WO2002038964A1 - Motor pump - Google Patents

Motor pump Download PDF

Info

Publication number
WO2002038964A1
WO2002038964A1 PCT/JP2001/009680 JP0109680W WO0238964A1 WO 2002038964 A1 WO2002038964 A1 WO 2002038964A1 JP 0109680 W JP0109680 W JP 0109680W WO 0238964 A1 WO0238964 A1 WO 0238964A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
impeller
pump
casing
fixed shaft
Prior art date
Application number
PCT/JP2001/009680
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshio Miyake
Eiji Tsutsui
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corporation filed Critical Ebara Corporation
Priority to AU2002211011A priority Critical patent/AU2002211011A1/en
Publication of WO2002038964A1 publication Critical patent/WO2002038964A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/047Bearings hydrostatic; hydrodynamic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • F04D13/0633Details of the bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • F04D13/064Details of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/041Axial thrust balancing
    • F04D29/0413Axial thrust balancing hydrostatic; hydrodynamic thrust bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/086Structural association with bearings radially supporting the rotor around a fixed spindle; radially supporting the rotor directly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/045Sliding-contact bearings for exclusively rotary movement for axial load only with grooves in the bearing surface to generate hydrodynamic pressure, e.g. spiral groove thrust bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/20Application independent of particular apparatuses related to type of movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans

Definitions

  • the present invention relates to a motor pump, and more particularly, to a motor pump suitable for use in an area with a very small amount of water and a small output, using a motor having a permanent magnet on a motor rotor (for example, a DC brushless motor).
  • a motor having a permanent magnet on a motor rotor for example, a DC brushless motor.
  • positive displacement pumps such as gear pumps and diaphragm pumps are used as pumps incorporated in various devices and used at flow rates of 1 liter or less per minute to several liters per minute. Many.
  • This flow rate range is a region where the value of the specific speed N s is extremely small in the case of a centrifugal pump (non-positive displacement pump).
  • the value of the specific speed N s is 67 (mV)
  • the impeller outer diameter is about 25 mm.
  • a gear pump requires two shafts and two sets of bearings to rotate two gears, and is more complicated and expensive than a centrifugal pump.
  • diaphragm pumps are designed to repeatedly deform a non-metallic flexible diaphragm to send liquid. It is necessary to replace the diaphragm after about an hour of operation. For this reason, when the pump is used by being incorporated into various small devices, there is a problem that maintenance cost is excessively applied.
  • centrifugal motor pump which is suitable for use in the area of very small water volume and small output, replacing the positive displacement motor pump.
  • the centrifugal pump when the centrifugal pump is designed to rotate at higher speed, the specific speed of the larger value can be secured. That is, if a centrifugal pump with a flow rate of 1 liter per minute and a head of 10 meters is designed at a rotation speed of 1,800,000 revolutions per minute, the value of the specific speed Ns is 101 (m The pump efficiency can be expected to be improved to 3 min, m, and min.However, in this case, the outer diameter of the impeller is about 17 mm, and the entire impeller is extremely small, so that the axial thrust load can be supported. It becomes difficult to secure the mounting dimensions of the bearings and the flow area of the impeller suction part.
  • the present invention has been made in view of the above, and is suitable for use in an area with a very small amount of water and a small output, has a relatively simple structure, and can be made compact. It is intended to provide a pump.
  • a motor rotor having a cylindrical shape, a motor rotor having a permanent magnet, being integrally formed with the impeller, and disposed inside the motor stator, and covering the impeller.
  • a pump casing fixed to the open end of the motor casing, wherein a dynamic pressure bearing is provided between a front surface of the impeller and a spiral groove provided on an inner surface of the pump casing facing the front surface of the impeller. It is characterized by comprising.
  • a dynamic pressure bearing (axia) is compactly attached to the end of the motor rotor. Bearing) can be provided, and the bearing structure is simplified.
  • dynamic pressure bearings which are a type of non-contact type bearings, can be expected to have extremely high durability and can also function as a liner, thus reducing the number of parts. Therefore, the design that enables high-speed rotation makes it possible to achieve longer pump life and higher productivity while reducing the size and efficiency of the pump.
  • most of the axial load is absorbed by the permanent magnet of the motor rotor and the magnetic attraction of the motor stator.However, a dynamic pressure bearing is used to reinforce the absorption of the axial load.
  • the spiral groove is provided on a bearing plate fixed to a pump casing.
  • a motor stator having a cylindrical shape
  • a motor rotor having a permanent magnet, formed integrally with the impeller, and disposed inside the motor stator, and covering the impeller.
  • a pump casing fixed to the open end of the motor casing, the center hole provided in the shaft center of the motor rotor, and the pump casing protruding from the inner surface on the side opposite to the open end of the motor casing. It is characterized in that a radial bearing is formed between the fixed shaft and the fixed shaft.
  • the center hole communicates with a communication hole extending from a suction part of the impeller.
  • the handling liquid is applied, for example, to the ceramics on both the fixed side and the rotating side. It can be used for lubrication and cooling of the sliding part of the radial bearing part which is formed by applying a magnetic or Teflon resin coating, etc., and can surely lubricate and cool the sliding part.
  • the structure in which the center hole communicates with the communication hole extending from the suction portion of the impeller can also be used as a so-called balance piston that reduces the axial load (axial thrust load) generated on the motor rotor.
  • a motor rotor having a cylindrical shape, a permanent magnet, a motor rotor formed integrally with the impeller and disposed inside the motor stator, and covering the impeller.
  • a pump casing fixed to the open end of the motor casing, extending along the axis of the motor stator, and extending between the motor casing and the pump casing.
  • the suction port of the pump casing is provided at a position eccentric to the axis of the pump casing.
  • the axis of the suction port is located closer to the ground than the axis of the fixed shaft. It is configured as follows. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a sectional view of a motor pump according to a first embodiment of the present invention.
  • FIG. 2 is a surface view of a bearing plate constituting the dynamic pressure bearing on a side facing the front of the impeller.
  • FIG. 3 is a sectional view of a motor pump according to a second embodiment of the present invention.
  • FIG. 4 is a sectional view of a motor pump according to a third embodiment of the present invention.
  • a motor pump shown in c Figures 1 and 2 show a motor pump of the first embodiment of the present invention, have a cylindrical motor stator 1 0, the motor stator 1 Numeral 0 is integrally embedded in a cup-shaped motor casing 12 having one end closed and the other end opened, for example, by molding a polyester resin.
  • a fixed shaft 14 protruding inward along the axial direction is integrally connected to the motor casing 12 on the inner surface of the motor casing 12 on the side opposite to the opening.
  • the resin mold of the motor stator 10 is, for example, first applied to the inner periphery of the motor stator 10 in a state where the outer peripheral portion of a silicon steel plate or the like is positioned in a mold, and then molded. It is applied to the outer periphery of the motor stator 10 with the inner periphery of the motor stator 10 positioned in the mold.
  • the outer periphery of the motor stator 10 is not molded and painted. May be.
  • a substantially cylindrical motor rotor 20 is disposed inside the motor casing 12, and is disposed inside the motor rotor 20 along the axial direction from the side opposite to the opening of the motor casing 12.
  • a center hole 22 is provided which extends to near the center of the motor rotor 20.
  • a radial bearing portion 24 is formed between the inner peripheral surface of the center hole 22 and the outer peripheral surface of the fixed shaft 14. I have.
  • the inner diameter of the center hole 22 is set to, for example, about 6 mm, and the outer diameter of the fixed shaft 14 is set to be slightly smaller than the inner diameter of the center hole 22, respectively.
  • the ceramics A coating layer 26 is formed by a resin or Teflon resin coating, and a coating layer 28 is formed on the inner peripheral surface of the center hole 22 by a ceramic or Teflon resin coating. , 28 ensure the durability of the fixed shaft 14 and the center hole 22.
  • a tube made of Teflon having excellent slidability may be used.
  • the motor rotor 20 is made of, for example, a polyester resin. Inside the motor rotor 20, a ring-shaped permanent magnet 30 that rotates with the magnetic field generated by the motor stator 10 is provided at a position facing the motor stator 10. It is buried in one.
  • a closed impeller 32 having a front shroud is integrally connected to the motor rotor 20. Further, a small communication hole 34 having a diameter of, for example, about 1.5 mm is provided in the motor rotor 20 to communicate the center hole 22 with the suction portion of the impeller 32.
  • the structure in which the center hole communicates with the communication hole extending from the suction portion of the impeller is a so-called balance piston that reduces the axial load (axial thrust load) generated in the motor rotor 20. Can also be used.
  • a pump casing 44 having a suction nozzle 40 and a discharge nozzle 42, and having a shape of a pump which covers the periphery of the impeller 32. It is attached via a plurality of bolts and the like.
  • the pump casing 44 is made of, for example, a polyester resin, and an O-ring 46 is interposed between a contact portion between the motor casing 12 and the pump casing 44.
  • a bearing plate 50 made of, for example, stainless steel or Teflon resin is disposed at a position facing the front surface of the impeller 32 at the bottom of the pump casing 44 having a force-up shape.
  • a plurality of spiral grooves (spiral groups) 52 having a depth of about 0.01 mm are provided on the surface of the impeller 32 facing the front surface.
  • the bearing plate 50 is attached to the pump casing 44.
  • the pump casing and the bearing plate may be integrally formed of the same material.
  • a compact dynamic bearing (axial bearing) 54 can be provided at the end of the motor rotor 20 and the bearing structure is simplified.
  • the dynamic pressure bearing 54 a type of non-contact bearing, can be expected to have extremely high durability and can also function as a liner, thus reducing the number of parts. Therefore, the pump is designed to be able to rotate at high speeds, while miniaturizing the pump and increasing its efficiency, while extending the service life of the entire pump and improving productivity. Can also be achieved.
  • a dynamic bearing 54 is provided.
  • the motor in this motor pump is a DC brushless motor, and a current is supplied to the motor stator 10 from a power supply lead wire 56, and the motor is driven at a rotation speed of, for example, about 1800 rotations per minute. used.
  • motor pump of this embodiment when current is supplied to motor stator 10 from power supply lead wire 56, motor rotor 20 rotates, and suction from suction nozzle 40 of pump casing 44 is performed.
  • the collected liquid is pressurized by an impeller 32 that rotates integrally with the motor rotor 20, and most of the pressure is discharged from the discharge nozzle 42 to the outside of the pump casing 44.
  • a part of the treated liquid passes through the gap between the outer peripheral surface of the motor rotor 20 and the inner peripheral surface of the motor casing 12 after exiting from the impeller 32, and is guided to the radial bearing portion 24, where The sliding surface of the bearing portion 24 is lubricated and cooled, and then returns to the suction portion of the impeller 32 through the communication hole 34 of the shaft portion of the motor rotor 20.
  • the impeller 32 acting on the motor rotor 20 in the direction of The axial thrust load (axial load) is reduced.
  • a part of the liquid handled flows out of the impeller 32 and is guided to the dynamic pressure bearing 54, and after performing the bearing action as described above, returns to the suction portion of the impeller 32.
  • FIG. 3 is a diagram illustrating a motor pump according to a second embodiment of the present invention.
  • a ceramic rod member 60 is embedded in the inner surface of the motor casing 12 on the side opposite to the opening side so as to extend in the axial direction.
  • the rod member 60 protrudes inward along the axis, and the rod member 60 constitutes a fixed shaft 14.
  • Other configurations are the same as those of the first embodiment.
  • the fixed shaft 14 is made of a ceramic or the like, sufficient strength can be provided as the fixed shaft.
  • FIG. 4 is a diagram showing a motor pump according to a third embodiment of the present invention.
  • a fixed shaft made of ceramic and having a detent portion 62a, for example, having a diameter of about 3 mm, is provided between the motor casing 12 and the pump casing 44. 6, and the fixed shaft 62 is passed through a through-hole 64 extending along the axis of the motor rotor 20 to form a radial bearing portion 66.
  • the suction nozzle 40 of the pump casing 44 is located at a position eccentric to the axis 2 by a distance L.
  • a coating layer 68 is formed by ceramic or Teflon resin coating to ensure durability.
  • Other configurations are the same as those of the first embodiment.
  • suction nozzle 40 of the pump casing 44 is provided on the axis of the fixed shaft 62, it will be difficult to secure the suction passage area, and if the suction passage area is forcibly secured, Undesirable air pockets are created. However, according to this embodiment, such an adverse effect is caused by positioning the suction nozzle 40 of the pump casing 44 at a position eccentric from the axis of the fixed shaft 62 by the distance L. Can be prevented.
  • the shaft center of the suction nozzle 40 provided in the pump casing 44 is closer to the ground than the shaft center of the fixed shaft 62. Be level with the ground at the location. This reduces the flow passage area of the suction portion of the impeller 32 due to the presence of the fixed shaft 62. The amount of air trapped in the suction flow path can be substantially suppressed, and the handled liquid sucked from the suction nozzle 40 is released from the side periphery of the fixed shaft 62 and the impeller 3 It is led to the suction part of 2.
  • the present invention can be used for a motor pump used in a low output area with a very small amount of water, such as a flow rate range of 1 liter or less per minute to several liters.

Abstract

A centrifugal (non-positive displacement) motor pump suitable for use in a small output area with extremely small water volume, rather simple in structure, and small in size, comprising a tubular motor stator (10), a motor rotor (20) having a permanent magnet (30), formed integral with an impeller (32), and disposed inside the motor stator (10), and a pump casing (44) fixed to the opening end part of a motor casing (12) so as to cover the impeller (32), wherein a dynamic pressure bearing (54) is formed between the front face of the impeller (32) and a spiral groove (52) provided in the internal surface of the pump casing (44) opposed to the front face of the impeller (32).

Description

明 細 書 モータポンプ 技術分野  Description Motor pump Technical field
本発明はモータポンプに係り、 特に、 モータ回転子に永久磁石を備え たモータ (例えば直流ブラシレスモータ) を使用し、 極小水量で小出力 の領域での使用に適したモータポンプに関するものである。 背景技術  The present invention relates to a motor pump, and more particularly, to a motor pump suitable for use in an area with a very small amount of water and a small output, using a motor having a permanent magnet on a motor rotor (for example, a DC brushless motor). Background art
一般に、 各種の装置に組み込まれて、 毎分 1 リ ッ トル以下から数リ ッ トルの流量範囲で使用されるポンプと しては、 ギアポンプやダイアフラ ムポンプ等の容積式ポンプが使用される場合が多い。 この流量範囲は、 遠心式ポンプ (非容積式ポンプ) では、 比速度 N sの値が極めて小さな 値となる領域であり、 このような小さな比速度 N sの領域では実際上の ポンプの設計が困難である。 例えば、 流量が毎分 1 リ ッ トル、 揚程が 1 0メー トルの遠心式ポンプを毎分 1 2 0 0 0回転の回転速度で設計した 場合、 比速度 N s の値が 6 7 ( m V m i n , m , m i n—リ となる。 一 般に、 遠心式ポンプの効率は、 比速度 N sの値が 7 0以下になると著し く低下することが知られており、 前述した流量範囲では、 高い効率が期 待できない。 なお、 この場合の羽根車外径は 2 5 m m程度となる。  In general, positive displacement pumps such as gear pumps and diaphragm pumps are used as pumps incorporated in various devices and used at flow rates of 1 liter or less per minute to several liters per minute. Many. This flow rate range is a region where the value of the specific speed N s is extremely small in the case of a centrifugal pump (non-positive displacement pump). Have difficulty. For example, if a centrifugal pump with a flow rate of 1 liter per minute and a head of 10 meters is designed at a rotation speed of 1200 rotations per minute, the value of the specific speed N s is 67 (mV In general, it is known that the efficiency of a centrifugal pump decreases significantly when the value of the specific speed N s becomes 70 or less. In this case, the impeller outer diameter is about 25 mm.
一方、 ギアポンプは、 2つのギアを回転させるために 2つの軸及び 2 組の軸受が必要であり、 遠心式ポンプに比べて構造が複雑であり、 高価 である。 また、 ダイアフラムポンプは、 非金属製のフレキシブルなダイ ャフラムを繰返し変形させて送液するようになっており、 一般に、 数千 時間程度の運転でダイヤフラムを交換する必要がある。 このため、 ボン プを各種の小型装置に組み込んで使用する場合等には、 メ ンテナンスコ ス トが掛かり過ぎるという問題があった。 On the other hand, a gear pump requires two shafts and two sets of bearings to rotate two gears, and is more complicated and expensive than a centrifugal pump. In addition, diaphragm pumps are designed to repeatedly deform a non-metallic flexible diaphragm to send liquid. It is necessary to replace the diaphragm after about an hour of operation. For this reason, when the pump is used by being incorporated into various small devices, there is a problem that maintenance cost is excessively applied.
このため、 極小水量で小出力の領域での使用に適した、 容積式モータ ポンプに替わる遠心式モータポンプの開発が強く望まれていた。  Therefore, there has been a strong demand for the development of a centrifugal motor pump, which is suitable for use in the area of very small water volume and small output, replacing the positive displacement motor pump.
ここで、 遠心式ポンプをより高速回転で設計した場合には、 前記より 大きな値の比速度を確保できる。 即ち、 流量が毎分 1 リ ッ トル、 揚程が 1 0メートルの遠心式ポンプを毎分 1 8 0 0 0回転の回転速度で設計し た場合、 比速度 N s の値は 1 0 1 ( m 3 Z m i n , m, m i n リ となり ポンプ効率の改善が期待できる。 しかしながら、 この場合の羽根車外径 は 1 7 m m程度となり、 羽根車全体も極めて小型になるため、 アキシャ ルスラス ト荷重を支承するアキシャル軸受の取付け寸法の確保や、 羽根 車吸込部の流路面積の確保等が困難になる。 発明の開示 Here, when the centrifugal pump is designed to rotate at higher speed, the specific speed of the larger value can be secured. That is, if a centrifugal pump with a flow rate of 1 liter per minute and a head of 10 meters is designed at a rotation speed of 1,800,000 revolutions per minute, the value of the specific speed Ns is 101 (m The pump efficiency can be expected to be improved to 3 min, m, and min.However, in this case, the outer diameter of the impeller is about 17 mm, and the entire impeller is extremely small, so that the axial thrust load can be supported. It becomes difficult to secure the mounting dimensions of the bearings and the flow area of the impeller suction part.
本発明は上記に鑑みてなされたもので、 極小水量で小出力の領域での 使用に適し、 構造が比較的簡単で、 小型コンパク ト化を図ることができ る遠心式 (非容積式) モータポンプを提供することを目的とする。  The present invention has been made in view of the above, and is suitable for use in an area with a very small amount of water and a small output, has a relatively simple structure, and can be made compact. It is intended to provide a pump.
本発明の第 1の態様は、 筒状のモータ固定子と、 永久磁石を有し羽根 車と一体に成形されて前記モータ固定子の内部に配置されるモータ回転 子と、 前記羽根車を覆うよ うにモータケ一シングの開口端部に固定され るポンプケーシングとを備え、 前記羽根車の前面と、 該羽根車の前面に 対向するポンプケーシングの内面に設けた螺旋溝との間で動圧軸受を構 成したことを特徴とするものである。  According to a first aspect of the present invention, there is provided a motor rotor having a cylindrical shape, a motor rotor having a permanent magnet, being integrally formed with the impeller, and disposed inside the motor stator, and covering the impeller. And a pump casing fixed to the open end of the motor casing, wherein a dynamic pressure bearing is provided between a front surface of the impeller and a spiral groove provided on an inner surface of the pump casing facing the front surface of the impeller. It is characterized by comprising.
これにより、 モータ回転子の端部にコンパク トに動圧軸受 (アキシャ ル軸受) を設けることができ、 軸受構造が単純となる。 しかも、 非接触 型軸受の一種である動圧軸受は、 極めて高い耐久性を期待できるととも に、 ライナリ ングの機能を兼ねることができるため、 部品点数の削減に もつながる。 従って、 高速回転を可能とする設計によってポンプを小型 • 高効率化しながら、 ポンプ全体の長寿命化と生産性の向上も達成する ことができる。 なお、 このポンプは、 アキシャル荷重のほとんどをモー タ回転子の永久磁石とモータ固定子の磁気吸引力で吸収するものである が、 アキシャル荷重の吸収を補強するために動圧軸受が使用される。 本発明の好ましい態様においては、 前記螺旋溝はポンプケーシングに 固定される軸受板に設けられている。 As a result, a dynamic pressure bearing (axia) is compactly attached to the end of the motor rotor. Bearing) can be provided, and the bearing structure is simplified. In addition, dynamic pressure bearings, which are a type of non-contact type bearings, can be expected to have extremely high durability and can also function as a liner, thus reducing the number of parts. Therefore, the design that enables high-speed rotation makes it possible to achieve longer pump life and higher productivity while reducing the size and efficiency of the pump. In this pump, most of the axial load is absorbed by the permanent magnet of the motor rotor and the magnetic attraction of the motor stator.However, a dynamic pressure bearing is used to reinforce the absorption of the axial load. . In a preferred aspect of the present invention, the spiral groove is provided on a bearing plate fixed to a pump casing.
本発明の第 2の態様は、 筒状のモータ固定子と、 永久磁石を有し羽根 車と一体に成形されて前記モータ固定子の内部に配置されるモータ回転 子と、 前記羽根車を覆うよ うにモータケ一シングの開口端部に固定され るポンプケーシングとを備え、 前記モータ回転子の軸心部に設けた中心 穴と、 前記モータケ一シングの反開口端側の内面から突出させた前記中 心穴に嵌合する固定軸との間でラジアル軸受部を構成したことを特徴と するものである。  According to a second aspect of the present invention, there is provided a motor stator having a cylindrical shape, a motor rotor having a permanent magnet, formed integrally with the impeller, and disposed inside the motor stator, and covering the impeller. And a pump casing fixed to the open end of the motor casing, the center hole provided in the shaft center of the motor rotor, and the pump casing protruding from the inner surface on the side opposite to the open end of the motor casing. It is characterized in that a radial bearing is formed between the fixed shaft and the fixed shaft.
これによ り、 羽根車の吸込部内を軸方向に貫通する固定軸をなく して. 羽根車の吸込部の流路面積の確保を容易となし、 しかも、 高速回転であ つてもキヤビテ一シヨ ンを生じることをなく して、 高効率なポンプを実 現できる。  This eliminates the need for a fixed shaft that penetrates through the suction section of the impeller in the axial direction. It is easy to secure the flow path area of the suction section of the impeller, and even when rotating at high speed. A high-efficiency pump can be realized without generating pumping.
本発明の好ましい態様においては、 前記中心穴は、 羽根車の吸込部か ら延びる連通穴に連通している。  In a preferred aspect of the present invention, the center hole communicates with a communication hole extending from a suction part of the impeller.
これにより、 ラジアル軸受部から羽根車の吸込部へ向かう取扱液の流 れを生じさせ、 この取扱液を、 例えば固定側と回転側の両面にセラミ ツ クまたはテフロン樹脂コーティング等を施して構成されるラジアル軸受 部の摺動部の潤滑と冷却に使用して、 該摺動部の潤滑と冷却を確実に行 う ことができる。 また、 中心穴を羽根車の吸込部から延びる連通穴に連 通した構造は、 モータ回転子に生じるアキシャル荷重 (軸スラス ト荷 重) を軽減する所謂バランスピス トンと しても活用できる。 As a result, a flow of the handling liquid from the radial bearing portion toward the suction portion of the impeller is generated, and the handling liquid is applied, for example, to the ceramics on both the fixed side and the rotating side. It can be used for lubrication and cooling of the sliding part of the radial bearing part which is formed by applying a magnetic or Teflon resin coating, etc., and can surely lubricate and cool the sliding part. The structure in which the center hole communicates with the communication hole extending from the suction portion of the impeller can also be used as a so-called balance piston that reduces the axial load (axial thrust load) generated on the motor rotor.
本発明の第 3の態様は、 筒状のモータ固定子と、 永久磁石を有し羽根 車と一体に成形されて前記モータ固定子の内部に配置されるモータ回転 子と、 前記羽根車を覆うよ うにモ一タケ一シングの開口端部に固定され るポンプケーシングとを備え、 前記モータ固定子の軸心に沿って延び、 前記モータケ一シングと前記ポンプケーシングとの間に掛け渡した固定 軸の軸心と偏心した位置にポンプケーシングの吸込口を設けたことを特 徴とするものである。  According to a third aspect of the present invention, there is provided a motor rotor having a cylindrical shape, a permanent magnet, a motor rotor formed integrally with the impeller and disposed inside the motor stator, and covering the impeller. A pump casing fixed to the open end of the motor casing, extending along the axis of the motor stator, and extending between the motor casing and the pump casing. The suction port of the pump casing is provided at a position eccentric to the axis of the pump casing.
これにより、 固定軸の存在によって、 羽根車の吸込部の流路面積が減 少することを防止するとともに、 吸込流路内での空気溜まりの発生を実 質的に抑制することができる。  As a result, it is possible to prevent the flow path area of the suction portion of the impeller from being reduced due to the presence of the fixed shaft, and to substantially suppress the occurrence of air accumulation in the suction flow path.
本発明の好ましい態様においては、 前記固定軸が地面と水平になるよ う据付けて使用する場合に、 前記吸込口の軸心の方が前記固定軸の軸心 より も地面に近い位置に位置するように構成している。 図面の簡単な説明  In a preferred aspect of the present invention, when the fixed shaft is used so as to be horizontal with the ground, the axis of the suction port is located closer to the ground than the axis of the fixed shaft. It is configured as follows. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の第 1の実施の形態のモータポンプの断面図である。 図 2は動圧軸受を構成する軸受板の羽根車前面と対向する側の表面図 である。  FIG. 1 is a sectional view of a motor pump according to a first embodiment of the present invention. FIG. 2 is a surface view of a bearing plate constituting the dynamic pressure bearing on a side facing the front of the impeller.
図 3は本発明の第 2の実施の形態のモータポンプの断面図である。 図 4は本発明の第 3の実施の形態のモータポンプの断面図である。 発明を実施するための最良の形態 FIG. 3 is a sectional view of a motor pump according to a second embodiment of the present invention. FIG. 4 is a sectional view of a motor pump according to a third embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
次に本発明の実施の形態を図面を参照して説明する。  Next, an embodiment of the present invention will be described with reference to the drawings.
図 1および図 2は、 本発明の第 1の実施の形態のモータポンプを示す c 図 1および図 2に示すモータポンプは、 円筒状のモータ固定子 1 0を有 し、 このモータ固定子 1 0は、 例えばポリエステル樹脂のモール ド成形 によって、 一端を閉塞させ他端を開口させたカップ状のモータケ一シン グ 1 2の内部に一体に埋設されている。 このモータケ一シング 1 2の反 開口側内面には、 軸心方向に沿って内方に突出する固定軸 1 4がモータ ケーシング 1 2 と一体に連接されている。 1 and 2, a motor pump shown in c Figures 1 and 2 show a motor pump of the first embodiment of the present invention, have a cylindrical motor stator 1 0, the motor stator 1 Numeral 0 is integrally embedded in a cup-shaped motor casing 12 having one end closed and the other end opened, for example, by molding a polyester resin. A fixed shaft 14 protruding inward along the axial direction is integrally connected to the motor casing 12 on the inner surface of the motor casing 12 on the side opposite to the opening.
このモータ固定子 1 0の樹脂モール ドは、 例えば、 珪素鋼板等の外周 部を金型に位置決めした状態で、 まずモータ固定子 1 0の内周部に施さ れ、 その後、 モール ド成形されたモータ固定子 1 0の内周部を金型に位 置決めした状態で、 モータ固定子 1 0の外周部に施される。 なお、 押込 み圧力の低いポンプにおけるよ うに、 モータケ一シング 1 2の強度があ まり必要ではない場合には、 モータ固定子 1 0の外周部のモールド成形 を省略して塗装を施すよ うにしても良い。  The resin mold of the motor stator 10 is, for example, first applied to the inner periphery of the motor stator 10 in a state where the outer peripheral portion of a silicon steel plate or the like is positioned in a mold, and then molded. It is applied to the outer periphery of the motor stator 10 with the inner periphery of the motor stator 10 positioned in the mold. When the strength of the motor casing 12 is not necessary as in the case of a pump with a low indentation pressure, the outer periphery of the motor stator 10 is not molded and painted. May be.
モータケ一シング 1 2の内部には、 略円柱状のモータ回転子 2 0が配 置され、 このモータ回転子 2 0の内部に、 モータケ一シング 1 2の反開 口側から軸方向に沿って該モータ回転子 2 0のほぼ中央付近まで延びる 中心穴 2 2が設けられている。 そして、 この中心穴 2 2に前記固定軸 1 4を嵌合するこ とで、 中心穴 2 2の内周面と固定軸 1 4の外周面との間 にラジアル軸受部 2 4が構成されている。 この中心穴 2 2の内径は、 例 えば 6 m m程度に、 固定軸 1 4の外径は、 中心穴 2 2の内径よ り僅かに 細くなるよ うにそれぞれ設定され、 固定軸 1 4の外周面には、 セラミ ツ クまたはテフ口ン樹脂コーティングにより コーティング層 2 6が形成さ れ、 中心穴 2 2の内周面には、 セラミ ックまたはテフロン樹脂コーティ ングにより コーティング層 2 8が形成され、 これらコーティング層 2 6 , 2 8により固定軸 1 4及ぴ中心穴 2 2の耐久性が確保されている。 なお コーティング層 2 6 , 2 8の代わりに、 例えば摺動性に優れたテフ口ン 製のチューブを使用しても良い。 A substantially cylindrical motor rotor 20 is disposed inside the motor casing 12, and is disposed inside the motor rotor 20 along the axial direction from the side opposite to the opening of the motor casing 12. A center hole 22 is provided which extends to near the center of the motor rotor 20. By fitting the fixed shaft 14 into the center hole 22, a radial bearing portion 24 is formed between the inner peripheral surface of the center hole 22 and the outer peripheral surface of the fixed shaft 14. I have. The inner diameter of the center hole 22 is set to, for example, about 6 mm, and the outer diameter of the fixed shaft 14 is set to be slightly smaller than the inner diameter of the center hole 22, respectively. The ceramics A coating layer 26 is formed by a resin or Teflon resin coating, and a coating layer 28 is formed on the inner peripheral surface of the center hole 22 by a ceramic or Teflon resin coating. , 28 ensure the durability of the fixed shaft 14 and the center hole 22. Instead of the coating layers 26 and 28, for example, a tube made of Teflon having excellent slidability may be used.
上述の構成により、 下記の羽根車 3 2の吸込部を軸方向に貫通する固 定軸をなく して、 羽根車 3 2の吸込部における流路面積を容易に確保し しかも、 高速回転であってもキヤビテーシヨンを生じることをなく して. 高効率なポンプを実現できる。  With the configuration described above, the fixed shaft that penetrates the suction portion of the impeller 32 below in the axial direction is eliminated, and the flow path area at the suction portion of the impeller 32 is easily secured, and the rotation speed is high. Even without causing cavitation, a highly efficient pump can be realized.
モータ回転子 2 0は、 例えばポリエステル樹脂からなっている。 モー タ回転子 2 0の内部には、 モータ固定子 1 0に対向する位置に、 モータ 固定子 1 0の発生する磁界に伴って回転するリング状の永久磁石 3 0が. モール ド成形によって、 一体に埋設されている。  The motor rotor 20 is made of, for example, a polyester resin. Inside the motor rotor 20, a ring-shaped permanent magnet 30 that rotates with the magnetic field generated by the motor stator 10 is provided at a position facing the motor stator 10. It is buried in one.
モータ回転子 2 0の軸方向の他端には、 フロン トシュラウ ドを備えた クローズ型の羽根車 3 2がモータ回転子 2 0 と一体に連接されてる。 更 に、 モータ回転子 2 0の内部には、 中心穴 2 2 と羽根車 3 2の吸込部と を連通する、 例えば直径が 1 . 5 m m程度の細い連通穴 3 4が設けられ ている。  At the other end of the motor rotor 20 in the axial direction, a closed impeller 32 having a front shroud is integrally connected to the motor rotor 20. Further, a small communication hole 34 having a diameter of, for example, about 1.5 mm is provided in the motor rotor 20 to communicate the center hole 22 with the suction portion of the impeller 32.
これによつて、 ラジアル軸受部 2 4から羽根車 3 2の吸込部へ向かう 取扱液の流れを生じさせ、 この取扱液を、 ラジアル軸受部 2 4のコーテ イング層 2 6 , 2 8からなる摺動部の潤滑と冷却に使用して、 該摺動部 の潤滑と冷却を確実に行うことができる。 また、 中心穴を羽根車の吸込 部から延びる連通穴に連通した構造は、 モータ回転子 2 0に生じるアキ シャル荷重 (軸スラス ト荷重) を軽減する所謂バランスピス トンと して も活用できるようになつている。 As a result, a flow of the handling liquid from the radial bearing portion 24 toward the suction portion of the impeller 32 is generated, and this handling liquid is slid by the coating layers 26, 28 of the radial bearing portion 24. Used for lubrication and cooling of the moving part, it is possible to reliably lubricate and cool the sliding part. The structure in which the center hole communicates with the communication hole extending from the suction portion of the impeller is a so-called balance piston that reduces the axial load (axial thrust load) generated in the motor rotor 20. Can also be used.
モータケ一シング 1 2の開口端部には、 吸込ノズル 4 0 と吐出ノズル 4 2 とを有し、 羽根車 3 2の周囲を覆う力ップ状のポンプ形状をなすポ ンプケ一シング 4 4が複数のボルト等を介して取付けられている。 この ポンプケーシング 4 4は、 例えばポリ エステル樹脂製であり、 モータケ 一シング 1 2 とポンプケーシング 4 4の当接部には、 Oリ ング 4 6が介 装されている。  At the open end of the motor casing 12, there is provided a pump casing 44 having a suction nozzle 40 and a discharge nozzle 42, and having a shape of a pump which covers the periphery of the impeller 32. It is attached via a plurality of bolts and the like. The pump casing 44 is made of, for example, a polyester resin, and an O-ring 46 is interposed between a contact portion between the motor casing 12 and the pump casing 44.
力ップ形状のポンプケーシング 4 4の底部における羽根車 3 2の前面 と対向する位置には、 例えばステンレスまたはテフ口ン樹脂からなる軸 受板 5 0が配置されており、 この軸受板 5 0の羽根車 3 2の前面と対向 する面には、 図 2に示すよ うに、 深さ 0 . 0 1 m m程度の複数の螺旋溝 (スパイ ラルグループ) 5 2が設けられている。 これによつて、 羽根車 3 2を回転軸受、 軸受板 5 0を固定軸受と した動圧軸受 5 4が構成され ている。 つまり、 羽根車 3 2の回転によって、 軸受板 5 0の螺旋溝 5 2 の内周側へ取扱液が移動し、 行き場を失った取扱液が羽根車 3 2を浮上 させるように作用して、 非接触で耐久性高くアキシャル荷重を支承でき るよ うになっている。 なお、 この例では、 ポンプケーシング 4 4に軸受 板 5 0を取付けた例を示しているが、 ポンプケーシングと軸受板を同一 材料にて一体に成形するよ うにしてもよい。  A bearing plate 50 made of, for example, stainless steel or Teflon resin is disposed at a position facing the front surface of the impeller 32 at the bottom of the pump casing 44 having a force-up shape. As shown in FIG. 2, a plurality of spiral grooves (spiral groups) 52 having a depth of about 0.01 mm are provided on the surface of the impeller 32 facing the front surface. This constitutes a dynamic pressure bearing 54 in which the impeller 32 is a rotary bearing and the bearing plate 50 is a fixed bearing. In other words, by the rotation of the impeller 32, the handled liquid moves to the inner peripheral side of the spiral groove 52 of the bearing plate 50, and the handled liquid that has lost its place acts to float the impeller 32, It is durable and can support axial loads without contact. In this example, an example is shown in which the bearing plate 50 is attached to the pump casing 44. However, the pump casing and the bearing plate may be integrally formed of the same material.
これによ り、 モータ回転子 2 0の端部にコンパク トに動圧軸受 (アキ シャル軸受) 5 4を設けることができ、 軸受構造が単純となる。 しかも. 非接触型軸受の一種である動圧軸受 5 4は、 極めて高い耐久性を期待で きると ともに、 ライナリ ングの機能を兼ねることができるため、 部品点 数の削減にもつながる。 従って、 高速回転を可能とする設計によってポ ンプを小型 · 高効率化しながら、 ポンプ全体の長寿命化と生産性の向上 も達成することができる。 Thus, a compact dynamic bearing (axial bearing) 54 can be provided at the end of the motor rotor 20 and the bearing structure is simplified. Moreover, the dynamic pressure bearing 54, a type of non-contact bearing, can be expected to have extremely high durability and can also function as a liner, thus reducing the number of parts. Therefore, the pump is designed to be able to rotate at high speeds, while miniaturizing the pump and increasing its efficiency, while extending the service life of the entire pump and improving productivity. Can also be achieved.
なお、 このモータポンプにおいては、 アキシャル荷重のほとんどはモ ータ回転子 2 0の永久磁石 3 0 とモータ固定子 1 0の磁気吸引力によ り 吸収されるが、 アキシャル荷重の吸収を補強するために動圧軸受 5 4が 設けられている。 また、 このモータポンプにおけるモータは、 直流ブラ シレスモータであり、 電源リー ド線 5 6から電流がモータ固定子 1 0に 供給され、 モータは、 例えば毎分 1 8 0 0 0回転程度の回転速度で使用 される。  In this motor pump, most of the axial load is absorbed by the permanent magnets 30 of the motor rotor 20 and the magnetic attraction of the motor stator 10, but the axial load is reinforced. For this purpose, a dynamic bearing 54 is provided. The motor in this motor pump is a DC brushless motor, and a current is supplied to the motor stator 10 from a power supply lead wire 56, and the motor is driven at a rotation speed of, for example, about 1800 rotations per minute. used.
この実施の形態のモータポンプによれば、 電源リー ド線 5 6からモー タ固定子 1 0に電流を供給すると、 モータ回転子 2 0が回転し、 ポンプ ケーシング 4 4の吸込ノズル 4 0から吸込まれた取极液は、 モータ回転 子 2 0 と一体に回転する羽根車 3 2によって昇圧されて、 その大部分は. 吐出ノズル 4 2からポンプケーシング 4 4の外へ吐出される。 一部の取 扱液は、 羽根車 3 2から出たあとモータ回転子 2 0の外周面とモータケ 一シング 1 2の内周面の隙間を通り、 ラジアル軸受部 2 4に導かれ、 ラ ジアル軸受部 2 4の摺動面の潤滑と冷却を行い、 しかる後、 モータ回転 子 2 0の軸心部の連通穴 3 4を通って羽根車 3 2の吸込部へ戻る。 この とき、 モータ回転子 2 0の反羽根車側の端面には、 羽根車 3 2の吐出圧 より も減圧された圧力が作用するため、 モータ回転子 2 0に働く羽根車 3 2方向への軸スラス ト荷重 (アキシャル荷重) が軽減される。 また一 部の取扱液は、 羽根車 3 2から出たあと動圧軸受 5 4に導かれ、 前述の 通り軸受作用をなした後、 羽根車 3 2の吸込部へ戻る。  According to the motor pump of this embodiment, when current is supplied to motor stator 10 from power supply lead wire 56, motor rotor 20 rotates, and suction from suction nozzle 40 of pump casing 44 is performed. The collected liquid is pressurized by an impeller 32 that rotates integrally with the motor rotor 20, and most of the pressure is discharged from the discharge nozzle 42 to the outside of the pump casing 44. A part of the treated liquid passes through the gap between the outer peripheral surface of the motor rotor 20 and the inner peripheral surface of the motor casing 12 after exiting from the impeller 32, and is guided to the radial bearing portion 24, where The sliding surface of the bearing portion 24 is lubricated and cooled, and then returns to the suction portion of the impeller 32 through the communication hole 34 of the shaft portion of the motor rotor 20. At this time, since a pressure lower than the discharge pressure of the impeller 32 acts on the end face of the motor rotor 20 on the side opposite to the impeller, the impeller 32 acting on the motor rotor 20 in the direction of The axial thrust load (axial load) is reduced. Further, a part of the liquid handled flows out of the impeller 32 and is guided to the dynamic pressure bearing 54, and after performing the bearing action as described above, returns to the suction portion of the impeller 32.
図 3は、 本発明の第 2の実施の形態のモータポンプを示す図である。 図 3に示すモータポンプにおいては、 モータケ一シング 1 2の反開口側 内面に、 例えばセラミ ック製の棒部材 6 0の一端を埋設して軸心方向に 沿って棒部材 6 0を内方に突出させ、 この棒部材 6 0によって固定軸 1 4を構成している。 その他の構成は、 第 1の実施の形態と同様である。 図 3に示す実施の形態によれば、 固定軸 1 4をセラミ ック等で構成する ことで、 固定軸と して十分な強度を持たせることができる。 FIG. 3 is a diagram illustrating a motor pump according to a second embodiment of the present invention. In the motor pump shown in FIG. 3, one end of, for example, a ceramic rod member 60 is embedded in the inner surface of the motor casing 12 on the side opposite to the opening side so as to extend in the axial direction. The rod member 60 protrudes inward along the axis, and the rod member 60 constitutes a fixed shaft 14. Other configurations are the same as those of the first embodiment. According to the embodiment shown in FIG. 3, since the fixed shaft 14 is made of a ceramic or the like, sufficient strength can be provided as the fixed shaft.
図 4は、 本発明の第 3の実施の形態のモータポンプを示す図である。 図 4に示すモータポンプにおいては、 モータケ一シング 1 2 とポンプケ 一シング 4 4 との間に、 例えばセラミ ック製で廻り止め部 6 2 a を有す る、 例えば直径 3 m m程度の固定軸 6 2を掛け渡し、 この固定軸 6 2を モータ回転子 2 0の軸心に沿って延びる貫通孔 6 4内に揷通させてラジ アル軸受部 6 6を構成し、 更に、 この固定軸 6 2の軸心と距離 Lだけ偏 心した位置に、 ポンプケーシング 4 4の吸込ノズル 4 0が位置するよ う に構成している。 モータ回転子 2 0の貫通孔 6 4の内周面には、 耐久性 を確保するため、 セラミ ックまたはテフロン榭脂コ一ティングによ り コ 一ティング層 6 8が形成されている。 その他の構成は、 第 1の実施の形 態と同様である。  FIG. 4 is a diagram showing a motor pump according to a third embodiment of the present invention. In the motor pump shown in FIG. 4, for example, a fixed shaft made of ceramic and having a detent portion 62a, for example, having a diameter of about 3 mm, is provided between the motor casing 12 and the pump casing 44. 6, and the fixed shaft 62 is passed through a through-hole 64 extending along the axis of the motor rotor 20 to form a radial bearing portion 66. The suction nozzle 40 of the pump casing 44 is located at a position eccentric to the axis 2 by a distance L. On the inner peripheral surface of the through hole 64 of the motor rotor 20, a coating layer 68 is formed by ceramic or Teflon resin coating to ensure durability. Other configurations are the same as those of the first embodiment.
固定軸 6 2の軸心上にポンプケーシング 4 4の吸込ノズル 4 0を設け ると、 吸込流路面積の確保が困難となり、 また、 無理に吸込流路面積を 確保しよう とすると吸込流路に不都合な空気溜まりが生じてしまう。 し かしながら、 この実施の形態によれば、 固定軸 6 2の軸心と距離 Lだけ 偏心した位置にポンプケーシング 4 4の吸込ノズル 4 0を位置させるよ うにすることで、 このような弊害を防止することができる。  If the suction nozzle 40 of the pump casing 44 is provided on the axis of the fixed shaft 62, it will be difficult to secure the suction passage area, and if the suction passage area is forcibly secured, Undesirable air pockets are created. However, according to this embodiment, such an adverse effect is caused by positioning the suction nozzle 40 of the pump casing 44 at a position eccentric from the axis of the fixed shaft 62 by the distance L. Can be prevented.
そして、 特に固定軸 6 2が地面と水平方向になるよぅ据付けて使用す る場合に、 ポンプケーシング 4 4に設けた吸込ノズル 4 0の軸心を固定 軸 6 2の軸心より も地面に近い位置で地面と水平になるようにする。 こ れによ り、 固定軸 6 2の存在による羽根車 3 2の吸込部の流路面積の減 少と、 吸込流路での空気溜まりの発生を実質的に抑制することができる, 吸込ノズル 4 0から吸込まれた取扱液は、 固定軸 6 2の側周部からゆつ たり と羽根車 3 2の吸込部へ導かれる。 And, especially when the fixed shaft 62 is installed horizontally so that the fixed shaft 62 is in the horizontal direction, the shaft center of the suction nozzle 40 provided in the pump casing 44 is closer to the ground than the shaft center of the fixed shaft 62. Be level with the ground at the location. This reduces the flow passage area of the suction portion of the impeller 32 due to the presence of the fixed shaft 62. The amount of air trapped in the suction flow path can be substantially suppressed, and the handled liquid sucked from the suction nozzle 40 is released from the side periphery of the fixed shaft 62 and the impeller 3 It is led to the suction part of 2.
以上説明したよ うに、 本発明によれば、 極小水量で小出力の領域での 使用に適し、 耐久性に優れ、 構造が簡単で、 小型 · コンパク トであり、 且つ生産性の良好な高速回転設計の遠心式 (非容積式) ポンプを提供す ることができる。 産業上の利用の可能性  As described above, according to the present invention, it is suitable for use in an area with a very small amount of water and a small output, has excellent durability, has a simple structure, is compact, compact, and has high productivity and high-speed rotation. Designed centrifugal (non-positive displacement) pumps can be provided. Industrial applicability
本発明は、 毎分 1 リ ッ トル以下から数リ ッ トルの流量範囲等の極小水 量で小出力の領域で使用されるモータポンプに利用可能である。  INDUSTRIAL APPLICABILITY The present invention can be used for a motor pump used in a low output area with a very small amount of water, such as a flow rate range of 1 liter or less per minute to several liters.

Claims

請求の範囲 The scope of the claims
1 . 筒状のモータ固定子と、 1. A cylindrical motor stator,
永久磁石を有し、 羽根車と一体に成形されて前記モータ固定子の内部 に配置されるモータ回転子と、  A motor rotor having a permanent magnet, formed integrally with the impeller, and disposed inside the motor stator;
前記羽根車を覆うようにモータケ一シングの開口端部に固定されるポ ンプケ一シングとを備え、  Pump casing fixed to the open end of the motor casing so as to cover the impeller,
前記羽根車の前面と、 該羽根車の前面に対向するポンプケーシングの 内面に設けた螺旋溝との間で動圧軸受を構成したことを特徴とするモー タポンプ。  A motor pump comprising a dynamic pressure bearing formed between a front surface of the impeller and a spiral groove provided on an inner surface of a pump casing facing the front surface of the impeller.
2 . 前記螺旋溝はポンプケーシングに固定される軸受板に設けたことを 特徴とする請求項 1記載のモータポンプ。 2. The motor pump according to claim 1, wherein the spiral groove is provided on a bearing plate fixed to a pump casing.
3 . 筒状のモータ固定子と、 3. A cylindrical motor stator,
永久磁石を有し、 羽根車と一体に成形されて前記モータ固定子の内部 に配置されるモータ回転子と、  A motor rotor having a permanent magnet, formed integrally with the impeller, and disposed inside the motor stator;
前記羽根車を覆うようにモータケ一シングの開口端部に固定されるポ ンプケ一シングとを備え、  Pump casing fixed to the open end of the motor casing so as to cover the impeller,
前記モータ回転子の軸心部に設けた中心穴と、 前記モータケ一シング の反開口端側の内面から突出させた前記中心穴に嵌合する固定軸との間 でラジアル軸受部を構成したことを特徴とするモータポンプ。  A radial bearing portion is formed between a center hole provided in the shaft center portion of the motor rotor and a fixed shaft fitted into the center hole protruding from the inner surface of the motor casing on the side opposite to the open end. A motor pump characterized by the above-mentioned.
4 . 前記中心穴は、 羽根車の吸込部から延びる連通穴に連通しているこ とを特徴とする請求項 3記載のモータポンプ。 4. The motor pump according to claim 3, wherein the center hole communicates with a communication hole extending from a suction portion of the impeller.
5 . 筒状のモータ固定子と、 5. A cylindrical motor stator,
永久磁石を有し、 羽根車と一体に成形されて前記モータ固定子の内部 に配置されるモータ回転子と、  A motor rotor having a permanent magnet, formed integrally with the impeller, and disposed inside the motor stator;
前記羽根車を覆うよ うにモータケ一シングの開口端部に固定されるポ ンプケ一シングとを備え、  A pump casing fixed to an open end of the motor casing so as to cover the impeller;
前記モータ固定子の軸心に沿って延び、 前記モータケ一シングと前記 ポンプケーシングとの間に掛け渡した固定軸の軸心と偏心した位置にポ ンプケ一シングの吸込口を設けたことを特徴とするモータポンプ。  A pump casing suction port is provided at a position which extends along the axis of the motor stator and is eccentric with respect to the axis of the fixed shaft extending between the motor casing and the pump casing. And a motor pump.
6 . 前記固定軸が地面と水平になるよ う据付けて使用する場合に、 前記 吸込口の軸心の方が前記固定軸の軸心より も地面に近い位置に位置する よ うに構成したことを特徴とする請求項 5記載のモータポンプ。 6. When the fixed shaft is installed so as to be horizontal with the ground, it is configured such that the axis of the suction port is located closer to the ground than the axis of the fixed shaft. The motor pump according to claim 5, characterized in that:
PCT/JP2001/009680 2000-11-07 2001-11-06 Motor pump WO2002038964A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002211011A AU2002211011A1 (en) 2000-11-07 2001-11-06 Motor pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000339170A JP2002138990A (en) 2000-11-07 2000-11-07 Motor pump
JP2000-339170 2000-11-07

Publications (1)

Publication Number Publication Date
WO2002038964A1 true WO2002038964A1 (en) 2002-05-16

Family

ID=18814277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009680 WO2002038964A1 (en) 2000-11-07 2001-11-06 Motor pump

Country Status (3)

Country Link
JP (1) JP2002138990A (en)
AU (1) AU2002211011A1 (en)
WO (1) WO2002038964A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10352487A1 (en) * 2003-07-22 2005-02-10 BSH Bosch und Siemens Hausgeräte GmbH Pump with integrated motor
WO2007023014A1 (en) * 2005-08-22 2007-03-01 Robert Bosch Gmbh Centrifugal pump
WO2016016626A3 (en) * 2014-07-28 2016-07-28 Cummins Ltd A Turbine Generator
CN106194763A (en) * 2016-09-20 2016-12-07 浙江工业大学 The self-priming centrifugal pump of high anti-cavitation
WO2018153605A1 (en) * 2017-02-24 2018-08-30 Robert Bosch Gmbh Gear pump for a waste heat recovery system
FR3065496A1 (en) * 2017-04-25 2018-10-26 Saint Jean Industries NOYE ROTOR MOTOR PUMP
CN110735794A (en) * 2018-07-19 2020-01-31 安捷伦科技有限公司 Vacuum pump system with oil-lubricated vacuum pump
JP2021173262A (en) * 2020-04-30 2021-11-01 ダイハツ工業株式会社 Electric pump

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190562A (en) * 2002-12-11 2004-07-08 Matsushita Electric Ind Co Ltd Small vortex pump
JP2007211691A (en) * 2006-02-09 2007-08-23 Toyota Motor Corp Water pump
JP5326745B2 (en) * 2009-03-31 2013-10-30 株式会社Ihi Turbine generator
KR101307956B1 (en) 2012-01-04 2013-09-12 캄텍주식회사 Water Pump for Vehicle
KR101250969B1 (en) 2012-02-20 2013-04-05 캄텍주식회사 Water pump for vehicle
DE102013208476A1 (en) * 2013-05-08 2014-11-13 Ksb Aktiengesellschaft pump assembly
JP2015220910A (en) * 2014-05-20 2015-12-07 株式会社不二工機 Magnet rotor type motor and pump including the same
JP6373059B2 (en) * 2014-05-21 2018-08-15 株式会社不二工機 Magnet rotor type motor and pump including the motor
EP3006742B1 (en) * 2014-10-08 2021-12-01 Pierburg Pump Technology GmbH Motor vehicle electric coolant pump
CN106438501B (en) * 2016-10-28 2019-11-22 浙江远邦流体科技有限公司 The force self-balanced centrifugal pump of integral type rotor axial, control method and terminal
JP7123059B2 (en) * 2017-08-29 2022-08-22 テルモ株式会社 pumping equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59165594U (en) * 1983-04-20 1984-11-06 株式会社荏原製作所 Sealless pump
JPS62148795U (en) * 1986-03-12 1987-09-19
JPS6435098A (en) * 1987-07-30 1989-02-06 Ebara Corp Non-volumetric type pump
JPH01249996A (en) * 1988-03-31 1989-10-05 Ebara Corp Blower for high temperature gas
JPH02136594A (en) * 1988-11-15 1990-05-25 Ebara Corp Pump device
JPH10311293A (en) * 1997-05-13 1998-11-24 Japan Servo Co Ltd Canned motor pump

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59165594U (en) * 1983-04-20 1984-11-06 株式会社荏原製作所 Sealless pump
JPS62148795U (en) * 1986-03-12 1987-09-19
JPS6435098A (en) * 1987-07-30 1989-02-06 Ebara Corp Non-volumetric type pump
JPH01249996A (en) * 1988-03-31 1989-10-05 Ebara Corp Blower for high temperature gas
JPH02136594A (en) * 1988-11-15 1990-05-25 Ebara Corp Pump device
JPH10311293A (en) * 1997-05-13 1998-11-24 Japan Servo Co Ltd Canned motor pump

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10352487A1 (en) * 2003-07-22 2005-02-10 BSH Bosch und Siemens Hausgeräte GmbH Pump with integrated motor
WO2007023014A1 (en) * 2005-08-22 2007-03-01 Robert Bosch Gmbh Centrifugal pump
WO2016016626A3 (en) * 2014-07-28 2016-07-28 Cummins Ltd A Turbine Generator
US10605111B2 (en) 2014-07-28 2020-03-31 Cummins Ltd. Turbine generator with an internal rotor support shaft
CN106194763A (en) * 2016-09-20 2016-12-07 浙江工业大学 The self-priming centrifugal pump of high anti-cavitation
WO2018153605A1 (en) * 2017-02-24 2018-08-30 Robert Bosch Gmbh Gear pump for a waste heat recovery system
FR3065496A1 (en) * 2017-04-25 2018-10-26 Saint Jean Industries NOYE ROTOR MOTOR PUMP
WO2018197517A1 (en) 2017-04-25 2018-11-01 Saint Jean Industries Motorised pump with an embedded rotor
CN110735794A (en) * 2018-07-19 2020-01-31 安捷伦科技有限公司 Vacuum pump system with oil-lubricated vacuum pump
JP2021173262A (en) * 2020-04-30 2021-11-01 ダイハツ工業株式会社 Electric pump

Also Published As

Publication number Publication date
AU2002211011A1 (en) 2002-05-21
JP2002138990A (en) 2002-05-17

Similar Documents

Publication Publication Date Title
WO2002038964A1 (en) Motor pump
US6171078B1 (en) Centrifugal pump
US8262369B2 (en) Submersible pump unit
US6612815B2 (en) Electrically powered coolant pump
EP1124302A3 (en) Divisible lamination brushless pump-motor having fluid cooling system
JP2003522868A (en) Fluid pump
WO2005052365A3 (en) Pump design for circulating supercritical carbon dioxide
KR20200012498A (en) Water pump including supporting structure for impeller
US9587638B2 (en) Drive unit for a submersible oil pump, with a fluid passage allowing the fluid in the motor housing to be discharged to the ambient enviroment
JP2000303986A5 (en)
US20070274848A1 (en) Motor-pump assembly
US20150030479A1 (en) Wet rotor pump comprising a permanent magnet
JPWO2003033914A1 (en) Pump device
CN1212334A (en) Axial-flow pump
JP2008008185A (en) Pump
JPH04136497A (en) Turbo vacuum pump
JP2005214192A (en) Gas friction pump
JP2005171825A5 (en)
JP2002138986A (en) Motor pump
JP2017184570A (en) Motor, linear motion type motor pump, and water supply device
JPH09264292A (en) High temperature motor pump
CN113994100A (en) Pump, in particular for a liquid circuit in a vehicle
CN219101681U (en) Bearing, rotor assembly and centrifugal water pump
JPH04112994A (en) Turbo pump
JP4168519B2 (en) Externally driven line pump

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase