WO2002035603A1 - Wafer prover device, and ceramic substrate used for wafer prover device - Google Patents

Wafer prover device, and ceramic substrate used for wafer prover device Download PDF

Info

Publication number
WO2002035603A1
WO2002035603A1 PCT/JP2001/003770 JP0103770W WO0235603A1 WO 2002035603 A1 WO2002035603 A1 WO 2002035603A1 JP 0103770 W JP0103770 W JP 0103770W WO 0235603 A1 WO0235603 A1 WO 0235603A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer prober
ceramic substrate
wafer
guard electrode
chuck top
Prior art date
Application number
PCT/JP2001/003770
Other languages
French (fr)
Japanese (ja)
Inventor
Atsushi Ito
Yasuji Hiramatsu
Yasutaka Ito
Original Assignee
Ibiden Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000318064A external-priority patent/JP3681628B2/en
Application filed by Ibiden Co., Ltd. filed Critical Ibiden Co., Ltd.
Publication of WO2002035603A1 publication Critical patent/WO2002035603A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • G01R31/2831Testing of materials or semi-finished products, e.g. semiconductor wafers or substrates

Definitions

  • Wafer prober device and ceramic substrate used in wafer prober device are Wafer prober device and ceramic substrate used in wafer prober device
  • the present invention relates to a wafer prober device and a ceramic substrate which are mainly used in the semiconductor industry, include a thin and light wafer prober having excellent temperature rise / fall characteristics, and do not malfunction.
  • Semiconductors are extremely important products required in various industries. Semiconductor chips are manufactured by, for example, slicing a silicon single crystal to a predetermined thickness to produce a silicon wafer, and then applying various types of silicon wafers to the silicon wafer. It is manufactured by forming circuits and the like.
  • a probing process is required to measure and check whether the electrical characteristics operate as designed at the silicon wafer stage, and a so-called prober is used for that purpose. .
  • a wafer prober having a chuck top made of metal such as stainless steel or stainless steel is disclosed.
  • a silicon wafer is placed on a wafer prober, a probe card having tester pins is pressed against the silicon wafer, and a continuity test is performed by applying a voltage while heating and cooling.
  • the thickness of the chuck top must be as thick as about 15 mm.
  • the reason why the chuck top is made thicker is that a thin metal plate is pressed by the tester pin of the probe card, and the metal plate of the chuck top is warped or distorted. Damaged silicon wafer This is because they are damaged or tilted.
  • the inventors of the present invention have conducted intensive studies to solve the above problems, and as a result, instead of a metal chuck top, a rigid ceramic has been used as a substrate, a conductor layer has been provided on the surface thereof, and this has been used as a chuck top conductor. It was recalled that the ceramic substrate was provided with a heating means.
  • the ceramic substrate has a high dielectric constant
  • a silicon wafer is placed on the chuck top conductor layer, and when a tester pin with a probe force with tester pins is pressed against this silicon wafer, a continuity test is performed.
  • a stray capacitor was generated in the measurement circuit due to the high dielectric property of the ceramic substrate, and noise was generated due to the stray capacitor, causing a malfunction of the wafer prober device.
  • the present invention has been made in view of the above-described problems, and can cancel a storage capacitor interposed in a measurement circuit, so that noise due to the storage capacitor does not occur and no malfunction occurs.
  • An object of the present invention is to provide a wafer prober device and a ceramic substrate used in the wafer prober device.
  • a chuck top conductor layer is formed on a surface of a ceramic substrate, and a wafer prober having a guard electrode disposed on the ceramic substrate (hereinafter, a chuck top conductor layer is formed on the surface thereof). And a ceramic substrate on which a guard electrode is disposed) and a power source device including a power supply, A wafer prober device, wherein a voltage is applied by the power supply so that the chuck top conductor layer and the guard electrode have substantially the same potential.
  • the ceramic substrate of the present invention is characterized in that a chuck top conductor layer and a guard electrode are respectively disposed on both main surfaces thereof, and a ground electrode is disposed on the guard electrode via an insulator.
  • This is a ceramic substrate used in a wafer prober device.
  • the ceramic substrate of the present invention is used in the above-described wafer prober device, and specifically functions as a stage for probing a semiconductor wafer (a so-called chuck top). As described above, the ceramic substrate is a component of the wafer prober device, and therefore will be described below together with the wafer prober device.
  • FIG. 1 is a cross-sectional view schematically showing an example of a wafer prober device including a wafer prober of the present invention.
  • FIG. 2 is a plan view of the wafer prober shown in FIG.
  • FIG. 3 is a bottom view of the wafer prober shown in FIG.
  • FIG. 4 is a sectional view taken along line AA of the wafer prober shown in FIG.
  • FIG. 5 is a cross-sectional view schematically showing one example of a wafer prober constituting the wafer prober device of the present invention.
  • FIG. 6 is a cross-sectional view schematically showing one example of a wafer prober constituting the wafer prober device of the present invention.
  • FIG. 7 is a cross-sectional view schematically showing one example of a wafer prober constituting the wafer prober device of the present invention.
  • FIG. 8 is a cross-sectional view schematically showing one example of a wafer prober constituting the wafer prober device of the present invention.
  • FIG. 9 is a cross-sectional view schematically showing a case where the wafer prober used in the present invention is combined with a support.
  • FIG. 10 shows (a) a combination of the wafer prober used in the present invention with another support.
  • FIGS. 12A to 12G are cross-sectional views schematically showing a part of the manufacturing process of the wafer prober used in the present invention. Explanation of reference numerals
  • a wafer prober device includes a wafer prober having a chuck top conductor layer formed on a surface of a ceramic substrate, and a guard electrode disposed on the ceramic substrate, and a wafer prober device including a power supply. A voltage is applied by the power supply so that the chuck top conductor layer and the guard electrode have substantially the same potential.
  • Approximately means that the potential difference between the chuck top conductor layer and the guard electrode is within 10% of the potential of the chuck top conductor layer.
  • a voltage is applied to the chuck top conductor layer formed on the surface of the ceramic substrate and the guard electrode provided on the ceramic substrate so as to have the same potential.
  • An intervening stray capacitor can be canceled, and generation of noise due to the stray capacitor can be prevented.
  • no malfunction occurs in the wafer prober device.
  • a rigid ceramic substrate is used, and a guard electrode and a ground electrode or a ground electrode are disposed on the ceramic substrate, these have a reinforcing effect, and are provided by the tester pins of the probe card. Even when the chuck top is pressed, the chuck top does not warp, and the thickness of the chuck top can be made smaller than that of metal.
  • the thickness of the chuck top can be made smaller than that of a metal, even if the ceramic has a lower thermal conductivity than the metal, the heat capacity is reduced as a result, and the temperature rise and temperature fall characteristics can be improved.
  • FIG. 1 is a conceptual diagram schematically showing an embodiment of a wafer prober device including a wafer prober of the present invention.
  • 2 is a plan view of the wafer prober shown in FIG. 1
  • FIG. 3 is a bottom view thereof
  • FIG. 4 is a cross-sectional view of the wafer prober shown in FIG.
  • the wafer prober i 01 constituting this wafer prober device has a circular shape in plan view.
  • a concentric groove 7 is formed on the surface (adsorption surface) of the ceramic substrate 3, and a plurality of suction holes 8 for sucking a silicon wafer are provided in a part of the groove 7.
  • the chuck top conductor layer 2 for connecting to the electrode of the silicon wafer is formed in a circular shape on most of the ceramic substrate 3 including 7.
  • a guard electrode 5 and a ground electrode 6 are provided inside the ceramic substrate 3, and the guard electrode 5 is connected to a constant voltage power supply via through holes 16, external terminal pins (not shown), and wiring. 3 Connected to 1.
  • a heating element 41 having a concentric circular shape in plan view as shown in FIG. 3 is provided on the bottom surface of the ceramic substrate 3 for controlling the temperature of the silicon wafer.
  • the external terminal pin 191 is connected and fixed.
  • the guard electrode 5 is an electrode provided to cancel the stray capacitor interposed in the measurement circuit due to the ceramic substrate having a relatively high dielectric constant. (That is, the same potential as the ground potential of the chuck top conductor layer 2 in FIG. 1). That is, a voltage of 100 V is normally applied between the ground electrode 6 and the chuck top conductor layer 2 and between the duland electrode 6 and the guard electrode 5, and the chuck top conductor layer 2 The same ground potential is applied to the guard electrode 5 and the guard electrode 5 to cancel the stray capacitor.
  • the ground electrode 6 is provided for canceling noise from the temperature control means, and is grounded.
  • a predetermined voltage (V 2 ) is applied to the heating element 41 to generate heat to a predetermined temperature. Have been.
  • the voltage applied to the heating element 41 is DC.
  • the guard electrode 5 and the ground electrode 6 are formed inside the ceramic substrate 3, but the guard electrode and the round electrode are provided on the surface of the ceramic substrate. It may be.
  • FIG. 8 shows a chuck substrate in which a chuck top conductor layer and a guard electrode are provided on both main surfaces of a ceramic substrate, respectively, and a ground electrode is provided on the guard electrode via an insulator. It is sectional drawing which shows typically.
  • a chuck top conductor layer 72 is formed on the suction surface, and a guard electrode 75 is formed on the bottom surface. Ceramic ⁇ 77 such as anolemina is formed on the guard electrode 75. Arranged and placed on ceramic plate 7 7 A ground electrode 76 is provided.
  • the ceramic plate 77 is connected via an insulating layer 74 formed on the ceramic substrate 73, and between the ceramic substrate 73 and the ceramic plate 77 is insulated from the guard electrode 75.
  • the suction hole 78 is formed so as to penetrate the ceramic substrate 73, the insulating layer 74 and the ceramic plate 77.
  • the insulating layer 74 is formed, for example, by applying an inorganic adhesive such as silica sol to the bottom surface of a ceramic substrate, and then stacking a ceramic plate 77 thereon and subjecting the ceramic plate to heat treatment. Has properties and adhesive strength.
  • a heating element 71 is provided inside.
  • the heating element may be provided in contact with the ground electrode via an insulator such as silicon rubber, resin, or ceramic.
  • the wafer prober (ceramic substrate) configured as described above has the same function as the wafer prober (ceramic substrate) shown in FIG.
  • the wafer prober constituting the wafer prober device of the present invention has, for example, a configuration as shown in FIGS.
  • each member constituting the wafer prober device and other embodiments of the wafer prober device of the present invention will be sequentially described in detail.
  • the ceramic substrate 3 constituting the wafer prober is provided with the guard electrode 5 for canceling the storage capacitor and the ground electrode 6 for canceling noise from the temperature control means.
  • these conductor layers are provided in a lattice shape as shown in FIG.
  • the adhesion between the ceramics above and below the conductor layer can be improved, and cracks do not occur even when a thermal shock is applied, and peeling does not occur at the interface between the guard electrode 5, the ground electrode 6 and the ceramic. is there.
  • the portion of the lattice where the conductor is not formed may be rectangular as shown in FIG. 4, or may be circular or elliptical. If the non-conductor-formed portion is rectangular, a radius may be provided at the corner.
  • guard electrode 5 and the ground electrode 6 examples include copper, titanium, chromium, and nickel. Kel, noble metals (gold, silver, platinum, etc.), at least one selected from refractory metals such as tungsten and molybdenum, or at least one selected from conductive ceramics such as tungsten carbide and molybdenum force Can be used. It is preferable that at least a part of the guard electrode 5 and the Z or the ground electrode 6 is made of the conductive ceramic.
  • the thickness of the shield electrode 5 and the ground electrode 6, l ⁇ 2 0 M m is desirable. If the thickness of these electrodes is less than 1, the resistance will increase, while if it exceeds 2, the thermal shock resistance will decrease.
  • the constant voltage power supplies 31, 32, 33, 81, 82, and 83 are not particularly limited, and a commonly used device for generating a constant voltage can be used.
  • the constant-voltage power supplies 31 and 81 are inserted between the guard electrodes 5 and 75 and the ground electrodes 6 and 76, and between the chuck top conductor layers 2 and 72 and the ground electrodes 6 and 76. These voltages are controlled. Further, another constant voltage power supply 33, 83 is connected to the tester pins of the probe card 601 to control the voltage of the probe card 601.
  • the constant voltage power supplies 31, 32, and 33 are used.
  • a constant current power supply can be used instead of these constant voltage power supplies. .
  • the ceramic substrate used in the wafer prober device of the present invention is desirably at least one selected from the group consisting of ceramics such as nitride ceramics, carbide ceramics and oxide ceramics.
  • nitride ceramic examples include metal nitride ceramics, for example, aluminum nitride, silicon nitride, boron nitride, titanium nitride, and the like.
  • carbide ceramic examples include metal carbide ceramics, for example, silicon carbide, zirconium carbide, titanium carbide, tantalum carbide, tansten carbide, and the like.
  • oxide ceramic examples include metal oxide ceramics, such as alumina, zirconia, cordierite, and mullite.
  • These ceramics may be used alone or in combination of two or more.
  • nitride ceramics and carbide ceramics are more preferable than oxide ceramics. This is because the thermal conductivity is high.
  • Aluminum nitride is the most preferable among the nitride ceramics. This is because the thermal conductivity is as high as 18 O W / m ⁇ K.
  • the above ceramic contains 100 to 200 ppm of carbon. This is because the electrode pattern in the ceramic is concealed and high radiant heat is obtained.
  • the carbon may be one or both of crystalline or non-detectable amorphous by X-ray diffraction.
  • the thickness of the ceramic substrate of the chuck top in the present invention needs to be thicker than the chuck top conductor layer, and specifically, desirably 1 to 1 Omm.
  • a chuck top conductor layer is formed on the surface (adsorption surface) of the ceramic substrate because the back surface of the silicon wafer is used as an electrode.
  • the thickness of the chuck top conductor layer is preferably 1 to 20 m. If the ratio is less than 1 / ⁇ 1, the resistance becomes too high to act as an electrode, while if it exceeds 20 ⁇ , the conductor tends to peel off due to the stress of the conductor.
  • the chuck top conductor layer for example, at least one metal selected from high melting point metals such as copper, titanium, chromium, nickel, noble metals (gold, silver, platinum, etc.), tungsten, and molybdenum can be used. it can.
  • high melting point metals such as copper, titanium, chromium, nickel, noble metals (gold, silver, platinum, etc.), tungsten, and molybdenum
  • the chuck top conductor layer may be a porous body made of metal or conductive ceramic.
  • a porous body it is not necessary to form a groove for suction and suction as described later, and it is possible to not only prevent damage to the wafer due to the presence of the groove, but also to uniformly suction and suction the entire surface. It is because it can realize.
  • a metal sintered body can be used as such a porous body.
  • the thickness can be 1 to 200 ⁇ .
  • solder or brazing material is used for joining the porous body and the ceramic substrate. It is desirable that the chuck top conductor layer contains nickel. This is because the hardness is high and the tester pin is hardly deformed even when pressed. In addition, migration is difficult in the chuck top conductor layer containing nickel.
  • the chuck top conductor layer for example, Sputtering, titanium, molybdenum, and nickel are sputtered in this order, and nickel is further deposited by electroless plating or electrolytic plating. And the like.
  • titanium, molybdenum, and nickel may be sputtered in this order, and copper and nickel may be further deposited by electroless plating. This is because the resistance of the chuck top electrode can be reduced by forming the copper layer.
  • titanium and copper may be sputtered in this order, and nickel may be deposited thereon by electroless plating or electroless plating.
  • Titanium and chromium can improve the adhesion with ceramic, and molybdenum can improve the adhesion with nickel.
  • the thickness of titanium and chromium is 0.1 to 0.5 /: m
  • the thickness of molybdenum is 0.5 to 7.0 ⁇
  • the thickness of nickel is 0.4 to 2.5 ⁇ .
  • a noble metal layer gold, silver, platinum, palladium is formed on the surface of the chuck top conductor layer.
  • the noble metal layer can prevent contamination due to migration of the base metal.
  • the thickness of the noble metal layer is desirably 0.01 to 15 / xm.
  • the present invention it is desirable to provide a temperature control means on the ceramic substrate. This is because the conduction test of the silicon wafer can be performed while heating or cooling.
  • the temperature control means may be a Peltier element in addition to the heating element 41 shown in FIG.
  • an outlet for a refrigerant such as air may be provided as a cooling means.
  • a plurality of heating elements may be provided.
  • the pattern of each layer be formed so as to complement each other, and that the pattern be formed on any layer when viewed from the heating surface.
  • the structures are staggered with respect to each other.
  • the heating element examples include a sintered body of metal or conductive ceramic, metal foil, and gold. And the like.
  • the metal sintered body at least one selected from tungsten and molybdenum is preferable. This is because these metals are relatively hard to oxidize and have a sufficient resistance value to generate heat.
  • the conductive ceramic at least one selected from carbides of tungsten and molybdenum can be used.
  • a heating element when a heating element is formed outside the ceramic substrate, it is desirable to use a noble metal (gold, silver, palladium, platinum) or nickel as the metal sintered body. Specifically, silver, silver-palladium, or the like can be used.
  • the metal particles used in the metal sintered body may be spherical, scaly, or a mixture of spherical and scaly.
  • a metal oxide may be added to the metal sintered body.
  • the reason for using the metal oxide is to make the nitride ceramic or the carbide ceramic adhere to the metal particles.
  • the metal oxide improves the adhesion between the nitride ceramic or the carbide ceramic and the metal particles, an oxide film is slightly formed on the surface of the metal particles and the surface of the nitride ceramic or the carbide ceramic. It is considered that these oxide films are sintered and integrated through the metal oxide, and the metal particles and the nitride ceramic or the carbide ceramic adhere to each other.
  • the metal oxide for example, lead oxide, zinc oxide, silica, boron oxide (B 2 0 3), alumina, said thoria, at least one selected from titania good preferable. This is because these oxides can improve the adhesion between the metal particles and the nitride ceramic or the carbide ceramic without increasing the resistance value of the heating element.
  • the metal oxide is 0.1% by weight or more and 10% by weight with respect to the metal particles. /. It is desirable to be less than. This is because the resistance value does not become too large, and the adhesion between the metal particles and the nitride ceramic or the carbide ceramic can be improved.
  • lead oxide, zinc oxide, silica, boron oxide (B 2 0 3), alumina, Germany thoria, ratio of titania in case of the 1 0 0 parts by weight of the total amount of metal oxides, oxidation lead 1 ⁇ 10 parts by weight, silica is 1 ⁇ 30 parts by weight, boron oxide is 5 ⁇ 50 parts by weight, zinc oxide is 20 ⁇ 70 parts by weight, alumina is 1 ⁇ 10 parts by weight, yttria is 1 ⁇ 5 parts by weight 0 parts by weight, preferably 1 to 50 main parts of titania.
  • the sum of these is 100 times It is desirable that the amount be adjusted within a range not exceeding a part by mass. This is because these ranges are ranges in which the adhesion to the nitride ceramic can be particularly improved.
  • the heating element When the heating element is provided on the surface of the ceramic substrate, it is desirable that the surface of the heating element be covered with a metal layer 410 (see FIG. 12 (e)).
  • the heating element is a sintered body of metal particles, and when exposed, is easily oxidized, and this oxidation changes the resistance value. Therefore, oxidation can be prevented by coating the surface with a metal layer.
  • the thickness of the metal layer is preferably 0.1 to 10 / m. This is because the heating element can be prevented from being oxidized without changing the resistance value of the heating element.
  • the metal used for the coating may be a non-oxidizing metal. Specifically, at least one selected from gold, silver, palladium, platinum, and nickel is preferable. Of these, nickel is more preferred.
  • the heating element needs a terminal to connect to the power supply, and this terminal is attached to the heating element via solder, but nickel prevents heat diffusion of the solder.
  • Kovar terminal pins can be used as connection terminals.
  • the heating element When the heating element is formed inside the heater plate, no coating is required since the heating element surface is not oxidized. When the heating element is formed inside the heater plate, a part of the surface of the heating element may be exposed.
  • the metal foil used as the heating element it is preferable to use a nickel foil or a stainless steel foil which is patterned by etching or the like to form a heating element.
  • the patterned metal foil may be bonded with a resin film or the like.
  • the metal wire examples include a tungsten wire and a molybdenum wire.
  • a Peltier element is used as the temperature control means, it is advantageous that both heat generation and cooling can be performed by changing the direction of current flow.
  • the Peltier element is formed by connecting p-type and n-type thermoelectric elements 440 in series and bonding them to a ceramic plate 41 or the like.
  • Peltier element examples include a silicon-germanium-based material, a bismuth-antimony-based material, and a lead / tellurium-based material.
  • the suction surface of the wafer prober used in the present invention has grooves 7 and air as shown in FIG. It is desirable that the suction hole 8 is formed. A plurality of suction holes 8 are provided to achieve uniform suction. This is because the silicon wafer W can be suctioned by placing the silicon wafer W thereon and sucking air from the suction holes 8.
  • a heating element 41 is provided on the bottom surface of a ceramic substrate 3, and a guard electrode 5 is provided between the heating element 41 and the chuck top conductor layer 2.
  • Prober device that combines a wafer prober 101 with a layer and a ground electrode 6 layer, respectively, with a constant voltage power supply 31 etc., as shown in Fig. 5, flat inside the ceramic substrate 3
  • a wafer prober 201 having a configuration in which a guard electrode 5 and a ground electrode 6 are provided between the heating element 42 and the chuck top conductor layer 2 is provided with a constant voltage power supply or a constant current.
  • a wafer prober device combined with a power supply (not shown). As shown in FIG.
  • Guard electrode 5 and g A wafer prober device in which a wafer prober 301 provided with a ground electrode 6 is combined with a constant voltage power supply or a constant current power supply (not shown), as shown in FIG. 7, a Peltier element 4 4 (thermoelectric element (Composed of 440 and a ceramic substrate 441) are formed outside the ceramic substrate 3, and a guard electrode 5 and a ground electrode 6 are provided between the Peltier element 44 and the chuck top conductor layer 2.
  • Wafer prober 401 is combined with a constant voltage power supply or a constant current power supply (not shown). Each wafer prober always has a groove 7 and a suction hole 8.
  • the wafer prober device of the present invention has a chuck top conductor layer 72 and a guard electrode 75 on both main surfaces of a ceramic substrate 73, respectively.
  • a wafer prober device in which a wafer prober 501 having a configuration in which a ground electrode 76 is disposed via a ceramic ⁇ 77 as an insulator is combined with a constant voltage power supply 81 or the like.
  • the heating elements 42, 43, 71 are formed inside the ceramic substrates 3, 73 as shown in FIGS. 1 to 8 (FIGS. 5, 6, 8), and the ceramics are formed. Since the guard electrode 5 and the ground electrode 6 (Figs. 1 to 7) are formed inside the circuit board 3, connection parts (through holes) 16 and 17 to connect these to external terminals are provided. 18, 87 are required.
  • the through holes 16, 17, 18, and 87 extend from near the ends of the guard electrode 5 and the ground electrode 6, are exposed at the bottom of the ceramic substrate through blind holes 180, and have external terminal pins 19, 18. 190 may be connected, or exposed through a blind hole (not shown) near the side surface, and connected by an external terminal.
  • Snorre-holes 16, 17, 18, and 87 are formed by filling a refractory metal such as tungsten paste or molybdenum paste, or a conductive ceramic such as tungsten carbide or molybdenum carbide.
  • a refractory metal such as tungsten paste or molybdenum paste
  • a conductive ceramic such as tungsten carbide or molybdenum carbide.
  • connection portions (through holes) 16, 17, 18, and 87 is desirably 0.1 to 1 Omm. This is because cracks and distortion can be prevented while preventing disconnection. External terminal pins are connected using these through holes 16, 17, 18, and 87 as connection pads (see Fig. 12 (g)).
  • a through hole may be provided in the dary sheet by punching or the like. After the ceramic substrate is created, sand blasting, drilling, or the like is performed. A blind hole may be formed. Connection is made with solder or brazing material. Silver brazing, palladium brazing, aluminum brazing or gold brazing are used as brazing materials. Au—Ni alloy is desirable for gold brazing. This is because Au—Ni alloy has excellent adhesion to tungsten.
  • the ratio of Au_Ni is preferably [81.5 to 82.5 (weight./.)] And [18.5 to 17.5 (weight ° / 0 )].
  • the thickness of the Au—Ni layer is preferably 0.1 to 50 m. This is because the range is sufficient to secure the connection.
  • the Au—Cu alloy deteriorates, but the Au—Ni alloy has no such deterioration and is advantageous. is there.
  • the amount of impurity elements in the Au—Ni alloy is desirably less than 1 part by weight when the total amount is 100 parts by weight.
  • thermocouple can be embedded in a ceramic substrate as needed. This is because the temperature of the heating element is measured with a thermocouple, and the temperature can be controlled by changing the voltage and current based on the data.
  • the size of the junction of the metal wires of the thermocouple is the same as the strand diameter of each metal wire, or It should be larger and 0.5 mm or less. With such a configuration, the heat capacity of the junction is reduced, and the temperature is accurately and quickly converted to a current value. As a result, the temperature controllability is improved and the temperature distribution on the suction surface of the wafer is reduced.
  • thermocouple examples include K-type, R-type, B-type, S-type, E-type, J-type, and T-type thermocouples, as described in J Jt S—C—1602 (1980). .
  • Type K is a combination of NiZCr alloy and Ni alloy
  • Type R is a combination of Pt-13% Rh alloy and Pt
  • Type B is Pt-30% Rh alloy and Pt-65% Combination of Rh alloy
  • S type is Pt—combination of 10% Rh alloy and Pt
  • E type is ⁇ 11 1: Combination of alloy and 011 ZN i alloy
  • J type is Fe and CuZN i alloy
  • the T type is a combination of Cu and Cu / Ni alloy.
  • FIG. 9 is a cross-sectional view schematically showing a support 11 for installing the wafer prober used in the present invention having the above-described configuration.
  • the support base 11 has a refrigerant outlet 12 formed therein, and the refrigerant is blown from the refrigerant inlet 14. Further, air is sucked from the suction port 13 and the silicon wafer (not shown) placed on the wafer prober is sucked into the groove 7 through the suction hole 8.
  • FIG. 10A is a longitudinal sectional view schematically showing another example of the support base
  • FIG. 10B is a sectional view taken along line BB in FIG. 10A.
  • the support base 21 is provided with a large number of support columns 15 so that the wafer prober is not warped by the pressing of the tester pins of the probe card.
  • the support can be made of aluminum alloy, stainless steel, or the like.
  • the support bases 11 and 21 are provided with wires and terminals (not shown) for taking out the wires from the guard electrode 5, the ground electrode 6, and the heating element 41. Assemble a wafer prober device for conducting a continuity test on a silicon wafer by connecting it to a constant voltage power supply or the like (not shown) using the above method.
  • a voltage of 100 V is applied between the ground electrode 6 and the chuck top conductor layer 2 and between the ground electrode and the guard electrode 5, and the same is applied to the chuck top conductor layer 2 and the guard electrode 5.
  • a ground potential By applying a ground potential, an example of a method of manufacturing a wafer prober (ceramic substrate) constituting the wafer prober apparatus of the present invention will be described with reference to the cross-sectional views shown in FIGS.
  • a green sheet 30 is obtained by mixing a ceramic powder such as an oxide ceramic, a nitride ceramic, and a carbide ceramic with a binder and a solvent.
  • a ceramic powder such as an oxide ceramic, a nitride ceramic, and a carbide ceramic
  • a binder and a solvent for example, aluminum nitride, silicon carbide and the like can be used, and if necessary, a sintering aid such as yttria may be added.
  • the binder at least one selected from an acrylic binder, ethyl cellulose, butyl cellulose-based solve, and polybutyl alcohol is desirable.
  • the solvent is preferably at least one selected from ⁇ -terbineol and glycol.
  • a paste obtained by mixing these is shaped into a sheet by a doctor blade method to produce a green sheet 30.
  • the green sheet 30 may be provided with a through hole for inserting a support pin of a silicon wafer and a concave portion for burying a thermocouple as needed.
  • the through hole and the recess can be formed by punching or the like.
  • the thickness of the green sheet 30 is preferably about 0.1 to 5 mm.
  • a guard electrode and a ground electrode are printed on the green sheet 30.
  • Printing is performed so as to obtain a desired aspect ratio in consideration of the shrinkage ratio of the green sheet 30, thereby obtaining a guard electrode print 50 and a ground electrode print 60.
  • the printed body is formed by printing a conductive paste containing conductive ceramic, metal particles, and the like.
  • Tungsten or molybdenum carbide is most suitable as the conductive ceramic particles contained in these conductive pastes. This is because it is not easily oxidized and the thermal conductivity is not easily reduced.
  • the metal particles for example, tungsten, molybdenum, platinum, nickel, and the like can be used.
  • the average particle size of the conductive ceramic particles and metal particles is preferably 0.1 to 5 / zm. These particles are too large or too small to print the paste.
  • a paste 85 to 97 parts by weight of metal particles or conductive ceramic particles, at least one kind of binder selected from acrylic, ethyl cellulose, butyl cellulose solvent and polybutyl alcohol 1.5 to 10
  • holes formed by punching or the like are filled with a conductive paste to obtain through-hole prints 160 and 170.
  • a green sheet 30 having prints 50, 60, 160, and 170 and a green sheet 30 having no print are laminated.
  • the reason why the green sheet 30 having no printed body is laminated on the heat generating body forming side is to prevent the end face of the through hole from being exposed and being oxidized during firing for forming the heat generating body. If the heating element is to be baked while the end face of the through hole is exposed, it is necessary to sputter a metal that is difficult to oxidize, such as Eckel, and more preferably to coat it with Au-Ni gold brazing. You may.
  • the laminate is heated and pressed to sinter the green sheet and the conductive paste.
  • the heating temperature is preferably from 1,000 to 2,000 ° C.
  • the pressurization is preferably from 10 to 2 OMPa.
  • the heating and pressurization are performed in an inert gas atmosphere. Argon, nitrogen, and the like can be used as the inert gas. In this step, through holes 16 and 17, guard electrode 5 and ground electrode 6 are formed.
  • grooves 7 are provided on the surface of the sintered body.
  • the groove 7 is formed by a drill, a sandblast, or the like.
  • a conductive paste is printed on the bottom surface of the sintered body and fired to produce a heating element 41.
  • the adsorption surface (groove forming surface) is sputtered with titanium, molybdenum, nickel, etc., and then electroless nickel plated.
  • the backing conductor layer 2 is provided.
  • a protective layer 410 is also formed on the surface of the heating element 41 by electroless nickel plating or the like.
  • a suction hole 8 penetrating from the groove 7 to the bottom surface and a blind hole 180 for connecting an external terminal are provided.
  • the inner wall of the blind hole 180 be made conductive, and that the made inner wall be connected to a guard electrode, a ground electrode, or the like.
  • the heating temperature is preferably from 200 to 500 ° C.
  • External terminals 19 and 190 are also provided in the blind hole 180 through a brazing filler metal. Furthermore, if necessary, a bottomed hole can be provided and a thermocouple can be embedded therein.
  • alloys such as silver-lead, lead-tin, and bismuth soot can be used.
  • the thickness of the solder layer is desirably 0.1 to 50 ⁇ m. This is because the range is sufficient to secure the connection by soldering.
  • the wiring from the constant voltage power supply 31 is connected to the external terminal 19 connected to the guard electrode 5 via a socket or the like, and similarly, the chuck top conductor layer 2, the heating element 41, the ground electrode 6,
  • the wafer prober device is assembled by connecting the wiring from the probe card 60 1 and the like to the constant voltage power supplies 31, 32, and 33.
  • the wafer prober 101 (see FIG. 1) is taken as an example.
  • the heating element may be printed on a green sheet.
  • a guard plate, a metal plate as a ground electrode, and a metal wire as a heating element may be embedded in ceramic powder and sintered.
  • the Peltier element when manufacturing the wafer prober 401 (see Fig. 7), the Peltier element must be joined via a sprayed metal layer.
  • a heating element is printed on a dur- ing sheet to form a ceramic substrate, and a guard electrode is formed on the bottom surface.
  • the ceramic plate on which the electrodes are provided may be joined with an inorganic adhesive.
  • Aluminum nitride powder manufactured by Tokuyama Corporation, average particle size: 1.100 weight parts, yttria (average particle size: 0.4 ⁇ ), 4 weight parts, acrylic binder: 11.5 weight parts, dispersant: 0.5 weight
  • a green sheet having a thickness of 0.47 mm was formed by a doctor blade method using a composition obtained by mixing 53 parts by weight of alcohol consisting of 1 part of ethanol and 1 part of ethanol with ethanol.
  • tungsten particles having an average particle diameter of 3 ⁇ 100 parts by weight of tungsten particles having an average particle diameter of 3 ⁇ , 1.9 parts by weight of an acrylic binder, 3.7 parts by weight of a terbineol solvent, and 0.2 parts by weight of a dispersant are mixed to form a conductive paste. did.
  • a grid-shaped guard electrode printed body 50 and a ground electrode printed body 60 were printed and printed on the green sheet by screen printing using the conductive paste.
  • conductive paste B was filled in through holes for through holes for connection with terminal pins.
  • a laminated body was produced by unifying with a pressure of 8 MPa (see Fig. 11 ( a )).
  • the laminate was degreased in nitrogen gas at 600 ° C for 5 hours, and hot-pressed at 1890 ° C and a pressure of 15 MPa for 3 hours to obtain an aluminum nitride plate having a thickness of 4 mm.
  • the obtained plate was cut into a circular shape having a diameter of 23 Oram to obtain a ceramic plate (see FIG. 11 (b)).
  • the size of through holes 16 and 17 is The diameter was 3. Omm and the depth was 3. Omm.
  • the thickness of the guard electrode 5 and the ground electrode 6 was 10 ⁇ , the position of the guard electrode 5 was 0.2 mm from the suction surface, and the position of the duland electrode 6 was 3.0 nam from the suction surface.
  • the heating element 41 was printed on the surface facing the suction surface.
  • a conductive paste was used.
  • the conductive paste used was Solvent PS 603D manufactured by Tokuka Chemical Laboratory, which is used to form through holes in printed wiring boards.
  • This conductive paste is a silver-zinc lead paste, and 100 parts by weight of silver is a metal oxide composed of zinc oxide, zinc oxide, silica, boron oxide, and alumina (each weight ratio is 5Z55Z1 OZ25-5). 7.5 parts by weight.
  • the silver was scaly with an average particle size of 4.5 ⁇ m.
  • the heater plate on which the conductive paste was printed was heated and baked at 780 ° C. to sinter silver and lead in the conductive paste and to bake it on the ceramic substrate 3. Further, the heater plate was immersed in an electroless nickel plating bath composed of an aqueous solution containing 3 Og / l of nickel sulfate, 30 gZl of boric acid, 30 gZl of ammonium chloride, and 60 gZl of Rossier salt, and the silver sintered body 41 A nickel layer 410 having a thickness of 1 ⁇ and a boron content of 1% by weight or less was deposited on the surface. Thereafter, the heater plate was annealed at 120 for 3 hours.
  • the heating element made of a sintered body of silver had a thickness of 5 / im, a width of 2.4 mm, and a sheet resistivity of 7.7 ⁇ square (Fig. 11 (d)).
  • a titanium layer, a molybdenum layer, and a nickel layer were sequentially formed on the surface where the grooves 7 were formed by sputtering.
  • a device for sputtering SV-4540 manufactured by Japan Vacuum Engineering Co., Ltd. was used.
  • the sputtering conditions were as follows: atmospheric pressure: 0.6 Pa, temperature: 100 ° C, power: 200 W.
  • Sputtering time was adjusted for each metal within the range of 30 seconds to 1 minute.
  • the thickness of the obtained film was 0.3 m for the titanium layer, 2 m for the molybdenum layer, and 1 ⁇ m for the nickel layer from the image of the X-ray fluorescence spectrometer.
  • the heating element surface does not conduct current and is not covered with electrolytic nickel plating.
  • thermocouples for temperature control were buried in the recesses to obtain a wafer probe heater 101.
  • the wafer prober 101 was placed on a stainless steel support having the cross-sectional shape shown in FIG. 9 via a heat insulating material 10 made of ceramic fiber (trade name of ibiden).
  • the support table 11 has a cooling gas injection nozzle 12 for adjusting the temperature of the wafer prober 101 and sucking air from the suction port 13 to suck the silicon wafer.
  • the support 11 has a guard electrode 5, a ground electrode 6, and a heating element 41. Since wiring and terminals (not shown) for taking out these wirings are provided, connection to a constant voltage power supply and the like (not shown) is performed using these wirings and the like, and a silicon wafer is provided. A wafer prober device capable of conducting a continuity test was assembled.
  • a voltage of 100 V is applied between the ground electrode and the chuck top conductor layer 2 and between the ground electrode and the guard electrode 5, and the same ground potential is applied to the chuck top conductor layer 2 and the guard electrode 5. Gave.
  • Aluminum nitride powder manufactured by Tokuyama Corporation, average particle size 1.1 ⁇
  • yttria average particle diameter 0.4;! M
  • acrylyl binder 11.5 weight parts
  • tungsten particles having an average particle diameter of 3 jum 100 parts by weight of tungsten particles having an average particle diameter of 3 jum, 1.9 parts by weight of an acrylic binder, 3.7 parts of an ⁇ -terbineol solvent, and 0.2 parts by weight of a dispersant are mixed to form a conductive paste.
  • tungsten particles having an average particle diameter of 3 jum 1.9 parts by weight of an acrylic binder, 3.7 parts of an ⁇ -terbineol solvent, and 0.2 parts by weight of a dispersant are mixed to form a conductive paste.
  • a grid-shaped printed body for a guard electrode and a printed body for a ground electrode were printed on a green sheet by screen printing using this conductive paste. Further, the heating element was printed as a concentric pattern as shown in FIG.
  • conductive paste B was filled in the through-holes for through-holes for connection with terminal pins.
  • this laminate was degreased in nitrogen gas at 600 ° C. for 5 hours, Hot pressing was performed at a pressure of 15 MPa for 3 hours to obtain a 3 mm-thick aluminum nitride plate. This was cut into a circular shape having a diameter of 23 O mm to obtain a ceramic plate. The size of the through hole was 2. Omm in diameter and 3. Omm in depth.
  • the thickness of the guard electrode 5 and the durand electrode 6 is 6 ⁇ m
  • the formation position of the guard electrode 5 is 0.7 mm from the suction surface
  • the formation position of the ground electrode 6 is 1.4 -mm from the suction surface.
  • the formation position of the heating element was 2.8 mm from the adsorption surface.
  • Titanium, molybdenum, and nickel layers were formed on the surface where the grooves 7 were formed by sputtering.
  • SV-4540 manufactured by Japan Vacuum Engineering Co., Ltd. was used as a device for sputtering.
  • Sputtering conditions were as follows: atmospheric pressure: 0.6 Pa, temperature: 100 V, power: 200 W.
  • Sputtering time was adjusted from 30 seconds to 1 minute for each metal.
  • the obtained film showed 0.5 // m for titanium, 4 / m for molybdenum, and 1.5 / x iri for nickel from the image of the fluorescent X-ray analyzer.
  • An electroless nickel plating bath consisting of an aqueous solution containing nickel sulfate 3 O gZl, boric acid 30 gZl, ammonium chloride 30 g Z1, mouthshell salt 60 g / 1
  • the ceramic plate 3 obtained in (6) is immersed to deposit a nickel layer having a thickness of 7 ⁇ m and a boron content of 1% by weight or less on the surface of the metal layer formed by sputtering. For 3 hours.
  • electroless gold plating solution consisting of 2 g / 1 potassium gold cyanide, 75 gZ1 salt ammonium salt, 50 g / I sodium taenoate and 10 g / 1 sodium hypophosphite on the surface. It was immersed at 93 ° C for 1 minute to form a 1 ⁇ m thick gold-plated layer on the nickel plating layer.
  • An air suction hole 8 was formed from the groove 7 to the bottom surface by drilling, and a blind hole 180 for exposing the through holes 16 and 17 was provided.
  • This blind holes 1 8 0 N i - A u alloys (. A u 8 1. 5 wt / 0, N il 8. 4 wt%, impurities 0.1 wt%) using gold braze consisting of 9 7 0 Heat reflow at ° C to make Kovar external Terminal pins 19 and 190 were connected. External terminals 19 and 190 can be made of W.
  • thermocouples for temperature control were buried in the recesses to obtain a wafer prober heater 201.
  • the wafer prober 201 was placed on a stainless steel support having a cross-sectional shape as shown in FIG.
  • the support base 11 is formed with a support column 15 for preventing the wafer prober from warping, and is configured to be able to suck air from the suction port 13 to suck a silicon wafer.
  • a wafer prober device capable of conducting a continuity test of a silicon wafer by assembling with a constant voltage power supply or the like (not shown) using the wiring or the like was assembled.
  • a grid-like electrode was formed by punching a tungsten foil having a thickness of 10 ⁇ .
  • Two pieces of grid-like electrodes they serve as guard electrode 5 and ground electrode 6, respectively
  • tungsten wire were aluminum nitride powder (manufactured by Tokuyama, average particle size 1.1 ⁇ ) 100 parts by weight, yttria ( Average particle size 0.4 ⁇ ) Along with 4 parts by weight, put in a mold and hot-press in nitrogen gas at 189 ° C and a pressure of 15 MPa for 3 hours to obtain a 3 mm thick aluminum nitride A plate was obtained. This was cut into a circular shape having a diameter of 23 Omm to obtain a plate-like body.
  • Example 2 The steps (5) to (10) of Example 2 were performed on this plate-like body to obtain a wafer prober 301, and a wafer prober 301 was drawn in the same manner as in Example 1.
  • the wafer was mounted on the support 11 shown in FIG. 9 and a wafer blower device was assembled in the same manner as in Example 1.
  • a voltage of 100 V is applied between the ground electrode and the chuck top conductor layer 2 and between the ground electrode and the guard electrode 5, and the same ground is applied to the chuck top conductor layer 2 and the guard electrode 5.
  • An electric potential was applied.
  • Example 1 After performing (1) to (5) and (8) to (10) in Example 1, nickel was further sprayed on the surface facing the adsorption surface, and thereafter, a lead-tellurium-based Peltier device The wafer prober 401 was obtained, and the wafer prober 401 was placed on the support base 11 shown in FIG. 9 in the same manner as in Example 1, and the wafer prober 401 was mounted in the same manner as in Example 1. The device was assembled.
  • a voltage of 100 V is applied between the ground electrode and the chuck top conductor layer 2 and between the ground electrode and the guard electrode 5, and the same ground is applied to the chuck top conductor layer 2 and the guard electrode 5. An electric potential was applied.
  • a wafer prober was manufactured in the same manner as in Example 3 except for the matters or conditions described below.
  • a silicon carbide powder having an average particle diameter of 1.0 ⁇ 100 parts by weight of a silicon carbide powder having an average particle diameter of 1.0 ⁇ was used, and two grid-like electrodes (each serving as a guard electrode 5 and a ground electrode 6) were used. and, the surface of tetraethoxysilane 1 0 wt ° / 0, hydrochloric 0. 5 wt% and water 8 9.
  • the wafer prober 401 obtained in the fifth embodiment was placed on the support 11 shown in FIG. 9 in the same manner as in the first embodiment, and the wafer prober apparatus was operated in the same manner as in the first embodiment. Was assembled.
  • d- alumina powder manufactured by Tokuyama, average particle size: 1.5 Aim
  • acrylic binder 1 100 parts by weight of d- alumina powder (manufactured by Tokuyama, average particle size: 1.5 Aim) for producing a wafer prober, acrylic binder 1 1.
  • the firing temperature was set at 1000.
  • Example 6 Next, the wafer prober obtained in Example 6 was placed on the support 11 shown in FIG. 9 as in Example 1, and a wafer prober device was assembled in the same manner as in Example 1. Was.
  • Example 7 Production of wafer prober including porous chuck top conductor layer and assembly of wafer prober device
  • Tungsten powder having an average particle diameter of 3 ⁇ is placed in a disk-shaped molding jig and hot-pressed in nitrogen gas at a temperature of 18903 ⁇ 4 at a pressure of 15 ⁇ a for 3 hours to obtain a diameter of 20 Omm and a thickness of 20 Omm.
  • a 110 m tungsten porous check top conductor layer was obtained.
  • Example 2 Next, the same steps as (1) to (4) and (5) to (7) in Example 1 were performed to obtain a ceramic substrate having a guard electrode, a ground electrode, and a heating element.
  • a ceramic substrate having a guard electrode, a ground electrode, and a heating element.
  • the semiconductor wafer is uniformly adsorbed on the chuck top conductor layer.
  • the wafer prober obtained in Example 7 was placed on the support 11 shown in FIG. 9 in the same manner as in Example 1, and a wafer prober device was assembled in the same manner as in Example 1.
  • Example 1 was a wafer prober device assembled in the same manner as in Example 1.
  • a voltage of 100 V is applied between the ground electrode and the chuck top conductor layer 2 and between the ground electrode and the guard electrode 5, and the same ground is applied to the chuck top conductor layer 2 and the guard electrode 5. An electric potential was applied.
  • Example 1 After manufacturing a wafer prober in the same manner as in Example 1, a wafer prober apparatus was assembled in the same manner as in Example 1.
  • a non-defective silicon wafer W is placed on the wafer prober manufactured in the above example and the comparative example placed on the support table, as shown in FIG. Then, the probe card 601 was pressed to perform a continuity test to check for malfunction. The results are shown in Table 1 below.
  • the wafer prober device of the present invention since a voltage is applied so that the chuck top conductor layer and the guard electrode have substantially the same potential, the stray capacitor interposed in the measurement circuit is removed. It is possible to provide a wafer prober device that can cancel, does not generate noise due to the storage capacitor, and does not malfunction.
  • the ceramic substrate used in the wafer prober of the present invention is the ceramic substrate used in the above-described wafer prober device. By using this ceramic substrate, noise due to the stray capacitor does not occur, and malfunctions occur. It is possible to provide a wafer prober device that does not generate any.

Abstract

A wafer prover device which is capable of canceling stray capacitors existing in measuring circuits and hence free from noise and malfunction due to stray capacitors, characterized by comprising a wafer prover having a chuck top conductor layer formed on the surface of a ceramic substrate and a guard electrode disposed on the ceramic substrate, and a power source, wherein the power source applies voltage such that the chuck top conductor layer and the guard electrode are at substantially the same potential.

Description

ウェハプローバ装置およびウェハプローバ装置に使用されるセラミック基板  Wafer prober device and ceramic substrate used in wafer prober device
技術分野 Technical field
本発明は、 主に半導体産業において使用され、 薄くて軽く、 昇温降温特性に優 れるウェハプローバを含み、 誤動作のないウェハプローバ装置おょぴセラミック 基板に関する。 背景技術  The present invention relates to a wafer prober device and a ceramic substrate which are mainly used in the semiconductor industry, include a thin and light wafer prober having excellent temperature rise / fall characteristics, and do not malfunction. Background art
半導体は種々の産業において必要とされる極めて重要な製品であり、 半導体チ ップは、 例えば、 シリコン単結晶を所定の厚さにスライスしてシリコンウェハを 作製した後、 このシリコンウェハに種々の回路等を形成することにより製造され る。  Semiconductors are extremely important products required in various industries. Semiconductor chips are manufactured by, for example, slicing a silicon single crystal to a predetermined thickness to produce a silicon wafer, and then applying various types of silicon wafers to the silicon wafer. It is manufactured by forming circuits and the like.
この半導体チップの製造工程においては、 シリコンウェハの段階でその電気的 特性が設計通りに動作するか否かを測定してチェックするプロ一ビング工程が必 要であり、 そのために所謂プローバが用いられる。  In the manufacturing process of this semiconductor chip, a probing process is required to measure and check whether the electrical characteristics operate as designed at the silicon wafer stage, and a so-called prober is used for that purpose. .
このようなプローバとして、 例えば、 特許第 2 5 8 7 2 8 9号公報、 特公平 3 — 4 0 9 4 7号公報、 特開平 1 1— 3 1 7 2 4号公報等には、 アルミユウム合金 やステンレス鋼などの金属製チャック トップを有するウェハプローバが開示され ている。  As such a prober, for example, Japanese Patent No. 2587279, Japanese Patent Publication No. Hei 3-40947, Japanese Patent Application Laid-Open No. Hei 11-31724, etc. A wafer prober having a chuck top made of metal such as stainless steel or stainless steel is disclosed.
このようなウェハプローバでは、 例えば、 ウェハプローバ上にシリコンウェハ を載置し、 このシリコンウェハにテスタピンを持つプローブカードを押しつけ、 加熱、 冷却しながら電圧を印加して導通テストを行う。  In such a wafer prober, for example, a silicon wafer is placed on a wafer prober, a probe card having tester pins is pressed against the silicon wafer, and a continuity test is performed by applying a voltage while heating and cooling.
ところが、 このような金属製のチャック トップを有するウェハプロ一パには、 次のような問題があった。  However, the following problems have been encountered with the wafer propeller having such a metal chuck top.
まず、 金属製であるため、 チャックトップの厚みは 1 5 mm程度と厚く しなけ ればならない。 このようにチャック トップを厚くするのは、 薄い金属板では、 ブ ローブカードのテスタピンによりチャック トップが押され、 チャック トップの金 属板に反りや歪みが発生してしまい、 金属板上に載置されるシリコンウェハが破 損したり傾いたりしてしてしまうからである。 First, since it is made of metal, the thickness of the chuck top must be as thick as about 15 mm. The reason why the chuck top is made thicker is that a thin metal plate is pressed by the tester pin of the probe card, and the metal plate of the chuck top is warped or distorted. Damaged silicon wafer This is because they are damaged or tilted.
このため、 チャック トップを厚くする必要がある力 その結果、 チャック トツ プの重量が大きくなり、 またかさばってしまうという問題があった。  For this reason, there is a problem that the force required to increase the thickness of the chuck top results in an increase in the weight and a bulkiness of the chuck top.
また、 熱伝導率が高い金属を使用しているにもかかわらず、 昇温、 降温特性が 悪く、 電圧や電流量の変化に対してチャック トップ板の温度が迅速に追従しない ため温度制御をしにくく、 高温でシリコンウェハを載置すると温度制御不能にな つてしまうという問題があった。  Despite the use of a metal with high thermal conductivity, the temperature rise and fall characteristics are poor, and the temperature of the chuck top plate does not quickly follow changes in voltage or current, so temperature control is performed. It is difficult to control the temperature if a silicon wafer is placed at a high temperature.
本発明者らは、 上記課題を解決するために鋭意研究した結果、 金属製のチヤッ ク トップに代えて、 剛性の高いセラミックを基板として用い、 その表面に導体層 を設けてこれをチャック トップ導体層し、 さらに、 このセラミック基板に発熱手 段を設けることを想起した。  The inventors of the present invention have conducted intensive studies to solve the above problems, and as a result, instead of a metal chuck top, a rigid ceramic has been used as a substrate, a conductor layer has been provided on the surface thereof, and this has been used as a chuck top conductor. It was recalled that the ceramic substrate was provided with a heating means.
し力、しながら、 セラミック基板は誘電率が高いため、 チャック トップ導体層上 にシリコンウェハを載置し、 このシリコンウェハにテスタピンを持つプローブ力 一ドのテスタピンを押しつけて導通テストを行う際、 このセラミック基板の高誘 電性に起因して測定回路内にストレイキャパシタが発生するとともに、 このスト レイキャパシタに起因してノイズが発生し、 ウェハプローバ装置を誤動作させる 原因となっていた。 発明の要約  However, since the ceramic substrate has a high dielectric constant, a silicon wafer is placed on the chuck top conductor layer, and when a tester pin with a probe force with tester pins is pressed against this silicon wafer, a continuity test is performed. A stray capacitor was generated in the measurement circuit due to the high dielectric property of the ceramic substrate, and noise was generated due to the stray capacitor, causing a malfunction of the wafer prober device. Summary of the Invention
本発明は、 上記課題に鑑みてなされたものであり、 測定回路内に介在するスト レイキャパシタをキャンセルすることができるため、 このストレイキャパシタに 起因するノィズが発生することがなく、 誤動作が発生しないウェハプローバ装置 および該ウェハプローバ装置に使用されるセラミック基板を提供することを目的 とする。  The present invention has been made in view of the above-described problems, and can cancel a storage capacitor interposed in a measurement circuit, so that noise due to the storage capacitor does not occur and no malfunction occurs. An object of the present invention is to provide a wafer prober device and a ceramic substrate used in the wafer prober device.
本発明のウェハプローバ装置は、 セラミック基板の表面にチャックトップ導体 層が形成されるとともに、 上記セラミック基板にガード電極が配設されたウェハ プローバ (以下、 その表面にチャック トップ導体層が形成されるとともに、 ガー ド電極が配設されたセラミック基板を含む) 、 および、 電源を含んで構成される ゥェハプ口ーバ装置であつて、 上記電源により、 上記チャックトップ導体層と上記ガード電極とが、 概ね同電 位となるように電圧が印加されていることを特徴とするウェハプローバ装置であ る。 In the wafer prober device of the present invention, a chuck top conductor layer is formed on a surface of a ceramic substrate, and a wafer prober having a guard electrode disposed on the ceramic substrate (hereinafter, a chuck top conductor layer is formed on the surface thereof). And a ceramic substrate on which a guard electrode is disposed) and a power source device including a power supply, A wafer prober device, wherein a voltage is applied by the power supply so that the chuck top conductor layer and the guard electrode have substantially the same potential.
また、 本発明のセラミック基板は、 その両主面に、 それぞれチャック トップ導 体層およびガード電極が配設され、 上記ガード電極上に絶縁体を介してグランド 電極が配設されていることを特徴とするウェハプローバ装置に使用されるセラミ ック基板である。  Further, the ceramic substrate of the present invention is characterized in that a chuck top conductor layer and a guard electrode are respectively disposed on both main surfaces thereof, and a ground electrode is disposed on the guard electrode via an insulator. This is a ceramic substrate used in a wafer prober device.
本発明のセラミック基板は、 上記ウェハプローバ装置に使用され、 具体的には、 半導体ウェハのプロ一ビング用ステージ (いわゆるチャックトップ) として機能 する。 このように上記セラミック基板は、 上記ウェハプローバ装置を構成する一 部品であるので、 以下においては、 ウェハプローバ装置とともに説明する。 図面の簡単な説明  The ceramic substrate of the present invention is used in the above-described wafer prober device, and specifically functions as a stage for probing a semiconductor wafer (a so-called chuck top). As described above, the ceramic substrate is a component of the wafer prober device, and therefore will be described below together with the wafer prober device. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明のウェハプローバを含んで構成されたウェハプローバ装置の一 例を摸式的に示す断面図である。  FIG. 1 is a cross-sectional view schematically showing an example of a wafer prober device including a wafer prober of the present invention.
図 2は、 図 1に示したウェハプローバの平面図である。  FIG. 2 is a plan view of the wafer prober shown in FIG.
図 3は、 図 1に示したウェハプローバの底面図である。  FIG. 3 is a bottom view of the wafer prober shown in FIG.
図 4は、 図 1に示したウェハプローバの A— A線断面図である。  FIG. 4 is a sectional view taken along line AA of the wafer prober shown in FIG.
図 5は、 本発明のウェハプローバ装置を構成するウェハプローバの一例を模式 的に示す断面図である。  FIG. 5 is a cross-sectional view schematically showing one example of a wafer prober constituting the wafer prober device of the present invention.
図 6は、 本発明のウェハプローバ装置を構成するウェハプローバの一例を模式 的に示す断面図である。  FIG. 6 is a cross-sectional view schematically showing one example of a wafer prober constituting the wafer prober device of the present invention.
図 7は、 本発明のウェハプロ バ装置を構成するウェハプローバの一例を模式 的に示す断面図である。  FIG. 7 is a cross-sectional view schematically showing one example of a wafer prober constituting the wafer prober device of the present invention.
図 8は、 本発明のウェハプローバ装置を構成するウェハプローバの一例を模式 的に示す断面図である。  FIG. 8 is a cross-sectional view schematically showing one example of a wafer prober constituting the wafer prober device of the present invention.
図 9は、 本発明で用いるウェハプローバを支持台と組み合わせた場合を模式的 に示す断面図である。  FIG. 9 is a cross-sectional view schematically showing a case where the wafer prober used in the present invention is combined with a support.
図 1 0は、 (a ) は、 本発明で用いるウェハプローバを他の支持台と組み合わ せた場合を模式的に示す縦断面図であり、 (b) は、 その B— B線断面図である t 図 1 1は、 (a) 〜 (d) は、 本発明で用いるウェハプローバの製造工程の一 部を模式的に示す断面図である。 FIG. 10 shows (a) a combination of the wafer prober used in the present invention with another support. A case which has a longitudinal sectional view schematically showing, (b), the B- t Figure 1 1 is a B line cross-sectional view, (a) ~ (d) is a wafer prober to be used in the present invention It is sectional drawing which shows a part of manufacturing process typically.
図 1 2は、 (e) 〜 (g) は、 本発明で用いるウェハプローバの製造工程の一 部を模式的に示す断面図である。 符号の説明  FIGS. 12A to 12G are cross-sectional views schematically showing a part of the manufacturing process of the wafer prober used in the present invention. Explanation of reference numerals
101、 201、 301、 401、 501 ウェハプローバ  101, 201, 301, 401, 501 Wafer prober
2、 72 チャック トップ導体層  2, 72 Chuck top conductor layer
3、 73 セラミック基板  3, 73 ceramic substrate
5、 75 ガード電極  5, 75 guard electrode
6、 76 グランド電極  6, 76 Ground electrode
7 溝  7 groove
8、 78 吸引孔  8, 78 Suction hole
10 断熱材  10 Insulation
1 1 支持台  1 1 Support
12 吹き出し口  12 outlet
1 3 吸引口  1 3 Suction port
14 冷媒注入口  14 Refrigerant inlet
1 5 支持柱  1 5 Support column
1 6、 17、 18、 87 スルーホール  1 6, 17, 18, 87 Through hole
1 80 袋孔  1 80 blind hole
1 9、 190、 191 外部端子ピン  1 9, 190, 191 External terminal pins
4 1、 42、 7 1 発熱体  4 1, 42, 7 1 Heating element
4 1 0 保護層  4 1 0 Protective layer
43 金属線  43 metal wire
44 ぺノレチェ素子  44 ぺ Noreche element
440 熱電素子  440 thermoelectric element
441 セラミック基板 5 2 導体層非形成部 発明の詳細な開示 441 ceramic substrate 5 2 Part where conductor layer is not formed Detailed disclosure of invention
本発明のウェハプローバ装置は、 セラミック基板の表面にチャック トップ導体 層が形成されるとともに、 上記セラミック基板にガード電極が配設されたウェハ プローバ、 および、 電源を含んで構成されるウェハプローバ装置であって、 上記電源により、 上記チャック トップ導体層と上記ガード電極とが、 概ね同電 位となるように電圧が印加されていることを特徴とする。  A wafer prober device according to the present invention includes a wafer prober having a chuck top conductor layer formed on a surface of a ceramic substrate, and a guard electrode disposed on the ceramic substrate, and a wafer prober device including a power supply. A voltage is applied by the power supply so that the chuck top conductor layer and the guard electrode have substantially the same potential.
「概ね」 とあるのは、 チャック トップ導体層とガード電極との電位差が、 チヤ ック トップ導体層の電位の土 1 0 %以内であることを意味する。  “Approximately” means that the potential difference between the chuck top conductor layer and the guard electrode is within 10% of the potential of the chuck top conductor layer.
本発明では、 セラミック基板の表面に形成されたチャック トップ導体層と、 上 記セラミック基板に配設されたガード電極とに同電位となるように電圧が印加さ れるので、 これにより測定回路内に介在するストレイキャパシタをキャンセルす ることができ、 このストレイキャパシタに起因するノイズの発生を防止すること ができる。 その結果、 このウェハプローバ装置に誤動作が発生することはない。 また、 本発明では、 剛性の高いセラミック基板を使用し、 かつ、 このセラミツ ク基板にガード電極およびノまたはグランド電極を配設しているので、 これらが 補強効果を有し、 プローブカードのテスタピンによりチャックトップが押されて もチャック トップが反ることはなく、 チャック トップの厚さを金属に比べて小さ くすることができる。  In the present invention, a voltage is applied to the chuck top conductor layer formed on the surface of the ceramic substrate and the guard electrode provided on the ceramic substrate so as to have the same potential. An intervening stray capacitor can be canceled, and generation of noise due to the stray capacitor can be prevented. As a result, no malfunction occurs in the wafer prober device. Further, in the present invention, since a rigid ceramic substrate is used, and a guard electrode and a ground electrode or a ground electrode are disposed on the ceramic substrate, these have a reinforcing effect, and are provided by the tester pins of the probe card. Even when the chuck top is pressed, the chuck top does not warp, and the thickness of the chuck top can be made smaller than that of metal.
また、 チャックトップの厚さを金属に比べて小さくすることができるため、 熱 伝導率が金属より低いセラミックであっても結果的に熱容量が小さくなり、 昇温、 降温特性を改善することができる。  In addition, since the thickness of the chuck top can be made smaller than that of a metal, even if the ceramic has a lower thermal conductivity than the metal, the heat capacity is reduced as a result, and the temperature rise and temperature fall characteristics can be improved. .
図 1は、 本発明のウェハプローバを含んで構成されたウェハプローバ装置の一 実施形態を模式的に示した概念図である。 図 2は、 図 1に示したウェハプロ一バ の平面図であり、 図 3は、 その底面図であり、 図 4は、 図 1に示したウェハプロ ーバの A— A線断面図である。  FIG. 1 is a conceptual diagram schematically showing an embodiment of a wafer prober device including a wafer prober of the present invention. 2 is a plan view of the wafer prober shown in FIG. 1, FIG. 3 is a bottom view thereof, and FIG. 4 is a cross-sectional view of the wafer prober shown in FIG.
このウェハプローバ装置を構成するウェハプローバ i 0 1では、 平面視円形状 のセラミック基板 3の表面 (吸着面) に、 同心円形状の溝 7が形成されるととも に、 溝 7の一部にシリコンウェハを吸引するための複数の吸引孔 8が設けられて おり、 溝 7を含むセラミック基板 3の大部分にシリコンウェハの電極と接続する ためのチャック トップ導体層 2が円形状に形成されている。 The wafer prober i 01 constituting this wafer prober device has a circular shape in plan view. A concentric groove 7 is formed on the surface (adsorption surface) of the ceramic substrate 3, and a plurality of suction holes 8 for sucking a silicon wafer are provided in a part of the groove 7. The chuck top conductor layer 2 for connecting to the electrode of the silicon wafer is formed in a circular shape on most of the ceramic substrate 3 including 7.
一方、 セラミック基板 3の内部にガード電極 5とグランド電極 6とが設けられ ており、 ガード電極 5はスルーホール 1 6、 外部端子ピン (図示せず) およぴ配 線を介して定電圧電源 3 1と接続されている。  On the other hand, a guard electrode 5 and a ground electrode 6 are provided inside the ceramic substrate 3, and the guard electrode 5 is connected to a constant voltage power supply via through holes 16, external terminal pins (not shown), and wiring. 3 Connected to 1.
また、 セラミック基板 3の底面には、 シリコンウェハの温度をコントロールす るために、 図 3に示したような平面視同心円形状の発熱体 4 1が設けられており、 発熱体 4 1の両端には、 外部端子ピン 1 9 1が接続、 固定されている。  A heating element 41 having a concentric circular shape in plan view as shown in FIG. 3 is provided on the bottom surface of the ceramic substrate 3 for controlling the temperature of the silicon wafer. The external terminal pin 191 is connected and fixed.
このガード電極 5は、 誘電率の比較的高いセラミック基板に起因して、 測定回 路内に介在するストレイキャパシタをキャンセルするために設けられた電極であ り、 定電圧電源 3 1により、 測定回路 (即ち図 1のチャックトップ導体層 2 ) の 接地電位と同じ電位 が与えられている。 即ち、 グランド電極 6とチャック ト ップ導体層 2との間、 および、 ダランド電極 6とガード電極 5との間に、 通常、 1 0 0 Vの電圧 を印加し、 かつ、 チャック トップ導体層 2とガード電極 5とに同じ接地電位を与え、 ストレイキャパシタをキャンセルしている。  The guard electrode 5 is an electrode provided to cancel the stray capacitor interposed in the measurement circuit due to the ceramic substrate having a relatively high dielectric constant. (That is, the same potential as the ground potential of the chuck top conductor layer 2 in FIG. 1). That is, a voltage of 100 V is normally applied between the ground electrode 6 and the chuck top conductor layer 2 and between the duland electrode 6 and the guard electrode 5, and the chuck top conductor layer 2 The same ground potential is applied to the guard electrode 5 and the guard electrode 5 to cancel the stray capacitor.
グランド電極 6は、 温度制御手段からのノイズをキヤンセルするために設けら れ、 接地されており、 発熱体 4 1には、 所定の温度に発熱させるために、 所定の 電圧 (V 2 ) が印加されている。 発熱体 4 1に印加する電圧は、 直流である。 The ground electrode 6 is provided for canceling noise from the temperature control means, and is grounded. A predetermined voltage (V 2 ) is applied to the heating element 41 to generate heat to a predetermined temperature. Have been. The voltage applied to the heating element 41 is DC.
図 1〜4に示したウェハプローバ装置では、 ガード電極 5およぴグランド電極 6を、 セラミック基板 3の内部に形成しているが、 これらガード電極およびダラ ンド電極は、 セラミック基板の表面に設けられていてもよい。  In the wafer prober device shown in FIGS. 1 to 4, the guard electrode 5 and the ground electrode 6 are formed inside the ceramic substrate 3, but the guard electrode and the round electrode are provided on the surface of the ceramic substrate. It may be.
図 8は、 セラミック基板の両主面に、 それぞれチャックトップ導体層およびガ ード電極が配設され、 前記ガード電極に絶縁体を介してグランド電極が配設され たゥ 'ェハプローバ (セラミック基板) を模式的に示す断面図である。  FIG. 8 shows a chuck substrate in which a chuck top conductor layer and a guard electrode are provided on both main surfaces of a ceramic substrate, respectively, and a ground electrode is provided on the guard electrode via an insulator. It is sectional drawing which shows typically.
このウェハプローバ (セラミック基板) では、 吸着面にチャック トップ導体層 7 2が形成されるとともに、 底面にガード電極 7 5が形成され、 このガード電極 7 5の上にァノレミナ等のセラミック扳 7 7が配設され、 セラミック板 7 7にダラ ンド電極 7 6が設けられている。 In this wafer prober (ceramic substrate), a chuck top conductor layer 72 is formed on the suction surface, and a guard electrode 75 is formed on the bottom surface. Ceramic 扳 77 such as anolemina is formed on the guard electrode 75. Arranged and placed on ceramic plate 7 7 A ground electrode 76 is provided.
なお、 セラミック板 7 7は、 セラミック基板 7 3上に形成された絶縁層 7 4を 介して結合されており、 セラミック基板 7 3とセラミック板 7 7との間は、 ガー ド電極 7 5と絶縁層 7 4とで完全に充填されており、 吸引孔 7 8は、 これらセラ ミック基板 7 3、 絶縁層 7 4およびセラミック板 7 7を貫通するように形成され ている。  Note that the ceramic plate 77 is connected via an insulating layer 74 formed on the ceramic substrate 73, and between the ceramic substrate 73 and the ceramic plate 77 is insulated from the guard electrode 75. The suction hole 78 is formed so as to penetrate the ceramic substrate 73, the insulating layer 74 and the ceramic plate 77.
この絶縁層 7 4は、 例えば、 シリカゾル等の無機接着材をセラミック基板の底 面に塗布した後、 セラミック板 7 7をその上に重ねて加熱処理することにより形 成されており、 充分な耐熱性と接着力とを有する。  The insulating layer 74 is formed, for example, by applying an inorganic adhesive such as silica sol to the bottom surface of a ceramic substrate, and then stacking a ceramic plate 77 thereon and subjecting the ceramic plate to heat treatment. Has properties and adhesive strength.
また、 このウェハプローバ (セラミック基板 7 3 ) では、 その内部に発熱体 7 1が設けられている。 なお、 発熱体はグランド電極に、 例えば、 シリコンゴム、 樹脂、 セラミック等の絶縁体を介して接触させて配設してもよい。  In this wafer prober (ceramic substrate 73), a heating element 71 is provided inside. The heating element may be provided in contact with the ground electrode via an insulator such as silicon rubber, resin, or ceramic.
このように構成されたウェハプローバ (セラミック基板) は、 図 1に示したゥ ェハプローバ (セラミック基板) と同様の機能を有する。  The wafer prober (ceramic substrate) configured as described above has the same function as the wafer prober (ceramic substrate) shown in FIG.
本発明のウェハプローバ装置を構成するウェハプローバは、 例えば、 図 1〜4、 8に示したような構成を有するものである。 以下において、 上記ウェハプローバ 装置を構成する各部材、 および、 本発明のウェハプローバ装置の他の実施形態に ついて、 順次詳細に説明していくことにする。  The wafer prober constituting the wafer prober device of the present invention has, for example, a configuration as shown in FIGS. In the following, each member constituting the wafer prober device and other embodiments of the wafer prober device of the present invention will be sequentially described in detail.
上述したように、 ウェハプローバを構成するセラミック基板 3には、 ス ト レイ キャパシタをキャンセルするためのガード電極 5と温度制御手段からのノイズを キャンセルするためのグランド電極 6とが設けられている。  As described above, the ceramic substrate 3 constituting the wafer prober is provided with the guard electrode 5 for canceling the storage capacitor and the ground electrode 6 for canceling noise from the temperature control means.
これらの導体層は、 図 4に示したように格子状に設けられていることが望まし レ、。 導体層上下のセラミック同士の密着性を改善することができ、 熱衝撃が加え られた場合でもクラックが発生したり、 ガード電極 5、 グランド電極 6とセラミ ックの界面で剥離が生じないからである。  Desirably, these conductor layers are provided in a lattice shape as shown in FIG. The adhesion between the ceramics above and below the conductor layer can be improved, and cracks do not occur even when a thermal shock is applied, and peeling does not occur at the interface between the guard electrode 5, the ground electrode 6 and the ceramic. is there.
格子の導体非形成部分は、 図 4に示したような方形であってもよく、 円、 楕円 であってもよい。 また、 導体非形成部分が方形の場合には、 その角にアールが設 けられていてもよい。  The portion of the lattice where the conductor is not formed may be rectangular as shown in FIG. 4, or may be circular or elliptical. If the non-conductor-formed portion is rectangular, a radius may be provided at the corner.
ガード電極 5、 グランド電極 6としては、 例えば、 銅、 チタン、 クロム、 ニッ ケル、 貴金属 (金、 銀、 白金等) 、 タングステン、 モリブデンなどの高融点金属 から選ばれる少なくとも 1種、 または、 タングステンカーバイ ド、 モリブデン力 一バイ ドなどの導電性セラミックから選ばれる少なくとも 1種を使用することが できる。 ガード電極 5および Zまたはグランド電極 6の少なくとも一部は、 上記 導電性セラミックで構成されていることが望ましい。 Examples of the guard electrode 5 and the ground electrode 6 include copper, titanium, chromium, and nickel. Kel, noble metals (gold, silver, platinum, etc.), at least one selected from refractory metals such as tungsten and molybdenum, or at least one selected from conductive ceramics such as tungsten carbide and molybdenum force Can be used. It is preferable that at least a part of the guard electrode 5 and the Z or the ground electrode 6 is made of the conductive ceramic.
ガード電極 5およびグランド電極 6の厚さは、 l〜2 0 M mが望ましい。 これ らの電極の厚さが 1 未満では抵抗が高くなり、 一方、 2 を超えると耐 熱衝撃性が低下するからである。 The thickness of the shield electrode 5 and the ground electrode 6, l~2 0 M m is desirable. If the thickness of these electrodes is less than 1, the resistance will increase, while if it exceeds 2, the thermal shock resistance will decrease.
定電圧電源 3 1、 3 2、 3 3、 8 1、 8 2、 8 3は、 特に限定されるものでは なく、 通常用いられている定電圧を発生する装置を用いることができる。 定電圧 電源 3 1、 8 1は、 ガード電極 5、 7 5とグランド電極 6、 7 6との間、 および、 チャックトップ導体層 2、 7 2とグランド電極 6、 7 6との間に挿入され、 これ らの電圧が制御されている。 また、 プローブカード 6 0 1のテスタピンには、 別 の定電圧電源 3 3、 8 3が接続され、 これによりプローブカード 6 0 1の電圧が 制御されている。  The constant voltage power supplies 31, 32, 33, 81, 82, and 83 are not particularly limited, and a commonly used device for generating a constant voltage can be used. The constant-voltage power supplies 31 and 81 are inserted between the guard electrodes 5 and 75 and the ground electrodes 6 and 76, and between the chuck top conductor layers 2 and 72 and the ground electrodes 6 and 76. These voltages are controlled. Further, another constant voltage power supply 33, 83 is connected to the tester pins of the probe card 601 to control the voltage of the probe card 601.
図 1に示したウェハプローバ 1 0 1では、 定電圧電源 3 1、 3 2、 3 3を用い ているが、 本発明では、 これらの定電圧電源の代わりに、 定電流電源を用いるこ ともできる。  In the wafer prober 101 shown in FIG. 1, the constant voltage power supplies 31, 32, and 33 are used. However, in the present invention, a constant current power supply can be used instead of these constant voltage power supplies. .
本発明のウェハプローバ装置に使用されるセラミック基板は、 窒化物セラミッ ク、 炭化物セラミックおよび酸化物セラミックに厲するセラミックから選ばれる 少なくとも 1種であることが望ましい。  The ceramic substrate used in the wafer prober device of the present invention is desirably at least one selected from the group consisting of ceramics such as nitride ceramics, carbide ceramics and oxide ceramics.
上記窒化物セラミックとしては、 金属窒化物セラミック、 例えば、 窒化アルミ 二ゥム、 窒化ケィ素、 窒化ホウ素、 窒化チタン等が挙げられる。  Examples of the nitride ceramic include metal nitride ceramics, for example, aluminum nitride, silicon nitride, boron nitride, titanium nitride, and the like.
また、 上記炭化物セラミックとしては、 金属炭化物セラミック、 例えば、 炭化 ケィ素、 炭化ジルコニウム、 炭化チタン、 炭化タンタル、 炭化タンステン等が挙 げられる。  Examples of the carbide ceramic include metal carbide ceramics, for example, silicon carbide, zirconium carbide, titanium carbide, tantalum carbide, tansten carbide, and the like.
上記酸化物セラミックとしては、 金属酸化物セラミック、 例えば、 アルミナ、 ジルコニァ、 コージェライ ト、 ムライ ト等が挙げられる。  Examples of the oxide ceramic include metal oxide ceramics, such as alumina, zirconia, cordierite, and mullite.
これらのセラミックは単独で用いてもよく、 2種以上を併用してもよレ、。 これらのセラミックの中では、 窒化物セラミック、 炭化物セラミックの方が酸 化物セラミックに比べて望ましい。 熱伝導率が高いからである。 These ceramics may be used alone or in combination of two or more. Among these ceramics, nitride ceramics and carbide ceramics are more preferable than oxide ceramics. This is because the thermal conductivity is high.
また、 窒化物セラミックの中では窒化アルミニウムが最も好適である。 熱伝導 率が 1 8 O W/m · Kと最も高いからである。  Aluminum nitride is the most preferable among the nitride ceramics. This is because the thermal conductivity is as high as 18 O W / m · K.
上記セラミック中には、 カーボンを 1 0 0〜2 0 0 0 p p m含むことが望まし い。 セラミック内の電極パターンを隠蔽し、 かつ、 高輻射熱が得られるからであ る。 カーボンは、 X線回折で検出可能な結晶質または検出不能な非晶質の一方ま たは両方であってもよい。  It is desirable that the above ceramic contains 100 to 200 ppm of carbon. This is because the electrode pattern in the ceramic is concealed and high radiant heat is obtained. The carbon may be one or both of crystalline or non-detectable amorphous by X-ray diffraction.
本発明におけるチャック トップのセラミック基板の厚さは、 チャック トップ導 体層より厚いことが必要であり、 具体的には 1〜1 O mmが望ましい。  The thickness of the ceramic substrate of the chuck top in the present invention needs to be thicker than the chuck top conductor layer, and specifically, desirably 1 to 1 Omm.
また、 本発明においては、 シリコンウェハの裏面を電極として使用するため、 セラミック基板の表面 (吸着面) にチャックトップ導体層が形成されている。 上記チャックトップ導体層の厚さは、 1〜2 0 mが望ましレ、。 1 / Π1未満で は抵抗値が高くなりすぎて電極として働かず、 一方、 2 0 μ πιを超えると導体の 持つ応力によって剥離しやすくなってしまうからである。  In the present invention, a chuck top conductor layer is formed on the surface (adsorption surface) of the ceramic substrate because the back surface of the silicon wafer is used as an electrode. The thickness of the chuck top conductor layer is preferably 1 to 20 m. If the ratio is less than 1 / Π1, the resistance becomes too high to act as an electrode, while if it exceeds 20 μπι, the conductor tends to peel off due to the stress of the conductor.
チャックトップ導体層としては、 例えば、 銅、 チタン、 クロム、 ニッケル、 貴 金属 (金、 銀、 白金等) 、 タングステン、 モリブデンなどの高融点金属から選ば れる少なく とも 1種の金属を使用することができる。  As the chuck top conductor layer, for example, at least one metal selected from high melting point metals such as copper, titanium, chromium, nickel, noble metals (gold, silver, platinum, etc.), tungsten, and molybdenum can be used. it can.
チャックトップ導体層は、 金属や導電性セラミックからなる多孔質体であって もよい。 多孔質体の場合は、 後述するような吸引吸着のための溝を形成する必要 がなく、 溝の存在を理由としたウェハの破損を防止することができるだけでなく、 表面全体で均一な吸引吸着を実現できるからである。  The chuck top conductor layer may be a porous body made of metal or conductive ceramic. In the case of a porous body, it is not necessary to form a groove for suction and suction as described later, and it is possible to not only prevent damage to the wafer due to the presence of the groove, but also to uniformly suction and suction the entire surface. It is because it can realize.
このような多孔質体としては、 金属焼結体を使用することができる。  As such a porous body, a metal sintered body can be used.
また、 多孔質体を使用した場合は、 その厚さは、 1〜2 0 0 μ πιで使用するこ とができる。 多孔質体とセラミック基板との接合は、 半田やろう材を用いる。 チャックトップ導体層としては、 ニッケルを含むものであることが望ましい。 硬度が高く、 テスタピンの押圧に対しても変形等しにくいからである。 また、 二 ッケルを含むチャック トップ導体層では、 マイグレーションがおきにくレ、。  When a porous body is used, its thickness can be 1 to 200 μπι. For joining the porous body and the ceramic substrate, solder or brazing material is used. It is desirable that the chuck top conductor layer contains nickel. This is because the hardness is high and the tester pin is hardly deformed even when pressed. In addition, migration is difficult in the chuck top conductor layer containing nickel.
チャックトップ導体層の具体的な構成としては、 例えば、 初めにエッケルスパ ッタリング層を形成し、 その上に無電解ニッケルめっき層を設けたものや、 チタ ン、 モリブデン、 ニッケルをこの順序でスパッタリングし、 さらにその上にニッ ケルを無電解めつきもしくは電解めつきで析出させたもの等が挙げられる。 As a specific configuration of the chuck top conductor layer, for example, Sputtering, titanium, molybdenum, and nickel are sputtered in this order, and nickel is further deposited by electroless plating or electrolytic plating. And the like.
また、 チタン、 モリブデン、 ニッケルをこの順序でスパッタリングし、 さらに その上に銅およびニッケルを無電解めつきで析出させたものであってもよい。 銅 層を形成することでチャック トツプ電極の抵抗値を低滅させることができるから である。  Alternatively, titanium, molybdenum, and nickel may be sputtered in this order, and copper and nickel may be further deposited by electroless plating. This is because the resistance of the chuck top electrode can be reduced by forming the copper layer.
さらに、 チタン、 銅をこの順でスパッタリングし、 さらにその上にニッケルを 無電解めつきもしくは無電解めつきで析出させたものであってもよい。  Further, titanium and copper may be sputtered in this order, and nickel may be deposited thereon by electroless plating or electroless plating.
また、 クロム、 銅をこの順でスパッタリングし、 さらにその上にニッケルを無 電解めつきもしくは無電解めつきで析出させたものとすることも可能である。 上記チタン、 クロムは、 セラミックとの密着性を向上させることができ、 また、 モリブデンはニッケルとの密着性を改善することができる。  It is also possible to sputter chromium and copper in this order, and further deposit nickel thereon by electroless plating or electroless plating. Titanium and chromium can improve the adhesion with ceramic, and molybdenum can improve the adhesion with nickel.
チタン、 クロムの厚みは 0 . 1〜0 . 5 / :m、 モリブデンの厚みは 0 . 5〜7 . 0 μ πι、 ニッケルの厚みは 0 . 4〜2 . 5 μ πιが望ましい。  Preferably, the thickness of titanium and chromium is 0.1 to 0.5 /: m, the thickness of molybdenum is 0.5 to 7.0 μπι, and the thickness of nickel is 0.4 to 2.5 μπι.
上記チャック トップ導体層の表面には、 貴金属層 (金、 銀、 白金、 パラジウム ) が形成されていることが望ましい。  It is desirable that a noble metal layer (gold, silver, platinum, palladium) is formed on the surface of the chuck top conductor layer.
貴金属層は、 卑金属のマイグレーションによる汚染を防止することができるか らである。 貴金属層の厚さは、 0 . 0 1〜1 5 /x mが望ましい。  The noble metal layer can prevent contamination due to migration of the base metal. The thickness of the noble metal layer is desirably 0.01 to 15 / xm.
本発明においては、 セラミック基板に温度制御手段を設けておくことが望まし い。 加熱または冷却しながらシリコンウェハの導通試験を行うことができるから である。  In the present invention, it is desirable to provide a temperature control means on the ceramic substrate. This is because the conduction test of the silicon wafer can be performed while heating or cooling.
上記温度制御手段としては図 3に示した発熱体 4 1のほかに、 ペルチェ素子で あってもよい。 発熱体を設ける場合は、 冷却手段としてエアー等の冷媒の吹きつ け口などを設けておいてもよい。  The temperature control means may be a Peltier element in addition to the heating element 41 shown in FIG. When a heating element is provided, an outlet for a refrigerant such as air may be provided as a cooling means.
発熱体は、 複数層設けてもよい。 この場合は、 各層のパターンは相互に補完す るように形成されて、 加熱面からみるとどこかの層にパターンが形成された状態 が望ましい。 例えば、 互いに千鳥の配置になっている構造である。  A plurality of heating elements may be provided. In this case, it is desirable that the pattern of each layer be formed so as to complement each other, and that the pattern be formed on any layer when viewed from the heating surface. For example, the structures are staggered with respect to each other.
発熱体としては、 例えば、 金属または導電性セラミックの焼結体、 金属箔、 金 属線等が挙げられる。 金属焼結体としては、 タングステン、 モリブデンから選ば れる少なくとも 1種が好ましい。 これらの金属は比較的酸化しにくく、 発熱する に充分な抵抗値を有するからである。 Examples of the heating element include a sintered body of metal or conductive ceramic, metal foil, and gold. And the like. As the metal sintered body, at least one selected from tungsten and molybdenum is preferable. This is because these metals are relatively hard to oxidize and have a sufficient resistance value to generate heat.
また、 導電性セラミックとしては、 タングステン、 モリブデンの炭化物から選 ばれる少なくとも 1種を使用することができる。  Also, as the conductive ceramic, at least one selected from carbides of tungsten and molybdenum can be used.
さらに、 セラミック基板の外側に発熱体を形成する場合には、 金属焼結体とし ては、 貴金属 (金、 銀、 パラジウム、 白金) 、 ニッケルを使用することが望まし い。 具体的には銀、 銀一パラジウムなどを使用することができる。  Further, when a heating element is formed outside the ceramic substrate, it is desirable to use a noble metal (gold, silver, palladium, platinum) or nickel as the metal sintered body. Specifically, silver, silver-palladium, or the like can be used.
上記金属焼結体に使用される金属粒子は、 球状、 リン片状、 もしくは球状とリ ン片状の混合物を使用することができる。  The metal particles used in the metal sintered body may be spherical, scaly, or a mixture of spherical and scaly.
金属焼結体中には、 金属酸化物を添加してもよい。 上記金属酸化物を使用する のは、 窒化物セラミックまたは炭化物セラミックと金属粒子を密着させるためで ある。 上記金属酸化物により、 窒化物セラミックまたは炭化物セラミックと金属 粒子との密着性が改善される理由は明確ではないが、 金属粒子表面および窒化物 セラミックまたは炭化物セラミックの表面はわずかに酸化膜が形成されており、 この酸化膜同士が金属酸化物を介して焼結して一体化し、 金属粒子と窒化物セラ ミックまたは炭化物セラミックが密着するのではないかと考えられる。  A metal oxide may be added to the metal sintered body. The reason for using the metal oxide is to make the nitride ceramic or the carbide ceramic adhere to the metal particles. Although it is not clear why the metal oxide improves the adhesion between the nitride ceramic or the carbide ceramic and the metal particles, an oxide film is slightly formed on the surface of the metal particles and the surface of the nitride ceramic or the carbide ceramic. It is considered that these oxide films are sintered and integrated through the metal oxide, and the metal particles and the nitride ceramic or the carbide ceramic adhere to each other.
上記金属酸化物としては、 例えば、 酸化鉛、 酸化亜鉛、 シリカ、 酸化ホウ素 ( B 2 0 3 ) 、 アルミナ、 イッ トリア、 チタニアから選ばれる少なく とも 1種が好 ましい。 これらの酸化物は、 発熱体の抵抗値を大きくすることなく、 金属粒子と 窒化物セラミックまたは炭化物セラミックとの密着性を改善できるからである。 上記金属酸化物は、 金属粒子に対して 0 . 1重量%以上 1 0重量。/。未満である ことが望ましい。 抵抗値が大きくなりすぎず、 金属粒子と窒化物セラミックまた は炭化物セラミックとの密着性を改善することができるからである。 The metal oxide, for example, lead oxide, zinc oxide, silica, boron oxide (B 2 0 3), alumina, said thoria, at least one selected from titania good preferable. This is because these oxides can improve the adhesion between the metal particles and the nitride ceramic or the carbide ceramic without increasing the resistance value of the heating element. The metal oxide is 0.1% by weight or more and 10% by weight with respect to the metal particles. /. It is desirable to be less than. This is because the resistance value does not become too large, and the adhesion between the metal particles and the nitride ceramic or the carbide ceramic can be improved.
また、 酸化鉛、 酸化亜鉛、 シリカ、 酸化ホウ素 (B 20 3) 、 アルミナ、 イツ トリア、 チタニアの割合は、 金属酸化物の全量を 1 0 0重量部とした場合に、 酸 化鉛が 1〜 1 0重量部、 シリカが 1〜 3 0重量部、 酸化ホウ素が 5〜 5 0重量部、 酸化亜鉛が 2 0〜 7 0重量部、 アルミナが 1〜1 0重量部、 イットリアが 1〜5 0重量部、 チタニアが 1〜5 0主部が好ましい。 但し、 これらの合計が 1 0 0重 量部を超えない範囲で調整されることが望ましい。 これらの範囲が特に窒化物セ ラミックとの密着性を改善できる範囲だからである。 Further, lead oxide, zinc oxide, silica, boron oxide (B 2 0 3), alumina, Germany thoria, ratio of titania, in case of the 1 0 0 parts by weight of the total amount of metal oxides, oxidation lead 1 ~ 10 parts by weight, silica is 1 ~ 30 parts by weight, boron oxide is 5 ~ 50 parts by weight, zinc oxide is 20 ~ 70 parts by weight, alumina is 1 ~ 10 parts by weight, yttria is 1 ~ 5 parts by weight 0 parts by weight, preferably 1 to 50 main parts of titania. However, the sum of these is 100 times It is desirable that the amount be adjusted within a range not exceeding a part by mass. This is because these ranges are ranges in which the adhesion to the nitride ceramic can be particularly improved.
発熱体をセラミック基板の表面に設ける場合は、 発熱体の表面は、 金属層 4 1 0で被覆されていることが望ましい (図 1 2 ( e ) 参照) 。 発熱体は、 金属粒子 の焼結体であり、 露出していると酸化しやすく、 この酸化により抵抗値が変化し てしまう。 そこで、 表面を金属層で被覆することにより、 酸化を防止することが できるのである。  When the heating element is provided on the surface of the ceramic substrate, it is desirable that the surface of the heating element be covered with a metal layer 410 (see FIG. 12 (e)). The heating element is a sintered body of metal particles, and when exposed, is easily oxidized, and this oxidation changes the resistance value. Therefore, oxidation can be prevented by coating the surface with a metal layer.
金属層の厚さは、 0 . 1〜1 0 / mが望ましレ、。 発熱体の抵抗値を変化させる ことなく、 発熱体の酸化を防止することができる範囲だからである。  The thickness of the metal layer is preferably 0.1 to 10 / m. This is because the heating element can be prevented from being oxidized without changing the resistance value of the heating element.
被覆に使用される金属は、 非酸化性の金属であればよい。 具体的には、 金、 銀、 パラジウム、 白金、 ニッケルから選ばれる少なくとも 1種以上が好ましい。 なか でもニッケルがさらに好ましい。 発熱体には電源と接続するための端子が必要で あり、 この端子は、 半田を介して発熱体に取り付けるが、 ニッケルは半田の熱拡 散を防止するからである。 接続端子しては、 コバール製の端子ピンを使用するこ とができる。  The metal used for the coating may be a non-oxidizing metal. Specifically, at least one selected from gold, silver, palladium, platinum, and nickel is preferable. Of these, nickel is more preferred. The heating element needs a terminal to connect to the power supply, and this terminal is attached to the heating element via solder, but nickel prevents heat diffusion of the solder. Kovar terminal pins can be used as connection terminals.
なお、 発熱体をヒータ板内部に形成する場合は、 発熱体表面が酸化されること がないため、 被覆は不要である。 発熱体をヒータ板内部に形成する場合、 発熱体 の表面の一部が露出していてもよい。  When the heating element is formed inside the heater plate, no coating is required since the heating element surface is not oxidized. When the heating element is formed inside the heater plate, a part of the surface of the heating element may be exposed.
発熱体として使用する金属箔としては、 ニッケル箔、 ステンレス箔をエツチン グ等でパターン形成して発熱体としたものが望ましい。  As the metal foil used as the heating element, it is preferable to use a nickel foil or a stainless steel foil which is patterned by etching or the like to form a heating element.
パターン化した金属箔は、 樹脂フィルム等ではり合わせてもよい。  The patterned metal foil may be bonded with a resin film or the like.
金属線としては、 例えば、 タングステン線、 モリブデン線等が挙げられる。 温度制御手段としてペルチ-素子を使用する場合は、 電流の流れる方向を変え ることにより発熱、 冷却両方行うことができるため有利である。  Examples of the metal wire include a tungsten wire and a molybdenum wire. When a Peltier element is used as the temperature control means, it is advantageous that both heat generation and cooling can be performed by changing the direction of current flow.
ペルチエ素子は、 図 7に示すように、 p型、 n型の熱電素子 4 4 0を直列に接 続し、 これをセラミック板 4 1などに接合させることにより形成される。  As shown in FIG. 7, the Peltier element is formed by connecting p-type and n-type thermoelectric elements 440 in series and bonding them to a ceramic plate 41 or the like.
ペルチェ素子としては、 例えば、 シリコン -ゲルマニウム系、 ビスマス · アン チモン系、 鉛 .テルル系材料等が挙げられる。  Examples of the Peltier element include a silicon-germanium-based material, a bismuth-antimony-based material, and a lead / tellurium-based material.
本発明で用いるウェハプローバの吸着面には図 2に示したように溝 7と空気の 吸引孔 8が形成されていることが望ましい。 吸引孔 8は、 複数設けられて均一な 吸着が図られる。 シリコンウェハ Wを載置して吸引孔 8から空気を吸引してシリ コンウェハ Wを吸着させることができるからである。 The suction surface of the wafer prober used in the present invention has grooves 7 and air as shown in FIG. It is desirable that the suction hole 8 is formed. A plurality of suction holes 8 are provided to achieve uniform suction. This is because the silicon wafer W can be suctioned by placing the silicon wafer W thereon and sucking air from the suction holes 8.
本発明におけるウェハプローバ装置としては、 例えば、 図 1に示すようにセラ ミック基板 3の底面に発熱体 4 1が設けられ、 発熱体 4 1とチャック トップ導体 層 2との間にガード電極 5の層とグランド電極 6の層とがそれぞれ設けられた構 成のウェハプローバ 1 0 1を定電圧電源 3 1等と組み合わせたウェハプローバ装 置、 図 5に示すようにセラミック基板 3の内部に扁平形状の発熱体 4 2が設けら れ、 発熱体 4 2とチャックトツプ導体層 2との間にガード電極 5とグランド電極 6とが設けられた構成のウェハプローバ 2 0 1を定電圧電源又は定電流電源 (図 示せず) と組み合わせたウェハプローバ装置、 図 6に示すようにセラミック基板 3の内部に発熱体である金属線 4 3が埋設され、 金属線 4 3とチャック トップ導 体層 2との間にガード電極 5とグランド電極 6とが設けられた構成のウェハプロ ーバ 3 0 1を定電圧電源又は定電流電源 (図示せず) と組み合わせたウェハプロ ーバ装置、 図 7に示すようにペルチェ素子 4 4 (熱電素子 4 4 0とセラミック基 板 4 4 1からなる) がセラミック基板 3の外側に形成され、 ペルチェ素子 4 4と チャックトツプ導体層 2との間にガード電極 5とグランド電極 6とが設けられた 構成のウェハプローバ 4 0 1を定電圧電源又は定電流電源 (図示せず) と組み合 わせたウェハプローバ装置等が挙げられる。 いずれのウェハプローバも、 溝 7と 吸引孔 8とを必ず有している。  As the wafer prober device in the present invention, for example, as shown in FIG. 1, a heating element 41 is provided on the bottom surface of a ceramic substrate 3, and a guard electrode 5 is provided between the heating element 41 and the chuck top conductor layer 2. Prober device that combines a wafer prober 101 with a layer and a ground electrode 6 layer, respectively, with a constant voltage power supply 31 etc., as shown in Fig. 5, flat inside the ceramic substrate 3 A wafer prober 201 having a configuration in which a guard electrode 5 and a ground electrode 6 are provided between the heating element 42 and the chuck top conductor layer 2 is provided with a constant voltage power supply or a constant current. A wafer prober device combined with a power supply (not shown). As shown in FIG. 6, a metal wire 43 serving as a heating element is buried inside a ceramic substrate 3, and the metal wire 43 and the chuck top conductor layer 2 are connected to each other. Guard electrode 5 and g A wafer prober device in which a wafer prober 301 provided with a ground electrode 6 is combined with a constant voltage power supply or a constant current power supply (not shown), as shown in FIG. 7, a Peltier element 4 4 (thermoelectric element (Composed of 440 and a ceramic substrate 441) are formed outside the ceramic substrate 3, and a guard electrode 5 and a ground electrode 6 are provided between the Peltier element 44 and the chuck top conductor layer 2. Wafer prober 401 is combined with a constant voltage power supply or a constant current power supply (not shown). Each wafer prober always has a groove 7 and a suction hole 8.
また、 本発明のウェハプローバ装置としては、 図 8に示すように、 セラミック 基板 7 3の両主面に、 それぞれチャックトップ導体層 7 2およびガード電極 7 5 が配設され、 ガード電極 7 5上に絶縁体であるセラミック扳 7 7を介してグラン ド電極 7 6が配設された構成のウェハプローバ 5 0 1を定電圧電源 8 1等と組み 合わせたウェハプローバ装置も挙げられる。  Further, as shown in FIG. 8, the wafer prober device of the present invention has a chuck top conductor layer 72 and a guard electrode 75 on both main surfaces of a ceramic substrate 73, respectively. There is also a wafer prober device in which a wafer prober 501 having a configuration in which a ground electrode 76 is disposed via a ceramic 扳 77 as an insulator is combined with a constant voltage power supply 81 or the like.
本発明で用いるウェハプローバでは、 図 1〜8に示したようにセラミック基板 3、 7 3の内部に発熱体 4 2、 4 3、 7 1が形成され (図 5、 6、 8 ) 、 セラミ ック基板 3の内部にガード電極 5、 グランド電極 6 (図 1〜7 ) が形成されるた め、 これらと外部端子とを接続するための接続部 (スルーホール) 1 6、 1 7、 18、 87が必要となる。 In the wafer prober used in the present invention, the heating elements 42, 43, 71 are formed inside the ceramic substrates 3, 73 as shown in FIGS. 1 to 8 (FIGS. 5, 6, 8), and the ceramics are formed. Since the guard electrode 5 and the ground electrode 6 (Figs. 1 to 7) are formed inside the circuit board 3, connection parts (through holes) 16 and 17 to connect these to external terminals are provided. 18, 87 are required.
スルーホール 1 6、 1 7、 1 8、 8 7は、 ガード電極 5、 グランド電極 6の端 部付近から延設され、 袋孔 180によりセラミック基板の底部に露出し、 外部端 子ピン 1 9、 1 90により接続されていてもよく、 側面の付近に袋孔 (図示せず ) により露出し、 外部端子により接続されていてもよい。  The through holes 16, 17, 18, and 87 extend from near the ends of the guard electrode 5 and the ground electrode 6, are exposed at the bottom of the ceramic substrate through blind holes 180, and have external terminal pins 19, 18. 190 may be connected, or exposed through a blind hole (not shown) near the side surface, and connected by an external terminal.
スノレーホ一ノレ 16、 1 7、 18、 8 7は、 タングステンペース ト、 モリブデン ペーストなどの高融点金属、 タングステンカーバイ ド、 モリブデンカーバイドな どの導電性セラミックを充填することにより形成される。  Snorre-holes 16, 17, 18, and 87 are formed by filling a refractory metal such as tungsten paste or molybdenum paste, or a conductive ceramic such as tungsten carbide or molybdenum carbide.
また、 接続部 (スルーホール) 16、 17、 1 8、 87の直径は、 0. 1〜1 Ommが望ましい。 断線を防止しつつ、 クラックや歪みを防止できるからである。 このスルーホール 16、 17、 18、 87を接続パッドとして外部端子ピンを 接続する (図 12 (g) 参照) 。  Further, the diameter of the connection portions (through holes) 16, 17, 18, and 87 is desirably 0.1 to 1 Omm. This is because cracks and distortion can be prevented while preventing disconnection. External terminal pins are connected using these through holes 16, 17, 18, and 87 as connection pads (see Fig. 12 (g)).
袋孔 (図示せず) の作成に関しては、 グリーンシートを作成した後、 このダリ ーンシートにパンチング等により袋孔となる貫通孔を設けてもよく、 セラミック 基板を作成した後、 サンドブラスト、 ドリル等により袋孔を形成してもよい。 接続は、 半田、 ろう材により行う。 ろう材としては銀ろう、 パラジウムろう、 アルミニウムろう、 金ろうを使用する。 金ろうとしては、 Au— N i合金が望ま しい。 Au— N i合金は、 タングステンとの密着性に優れるからである。  Regarding the formation of the blind hole (not shown), after the green sheet is created, a through hole may be provided in the dary sheet by punching or the like. After the ceramic substrate is created, sand blasting, drilling, or the like is performed. A blind hole may be formed. Connection is made with solder or brazing material. Silver brazing, palladium brazing, aluminum brazing or gold brazing are used as brazing materials. Au—Ni alloy is desirable for gold brazing. This is because Au—Ni alloy has excellent adhesion to tungsten.
Au_ N iの比率は、 〔81. 5〜82. 5 (重量。/。) 〕 ノ 〔 18. 5〜17. 5 (重量 °/0) 〕 が望ましい。 The ratio of Au_Ni is preferably [81.5 to 82.5 (weight./.)] And [18.5 to 17.5 (weight ° / 0 )].
Au— N i層の厚さは、 0. 1〜50 mが望ましい。 接続を確保するに充分 な範囲だからである。 また、 10— 6〜 10— 5 P aの高真空で 50 O 〜 10 00°Cの高温で使用すると Au— Cu合金では劣化するが、 Au—N i合金では このような劣化がなく有利である。 また、 A u— N i合金中の不純物元素量は全 量を 100重量部とした場合に 1重量部未満であることが望ましい。  The thickness of the Au—Ni layer is preferably 0.1 to 50 m. This is because the range is sufficient to secure the connection. When used in a high vacuum of 10-6 to 10-5 Pa at a high temperature of 50 O to 1000 ° C, the Au—Cu alloy deteriorates, but the Au—Ni alloy has no such deterioration and is advantageous. is there. Further, the amount of impurity elements in the Au—Ni alloy is desirably less than 1 part by weight when the total amount is 100 parts by weight.
本発明では、 必要に応じてセラミック基板に熱電対を埋め込んでおくことがで きる。 熱電対により発熱体の温度を測定し、 そのデータをもとに電圧、 電流量を 変えて、 温度を制御することができるからである。  In the present invention, a thermocouple can be embedded in a ceramic substrate as needed. This is because the temperature of the heating element is measured with a thermocouple, and the temperature can be controlled by changing the voltage and current based on the data.
熱電対の金属線の接合部位の大きさは、 各金属線の素線径と同一か、 もしくは、 それよりも大きく、 かつ、 0. 5 mm以下がよい。 このような構成によって、 接 合部分の熱容量が小さくなり、 温度が正確に、 また、 迅速に電流値に変換される のである。 このため、 温度制御性が向上してウェハの吸着面の温度分布が小さく なるのである。 The size of the junction of the metal wires of the thermocouple is the same as the strand diameter of each metal wire, or It should be larger and 0.5 mm or less. With such a configuration, the heat capacity of the junction is reduced, and the temperature is accurately and quickly converted to a current value. As a result, the temperature controllability is improved and the temperature distribution on the suction surface of the wafer is reduced.
上記熱電対としては、 例えば、 J Jt S— C— 1602 (1980) に挙げられ るように、 K型、 R型、 B型、 S型、 E型、 J型、 T型熱電対が挙げられる。  Examples of the thermocouple include K-type, R-type, B-type, S-type, E-type, J-type, and T-type thermocouples, as described in J Jt S—C—1602 (1980). .
K型は、 N i ZC r合金と N i合金の組合せ、 R型は P t— 13%Rh合金と P tの組合せ、 B型は、 P t— 30 %R h合金と P t— 65 %R h合金の組合せ、 S型は、 P t— 10%Rh合金と P tの組合せ、 E型は、 ^^ 1 1:合金と011 ZN i合金の組合せ、 J型は F eと CuZN i合金の組合せ、 T型は、 Cuと C u/N i合金の組合せである。  Type K is a combination of NiZCr alloy and Ni alloy, Type R is a combination of Pt-13% Rh alloy and Pt, Type B is Pt-30% Rh alloy and Pt-65% Combination of Rh alloy, S type is Pt—combination of 10% Rh alloy and Pt, E type is ^^ 11 1: Combination of alloy and 011 ZN i alloy, J type is Fe and CuZN i alloy The T type is a combination of Cu and Cu / Ni alloy.
図 9は、 以上のような構成の本発明で用いるウェハプローバを設置するための 支持台 1 1を模式的に示した断面図である。  FIG. 9 is a cross-sectional view schematically showing a support 11 for installing the wafer prober used in the present invention having the above-described configuration.
この支持台 11には、 冷媒吹き出し口 12が形成されており、 冷媒注入口 14 から冷媒が吹き込まれる。 また、 吸引口 13から空気を吸引して吸引孔 8を介し てウェハプローバ上に載置されたシリコンウェハ (図示せず) を溝 7に吸い付け るのである。  The support base 11 has a refrigerant outlet 12 formed therein, and the refrigerant is blown from the refrigerant inlet 14. Further, air is sucked from the suction port 13 and the silicon wafer (not shown) placed on the wafer prober is sucked into the groove 7 through the suction hole 8.
図 10 (a) は、 支持台の他の一例を模式的に示した縦断面図であり、 (b) は、 (a) 図における B— B線断面図である。 図 10に示したように、 この支持 台 21では、 ウェハプローバがプローブカードのテスタピンの押圧によって反ら ないように、 多数の支持柱 15が設けられている。  FIG. 10A is a longitudinal sectional view schematically showing another example of the support base, and FIG. 10B is a sectional view taken along line BB in FIG. 10A. As shown in FIG. 10, the support base 21 is provided with a large number of support columns 15 so that the wafer prober is not warped by the pressing of the tester pins of the probe card.
支持台は、 アルミニウム合金、 ステンレスなどを使用することができる。  The support can be made of aluminum alloy, stainless steel, or the like.
さらに、 この支持台 11、 21には、 ガード電極 5、 グランド電極 6、 発熱体 41からの配線を外に取り出すための配線や端子等 (図示せず) が設けられてい るため、 これらの配線等を用いて定電圧電源等 (図示せず) との接続等を行い、 シリコンウェハの導通テストを行うウェハプローバ装置を組み立てる。  Further, the support bases 11 and 21 are provided with wires and terminals (not shown) for taking out the wires from the guard electrode 5, the ground electrode 6, and the heating element 41. Assemble a wafer prober device for conducting a continuity test on a silicon wafer by connecting it to a constant voltage power supply or the like (not shown) using the above method.
そして、 グランド電極 6とチャック トップ導体層 2との間、 および、 グランド 電極とガード電極 5との間に、 例えば、 100Vの電圧を印加し、 チャック トツ プ導体層 2とガード電極 5とに同じ接地電位を与えることにより、 ス トレイキヤ 次に、 本発明のウェハプローバ装置を構成するウェハプローバ (セラミック基 板) の製造方法の一例を図 1 1〜1 2に示した断面図に基づき説明する。 Then, for example, a voltage of 100 V is applied between the ground electrode 6 and the chuck top conductor layer 2 and between the ground electrode and the guard electrode 5, and the same is applied to the chuck top conductor layer 2 and the guard electrode 5. By applying a ground potential, Next, an example of a method of manufacturing a wafer prober (ceramic substrate) constituting the wafer prober apparatus of the present invention will be described with reference to the cross-sectional views shown in FIGS.
( 1 ) まず、 酸化物セラミック、 窒化物セラミック、 炭化物セラミックなどの セラミックの粉体をバインダおよび溶剤と混合してグリーンシート 3 0を得る。 前述したセラミック粉体としては、 例えば、 窒化アルミニウム、 炭化ケィ素な どを使用することができ、 必要に応じて、 イッ トリアなどの焼結助剤などを加え てもよい。  (1) First, a green sheet 30 is obtained by mixing a ceramic powder such as an oxide ceramic, a nitride ceramic, and a carbide ceramic with a binder and a solvent. As the above-mentioned ceramic powder, for example, aluminum nitride, silicon carbide and the like can be used, and if necessary, a sintering aid such as yttria may be added.
また、 バインダとしては、 アクリル系バインダ、 ェチルセルロース、 ブチルセ 口ソルブ、 ポリビュルアルコールから選ばれる少なくとも 1種が望ましレ、。 さらに、 溶媒としては、 α—テルビネオール、 グリコールから選ばれる少なく とも 1種が望ましい。 Further, as the binder, at least one selected from an acrylic binder, ethyl cellulose, butyl cellulose-based solve, and polybutyl alcohol is desirable. Further, the solvent is preferably at least one selected from α -terbineol and glycol.
これらを混合して得られるペーストをドクタープレード法でシート状に成形し てグリーンシート 3 0を作製する。  A paste obtained by mixing these is shaped into a sheet by a doctor blade method to produce a green sheet 30.
グリーンシート 3 0に、 必要に応じてシリコンウェハの支持ピンを挿入する貫 通孔ゃ熱電対を埋め込む凹部を設けておくことができる。 貫通孔ゃ凹部は、 パン チングなどで形成することができる。  The green sheet 30 may be provided with a through hole for inserting a support pin of a silicon wafer and a concave portion for burying a thermocouple as needed. The through hole and the recess can be formed by punching or the like.
グリーンシート 3 0の厚さは、 0 . 1〜 5 m m程度が好ましい。  The thickness of the green sheet 30 is preferably about 0.1 to 5 mm.
次に、 グリーンシート 3 0にガード電極、 グランド電極を印刷する。  Next, a guard electrode and a ground electrode are printed on the green sheet 30.
印刷は、 グリーンシート 3 0の収縮率を考慮して所望のァスぺク ト比が得られ るように行い、 これによりガード電極印刷体 5 0、 グランド電極印刷体 6 0を得 る。  Printing is performed so as to obtain a desired aspect ratio in consideration of the shrinkage ratio of the green sheet 30, thereby obtaining a guard electrode print 50 and a ground electrode print 60.
印刷体は、 導電性セラミック、 金属粒子などを含む導電性ペーストを印刷する ことにより形成する。  The printed body is formed by printing a conductive paste containing conductive ceramic, metal particles, and the like.
これらの導電性ペースト中に含まれる導電性セラミック粒子としては、 タング ステンまたはモリブデンの炭化物が最適である。 酸化しにくく熱伝導率が低下し にくいからである。  Tungsten or molybdenum carbide is most suitable as the conductive ceramic particles contained in these conductive pastes. This is because it is not easily oxidized and the thermal conductivity is not easily reduced.
また、 金属粒子としては、 例えば、 タングステン、 モリブデン、 白金、 ニッケ ルなどを使用することができる。 導電性セラミック粒子、 金属粒子の平均粒子径は 0. 1〜5 /zmが好ましい。 これらの粒子は、 大きすぎても小さすぎてもペーストを印刷しにくいからである。 このようなペーストとしては、 金属粒子または導電性セラミック粒子 8 5〜9 7重量部、 アクリル系、 ェチルセルロース、 ブチルセ口ソルブおよびポリ ビュル アルコールから選ばれる少なくとも 1種のバインダ 1. 5〜1 0重量部、 α—テ ルピネオール、 グリコール、 エチルアルコールおよびプタノールから選ばれる少 なくとも 1種の溶媒を 1. 5〜 1 0重量部混合して調製したペース卜が最適であ る。 Further, as the metal particles, for example, tungsten, molybdenum, platinum, nickel, and the like can be used. The average particle size of the conductive ceramic particles and metal particles is preferably 0.1 to 5 / zm. These particles are too large or too small to print the paste. As such a paste, 85 to 97 parts by weight of metal particles or conductive ceramic particles, at least one kind of binder selected from acrylic, ethyl cellulose, butyl cellulose solvent and polybutyl alcohol 1.5 to 10 A paste prepared by mixing at least 1.5 to 10 parts by weight of at least one solvent selected from parts by weight, α-terpineol, glycol, ethyl alcohol and butanol is most suitable.
さらに、 パンチング等で形成した孔に、 導電ペース トを充填してスルーホール 印刷体 1 6 0、 1 70を得る。  Further, holes formed by punching or the like are filled with a conductive paste to obtain through-hole prints 160 and 170.
次に、 図 1 1 ( a ) に示すように、 印刷体 50、 60、 1 60、 1 70を有す るグリーンシート 30と、 印刷体を有さないグリーンシート 30を積層する。 発 熱体形成側に印刷体を有さないグリーンシート 30を積層するのは、 スルーホー ルの端面が露出して、 発熱体形成の焼成の際に酸化してしまうことを防止するた めである。 もしスルーホールの端面が露出したまま、 発熱体形成の焼成を行うの であれば、 エッケルなどの酸化しにくい金属をスパッタリングする必要があり、 さらに好ましくは、 Au— N iの金ろうで被覆してもよい。  Next, as shown in FIG. 11A, a green sheet 30 having prints 50, 60, 160, and 170 and a green sheet 30 having no print are laminated. The reason why the green sheet 30 having no printed body is laminated on the heat generating body forming side is to prevent the end face of the through hole from being exposed and being oxidized during firing for forming the heat generating body. If the heating element is to be baked while the end face of the through hole is exposed, it is necessary to sputter a metal that is difficult to oxidize, such as Eckel, and more preferably to coat it with Au-Ni gold brazing. You may.
(2) 次に、 図 1 1 (b) に示すように、 積層体の加熱および加圧を行い、 グ リーンシートおよび導電ペーストを焼結させる。  (2) Next, as shown in FIG. 11 (b), the laminate is heated and pressed to sinter the green sheet and the conductive paste.
加熱温度 、 1 000〜2000°C、 加圧は 1 0〜2 OMP aが好ましく、 こ れらの加熱おょぴ加圧は、 不活性ガス雰囲気下で行う。 不活性ガスとしては、 ァ ルゴン、 窒素などを使用することができる。 この工程でスルーホール 1 6、 1 7、 ガード電極 5、 グランド電極 6が形成される。  The heating temperature is preferably from 1,000 to 2,000 ° C., and the pressurization is preferably from 10 to 2 OMPa. The heating and pressurization are performed in an inert gas atmosphere. Argon, nitrogen, and the like can be used as the inert gas. In this step, through holes 16 and 17, guard electrode 5 and ground electrode 6 are formed.
(3) 次に、 図 1 1 (c) に示すように、 焼結体の表面に溝 7を設ける。 溝 7 は、 ドリル、 サンドブラス ト等により形成する。  (3) Next, as shown in FIG. 11 (c), grooves 7 are provided on the surface of the sintered body. The groove 7 is formed by a drill, a sandblast, or the like.
(4) 次に、 図 1 1 (d) に示すように、 焼結体の底面に導電ペース トを印刷 してこれを焼成し、 発熱体 4 1を作製する。  (4) Next, as shown in FIG. 11 (d), a conductive paste is printed on the bottom surface of the sintered body and fired to produce a heating element 41.
(5) 次に、 図 1 2 (e) に示すように、 吸着面 (溝形成面) にチタン、 モリ ブデン、 ニッケル等をスパッタリングした後、 無電解ニッケルめっき等を施しチ ャック トップ導体層 2を設ける。 このとき同時に、 発熱体 4 1の表面にも無電解 ニッケルめっき等により保護層 4 1 0を形成する。 (5) Next, as shown in Fig. 12 (e), the adsorption surface (groove forming surface) is sputtered with titanium, molybdenum, nickel, etc., and then electroless nickel plated. The backing conductor layer 2 is provided. At this time, a protective layer 410 is also formed on the surface of the heating element 41 by electroless nickel plating or the like.
( 6 ) 次に、 図 1 2 ( f ) に示すように、 溝 7から底面にかけて貫通する吸引 孔 8、 外部端子接続のための袋孔 1 8 0を設ける。  (6) Next, as shown in FIG. 12 (f), a suction hole 8 penetrating from the groove 7 to the bottom surface and a blind hole 180 for connecting an external terminal are provided.
袋孔 1 8 0の内壁は、 その少なくとも一部が導電化され、 その導電化された内 壁は、 ガード電極、 グランド電極などと接続されていることが望ましい。  It is desirable that at least a part of the inner wall of the blind hole 180 be made conductive, and that the made inner wall be connected to a guard electrode, a ground electrode, or the like.
( 7 ) 最後に、 図 1 2 ( g ) に示すように、 発熱体 4 1表面の取りつけ部位に 半田ペース トを印刷した後、 外部端子ピン 1 9 1を乗せて、 加熱してリフローす る。 加熱温度は、 2 0 0〜5 0 0 °Cが好適である。  (7) Finally, as shown in Fig. 12 (g), after printing the solder paste on the mounting part of the surface of the heating element 41, put the external terminal pin 191, heat it, and reflow it . The heating temperature is preferably from 200 to 500 ° C.
また、 袋孔 1 8 0にも金ろうを介して外部端子 1 9、 1 9 0を設ける。 さらに、 必要に応じて、 有底孔を設け、 その内部に熱電対を埋め込むことができる。  External terminals 19 and 190 are also provided in the blind hole 180 through a brazing filler metal. Furthermore, if necessary, a bottomed hole can be provided and a thermocouple can be embedded therein.
半田は銀一鉛、 鉛一スズ、 ビスマスースズなどの合金を使用することができる。 なお、 半田層の厚さは、 0 . 1〜5 0 μ mが望ましい。 半田による接続を確保す るに充分な範囲だからである。  For solder, alloys such as silver-lead, lead-tin, and bismuth soot can be used. The thickness of the solder layer is desirably 0.1 to 50 μm. This is because the range is sufficient to secure the connection by soldering.
この後、 ガード電極 5に接続された外部端子 1 9に定電圧電源 3 1からの配線 をソケット等を介して接続し、 同様に、 チャックトップ導体層 2、 発熱体 4 1、 グランド電極 6、 プローブカード 6 0 1等からの配線を定電圧電源 3 1、 3 2、 3 3に接続することにより、 ウェハプローバ装置を組み立てる。  Thereafter, the wiring from the constant voltage power supply 31 is connected to the external terminal 19 connected to the guard electrode 5 via a socket or the like, and similarly, the chuck top conductor layer 2, the heating element 41, the ground electrode 6, The wafer prober device is assembled by connecting the wiring from the probe card 60 1 and the like to the constant voltage power supplies 31, 32, and 33.
なお、 上記説明ではウェハプローバ 1 0 1 (図 1参照) を例にしたが、 ウェハ プローバ 2 0 1 (図 5参照) を製造する場合は、 発熱体をグリーンシートに印刷 すればよい。 また、 ウェハプローバ 3 0 1 (図 6参照) を製造する場合は、 セラ ミック粉体にガード電極、 グランド電極として金属板を、 また金属線を発熱体に して埋め込み、 焼結すればよい。  In the above description, the wafer prober 101 (see FIG. 1) is taken as an example. However, when manufacturing the wafer prober 201 (see FIG. 5), the heating element may be printed on a green sheet. Further, when manufacturing the wafer prober 301 (see FIG. 6), a guard plate, a metal plate as a ground electrode, and a metal wire as a heating element may be embedded in ceramic powder and sintered.
さらに、 ウェハプローバ 4 0 1 (図 7参照) を製造する場合は、 ペルチ 素子 を溶射金属層を介して接合すればょレ、。  Furthermore, when manufacturing the wafer prober 401 (see Fig. 7), the Peltier element must be joined via a sprayed metal layer.
また、 ウェハプローバ 5 0 1 (図 8参照) を製造する場合は、 発熱体をダリー ンシ一卜に印刷してセラミック基板を成形した後、 底面にガード電極を形成し、 そのセラミック基板に、 グランド電極を配設したセラミック板を無機接着剤で接 合すればよい。 発明を実施するための最良の形態 When manufacturing the wafer prober 501 (see Fig. 8), a heating element is printed on a dur- ing sheet to form a ceramic substrate, and a guard electrode is formed on the bottom surface. The ceramic plate on which the electrodes are provided may be joined with an inorganic adhesive. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明をさらに詳細に説明する。  Hereinafter, the present invention will be described in more detail.
(実施例 1) ウェハプローバ 101 (図 1参照) の製造とウェハプローバ装置 の組み立て  (Example 1) Production of wafer prober 101 (see Fig. 1) and assembly of wafer prober device
(1) 窒化アルミニウム粉末 (トクャマ社製、 平均粒径 1. 100重 量部、 イットリア (平均粒径 0. 4 μπι) 4重量部、 アクリルバインダ 1 1. 5 重量部、 分散剤 0. 5重量部および 1ーブタノ一ルとエタノールとからなるアル コール 53重量部^混合した組成物を用い、 ドクターブレード法により成形を行 つて厚さ 0. 47 mmのグリーンシートを得た。  (1) Aluminum nitride powder (manufactured by Tokuyama Corporation, average particle size: 1.100 weight parts, yttria (average particle size: 0.4 μπι), 4 weight parts, acrylic binder: 11.5 weight parts, dispersant: 0.5 weight A green sheet having a thickness of 0.47 mm was formed by a doctor blade method using a composition obtained by mixing 53 parts by weight of alcohol consisting of 1 part of ethanol and 1 part of ethanol with ethanol.
(2) このグリーンシートを 80。Cで 5時間乾燥させた後、 パンチングにて発 熱体と外部端子ピンと接続するためのスルーホール用の貫通孔を設けた。  (2) 80 this green sheet. After drying for 5 hours at C, through holes for through holes for connecting the heat generator and external terminal pins were formed by punching.
(3) 平均粒子径 1 / mのタングステンカーバイ ド粒子 100重量部、 アタリ ル系バインダ 3. 0重量部、 α—テルビネオール溶媒 3. 5重量および分散剤 0. 3重量部を混合して導電性ペースト Αとした。  (3) 100 parts by weight of tungsten carbide particles having an average particle diameter of 1 / m, 3.0 parts by weight of an atalyl-based binder, 3.5 parts by weight of an α-terbineol solvent, and 0.3 parts by weight of a dispersant are mixed to conduct electricity. Sex paste Α.
また、 平 8粒子径 3 μπιのタングステン粒子 100重量部、 アクリル系バイン ダ 1. 9重量部、 ひ一テルビネオール溶媒 3. 7重量および分散剤 0. 2重量部 を混合して導電性ペースト Βとした。  Also, 100 parts by weight of tungsten particles having an average particle diameter of 3 μπι, 1.9 parts by weight of an acrylic binder, 3.7 parts by weight of a terbineol solvent, and 0.2 parts by weight of a dispersant are mixed to form a conductive paste. did.
次に、 グリーンシートに、 この導電性ペース ト Αを用いたスクリーン印刷で、 格子状のガード電極用印刷体 50、 グランド電極用印刷体 60を印刷印刷した。 また、 端子ピンと接続するためのスルーホール用の貫通孔に導電性ペースト B を充填した。  Next, a grid-shaped guard electrode printed body 50 and a ground electrode printed body 60 were printed and printed on the green sheet by screen printing using the conductive paste. In addition, conductive paste B was filled in through holes for through holes for connection with terminal pins.
さらに、 印刷されたグリーンシートおよび印刷がされていないグリーンシート を 50枚積層して 1 30。C、 8 MP aの圧力で一体化することにより積層体を作 製した (図 1 1 (a) 参照) 。 Furthermore, 50 printed green sheets and unprinted green sheets are stacked on one another. C, a laminated body was produced by unifying with a pressure of 8 MPa (see Fig. 11 ( a )).
(4) 次に、 この積層体を窒素ガス中で 600°Cで 5時間脱脂し、 1890°C、 圧力 1 5MP aで 3時間ホットプレスし、 厚さ 4 mmの窒化アルミニウム板状体 を得た。 得られた板状体を、 直径 23 Oramの円形状に切り出してセラミック製 の板状体とした (図 1 1 (b) 参照) 。 スルーホール 1 6、 1 7の大きさは、 直 径 3. Omm、 深さ 3. Ommであった。 (4) Next, the laminate was degreased in nitrogen gas at 600 ° C for 5 hours, and hot-pressed at 1890 ° C and a pressure of 15 MPa for 3 hours to obtain an aluminum nitride plate having a thickness of 4 mm. Was. The obtained plate was cut into a circular shape having a diameter of 23 Oram to obtain a ceramic plate (see FIG. 11 (b)). The size of through holes 16 and 17 is The diameter was 3. Omm and the depth was 3. Omm.
また、 ガード電極 5、 グランド電極 6の厚さは 10 μπι、 ガード電極 5の形成 位置は、 吸着面からェ . 2 mm, ダランド電極 6の形成位置は、 吸着面から 3. 0 namでめった。  The thickness of the guard electrode 5 and the ground electrode 6 was 10 μπι, the position of the guard electrode 5 was 0.2 mm from the suction surface, and the position of the duland electrode 6 was 3.0 nam from the suction surface.
(5) 上記 (4) で得た板状体を、 ダイアモンド砥石で研磨した後、 マスクを 載置し、 S i C等によるブラスト処理で吸着面に熱電対のための凹部 (図示せず ) およびシリコンウェハ吸着用の溝 7 (幅 0. 5mm、 深さ 0. 5mm) を設け た (図 1 1 ( c ) 参照) 。  (5) After polishing the plate-like body obtained in (4) above with a diamond grindstone, a mask is placed, and a blast treatment using SiC or the like is performed to form a concave portion for a thermocouple on a suction surface (not shown). Also, a groove 7 (0.5 mm wide, 0.5 mm deep) for silicon wafer suction was provided (see Fig. 11 (c)).
(6) さらに、 吸着面に対向する面に発熱体 41を印刷した。 印刷は導電ぺー ストを用いた。 導電ペーストは、 プリント配線板のスルーホール形成に使用され ている徳カ化学研究所製のソルべスト PS 603Dを使用した。 この導電ペース トは、 銀 Z鉛ペース トであり、 酸化铅、 酸化亜鉛、 シリカ、 酸化ホウ素、 アルミ ナからなる金属酸化物 (それぞれの重量比率は、 5Z55Z1 OZ25ノ 5) を 銀 1 00重量部に対して 7. 5重量部含むものであった。  (6) Further, the heating element 41 was printed on the surface facing the suction surface. For printing, a conductive paste was used. The conductive paste used was Solvent PS 603D manufactured by Tokuka Chemical Laboratory, which is used to form through holes in printed wiring boards. This conductive paste is a silver-zinc lead paste, and 100 parts by weight of silver is a metal oxide composed of zinc oxide, zinc oxide, silica, boron oxide, and alumina (each weight ratio is 5Z55Z1 OZ25-5). 7.5 parts by weight.
また、 銀の形状は平均粒径 4. 5 μ mでリン片状のものであった。  The silver was scaly with an average particle size of 4.5 μm.
(7) 導電ペーストを印刷したヒータ板を 780°Cで加熱焼成して、 導電ぺー ス ト中の銀、 鉛を焼結させるとともにセラミック基板 3に焼き付けた。 さらに硫 酸ニッケル 3 O g/l、 ほう酸 30 gZl、 塩化アンモニゥム 30 gZ 1および ロッシエル塩 60 gZlを含む水溶液からなる無電解ニッケルめっき浴にヒータ 板を浸漬して、 銀の焼結体 4 1の表面に厚さ 1 μΐη、 ホウ素の含有量が 1重量% 以下のニッケル層 4 10を析出させた。 この後、 ヒータ板は、 120 で 3時間 ァニーリング処理を施した。  (7) The heater plate on which the conductive paste was printed was heated and baked at 780 ° C. to sinter silver and lead in the conductive paste and to bake it on the ceramic substrate 3. Further, the heater plate was immersed in an electroless nickel plating bath composed of an aqueous solution containing 3 Og / l of nickel sulfate, 30 gZl of boric acid, 30 gZl of ammonium chloride, and 60 gZl of Rossier salt, and the silver sintered body 41 A nickel layer 410 having a thickness of 1 μΐη and a boron content of 1% by weight or less was deposited on the surface. Thereafter, the heater plate was annealed at 120 for 3 hours.
銀の焼結体からなる発熱体は、 厚さが 5 /im、 幅 2. 4mmであり、 面積抵抗 率が 7. 7ΙΒΩΖ口であった (図 1 1 (d) ) 。  The heating element made of a sintered body of silver had a thickness of 5 / im, a width of 2.4 mm, and a sheet resistivity of 7.7ΙΒΩ square (Fig. 11 (d)).
(8) 溝 7が形成された面に、 スパッタリング法により、 順次、 チタン層、 モ リブデン層、 ニッケル層を形成した。 スパッタリングのための装置は、 日本真空 技術株式会社製の S V— 4540を使用した。 スパッタリングの条件は気圧 0. 6 P a、 温度 100°C、 電力 200Wであり、 スパッタリング時間は、 30秒か ら 1分の範囲内で、 各金属によって調整した。 得られた膜の厚さは、 蛍光 X線分析計の画像から、 チタン層は 0. 3 m、 モ リブデン層は 2 m、 ニッケル層は 1 μ mであった。 (8) A titanium layer, a molybdenum layer, and a nickel layer were sequentially formed on the surface where the grooves 7 were formed by sputtering. As a device for sputtering, SV-4540 manufactured by Japan Vacuum Engineering Co., Ltd. was used. The sputtering conditions were as follows: atmospheric pressure: 0.6 Pa, temperature: 100 ° C, power: 200 W. Sputtering time was adjusted for each metal within the range of 30 seconds to 1 minute. The thickness of the obtained film was 0.3 m for the titanium layer, 2 m for the molybdenum layer, and 1 μm for the nickel layer from the image of the X-ray fluorescence spectrometer.
( 9 ) 硫酸二ッケル 30 gZ l、 ほう酸 30 § 1、 塩化ァンモニゥム 30 g / 1および口ッシェル塩 60 gZ】を含む水溶液からなる無電解ニッケルめっき 浴、 および、 硫酸ニッケル 250〜350 gZ l、 塩化ニッケル 40〜70 gZ 1、 ホウ酸 30〜50 g/ 1を含み、 硫酸で pH2. 4〜4. 5に調整した電解 ニッケルめっき浴を用いて、 上記 (8) で得られたセラミック板を浸漬し、 スパ ッタリングにより形成された金属層の表面に厚さ 7 μιη、 ホウ素の含有量が 1重 量%以下のニッケル層を析出させ、 120°Cで 3時間アニーリングした。 (9) sulphate nickel 30 gZ l, boric acid 30 § 1, electroless nickel plating bath comprising an aqueous solution containing a] chloride Anmoniumu 30 g / 1 and the mouth Ssheru salt 60 gZ, and nickel sulfate 250 to 350 gZ l, chloride The ceramic plate obtained in (8) above is immersed in an electrolytic nickel plating bath containing nickel 40-70 gZ1, boric acid 30-50 g / 1, and adjusted to pH 2.4-4.5 with sulfuric acid. Then, a nickel layer having a thickness of 7 μιη and a boron content of 1% by weight or less was deposited on the surface of the metal layer formed by sputtering, and annealed at 120 ° C. for 3 hours.
発熱体表面は、 電流を流さず、 電解ニッケルめっきで被覆されない。  The heating element surface does not conduct current and is not covered with electrolytic nickel plating.
さらに、 表面にシアン化金力リウム 2 H、 塩化アンモニゥム 75 g/ ]、 タエン酸ナトリウム 50 g_/ 1および次亜リン酸ナトリウム 10 g/ 1を含む無 電解金めつき液に、 93 ¾の条件で 1分間浸漬し、 ニッケルめっき層 15上に厚 さ 1 imの金めつき層を形成した (図 12 (e) 参照) 。  In addition, an electroless plating solution containing gold cyanide 2 H, ammonium chloride 75 g /], sodium taenoate 50 g_ / 1, and sodium hypophosphite 10 g / 1 on the surface under the conditions of 93 93 For 1 minute to form a 1 im-thick gold-plated layer on the nickel plating layer 15 (see FIG. 12 (e)).
(10) 溝 7から底面に抜ける空気吸引孔 8をドリル加工により形成し、 さら にスルーホール】 6、 1 7を露出させるための袋孔 180を設けた (図 12 ( f ) 参照) 。 この袋孔 180に N i—Au合金 (Au 8 1. 5重量。 /0、 N i 18. 4重量%、 不純物 0. 1重量%) からなる金ろうを用い、 970°Cで加熱リフロ 一してコバール製の外部端子ピン i 9、 190を接続させた (図 12 (g) 参照 ) 。 また、 発熱体に半田 (スズ 9Z鉛 1) を介してコバール製の外部端子ピン 1 9 1を形成した。 (10) An air suction hole 8 that escapes from the groove 7 to the bottom surface was formed by drilling, and a blind hole 180 was provided to expose the through holes 6 and 17 (see Fig. 12 (f)). N i-Au alloy to the blind bore 180 (Au 8 1. 5 wt. / 0, N i 18. 4 wt%, impurities 0.1 wt%) using gold braze consisting of heating reflow one 970 ° C Then, Kovar external terminal pins i9 and 190 were connected (see Fig. 12 (g)). Also, Kovar external terminal pins 191 were formed on the heating element via solder (tin 9Z lead 1).
(1 1) 次に、 温度制御のための複数熱電対を凹部に埋め込み、 ウェハプロ一 バヒータ 10 1を得た。  (11) Next, a plurality of thermocouples for temperature control were buried in the recesses to obtain a wafer probe heater 101.
(12) このウェハプローバ 101を図 9の断面形状を有するステンレス製の 支持台にセラミックファイバー (ィビデン社製 商品名 ィビゥール) からなる 断熱材 10を介して载置した。 この支持台 1 1は冷却ガスの噴射ノズル 12を有 し、 ウェハプローバ 1 01の温度調整を行うことができ、 吸引口 13から空気を 吸引してシリ コンウェハの吸着を行うことができる。  (12) The wafer prober 101 was placed on a stainless steel support having the cross-sectional shape shown in FIG. 9 via a heat insulating material 10 made of ceramic fiber (trade name of ibiden). The support table 11 has a cooling gas injection nozzle 12 for adjusting the temperature of the wafer prober 101 and sucking air from the suction port 13 to suck the silicon wafer.
さらに、 この支持台 1 1には、 ガ一ド電極 5、 グランド電極 6、 発熱体 41か らの配線を外に取り出すための配線や端子等 (図示せず) が設けられているため、 これらの配線等を用いて定電圧電源等 (図示せず) との接続等を行い、 シリコン ウェハの導通テストを行うことができるウェハプローバ装置を組み立てた。 Further, the support 11 has a guard electrode 5, a ground electrode 6, and a heating element 41. Since wiring and terminals (not shown) for taking out these wirings are provided, connection to a constant voltage power supply and the like (not shown) is performed using these wirings and the like, and a silicon wafer is provided. A wafer prober device capable of conducting a continuity test was assembled.
そして、 グランド電極とチャック トップ導体層 2との間、 および、 グランド電 極とガード電極 5との間に 1 00 Vの電圧を印加し、 チャックトップ導体層 2と ガード電極 5とに同じ接地電位を与えた。  A voltage of 100 V is applied between the ground electrode and the chuck top conductor layer 2 and between the ground electrode and the guard electrode 5, and the same ground potential is applied to the chuck top conductor layer 2 and the guard electrode 5. Gave.
(実施例 2) ウェハプローバ 20 1 (図 5参照) の製造とウェハプローバ装置 の組み立て  (Example 2) Manufacture of wafer prober 201 (see Fig. 5) and assembly of wafer prober device
( 1 ) 窒化アルミニウム粉末 (トクャマ社製、 平均粒径 1. 1 μ η) 1 0 0重 量部、 イットリア (平均粒径 0. 4;! m) 4重量部、 ァクリルバイダー 1 1. 5 重量部、 分散剤 0. 5重量部および 1—ブタノールとエタノールとからなるアル コール 5 3重量部を混合した組成物を、 ドクターブレード法により成形し、 厚さ 0. 4 7 mmのグリーンシートを得た。  (1) Aluminum nitride powder (manufactured by Tokuyama Corporation, average particle size 1.1 μη) 100 weight parts, yttria (average particle diameter 0.4;! M) 4 weight parts, acrylyl binder 11.5 weight parts A composition obtained by mixing 0.5 part by weight of a dispersant and 53 parts by weight of alcohol composed of 1-butanol and ethanol was molded by a doctor blade method to obtain a green sheet having a thickness of 0.47 mm. .
(2) このグリーンシートを 8 0 で 5時間乾燥させた後、 パンチングにて発 熱体と外部端子ピンと接続するためのスルーホール用の貫通孔を設けた。  (2) After drying this green sheet at 80 for 5 hours, a through-hole for a through-hole for connecting a heat generator and an external terminal pin was provided by punching.
(3) 平均粒子径 1 Ai mのタングステンカーバイ ド粒子 1 0 0重量部、 ァクリ ル系バインダ 3. 0重量部、 テルビネオール溶媒 3. 5重量および分散剤 0. 3重量部を混合して導電性ペースト Αとした。  (3) 100 parts by weight of tungsten carbide particles having an average particle diameter of 1 Aim, 3.0 parts by weight of an acryl-based binder, 3.5 parts by weight of a terbineol solvent, and 0.3 parts by weight of a dispersant are mixed to conduct electricity. Sex paste Α.
また、 平均粒子径 3 ju mのタングステン粒子 1 0 0重量部、 アクリル系バイン ダ 1. 9重量部、 α—テルビネオール溶媒 3. 7重量および分散剤 0. 2重量部 を混合して導電性ペースト Βとした。  Also, 100 parts by weight of tungsten particles having an average particle diameter of 3 jum, 1.9 parts by weight of an acrylic binder, 3.7 parts of an α-terbineol solvent, and 0.2 parts by weight of a dispersant are mixed to form a conductive paste. Β
次に、 グリーンシートに、 この導電性ペースト Αを用いたスクリーン印刷で、 格子状のガード電極用印刷体、 グランド電極用印刷体を印刷した。 さらに、 発熱 体を図 3に示すように同心円パターンとして印刷した。  Next, a grid-shaped printed body for a guard electrode and a printed body for a ground electrode were printed on a green sheet by screen printing using this conductive paste. Further, the heating element was printed as a concentric pattern as shown in FIG.
また、 端子ピンと接続するためのスルーホール用の貫通孔に導電性ペース ト B を充填した。  In addition, conductive paste B was filled in the through-holes for through-holes for connection with terminal pins.
さらに、 印刷されたグリーンシートおよび印刷がされていないグリーンシ一ト を 5 0枚積層して 1 3 0°C、 8 MP aの圧力で一体化し、 積層体を作製した。  Further, 50 sheets of printed green sheets and unprinted green sheets were laminated and integrated at 130 ° C. and a pressure of 8 MPa to produce a laminate.
(4) 次に、 この積層体を窒素ガス中で 6 0 0°Cで 5時間脱脂し、 1 8 9 0°C、 圧力 1 5MP aで 3時間ホットプレスし、 厚さ 3 mmの窒化アルミニウム板状体 を得た。 これを直径 2 3 O mmの円状に切り出してセラミック製の板状体とした。 スルーホールの大きさは直径 2. Omm、 深さ 3. Ommであった。 (4) Next, this laminate was degreased in nitrogen gas at 600 ° C. for 5 hours, Hot pressing was performed at a pressure of 15 MPa for 3 hours to obtain a 3 mm-thick aluminum nitride plate. This was cut into a circular shape having a diameter of 23 O mm to obtain a ceramic plate. The size of the through hole was 2. Omm in diameter and 3. Omm in depth.
また、 ガード電極 5、 ダランド電極 6の厚さは 6 μ m、 ガード電極 5の形成位 置は、 吸着面から 0. 7mm、 グランド電極 6の形成位置は、 吸着面から 1. 4 -mm, 発熱体の形成位置は、 吸着面から 2. 8 mmであった。  In addition, the thickness of the guard electrode 5 and the durand electrode 6 is 6 μm, the formation position of the guard electrode 5 is 0.7 mm from the suction surface, and the formation position of the ground electrode 6 is 1.4 -mm from the suction surface. The formation position of the heating element was 2.8 mm from the adsorption surface.
(5) 上記 (4) で得た板状体を、 ダイアモンド砥石で研磨した後、 マスクを 載置し、 S i C等によるブラスト処理で表面に熱電対のための凹部 (図示せず) およびシリコンウェハ吸着用の溝 7 (幅 0. 5 mm、 深さ 0. 5 mm) を設けた。  (5) After polishing the plate-like body obtained in (4) above with a diamond grindstone, a mask is placed, and the surface is subjected to blasting treatment with SiC or the like to form concave portions (not shown) for thermocouples and Grooves 7 (width 0.5 mm, depth 0.5 mm) for silicon wafer suction were provided.
(6) 溝 7が形成された面にスパッタリングにてチタン、 モリブデン、 ニッケ ル層を形成した。 スパッタリングのための装置は、 日本真空技術株式会社製の S V— 4 5 40を使用した。 スパッタリングの条件は気圧 0. 6 P a、 温度 1 0 0 V, 電力 2 00Wで、 スパッタリングの時間は、 3 0秒から 1分の間で、 各金属 により調整した。  (6) Titanium, molybdenum, and nickel layers were formed on the surface where the grooves 7 were formed by sputtering. As a device for sputtering, SV-4540 manufactured by Japan Vacuum Engineering Co., Ltd. was used. Sputtering conditions were as follows: atmospheric pressure: 0.6 Pa, temperature: 100 V, power: 200 W. Sputtering time was adjusted from 30 seconds to 1 minute for each metal.
得られた膜は、 蛍光 X線分析計の画像からチタンは 0. 5 // m、 モリブデンは 、 4 / m、 ニッケノレは 1. 5 /x iriであった。  The obtained film showed 0.5 // m for titanium, 4 / m for molybdenum, and 1.5 / x iri for nickel from the image of the fluorescent X-ray analyzer.
(7) 硫酸ニッケル 3 O gZl、 ほう酸 30 gZl、 塩化アンモニゥム 30 g Z 1、 口ッシェル塩 6 0 g/ 1を含む水溶液からなる無電解ニッケルめっき浴に (7) An electroless nickel plating bath consisting of an aqueous solution containing nickel sulfate 3 O gZl, boric acid 30 gZl, ammonium chloride 30 g Z1, mouthshell salt 60 g / 1
(6) で得られたセラミック板 3を浸漬して、 スパッタリングにより形成された 金属層の表面に厚さ 7 μ m、 ホウ素の含有量が 1重量%以下のニッケル層を析出 させ、 1 2 0 で 3時間アニーリングした。 The ceramic plate 3 obtained in (6) is immersed to deposit a nickel layer having a thickness of 7 μm and a boron content of 1% by weight or less on the surface of the metal layer formed by sputtering. For 3 hours.
さらに、 表面にシアン化金カリウム 2 g/ 1、 塩ィ匕アンモニゥム 7 5 gZ 1 、 タエン酸ナトリウム 5 0 g/ I、 次亜リン酸ナトリウム 1 0 g/ 1からなる無電 解金めつき液に 9 3 °Cの条件で 1分間浸漬して、 ニッケルめっき層上に厚さ 1 μ mの金めつき層を形成した。  In addition, electroless gold plating solution consisting of 2 g / 1 potassium gold cyanide, 75 gZ1 salt ammonium salt, 50 g / I sodium taenoate and 10 g / 1 sodium hypophosphite on the surface. It was immersed at 93 ° C for 1 minute to form a 1 µm thick gold-plated layer on the nickel plating layer.
(8) 溝 7から底面に抜ける空気吸引孔 8をドリル加工により形成し、 さらに スルーホール 1 6、 1 7を露出させるための袋孔 1 8 0を設けた。 この袋孔 1 8 0に N i — A u合金 (A u 8 1. 5重量。 /0、 N i l 8. 4重量%、 不純物0. 1 重量%) からなる金ろうを用い、 9 7 0°Cで加熱リフローしてコバール製の外部 端子ピン 1 9、 1 9 0を接続させた。 外部端子 1 9、 1 9 0は、 W製でもよレ、。(8) An air suction hole 8 was formed from the groove 7 to the bottom surface by drilling, and a blind hole 180 for exposing the through holes 16 and 17 was provided. This blind holes 1 8 0 N i - A u alloys (. A u 8 1. 5 wt / 0, N il 8. 4 wt%, impurities 0.1 wt%) using gold braze consisting of 9 7 0 Heat reflow at ° C to make Kovar external Terminal pins 19 and 190 were connected. External terminals 19 and 190 can be made of W.
(9) 温度制御のための複数熱電対を凹部に埋め込み、 ウェハプローバヒータ 20 1を得た。 (9) A plurality of thermocouples for temperature control were buried in the recesses to obtain a wafer prober heater 201.
( 1 0) このウェハプローバ 20 1を図 9の断面形状を持つステンレス製の支 持台にセラミックファイバー (イビデン社製:商品名 イビウール) からなる断 熱材 1 0を介して載置した。 この支持台 1 1には、 ウェハプローバの反り防止の ための支持柱 1 5が形成され、 吸引口 1 3から空気を吸引してシリコンウェハの 吸着を行うことができるように構成されている。  (10) The wafer prober 201 was placed on a stainless steel support having a cross-sectional shape as shown in FIG. The support base 11 is formed with a support column 15 for preventing the wafer prober from warping, and is configured to be able to suck air from the suction port 13 to suck a silicon wafer.
- さらに、 この支持台 2 1には、 ガード電極 5、 グランド電極 6、 発熱体 4 1か らの配線を外に取り出すための配線や端子等 (図示せず) が設けられているため、 これらの配線等を用いて定電圧電源等 (図示せず) との接続等を行い、 シリコン ウェハの導通テストを行うことができるウェハプローバ装置を組み立てた。  -Further, since the support 21 is provided with wires, terminals, etc. (not shown) for taking out the wires from the guard electrode 5, the ground electrode 6, and the heating element 41, these are provided. A wafer prober device capable of conducting a continuity test of a silicon wafer by assembling with a constant voltage power supply or the like (not shown) using the wiring or the like was assembled.
そして、 グランド電極とチャック トップ導体層 2との間、 および、 グランド電 極とガード電極 5との間に 1 00 Vの電圧を印加し、 チャック トップ導体層 2と ガード電極 5とに同じ接地電位を与えた。  Then, a voltage of 100 V is applied between the ground electrode and the chuck top conductor layer 2 and between the ground electrode and the guard electrode 5, and the same ground potential is applied to the chuck top conductor layer 2 and the guard electrode 5. Gave.
(実施例 3) ウェハプローバ 3 0 1 (図 6参照) の製造とウェハプローバ装 置の組み立て  (Example 3) Production of wafer prober 301 (see Fig. 6) and assembly of wafer prober device
( 1 ) 厚さ 1 0 μ ιηのタングステン箔を打抜き加工することにより格子状の電 極を形成した。  (1) A grid-like electrode was formed by punching a tungsten foil having a thickness of 10 μιη.
格子状の電極 2枚 (それぞれガード電極 5、 グランド電極 6となるもの) およ ぴタングステン線を窒化アルミニウム粉末 (トクャマ社製、 平均粒径 1. 1 μ χα ) 1 0 0重量部、 イットリア (平均粒径 0. 4 μ η ) 4重量部とともに、 成形型 中に入れて窒素ガス中で 1 8 9 0°C、 圧力 1 5 MP aで 3時間ホットプレスし、 厚さ 3 mmの窒化アルミニウム板状体を得た。 これを直径 2 3 Ommの円状に切 り出して板状体とした。  Two pieces of grid-like electrodes (they serve as guard electrode 5 and ground electrode 6, respectively) and tungsten wire were aluminum nitride powder (manufactured by Tokuyama, average particle size 1.1 μχα) 100 parts by weight, yttria ( Average particle size 0.4 μη) Along with 4 parts by weight, put in a mold and hot-press in nitrogen gas at 189 ° C and a pressure of 15 MPa for 3 hours to obtain a 3 mm thick aluminum nitride A plate was obtained. This was cut into a circular shape having a diameter of 23 Omm to obtain a plate-like body.
(2) この板状体に対し、 実施例 2の (5) 〜 (1 0) の工程を実施し、 ゥェ ハプローバ 3 0 1を得、 実施例 1と同様にウェハプローバ 3 0 1を図 9に示した 支持台 1 1上に載置し、 実施例 1の場合と同様にしてウェハブローバ装置を組み 立てた。 そして、 グランド電極とチャック トップ導体層 2との間、 および、 グランド電 極とガード電極 5との間に 1 0 0 Vの電圧を印加し、 チャック トツプ導体層 2と ガード電極 5とに同じ接地電位を与えた。 (2) The steps (5) to (10) of Example 2 were performed on this plate-like body to obtain a wafer prober 301, and a wafer prober 301 was drawn in the same manner as in Example 1. The wafer was mounted on the support 11 shown in FIG. 9 and a wafer blower device was assembled in the same manner as in Example 1. Then, a voltage of 100 V is applied between the ground electrode and the chuck top conductor layer 2 and between the ground electrode and the guard electrode 5, and the same ground is applied to the chuck top conductor layer 2 and the guard electrode 5. An electric potential was applied.
(実施例 4 ) ウェハブローバ 4 0 1 (図 7参照) の製造とウェハプローバ装 置の組み立て  (Example 4) Manufacture of wafer blower 401 (see Fig. 7) and assembly of wafer prober device
実施例 1の (1 ) 〜 (5 ) 、 および、 (8 ) 〜 (1 0 ) を実施した後、 さらに 吸着面に対向する面にニッケルを溶射し、 この後、 鉛 'テルル系のペルチェ素子 を接合させ、 ウェハプローバ 4 0 1を得、 実施例 1と同様にウェハプローバ 4 0 1を図 9に示した支持台 1 1上に載置し、 実施例 1の場合と同様にしてウェハプ ローバ装置を組み立てた。  After performing (1) to (5) and (8) to (10) in Example 1, nickel was further sprayed on the surface facing the adsorption surface, and thereafter, a lead-tellurium-based Peltier device The wafer prober 401 was obtained, and the wafer prober 401 was placed on the support base 11 shown in FIG. 9 in the same manner as in Example 1, and the wafer prober 401 was mounted in the same manner as in Example 1. The device was assembled.
そして、 グランド電極とチャック トップ導体層 2との間、 および、 グランド電 極とガード電極 5との間に 1 0 0 Vの電圧を印加し、 チャック トップ導体層 2と ガード電極 5とに同じ接地電位を与えた。  A voltage of 100 V is applied between the ground electrode and the chuck top conductor layer 2 and between the ground electrode and the guard electrode 5, and the same ground is applied to the chuck top conductor layer 2 and the guard electrode 5. An electric potential was applied.
(実施例 5 ) 炭化珪素をセラミック基板とするウェハプローバの製造とゥェ ハプローバ装置の組み立て  (Example 5) Production of wafer prober using silicon carbide as a ceramic substrate and assembly of wafer prober device
以下に記载する事項または条件以外は、 実施例 3の場合と同様にして、 ウェハ プローバを製造した。  A wafer prober was manufactured in the same manner as in Example 3 except for the matters or conditions described below.
即ち、 平均粒径 1 . 0 μ παの炭化ケィ素粉末 1 0 0重量部を使用し、 また、 格 子状の電極 2枚 (ぞれぞれガード電極 5、 グランド電極 6となるもの) 、 および、 表面にテトラエトキシシラン 1 0重量 °/0、 塩酸 0 . 5重量%および水 8 9 . 5重 量%からなるゾル溶液を塗布したタングステン線を使用し、 1 9 0 0 °Cの温度で 焼成した。 なお、 ゾル溶液は焼成で S i 0 2となって絶縁層を構成する。 That is, 100 parts by weight of a silicon carbide powder having an average particle diameter of 1.0 μπα was used, and two grid-like electrodes (each serving as a guard electrode 5 and a ground electrode 6) were used. and, the surface of tetraethoxysilane 1 0 wt ° / 0, hydrochloric 0. 5 wt% and water 8 9. the sol solution using coated tungsten wire consisting of 5 by weight%, the temperature of 1 9 0 0 ° C Baked. It should be noted that the sol solution becomes Sio 2 by firing to form an insulating layer.
次に、 実施例 5で得られたウェハプローバ 4 0 1を、 実施例 1と同様に図 9に 示した支持台 1 1上に載置し、 実施例 1の場合と同様にしてウェハプローバ装置 を組み立てた。  Next, the wafer prober 401 obtained in the fifth embodiment was placed on the support 11 shown in FIG. 9 in the same manner as in the first embodiment, and the wafer prober apparatus was operated in the same manner as in the first embodiment. Was assembled.
そして、 グランド電極とチャック トップ導体層 2との間、 および、 グランド電 極とガード電極 5との間に 1 0 0 Vの電圧を印加し、 チャックトツプ導体層 2と ガード電極 5とに同じ接地電位を与えた。  Then, a voltage of 100 V is applied between the ground electrode and the chuck top conductor layer 2 and between the ground electrode and the guard electrode 5, and the same ground is applied to the chuck top conductor layer 2 and the guard electrode 5. An electric potential was applied.
(実施例 6 ) アルミナをセラミック基板とするウェハプローバの製造とゥェ ハプローバ装置の組み立て (Embodiment 6) Production and wafer production of a wafer prober using alumina as a ceramic substrate Assembling the haploaver device
以下に記載する工程または条件以外は、 実施例 1の場合と同様にして、 ウェハ プローバを製造した d アルミナ粉末 (トクャマ製、 平均粒径 1. 5 Ai m) 100重量部、 アクリルバ イダー 1 1. 5重量部、 分散剤 0. 5重量部および 1—ブタノールとエタノール とからなるアルコール 53重量部を混合した組成物を、 ドクターブレード法を用 いて成形し、 厚さ 0. 5 mmのグリーンシートを得た。 また、 焼成温度を 100 0でとした。 Except for the steps or conditions described below, in the same manner as in Example 1, 100 parts by weight of d- alumina powder (manufactured by Tokuyama, average particle size: 1.5 Aim) for producing a wafer prober, acrylic binder 1 1. A mixture of 5 parts by weight, 0.5 part by weight of a dispersant, and 53 parts by weight of alcohol composed of 1-butanol and ethanol was molded using a doctor blade method to form a green sheet having a thickness of 0.5 mm. Obtained. The firing temperature was set at 1000.
次に、 実施例 6で得られたウェハプローバを、 実施例 1と同様に図 9に示した 支持台 1 1上に載置し、 実施例 1の場合と同様にしてウェハプローバ装置を組み 立てた。  Next, the wafer prober obtained in Example 6 was placed on the support 11 shown in FIG. 9 as in Example 1, and a wafer prober device was assembled in the same manner as in Example 1. Was.
そして、 グランド電極とチャックトップ導体層 2との間、 および、 グランド電 極とガード電極 5との間に 100 Vの電圧を印加し、 チャック トップ導体層 2と ガード電極 5とに同じ接地電位を与えた。  Then, a voltage of 100 V is applied between the ground electrode and the chuck top conductor layer 2 and between the ground electrode and the guard electrode 5, and the same ground potential is applied to the chuck top conductor layer 2 and the guard electrode 5. Gave.
(実施例 7) 多孔質チャック トップ導体層を含むウェハプローバの製造とゥェ ハプローバ装置の組み立て  (Example 7) Production of wafer prober including porous chuck top conductor layer and assembly of wafer prober device
(1) 平均粒子径 3 μιηのタングステン粉末を円板状の成形治具に入れて、 窒 素ガス中で温度 1890¾:、 圧力 15ΜΡ aで 3時間ホットプレスして、 直径 2 0 Omm, 厚さ 1 1 0 mのタングステン製の多孔質チヤック トップ導体層を得 た。  (1) Tungsten powder having an average particle diameter of 3 μιη is placed in a disk-shaped molding jig and hot-pressed in nitrogen gas at a temperature of 1890¾ at a pressure of 15ΜΡa for 3 hours to obtain a diameter of 20 Omm and a thickness of 20 Omm. A 110 m tungsten porous check top conductor layer was obtained.
(2) 次に、 実施例 1の (1) 〜 (4) 、 および、 (5) 〜 (7) と同様のェ 程を実施し、 ガード電極、 グランド電極、 発熱体を有するセラミック基板を得た。  (2) Next, the same steps as (1) to (4) and (5) to (7) in Example 1 were performed to obtain a ceramic substrate having a guard electrode, a ground electrode, and a heating element. Was.
(3) 上記 (1) で得た多孔質チャックトップ導体層を金ろう (実施例 1の (1 0) と同じもの) の粉末を介してセラミック基板に載置し、 970°Cでリフロー した。  (3) The porous chuck top conductor layer obtained in (1) above was placed on a ceramic substrate via a powder of gold solder (same as (10) in Example 1) and reflowed at 970 ° C. .
(4) 実施例 1の (10) 〜 (1 2) と同様の工程を実施してウェハプローバ を得た。  (4) The same steps as (10) to (12) of Example 1 were performed to obtain a wafer prober.
この実施例で得られたウェハプローバは、 チャックトップ導体層に半導体ゥェ ハが均一に吸着する。 次に、 実施例 7で得られたウェハプローバを、 実施例 1と同様に図 9に示した 支持台 1 1上に載置し、 実施例 1の場合と同様にしてウェハプローバ装置を組み 立てた。 In the wafer prober obtained in this example, the semiconductor wafer is uniformly adsorbed on the chuck top conductor layer. Next, the wafer prober obtained in Example 7 was placed on the support 11 shown in FIG. 9 in the same manner as in Example 1, and a wafer prober device was assembled in the same manner as in Example 1. Was.
そして、 グランド電極とチャック トップ導体層 2との間、 および、 グランド電 極とガード電極 5との間に 1 0 0 Vの電圧を印加し、 チャック トップ導体層 2と ガード電極 5とに同じ接地電位を与えた。  A voltage of 100 V is applied between the ground electrode and the chuck top conductor layer 2 and between the ground electrode and the guard electrode 5, and the same ground is applied to the chuck top conductor layer 2 and the guard electrode 5. An electric potential was applied.
(比較例 1 )  (Comparative Example 1)
実施例 1と同様にして、 ウェハプローバを製造した後、 実施例 1と同様にして ウェハプローバ装置を組み立てた。  After manufacturing a wafer prober in the same manner as in Example 1, a wafer prober apparatus was assembled in the same manner as in Example 1.
そして、 グランド電極とチャックトップ導体層 2との間には、 1 0 0 Vの電圧 を印加し、 ダランド電極とガード電極 5との間には回路を形成せず、 チャック ト ップ導体層 2とガード電極 5との電位を異なったものとした。  Then, a voltage of 100 V is applied between the ground electrode and the chuck top conductor layer 2, no circuit is formed between the duland electrode and the guard electrode 5, and the chuck top conductor layer 2 is formed. And the potential of the guard electrode 5 were different.
評価方法  Evaluation method
支持台上に载置された上記実施例およぴ比較例で製造したウェハプローバの上 に、 図 1に示したように良品のシリコンウェハ Wを載置し、 1 5 0でに加熱しな がら、 プローブカード 6 0 1を押圧して導通テストを行い、 誤動作の有無を調べ た。 その結果を下記の表 1に示した。  A non-defective silicon wafer W is placed on the wafer prober manufactured in the above example and the comparative example placed on the support table, as shown in FIG. Then, the probe card 601 was pressed to perform a continuity test to check for malfunction. The results are shown in Table 1 below.
表 1 誤動作の有無 実施例 1 te 実施例 2 te 実施例 3  Table 1 Whether there is a malfunction Example 1 te Example 2 te Example 3
実施例 4 to 実施例 5 to 実施例 6 挺 実施例 7  Example 4 to Example 5 to Example 6
比較例 1 有 上記表 1より明らかなように、 ガード電極を備え、 チャック トップ導体層 2と ガード電極 5とに同じ接地電位を与えたウェハプローバ装置 (実施例 1〜7 ) で は、 正しい判定がなされているのに対し、 ガード電極を備えてほいるものの、 チ ャック トップ導体層 2とガード電極 5とに同じ接地電位を与えなかったウェハプ ローバ装置 (比較例 1 ) では、 ノイズにより誤った判定がなされてしまう。 産業上の利用可能性 Comparative Example 1 Yes As is clear from Table 1 above, the wafer prober device (Examples 1 to 7) having a guard electrode and applying the same ground potential to the chuck top conductor layer 2 and the guard electrode 5 makes a correct determination. On the other hand, in the wafer prober device (Comparative Example 1) in which a guard electrode was provided but the same ground potential was not applied to the chuck conductor layer 2 and the guard electrode 5, an erroneous determination was made due to noise. I will. Industrial applicability
以上説明のように、 本発明のウェハプローバ装置では、 チャック トップ導体層 と上記ガード電極とが、 概ね同電位となるように電圧が印加されているので、 測 定回路内に介在するストレイキャパシタをキャンセルすることができ、 このスト レイキャパシタに起因するノイズが発生せず、 誤動作が発生しないウェハプロ一 バ装置を提供することができる。  As described above, in the wafer prober device of the present invention, since a voltage is applied so that the chuck top conductor layer and the guard electrode have substantially the same potential, the stray capacitor interposed in the measurement circuit is removed. It is possible to provide a wafer prober device that can cancel, does not generate noise due to the storage capacitor, and does not malfunction.
また、 本発明のウェハプローバに使用されるセラミック基板は、 上記ウェハプ ローバ装置に使用されるセラミック基板であり、 このセラミック基板を使用する ことにより、 ストレイキャパシタに起因するノイズが発生せず、 誤動作が発生し ないウェハプローバ装置を提供することができる。  Further, the ceramic substrate used in the wafer prober of the present invention is the ceramic substrate used in the above-described wafer prober device. By using this ceramic substrate, noise due to the stray capacitor does not occur, and malfunctions occur. It is possible to provide a wafer prober device that does not generate any.

Claims

請求の範囲 The scope of the claims
1 . セラミック基板の表面にチャック トップ導体層が形成されるとともに、 前記セラミック基板にガード電極が配設されたウェハプローバ、 および、 電源を 含んで構成されるウェハプローバ装置であって、 前記電源により、 前記チャック トップ導体層と前記ガード電極とが、 概ね同電位となるように電圧が印加されて いることを特徴とするウェハプロ一バ装置。 1. A wafer prober having a chuck top conductor layer formed on a surface of a ceramic substrate and a guard electrode provided on the ceramic substrate, and a wafer prober device including a power supply, A wafer prober, wherein a voltage is applied so that the chuck top conductor layer and the guard electrode have substantially the same potential.
2 . その表面にチャック トツプ導体層が形成されるとともに、 ガード電極が 配設されたセラミック基板、 および、 電源を含んで構成されるウェハプローバ装 置であって、 前記電源により、 前記チャックトップ導体層と前記ガード電極とが、 概ね同電位となるように電圧が印加されていることを特徴とするウェハプローバ 2. A ceramic substrate on which a chuck top conductor layer is formed and a guard electrode is disposed, and a wafer prober device including a power supply, wherein the power supply includes: A voltage is applied so that the layer and the guard electrode have substantially the same potential.
3 . その両主面に、 それぞれチヤックトップ導体層およびガード電極が配設 され、 前記ガード電極上に絶縁体を介してダランド電極が配設されていることを 特徴とするウェハプローバ装置に使用されるセラミック基板。 3. A chuck probe conductor layer and a guard electrode are respectively disposed on both main surfaces thereof, and a duland electrode is disposed on the guard electrode via an insulator, which is used for a wafer prober device. Ceramic substrate.
PCT/JP2001/003770 2000-10-18 2001-05-01 Wafer prover device, and ceramic substrate used for wafer prover device WO2002035603A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000/318064 2000-10-18
JP2000318064A JP3681628B2 (en) 1999-10-25 2000-10-18 Wafer prober apparatus and ceramic substrate used for wafer prober apparatus

Publications (1)

Publication Number Publication Date
WO2002035603A1 true WO2002035603A1 (en) 2002-05-02

Family

ID=18796751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/003770 WO2002035603A1 (en) 2000-10-18 2001-05-01 Wafer prover device, and ceramic substrate used for wafer prover device

Country Status (1)

Country Link
WO (1) WO2002035603A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075197A (en) * 1993-03-30 1995-01-10 Bekutoru Semiconductor:Kk Probe for measuring electric characteristics
JPH10303257A (en) * 1997-04-22 1998-11-13 Izumi Seiki Kk Probe station
EP1091400A1 (en) * 1999-07-15 2001-04-11 Ibiden Co., Ltd. Wafer prober

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075197A (en) * 1993-03-30 1995-01-10 Bekutoru Semiconductor:Kk Probe for measuring electric characteristics
JPH10303257A (en) * 1997-04-22 1998-11-13 Izumi Seiki Kk Probe station
EP1091400A1 (en) * 1999-07-15 2001-04-11 Ibiden Co., Ltd. Wafer prober

Similar Documents

Publication Publication Date Title
WO2002101816A1 (en) Wafer prober
WO2001006559A1 (en) Wafer prober
WO2001078455A1 (en) Ceramic board
WO2001067817A1 (en) Ceramic substrate
JP3813421B2 (en) Wafer prober equipment
JP2004153288A (en) Wafer prober device
JP3320706B2 (en) Wafer prober, ceramic substrate used for wafer prober, and wafer prober device
JP3813420B2 (en) Wafer prober equipment
JP3681628B2 (en) Wafer prober apparatus and ceramic substrate used for wafer prober apparatus
JP3396468B2 (en) Wafer prober and ceramic substrate used for wafer prober
WO2002035603A1 (en) Wafer prover device, and ceramic substrate used for wafer prover device
JP3614764B2 (en) Wafer prober and ceramic substrate used for wafer prober
JP3514384B2 (en) Wafer prober and ceramic substrate used for wafer prober
JP3670200B2 (en) Wafer prober
JP3847537B2 (en) Wafer prober chuck top and ceramic substrate used for wafer prober chuck top
JP3396469B2 (en) Wafer prober and ceramic substrate used for wafer prober
JP3320705B2 (en) Wafer prober and ceramic substrate used for wafer prober
JP3810992B2 (en) Wafer prober and ceramic substrate used for wafer prober
JP2001196425A (en) Wafer prober and ceramic board used for the same
JP3320704B2 (en) Wafer prober and ceramic substrate used for wafer prober
JP2004104150A (en) Wafer prober and ceramic substrate used therefor
JP2001135685A (en) Wafer prober
JP2004104152A (en) Wafer prober apparatus
JP2001230284A (en) Wafer prober
JP2004104151A (en) Wafer prober

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase