WO2002035460A1 - Ecran tactile a confirmation tactile utilisant une pluralite de capteurs tactiles - Google Patents

Ecran tactile a confirmation tactile utilisant une pluralite de capteurs tactiles Download PDF

Info

Publication number
WO2002035460A1
WO2002035460A1 PCT/US2000/029784 US0029784W WO0235460A1 WO 2002035460 A1 WO2002035460 A1 WO 2002035460A1 US 0029784 W US0029784 W US 0029784W WO 0235460 A1 WO0235460 A1 WO 0235460A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
touchscreen
sensor
sensor system
force
Prior art date
Application number
PCT/US2000/029784
Other languages
English (en)
Inventor
Geoffrey D. Wilson
Victor E. Borgnis
Joel Kent
Mike Lewis
Drew Loucks
James Roney
Michael Bruno Patti
Original Assignee
Elo Touchsystems, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elo Touchsystems, Inc. filed Critical Elo Touchsystems, Inc.
Priority to EP00973991A priority Critical patent/EP1330777A1/fr
Priority to PCT/US2000/029784 priority patent/WO2002035460A1/fr
Priority to JP2002538370A priority patent/JP2004534974A/ja
Priority to AU2001212430A priority patent/AU2001212430A1/en
Publication of WO2002035460A1 publication Critical patent/WO2002035460A1/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • G06F3/04142Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position the force sensing means being located peripherally, e.g. disposed at the corners or at the side of a touch sensing plate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/043Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves
    • G06F3/0436Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves in which generating transducers and detecting transducers are attached to a single acoustic waves transmission substrate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04106Multi-sensing digitiser, i.e. digitiser using at least two different sensing technologies simultaneously or alternatively, e.g. for detecting pen and finger, for saving power or for improving position detection

Definitions

  • the present invention relates generally to touchscreens and, more particularly, to a method and apparatus for discriminating between a false touch event and a true touch on a touchscreen.
  • Touchscreens are used in conjunction with a variety of display types, including cathode ray tubes (i.e., CRTs) and liquid crystal display screens (i.e., LCD screens), as a means of inputting information into a data processing system.
  • CTRs cathode ray tubes
  • LCD screens liquid crystal display screens
  • Touchscreens When placed over a display or integrated into a display, the touchscreen allows a user to select a displayed icon or element by touching the screen in a location corresponding to the desired icon or element.
  • Touchscreens have become common place in a variety of different applications including, for example, point-of-sale systems, information kiosks, automated teller machines (i.e., ATMs), data entry systems, etc.
  • a variety of touchscreen types have been developed. Unfortunately each type of touchscreen has at least one weakness limiting its usefulness in at least some applications. For example, the cover sheet in a resistive touchscreen is susceptible to damage. Even repeated screen compressions may eventually damage a resistive touchscreen. This type of touchscreen is also susceptible to environmental damage, for example moisture entering the display.
  • a second type of touchscreen, capacitive touchscreens are non-responsive to touch from an ungrounded object, thus leading to potential problems with gloved hands, styluses, pencils, etc.
  • a third type of touchscreen utilizing surface acoustic waves is susceptible to the accumulation of contaminants (e.g., water) on the surface of the sensor. Contamination can also interfere with the operation of infrared touchscreens.
  • a fifth type of touchscreen using force sensors is susceptible to shock and vibration.
  • Various systems have been designed that utilize two different touchscreen technologies for a variety of purposes, primarily as a means of accommodating different touch mechanisms, e.g., a finger and a stylus, for data entry.
  • U.S. Patent No. 5,231 ,381 discloses a multi-purpose data input device utilizing an integrated touchscreen and a digitizing tablet.
  • the touchscreen detects the presence and location of a passive input (e.g., finger touch) through any of a variety of techniques including surface acoustic wave, force, capacitive, or optical touch sensors.
  • the digitizing tablet employs an active stylus mechanism to stimulate a capacitive, inductive, or surface acoustic wave sensor.
  • U.S. Patent No. 5,510,813 discloses a touch panel that measures both touch position and touch force. The touch panel uses a resistive, conductive layer and determines touch position by monitoring the current pattern.
  • the force of the touch is determined by monitoring a capacitance value between the touch panel and a second conductive panel that extends substantially parallel to the touch panel.
  • the system processes both the detected position and the detected force of the touch.
  • U.S. Patent No. 5,543,589 discloses a dual sensor touchscreen in which each sensor determines touch position, but with a different resolution. The two sensors are sandwiched together to form a single sensor, thus allowing a single touch by a finger, stylus, etc. to be detected by both sensors.
  • the wide conductors of the low resolution sensor are first scanned in order to determine touch position to within a rectangular area the size of one wide conductor.
  • the system disclosed is intended to reduce the number of scan drivers and receivers required, thus lowering cost as well as speeding up the scanning process.
  • U.S. Patent No. 5,670,755 discloses a touch panel that can be used in either of two modes.
  • the touch panel operates like a conventional touchscreen, allowing a user to input information by touching the screen with a finger, pen, or other touching medium.
  • two resistive layers applied to the panel come into contact at the point of touch.
  • the determination of the contact location is based on resistance ratios.
  • the touch panel functions as a digitizer using a specially designed stylus. Capacitance coupling at the contact point of the stylus to the panel is used in determining the contact point.
  • U.S. Patent No. 5,777,607 discloses a system that senses finger touch capacitively and stylus touch resistively. In either touch mode the disclosed system is able to determine the x- and y-coordinates of the touch on the touchscreen using a single resistive layer. In the preferred embodiment, the finger detection mode is disabled when the system detects the stylus is in use, thus preventing the inadvertent input of data through capacitive coupling with the user's hand.
  • U.S. Patent No. 5,801,682 discloses a dual sensor touchscreen in which the variations in coordinate data from a capacitive sensor are compensated for by the use of strain gauges mounted at the corners of the sensor. Variations in the capacitive sensor data may result from changes in signal path, for example, due to the user wearing gloves.
  • What is needed in the art is a method and apparatus for discriminating against false touches of the sort that may result from external stimuli such as vibration, electrical noise, and contaminants, or for confirming the presence of touch.
  • the present invention provides such a method and apparatus.
  • the present invention provides a method and apparatus for discriminating against false touches in a touchscreen system.
  • the system utilizes multiple touchscreen sensors of differing types to validate a touch on a touchscreen.
  • the invention utilizes the strengths of specific sensor types to overcome the deficiencies of other sensor types.
  • the basis of the invention lies in the ability to confirm a touch registered by one touch sensor with another touch sensor. If the touch is confirmed, the touch can be acted upon, for example by sending touch coordinates to the operating system. If, on the other hand, the touch is not confirmed, the touch is invalidated.
  • the system can be designed such that there is a primary touch sensor that determines the touch coordinates and a secondary sensor that validates the presence of a touch, by either a discrete signal or by generating a second set of touch coordinates for comparison purposes. Furthermore, the touch coordinates can either be determined before or after the initial touch is confirmed.
  • the secondary touch sensor comprises a force sensor to discriminate between true and false touches, false touches being caused by such factors as contaminants (e.g., problematic for optical and surface acoustic wave sensors), noise or weak signals (e.g., problematic for capacitive sensors), etc.
  • the touch coordinates are validated.
  • the secondary force sensor may be a simple one-element system that merely indicates that a touch has occurred by sensing touch pressure, or a multi-element force touch system that can provide confirming or supplementary coordinate data.
  • a capacitive sensor is used to confirm or veto the touch data from optical, surface acoustic wave, or force sensors.
  • the secondary capacitive sensor when touched by a grounded conductor such as a finger, the resulting current flow indicates a valid touch detection by the primary sensor.
  • a false touch due to either a contaminant (e.g., surface acoustic wave or optical sensors) or a shock or vibration (e.g., force-based touch system) does not result in a coincident current flow in the capacitive secondary sensor, thus invalidating the data from the primary sensor.
  • the secondary capacitive sensor may be a simple discrete sensor such as that provided by a single-contact transparent conductive coating or a more complex capacitive sensor capable of providing touch coordinates for comparison purposes.
  • the secondary capacitive sensor is comprised of a resistive coating on the surface of the CRT.
  • a resistive coating of this type may be used to limit charge build-up on the CRT screen.
  • the capacitive sensor of this embodiment utilizes the resistive coating in combination with a current monitoring circuit that measures the amplitude of the electromagnetic noise signal coupled to the resistive coating.
  • a secondary sensor such as a force sensor or a capacitive sensor is used as a means of adding tactile feel to an IR optical sensor based touchscreen.
  • the secondary sensor system is used to determine when the user has made physical contact with the touchscreen. Until actual contact is made, the IR system will not register a touch, thus eliminating false touches that may arise due to the user or an article of the user's clothing interrupting the IR beam grid.
  • the secondary sensor system can be used when the system is in a sleep mode, thus eliminating the continuous power drain associated with the IR system.
  • Fig. 1 is a flow chart illustrating the basic methodology of the present invention
  • Fig. 2 is a flow chart illustrating an alternate methodology of the present invention
  • FIG. 3 is an illustration of an embodiment of the present invention utilizing a simple capacitive false touch sensor in conjunction with either an infrared or a surface acoustic wave sensor;
  • Fig. 4 is an illustration of an alternative embodiment to that shown in Fig. 3 utilizing a simple capacitive false touch sensor in conjunction with a non-overlay differential force sensor;
  • Fig. 5 is a cross-sectional view of a capacitive touch sensor
  • Fig. 6 is an illustration of one or more force sensors mounted to a touchscreen
  • Fig. 7 is an illustration of an embodiment of the present invention utilizing a surface acoustic wave sensor as the primary sensor and one or more force sensors as the secondary sensor
  • Fig. 8 is an illustration of an embodiment of the present invention utilizing a capacitive sensor as the primary sensor and one or more force sensors as the secondary sensor;
  • Fig. 9 is a flow chart illustrating the system wake-up feature according to the present invention.
  • Fig. 10 is a flow chart illustrating the methodology associated with an embodiment of the invention utilizing a force sensor system in conjunction with an IR optical sensor system;
  • Fig. 11 is a flow chart illustrating an alternate methodology associated with an embodiment of the invention utilizing a force sensor system in conjunction with an IR optical sensor system;
  • Fig. 12 is an illustration of an embodiment of the invention utilizing an IR optical sensor system as the primary sensor and a force sensor system as the secondary sensor;
  • Fig. 13 is a cross-sectional view of a variation of the optical sensor/force sensor based embodiment of the invention;
  • Fig. 14 is a cross-sectional view of an alternate variation of the optical sensor/force sensor based embodiment of the invention.
  • Fig. 15 is a flow chart illustrating the use of a force sensor to provide a legitimate sleep mode.
  • Fig. 1 is a flow chart illustrating the preferred operation of the present invention.
  • the touchscreen is in a pre -touch, stand-by status.
  • the screen receives a touch (step 103), for example via a finger, stylus, or other means.
  • the primary touch sensor then registers a touch (step 105).
  • the sensor used in step 105 can be of any type, for example, resistive, capacitive, surface acoustic wave, infrared, or force.
  • a secondary sensor Prior to the primary touch sensor determining the coordinates of the touch or sending any information to the operating system (e.g., touch position, touch mode, etc.), a secondary sensor confirms that the touch received by the primary sensor is a valid touch (step 107). If the secondary sensor confirms that the touch is valid (step 109), the touch position is determined (step 1 11). Depending upon the desired configuration, the touch position can be determined by either the primary sensor or the secondary sensor. The touch controller then sends the touch information to the operating system (step 1 13). If the secondary sensor does not confirm that a valid touch was received by the primary sensor, no touch information is sent to the operating system and the touch sensor is placed back into standby status 101.
  • the benefit of this embodiment is that time is not spent on determining invalid touch positions, thus enabling the system to quickly confirm that a valid touch has been received and if the touch is invalidated, to quickly return to stand-by status 101.
  • step 105 After the primary sensor registers a touch (step 105), it determines the position of the touch (step 201). After determining touch position, the system can simply query the secondary sensor to determine it has also registered a touch (step 107) and if it has, confirm the touch (step 109) and send the position coordinates to the operating system (step 203). Alternately, after the touch position has been determined (step 201), a coordinate dependent touch threshold is set for the secondary sensor (step 205), thus accounting for coordinate dependent touch sensitivities.
  • one of the sensors preferably the secondary sensor, only determines whether or not a touch has been received. Since this sensor does not determine absolute touch position, it can be an inexpensive sensor. Alternately, this sensor is designed to determine approximate touch position. For example, this sensor can be designed to determine what quadrant of the screen has been touched. Alternately, the complimentary information received from the two sensors is used to refine the received touch information. For example, the information received from the first sensor can be used to adjust the touch threshold of the second sensor.
  • Figs. 3 and 4 illustrate two configurations of an embodiment of a false touch discrimination touchscreen system according to the present invention.
  • the front surface of a display 301 e.g., a CRT screen
  • the coating may be of the type that is commonly deposited on CRT screens to limit charge build-up, for example, an ITO coating.
  • the primary touch sensor can be any of a variety of different touch screens although it is preferably a surface acoustic wave (i.e., SAW) sensor such as that disclosed in U.S. Patent Nos. 5,708,461, a non-overlay differential force sensor such as that disclosed in U.S. Patent No. 5,038, 142, or an infrared touch sensor such as that disclosed in U.S. Patent No. 5, 164,714, the disclosures of which are incorporated herein for all purposes.
  • SAW surface acoustic wave
  • Fig. 3 shows a touchscreen system 300 in which the primary sensor is either a SAW sensor or an infrared sensor.
  • screen 301 includes a plurality of emitter/receivers 303 along the periphery of the front surface of the display screen, emitter/receivers 303 designed for use with either a SAW sensor or an infrared sensor.
  • the primary sensor of touchscreen system 400 utilizes a non-overlay differential force sensor system with four force measuring gauges 401, one at each corner of screen 301.
  • the resistive coating on screen 301 is coupled to an electric field monitor 305, preferably via an electrode 307.
  • Electrode 307 can be positioned behind a monitor cowling, thus hiding the connection from view by the user.
  • Monitor 305 measures the voltage difference between the resistive coating and a ground 309 that corresponds to the CRT's ground.
  • CRT front screen 301 i.e., the resistive coating
  • Monitor 305 is coupled to a discriminator 31 1 that determines when a change in the detected signal amplitude is greater than a preset threshold, thus indicating that a touch has occurred.
  • discriminator 31 1 distinguishes between grounded objects such as a user's finger and ungrounded objects such as a water droplet.
  • Discriminator 31 1 and the primary touch sensor are coupled to a common processing system 313.
  • System 313 compares the response from the primary touch screen with the false touch sensor.
  • system 313 determines that a touch was observed by the primary sensor but was not verified by the secondary or false touch sensor, the touch is nullified. For example in system 300, if a drop of water hits screen 301 , the SAW or infrared primary sensor would indicate a touch. This touch, however, would not be verified by the false touch sensor as the water drop is ungrounded. Similarly, in system 400 where the primary sensor employs non-overlay differential force technology, a physical shock to the CRT would register a touch, but this touch would not be verified because there would be no grounding of the secondary sensor. In either system 300 or
  • a valid touch is one in which the false touch sensor is touched by a grounded object, e.g., a finger
  • a valid touch can also be defined as one in which the detected signal amplitude is less than a preset threshold.
  • the false touch sensor can be designed to invalidate any touch in which the detected signal amplitude exceeds the preset threshold, thus indicating that the user is not wearing rubber gloves.
  • the absence of a signal indicating that the detected signal amplitude has exceeded the preset threshold validates the touch from the primary touch sensor.
  • a screen overlay is used in another embodiment similar to that shown in Figs. 3 and 4, as opposed to relying on the charge limiting coating on a CRT screen as the secondary sensor.
  • capacitive touch technology forms the basis of the secondary sensor.
  • the primary sensor can utilize SAW sensors, infrared sensors, or differential force sensors.
  • the differential force sensors can either be overlay or non-overlay force sensors.
  • Fig. 5 is a cross-sectional view of a capacitive touch sensor, such as that disclosed in U.S. Patent No. 5,457,289, the disclosure of which is incorporated herein for all purposes.
  • An overlay substrate 501 is used that can be incorporated into a CRT or other touch panel.
  • a transparent conductive coating 503 e.g., ITO coating
  • a protective overlay coating 505 e.g., SiO, coating.
  • Transparent conductive coating 503 can either be excited by electromagnetic noise, as in the resistive coating of CRT screen 301, or by an external frequency source 507.
  • this embodiment utilizing an overlay capacitive sensor as the secondary' sensor is coupled to processor 313 (not shown) via discriminator 31 1 (not shown) and monitor 305 (shown).
  • the monitoring/discriminator system determines whether or not a touch received by the primary sensor is valid, i.e., due to a grounded signal from a finger or equivalent object.
  • the capacitive secondary sensor can either provide simple touch validation, similar to that provided by the charge limiting resistive coating described in reference to Figs. 3 and 4, or it can provide touch coordinates that can be compared by processor 313 with the coordinates determined by the primary sensor.
  • the capacitive secondary sensor is fabricated using well known techniques, such as those disclosed in U.S. Patent No. 5,457,289.
  • force sensors are used as the secondary sensor.
  • Techniques for fabricating force sensors are well known by those of skill in the art and are typified by a temperature compensated strain gauge such as that disclosed in U.S. Patent No. 5,742,222.
  • a single force sensor 601 is located on a touchscreen 605.
  • low-stiffness supports at corners 606 and a high-stiffness support at corner 608 may be used to avoid zones of limited or no touch sensitivity.
  • sensor 601 is located just outside of the viewing region of screen 605 and underneath a touchscreen cowling 607.
  • four force sensors 601-604 may be used, one located at each corner of touchscreen 605, to provide touch coordinates in a manner similar to that disclosed in U.S. Patent No. 5,708,460, the disclosure of which is incorporated herein for all purposes.
  • the force sensor is the secondary sensor while the primary sensor is either an overlay utilizing a SAW sensor as illustrated in Fig. 7 or a capacitive touch sensor as illustrated in Fig. 8.
  • the primary sensor is either an overlay utilizing a SAW sensor as illustrated in Fig. 7 or a capacitive touch sensor as illustrated in Fig. 8.
  • multiple force sensors 601-604 are shown although it is understood that a single force sensor 601 could be used to provide touch validation. Therefore as shown in Figs. 7 and 8, the output of sensor 601 can either be coupled to monitor 305 and discriminator 31 1 to provide touch validation or directly coupled to processor 313 along with the outputs from force sensors 602-604 to provide secondary touch coordinate determination.
  • the primary sensor includes transmitter transducers
  • the capacitive primary sensor shown in Fig. 8 includes a conductive coating 801 on screen 605 as well as electrode assemblies 803. If a contaminant causes the primary sensor of Fig. 7 to detect an apparent touch, or if an inadvertent grounding causes the capacitive primary sensor of Fig. 8 to detect an apparent touch, the lack of a corresponding pressure signal from force sensor 601 would preclude the system from reporting the coordinates of the false touch.
  • the combination of sensors of the present invention has other advantages. For example, in the system stand-by mode, only one of the sensor systems needs to be in the 'ready' state. Thus the other sensor system can be in a completely unpowered state, thereby reducing power consumption.
  • the primary sensor in a stand-by mode (step 901) while the secondary sensor remains in an active mode (step 903).
  • the primary sensor is activated (step 907).
  • the system determines the touch position coordinates according to one of the previously described algorithms shown in Figs. 1 and 2 (step 909).
  • a force sensing system that measures the pressure applied to the surface of the display such as the differential force sensing system disclosed in U.S. Patent No. 5,038,142, may be used in conjunction with a primary sensor of a non-overlay on-screen surface acoustic wave sensor or a non-overlay on-screen capacitive sensor similar to that disclosed in U.S. Patent No. 5,796,389.
  • a force sensing system is used in conjunction with an IR optical sensor as illustrated in Figs. 10-14.
  • touch is sensed when an IR beam grid positioned directly above the touchscreen surface is interrupted.
  • the user does not actually have to touch the screen in order to activate a touch button or otherwise interact with the touchscreen.
  • the ability to interact with the screen without physically touching the screen is counterintuitive to most users, often leading to false touches. For example, a tentative user may allow his or her finger to hover just above the touchscreen surface while decided which touch button to activate. If the user's finger is too close to the screen during this decision-making period, a false touch will occur.
  • a force sensor in order to overcome the lack of tactile feel for an optical sensor based touchscreen system one or more force sensors are used, thereby providing positive touch feedback to the user.
  • the simple capacitive sensor system described in relation to Fig. 3 i.e., using the charge limiting coating on a CRT screen
  • Fig. 5 i.e., using a screen overlay
  • an optical sensor based touchscreen system can also be used in conjunction with an optical sensor based touchscreen system to provide positive touch feedback (/. e. , tactile feel).
  • a capacitive sensor system can also be used to augment the optical sensor system.
  • the force sensor system is queried to determine if it has also registered a touch (step 1003). If no touch is registered by the force sensor system (step 1005), a false touch is assumed and the system does not report a touch to the host computer. Alternately, if a touch is registered by the force sensor system (step 1007), the touch is verified and the touch coordinates are reported to the host computer (step 1009). It should be understood that in this embodiment the force sensor system is not being used to provide and/or verify touch position coordinates. Rather, the force sensor system is only being used to discriminate between valid and false touches.
  • the force sensor system of the present invention also provides additional design flexibility to the touchscreen designer.
  • the beam grid is placed as close as possible to the touch surface, thereby minimizing the lack of a tactile feel provided by such a sensor system.
  • the system designer can locate the beam grid further away from the touch surface, thus allowing other aspects of the system to be optimized. For example, by allowing the beam grid to be positioned further from the touch surface, it is easier to design a system that allows rainwater drainage from the touchscreen.
  • Fig. 1 1 illustrates a variation of the approach shown in Fig. 10 that is specific to the embodiment of the invention utilizing force sensors as the secondary sensor (as opposed to a capacitive secondary sensor system).
  • step 1103 not only is the force sensor queried to determine whether or not a touch has been registered (step 1003), but also the amount of force in the touch is determined (step 1101). If the applied force does not exceed a preset threshold (step 1103), the touch is rejected as a false touch and no touch coordinates are reported to the host system. Alternately if the touch force exceeds the threshold (step 1 105), the touch coordinates are reported to the host system (step 1009).
  • the benefit of this approach is that a false touch, for example due to an article of the user's clothing resting on the touchscreen, will not be reported to the host system as a valid touch.
  • the sensitivity of the force sensor system of the present embodiment typically exhibits a positional dependency which, if not accounted for, can affect force threshold step 1 101.
  • this dependency is due to the selected sensor locations and to the variations in panel flexure as the touch location moves from panel edge to panel center.
  • the positional dependency can be minimized (e.g., through sensor selection, sensor location, panel selection, panel mounting, etc.), preferably the variations are calculated thus allowing a constant effective touch force sensitivity throughout the touch zone to be maintained.
  • Fig. 12 is an illustration of a touchscreen utilizing an IR optical sensor system as the primary sensor and a force sensor system as the secondary sensor for use with the previously described methodologies.
  • IR optical sensor systems are well known by those of skill in the art and will therefore not be described in detail herein. For example, see PCT Patent Application WO 98/40844.
  • the primary optical components include IR sources 1201, waveguide or other beam dispersive means 1203 for forming the beam grid, cylindrical lenses 1205, and detectors 1207.
  • a processor 1209 controls the touchscreen system.
  • one or more force sensors 121 1 are also coupled to the touchscreen.
  • a variety of different types of force sensor can be used with the invention.
  • the output of force sensor 121 1 is coupled to a monitor 1213 that determines when a touch is registered.
  • the functions of monitor 1213 can be separate from, or performed by, processor 1209.
  • a discriminator circuit 1215 can be used to determine whether or not the force applied to the touchscreen exceeds a preset threshold.
  • a thin piece of glass (e.g., 2 millimeters thick) is placed over the LCD display. Not only does this piece of glass provide a surface for mounting or bonding the IR optical system components, it also provides a touch plate for the force system. Additionally it mechanically protects the LCD display from the wear associated with touch operation.
  • the thickness of the glass substrate is selected to provide sufficient rigidity so that the substrate flexure resulting from touching the surface will cause only a slight misalignment of the optical system.
  • the optical system is designed such that the angular acceptance of the cylindrical lenses compensates for the substrate flexure.
  • the force sensors are a pair of PVDF thin film piezoelectric strain gauges bonded to the back surface of the substrate outside of the viewing area of the LCD (e.g. , beneath waveguide structures 1203), one mounted along either axis of the touchscreen. As the substrate flexes, a signal that is proportional to the change in local curvature is generated, thus providing a means of detecting touch.
  • Figs. 13 and 14 are cross-sectional views of a pair of variations of the optical sensor/force sensor based embodiment of the invention utilizing a thick substrate, thus providing better protection for the underlying display. Due to the additional weight of the thicker substrate, however, this embodiment is better suited for a kiosk than a laptop computer.
  • the display arrangements are tilted in a manner similar to that used in a typical kiosk. It is understood, however, that the display arrangement can be tilted at any angle from 0 degrees (i.e., horizontal) to 90 degrees (i.e., vertical).
  • the system includes a display (e.g. , LCD display) 1301 , a glass touch panel 1303, and a mounting structure 1305.
  • the IR optical system is represented simply by a source 1307 and a detector 1309 although it is understood that other optical components are typically required (e.g., waveguide structures, lenses, etc.).
  • an IR transparent bezel 131 1 is used to protect the components of the optical sensor system. Due to the thickness of the glass in these embodiments, touch panel 1303 can be expected to undergo very little flexure during touch.
  • the force sensor system uses one or more pressure sensors 1313 that are mounted between touch panel 1403 and mounting structure 1305.
  • transparent bezel 131 1 and IR optical sensor components 1307 and 1309 are elevated from panel 1303, thus allowing the system to be designed with drainage channels for rainwater runoff 1401.
  • a conventional optical sensor based touchscreen i.e., one which does not include a secondary sensor system
  • such an elevated optical system would be undesirable as the increased elevation would further emphasize the lack of tactile feel.
  • Another advantage of the present invention is that it provides a true "sleep" mode for the combined system.
  • a typical resistive touchscreen system during periods of inactivity the system is placed in a sleep mode. In this mode the system basically operates as a simple membrane switch. Thus once the touchscreen enters this mode, generally the first touch simply wakes up the system, preparing it for accepting information through further user touchscreen interactions. For example, in a laptop computer using a resistive touchscreen, if no touch is registered for a preset period of time, the system enters the sleep mode and minimizes system power usage (e.g., eliminating the screen display, eliminating rotation of the CD drive, etc.) thereby extending battery life.
  • system power usage e.g., eliminating the screen display, eliminating rotation of the CD drive, etc.
  • a touchscreen that only uses an optical or acoustic or capacitive sensor must continue to expend power in order to remain responsive to touch.
  • an optical sensor system must continue to scan the IR beams across the active touch region in order to respond to a touch. Therefore a touchscreen based solely on optical, acoustic, or capacitive sensors that is in a legitimate sleep mode, i.e., a mode in which no power is being consumed, becomes completely dead to the touch and thus cannot be used to wake or initialize the system upon a first touch.
  • the system enters into a sleep mode (step 1501).
  • the primary sensor system i.e., the optical, acoustic, or capacitive system
  • the primary sensor system is in a complete power-down mode.
  • the force sensor system step 1503
  • the primary sensor system is activated (step 1505).
  • the system works as previously described, registering each successive touch with the primary sensor system (step 1507), verifying the touch with the force sensor system (step 1509), and reporting the coordinates of each verified step to the host computer (step
  • the system monitors the time between successive touches (step 1513) and if the time exceeds a preset time limit (step 1515) it re-enters the system sleep mode.
  • the system may or may not use a touch force threshold as described with reference to Fig. 1 1.
  • a typical touchscreen controller requires a microprocessor, RAM, ROM, an analog-to-digital converter (ADC), power supply circuitry, digital circuits to support communication with the host computer, and a printed circuit board.
  • ADC analog-to-digital converter
  • controller electronics may be common to two different types of sensors.
  • some types of piezoresistive force sensors can be read out with an alternating-current excitation voltage in the tens of kiloHertz range as opposed to the more typical approach of using a direct-current excitation voltage. Therefore the same excitation frequency and similar receive electronics can be used for both force sensors and capacitive sense electrodes.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Position Input By Displaying (AREA)

Abstract

La présente invention concerne un procédé et un dispositif permettant de distinguer les erreurs de touche dans un système à écran tactile. Le système est conçu pour confirmer une touche enregistrée par un capteur tactile à l'aide d'un autre capteur tactile, de préférence un capteur tactile d'un type différent, avant de mettre à exécution la touche (c'est-à-dire, envoyer des coordonnées d'une touche au système d'exploitation). Si la touche enregistrée par le premier capteur tactile n'est pas confirmée par le second capteur tactile, cette touche est annulée. Ainsi, les points forts d'un type de capteur tactile permettent de palier les points faibles d'un autre type de capteur. Dans un aspect de l'invention, le capteur tactile secondaire comprend un capteur de force conçu pour faire la distinction entre des erreurs de touche et des touches réelles sur d'autres types de capteurs tactiles, tels que des impuretés sur des capteurs optiques et d'ondes acoustiques de surface, du bruit ou des signaux faibles sur des capteurs capacitifs, etc. Le détecteur de force peut consister en un simple système à un seul élément indiquant seulement qu'une touche a été effectuée ou un système à plusieurs éléments permettant d'obtenir des données de confirmation ou des données de coordonnées supplémentaires. Dans un autre aspect de cette invention, un capteur capacitif est utilisé pour confirmer ou pour bloquer des données tactiles provenant de capteurs de force, d'ondes acoustiques de surface et optiques. Comme pour le capteur de force secondaire, un capteur capacitif secondaire peut consister en un capteur simple de type discret ou qui est conçu pour obtenir des coordonnées tactiles à part entière. Dans un mode de réalisation particulier n'utilisant pas une superposition tactile sur un moniteur CRT, le capteur tactile secondaire peut utiliser le revêtement résistif déposé sur la surface du tube cathodique en combinaison avec un circuit de surveillance du courant mesurant l'amplitude du signal de bruit électromagnétique couplé au revêtement résistif. Dans ce mode de réalisation, lorsque l'écran est touché par un objet mis à la terre, le changement d'amplitude du signal dépasse un seuil préétabli, ce qui indique une touche valide.
PCT/US2000/029784 2000-10-27 2000-10-27 Ecran tactile a confirmation tactile utilisant une pluralite de capteurs tactiles WO2002035460A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP00973991A EP1330777A1 (fr) 2000-10-27 2000-10-27 Ecran tactile a confirmation tactile utilisant une pluralite de capteurs tactiles
PCT/US2000/029784 WO2002035460A1 (fr) 2000-10-27 2000-10-27 Ecran tactile a confirmation tactile utilisant une pluralite de capteurs tactiles
JP2002538370A JP2004534974A (ja) 2000-10-27 2000-10-27 複数のタッチセンサを利用した接触確認式タッチスクリーン
AU2001212430A AU2001212430A1 (en) 2000-10-27 2000-10-27 Touch confirming touchscreen utilizing plural touch sensors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2000/029784 WO2002035460A1 (fr) 2000-10-27 2000-10-27 Ecran tactile a confirmation tactile utilisant une pluralite de capteurs tactiles

Publications (1)

Publication Number Publication Date
WO2002035460A1 true WO2002035460A1 (fr) 2002-05-02

Family

ID=21741941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/029784 WO2002035460A1 (fr) 2000-10-27 2000-10-27 Ecran tactile a confirmation tactile utilisant une pluralite de capteurs tactiles

Country Status (4)

Country Link
EP (1) EP1330777A1 (fr)
JP (1) JP2004534974A (fr)
AU (1) AU2001212430A1 (fr)
WO (1) WO2002035460A1 (fr)

Cited By (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1408396A2 (fr) * 2002-10-04 2004-04-14 SMK Corporation Dispositif d'entrée avec pointage
WO2005121938A2 (fr) 2004-06-09 2005-12-22 Koninklijke Philips Electronics N.V. Systeme d'entree
WO2006115946A2 (fr) * 2005-04-28 2006-11-02 3M Innovative Properties Company Dispositif et procede tactiles mettant en application une information pre-tactile
EP1759378A2 (fr) * 2004-05-07 2007-03-07 Next Holding Limited Systeme d'ecran tactile a illumination et detection fournies a partir d'un seul bord
WO2007064432A2 (fr) * 2005-11-28 2007-06-07 Synaptics Incorporated Procedes et systemes pour mettre en oeuvre des modifications modales dans un dispositif en reponse a des indications de proximite et de force
WO2008077472A1 (fr) * 2006-12-26 2008-07-03 Nokia Corporation Construction de bloc de touches et/ou de bloc à effleurement
WO2009012183A2 (fr) * 2007-07-17 2009-01-22 Apple Inc. Capteur de force résistive avec discrimination capacitive
EP2026179A1 (fr) * 2007-08-10 2009-02-18 IEE International Electronics & Engineering S.A.R.L. Procédé pour la génération de données d'entrée
WO2009147398A2 (fr) * 2008-06-04 2009-12-10 Elliptic Laboratories As Localisation d'objet
EP2214082A1 (fr) * 2009-01-29 2010-08-04 Sensitive Object Dispositif de détection de toucher doté d'une fonction de maintien de touche et procédé correspondant
EP2241960A1 (fr) * 2009-04-16 2010-10-20 Research In Motion Limited Dispositif électronique et affichage à écran tactile doté d'un capteur de force
US7920128B2 (en) 2005-09-21 2011-04-05 Samsung Electronics., Ltd. Touch sensitive display device and driving apparatus thereof, and method of detecting a touch
US20110141033A2 (en) * 2008-02-19 2011-06-16 Dingnan Han Mulit-point touch screen and touch detection method
US20110192657A1 (en) * 2010-02-10 2011-08-11 Au Optronics Corporation Capacitive touch panel with multiple zones
EP2410410A1 (fr) * 2010-07-20 2012-01-25 Tyco Electronics Services GmbH Dispositif de détection tactile ayant une fonction de maintien de touche et procédé correspondant
WO2012025159A1 (fr) * 2010-08-27 2012-03-01 Brainlab Ag Détermination de position de pointage multicouche sur un écran médical
JP2012510690A (ja) * 2008-12-02 2012-05-10 クゥアルコム・インコーポレイテッド 慣性センサからのユーザ入力を判断するための方法および装置
EP2503478A3 (fr) * 2011-03-22 2012-11-14 Erbe Elektromedizin GmbH Dispositif et procédé d'entrée de signaux sécurisée
WO2013106157A1 (fr) * 2012-01-09 2013-07-18 Motorola Mobility Llc Système et procédé pour réduire des occurrences d'opérations involontaires dans un dispositif électronique
WO2013089622A3 (fr) * 2011-12-16 2013-08-22 Flatfrog Laboratories Ab Suivi d'objets sur une surface tactile
US8682606B2 (en) 2008-10-07 2014-03-25 Qualcomm Incorporated Generating virtual buttons using motion sensors
WO2014055807A1 (fr) * 2012-10-04 2014-04-10 Corning Incorporated Système tactile de détection de pression utilisant des systèmes optiques et capacitifs
EP2362301A3 (fr) * 2010-02-18 2014-08-20 Multek Display (Hong Kong) Limited Système d'écran tactile avec détection acoustique et capacitive
US8830183B2 (en) 2009-10-06 2014-09-09 Samsung Display Co., Ltd. Liquid crystal display having a built-in touch screen using capacitance and optical information for detecting a touch position
US8847917B2 (en) 2009-10-06 2014-09-30 Samsung Display Co., Ltd. Liquid crystal display having a built-in touch screen using capacitance and sense lines for detecting a touch position
CN104428730A (zh) * 2012-07-09 2015-03-18 Nec卡西欧移动通信株式会社 信息处理终端
US9046961B2 (en) 2011-11-28 2015-06-02 Corning Incorporated Robust optical touch—screen systems and methods using a planar transparent sheet
US9134842B2 (en) 2012-10-04 2015-09-15 Corning Incorporated Pressure sensing touch systems and methods
US9213445B2 (en) 2011-11-28 2015-12-15 Corning Incorporated Optical touch-screen systems and methods using a planar transparent sheet
US9285623B2 (en) 2012-10-04 2016-03-15 Corning Incorporated Touch screen systems with interface layer
US9411442B2 (en) 2011-06-29 2016-08-09 Google Technology Holdings LLC Electronic device having managed input components
US9542904B2 (en) 2014-06-20 2017-01-10 Panasonic Intellectual Property Management Co., Ltd. Electronic apparatus
CN106445231A (zh) * 2016-09-18 2017-02-22 青岛海信移动通信技术股份有限公司 一种触摸的识别方法和装置
US9619084B2 (en) 2012-10-04 2017-04-11 Corning Incorporated Touch screen systems and methods for sensing touch screen displacement
EP3156888A1 (fr) * 2015-10-14 2017-04-19 Samsung Electronics Co., Ltd. Appareil et procédé destinés à obtenir des coordonnées par son panneau tactile
US9665197B2 (en) 2008-01-30 2017-05-30 Nokia Technologies Oy Apparatus and method for enabling user input
GB2550061A (en) * 2016-04-26 2017-11-08 Ford Global Tech Llc Determination of continuous user interaction and intent through measurement of force variability
US9874978B2 (en) 2013-07-12 2018-01-23 Flatfrog Laboratories Ab Partial detect mode
US9880653B2 (en) 2012-04-30 2018-01-30 Corning Incorporated Pressure-sensing touch system utilizing total-internal reflection
US9880679B2 (en) 2014-06-20 2018-01-30 Panasonic Intellectual Property Management Co., Ltd. Electronic apparatus which effects touch coordinate based on proximity and strain
CN107797710A (zh) * 2017-11-21 2018-03-13 四川长虹教育科技有限公司 一种红外触摸屏系统
US9927920B2 (en) 2011-12-16 2018-03-27 Flatfrog Laboratories Ab Tracking objects on a touch surface
US9952719B2 (en) 2012-05-24 2018-04-24 Corning Incorporated Waveguide-based touch system employing interference effects
US9958418B2 (en) 2015-07-01 2018-05-01 Toto Ltd. Touch detection device used in water handling equipment, and faucet apparatus including the same
US10019113B2 (en) 2013-04-11 2018-07-10 Flatfrog Laboratories Ab Tomographic processing for touch detection
CN108446598A (zh) * 2017-02-16 2018-08-24 辛纳普蒂克斯公司 为利用屏内指纹传感器的触摸感测提供接地真值
US10126882B2 (en) 2014-01-16 2018-11-13 Flatfrog Laboratories Ab TIR-based optical touch systems of projection-type
US10146376B2 (en) 2014-01-16 2018-12-04 Flatfrog Laboratories Ab Light coupling in TIR-based optical touch systems
US10161886B2 (en) 2014-06-27 2018-12-25 Flatfrog Laboratories Ab Detection of surface contamination
US10168835B2 (en) 2012-05-23 2019-01-01 Flatfrog Laboratories Ab Spatial resolution in touch displays
US10228799B2 (en) 2012-10-04 2019-03-12 Corning Incorporated Pressure sensing touch systems and methods
CN109478113A (zh) * 2016-05-18 2019-03-15 森赛尔股份有限公司 用于检测和确认触摸输入的方法
US10283075B2 (en) 2014-06-20 2019-05-07 Panasonic Intellectual Property Management Co., Ltd. Electronic apparatus which effects touch coordinate based on proximity and strain
US10282035B2 (en) 2016-12-07 2019-05-07 Flatfrog Laboratories Ab Touch device
US10318074B2 (en) 2015-01-30 2019-06-11 Flatfrog Laboratories Ab Touch-sensing OLED display with tilted emitters
US10372325B2 (en) 2014-10-16 2019-08-06 Huawei Technologies Co., Ltd. Electromyographic based touch interaction processing method, device, and system
US10401546B2 (en) 2015-03-02 2019-09-03 Flatfrog Laboratories Ab Optical component for light coupling
US10437389B2 (en) 2017-03-28 2019-10-08 Flatfrog Laboratories Ab Touch sensing apparatus and method for assembly
US10474249B2 (en) 2008-12-05 2019-11-12 Flatfrog Laboratories Ab Touch sensing apparatus and method of operating the same
US10481737B2 (en) 2017-03-22 2019-11-19 Flatfrog Laboratories Ab Pen differentiation for touch display
US10481645B2 (en) 2015-09-11 2019-11-19 Lucan Patent Holdco, LLC Secondary gesture input mechanism for touchscreen devices
US10496227B2 (en) 2015-02-09 2019-12-03 Flatfrog Laboratories Ab Optical touch system comprising means for projecting and detecting light beams above and inside a transmissive panel
US10761657B2 (en) 2016-11-24 2020-09-01 Flatfrog Laboratories Ab Automatic optimisation of touch signal
CN111736723A (zh) * 2020-06-02 2020-10-02 芯海科技(深圳)股份有限公司 一种终端设备、压力触控方法及计算机可读存储介质
EP3726143A1 (fr) * 2019-04-15 2020-10-21 Samsung Electronics Co., Ltd. Appareil de cuisson et procédé de commande correspondant
US11182023B2 (en) 2015-01-28 2021-11-23 Flatfrog Laboratories Ab Dynamic touch quarantine frames
US11256371B2 (en) 2017-09-01 2022-02-22 Flatfrog Laboratories Ab Optical component
US11301089B2 (en) 2015-12-09 2022-04-12 Flatfrog Laboratories Ab Stylus identification
US11334196B2 (en) 2017-05-24 2022-05-17 Apple Inc. System and method for acoustic touch and force sensing
US11347355B2 (en) 2017-05-24 2022-05-31 Apple Inc. System and method for acoustic touch and force sensing
US11474644B2 (en) 2017-02-06 2022-10-18 Flatfrog Laboratories Ab Optical coupling in touch-sensing systems
US11567610B2 (en) 2018-03-05 2023-01-31 Flatfrog Laboratories Ab Detection line broadening
US11775166B2 (en) 2021-06-24 2023-10-03 Icu Medical, Inc. Infusion pump touchscreen with false touch rejection
US11893189B2 (en) 2020-02-10 2024-02-06 Flatfrog Laboratories Ab Touch-sensing apparatus
US11943563B2 (en) 2019-01-25 2024-03-26 FlatFrog Laboratories, AB Videoconferencing terminal and method of operating the same
US12055969B2 (en) 2018-10-20 2024-08-06 Flatfrog Laboratories Ab Frame for a touch-sensitive device and tool therefor
US12056316B2 (en) 2019-11-25 2024-08-06 Flatfrog Laboratories Ab Touch-sensing apparatus
US12086362B2 (en) 2017-09-01 2024-09-10 Flatfrog Laboratories Ab Optical component

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008140063A (ja) * 2006-11-30 2008-06-19 Toshiba Corp 入力装置、および情報処理装置
JP5216041B2 (ja) 2010-04-07 2013-06-19 ダイキン工業株式会社 透明圧電シートをそれぞれ有するフレーム付透明圧電シート、タッチパネル、および電子装置
JP5442519B2 (ja) 2010-04-07 2014-03-12 ダイキン工業株式会社 透明圧電シート、それをそれぞれ含有するフレーム付透明圧電シート、タッチ位置検出用タッチパネル、ディスプレイ装置、タッチパネルおよび電子機器
JP5586450B2 (ja) * 2010-12-27 2014-09-10 アルパイン株式会社 静電容量式タッチパネル誤検出防止方法及び装置
KR101811636B1 (ko) * 2011-04-05 2017-12-27 삼성전자주식회사 디스플레이 장치 및 이의 오브젝트 표시 방법
JP5555200B2 (ja) * 2011-04-14 2014-07-23 レノボ・シンガポール・プライベート・リミテッド タッチ・パネルを備える電子機器をウェイク・アップする方法および電子機器
US8933896B2 (en) * 2011-10-25 2015-01-13 Microsoft Corporation Pressure-based interaction for indirect touch input devices
US10444907B2 (en) * 2017-05-16 2019-10-15 Honeywell International Inc. Devices and methods for using an infrared-projected capacitive (IR-PCAP) touchscreen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0372964A2 (fr) * 1988-12-08 1990-06-13 Tektronix Inc. Dispositif permettant de détecter le toucher dans un système d'écran tactile optique
JPH05143226A (ja) * 1991-11-15 1993-06-11 Sharp Corp 感圧式座標入力装置
DE9316194U1 (de) * 1993-10-22 1995-02-16 S W A C Schmitt Walter Automat Berührungsempfindlicher Bildschirm
EP0795837A1 (fr) * 1996-03-12 1997-09-17 Sun Microsystems, Inc. Dispositif de pointage utilisateur avec coussins tactiles pour entrer des données de sélection et de pression

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09237158A (ja) * 1996-03-01 1997-09-09 Nec Corp タッチパネル装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0372964A2 (fr) * 1988-12-08 1990-06-13 Tektronix Inc. Dispositif permettant de détecter le toucher dans un système d'écran tactile optique
JPH05143226A (ja) * 1991-11-15 1993-06-11 Sharp Corp 感圧式座標入力装置
DE9316194U1 (de) * 1993-10-22 1995-02-16 S W A C Schmitt Walter Automat Berührungsempfindlicher Bildschirm
EP0795837A1 (fr) * 1996-03-12 1997-09-17 Sun Microsystems, Inc. Dispositif de pointage utilisateur avec coussins tactiles pour entrer des données de sélection et de pression

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"combining laser and piezoelectric touchscreens", IBM TECHNICAL DISCLOSURE BULLETIN., vol. 31, no. 2, August 1988 (1988-08-01), IBM CORP. NEW YORK., US, pages 137, XP002168304, ISSN: 0018-8689 *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 529 (P - 1618) 22 September 1993 (1993-09-22) *

Cited By (122)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1408396A3 (fr) * 2002-10-04 2005-02-02 SMK Corporation Dispositif d'entrée avec pointage
US7199788B2 (en) 2002-10-04 2007-04-03 Smk Corporation Pointing input device
EP1408396A2 (fr) * 2002-10-04 2004-04-14 SMK Corporation Dispositif d'entrée avec pointage
EP1759378A4 (fr) * 2004-05-07 2012-05-30 Next Holding Ltd Systeme d'ecran tactile a illumination et detection fournies a partir d'un seul bord
EP1759378A2 (fr) * 2004-05-07 2007-03-07 Next Holding Limited Systeme d'ecran tactile a illumination et detection fournies a partir d'un seul bord
WO2005121938A2 (fr) 2004-06-09 2005-12-22 Koninklijke Philips Electronics N.V. Systeme d'entree
WO2005121938A3 (fr) * 2004-06-09 2006-03-30 Koninkl Philips Electronics Nv Systeme d'entree
WO2006115946A2 (fr) * 2005-04-28 2006-11-02 3M Innovative Properties Company Dispositif et procede tactiles mettant en application une information pre-tactile
WO2006115946A3 (fr) * 2005-04-28 2007-06-28 3M Innovative Properties Co Dispositif et procede tactiles mettant en application une information pre-tactile
US7920128B2 (en) 2005-09-21 2011-04-05 Samsung Electronics., Ltd. Touch sensitive display device and driving apparatus thereof, and method of detecting a touch
WO2007064432A3 (fr) * 2005-11-28 2008-01-31 Synaptics Inc Procedes et systemes pour mettre en oeuvre des modifications modales dans un dispositif en reponse a des indications de proximite et de force
WO2007064432A2 (fr) * 2005-11-28 2007-06-07 Synaptics Incorporated Procedes et systemes pour mettre en oeuvre des modifications modales dans un dispositif en reponse a des indications de proximite et de force
US9933876B2 (en) 2005-11-28 2018-04-03 Synaptics Incorporated Methods and systems for implementing modal changes in a device in response to proximity and force indications
US9182837B2 (en) 2005-11-28 2015-11-10 Synaptics Incorporated Methods and systems for implementing modal changes in a device in response to proximity and force indications
WO2008077472A1 (fr) * 2006-12-26 2008-07-03 Nokia Corporation Construction de bloc de touches et/ou de bloc à effleurement
WO2009012183A2 (fr) * 2007-07-17 2009-01-22 Apple Inc. Capteur de force résistive avec discrimination capacitive
WO2009012183A3 (fr) * 2007-07-17 2009-03-19 Apple Inc Capteur de force résistive avec discrimination capacitive
US9654104B2 (en) 2007-07-17 2017-05-16 Apple Inc. Resistive force sensor with capacitive discrimination
EP2026179A1 (fr) * 2007-08-10 2009-02-18 IEE International Electronics & Engineering S.A.R.L. Procédé pour la génération de données d'entrée
WO2009021837A1 (fr) * 2007-08-10 2009-02-19 Iee International Electronics & Engineering S.A. Procédé de génération de données d'entrée
US9665197B2 (en) 2008-01-30 2017-05-30 Nokia Technologies Oy Apparatus and method for enabling user input
US8773367B2 (en) * 2008-02-19 2014-07-08 DingNan Han Multi-point touch screen and touch detection method
US20110141033A2 (en) * 2008-02-19 2011-06-16 Dingnan Han Mulit-point touch screen and touch detection method
WO2009147398A3 (fr) * 2008-06-04 2011-02-24 Elliptic Laboratories As Localisation d'objet
WO2009147398A2 (fr) * 2008-06-04 2009-12-10 Elliptic Laboratories As Localisation d'objet
US8682606B2 (en) 2008-10-07 2014-03-25 Qualcomm Incorporated Generating virtual buttons using motion sensors
JP2012510690A (ja) * 2008-12-02 2012-05-10 クゥアルコム・インコーポレイテッド 慣性センサからのユーザ入力を判断するための方法および装置
US10474249B2 (en) 2008-12-05 2019-11-12 Flatfrog Laboratories Ab Touch sensing apparatus and method of operating the same
WO2010086125A1 (fr) * 2009-01-29 2010-08-05 Sensitive Object Dispositif de détection de toucher à fonction de maintien de toucher et procédé correspondant
CN102301318A (zh) * 2009-01-29 2011-12-28 泰科电子服务有限公司 带有触摸保持功能的触摸感应装置和相应的方法
US8749517B2 (en) 2009-01-29 2014-06-10 Elo Touch Solutions, Inc. Touch-sensing device with a touch hold function and a corresponding method
EP2214082A1 (fr) * 2009-01-29 2010-08-04 Sensitive Object Dispositif de détection de toucher doté d'une fonction de maintien de touche et procédé correspondant
EP2241960A1 (fr) * 2009-04-16 2010-10-20 Research In Motion Limited Dispositif électronique et affichage à écran tactile doté d'un capteur de force
US8830183B2 (en) 2009-10-06 2014-09-09 Samsung Display Co., Ltd. Liquid crystal display having a built-in touch screen using capacitance and optical information for detecting a touch position
US8847917B2 (en) 2009-10-06 2014-09-30 Samsung Display Co., Ltd. Liquid crystal display having a built-in touch screen using capacitance and sense lines for detecting a touch position
US20110192657A1 (en) * 2010-02-10 2011-08-11 Au Optronics Corporation Capacitive touch panel with multiple zones
US8780071B2 (en) * 2010-02-10 2014-07-15 Au Optronics Corporation Capacitive touch panel with multiple zones
EP2362301A3 (fr) * 2010-02-18 2014-08-20 Multek Display (Hong Kong) Limited Système d'écran tactile avec détection acoustique et capacitive
WO2012010303A1 (fr) * 2010-07-20 2012-01-26 Tyco Electronics Services Gmbh Dispositif tactile pourvu d'une fonction de contact prolongé et procédé correspondant
EP2410410A1 (fr) * 2010-07-20 2012-01-25 Tyco Electronics Services GmbH Dispositif de détection tactile ayant une fonction de maintien de touche et procédé correspondant
WO2012025159A1 (fr) * 2010-08-27 2012-03-01 Brainlab Ag Détermination de position de pointage multicouche sur un écran médical
WO2012126682A3 (fr) * 2011-03-22 2012-11-29 Erbe Elektromedizin Gmbh Procédé et dispositif de saisie de signaux fiable
EP2503478A3 (fr) * 2011-03-22 2012-11-14 Erbe Elektromedizin GmbH Dispositif et procédé d'entrée de signaux sécurisée
US9411442B2 (en) 2011-06-29 2016-08-09 Google Technology Holdings LLC Electronic device having managed input components
US9046961B2 (en) 2011-11-28 2015-06-02 Corning Incorporated Robust optical touch—screen systems and methods using a planar transparent sheet
US9213445B2 (en) 2011-11-28 2015-12-15 Corning Incorporated Optical touch-screen systems and methods using a planar transparent sheet
WO2013089622A3 (fr) * 2011-12-16 2013-08-22 Flatfrog Laboratories Ab Suivi d'objets sur une surface tactile
US9927920B2 (en) 2011-12-16 2018-03-27 Flatfrog Laboratories Ab Tracking objects on a touch surface
US9317168B2 (en) 2011-12-16 2016-04-19 Flatfrog Laboratories Ab Tracking objects on a touch surface
US8890823B2 (en) 2012-01-09 2014-11-18 Motorola Mobility Llc System and method for reducing occurrences of unintended operations in an electronic device
WO2013106157A1 (fr) * 2012-01-09 2013-07-18 Motorola Mobility Llc Système et procédé pour réduire des occurrences d'opérations involontaires dans un dispositif électronique
US9880653B2 (en) 2012-04-30 2018-01-30 Corning Incorporated Pressure-sensing touch system utilizing total-internal reflection
US10168835B2 (en) 2012-05-23 2019-01-01 Flatfrog Laboratories Ab Spatial resolution in touch displays
US10572071B2 (en) 2012-05-24 2020-02-25 Corning Incorporated Waveguide-based touch system employing interference effects
US9952719B2 (en) 2012-05-24 2018-04-24 Corning Incorporated Waveguide-based touch system employing interference effects
CN104428730A (zh) * 2012-07-09 2015-03-18 Nec卡西欧移动通信株式会社 信息处理终端
US9285623B2 (en) 2012-10-04 2016-03-15 Corning Incorporated Touch screen systems with interface layer
US10228799B2 (en) 2012-10-04 2019-03-12 Corning Incorporated Pressure sensing touch systems and methods
US9619084B2 (en) 2012-10-04 2017-04-11 Corning Incorporated Touch screen systems and methods for sensing touch screen displacement
WO2014055807A1 (fr) * 2012-10-04 2014-04-10 Corning Incorporated Système tactile de détection de pression utilisant des systèmes optiques et capacitifs
US9557846B2 (en) 2012-10-04 2017-01-31 Corning Incorporated Pressure-sensing touch system utilizing optical and capacitive systems
US9134842B2 (en) 2012-10-04 2015-09-15 Corning Incorporated Pressure sensing touch systems and methods
US10019113B2 (en) 2013-04-11 2018-07-10 Flatfrog Laboratories Ab Tomographic processing for touch detection
US9874978B2 (en) 2013-07-12 2018-01-23 Flatfrog Laboratories Ab Partial detect mode
US10126882B2 (en) 2014-01-16 2018-11-13 Flatfrog Laboratories Ab TIR-based optical touch systems of projection-type
US10146376B2 (en) 2014-01-16 2018-12-04 Flatfrog Laboratories Ab Light coupling in TIR-based optical touch systems
US10283075B2 (en) 2014-06-20 2019-05-07 Panasonic Intellectual Property Management Co., Ltd. Electronic apparatus which effects touch coordinate based on proximity and strain
US9880679B2 (en) 2014-06-20 2018-01-30 Panasonic Intellectual Property Management Co., Ltd. Electronic apparatus which effects touch coordinate based on proximity and strain
US9542904B2 (en) 2014-06-20 2017-01-10 Panasonic Intellectual Property Management Co., Ltd. Electronic apparatus
US10001880B2 (en) 2014-06-20 2018-06-19 Panasonic Intellectual Property Management Co., Ltd. Electronic apparatus which determines effectiveness of a touch coordinate based on an amount of bend
US10161886B2 (en) 2014-06-27 2018-12-25 Flatfrog Laboratories Ab Detection of surface contamination
US10372325B2 (en) 2014-10-16 2019-08-06 Huawei Technologies Co., Ltd. Electromyographic based touch interaction processing method, device, and system
US11182023B2 (en) 2015-01-28 2021-11-23 Flatfrog Laboratories Ab Dynamic touch quarantine frames
US10318074B2 (en) 2015-01-30 2019-06-11 Flatfrog Laboratories Ab Touch-sensing OLED display with tilted emitters
US10496227B2 (en) 2015-02-09 2019-12-03 Flatfrog Laboratories Ab Optical touch system comprising means for projecting and detecting light beams above and inside a transmissive panel
US11029783B2 (en) 2015-02-09 2021-06-08 Flatfrog Laboratories Ab Optical touch system comprising means for projecting and detecting light beams above and inside a transmissive panel
US10401546B2 (en) 2015-03-02 2019-09-03 Flatfrog Laboratories Ab Optical component for light coupling
US9958418B2 (en) 2015-07-01 2018-05-01 Toto Ltd. Touch detection device used in water handling equipment, and faucet apparatus including the same
US10481645B2 (en) 2015-09-11 2019-11-19 Lucan Patent Holdco, LLC Secondary gesture input mechanism for touchscreen devices
US10241617B2 (en) 2015-10-14 2019-03-26 Samsung Electronics Co., Ltd Apparatus and method for obtaining coordinate through touch panel thereof
EP3156888A1 (fr) * 2015-10-14 2017-04-19 Samsung Electronics Co., Ltd. Appareil et procédé destinés à obtenir des coordonnées par son panneau tactile
CN106598322A (zh) * 2015-10-14 2017-04-26 三星电子株式会社 装置及通过该装置的触摸面板获得坐标的方法
CN106598322B (zh) * 2015-10-14 2021-10-08 三星电子株式会社 装置及通过该装置的触摸面板获得坐标的方法
US11301089B2 (en) 2015-12-09 2022-04-12 Flatfrog Laboratories Ab Stylus identification
US10372121B2 (en) 2016-04-26 2019-08-06 Ford Global Technologies, Llc Determination of continuous user interaction and intent through measurement of force variability
GB2550061A (en) * 2016-04-26 2017-11-08 Ford Global Tech Llc Determination of continuous user interaction and intent through measurement of force variability
CN109478113A (zh) * 2016-05-18 2019-03-15 森赛尔股份有限公司 用于检测和确认触摸输入的方法
CN106445231A (zh) * 2016-09-18 2017-02-22 青岛海信移动通信技术股份有限公司 一种触摸的识别方法和装置
US10761657B2 (en) 2016-11-24 2020-09-01 Flatfrog Laboratories Ab Automatic optimisation of touch signal
US10775935B2 (en) 2016-12-07 2020-09-15 Flatfrog Laboratories Ab Touch device
US10282035B2 (en) 2016-12-07 2019-05-07 Flatfrog Laboratories Ab Touch device
US11579731B2 (en) 2016-12-07 2023-02-14 Flatfrog Laboratories Ab Touch device
US11281335B2 (en) 2016-12-07 2022-03-22 Flatfrog Laboratories Ab Touch device
US11740741B2 (en) 2017-02-06 2023-08-29 Flatfrog Laboratories Ab Optical coupling in touch-sensing systems
US11474644B2 (en) 2017-02-06 2022-10-18 Flatfrog Laboratories Ab Optical coupling in touch-sensing systems
CN108446598A (zh) * 2017-02-16 2018-08-24 辛纳普蒂克斯公司 为利用屏内指纹传感器的触摸感测提供接地真值
US11099688B2 (en) 2017-03-22 2021-08-24 Flatfrog Laboratories Ab Eraser for touch displays
US11016605B2 (en) 2017-03-22 2021-05-25 Flatfrog Laboratories Ab Pen differentiation for touch displays
US10481737B2 (en) 2017-03-22 2019-11-19 Flatfrog Laboratories Ab Pen differentiation for touch display
US10606414B2 (en) 2017-03-22 2020-03-31 Flatfrog Laboratories Ab Eraser for touch displays
US10437389B2 (en) 2017-03-28 2019-10-08 Flatfrog Laboratories Ab Touch sensing apparatus and method for assembly
US11281338B2 (en) 2017-03-28 2022-03-22 Flatfrog Laboratories Ab Touch sensing apparatus and method for assembly
US11269460B2 (en) 2017-03-28 2022-03-08 Flatfrog Laboratories Ab Touch sensing apparatus and method for assembly
US10845923B2 (en) 2017-03-28 2020-11-24 Flatfrog Laboratories Ab Touch sensing apparatus and method for assembly
US10606416B2 (en) 2017-03-28 2020-03-31 Flatfrog Laboratories Ab Touch sensing apparatus and method for assembly
US10739916B2 (en) 2017-03-28 2020-08-11 Flatfrog Laboratories Ab Touch sensing apparatus and method for assembly
US11347355B2 (en) 2017-05-24 2022-05-31 Apple Inc. System and method for acoustic touch and force sensing
US11861115B2 (en) 2017-05-24 2024-01-02 Apple Inc. System and method for acoustic touch and force sensing
US11334196B2 (en) 2017-05-24 2022-05-17 Apple Inc. System and method for acoustic touch and force sensing
US11650699B2 (en) 2017-09-01 2023-05-16 Flatfrog Laboratories Ab Optical component
US11256371B2 (en) 2017-09-01 2022-02-22 Flatfrog Laboratories Ab Optical component
US12086362B2 (en) 2017-09-01 2024-09-10 Flatfrog Laboratories Ab Optical component
CN107797710A (zh) * 2017-11-21 2018-03-13 四川长虹教育科技有限公司 一种红外触摸屏系统
US11567610B2 (en) 2018-03-05 2023-01-31 Flatfrog Laboratories Ab Detection line broadening
US12055969B2 (en) 2018-10-20 2024-08-06 Flatfrog Laboratories Ab Frame for a touch-sensitive device and tool therefor
US11943563B2 (en) 2019-01-25 2024-03-26 FlatFrog Laboratories, AB Videoconferencing terminal and method of operating the same
EP3726143A1 (fr) * 2019-04-15 2020-10-21 Samsung Electronics Co., Ltd. Appareil de cuisson et procédé de commande correspondant
US11073944B2 (en) 2019-04-15 2021-07-27 Samsung Electronics Co., Ltd. Cooking apparatus and controlling method thereof
US12056316B2 (en) 2019-11-25 2024-08-06 Flatfrog Laboratories Ab Touch-sensing apparatus
US11893189B2 (en) 2020-02-10 2024-02-06 Flatfrog Laboratories Ab Touch-sensing apparatus
CN111736723A (zh) * 2020-06-02 2020-10-02 芯海科技(深圳)股份有限公司 一种终端设备、压力触控方法及计算机可读存储介质
US11775166B2 (en) 2021-06-24 2023-10-03 Icu Medical, Inc. Infusion pump touchscreen with false touch rejection

Also Published As

Publication number Publication date
JP2004534974A (ja) 2004-11-18
EP1330777A1 (fr) 2003-07-30
AU2001212430A1 (en) 2002-05-06

Similar Documents

Publication Publication Date Title
US6504530B1 (en) Touch confirming touchscreen utilizing plural touch sensors
WO2002035460A1 (fr) Ecran tactile a confirmation tactile utilisant une pluralite de capteurs tactiles
EP2261780B1 (fr) Ecran tactile à double capteur equipé d'un capteur projectif-capacitif et d'un capteur de force tactiles
US6492979B1 (en) Dual sensor touchscreen utilizing projective-capacitive and force touch sensors
US8130202B2 (en) Infrared touch screen gated by touch force
JP2010272143A (ja) 投影型静電容量方式センサおよび感圧タッチセンサを用いたデュアルセンサタッチスクリーン
US9329719B2 (en) Hybrid force sensitive touch devices
US6366277B1 (en) Contaminant processing system for an acoustic touchscreen
US8902191B2 (en) Proximity sensing for capacitive touch sensors
JP4714144B2 (ja) 接触技術の改良
KR100221252B1 (ko) 데이타 처리 시스템
EP2162817B1 (fr) Valeur seuil uniforme pour la détection capacitive
US10969857B2 (en) Touch sensor mode transitioning
JP2011096271A (ja) 複数のタッチセンサを用いた接触認証タッチスクリーン
US20050190161A1 (en) Digital resistive type touch panel and fabrication method thereof
AU2004286548A1 (en) Tactile touch-sensing system
TW201926009A (zh) 觸控鍵盤系統與其觸控處理裝置和方法
WO2008057237A2 (fr) Procédé et système d'étalonnage d'un écran tactile
CN101825965A (zh) 输入装置和检测用户使用输入装置进行输入的方法
CN107924243B (zh) 压力感应触摸系统及具有压力感应触摸系统的计算装置
WO2020185594A1 (fr) Écran tactile à champ électrique
US9921692B2 (en) Hinged input device
CN109343731A (zh) 触控显示器及其触控检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000973991

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002538370

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2000973991

Country of ref document: EP

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWW Wipo information: withdrawn in national office

Ref document number: 2000973991

Country of ref document: EP