焼成 した。 その結果を表 7に示す。
比較例 1 0
繊度 2. 5 d t e x、 比重 1.3 5、 コア率 9 0 %、 クリンプ数 4. 5 ケ Zc m, クリンプ率 1 1 %、 乾強度 2. 8 g/d t e x、 乾伸度 2 7 %· 平均力ッ ト長 5 1 mmの P A N系酸化繊維ステープルをカード加工した 後、 ウォー夕一ジェッ ト法により不織布 (厚さ し 1 mm、 目付 1 5 2 g/m2, 嵩密度 0. 1 4 g/ c m3) を作製した。
得られた不織布を温度 3 7 0 °Cに加熱した金属ローラーを用いて圧力
5 8 M P a、 処理時間 1 0秒にて連続的に圧縮処理を行った。
次いで、 この圧縮酸化繊維不織布 (厚さ 0. 3 3 mm、 嵩密度 0. 4
6 g/ c m3) を窒素雰囲気下、 1 4 0 0 °Cで処理時間 1分間で連続的 に焼成した。
得られた炭素繊維不織布の物性を表 8に示す。
比較例 1 0で得られた炭素繊維不織布は、 炭素繊維交差部の扁平度が 0. 1 5 (炭素繊維交差部以外の扁平度が 0. 4 3 ) であり、 目標とす る扁平度の素材が得られなかった。この不織布はガス透過性が悪かった。 比較例 1 1
繊度 2. 5 d t e X、 比重 1.4 3、 コア率 1 5 %、 クリンプ数 3. 5 ケ Z c m、 クリンプ率 1 0 %、 乾強度 2. 1 g/d t e x、 乾伸度 1 7 平均力ッ ト長 5 1 mmの P AN系酸化繊維ステーブルをカード加工した 後、 ウォー夕一ジェッ ト法により不織布 (厚さ 1. 1 mm、 目付 1 6 0 g/m 嵩密度 0. l S gZ c m3) を作製した。
得られた不織布を温度 2 0 0 t:に加熱した金属ローラ一を用いて圧力 2 5 M P a、 処理時間 1秒で連続的に圧縮処理を行った。
次いで、 この圧縮酸化繊維不織布 (厚さ 0. 9 0 mm、 嵩密度 0. 1 1 g / c m3) を窒素雰囲気下、 処理温度 1 4 0 O :、 処理時間 1分間 で連続的に焼成した。
得られた炭素繊維不織布の物性を表 8に示す。
比較例 1 1で得られた炭素繊維不織布は、 厚さが厚く、 電気抵抗値が 高く、 炭素繊維 差部の扁平度は 0. 8 7 (炭素繊維交差部以外の扁平 度は 1. 0 0 ) であり、 目標とする扁平度の炭素繊維シートは得られな かった。
表 7
実施例 1 4 1 5
dtex 2.5 2.5 酸化瞧 比重 1.35 1.35 酸 厚さ mm 1.1 1.1 化 圧縮前 目付 g/m 155 155 繊 嵩密度 g/ /cm 3 0.14 0.14 維 圧縮処理温度 V 200 200 不 圧力 MPa 20 15 織 圧縮後 圧縮率 41 44 布 厚さ mm 0.45 0.49
嵩密度 g/cm 0.34 0.32 炭素化 雰囲気 窒素 窒素 温度 V 1400 1400 目付 g/m2 98 98 炭素繊維 厚さ mm 0.50 0.53 不織布 密度 g/cm3 0.20 0.18
炭素繊維含有率質量% 1UL) 1UU 単賺 交差部 0.32 0.45 扁平度 交差部外 0.75 0.87
X線結晶サイス' nm 1.6 1.6 電気抵抗値 Ω 2.5 2.9 圧縮変形率 % 25 29 風合度 g 15 13 表 8
比較例 1 0 1 1
W dtex 2.5 2.5 酸化賺 比重 1.35 1.43
っァ率 0/
90 15 酸 厚さ mm 1.1 1.1 化 圧縮前 目付 g/m 152 160 g/cm 3 0.14 0.15 不 圧縮処理温度 °c 370 200 織 圧力 MPa 58 25 布 圧縮後 圧縮率 0/
0 30 74 厚さ mm 0.33 0.82 嵩密度 g/cm 0.46 0.20 炭素化 雰囲気
^ 温度 °c 1400 1400 目付 g/m 95 103 厚さ mm 0.35 0.90 灰素繊維 嵩密度 g/cm3 0.27 0.11 不織布 炭素繊維含有率 wt % 100 100
単隱 交差部 0.15 0.87 扁平度 交差部外 0.43 1.00
X線結晶サイス' nm 1.6 1.6 電気抵抗値 Ω 2.9 6.5 ガス透過性 军 良 圧縮変形率 % 60 27 風合度 g 4 13 実施例 1 6
繊度 2. 5 d t e x、 比重 1.3 5、 コア率 5 5 %、 クリンプ数 3. 9 ケ c m、 クリンプ率 1 1 %、乾強度 2. 5 g/d t e x, 乾伸度 24 % の酸化繊維をストレツチブレーキング法によりカッ トし平均カッ ト長 7 5 mmの酸化繊維とした後、 紡績糸 (4 0番手双子、 燃り数 2 5 0回 Z m) を製造し、 これを用いて酸化繊維紡績糸織物を作製した。
この酸化繊維紡績糸織物 (平織、 タテ ョコとも打ち込み本数 1 7本 / c m, 厚さ 0. 9 mm、 目付 2 3 0 gZm2、 嵩密度 0. 2 6 g c m3) を温度 2 0 0 °Cに加熱した金属ローラーを用いて圧力 2 O MP a、 処理時間 1秒で連続的に圧縮処理を行った。
次いで、 この圧縮酸化繊維紡績糸織物 (厚さ 0. 4 5mm、 嵩密度 0. 3 5 g/c m3) を窒素雰囲気下、 1 4 0 0 °Cで処理時間 1分間で連続 的に焼成した。
得られた炭素繊維紡績糸織物の物性を表 9に示す。
表 9
実施例 1 6
繊度 dtex 2.5 酷 繊維 比重 1. :? コア率 0 //0 c
D
4U/2 貝ポ 織り形態 于顯 織物 織り密度 本数/ cm 17
厚さ mm 0.9 目付 g/m つ " \ 嵩密度 g/ノcm 3 0.26 曰
。c 200 圧力 MPa 20 厚さ mm 0.45 圧縮率 o/
To 50 高 £、l¾L g/cm U.51 灰糸 1 L 雰囲気
温度 °c
目付 g/m2 111 灰素繊維 厚さ mm 0.50 紡績糸 rfc ¾&. g/cm - 0.32 織物 炭素繊維含有率質量% 100
単繊維 交差部 0.32 扁平度 交差部外 0.74
X線結晶サイス' nm 1.6 電気抵抗値 Ω 2.5 圧縮変形率 % 23 風合度 g 14

Claims

請求の範囲
1. 厚さ 0. 1 5〜: L . 0 mm、 嵩密度 0. 1 5〜0. 4 5 g c m3, 炭素繊維含有率 9 5質量%以上、 圧縮変形率 1 0〜 3 5 %、 電 気抵抗値 6 πιΩ以下、 風合度 5〜 7 0 gの炭素繊維シート。
2. 繊維交差部分の単繊維の断面形状が扁平であり、 かつ断面の 長軸方向が炭素繊維シート表面と略平行である炭素繊維シート。
3. 繊維交差部分において、 単繊維の断面の最大直径 (L 1 ) と、 単繊維の断面の最小直径 (L 2 ) とで示される単繊維の扁平度 (L 2 L 1 ) が 0. 2〜0. 7である請求の範囲第 2項に記載の炭素繊維シー 卜。
4. 炭素繊維シートの繊維交差部分以外において、 単繊維の扁平 度 (L 2 ZL 1 ) が 0. 7を超える部分を少なくとも含む請求の範囲第 2項に記載の炭素繊維シート。
5. ポリアクリロニトリル系酸化繊維シ一トを焼成する炭素繊維 シ一卜の製造方法において、 ポリァクリロニトリル系酸化繊維シートを 1 5 0〜3 0 0 °C、 1 0〜: L O O MP aの条件下で厚さ方向に圧縮処理 して嵩密度が 0. 4 0〜0. 8 0 gノ c m3、 圧縮率 4 0〜 7 5 %の圧 縮処理をした酸化繊維シートを得、 次いで前記圧縮処理した酸化繊維シ —卜を焼成することを特徴とする請求の範囲第 1項に記載の炭素繊維シ 一卜の製造方法。
6. ポリアクリロニトリル系酸化繊維シートを焼成する炭素繊維 シートの製造方法において、 ポリアクリロニトリル系酸化繊維シ一トに 0. 2〜 5質量%の樹脂を含有させ、 次いで前記樹脂を含有させたポリ アクリロニトリル酸化繊維シートを 1 5 0〜 3 0 0 ° (:、 5〜: L 0 0 MP aの条件下で厚さ方向に圧縮処理して嵩密度が 0. 4 0〜0. 8 0 gZ c m3, 圧縮率 40〜 7 5 %の圧縮処理をした酸化繊維シートを得、 そ の後圧縮処理した前記酸化繊維シー卜を焼成することを特徴とする請求 の範囲第 1項に記載の炭素繊維シー卜の製造方法。
PCT/JP2001/010186 2000-11-24 2001-11-21 Feuille de fibres de carbone et son procede de production WO2002042534A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/181,986 US6812171B2 (en) 2000-11-24 2001-11-21 Carbon fiber sheet and process for production thereof
EP01997581A EP1273685B1 (en) 2000-11-24 2001-11-21 Carbon fiber sheet and method for producing the same
JP2002545230A JP3868903B2 (ja) 2000-11-24 2001-11-21 炭素繊維シート、その製造方法
DE2001629118 DE60129118T2 (de) 2000-11-24 2001-11-21 Kohlenstofffasern und herstellungsverfahren
CA 2397559 CA2397559C (en) 2000-11-24 2001-11-21 Carbon fiber sheet and process for production thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2000-357411 2000-11-24
JP2000357411 2000-11-24
JP2001193650 2001-06-26
JP2001-193650 2001-06-26
JP2001258917 2001-08-29
JP2001-258917 2001-08-29

Publications (1)

Publication Number Publication Date
WO2002042534A1 true WO2002042534A1 (fr) 2002-05-30

Family

ID=27345253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010186 WO2002042534A1 (fr) 2000-11-24 2001-11-21 Feuille de fibres de carbone et son procede de production

Country Status (9)

Country Link
US (1) US6812171B2 (ja)
EP (1) EP1273685B1 (ja)
JP (1) JP3868903B2 (ja)
KR (1) KR100661785B1 (ja)
CN (1) CN1220802C (ja)
AT (1) ATE365820T1 (ja)
CA (2) CA2397559C (ja)
DE (1) DE60129118T2 (ja)
WO (1) WO2002042534A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003081700A1 (fr) * 2002-03-26 2003-10-02 Matsushita Electric Industrial Co., Ltd. Union d'electrode a couche electrolytique, pile a combustible la contenant et son procede de production
JP2004084147A (ja) * 2002-08-29 2004-03-18 Mitsubishi Chemicals Corp 炭素質繊維織布
WO2004031465A1 (ja) * 2002-09-30 2004-04-15 Toray Industries, Inc. アクリル耐炎繊維不織布、炭素繊維不織布、 および、それらの製造方法
JP2004207231A (ja) * 2002-12-11 2004-07-22 Matsushita Electric Ind Co Ltd 燃料電池用電解質膜―電極接合体およびこれを用いた燃料電池の運転方法
JP2004311276A (ja) * 2003-04-09 2004-11-04 Matsushita Electric Ind Co Ltd 高分子膜電極接合体および高分子電解質型燃料電池
WO2005054554A1 (ja) 2003-12-01 2005-06-16 Kureha Corporation 炭素繊維紡績糸およびその織物
WO2006132520A1 (es) 2005-06-09 2006-12-14 Ricardo Grossman Goldscheider Manta ignifuga para la proteccion de personas; muebles e inmuebles al fuego
JP2007294927A (ja) * 2006-03-30 2007-11-08 Kyocera Corp 配線基板、実装構造体、および配線基板の製造方法
US7410719B2 (en) * 2003-03-26 2008-08-12 Toray Industries, Inc. Porous carbon base material, method for preparation thereof, gas-diffusing material film-electrode jointed article, and fuel cell
WO2010090164A1 (ja) 2009-02-04 2010-08-12 三菱レイヨン株式会社 多孔質電極基材、その製造方法、膜-電極接合体、および固体高分子型燃料電池
WO2011004853A1 (ja) 2009-07-08 2011-01-13 三菱レイヨン株式会社 多孔質電極基材及びその製造方法
WO2011065349A1 (ja) 2009-11-24 2011-06-03 三菱レイヨン株式会社 多孔質電極基材およびその製造方法
WO2011065327A1 (ja) 2009-11-24 2011-06-03 三菱レイヨン株式会社 多孔質電極基材、その製法、前駆体シート、膜-電極接合体、および固体高分子型燃料電池
WO2012060258A1 (ja) 2010-11-01 2012-05-10 三菱レイヨン株式会社 多孔質電極基材、その製造方法、多孔質電極基材前駆体シート、膜-電極接合体、および固体高分子型燃料電池
WO2012099036A1 (ja) 2011-01-21 2012-07-26 三菱レイヨン株式会社 多孔質電極基材、その製造方法、膜-電極接合体、固体高分子型燃料電池、前駆体シート、およびフィブリル状繊維
WO2014014055A1 (ja) 2012-07-20 2014-01-23 三菱レイヨン株式会社 多孔質電極基材、その製造方法、膜-電極接合体、及び固体高分子型燃料電池
CN103556543A (zh) * 2013-10-24 2014-02-05 浙江科技学院 一种燃料电池气体扩散层专用高性能碳纸及其制备方法
WO2014181771A1 (ja) 2013-05-10 2014-11-13 三菱レイヨン株式会社 多孔質電極基材、その製造方法および固体高分子型燃料電池
US9705137B2 (en) 2011-01-27 2017-07-11 Mitsubishi Rayon Co., Ltd. Porous electrode substrate, method for manufacturing same, precursor sheet, membrane electrode assembly, and polymer electrolyte fuel cell
US9716278B2 (en) 2012-03-30 2017-07-25 Mitsubishi Chemical Corporation Porous electrode base material, method for manufacturing same, and precursor sheet
JPWO2020213324A1 (ja) * 2019-04-19 2020-10-22

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7470483B2 (en) 2002-12-11 2008-12-30 Panasonic Corporation Electrolyte membrane-electrode assembly for fuel cell and operation method of fuel cell using the same
TWI279471B (en) * 2005-03-25 2007-04-21 Univ Feng Chia Method for manufacturing carbon fiber paper and construction thereof
US7872465B2 (en) * 2005-06-30 2011-01-18 The Boeing Company Apparatus and methods for evaluating material volatility
US20070072504A1 (en) * 2005-09-27 2007-03-29 Zoltek Companies Inc. Surface veil of oxidized PAN fiber
US7937924B2 (en) * 2005-11-16 2011-05-10 Lorica International, Inc. Fire retardant compositions and methods and apparatuses for making the same
US8117815B2 (en) * 2005-11-16 2012-02-21 Ladama, Llc Fire retardant compositions and methods and apparatuses for making the same
TWI296449B (en) * 2006-01-04 2008-05-01 Univ Feng Chia Porous carbon electrode substrates and methods for preparing the same
DE102008004005A1 (de) * 2008-01-11 2009-07-16 CeTech Co., Ltd., Tanzih Leitfähiger Bogen aus Kohlefasern und Verfahren zu seiner Herstellung
CN100588011C (zh) * 2008-05-23 2010-02-03 黄志达 燃料电池用高性能碳纤维电极材料的生产方法
US8785023B2 (en) 2008-07-07 2014-07-22 Enervault Corparation Cascade redox flow battery systems
US7820321B2 (en) 2008-07-07 2010-10-26 Enervault Corporation Redox flow battery system for distributed energy storage
US8236463B2 (en) * 2008-10-10 2012-08-07 Deeya Energy, Inc. Magnetic current collector
CN101734940B (zh) * 2009-11-20 2012-07-25 中南大学 基于压差法快速cvi涂层的炭纸性能改善方法和装置
US8916281B2 (en) 2011-03-29 2014-12-23 Enervault Corporation Rebalancing electrolytes in redox flow battery systems
US8980484B2 (en) 2011-03-29 2015-03-17 Enervault Corporation Monitoring electrolyte concentrations in redox flow battery systems
US9181134B1 (en) 2011-04-27 2015-11-10 Israzion Ltd. Process of converting textile solid waste into graphite simple or complex shaped manufacture
WO2014149192A1 (en) * 2013-03-15 2014-09-25 Graftech International Holdings Inc. Improved electrode for flow batteries
DE102013206983A1 (de) 2013-04-18 2014-10-23 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zur Herstellung von unidirektionalen Kohlenstofffasergelegen
CN107250035B (zh) * 2015-02-27 2019-12-13 日立造船株式会社 碳纳米管高密度集合体及碳纳米管高密度集合体的制造方法
US11168445B2 (en) * 2016-08-10 2021-11-09 Honda Motor Co., Ltd. Carbon fiber sheet and method for manufacturing carbon fiber sheet
US10923723B1 (en) 2017-05-11 2021-02-16 Richard Carl Auchterlonie Electro-conductive polymers of halogenated para-aminophenol, and electrochemical cells employing same
CN107719128B (zh) * 2017-09-29 2024-01-23 江苏天鸟高新技术股份有限公司 碳纤维复合金属材料针刺预制体及其制备方法
CN109940945A (zh) * 2019-04-26 2019-06-28 广东航科新材料有限公司 一种碳纤维复合材料
CN110616493B (zh) * 2019-09-23 2021-09-10 潘魏豪 一种柔性导电碳布的制造方法
US11993031B2 (en) 2021-06-18 2024-05-28 Goodrich Corporation Carbonization shape forming of oxidized PAN fiber preform

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3497318A (en) * 1967-09-01 1970-02-24 Union Carbide Corp Preparation of carbon textiles from polyacrylonitrile base textiles
GB1193263A (en) * 1966-06-28 1970-05-28 Nat Res Dev Carbon Fibres
JPS59173338A (ja) * 1983-03-17 1984-10-01 東海カ−ボン株式会社 炭素繊維織布
US4816327A (en) * 1986-04-07 1989-03-28 E. I. Du Pont De Nemours And Company Fabric made from flat thermoplastic melt impregnated tow
JPH04281037A (ja) * 1991-03-04 1992-10-06 Toray Ind Inc 補強炭素繊維織物およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123662A (ja) * 1985-11-25 1987-06-04 Kureha Chem Ind Co Ltd 燃料電池用電極基板
EP1028099B1 (en) * 1997-10-09 2007-04-25 Ngk Insulators, Ltd. Fibrous composite material and process for producing the same
CA2351379A1 (en) * 1999-09-22 2001-03-29 Mikio Inoue Porous, electrically conductive sheet and method for production thereof
US6503856B1 (en) * 2000-12-05 2003-01-07 Hexcel Corporation Carbon fiber sheet materials and methods of making and using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1193263A (en) * 1966-06-28 1970-05-28 Nat Res Dev Carbon Fibres
US3497318A (en) * 1967-09-01 1970-02-24 Union Carbide Corp Preparation of carbon textiles from polyacrylonitrile base textiles
JPS59173338A (ja) * 1983-03-17 1984-10-01 東海カ−ボン株式会社 炭素繊維織布
US4816327A (en) * 1986-04-07 1989-03-28 E. I. Du Pont De Nemours And Company Fabric made from flat thermoplastic melt impregnated tow
JPH04281037A (ja) * 1991-03-04 1992-10-06 Toray Ind Inc 補強炭素繊維織物およびその製造方法

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7150934B2 (en) 2002-03-26 2006-12-19 Matsushita Electric Industrial Co., Ltd. Electrolyte film electrode union, fuel cell containing the same and process for producing them
WO2003081700A1 (fr) * 2002-03-26 2003-10-02 Matsushita Electric Industrial Co., Ltd. Union d'electrode a couche electrolytique, pile a combustible la contenant et son procede de production
JP2004084147A (ja) * 2002-08-29 2004-03-18 Mitsubishi Chemicals Corp 炭素質繊維織布
WO2004031465A1 (ja) * 2002-09-30 2004-04-15 Toray Industries, Inc. アクリル耐炎繊維不織布、炭素繊維不織布、 および、それらの製造方法
JP2004207231A (ja) * 2002-12-11 2004-07-22 Matsushita Electric Ind Co Ltd 燃料電池用電解質膜―電極接合体およびこれを用いた燃料電池の運転方法
US7410719B2 (en) * 2003-03-26 2008-08-12 Toray Industries, Inc. Porous carbon base material, method for preparation thereof, gas-diffusing material film-electrode jointed article, and fuel cell
JP2004311276A (ja) * 2003-04-09 2004-11-04 Matsushita Electric Ind Co Ltd 高分子膜電極接合体および高分子電解質型燃料電池
US7610743B2 (en) 2003-12-01 2009-11-03 Kureha Corporation Carbon fiber spun yarn and woven fabric thereof
WO2005054554A1 (ja) 2003-12-01 2005-06-16 Kureha Corporation 炭素繊維紡績糸およびその織物
WO2006132520A1 (es) 2005-06-09 2006-12-14 Ricardo Grossman Goldscheider Manta ignifuga para la proteccion de personas; muebles e inmuebles al fuego
JP2007294927A (ja) * 2006-03-30 2007-11-08 Kyocera Corp 配線基板、実装構造体、および配線基板の製造方法
WO2010090164A1 (ja) 2009-02-04 2010-08-12 三菱レイヨン株式会社 多孔質電極基材、その製造方法、膜-電極接合体、および固体高分子型燃料電池
KR20110117214A (ko) 2009-02-04 2011-10-26 미츠비시 레이온 가부시키가이샤 다공질 전극 기재, 그 제조 방법, 막-전극 접합체, 및 고체 고분자형 연료전지
US8927173B2 (en) 2009-02-04 2015-01-06 Mitsubishi Rayon Co., Ltd. Porous electrode substrate, method for producing the same, membrane electrode assembly, and polymer electrolyte fuel cell
US8986907B2 (en) 2009-02-04 2015-03-24 Mitsubishi Rayon Co., Ltd. Porous electrode substrate, method for producing the same, membrane electrode assembly, and polymer electrolyte fuel cell
WO2011004853A1 (ja) 2009-07-08 2011-01-13 三菱レイヨン株式会社 多孔質電極基材及びその製造方法
KR20120039002A (ko) 2009-07-08 2012-04-24 미츠비시 레이온 가부시키가이샤 다공질 전극 기재 및 그의 제조방법
US8574758B2 (en) 2009-07-08 2013-11-05 Mitsubishi Rayon Co., Ltd. Porous electrode substrate and method for producing the same
WO2011065349A1 (ja) 2009-11-24 2011-06-03 三菱レイヨン株式会社 多孔質電極基材およびその製造方法
WO2011065327A1 (ja) 2009-11-24 2011-06-03 三菱レイヨン株式会社 多孔質電極基材、その製法、前駆体シート、膜-電極接合体、および固体高分子型燃料電池
KR20120102721A (ko) 2009-11-24 2012-09-18 미츠비시 레이온 가부시키가이샤 다공질 전극 기재 및 그의 제조방법
US9325016B2 (en) 2010-11-01 2016-04-26 Mitsubishi Rayon Co., Ltd. Porous electrode substrate and process for production thereof, porous electrode substrate precursor sheet, membrane-electrode assembly, and polymer electrolyte fuel cell
US9780383B2 (en) 2010-11-01 2017-10-03 Mitsubishi Chemical Corporation Porous electrode substrate and process for production thereof, porous electrode substrate precursor sheet, membrane-electrode assembly, and polymer electrolyte fuel cell
WO2012060258A1 (ja) 2010-11-01 2012-05-10 三菱レイヨン株式会社 多孔質電極基材、その製造方法、多孔質電極基材前駆体シート、膜-電極接合体、および固体高分子型燃料電池
US9871257B2 (en) 2011-01-21 2018-01-16 Mitsubishi Chemical Corporation Porous electrode substrate, method for manufacturing same, membrane electrode assembly, polymer electrolyte fuel cell, precursor sheet, and fibrillar fibers
WO2012099036A1 (ja) 2011-01-21 2012-07-26 三菱レイヨン株式会社 多孔質電極基材、その製造方法、膜-電極接合体、固体高分子型燃料電池、前駆体シート、およびフィブリル状繊維
US9786923B2 (en) 2011-01-21 2017-10-10 Mitsubishi Chemical Corporation Porous electrode substrate, method for manufacturing same, membrane electrode assembly, polymer electrolyte fuel cell, precursor sheet, and fibrillar fibers
US9825304B2 (en) 2011-01-27 2017-11-21 Mitsubishi Chemical Corporation Porous electrode substrate, method for manufacturing same, precursor sheet, membrane electrode assembly, and polymer electrolyte fuel cell
US9705137B2 (en) 2011-01-27 2017-07-11 Mitsubishi Rayon Co., Ltd. Porous electrode substrate, method for manufacturing same, precursor sheet, membrane electrode assembly, and polymer electrolyte fuel cell
US9716278B2 (en) 2012-03-30 2017-07-25 Mitsubishi Chemical Corporation Porous electrode base material, method for manufacturing same, and precursor sheet
KR20150033659A (ko) 2012-07-20 2015-04-01 미쯔비시 레이온 가부시끼가이샤 다공질 전극 기재, 그의 제조 방법, 막-전극 접합체 및 고체 고분자형 연료 전지
WO2014014055A1 (ja) 2012-07-20 2014-01-23 三菱レイヨン株式会社 多孔質電極基材、その製造方法、膜-電極接合体、及び固体高分子型燃料電池
WO2014181771A1 (ja) 2013-05-10 2014-11-13 三菱レイヨン株式会社 多孔質電極基材、その製造方法および固体高分子型燃料電池
CN103556543A (zh) * 2013-10-24 2014-02-05 浙江科技学院 一种燃料电池气体扩散层专用高性能碳纸及其制备方法
JPWO2020213324A1 (ja) * 2019-04-19 2020-10-22
WO2020213324A1 (ja) * 2019-04-19 2020-10-22 東レ株式会社 ガス拡散電極基材およびその製造方法ならびにガス拡散電極、膜電極接合体および固体高分子形燃料電池
JP7276340B2 (ja) 2019-04-19 2023-05-18 東レ株式会社 ガス拡散電極基材およびその製造方法ならびにガス拡散電極、膜電極接合体および固体高分子形燃料電池
US11757103B2 (en) 2019-04-19 2023-09-12 Toray Industries, Inc. Gas diffusion electrode medium and method for producing the same, gas diffusion electrode, membrane electrode assembly, and polymer electrolyte fuel cell

Also Published As

Publication number Publication date
CN1220802C (zh) 2005-09-28
EP1273685A4 (en) 2006-05-24
CA2397559C (en) 2009-08-25
EP1273685B1 (en) 2007-06-27
CN1401022A (zh) 2003-03-05
CA2641992C (en) 2010-04-13
US6812171B2 (en) 2004-11-02
CA2641992A1 (en) 2002-05-30
DE60129118T2 (de) 2008-02-28
EP1273685A1 (en) 2003-01-08
KR20020073180A (ko) 2002-09-19
ATE365820T1 (de) 2007-07-15
CA2397559A1 (en) 2002-05-30
US20030027471A1 (en) 2003-02-06
JPWO2002042534A1 (ja) 2004-03-25
KR100661785B1 (ko) 2006-12-28
DE60129118D1 (de) 2007-08-09
JP3868903B2 (ja) 2007-01-17

Similar Documents

Publication Publication Date Title
WO2002042534A1 (fr) Feuille de fibres de carbone et son procede de production
JP2016535416A (ja) 化学電池用のセパレータ紙
JP2008204824A (ja) 炭素繊維シート及びその製造方法
JP2008201005A (ja) 炭素繊維シート及びその製造方法
JP2009283259A (ja) 多孔質炭素電極基材
JP2007100241A (ja) 炭素繊維混合酸化繊維フェルト、炭素繊維フェルト、及びそれらの製造方法
JP2002270191A (ja) 炭素電極基材及びその製造方法
JP5317535B2 (ja) 炭素繊維シート及びその製造方法
JP3976580B2 (ja) 高密度耐炎繊維不織布、炭素繊維不織布およびそれらの製造方法
JP2002266217A (ja) 炭素繊維不織布およびその製造方法
JP2003045443A (ja) 高分子電解質型燃料電池電極材用炭素繊維不織布、及びその製造方法
JP4632043B2 (ja) ポリアクリロニトリル系酸化繊維フェルト、炭素繊維フェルト、及びそれらの製造方法
JP4582905B2 (ja) 酸化繊維シート、圧縮酸化繊維シート、それらの製造方法、及び炭素繊維シートの製造方法
JP2005240224A (ja) 高密度耐炎繊維不織布及び炭素繊維不織布、並びにそれらの製造方法
JP4002426B2 (ja) 高分子電解質型燃料電池電極材用炭素繊維紡績糸織物構造体、及びその製造方法
JP3442061B2 (ja) 扁平炭素繊維紡績糸織物構造材
JP4138510B2 (ja) ポリアクリロニトリル系炭素繊維シート及びその製造方法
JP4974700B2 (ja) 炭素繊維シート及びその製造方法
JP3934974B2 (ja) 高嵩密度耐炎繊維紡績糸織物及び炭素繊維紡績糸織物、並びにそれらの製造方法
JP6962924B2 (ja) エネルギー蓄積装置用の薄型高密度不織布セパレータおよびその製造方法
JP2003064539A (ja) 炭素繊維織物、及びその製造方法
JP4446848B2 (ja) 導電性不織布
JP4446849B2 (ja) 導電性不織布
JP4133700B2 (ja) 導電化可能不織布及び導電性不織布
JP2023046012A (ja) 導電性シート

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

ENP Entry into the national phase

Ref document number: 2002 545230

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2397559

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2001997581

Country of ref document: EP

Ref document number: 10181986

Country of ref document: US

Ref document number: 1020027009464

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018049931

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020027009464

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2001997581

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001997581

Country of ref document: EP