WO2002031892A1 - Solar cell and method of manufacture thereof - Google Patents

Solar cell and method of manufacture thereof Download PDF

Info

Publication number
WO2002031892A1
WO2002031892A1 PCT/JP2000/008486 JP0008486W WO0231892A1 WO 2002031892 A1 WO2002031892 A1 WO 2002031892A1 JP 0008486 W JP0008486 W JP 0008486W WO 0231892 A1 WO0231892 A1 WO 0231892A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
solar cell
insulating film
layer exposed
exposed region
Prior art date
Application number
PCT/JP2000/008486
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Ohtsuka
Original Assignee
Shin-Etsu Handotai Co., Ltd.
Shin-Etsu Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Handotai Co., Ltd., Shin-Etsu Chemical Co., Ltd. filed Critical Shin-Etsu Handotai Co., Ltd.
Priority to JP2002535178A priority Critical patent/JP3872428B2/en
Priority to KR1020037004838A priority patent/KR100790956B1/en
Publication of WO2002031892A1 publication Critical patent/WO2002031892A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a solar cell which has relatively high photoelectric conversion efficiency and can be manufactured at low cost, and a method for manufacturing the same.
  • a solar cell is a semiconductor element that converts light energy into electric power, and includes a pn junction type, a pin type, and a Schottky type.
  • the pn junction type is most widely used.
  • solar cells When solar cells are classified based on their substrate materials, they can be broadly classified into three types: silicon crystalline solar cells, amorphous silicon solar cells, and compound semiconductor solar cells. Silicon crystalline solar cells are further classified into single crystalline solar cells and polycrystalline solar cells.
  • the compound with the highest energy conversion efficiency is a compound semiconductor solar cell, but it is extremely difficult to make a compound semiconductor as a material for the compound semiconductor solar cell, and the cost of manufacturing solar cell substrates is low. There are problems with its widespread use, and its use is limited.
  • a silicon single crystal solar cell follows, and a silicon single crystal substrate for solar cells can be manufactured relatively easily. It is the mainstay of solar cells.
  • the output characteristics of a solar cell are generally evaluated by measuring an output current-voltage curve as shown in Fig. 18 using a solar simulator. On this curve, the point Pm at which the product Ip ⁇ Vp of the output current I and the output voltage Vp is maximum is called the maximum output Pm, and the total light energy incident on the solar cell (Pm) SXI: S is the element area, I is the irradiation light Intensity) divided by:
  • Is defined as the conversion efficiency of the solar cell.
  • fill factor defined by. The closer the value of F F is to 1, the closer the output current-voltage curve becomes to an ideal square shape, and the higher the conversion efficiency ⁇ is.
  • the surface of the silicon layer must be covered with S to prevent the recombination of electrons and holes at the direct contact between the metal electrode for output extraction and the silicon layer and to increase the open-circuit voltage V oc. i 0 structure forming an insulating film such as 2 is employed (-called MIS contact or contact passivating Chillon).
  • MIS contact or contact passivating Chillon a structure forming an insulating film such as 2 is employed.
  • a small contact hole is provided in a part of the insulating film, and a metal electrode is formed here, so that the direct contact between the metal electrode acting as a recombination site and the silicon layer is reduced to a small area.
  • Limitations have been made to improve the photocurrent collection rate.
  • how to form a contact hole in the insulating film becomes a problem.
  • a method of forming a contact hole by etching a dielectric film using a photoresist or the like can be considered.
  • this method requires too much man-hour and cost to use one photolithography technology, and from the viewpoint of mass production of solar cells. Is not realistic.
  • Japanese Patent Application Laid-Open No. Hei 8-333571 proposes a method for forming a contact hole without using photolithography technology. Specifically, a pattern of a metal electrode for taking out output is formed on the insulating film by screen printing of a conductive paste, and then baked. As a result, the metal and the glass frit contained in the paste are melted by heat, break through the insulating film and reach the emitter layer, thereby forming a contact hole.
  • This method is generally referred to as fire-through, and is widely used when fabricating single-crystal or polycrystalline solar cells because of its ability to form a contact horn easily.
  • the dopant concentration of the emitter layer which is the surface n-type layer
  • the dopant concentration of the emitter layer is low, the contact resistance at the direct contact between the metal and silicon formed by the fire-through does not drop sufficiently, and the power that can be extracted is reduced due to the large contact resistance loss Because it leads to things.
  • the dopant concentration in the emitter layer is increased by diffusion, a compound of the semiconductor silicon and the dopant precipitates, and many defect levels are formed on the surface, thereby increasing the surface recombination rate. In such a state, the short-wavelength sensitivity of the solar cell is reduced, and a drawback occurs in that the current that can be extracted is reduced.
  • An object of the present invention is to provide a solar cell which can be manufactured with high conversion efficiency and low power at low cost, and a method for manufacturing the same.
  • a first configuration of a solar cell according to the present invention is a solar cell in which an uneven portion is formed on a main surface of a semiconductor substrate and the main surface is covered with an insulating film.
  • a semiconductor layer exposed region not covered with an insulating film is formed on the main surface so as to cover at least a top of at least a part of the convex portion forming the portion, and the convex portion is formed in the semiconductor layer exposed region.
  • the height of the tip at the top of the semiconductor layer is higher than the maximum height of the insulating film at the outer peripheral edge of the semiconductor layer exposed region, and is directly or at another position on the top of the ⁇ portion in the semiconductor layer exposed region. It is characterized in that an output extraction electrode is formed so as to be indirectly contacted via a conductive layer.
  • the main surface of the semiconductor substrate means at least one of both surfaces (front surface, back surface) in the thickness direction of the semiconductor substrate. Therefore, the uneven portions may be formed only on one main surface of the substrate, or may be formed on both surfaces.
  • the semiconductor layer exposed region is conceptually defined not only when the insulating film is completely removed but also when the insulating film is thick enough to allow a tunnel current to flow (about 3 nm or less). Including.
  • the unevenness is formed on the main surface of the semiconductor substrate.
  • the formation of such uneven portions has been employed in conventional silicon single crystal solar cells mainly for the purpose of preventing reflection loss.
  • the present invention not only the above-mentioned uneven portions are prevented from preventing the reflection loss, but also the specific form thereof is used as an output extraction electrode and a semiconductor. It is characterized in that it is used to form an exposed region of a semiconductor layer which is to function as a contact hole with a body layer.
  • the semiconductor layer exposed region 5 is formed so as to include the top 25 of the convex portion 15 and the height of the tip of the convex portion 15 is increased.
  • the height position is higher than the maximum height position of the insulating film 3 at the outer peripheral edge of the semiconductor layer exposed region 5. Then, the output extraction electrode 7 is formed so as to directly contact (or indirectly via the other conductive layer) the top portion 25 of the convex portion 15 in the semiconductor layer exposed region 5.
  • the semiconductor layer exposed region 5 forms a so-called bottom surface of the contact hole.
  • the semiconductor layer 2 in the exposed region 5 can never project beyond the upper edge of the surrounding insulating film 3.
  • the structure of the solar cell according to the first aspect of the present invention is crucially different from those of conventional solar cells.
  • the semiconductor layer exposed region 5 can be formed extremely simply by the method for manufacturing a solar cell of the present invention described below. That is, the method includes the steps of forming an uneven portion on a main surface of a semiconductor substrate;
  • the semiconductor layer exposed region covers the main surface of the semiconductor substrate with an insulating film including irregularities, and further covers the insulating film with an etching protective film in a region other than the top of the convex portion, and then forms a convex portion by etching. It is characterized by being formed by removing the insulating film at the top of the part.
  • the fill factor of the solar cell can be increased. Further, since the dopant concentration on the surface can be reduced, the short-wavelength sensitivity of the solar cell increases, and the short-circuit current can be improved. Thus, high conversion efficiency High-performance solar cells can be realized.
  • the current from the semiconductor layer exposed region 5 has a relatively high conductivity (that is, the resistivity). After flowing in the transparent conductive layer 6 in the lateral direction, it can be extracted from the output extraction electrode 7. Therefore, the resistance loss when current flows in the lateral direction can be greatly reduced.
  • the distance LP1 to the output extraction electrode 7 must be all lateral conduction paths in the substrate surface layer 2, but in FIG. Regardless of the presence or absence of the electrode 7, the current only needs to flow from the nearest semiconductor layer exposed region 5 to the transparent conductive layer 6, and the lateral conduction length LP 2 is the lateral conduction length of FIG. 13A. It is clear that the length is much shorter than LP 1.
  • the transparent conductive layer is formed, shadowing loss due to the transparent conductive layer itself hardly occurs. Thus, the short-circuit current and the conversion efficiency of the solar cell can be improved.
  • the solar cell according to the third configuration of the present invention on the transparent conductive layer 6, Even if the formation intervals of the provided output extraction electrodes 7, 7 are made considerably large, the series resistance does not increase so much, and as a result, the shadowing loss can be further reduced.
  • the semiconductor layer exposed region not covered with the insulating film is formed on the main surface.
  • the output extraction electrode is formed directly in contact with the semiconductor layer, while the remaining semiconductor layer exposed region where the output extraction electrode is not formed is transparent. It is characterized by being covered with an auxiliary insulating layer.
  • FIG. 4B is a process explanatory view following FIG. 4A.
  • FIG. 9C is an explanatory view following FIG. 9B.
  • FIG. 13B is an explanatory view following FIG. 13A.
  • FIG. 19B is an explanatory view following FIG. 19A.
  • the valley bottom of the projection 15 to be formed is considered. It is desirable that the maximum height from the top to the top be 0.1 ⁇ or more and 30 ⁇ or less.
  • an oxide film or a nitride film can be used for the insulating film 3.
  • the substrate 1 is a silicon single crystal substrate, and the insulating film 3 is formed by heat treatment in a predetermined atmosphere. It is configured as a silicon oxide or nitride film (which can be formed by, for example, a CVD method). Thereby, the insulating film 3 functions as a passivation film having a low surface recombination speed.
  • a coating solution is prepared using a polymer material having sufficient resistance to etching such as hydrofluoric acid, for example, a novolak resin as a resist material.
  • the viscosity of the coating solution can be adjusted using an appropriate solvent.
  • this coating liquid is applied by a known coating method, for example, a spin coating method or a spray method.
  • the coating liquid is accumulated and the coating layer 24 is formed.
  • the solvent is evaporated and dried, as shown in FIG. 8B, the coating layer 24 becomes the resist layer 4 ′, and the shape near the bottom of the concave portion 16 is partially filled.
  • the resist layer 4 ′ is stopped from being further formed, and as shown in FIG. It is used as a simple etching protection film 4.
  • the first main surface side of the substrate is immersed in an etching solution containing hydrofluoric acid or the like to dissolve the insulating film (for example, silicon oxide film) covering the protruding top portion 25 of the projection 15. ⁇ If removed, the semiconductor layer exposed region 5 is formed.
  • the etching protection film 4 is removed using an organic solvent such as acetone or MEK (methyl ethyl ketone).
  • the tops 25 of the projections 15 can be exposed from the liquid surface without excess or shortage.
  • the remaining film has a thin or porous force or an island shape as shown in FIG. 9D.
  • a state where the insulating film 3 is at least partially exposed can be reliably formed.
  • the insulating film 3 where the etching protective film 4a remains can also be removed.
  • the upper surface 11 of the inner peripheral edge of the insulating film 3 forming the outer peripheral edge of the layer exposed region 5 can be formed flat. This makes it possible to form the semiconductor layer exposed region 5 in which the remaining insulating film 3 is small and the variation in the formation area is kept low.
  • a transparent conductive layer 6, for example, can be configured as a conductive oxide film such as tin oxide (Sn0 2) or an acid Ihiinjiumu (I n 2 0 3).
  • a conductive oxide film such as tin oxide (Sn0 2) or an acid Ihiinjiumu (I n 2 0 3).
  • an antimony (Sb) -doped oxidized tin film (so-called Nesa film) or a tin (Sn) -doped oxidized indium film (so-called ITO Mo) has high conductivity.
  • the Nesa film has a high electrical conductivity and contributes particularly to the reduction of the series resistance of solar cells.
  • the ITO film has a slightly lower conductivity than the Nesa film but is inexpensive.
  • Ne support film Ya I TO film for example, C d 2 S N_ ⁇ 4, Zn 2 Sn0 4, Zn Sn_ ⁇ 3, M gln 2 0 4, C d S doped with yttrium (Y) b 2 ⁇ 6 and G a I n0 3 doped with Sn, it may be used as the material of the transparent conductive layer 6.
  • the transparent conductive layer 6 can function as an anti-reflection film by adopting a material having a different refractive index from that of the silicon single crystal constituting the substrate 1.
  • the constituent material of the transparent conductive layer 6 preferably has a refractive index of 1.5 to 2.5.
  • the refractive index is about 2.0, and when the thickness is about 40 to 70 nm, a remarkable antireflection effect can be obtained.
  • an anti-reflection film may be separately formed together with or instead of the transparent conductive layer 6.
  • the output extraction electrode 7 is formed by printing a desired electrode pattern on the transparent conductive layer 6 by using a paste containing a metal powder such as silver powder by a known thick film printing method such as screen printing. Can be formed. Also, by using a thermosetting paste, it is possible to form the output extraction electrode 7 at a lower temperature. As shown in FIG. 17, the first main surface side of the substrate 1 serves as the light receiving surface of the solar cell.Therefore, the output extraction electrode 7 is used to improve the efficiency of light incidence on the p_n junction 48. For example, it has a thick busbar electrode formed at an appropriate interval to reduce internal resistance, and a finger electrode that branches into a comb shape at a predetermined interval from the busbar electrode. However, when the electric conductivity of the transparent conductive layer 6 is sufficiently high, it is possible to omit the finger electrode or to set the interval between the finger electrodes wide even when the finger electrode is formed.
  • an uneven portion is formed on the second main surface of the substrate 1 for preventing back surface reflection, and an insulating film 3 is formed so as to cover the uneven portion.
  • the semiconductor layer exposed portion 5 is formed on the top of the convex portion 15.
  • the second main surface side is not a light receiving surface, the entire surface is covered with the output extraction electrode 8.
  • the thickness of the substrate 1 is reduced in order to reduce the weight of the solar cell, the thickness of the substrate 1 is reduced as shown in Fig. 1B to prevent recombination and disappearance of minority carriers at the electrode 8 on the second main surface side.
  • a high-concentration diffusion layer 9 having the same conductivity type as that of the substrate 1 and a higher concentration can be formed on the second main surface side (so-called BSF (oack surface rield) layer).
  • the solar cell 100 of FIG. 1 when the solar cell 100 absorbs photons having energy equal to or greater than the forbidden band width by light irradiation, electrons and holes are generated by photoexcitation in the P-type region and the n-type region, as shown in FIG. They are generated as minority carriers and diffuse toward the junction. At the junction, an internal electric field (a so-called “build-in” electric field) is generated due to the formation of the electric double layer. The electrons and holes diffused as minority carriers cause the internal electric field to The electrons are in the n-type region and the holes are
  • Each is drawn into and separated from the P-type region and becomes a majority carrier.
  • the P-type region and the n-type region are positively and negatively charged, respectively, and an electromotive force ⁇ E of the solar cell is generated between the electrodes (7, 8 in FIG. 1) provided in each part.
  • the semiconductor layer exposed region 5 serving as a contact horn can be easily formed by a simple etching without using a fire-through method. . Therefore, naturally, the dopant concentration of the semiconductor layer 2 can be set to a value smaller than 3 ⁇ 10 2 ° cm ⁇ 3 (in terms of sheet resistance: 40 ⁇ / port). Further, as shown in FIG. 13B, since the transparent conductive layer 6 is used, the current is longer in the lateral direction in the semiconductor layer 2 than in the case of FIG. 13A without the transparent electrode layer 6. There is no need to flow away.
  • the sheet resistance is about 10 to 25 ⁇ square. Can be lowered.
  • the output resistance electrode 7 provided on the transparent conductive layer 6 has a much smaller series resistance than conventional ones (2 to 3 mm), for example, even if it is doubled, so shadowing loss is greatly reduced. can do.
  • the remaining semiconductor layer exposed region 5 ′ where the output extraction electrode 7 is not formed can be covered with the auxiliary insulating layer 10.
  • the auxiliary insulating layer 10 is assumed to cover the remaining semiconductor layer exposed region 5 ′, the insulating film 3 and the output extracting electrode 7 collectively after forming the output extracting electrode 7. Is formed.
  • an inorganic insulating film such as silicon nitride or silicon oxide can be used. In this case, by appropriately adjusting the formation thickness of the auxiliary insulating layer 10, this can also function as an antireflection film. (Experimental example)
  • the solar cell shown in FIG. 1A was manufactured by the steps shown in the flowchart of FIG. First, a p-type crystalline silicon substrate 1 (boron-doped product having a resistivity of 2 ⁇ ⁇ cm (dopant concentration 7.2 ⁇ 10 15 cm— 3 )) cut out of a silicon single crystal ingot in an as-sliced state was prepared.
  • the thickness of the substrate 1 is 300 / zm.
  • the substrate 1 is sodium hydroxide aqueous solution (concentration:. 4 0 mass / 0) by chemically etching, after removal of the dust image layer by slice, hydroxyl Ihinatoriumu solution (hydroxide plus I isopropyl alcohol Ihinatoriumu concentration.
  • the open-circuit voltage of the example product 1 and the example product 2 is significantly improved. This is probably because the dopant concentration of the emitter layer was reduced, the surface recombination rate was reduced, and the area of the contact hole based on the semiconductor layer exposed region 5 could be limited.
  • the surface area of the substrate 1 used in Example Product 1 and Example Product 2 was determined by scanning electron microscope (SEM) .As a result, the total area ratio of the semiconductor layer exposed region 5 on the first main surface was approximately 1%. I confirmed that it was.
  • a solar cell 103 having the structure shown in FIG. 5 was produced as follows. First, a p-type single crystal silicon substrate 1 (a gallium-doped product having a thickness of 250 ⁇ m and a resistivity of 0.5 ⁇ ⁇ cm) prepared by the CZ method was prepared. After etching, random textured surfaces were formed on both surfaces. After texturing, a coating agent containing P 2 0 5 was coated cloth, 8 5 by thermal diffusion at 0 ° C, the sheet resistance on the surface of about 1 0 0 Omega / mouth of the n-type diffusion layer 2 was formed.
  • a p-type single crystal silicon substrate 1 a gallium-doped product having a thickness of 250 ⁇ m and a resistivity of 0.5 ⁇ ⁇ cm
  • a coating agent containing P 2 0 5 was coated cloth, 8 5 by thermal diffusion at 0 ° C, the sheet resistance on the surface of about 1 0 0 Omega / mouth of the n-type diffusion layer 2 was formed.
  • the short circuit current is reduced in the example product 3 as compared with the example products 1 and 2 described above, while the open circuit voltage is increased. It is considered that the reason why the short-circuit current decreased was that the electrode width and electrode pitch were not different from those of the conventional method. That is, the shadowing area was increased as compared with the products of Examples 1 and 2 shown in Table 1. On the other hand, the reason why the open-circuit voltage increased was thought to be that the substrate resistivity was reduced from 2.0 ⁇ ⁇ 111 to 0.5 ⁇ ⁇ cm. In general, lowering the substrate resistivity decreases the reverse saturation current density and increases the open-circuit voltage.
  • the solar cell 104 shown in FIG. 6 was manufactured as follows (note that in FIG. 6, in order to avoid complication, only the portion near the surface is shown without drawing the uneven portions and the antireflection film). T). First, a p-type single-crystal silicon substrate 1 (boron-doped product having a thickness of 250 m and a resistivity of 2 ⁇ ⁇ cm) prepared by the CZ method was prepared. Square rib-shaped protrusions 45, 45 were formed at intervals of 2 mm (the area between the protrusions 45, 45 can be regarded as a recess). At this time, the height from the first main surface of the substrate 1 to the top of each of the projections 45, 45 was set to about 30 ⁇ .
  • the substrate 1 was immersed in a 10% by mass aqueous hydrofluoric acid solution to form a semiconductor layer exposed portion 5 on the tops 25 of the projections 45, 45. Then, after the resist was washed away using a solvent, the pattern of the output electrode 7 shown in FIG. 6 was formed on the first main surface using silver paste by screen printing, and the aluminum was printed on the second main surface. The pattern of the output electrode 8 was formed on the entire surface using the paste. At this time, it is necessary to align the output extraction electrode 7 on the first main surface side so as to be printed so as to overlap the semiconductor layer exposed portion 5 on the tops of the projections 45, 45.
  • the width of the electrode 7 is about 10 times the width of the semiconductor layer exposed portion 5 with respect to the width, the positioning can be performed relatively roughly. Subsequently, as the anti-reflection film T I_ ⁇ 2 film was formed to a thickness of a (not shown) 6 0 nm by normal pressure CVD, thereby completing the solar cell 1 0 4 (Example Product 4) .
  • Example product 4 was evaluated in the same manner as in Experimental example 1. Open circuit voltage 0.667 V, short-circuit current density 36.9 mA / cm 2 , fill factor 0.770, conversion efficiency 19.0% was obtained, and the characteristics were improved compared to the conventional screen printing fire-through method.

Abstract

A solar cell includes a semiconductor substrate (1) with irregularities on its principal surface covered with an insulating layer (3) such that it covers some of the projections of the irregularities, that is, uncovered areas (5) are formed on the principal surface. An output electrode (7) is connected directly, or through a conducting layer, with tops (25) of projections (15) in the exposed semiconductor areas (5). The exposed semiconductor areas (5) is formed by applying insulating film (3) to cover projections (15) on the principal surface of the semiconductor substrate (1), applying etch resist (4) to cover the insulating film (3) in the areas except the peaks (25) of the projections (15), and etching the insulating film (3) to expose the peaks (25) of the projections (15).

Description

太陽電池及びその製造方法 技術分野  Solar cell and method for manufacturing the same
本発明は光電変換効率が比較的高く、 しかも、 低コストで作製できる太陽電池及び その製造方法に関する。 明  The present invention relates to a solar cell which has relatively high photoelectric conversion efficiency and can be manufactured at low cost, and a method for manufacturing the same. Light
 Rice field
背景技術 Background art
太陽電池は、 光エネルギーを電力に変換する半導体素子であり、 p— n接合形、 p i n形、 ショットキー形などがあるが、 p— n接合形が最も広く用いられている。 太 陽電池をその基板材料をもとに分類すると、大きく分けて、シリコン結晶系太陽電池、 アモルファス (非晶質) シリコン系太陽電池、 化合物半導体系太陽電池の 3種類が拳 げられる。 シリコン結晶系太陽電池は、 更に、 単結晶系太陽電池と多結晶系太陽電池 に分類される。 これらのうち最もエネルギー変換効率が高いものは、化合物半導体系 太陽電池であるが、化合物半導体系太陽電池は、 その材料となる化合物半導体を作る ことが非常に難しく、太陽電池基板の製造コスト面で一般に普及するには問題があり、 その用途は限られたものとなっている。 他方、 化合物半導体系太陽電池の次に変換効 率の高い太陽電池としては、 シリコン単結晶系太陽電池が続き、太陽電池用シリコン 単結晶基板も比較的容易に製造できることから、一般に普及している太陽電池の主力 となっている。  A solar cell is a semiconductor element that converts light energy into electric power, and includes a pn junction type, a pin type, and a Schottky type. The pn junction type is most widely used. When solar cells are classified based on their substrate materials, they can be broadly classified into three types: silicon crystalline solar cells, amorphous silicon solar cells, and compound semiconductor solar cells. Silicon crystalline solar cells are further classified into single crystalline solar cells and polycrystalline solar cells. Of these, the compound with the highest energy conversion efficiency is a compound semiconductor solar cell, but it is extremely difficult to make a compound semiconductor as a material for the compound semiconductor solar cell, and the cost of manufacturing solar cell substrates is low. There are problems with its widespread use, and its use is limited. On the other hand, as a solar cell with the highest conversion efficiency next to a compound semiconductor solar cell, a silicon single crystal solar cell follows, and a silicon single crystal substrate for solar cells can be manufactured relatively easily. It is the mainstay of solar cells.
太陽電池の出力特性は、 一般に、 図 1 8に示すような出力電流電圧曲線を、 ソーラ 一シミュレータを用いて測定することにより評価される。 この曲線上で、 出力電流 I と出力電圧 V pとの積 I p · V pが最大となる点 P mを最大出力 P mと呼ぴ、 該 P mを太陽電池に入射する総光エネルギー (S X I : Sは素子面積、 Iは照射する光の 強度) にて除した値: The output characteristics of a solar cell are generally evaluated by measuring an output current-voltage curve as shown in Fig. 18 using a solar simulator. On this curve, the point Pm at which the product Ip · Vp of the output current I and the output voltage Vp is maximum is called the maximum output Pm, and the total light energy incident on the solar cell (Pm) SXI: S is the element area, I is the irradiation light Intensity) divided by:
η≡ {Pm/ (S X I )} X 1 0 0 (%) · · · · (l)  η≡ {Pm / (S X I)} X 100 (%)
が太陽電池の変換効率 77として定義される。 図 1 8からも明らかな通り、 変換効率 77 を高めるには、 短絡電流 I s c (電流電圧曲線上にて V= 0のときの出力電流値) あ るいは開放電圧 V o c (同じく I = 0のときの出力電圧値)を大きくすること、及び、 出力電流電圧曲線をなるベく角型に近い形状のものとすることが重要である。 なお、 出力電流電圧曲線の角型の度合いは、 一般に、 Is defined as the conversion efficiency of the solar cell. As is clear from Fig. 18, in order to increase the conversion efficiency 77, the short-circuit current Isc (the output current value when V = 0 on the current-voltage curve) or the open-circuit voltage Voc (I = 0 It is important to increase the output voltage value at the time of (1) and to make the output current-voltage curve a shape close to a square shape. Note that the squareness of the output current-voltage curve is generally
F F≡ I pmXVp m/ ( I s c X V o c) · · · · (2)  F F≡ I pmXVp m / (IscXVoc) (2)
にて定義されるフィルファクタ (曲線因子) により評価でき、 該 F Fの値が 1に近い ほど出力電流電圧曲線が理想的な角型に近づき、変換効率 ηも高められることを意味 する。 It can be evaluated by the fill factor (fill factor) defined by. The closer the value of F F is to 1, the closer the output current-voltage curve becomes to an ideal square shape, and the higher the conversion efficiency η is.
例えば、 シリコン結晶系太陽電池においては、 出力取出用の金属電極とシリコン層 との直接接触部における電子 ·正孔の再結合を防止して開放電圧 V o cを高めるため に、 シリコン層表面に S i 02などの絶縁膜を形成する構造が採用されている (いわ ゆる M I Sコンタクトあるいはコンタクトパッシベーシヨン)。 し力 しながら、 シリ コン層の全表面が上記のような絶縁膜にて覆われていると、発生した光電流は該絶縁 膜をトンネル効果で通過しなければならなくなり、光電流収集率が低下して十分な変 換効率の向上が見込めなくなる。 For example, in a silicon crystal-based solar cell, the surface of the silicon layer must be covered with S to prevent the recombination of electrons and holes at the direct contact between the metal electrode for output extraction and the silicon layer and to increase the open-circuit voltage V oc. i 0 structure forming an insulating film such as 2 is employed (-called MIS contact or contact passivating Chillon). However, if the entire surface of the silicon layer is covered with the insulating film as described above, the generated photocurrent must pass through the insulating film by a tunnel effect, and the photocurrent collection rate is reduced. As a result, the conversion efficiency cannot be sufficiently improved.
これを防止するために、絶縁膜の一部に小さなコンタクトホールを設け、 ここに金 属電極を形成することで、再結合場所として振舞う金属電極とシリコン層との直接接 触部を微小領域に制限し、 光電流収集率を向上させることが行なわれている。 この場 合、 いかにして絶縁膜にコンタクトホールを形成するかが問題となる。 例えば、 実験 室的にはフォトレジストなどを用い、絶縁膜をエッチングすることによりコンタクト ホールを形成する方法が考えられる。 しかしながら、 この方法はフォトリソグラフィ 一技術を利用するために工数とコストがかかりすぎ、太陽電池の量産 図る観点から は現実的でない。 To prevent this, a small contact hole is provided in a part of the insulating film, and a metal electrode is formed here, so that the direct contact between the metal electrode acting as a recombination site and the silicon layer is reduced to a small area. Limitations have been made to improve the photocurrent collection rate. In this case, how to form a contact hole in the insulating film becomes a problem. For example, in a laboratory, a method of forming a contact hole by etching a dielectric film using a photoresist or the like can be considered. However, this method requires too much man-hour and cost to use one photolithography technology, and from the viewpoint of mass production of solar cells. Is not realistic.
そこで、 特開平 8— 3 3 5 7 1 1号公報には、 フォトリソグラフィー技術を用いず にコンタクトホールを形成する方法が提案されている。 具体的には、 導電性ペースト のスクリーン印刷により出力取出用金属電極のパターンを絶縁膜上に形成し、 さらに 焼成する。 これにより、 ペースト内に含まれる金属とガラスのフリットとが熱によつ て溶融し、絶縁膜を突き破ってェミッタ層に到達することによりコンタクトホールが 形成される。 この手法は一般にフアイヤースルーと称され、 簡便にコンタクトホーノレ を形成できること力ゝら、単結晶あるいは多結晶太陽電池を作製する際に広く利用され ている。  In view of this, Japanese Patent Application Laid-Open No. Hei 8-333571 proposes a method for forming a contact hole without using photolithography technology. Specifically, a pattern of a metal electrode for taking out output is formed on the insulating film by screen printing of a conductive paste, and then baked. As a result, the metal and the glass frit contained in the paste are melted by heat, break through the insulating film and reach the emitter layer, thereby forming a contact hole. This method is generally referred to as fire-through, and is widely used when fabricating single-crystal or polycrystalline solar cells because of its ability to form a contact horn easily.
ところで、 フアイヤースルー方式による太陽電池作製方法では、 表面 n型層である ェミッタ層のドーパント濃度を高く設定する必要がある。 これは、 ェミッタ層のドー パント濃度が低い場合、 フアイヤースルーにより形成される金属とシリコンとの直接 接触部のコンタクト抵抗が十分に下がらず、 コンタクト抵抗ロスが大きくなつて取り 出せる電力が小さくなることにつながるからである。 し力、しながら、 拡散によってェ ミッタ層のドーパント濃度を高くすると、半導体シリコンとドーパントとの化合物が 析出し、 表面に多くの欠陥準位が形成されて、 表面再結合速度が大きくなる。 このよ うな状態になると、 太陽電池の短波長感度が低くなり、 取り出せる電流が小さくなる 不具合を生ずる。  By the way, in the solar cell manufacturing method using the fire-through method, it is necessary to set the dopant concentration of the emitter layer, which is the surface n-type layer, to be high. This is because when the dopant concentration of the emitter layer is low, the contact resistance at the direct contact between the metal and silicon formed by the fire-through does not drop sufficiently, and the power that can be extracted is reduced due to the large contact resistance loss Because it leads to things. However, if the dopant concentration in the emitter layer is increased by diffusion, a compound of the semiconductor silicon and the dopant precipitates, and many defect levels are formed on the surface, thereby increasing the surface recombination rate. In such a state, the short-wavelength sensitivity of the solar cell is reduced, and a drawback occurs in that the current that can be extracted is reduced.
一方、 太陽電池の変換効率 77を高めるためには、 出力取出用金属電極の形成幅をな るべく小さくし、シャド一^ f ングロスの低減を図ることも重要である。しかしながら、 フアイヤースルー方式では電極をスクリーン印刷により形成することから、電極幅を 極端に小さくすることは原理的に困難であり、結果としてシャドーィングロス低減の ために、 複数本形成する電極の配列間隔を広くせざるをえなくなる。 このように電極 の配列間隔を広くすると、 電流取出時において、 薄いェミッタ層内での横方向通電距 離が長くなることからェミッタ抵抗ロスが大きくなり、変換効率 77は低下せざるを得 ない。 これらの理由により、 フアイヤースルー方式を採用して、 変換効率 77の良好な 太陽電池、例えば が 2 0 %を超える太陽電池を作製することは困難であるとみなさ れている。 On the other hand, in order to increase the conversion efficiency 77 of the solar cell, it is also important to reduce the formation width of the metal electrode for taking out the output as much as possible to reduce the shadow loss. However, in the fire-through method, since electrodes are formed by screen printing, it is theoretically difficult to make the electrode width extremely small.As a result, in order to reduce shadowing loss, an array of a plurality of electrodes is formed. The interval has to be widened. When the electrode arrangement interval is widened in this way, the current conduction becomes longer in the thin emitter layer in the horizontal direction during current extraction, so that the emitter loss is increased and the conversion efficiency 77 must be reduced. Absent. For these reasons, it is considered difficult to produce a solar cell having a good conversion efficiency of 77, for example, a solar cell with a conversion factor of more than 20% by employing the fire-through method.
本発明の課題は、 変換効率が高くし力も低コストにて製造可能な太陽電池と、 その 製造方法とを提供することにある。 発明の開示 '  An object of the present invention is to provide a solar cell which can be manufactured with high conversion efficiency and low power at low cost, and a method for manufacturing the same. DISCLOSURE OF THE INVENTION ''
上記の課題を解決するために、 本発明の太陽電池の第一の構成は、 半導体基板の主 表面に凹凸部が形成され、該主表面が絶縁膜で被覆されている太陽電池において、 凹 凸部を形成する凸部の少なくとも一部のものの頂上部を包含する形にて絶縁膜にて 被覆されていない半導体層露出領域が主表面に形成されてなり、該半導体層露出領域 内において凸部の頂上部の先端高さ位置力 該半導体層露出領域の外周縁における絶 縁膜の最大高さ位置よりも高くなつており、かつ半導体層露出領域内の ώ部の頂上部 に直接又は他の導電層を介して間接的に接触するように、出力取出用電極が形成され ていることを特@とする。  In order to solve the above-mentioned problems, a first configuration of a solar cell according to the present invention is a solar cell in which an uneven portion is formed on a main surface of a semiconductor substrate and the main surface is covered with an insulating film. A semiconductor layer exposed region not covered with an insulating film is formed on the main surface so as to cover at least a top of at least a part of the convex portion forming the portion, and the convex portion is formed in the semiconductor layer exposed region. The height of the tip at the top of the semiconductor layer is higher than the maximum height of the insulating film at the outer peripheral edge of the semiconductor layer exposed region, and is directly or at another position on the top of the の portion in the semiconductor layer exposed region. It is characterized in that an output extraction electrode is formed so as to be indirectly contacted via a conductive layer.
なお、 本明細書において半導体基板の主表面とは、 半導体基板の厚さ方向における 両面 (表面、 裏面) の少なくともいずれかを意味している。 従って、 凹凸部は、 基板 の一方の主表面のみに形成されていてもよいし、両面に形成されていてもいずれでも よい。 また、 本明細書において半導体層露出領域とは、 絶縁膜が完全に除去された場 合はもちろん、 トンネル電流が流れる程度の厚さ (3 n m以下程度) の絶縁膜が残存 する場合も概念として含む。  In this specification, the main surface of the semiconductor substrate means at least one of both surfaces (front surface, back surface) in the thickness direction of the semiconductor substrate. Therefore, the uneven portions may be formed only on one main surface of the substrate, or may be formed on both surfaces. In addition, in this specification, the semiconductor layer exposed region is conceptually defined not only when the insulating film is completely removed but also when the insulating film is thick enough to allow a tunnel current to flow (about 3 nm or less). Including.
上記第一の構成の太陽電池では、 半導体基板の主表面に凹凸部を形成している。 こ のような凹凸部形成は、主に反射損失を防止する目的で従来のシリコン単結晶系太陽 電池においても採用されてきたものである。 しかしながら、 本発明においては、 上記 凹凸部を反射損失防止の観点のみならず、 その特有の形態を、 出力取出用電極と半導 体層とのコンタクトホールとして機能させるべき半導体層露出領域の形成に利用す るところに特徴がある。 具体的には、 図 1 9 Aに例示するように、 該半導体層露出領 域 5を凸部 1 5の頂上部 2 5を包含する形にて形成するとともに、該凸部 1 5の先端 高さ位置が、半導体層露出領域 5の外周縁における絶縁膜 3の最大高さ位置よりも高 くする。 そして、 半導体層露出領域 5内の凸部 1 5の頂上部 2 5に直接 (又は他の導 電層を介して間接的に) 接触するように、 出力取出用電極 7を形成する。 In the solar cell of the first configuration, the unevenness is formed on the main surface of the semiconductor substrate. The formation of such uneven portions has been employed in conventional silicon single crystal solar cells mainly for the purpose of preventing reflection loss. However, in the present invention, not only the above-mentioned uneven portions are prevented from preventing the reflection loss, but also the specific form thereof is used as an output extraction electrode and a semiconductor. It is characterized in that it is used to form an exposed region of a semiconductor layer which is to function as a contact hole with a body layer. Specifically, as illustrated in FIG. 19A, the semiconductor layer exposed region 5 is formed so as to include the top 25 of the convex portion 15 and the height of the tip of the convex portion 15 is increased. The height position is higher than the maximum height position of the insulating film 3 at the outer peripheral edge of the semiconductor layer exposed region 5. Then, the output extraction electrode 7 is formed so as to directly contact (or indirectly via the other conductive layer) the top portion 25 of the convex portion 15 in the semiconductor layer exposed region 5.
例えば、 従来の太陽電池における、 フォトリソグラフィーゃフアイヤースルーによ り形成したコンタクトホールでは、 図 1 9 Bに示すように、 半導体層露出領域 5はコ ンタクトホールのいわば底面を形成する形となり、露出領域 5内の半導体層 2が周囲 の絶縁膜 3の上縁よりも突出することは決してありえない。 この点において、 上記本 発明の第一に係る太陽電池の構造は、 これら従来の太陽電池の構造と決定的に相違す る。 そして、 .このような構造を採用することにより、 半導体層露出領域 5を、 以下に 示す本発明の太陽電池の製造方法により極めて簡単に形成できる利点を生ずる。 すなわち、 該方法は、 半導体基板の主表面に凹凸部を形成する工程と、  For example, in a contact hole formed by photolithography through through in a conventional solar cell, as shown in FIG. 19B, the semiconductor layer exposed region 5 forms a so-called bottom surface of the contact hole. The semiconductor layer 2 in the exposed region 5 can never project beyond the upper edge of the surrounding insulating film 3. In this regard, the structure of the solar cell according to the first aspect of the present invention is crucially different from those of conventional solar cells. By adopting such a structure, there is an advantage that the semiconductor layer exposed region 5 can be formed extremely simply by the method for manufacturing a solar cell of the present invention described below. That is, the method includes the steps of forming an uneven portion on a main surface of a semiconductor substrate;
その半導体基板の主表面を、 凹凸部を含む形にて絶縁膜で覆う工程と、  A step of covering the main surface of the semiconductor substrate with an insulating film including irregularities;
凹凸部を形成する凸部の頂上部以外の領域にて絶縁膜をエッチング保護膜で覆う 工程と、  A step of covering the insulating film with an etching protection film in a region other than the top of the convex portion forming the concave / convex portion;
その後エッチングによって凸部の頂上部の絶縁膜を除去することにより、凸部の少 なくとも一部のものの頂上部を包含する形にて絶縁膜にて被覆されていない半導体 層露出領域を形成する工程と、  Thereafter, the insulating film on the top of the protrusion is removed by etching to form a semiconductor layer exposed region not covered with the insulating film so as to cover the top of at least a part of the protrusion. Process and
半導体層露出領域内の凸部の頂上部に直接又は他の導電層を介して間接的に接触 するように、 出力取出用電極を形成する工程と、  Forming an output extraction electrode so as to directly or indirectly contact the top of the protrusion in the semiconductor layer exposed region via another conductive layer;
を含むことを特徴とする。 It is characterized by including.
また、 本発明に係る太陽電池の第二の構成は、 上記製法の観点から本発明の太陽電 池の特徴を捉えたもので、 半導体基板の主表面に凹凸部が形成され、該主表面が絶縁 膜で被覆され、凹凸部を形成する凸部の少なくとも一部のものの頂上部を包含する形 にて絶縁膜にて被覆されていない半導体層露出領域が主表面に形成されてなり、かつ 半導体層露出領域内の凸部の頂上部に直接又は他の導電層を介して間接的に接触す るように、 出力取出用電極が形成された太陽電池において、 Further, the second configuration of the solar cell according to the present invention captures the features of the solar cell of the present invention from the viewpoint of the above-mentioned manufacturing method. Insulation A semiconductor layer exposed region not covered with the insulating film is formed on the main surface so as to cover at least a part of the projections forming the concave and convex portions, the semiconductor layer being covered by the film; In a solar cell in which an output extraction electrode is formed so as to directly or indirectly contact the top of the projection in the exposed area through another conductive layer,
半導体層露出領域は、 半導体基板の主表面を、 凹凸部を含む形にて絶縁膜で覆い、 さらに凸部の頂上部以外の領域にて絶縁膜をエッチング保護膜で覆い、その後エッチ ングによって凸部の頂上部の絶縁膜を除去して形成されたものであることを特徴と する。  The semiconductor layer exposed region covers the main surface of the semiconductor substrate with an insulating film including irregularities, and further covers the insulating film with an etching protective film in a region other than the top of the convex portion, and then forms a convex portion by etching. It is characterized by being formed by removing the insulating film at the top of the part.
上記方法によると、 図 4 Aに示す半導体基板 1の主表面に対し、 図 4 Bに示すよう に、該主表面に形成された凸部 1 5の頂上部 2 5を除く領域が覆われるように、換言 すれば凸部 1 5が高さ方向の途中まで埋まり、頂上部のみが突出するようにエツチン グ保護膜 4を形成する。 そして、 図 4 Cに示すように、 その後エッチングを施すこと で、エッチング保護膜 4から突出している凸部 1 5の頂上部 2 5の絶縁膜 3のみが選 択的に除去される。 その結果、 凸部 1 5の頂上部 2 5を包含する形にて前述の該半導 体層露出領域 5が形成される。 図 4 Dに示すように、 該凸部 1 5の先端高さ位置は、 半導体層露出領域 5の外周縁における絶縁膜 3の最大高さ位置 1 1よりも高くなる。 エッチング保護膜 4は、感光性を有さない汎用の高分子レジストを使用でき、 上記 のような被覆状態を形成するには、ヱツチング保護膜 4の形成厚さを適正に設定する のみでよく、 一且このような被覆状態を形成してしまえば、例えば適当なエッチング 液に基板を浸漬するのみで半導体層露出領域 5を簡単に形成することができる。従つ て、 面倒で工数の多いフォトリソグラフィー技術は全く不要であり、 もちろん、 ファ ィヤースルーも不要であるから、基板表面のドーパント濃度を高めなくとも良好なォ 一ミック接触を得ることが可能となる。 これにより太陽電池のフィルファクタを高め ることができる。 また、 表面のドーパント濃度を低くできることから、 太陽電池の短 波長感度が増大し、 短絡電流を向上させることができる。 こうして、 変換効率の高い 高性能の太陽電池が実現可能となる。 According to the above method, as shown in FIG. 4B, the area other than the tops 25 of the projections 15 formed on the main surface is covered with the main surface of the semiconductor substrate 1 shown in FIG. 4A. In other words, in other words, the etching protection film 4 is formed so that the projection 15 is buried halfway in the height direction and only the top is protruded. Then, as shown in FIG. 4C, by performing etching thereafter, only the insulating film 3 on the top 25 of the convex portion 15 protruding from the etching protective film 4 is selectively removed. As a result, the semiconductor layer exposed region 5 described above is formed so as to include the top portion 25 of the convex portion 15. As shown in FIG. 4D, the height position of the tip of the convex portion 15 is higher than the maximum height position 11 of the insulating film 3 at the outer peripheral edge of the semiconductor layer exposed region 5. As the etching protective film 4, a general-purpose polymer resist having no photosensitivity can be used, and in order to form the above-described coating state, it is only necessary to appropriately set the thickness of the etching protective film 4 to be formed. Once such a covering state is formed, the semiconductor layer exposed region 5 can be easily formed only by immersing the substrate in an appropriate etching solution. Therefore, no cumbersome and labor-intensive photolithography technology is required at all, and, of course, no fire-through is required, so that good ohmic contact can be obtained without increasing the dopant concentration on the substrate surface. . Thereby, the fill factor of the solar cell can be increased. Further, since the dopant concentration on the surface can be reduced, the short-wavelength sensitivity of the solar cell increases, and the short-circuit current can be improved. Thus, high conversion efficiency High-performance solar cells can be realized.
次に、 本発明に係る太陽電池の第三の構成は、 半導体基板の主表面が絶縁膜で被覆 されている太陽電池において、絶縁膜にて被覆されていない半導体層露出領域が主表 面に形成されてなり、半導体層露出領域と絶縁膜とを一括して覆う透明導電層が形成 され、 該透明導電層上に出力取出用電極が形成されていることを特徴とする。  Next, in a third configuration of the solar cell according to the present invention, in a solar cell in which a main surface of a semiconductor substrate is covered with an insulating film, a semiconductor layer exposed region not covered with the insulating film is formed on the main surface. The transparent conductive layer is formed so as to cover the semiconductor layer exposed region and the insulating film in a lump, and an output extraction electrode is formed on the transparent conductive layer.
この構成では、 コンタクトホールとして機能する半導体層露出領域を絶縁膜に形成 し、 それら半導体層露出領域と絶縁膜とを一括して覆う透明導電層を形成する。 そし て、 出力取出用電極をこの透明導電層上に形成する。 このような透明導電層を設けな い場合、 図 1 3 Aに例示するように、 半導体基板 1側で発生した電流は、抵抗率の比 較的高い基板表層部 (例えばェミッタ層) 2を横方向に流れた後、 出力取出用電極か 7から取り出される形となるので直列抵抗が大きくなり、損失が生じやすくなる。 し かし、 本発明の第三の構成に係る太陽電池によれば、 図 1 3 Bに例示するように、 半 導体層露出領域 5からの電流は、 導電率の比較的高い (つまり抵抗率の比較的低い) 透明導電層 6を横方向に流れた後、 出力取出用電極 7から取り出すことができる。 従 つて、 横方向に電流が流れる際の抵抗損失を大幅に軽減することができる。 例えば、 図 1 3 Aにおいては、 出力取出用電極 7までの距離 L P 1が全て、 基板表層部 2内の 横方向導通路とならざるを得ないが、 図 1 3 Bにおいては、 出力取出用電極 7の存在 の有無にかかわらず、最寄の半導体層露出領域 5から透明導電層 6へ電流が流れ込め ばよいので、 その横方向導通長さ L P 2は、 図 1 3 Aの横方向導通長さ L P 1よりも 大幅に短くなることが明らかである。 また、 別の効果として、 形成されているのが透 明導電層であるから、透明導電層自身によるシャドーイングロスはほとんど発生しな い。 こうして、 太陽電池の短絡電流及び変換効率の向上を図ることができる。  In this configuration, a semiconductor layer exposed region functioning as a contact hole is formed in an insulating film, and a transparent conductive layer covering the semiconductor layer exposed region and the insulating film is formed. Then, an output extraction electrode is formed on the transparent conductive layer. When such a transparent conductive layer is not provided, as shown in FIG. 13A, the current generated on the side of the semiconductor substrate 1 crosses the substrate surface portion (for example, an emitter layer) 2 having a relatively high resistivity. After flowing in the direction, the electrode is taken out from the output extraction electrode 7, so the series resistance increases and losses easily occur. However, according to the solar cell according to the third configuration of the present invention, as illustrated in FIG. 13B, the current from the semiconductor layer exposed region 5 has a relatively high conductivity (that is, the resistivity). After flowing in the transparent conductive layer 6 in the lateral direction, it can be extracted from the output extraction electrode 7. Therefore, the resistance loss when current flows in the lateral direction can be greatly reduced. For example, in FIG. 13A, the distance LP1 to the output extraction electrode 7 must be all lateral conduction paths in the substrate surface layer 2, but in FIG. Regardless of the presence or absence of the electrode 7, the current only needs to flow from the nearest semiconductor layer exposed region 5 to the transparent conductive layer 6, and the lateral conduction length LP 2 is the lateral conduction length of FIG. 13A. It is clear that the length is much shorter than LP 1. As another effect, since the transparent conductive layer is formed, shadowing loss due to the transparent conductive layer itself hardly occurs. Thus, the short-circuit current and the conversion efficiency of the solar cell can be improved.
特に、 出力取出用電極を汎用のスクリーン印刷で形成する場合、 出力取出用電極 7 の幅が大きくなるから、 シャドウイングロス軽減のため、 その形成間隔を広くする必 要がある。 図 1 3 Aに示すように、 透明導電層を設けない場合は、 横方向電流による 直列抵抗増大が問題となるが、 上記本発明に係る太陽電池の第三の構成では、 図 1 3 Bに示すように、 透明導電層 6が横方向導通路として機能するため、該問題の影響を 劇的に軽減することができる。 また、 直列抵抗が増大すると出力取出用電極の形成間 隔を大きくするにも一定の限界が生ずるのに対し、本発明の第三の構成に係る太陽電 池によると、透明導電層 6上に設けられる出力取出用電極 7, 7の形成間隔を相当大 きくとっても直列抵抗はそれほど高くならず、結果としてシャドウイングロスをさら に小さくすることが可能である。 In particular, when the output extraction electrode is formed by general-purpose screen printing, the width of the output extraction electrode 7 becomes large. Therefore, it is necessary to widen the formation interval to reduce shadowing loss. As shown in Fig. 13A, when the transparent conductive layer is not provided, Although the increase in series resistance is a problem, in the third configuration of the solar cell according to the present invention, as shown in FIG. 13B, since the transparent conductive layer 6 functions as a lateral conduction path, Can be dramatically reduced. Further, when the series resistance increases, there is a certain limit in increasing the formation interval of the output extraction electrode. On the other hand, according to the solar cell according to the third configuration of the present invention, on the transparent conductive layer 6, Even if the formation intervals of the provided output extraction electrodes 7, 7 are made considerably large, the series resistance does not increase so much, and as a result, the shadowing loss can be further reduced.
また、 本発明では基板表層部 (例えばェミッタ層) にて横方向に電流を流す必要が ないため、 そのシート抵抗を高くしても、 例えば n型ェミッタ層を形成する場合は、 シート抵抗を 1 0 0 Ω Ζ口からはるかに高くしても問題はない。 つまり、 基板表層部 のドーパント濃度をさらに下げることが可能である。 これにより、表面再結合速度を さらに下げることが可能となり、 変換効率を上昇させることができる。  Further, in the present invention, since it is not necessary to supply a current in the lateral direction in the surface layer portion of the substrate (for example, the emitter layer), even if the sheet resistance is increased, for example, when the n-type emitter layer is formed, the sheet resistance is reduced to 1 0 0 Ω し て も There is no problem even if it is much higher than the mouth. That is, the dopant concentration in the surface layer portion of the substrate can be further reduced. This makes it possible to further reduce the surface recombination rate and increase the conversion efficiency.
なお、 上記本発明に係る太陽電池の第三の構成は、 前述の第一の構成あるいは第二 の構成と組み合わせることができる。 この場合、 出力取出用電極 7, 7は、 図 1 3 B に示すように、基板主表面の各所に散らばった凸部 1 5に対応する位置に形成するこ とができる。 他方、 第三の構成を第一あるいは第二の構成とは無関係に独立して実施 することもできる。 図 7 Eにおいては、 基板 1の主表面に凸部 1 5が形成されておら ず、絶縁層 3にはフォトリソグラフィー等にて半導体層露出部 3 5が形成されている。 次に、本発明に係る太陽電池の第四の構成は、 半導体基板の主表面が絶縁膜で被覆 されている太陽電池において、絶縁膜にて被覆されていない半導体層露出領域が主表 面に複数形成されてなり、 それら半導体層露出領域の一部のものにおいて、 出力取出 用電極が半導体層に直接接して形成される一方、出力取出用電極が形成されない残余 の半導体層露出領域が透明な補助絶縁層にて被覆されていることを特徴とする。  The third configuration of the solar cell according to the present invention can be combined with the first configuration or the second configuration described above. In this case, the output extraction electrodes 7, 7 can be formed at positions corresponding to the projections 15 scattered at various points on the main surface of the substrate as shown in FIG. 13B. On the other hand, the third configuration can be implemented independently of the first or second configuration. In FIG. 7E, the convex portion 15 is not formed on the main surface of the substrate 1, and the semiconductor layer exposed portion 35 is formed on the insulating layer 3 by photolithography or the like. Next, in a fourth configuration of the solar cell according to the present invention, in the solar cell in which the main surface of the semiconductor substrate is covered with the insulating film, the semiconductor layer exposed region not covered with the insulating film is formed on the main surface. In a part of the semiconductor layer exposed region, the output extraction electrode is formed directly in contact with the semiconductor layer, while the remaining semiconductor layer exposed region where the output extraction electrode is not formed is transparent. It is characterized by being covered with an auxiliary insulating layer.
半導体層露出領域において出力取出用電極が半導体層に直接接して形成される太 陽電池の構成においては、例えば前述のように半導体基板の主表面の 凸: ルを利用して、 いわば偶発的に半導体露出領域を形成する形にすると、 出力取出用電 極を形成したときに、必ずしも全ての半導体露出領域が出力取出用電極とのコンタク トホールとして利用されず、出力取出用電極の形成領域から外れた位置にある半導体 露出領域が残ってしまう場合がある。 上記第四の構成では、 コンタクトホールとして 利用されないそのような残余の半導体層露出領域を透明な補助絶縁層にて被覆する ことで半導体層露出領域をパッシベーシヨンでき、半導体層露出領域から半導体層に 汚れ付着等による望まざるリーク電流等が生ずることを効果的に防止することがで きる。 また、 補助絶縁層は透明に構成される力ゝら、 該補助絶縁層形成によるシャドウ イングロスも生じにくい。 なお、 このような補助絶縁層は、 上記残余の半導体層露出 領域と絶縁膜と出力取出用電極とを一括して覆うものとすれば形成が容易であり、製 造コストを削減することができる。 In the configuration of the solar cell in which the output extraction electrode is formed in direct contact with the semiconductor layer in the semiconductor layer exposed region, for example, as described above, the protrusion of the main surface of the semiconductor substrate: If a semiconductor exposed area is formed accidentally by using a tool, if the output extraction electrode is formed, not all of the semiconductor exposed area is necessarily used as a contact hole with the output extraction electrode. In some cases, the exposed semiconductor region may be left outside the region where the output electrode is formed. In the fourth configuration, by covering such a remaining semiconductor layer exposed region not used as a contact hole with a transparent auxiliary insulating layer, the semiconductor layer exposed region can be passivated, and the semiconductor layer is contaminated from the semiconductor layer exposed region. It is possible to effectively prevent occurrence of an undesired leak current or the like due to adhesion or the like. Further, the auxiliary insulating layer is made of a transparent material, and the formation of the auxiliary insulating layer hardly causes shadowing loss. It should be noted that such an auxiliary insulating layer can be easily formed if the remaining semiconductor layer exposed area, the insulating film, and the output extraction electrode are collectively covered, and the manufacturing cost can be reduced. .
上記本発明に係る太陽電池の第四の構成は、前述の第一の構成あるいは第二の構成 と組み合わせることが可能である。 例えば、 図 7 Fでは、 半導体層露出領域 5が凸部 1 5の頂上部 2 5に形成され、出力取出用電極 7はこの半導体層露出領域 5にて半導 体層 2に直接接している。 他方、 第一の構成あるいは第二の構成と無関係に第四の構 成を実施することもできる。 図 7 Gに示す例では、 基板 1の主表面に凸部 1 5が形成 されておらず、絶縁層 3にはフォトリソグラフィ一等にて半導体層露出部 3 5が形成 されている。 いずれの構成においても、 補助絶縁層 1 0は、残余の半導体層露出領域 5 ' と絶縁膜 3と出力取出用電極 7とを一括して覆うものとなっている。 図面の簡単な説明  The fourth configuration of the solar cell according to the present invention can be combined with the first configuration or the second configuration described above. For example, in FIG. 7F, the semiconductor layer exposed region 5 is formed on the top 25 of the convex portion 15, and the output extraction electrode 7 is in direct contact with the semiconductor layer 2 in the semiconductor layer exposed region 5. . On the other hand, the fourth configuration can be implemented independently of the first configuration or the second configuration. In the example shown in FIG. 7G, the convex portion 15 is not formed on the main surface of the substrate 1, and the semiconductor layer exposed portion 35 is formed on the insulating layer 3 by photolithography or the like. In any of the configurations, the auxiliary insulating layer 10 collectively covers the remaining semiconductor layer exposed region 5 ', the insulating film 3, and the output extraction electrode 7. BRIEF DESCRIPTION OF THE FIGURES
図 1 Aは、 本発明に係る太陽電池の第一例の断面構造を示す模式図。  FIG. 1A is a schematic diagram showing a cross-sectional structure of a first example of a solar cell according to the present invention.
図 1 Bは、 本発明に係る太陽電池の第二例の断面構造を示す模式図。  FIG. 1B is a schematic view showing a cross-sectional structure of a second example of the solar cell according to the present invention.
図 2 Aは、 半導体基板に形成する凹凸部の形態の第一例を示す斜視図。  FIG. 2A is a perspective view showing a first example of a form of an uneven portion formed on a semiconductor substrate.
図 2 Bは、 同じく第二例を示す斜視図。 図 2Cは、 同じく第三例を示す斜視図。 FIG. 2B is a perspective view showing the same second example. FIG. 2C is a perspective view showing a third example.
図 3は、 実験例における太陽電池の製造工程を示すフローチャートである。  FIG. 3 is a flowchart showing a manufacturing process of the solar cell in the experimental example.
図 4 Aは、 本発明における半導体層露出領域の形成方法を示す工程説明図。  FIG. 4A is a process explanatory view showing a method for forming a semiconductor layer exposed region in the present invention.
図 4Bは、 図 4 Aに続く工程説明図。  FIG. 4B is a process explanatory view following FIG. 4A.
図 4Cは、 図 4 Bに続く工程説明図。  FIG. 4C is a process explanatory view following FIG. 4B.
図 4Dは、 図 4 Cに続く工程説明図。  FIG. 4D is a process explanatory view following FIG. 4C.
図 5は、 実験例 2で用いた太陽電池の断面構造を示す模式図。  FIG. 5 is a schematic diagram showing a cross-sectional structure of the solar cell used in Experimental Example 2.
図 6は、 実験例 3で用いた太陽電池の要部を拡大して示す斜視図。  FIG. 6 is an enlarged perspective view showing a main part of the solar cell used in Experimental Example 3.
図 7 Aは、 本発明の太陽電池の、 要部断面構造の第一例を示す模式図。  FIG. 7A is a schematic diagram showing a first example of a cross-sectional structure of a main part of a solar cell of the present invention.
図 7Bは、 同じく第二例を示す模式図。  FIG. 7B is a schematic view showing a second example.
図 7Cは、 同じく第三例を示す模式図。  FIG. 7C is a schematic view showing the third example.
図 7Dは、 同じく第四例を示す模式図。  FIG. 7D is a schematic view showing the fourth example.
図 7Eは、 同じく第五例を示す模式図。  FIG. 7E is a schematic view showing a fifth example.
図 7Fは、 同じく第六例を示す模式図。  FIG. 7F is a schematic view showing the sixth example.
図 7Gは、 同じく第七例を示す模式図。  FIG. 7G is a schematic view showing a seventh example.
図 8 Aは、塗布液を用いてエッチング保護膜を段階的に厚く形成する例を示す工程 説明図。  FIG. 8A is a process explanatory view showing an example in which an etching protective film is formed gradually thicker using a coating solution.
図 8Bは、 図 8 Aに続く工程説明図。  FIG. 8B is a process explanatory view following FIG. 8A.
図 8Cは、 図 8 Bに続く工程説明図。  FIG. 8C is an explanatory view of the step following FIG. 8B.
図 8 Dは、 図 8 Cに続く工程説明図。  FIG. 8D is a process explanatory view following FIG. 8C.
図 9 Aは、 塗布液の粘度とエツチング保護膜の形成状態との関係を説明する図。 図 9Bは、 図 9 Aに続く説明図。  FIG. 9A is a diagram illustrating the relationship between the viscosity of a coating solution and the state of formation of an etching protective film. FIG. 9B is an explanatory view following FIG. 9A.
図 9 Cは、 図 9 Bに続く説明図。  FIG. 9C is an explanatory view following FIG. 9B.
図 9Dは、 図 9 Cに続く説明図。  FIG. 9D is an explanatory view following FIG. 9C.
図 1 OAは、 エッチング保護膜の形成形態と、 半導体層露出部の形成態様との関係 を例示して示す断面模式図。 Fig. 1 OA shows the relationship between the form of etching protection film and the form of exposed semiconductor layer FIG.
図 1 0 Bは、 同じく別例を示す断面模式図。  FIG. 10B is a schematic cross-sectional view showing another example.
図 1 1 Aは、透明導電層を組み込んだ本発明の太陽電池の、製造工程の第一例を示 す断面模式図。  FIG. 11A is a schematic cross-sectional view showing a first example of the manufacturing process of the solar cell of the present invention incorporating a transparent conductive layer.
図 1 1 Bは、 同じく第二例を示す断面模式図。  FIG. 11B is a schematic cross-sectional view showing the second example.
図 1 1 Cは、 同じく第三例を示す断面模式図。  FIG. 11C is a schematic cross-sectional view showing the same third example.
図 1 2は、透明導電層を組み込んだ本発明の太陽電池における、 出力取出用電極の 形成態様の変形例を示す断面模式図。  FIG. 12 is a schematic cross-sectional view showing a modified example of the formation mode of the output extraction electrode in the solar cell of the present invention incorporating a transparent conductive layer.
図 1 3 Aは、透明導電層の有無による、表層部を流れる電流経路の違いを説明する 図。  FIG. 13A is a diagram illustrating a difference in a current path flowing through a surface layer portion depending on the presence or absence of a transparent conductive layer.
図 1 3 Bは、 図 1 3 Aに続く説明図。  FIG. 13B is an explanatory view following FIG. 13A.
図 1 4は、 実験例 1における各太陽電池の電流電圧特性を示すグラフ。  FIG. 14 is a graph showing the current-voltage characteristics of each solar cell in Experimental Example 1.
図 1 5は、 同じく内部量子効率と波長との関係を示すグラフ。  Fig. 15 is a graph showing the relationship between internal quantum efficiency and wavelength.
図 1 6は、 p— n接合を利用した太陽電池の原理説明図。  Figure 16 is a diagram illustrating the principle of a solar cell using a pn junction.
図 1 7は、受光面側における出力取出用電極の形成形態の一例を模式的に示す斜視 図。  FIG. 17 is a perspective view schematically showing an example of a form of forming an output extraction electrode on the light receiving surface side.
図 1 8は、 太陽電池の電流電圧曲線の説明図。  Figure 18 is an illustration of the current-voltage curve of a solar cell.
図 1 9 Aは、本発明と従来方法との半導体層露出部の形成形態の違いを対比して説 明する模式図。  FIG. 19A is a schematic diagram for explaining the difference in the form of forming a semiconductor layer exposed portion between the present invention and the conventional method.
図 1 9 Bは、 図 1 9 Aに続く説明図。 発明を実施するための最良の形態  FIG. 19B is an explanatory view following FIG. 19A. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明に係るいくつかの実施の形態を、 図面を用いて説明する。 なお、 実施 の形態を説明するための全図面において、 同一機能を有するものは同一符号を付け、 その繰り返しの説明は省略する。 図 1 Aは、本発明の太陽電池の一実施形態を模式的に示す断面図である。 該太陽電 池 1 0 0は、 シリコン単結晶基板 1 (以下、 単に基板 1と記載する:本実施形態では p型とする) の第一主表面側に不純物の拡散層 2 (本実施形態では n型とする) が形 成され、 p— n接合部をなしている。 この拡散層 2のように半導体基板の表面近傍に 新たに形成された層を本発明においては半導体層 2と総称する。半導体層 2の表面に は、 絶縁膜 (パッシベーシヨン膜) 3、 透明導電層 6及び出力取出用電極 7がこの順 序にて形成されている。 Hereinafter, some embodiments of the present invention will be described with reference to the drawings. In all the drawings for describing the embodiments, those having the same functions are denoted by the same reference numerals, and their repeated description will be omitted. FIG. 1A is a cross-sectional view schematically showing one embodiment of the solar cell of the present invention. The solar cell 100 is provided with an impurity diffusion layer 2 (in the present embodiment, on the first main surface side of a silicon single crystal substrate 1 (hereinafter simply referred to as a substrate 1: a p-type in the present embodiment). is formed, forming a pn junction. A layer newly formed near the surface of the semiconductor substrate like the diffusion layer 2 is generically referred to as a semiconductor layer 2 in the present invention. On the surface of the semiconductor layer 2, an insulating film (passivation film) 3, a transparent conductive layer 6, and an output electrode 7 are formed in this order.
ここで、 基板 1の第一主表面には凹凸部が形成され、 絶縁膜 3はその凹凸部を覆う 形で形成されている。 そして、 凹凸部を形成する多数の凸部 1 5の一部のものの頂上 部 2 5を包含する形にて、絶縁膜 3にて被覆されていない半導体層露出領域 5が形成 されている。 図 1 9 Aに拡大して示すように、該半導体層露出領域 5内において凸部 1 5の頂上部 2 5の先端高さ位置は、該半導体層露出領域 5の外周縁における絶縁膜 3の最大高さ位置 (すなわち絶縁膜 3の内周縁 1 1の最大高さ位置) よりも高くなつ ている。 そして、 透明導電層 6は、 半導体層露出領域 5内の凸部 1 5の頂上部 2 5に おいて、 半導体層 2に直接接触しており、 その上に形成された出力取出用電極 7は、 透明導電層 6を介して半導体層 2にいわば間接的に接触する形となっている。  Here, an uneven portion is formed on the first main surface of the substrate 1, and the insulating film 3 is formed so as to cover the uneven portion. Then, the semiconductor layer exposed region 5 not covered with the insulating film 3 is formed so as to include the top portion 25 of a part of the many convex portions 15 forming the concave and convex portions. As shown in FIG. 19A in an enlarged manner, the height of the tip of the top 25 of the convex portion 15 in the semiconductor layer exposed region 5 is the height of the insulating film 3 at the outer peripheral edge of the semiconductor layer exposed region 5. It is higher than the maximum height position (that is, the maximum height position of the inner peripheral edge 11 of the insulating film 3). The transparent conductive layer 6 is in direct contact with the semiconductor layer 2 at the top 25 of the projection 15 in the semiconductor layer exposed region 5, and the output extraction electrode 7 formed thereon is However, the semiconductor layer 2 is indirectly in contact with the semiconductor layer 2 via the transparent conductive layer 6.
半導体層露出領域 5は、 当該半導体層露出領域 5の形成される基板 1の主表面 (こ こでは第一主表面)において、合計面積率が 1 %以下となるように形成するのがよレ、。 半導体層露出領域 5は透明導電層 6とのコンタクトホールとして機能し、該位置では 表面再結合速度が非常に大きくなるから、上記合計面積率を 1 %以下にすることによ り、 実効的な表面再結合速度を低減することが可能である。 これにより開放電圧及び 変換効率を向上させることができる。 他方、 該形成面積率は最低でも 0 . 0 0 1 %程 度確保されていないと、 コンタクト近傍の電流集中により抵抗が増加して十分な変換 効率の向上が見込めなくなる。  The semiconductor layer exposed region 5 is preferably formed such that the total area ratio is 1% or less on the main surface (here, the first main surface) of the substrate 1 on which the semiconductor layer exposed region 5 is formed. ,. The semiconductor layer exposed region 5 functions as a contact hole with the transparent conductive layer 6, and the surface recombination speed becomes extremely high at this position. Therefore, by setting the total area ratio to 1% or less, the effective area can be reduced. It is possible to reduce the rate of surface recombination. Thereby, the open-circuit voltage and the conversion efficiency can be improved. On the other hand, if the formation area ratio is not at least about 0.01%, the resistance is increased due to current concentration near the contact, and a sufficient improvement in conversion efficiency cannot be expected.
基板 1の構成材料である単結晶シリコンは波長 4 0 0〜1 1 0 0 n mの領域で 6 . 0 0〜 3 . 5 0の大きな屈折率を持っため、太陽光線が入射したときの反射損失が問 題となる。上記の凹凸部は主として太陽電池の受光面となる第一主表面の反射防止の ために形成されるものであり、 図 2 Aに示すように、 外面が (1 1 1 ) 面の多数のピ ラミツド状突起 5 5からなるランダムテクスチャ構造とすることができる。 このよう なテクスチャ構造は、 シリコン単結晶の (1 0 0 ) 面を、 ヒドラジン水溶液や水酸化 ナトリゥムなどのエッチング液を用いて異方性エッチングすることにより形成する ことができる。 半導体層露出領域 5は、 そのピラミッド状突起 5 5の先端部を含むよ うに形成できる。 Single-crystal silicon, which is a constituent material of the substrate 1, has a wavelength range of 400 to 110 nm. Since it has a large refractive index of 0 to 3.5, reflection loss when sunlight is incident becomes a problem. The above irregularities are formed mainly to prevent reflection of the first main surface serving as the light receiving surface of the solar cell. As shown in FIG. 2A, the outer surface has a large number of pins having a (1 1 1) surface. A random texture structure composed of the ramified protrusions 55 can be provided. Such a texture structure can be formed by anisotropically etching the (100) plane of a silicon single crystal using an etching solution such as a hydrazine aqueous solution or sodium hydroxide. The semiconductor layer exposed region 5 can be formed so as to include the tip of the pyramidal projection 55.
また、この他にも、図 2 Bに示すように、 V溝が一定間隔で配列した形態のもの(溝 内面は、 例えばシリコン単結晶の互いに交差する (1 1 1 ) 面である) を採用するこ ともできる。 このような V溝は、 フォトリソグラフィーを用いて、 例えば希釈 N a O H水溶液を用いた異方性エッチングにより形成できる。 該形態では、 P粦接する V溝間 に挟まれる三角屋根状形態のリブ状部 5 6が凸部であり、その稜線部が頂上部となる。 半導体層露出領域 5は、 その稜線の例えば一部のみを含む形にて形成できる。 本形態 では、 溝の形態をそろえることで、 出力取出用電極を規則的な形状で形成でき、 直列 損失 ®減をより効果的に図ることができる。また、フォトリソグラフィーを用いれば、 図 2 Cに示すように、図 2 Bのリブ状部 5 6を格子状にク口スさせた形態の格子状リ ブ 5 7ともできる。 これは換言すれば、 ビラミッド状の凹部を格子状に配列した形態 の、 いわゆる逆ピラミッド凹凸部を形成することである。 これによると、 表面反射を 一層効果的に抑制することができる。  In addition, as shown in FIG. 2B, a structure in which V grooves are arranged at regular intervals (the inner surfaces of the grooves are, for example, (1 1 1) planes of silicon single crystal which intersect each other) is employed. You can do it. Such a V-groove can be formed by photolithography, for example, by anisotropic etching using a diluted NaOH solution. In this embodiment, the rib-like portion 56 having a triangular roof shape sandwiched between the V-shaped grooves in contact with each other is a convex portion, and the ridge line portion is the top. The semiconductor layer exposed region 5 can be formed so as to include, for example, only a part of the ridge line. In the present embodiment, the output electrodes can be formed in a regular shape by aligning the shapes of the grooves, and the series loss can be reduced more effectively. Further, if photolithography is used, as shown in FIG. 2C, a grid-like rib 57 having a form in which the rib-like portion 56 of FIG. 2B is cut into a lattice shape can be obtained. In other words, this is to form a so-called inverted pyramid uneven portion in a form in which viramid-shaped concave portions are arranged in a lattice shape. According to this, surface reflection can be more effectively suppressed.
なお、 反射防止効果が十分に得られ、 かつ、 頂上部のみを露出させた形にてエッチ ング保護膜 4により覆う工程の実施の容易性を考慮すれば、形成する凸部 1 5の谷底 部から頂上部までの最大高さを 0 . 1 μ πι以上 3 0 μ πι以下とすることが望ましい。 次に、 絶縁膜 3は酸化物系あるいは窒化物系のものを使用できる。 ここでは、 基板 1がシリコン単結晶基板であり、 絶縁膜 3は、所定の雰囲気下での熱処理にて形成さ れたシリコンの酸化膜あるいは窒化膜 (例えば C V D法により形成できる) として構 成されている。 これにより、 絶縁膜 3は表面再結合速度の小さなパッシベーション膜 として機能する。 Considering that the antireflection effect is sufficiently obtained and that the process of covering only the top with the etching protective film 4 is easy to perform, the valley bottom of the projection 15 to be formed is considered. It is desirable that the maximum height from the top to the top be 0.1 μπι or more and 30 μππ or less. Next, an oxide film or a nitride film can be used for the insulating film 3. Here, the substrate 1 is a silicon single crystal substrate, and the insulating film 3 is formed by heat treatment in a predetermined atmosphere. It is configured as a silicon oxide or nitride film (which can be formed by, for example, a CVD method). Thereby, the insulating film 3 functions as a passivation film having a low surface recombination speed.
そして、 絶縁膜 3への半導体層露出領域 5の形成方法は、 図 4を用いて既に説明し た通りである。 例えば弗酸等のエッチングに対して十分な耐性を有する高分子材料、 例えばノボラック系樹脂等をレジスト材料として用いて塗布液を作製する。 なお、 塗 布液の粘性は、 適当な溶媒を用いて調整することができる。 図 8 Aに示すように、 こ の塗布液を、公知の塗布方法、例えばスピンコート法あるいはスプレー法等により塗 布する。 すると、 隣接する凸部 1 5, 1 5の間に形成される凹部 1 6には、 塗布液が 溜まって塗布層 2 4が形成される。 次いで溶媒を蒸発 ·乾燥させると、 図 8 Bに示す ように、 塗布層 2 4はレジスト層 4 ' となり、 凹部 1 6の底部付近を部分的に埋めた 形となる。  Then, the method of forming the semiconductor layer exposed region 5 on the insulating film 3 is as described above with reference to FIG. For example, a coating solution is prepared using a polymer material having sufficient resistance to etching such as hydrofluoric acid, for example, a novolak resin as a resist material. The viscosity of the coating solution can be adjusted using an appropriate solvent. As shown in FIG. 8A, this coating liquid is applied by a known coating method, for example, a spin coating method or a spray method. Then, in the concave portion 16 formed between the adjacent convex portions 15, 15, the coating liquid is accumulated and the coating layer 24 is formed. Then, when the solvent is evaporated and dried, as shown in FIG. 8B, the coating layer 24 becomes the resist layer 4 ′, and the shape near the bottom of the concave portion 16 is partially filled.
そして、 図 8 C及び図 8 Dに示すように、 このような塗布層 2 4の形成及び乾燥を 繰り返すことにより、 レジスト層 4 ' は次第に厚みを増してゆく。 そして、 凸部 1 5 の頂上部 2 5が必要十分な高さだけ露出した状態になれば、 レジスト層 4 ' のそれ以 上の形成を止め、 図 4 Cに示すように、 これを最終的なエッチング保護膜 4として用 いる。この状態で、基板の第一主表面側を、弗酸等を含有するエッチング液に浸漬し、 凸部 1 5の突出した頂上部 2 5を覆う絶縁膜 (例えば酸ィ匕シリコン膜) を溶解 ·除去 すれば、 半導体層露出領域 5が形成される。 エッチングが終了すれば、 図 4 Dに示す ように、 エッチング保護膜 4をアセトンや ME K (メチルェチルケトン) 等の有機溶 媒を用いて除去する。  Then, as shown in FIGS. 8C and 8D, by repeatedly forming and drying the coating layer 24, the thickness of the resist layer 4 'gradually increases. When the tops 25 of the projections 15 are exposed to a necessary and sufficient height, the resist layer 4 ′ is stopped from being further formed, and as shown in FIG. It is used as a simple etching protection film 4. In this state, the first main surface side of the substrate is immersed in an etching solution containing hydrofluoric acid or the like to dissolve the insulating film (for example, silicon oxide film) covering the protruding top portion 25 of the projection 15. · If removed, the semiconductor layer exposed region 5 is formed. When the etching is completed, as shown in FIG. 4D, the etching protection film 4 is removed using an organic solvent such as acetone or MEK (methyl ethyl ketone).
エッチング保護膜 4を形成する際に用いる塗布液は、適度に粘度調整したもの (例 えば 0 . 0 4〜0 . 1 Ν · s /m 2) を使用する必要がある。 もし、 塗布液の粘度が 過度に大きいと、 図 9 Aに示すように、 塗布層 2 4の液面から露出しょうとする凸部 1 5の頂上部 2 5に対し、表面張力により液が回り込む形で残留しゃすく、 乾燥後に おいて、 図 9 Bに示すように、 凸部 1 5の頂上部 2 5に余分なエッチング保護膜 4 a が残留し、 エッチングの妨げとなる。 これに対し、 適度に粘度調整された塗布液を用 いた場合は、 図 9 Cに示すように、 凸部 1 5の頂上部 2 5を液面から過不足なく露出 させることができる。 この場合、 乾燥後に多少のエッチング保護膜 4 aが頂上部 2 5 に残留しても、 図 9 Dに示すように、 その残留膜は薄く多孔質のものとなる力 \ ある いは島状となって、絶縁膜 3が少なくとも部分的には露出した状態を確実に形成する ことができる。 この場合、 この露出部からエッチング液が染み込むので、 エッチング 保護膜 4 aが残留している部分の絶縁膜 3も除去することができる。 そして、 このよ うに凸部 1 5の山頂部におけるエッチング保護膜 4 aの残留量を少なくすることで、 図 7 Cに示すように、 エッチング保護膜 4 aの膜表面位置に対応して、 半導体層露出 領域 5の外周縁をなす絶縁膜 3の内周縁部上面 1 1を平坦に形成することが可能と なる。 これにより、 絶縁膜 3の残留が少なく、 形成面積のばらつきも低く抑えた半導 体層露出領域 5を形成することが可能となる。 The coating liquid used for forming the etching protection film 4 needs to have a viscosity adjusted appropriately (for example, 0.04 to 0.10 · s / m 2 ). If the viscosity of the coating liquid is excessively large, the liquid flows around the top part 25 of the convex part 15 to be exposed from the liquid surface of the coating layer 24 due to surface tension, as shown in FIG. 9A. Residue in shape, after drying In this case, as shown in FIG. 9B, an extra etching protective film 4 a remains on the top 25 of the convex portion 15 and hinders etching. On the other hand, when a coating liquid having an appropriately adjusted viscosity is used, as shown in FIG. 9C, the tops 25 of the projections 15 can be exposed from the liquid surface without excess or shortage. In this case, even if a small amount of the etching protection film 4a remains on the top 25 after drying, the remaining film has a thin or porous force or an island shape as shown in FIG. 9D. As a result, a state where the insulating film 3 is at least partially exposed can be reliably formed. In this case, since the etching solution permeates from the exposed portion, the insulating film 3 where the etching protective film 4a remains can also be removed. By reducing the residual amount of the etching protection film 4a at the top of the projection 15 as described above, as shown in FIG. The upper surface 11 of the inner peripheral edge of the insulating film 3 forming the outer peripheral edge of the layer exposed region 5 can be formed flat. This makes it possible to form the semiconductor layer exposed region 5 in which the remaining insulating film 3 is small and the variation in the formation area is kept low.
なお、ある凸部 1 5の周囲を完全に取り囲む形にエッチング保護膜 4により覆うこ とができれば、 図 7 Bあるいは図 7 Cに例示したように、 凸部 1 5の基端側外周面が 絶縁膜 3にて覆われ、その凸部 1 5の先端部が絶縁膜 3の上縁 1 1よりも突出する形 で半導体層露出領域 5を形成することができる。 し力 しながら、 全ての凸部 1 5の高 さが理想的に揃っているわけではなく、 例えば図 1 O Aに示すように、周囲に存在す る凸部 1 5よりも高さの小さい凸部 1 5 ' が形成されていると、 これがエッチング保 護膜 4中に完全に埋没してしまうこともある。 この場合、 これら凸部 1 5 ' の頂上部 2 5の絶縁膜 3は当然に除去されなレ、。 図 7 Dにも、 絶縁膜 3の除去されない凸部 1 5, が形成される例を示している。 これらの凸部 1 5 ' は、 出力取出用電極 7との接 触を妨げない程度であれば、 多少形成されていても差し支えないものである。  If the etching protection film 4 can completely cover the periphery of a certain projection 15, as shown in FIG. 7B or FIG. The semiconductor layer exposed region 5 can be formed so as to be covered with the insulating film 3 and the tip of the convex portion 15 projects beyond the upper edge 11 of the insulating film 3. However, the heights of all the projections 15 are not ideally uniform.For example, as shown in FIG. 1OA, the height of the projections 15 is smaller than that of the surrounding projections 15. If the portion 15 ′ is formed, it may be completely buried in the etching protection film 4. In this case, the insulating film 3 on the top portion 25 of these convex portions 15 ′ is naturally not removed. FIG. 7D also shows an example in which the protrusions 15 of the insulating film 3 that are not removed are formed. These projections 15 ′ may be formed to some extent as long as they do not hinder contact with the output extraction electrode 7.
他方、 エッチング保護膜 4は、全ての凹部内に均一に充填されるのが理想的ではあ るが、 例えばランダムテクスチャ構造を採用した場合などにおいては、外部に開放し た 部など、 図 10 Bに示すように、 塗布液の溜まりにくい凹部 16, が形成されて いることもある。 この場合、 このような凹部 16' やこれに隣接する凸部 35にはェ ッチング保護膜 4が十分に形成されないことから、半導体層露出領域 5内において絶 縁膜 3が全体にわたって除去された凸部 35として存在する場合がある。 On the other hand, it is ideal that the etching protection film 4 is uniformly filled in all the recesses. However, for example, when a random texture structure is employed, the etching protection film 4 is opened to the outside. As shown in FIG. 10B, there may be formed a concave portion 16 in which the coating liquid does not easily accumulate. In this case, since the etching protection film 4 is not sufficiently formed in the concave portion 16 'and the convex portion 35 adjacent to the concave portion 16', the convex portion from which the insulating film 3 is entirely removed in the semiconductor layer exposed region 5 is formed. May be present as part 35.
なお、 図 1 1 Aに示すように、形成面積のばらつきが小さい半導体層露出領域 5を 一様に形成するには、 図 8 Dに示すように、 エッチング保護膜 4の膜面高さ位置を略 一定にそろえることが望ましい。  As shown in FIG. 11A, in order to uniformly form the semiconductor layer exposed region 5 where the variation in the formation area is small, as shown in FIG. It is desirable to keep them almost constant.
次に、透明導電層 6は、例えば、酸化スズ (Sn02) あるいは酸ィヒインジウム (I n 203) などの導電性酸化物被膜として構成することができる。 具体的には、 アンチ モン (S b) をドープした酸ィ匕スズ膜 (いわゆるネサ膜) あるいはスズ (Sn) をド ープした酸ィ匕インジウム膜 (いわゆる I TO莫) が高導電率であり、 本発明に好適に 使用できる。 このうちネサ膜は導電率が高く、 太陽電池の直列抵抗の減少に特に貢献 する。 他方、 I TO膜はネサ膜よりは導電率が多少劣るが安価である。 なお、 上記ネ サ膜ゃ I TO膜以外にも、 例えば、 C d2S n〇4、 Zn2Sn04、 Zn Sn〇3、 M g l n204、 イットリウム (Y) をドープした C d S b 26、 Snをドープした G a I n03などを透明導電層 6の材質として使用することができる。 Next, a transparent conductive layer 6, for example, can be configured as a conductive oxide film such as tin oxide (Sn0 2) or an acid Ihiinjiumu (I n 2 0 3). Specifically, an antimony (Sb) -doped oxidized tin film (so-called Nesa film) or a tin (Sn) -doped oxidized indium film (so-called ITO Mo) has high conductivity. Yes, it can be suitably used in the present invention. Of these, the Nesa film has a high electrical conductivity and contributes particularly to the reduction of the series resistance of solar cells. On the other hand, the ITO film has a slightly lower conductivity than the Nesa film but is inexpensive. Incidentally, in addition to the above Ne support film Ya I TO film, for example, C d 2 S N_〇 4, Zn 2 Sn0 4, Zn Sn_〇 3, M gln 2 0 4, C d S doped with yttrium (Y) b 26 and G a I n0 3 doped with Sn, it may be used as the material of the transparent conductive layer 6.
これらの導電性酸化物被膜は、 気相成膜法、 例えば化学蒸着法 (Chemical Vapour deposition: CVD)あるいはスパッタリングゃ真空蒸着などの物理蒸着法(Phisical Vapour deposition: PVD) にて形成することができるが、 ゾル一ゲル法など他の 方法を用いて形成してもよい。 図 1 1 Bに示すように、 透明導電層 6は、 半導体層露 出領域 5と絶縁膜 3とを一括して覆うものとして形成され、図 7 Dあるいは図 1 1 C に示すように、該透明導電層 6上に出力取出用電極 7が形成される。これらの図では、 出力取出用電極 7はいずれも半導体層露出領域 5に重なる位置関係にて形成されて いる力 透明導電層 6の導電率が高いことから、 図 12に示すように、 出力取出用電 極 7の形成位置が半導体層露出領域 5の位置から多少外れていても差し支えない。 太陽電池 1 0 0の直列抵抗を減少させる観点において、透明導電層 6は、 電気比抵 抗を 5 X 1 0— 5〜3 X 1 0一4 Ω · c m程度に調整しておくことが望ましい。例えば、 スパッタリングにより作製した I T O膜は電気比抵抗の値を、例えば 1 X 1 0一4〜 2 · 8 X 1 0— 4 Ω . c mとすることができる。他方、 ネサ膜は C V D法により、 例えば 1 X 1 0— 4 Ω · c m以下の低抵抗率の膜を得ることができる。 These conductive oxide films can be formed by a vapor deposition method, for example, a chemical vapor deposition method (Chemical Vapor deposition: CVD) or a physical vapor deposition method such as sputtering and vacuum deposition (Phisical Vapor deposition: PVD). However, another method such as a sol-gel method may be used. As shown in FIG. 11B, the transparent conductive layer 6 is formed so as to collectively cover the semiconductor layer exposed region 5 and the insulating film 3, and as shown in FIG. 7D or FIG. An output extraction electrode 7 is formed on the transparent conductive layer 6. In these figures, the output extraction electrodes 7 are formed in a positional relationship overlapping the semiconductor layer exposed region 5, and since the conductivity of the transparent conductive layer 6 is high, as shown in FIG. The formation position of the use electrode 7 may be slightly deviated from the position of the semiconductor layer exposed region 5. In view of reducing the series resistance of the solar cell 1 0 0, a transparent conductive layer 6, it is desirable to adjust the specific electric resistance to 5 X 1 0- 5 ~3 X 1 0 about one 4 Omega · cm . For example, ITO film produced by sputtering may be the value of the electrical resistivity, for example 1 X 1 0 one 4 ~ 2 · 8 X 1 0- 4 Ω. And cm. On the other hand, for the nesa film, a film having a low resistivity of, for example, 1 × 10 4 Ω · cm or less can be obtained by the CVD method.
なお、 上記の透明導電層 6は、 基板 1を構成するシリコン単結晶と屈折率の異なる ものを採用することで、 反射防止膜として機能させることもできる。 反射防止膜とし て機能させる場合、 透明導電層 6の構成材料の屈折率は 1 . 5〜2 . 5であるのがよ い。 例えば、 ネサ膜の場合、 屈折率は 2 . 0程度であり、 その厚みを 4 0〜7 0 n m 程度とする場合に、 顕著な反射防止効果を得ることができる。 なお、 透明導電層 6と ともに、 あるいは透明導電層 6に代えて、反射防止膜を別途形成するようにしてもよ い。 例えば透明導電層 6上に M g F 2膜など屈折率が透明電極層 6より低い膜を形成 すれば、 反射率がさらに低減し、 生成電流密度をさらに高くすることができる。 The transparent conductive layer 6 can function as an anti-reflection film by adopting a material having a different refractive index from that of the silicon single crystal constituting the substrate 1. When functioning as an antireflection film, the constituent material of the transparent conductive layer 6 preferably has a refractive index of 1.5 to 2.5. For example, in the case of a Nesa film, the refractive index is about 2.0, and when the thickness is about 40 to 70 nm, a remarkable antireflection effect can be obtained. In addition, an anti-reflection film may be separately formed together with or instead of the transparent conductive layer 6. By forming the M g F 2 film lower layer than the refractive index of the transparent electrode layer 6, etc. on a transparent conductive layer 6, the reflectivity is further reduced, the generation current density can be further increased.
出力取出用電極 7は、銀粉末などの金属粉末を含有したペーストを用いて、 スクリ ーン印刷等の公知の厚膜印刷法により所望の電極パターンを透明導電層 6上に印刷 して焼成することにより形成することができる。 また、熱硬化型ペーストを使用する ことにより、 より低温で出力取出電極 7を形成することも可能である。 図 1 7に示す ように、基板 1の第一主表面側は太陽電池の受光面となるので、出力取出用電極 7は、 p _ n接合部 4 8への光の入射効率を高めるために、例えば内部抵抗低減のため適当 な間隔で形成された太いバスバー電極と、そのバスバー電極から所定間隔で櫛型に分 岐するフィンガー電極とを有する.ものとして構成できる。 ただし、透明導電層 6の導 電率が十分に高い場合には、 フィンガー電極を省略したり、 あるいは形成する場合で もその形成間隔を広く設定したりすることが可能である。  The output extraction electrode 7 is formed by printing a desired electrode pattern on the transparent conductive layer 6 by using a paste containing a metal powder such as silver powder by a known thick film printing method such as screen printing. Can be formed. Also, by using a thermosetting paste, it is possible to form the output extraction electrode 7 at a lower temperature. As shown in FIG. 17, the first main surface side of the substrate 1 serves as the light receiving surface of the solar cell.Therefore, the output extraction electrode 7 is used to improve the efficiency of light incidence on the p_n junction 48. For example, it has a thick busbar electrode formed at an appropriate interval to reduce internal resistance, and a finger electrode that branches into a comb shape at a predetermined interval from the busbar electrode. However, when the electric conductivity of the transparent conductive layer 6 is sufficiently high, it is possible to omit the finger electrode or to set the interval between the finger electrodes wide even when the finger electrode is formed.
なお、 上記のようなスクリーン印刷を用いる場合、 出力取出用電極 7 (バスパー電 極あるいはフィンガー電極) の形成幅はある程度広くなる。 この場合、 図 1 Aあるい は図 7 Dに示すように、 出力取出用電極 7は、 半導体層露出領域 5と周囲の絶縁層 3 とにまたがる形で形成される。 スクリーン印刷により、 このように特有の形態にて形 成された出力取出用電極 7は広幅であるから、シャドーイングロス低減のために複数 本形成する電極の配列間隔を広くする必要がある。 しかしながら、従来のフアイヤー スルー方式により製造された太陽電池と異なり、本構成では透明導電層 6が形成され ているから抵抗ロスが小さく、 変換効率 77を高めることができる。 In the case of using the screen printing as described above, the width of the output extraction electrode 7 (the bus electrode or the finger electrode) is increased to some extent. In this case, Figure 1A or As shown in FIG. 7D, the output extraction electrode 7 is formed so as to extend over the semiconductor layer exposed region 5 and the surrounding insulating layer 3. Since the output electrode 7 formed in such a specific form by screen printing is wide, it is necessary to increase the arrangement interval of a plurality of formed electrodes in order to reduce shadowing loss. However, unlike the solar cell manufactured by the conventional fire-through method, in this configuration, since the transparent conductive layer 6 is formed, the resistance loss is small, and the conversion efficiency 77 can be increased.
図 1 Aに戻り、基板 1の第二主表面には、裏面反射防止のための凹凸部が形成され、 絶縁膜 3がそれら凹凸部を覆う形で形成されている。 また、 凸部 1 5の山頂部に半導 体層露出部 5が形成されている。ただし、該第二主表面側は受光面とはならないため、 その全面が出力取出用電極 8により覆われている。 なお、 太陽電池セルの軽量化のた め基板 1の厚さを薄くする場合は、 第二主表面側の電極 8での少数キヤリァの再結 合 ·消滅を防止するために、 図 1 Bに示すように、 該第二主表面側に基板 1と同一導 電型であってより高濃度の高濃度拡散層 9を形成することができる (いわゆる B S F (oack surface rield) 層ノ。  Returning to FIG. 1A, an uneven portion is formed on the second main surface of the substrate 1 for preventing back surface reflection, and an insulating film 3 is formed so as to cover the uneven portion. The semiconductor layer exposed portion 5 is formed on the top of the convex portion 15. However, since the second main surface side is not a light receiving surface, the entire surface is covered with the output extraction electrode 8. When the thickness of the substrate 1 is reduced in order to reduce the weight of the solar cell, the thickness of the substrate 1 is reduced as shown in Fig. 1B to prevent recombination and disappearance of minority carriers at the electrode 8 on the second main surface side. As shown, a high-concentration diffusion layer 9 having the same conductivity type as that of the substrate 1 and a higher concentration can be formed on the second main surface side (so-called BSF (oack surface rield) layer).
以下、 図 1の太陽電池 1 0 0の作用について説明する。 太陽電池 1 0 0は、 図 1 6 に示すように、光照射により、禁制帯幅以上のエネルギーを有するフオトンを吸収す ると、 P型領域及び n型領域では光励起により電子と正孔とが少数キャリアとして生 成し、 それぞれ接合部に向けて拡散する。 接合部には、 電気二重層の形成により内部 電界 (いわゆる 「作りつけられた (build- in) 電界」) が生じており、 少数キヤリァ として拡散してきた電子と正孔とはこの内部電界により、 電子は n型領域に、 正孔は Hereinafter, the operation of the solar cell 100 of FIG. 1 will be described. As shown in FIG. 16, when the solar cell 100 absorbs photons having energy equal to or greater than the forbidden band width by light irradiation, electrons and holes are generated by photoexcitation in the P-type region and the n-type region, as shown in FIG. They are generated as minority carriers and diffuse toward the junction. At the junction, an internal electric field (a so-called “build-in” electric field) is generated due to the formation of the electric double layer. The electrons and holes diffused as minority carriers cause the internal electric field to The electrons are in the n-type region and the holes are
P型領域にそれぞれ引き込まれて分離され、 多数キャリアとなる。 その結果、 P型領 域と n型領域とはそれぞれ正と負とに帯電して、 各部に設けた電極 (図 1 : 7 , 8 ) 間に太陽電池の起電力 Δ Eが生ずる。 Each is drawn into and separated from the P-type region and becomes a majority carrier. As a result, the P-type region and the n-type region are positively and negatively charged, respectively, and an electromotive force ΔE of the solar cell is generated between the electrodes (7, 8 in FIG. 1) provided in each part.
ここで、絶縁膜にて基板表面をパッシベーシヨンする場合、 コンタクトホールをフ アイヤースルー方式にて形成すると、 半導体層 2、 ここでは表面 n型層であるエミッ タ層のドーパント濃度を 3 X 1 0 2 ° c m一3 (シート抵抗換算: 4 0 Ω /口) 以下程 度に設定しなければ、 フアイヤースルーにて形成される電極接触部の抵抗を+分な値、 例えば 0 . 0 1 Ω c m 2程度まで下げることができない。 つまり、 フアイヤースルー 方式では接触抵抗ロスを軽減するために、必然的に半導体層 2のドーパント濃度を上 げざるをえなかった。 また、 スクリーン印刷にて形成される出力取出用電極 7の幅が 細くても 1 0 0 μ πι以上は確保しなければならず、 また、 シャドーイングロスを 5 % 前後にするには例えば電極間ピッチを 2〜 3 mmにする必要があつた。 Here, in the case of passivating the substrate surface with an insulating film, if a contact hole is formed by a fire-through method, the semiconductor layer 2, here, an emission layer that is a surface n-type layer is formed. The dopant concentration of the data layer 3 X 1 0 2 ° cm one 3 (sheet resistance in terms: 4 0 Omega / mouth) to be set to extent below the resistance of the electrode contact portion formed at full Iyer through + It cannot be reduced to a reasonable value, for example, about 0.01 Ωcm 2 . In other words, in the fire-through method, the dopant concentration of the semiconductor layer 2 was inevitably increased in order to reduce the contact resistance loss. In addition, even if the width of the output electrode 7 formed by screen printing is narrow, it is necessary to secure 100 μππ or more. In order to reduce the shadowing loss to about 5%, for example, the pitch between the electrodes is required. Need to be 2-3mm.
しかしながら、 図 1の太陽電池 1 0 0の構成によると、 コンタクトホーノレとなる半 導体層露出領域 5を、 フアイヤースルー方式を用いず、 しかも単純なエッチングによ り簡単に形成することができる。 従って、 当然に半導体層 2のドーパント濃度も 3 X 1 0 2 ° c m— 3 (シート抵抗換算: 4 0 ΩΖ口) より小さい値に設定することが可能 となる。 また、 図 1 3 Bに示すように、 透明導電層 6を用いているから、 透明電極層 6を用いない図 1 3 Aの場合と比較して、半導体層 2内において横方向に電流を長い 距離流す必要がなくなる。 例えば、透明導電層 6としてネサ膜や I T〇膜を使用する 場合、 反射防止膜として利用する厚み (4 0〜7 0 n m) があれば、 そのシート抵抗 は 1 0〜2 5 ΩΖ口程度と低くできる。 これにより、 透明導電層 6上に設けられる出 力取出用電極 7は従来のもの (2〜3 mm) に比べ、 例えば 2倍にしても直列抵抗が それほど増加しないので、 シャドウイングロスを大幅に軽減することができる。 However, according to the configuration of the solar cell 100 of FIG. 1, the semiconductor layer exposed region 5 serving as a contact horn can be easily formed by a simple etching without using a fire-through method. . Therefore, naturally, the dopant concentration of the semiconductor layer 2 can be set to a value smaller than 3 × 10 2 ° cm− 3 (in terms of sheet resistance: 40 Ω / port). Further, as shown in FIG. 13B, since the transparent conductive layer 6 is used, the current is longer in the lateral direction in the semiconductor layer 2 than in the case of FIG. 13A without the transparent electrode layer 6. There is no need to flow away. For example, when using a Nesa film or an IT film as the transparent conductive layer 6, if there is a thickness (40 to 70 nm) to be used as an antireflection film, the sheet resistance is about 10 to 25 Ω square. Can be lowered. As a result, the output resistance electrode 7 provided on the transparent conductive layer 6 has a much smaller series resistance than conventional ones (2 to 3 mm), for example, even if it is doubled, so shadowing loss is greatly reduced. can do.
なお、 上記実施形態では、 凹凸部をエッチングにて形成したが、 機械的加工により 凹凸部を形成することもできる。 例えば、 図 2 Bに例示するような溝形態のものは、 切削加工により簡単に形成することができる。例えば軸線方向に複数配列した回転刃 を基板表面から所定深さまで食レ、込ませる形で回転させつつ、基板と回転刃とを溝形 成方向に相対移動させることにより、複数列の溝部を一括して形成することができる。 なお、 本発明においては、 直列抵抗がそれほど増加する心配のない場合には、 図 7 A〜図 7 Cあるいは図 5に示すように、透明導電層 6を省略し、 半導体層露出領域 5 において出力取出用電極 7を半導体層 2に直接接触させることができる。 この場合、 図 7 Fに示すように、 出力取出用電極 7が形成されない残余の半導体層露出領域 5 ' を補助絶縁層 1 0にて被覆することができる。 この図の例では、 補助絶縁層 1 0は、 出力取出用電極 7を形成した後、 上記残余の半導体層露出領域 5 ' と絶縁膜 3と出力 取出用電極 7とを一括して覆うものとして形成されている。補助絶縁層 1 0の材質と しては、 窒化珪素、 酸化珪素等の無機系絶縁膜を採用することができる。 この場合、 補助絶縁層 1 0の形成厚さを適度に調整することで、 これを反射防止膜としても機能 させることができる。 (実験例) In the above embodiment, the uneven portions are formed by etching. However, the uneven portions may be formed by mechanical processing. For example, a groove shape as illustrated in FIG. 2B can be easily formed by cutting. For example, by rotating a plurality of rotary blades arranged in the axial direction to a predetermined depth from the substrate surface and rotating the substrate and the rotary blades relative to each other in a groove forming direction, a plurality of rows of groove portions can be collectively formed. Can be formed. In the present invention, when there is no concern that the series resistance increases so much, the transparent conductive layer 6 is omitted as shown in FIGS. 7A to 7C or FIG. In, the output extraction electrode 7 can be brought into direct contact with the semiconductor layer 2. In this case, as shown in FIG. 7F, the remaining semiconductor layer exposed region 5 ′ where the output extraction electrode 7 is not formed can be covered with the auxiliary insulating layer 10. In the example of this figure, the auxiliary insulating layer 10 is assumed to cover the remaining semiconductor layer exposed region 5 ′, the insulating film 3 and the output extracting electrode 7 collectively after forming the output extracting electrode 7. Is formed. As the material of the auxiliary insulating layer 10, an inorganic insulating film such as silicon nitride or silicon oxide can be used. In this case, by appropriately adjusting the formation thickness of the auxiliary insulating layer 10, this can also function as an antireflection film. (Experimental example)
以下、 本発明の効果を確認するために行なつた実験結果にっレ、て説明する。  The following is a description of the results of experiments conducted to confirm the effects of the present invention.
(実験例 1 )  (Experimental example 1)
図 1 Aに示す太陽電池を、 図 3のフローチャートを示す工程にて作製した。 まず、 シリコン単結晶インゴットから切り出されたァズスライス状態の p型結晶シリコン 基板 1 (抵抗率 2 Ω · c m (ドーパント濃度 7 . 2 X 1 0 1 5 c m— 3) のボロンドー プ品) を用意した。 なお、 基板 1の厚さは 3 0 0 /z mである。 該基板 1は、 水酸化ナ トリウム水溶液 (濃度: 4 0質量。 /0) により化学エッチングして、 スライスによるダ メージ層を取り除いた後、ィソプロピルアルコールを加えた水酸ィヒナトリゥム水溶液 (水酸ィヒナトリウム濃度: 3質量0 /。) に浸し、 ウエットエッチングすることにより、 図 2 Aに示すランダムテクスチャ形態の囬凸部を基板 1の両主表面に形成した。 凹凸形成の終了した基板 1を洗浄後、 リンを熱拡散することによりシート抵抗 2 0 0 ΩΖ口の n型拡散層 2 (リン拡散層) を、 第一主表面に形成した。 次いで、 基板表 面に生じたリンガラスをエッチングして除去した後、 酸化を行い、厚さ約 5 n mの二 酸化珪素膜を絶縁膜 3として両主表面に形成した。 そして、 塗布液をスピンオン法で 順次乾かしながら両面に塗布することにより、図 4に示すように凸部 1 5の頂上部 2 5のいくつかが飛び出すように、 ノボラック樹脂を主体とするエッチング保護膜 4を 形成した。 引き続き濃度 1 0質量%の弗酸水溶液中に浸漬して、 その頂上部 2 5の絶 縁膜 3のみをエッチングし、 半導体層露出部 5を形成した。 次いで、 基板をアセトン に浸漬してエッチング保護膜 4を溶解 ·除去した。 The solar cell shown in FIG. 1A was manufactured by the steps shown in the flowchart of FIG. First, a p-type crystalline silicon substrate 1 (boron-doped product having a resistivity of 2 Ω · cm (dopant concentration 7.2 × 10 15 cm— 3 )) cut out of a silicon single crystal ingot in an as-sliced state was prepared. The thickness of the substrate 1 is 300 / zm. The substrate 1 is sodium hydroxide aqueous solution (concentration:. 4 0 mass / 0) by chemically etching, after removal of the dust image layer by slice, hydroxyl Ihinatoriumu solution (hydroxide plus I isopropyl alcohol Ihinatoriumu concentration. 3 weight 0 /) soaked by wet etching to form a囬凸of random textures embodiment shown in FIG. 2 a on both main surfaces of the substrate 1. After cleaning the substrate 1 on which the unevenness was formed, phosphorus was thermally diffused to form an n-type diffusion layer 2 (phosphorus diffusion layer) having a sheet resistance of 200 ΩΖ on the first main surface. Next, after removing the phosphorus glass generated on the surface of the substrate by etching, oxidation was performed to form a silicon dioxide film having a thickness of about 5 nm as an insulating film 3 on both main surfaces. Then, the coating liquid is applied to both sides while being sequentially dried by a spin-on method, so that as shown in FIG. An etching protection film 4 mainly composed of novolak resin was formed so that some of 5 would pop out. Subsequently, the substrate was immersed in a 10% by mass aqueous solution of hydrofluoric acid, and only the insulating film 3 on the top 25 was etched to form the exposed portion 5 of the semiconductor layer. Next, the substrate was immersed in acetone to dissolve and remove the etching protection film 4.
次に、 基板 1の第一主表面に、透明導電層 6としてアンチモンをドープした二酸ィ匕 スズ膜を常圧 C V Dにより堆積した。 この透明導電層 6の膜厚は、 反射防止膜も兼ね るため 6 0 n mとした。 次に、 基板 1の第一主表面に、 銀ペーストを用いたスクリー ン印刷法により表面に、 図 1 7に示す形態の出力取出用電極 7のパターンを、 また第 二主表面の全面にアルミニウムペーストを用いて出力取出用電極 8のパターンをそ れぞれ形成した。 その後、 温度 4 0 0 °Cで水素ァニールを行い、 太陽電池 1 0 0を完 成させた (実施例品 1 )。  Next, an antimony-doped tin dioxide film doped with antimony was deposited as a transparent conductive layer 6 on the first main surface of the substrate 1 at normal pressure CVD. The thickness of the transparent conductive layer 6 was set to 60 nm because it also served as an anti-reflection film. Next, on the first main surface of the substrate 1, a pattern of the output extraction electrode 7 in the form shown in FIG. 17 was formed on the surface by a screen printing method using silver paste, and aluminum was formed on the entire second main surface. The pattern of the output extraction electrode 8 was formed using the paste. Thereafter, hydrogen annealing was performed at a temperature of 400 ° C. to complete the solar cell 100 (Example product 1).
なお、上記リン拡散工程時に、表面にリン、裏面にボロンを同時に拡散した以外は、 上記と同様の工程を用いて、 図 1 Bに示すような、 裏面に高濃度 p型拡散層 9 ( B S F層) を設けた太陽電池 1 0 1のサンプルも作製した (実施例品 2 )。 他方、 上記と 同一の基板 1を用いて従来のフアイヤースルー技術を用いて作製した太陽電池も作 製した (比較例品)。 なお、 透明電極 6は比較例品では形成していない。 各太陽電池 は、 以下のようにして性能評価試験を行なった。 すなわち、 1 0 c m角の受光面積を 有する太陽電池ュニットに組み立て、ソーラーシミュレータ (光強度: 1 k W/m 2、 スぺクトル: AM I . 5グローバル) を用いて、 温度 2 5 °Cでの電流電圧特性を測定 した。 その結果を図 1 4に示す。 また、 表 1にこれら太陽電池の太陽電池諸特性を示 す。 さらに、 図 1 5にこれらの太陽電池の内部量子効率を示す。 表 1 In the above-described phosphorus diffusion step, a high concentration p-type diffusion layer 9 (BSF) was formed on the rear surface as shown in FIG. A sample of the solar cell 101 provided with the layer was also manufactured (Example product 2). On the other hand, a solar cell manufactured using the same fire-through technique using the same substrate 1 as described above was also manufactured (comparative example product). Note that the transparent electrode 6 was not formed in the comparative example product. Each solar cell was subjected to a performance evaluation test as follows. That is, it is assembled into a solar cell unit having a light receiving area of 10 cm square, and is heated at 25 ° C using a solar simulator (light intensity: 1 kW / m 2 , spectrum: AM I.5 global). The current-voltage characteristics were measured. Figure 14 shows the results. Table 1 shows the solar cell characteristics of these solar cells. Figure 15 shows the internal quantum efficiency of these solar cells. table 1
Figure imgf000024_0001
Figure imgf000024_0001
実施例品 1及び実施例品 2では、半導体表層部 2であるエミッタ層のシート抵抗を 2 0 0 Ω /口に設定できた。 他方、 フアイヤースルー方式を用いた比較例品では、 該 シート抵抗は 4 0〜 5 0 Ω /口であった。 そして、 表 1に示すように、 比較例品に比 ベて実施例品 1及ぴ実施例品 2では、フィルファクタが減少していないことがわかる。 これは、 実施例品 1及び実施例品 2において透明導電層のシート抵抗が低く、 コンタ クト抵抗の増加が抑制されたためであると考えられる。 In the example product 1 and the example product 2, the sheet resistance of the emitter layer as the semiconductor surface layer 2 could be set to 200 Ω / port. On the other hand, in the comparative example using the fire-through method, the sheet resistance was 40 to 50 Ω / port. And, as shown in Table 1, it can be seen that the fill factor is not reduced in the example product 1 and the example product 2 as compared with the comparative example product. This is considered to be because the sheet resistance of the transparent conductive layer in Example Product 1 and Example Product 2 was low, and the increase in contact resistance was suppressed.
また、 比較例品と比べた場合、 実施例品 1及び実施例品 2では開放電圧が大幅に向 上している。 これは、 ェミッタ層のドーパント濃度が低減され、 表面再結合速度が低 減されたたことと、半導体層露出領域 5に基づくコンタクトホールの面積を制限でき たための結果であると考えられる。 なお、 実施例品 1及び実施例品 2に使用した基板 1は、 走査型電子顕微鏡 ( S EM) による表面観察から、 半導体層露出領域 5の第一 主表面における合計面積率は、 おおよそ 1 %となっていることを確認した。  Further, as compared with the comparative example, the open-circuit voltage of the example product 1 and the example product 2 is significantly improved. This is probably because the dopant concentration of the emitter layer was reduced, the surface recombination rate was reduced, and the area of the contact hole based on the semiconductor layer exposed region 5 could be limited. The surface area of the substrate 1 used in Example Product 1 and Example Product 2 was determined by scanning electron microscope (SEM) .As a result, the total area ratio of the semiconductor layer exposed region 5 on the first main surface was approximately 1%. I confirmed that it was.
比較例品と比べた場合、 実施例品 1及び実施例品 2では短絡電流も増加している。 これは、 シャドーイングロスの低減と短波長感度の増加によるものと考えられる。 比 較例品では電流はエミッタ層内を横方向に流れるが、本実施例では代わりに透明導電 層 6内を流れる。 透明導電層 6のシート抵抗は約 1 0 ΩΖ口であり、 比較例品と比べ て、 電極ピッチを例えば 2倍にしても同程度の抵抗ロスで済む。 よって、 シャドーィ ングロスを半分にでき、 これが短絡電流の増加に大きく寄与したものと考えられる。 また、 図 1 5に示すように、 実施例品 1及び実施例品 2は短波長感度も増大している ことがわかる。これは上記説明したように、エミッタ層のドーパント濃度が低くなり、 ¾面再結合速度が低減されたことによる。 As compared with the comparative example, the short-circuit current of the comparative example 1 and the comparative example 2 also increased. This is thought to be due to a reduction in shadowing loss and an increase in short wavelength sensitivity. In the comparative example, the current flows laterally in the emitter layer. Flows through Layer 6. The sheet resistance of the transparent conductive layer 6 is approximately 10 Ω / square, and the same resistance loss can be achieved even if the electrode pitch is doubled, for example, as compared with the comparative example. Therefore, the shadowing loss can be halved, which is considered to have contributed greatly to the increase in short-circuit current. In addition, as shown in FIG. 15, it can be seen that Example Product 1 and Example Product 2 also have increased short-wavelength sensitivity. This is because, as described above, the dopant concentration in the emitter layer was lowered, and the surface recombination rate was reduced.
そして、 実施例品 1及び実施例品 2では、 開放電圧、 短絡電流及びフィルファクタ が各々増加したことにより、 2 0 %前後の変換効率を得ることができた。 特に、 裏面 側に B S F層を導入した実施例品 2では変換効率が 2 0 %を越える太陽電池が得ら れた。  In the example product 1 and the example product 2, the open-circuit voltage, the short-circuit current, and the fill factor were each increased, so that a conversion efficiency of about 20% could be obtained. In particular, in the example product 2 in which the BSF layer was introduced on the back side, a solar cell having a conversion efficiency exceeding 20% was obtained.
なお、 本実施例における太陽電池では、 裏面全面に電極を形成しているが、 裏面側 にも表面同様、透明導電膜と櫛形電極を形成し、 裏面側からも光が入射する構造にし ても構わない。 また、 2 0 0 ΩΖ口の n型拡散層を形成したが、 1 0 0 Ω /口より高 い値にできれば、 短波長感度が増大し、 太陽電池特性が向上する。 さらに、 作製プロ セスにおいて、 本実施例では絶縁膜として酸ィ匕膜 (二酸化珪素膜) を利用したが、 窒 化珪素膜でも構わない。 また、 拡散層の形成には熱拡散法を用いたが、 イオン打ち込 み法やスピンオン法など、 本発明の構造が形成可能であれば、 いかなる手段を用いる ことも可能である。 (実験例 2 )  In the solar cell according to the present embodiment, the electrodes are formed on the entire back surface. However, similarly to the front surface, a transparent conductive film and a comb-shaped electrode are formed on the back surface side, and a structure in which light enters from the back surface side may be adopted. I do not care. Although an n-type diffusion layer having a thickness of 200 Ω / port was formed, if the value could be set to a value higher than 100 Ω / port, the short-wavelength sensitivity would increase and the solar cell characteristics would improve. Further, in the manufacturing process, an oxide film (silicon dioxide film) was used as an insulating film in this embodiment, but a silicon nitride film may be used. Although the thermal diffusion method is used for forming the diffusion layer, any means such as an ion implantation method and a spin-on method can be used as long as the structure of the present invention can be formed. (Experimental example 2)
図 5に示す構造の太陽電池 1 0 3を以下のようにして作製した。 まず、 C Z法にて 作製した p型単結晶シリコン基板 1 (厚さ 2 5 0 μ m、 抵抗率 0 . 5 Ω · c mのガリ ゥムドープ品) を用意し、 実験例 1と同様にダメージ層をエッチングした後、 両面に ランダムテクスチャ面を形成した。テクスチャ形成後、 P 205を含有する塗布剤を塗 布し、 8 5 0 °Cで熱拡散を行い、 表面にシート抵抗が約 1 0 0 Ω /口の n型拡散層 2 を形成した。 A solar cell 103 having the structure shown in FIG. 5 was produced as follows. First, a p-type single crystal silicon substrate 1 (a gallium-doped product having a thickness of 250 μm and a resistivity of 0.5 Ω · cm) prepared by the CZ method was prepared. After etching, random textured surfaces were formed on both surfaces. After texturing, a coating agent containing P 2 0 5 was coated cloth, 8 5 by thermal diffusion at 0 ° C, the sheet resistance on the surface of about 1 0 0 Omega / mouth of the n-type diffusion layer 2 Was formed.
その後、 8 0 0 °Cでパイロジェニック酸ィヒを行い、 さらに、 実験例 1と同様の方法 で半導体層露出領域 5を形成した。 この後、 実験例 1と同様の出力取出用電極 7 , 8 を第一及び第二主表面にそれぞれ形成した。 続いて、反射防止膜を兼ねた補助絶縁膜 1 0として窒化珪素膜をプラズマ C VDによって形成し、太陽電池 1 0 3を完成させ た (実施例品 3 )。 この際、 基板温度は 4 0 0 °Cに設定し、 膜堆積後に、 実験例 1と 同様の水素ァニール処理を行った。 該実施例品 3について、 実験例 1と同様に性能評 価試験を行なった。 結果を表 2に示す  Thereafter, pyrogenic acid was performed at 800 ° C., and a semiconductor layer exposed region 5 was formed in the same manner as in Experimental Example 1. Thereafter, the same output extraction electrodes 7 and 8 as in Experimental Example 1 were formed on the first and second main surfaces, respectively. Subsequently, a silicon nitride film was formed by plasma CVD as an auxiliary insulating film 10 also serving as an anti-reflection film, thereby completing a solar cell 103 (Example product 3). At this time, the substrate temperature was set to 400 ° C., and after the film was deposited, the same hydrogen annealing treatment as in Experimental Example 1 was performed. A performance evaluation test was performed on Example product 3 in the same manner as in Experimental example 1. Table 2 shows the results
表 2  Table 2
Figure imgf000026_0001
これによると、 実施例品 3では、 前述の実施例品 1及び 2と比較して短絡電流が減 少し、 一方で、 開放電圧が増加していることがわかる。 短絡電流が減少した原因は電 極幅、 電極ピッチが従来方式のものと変わらないためであると考えられる。 つまり、 表 1に示した実施例品 1及び 2と比較してシャドーィング面積が増加したことによ る。 一方、 開放電圧が増加した理由は、 基板抵抗率を 2 . 0 Ω · じ 111から0 . 5 Ω · c mに下げたことによるものと考えられる。一般的に基板抵抗率を下げると逆飽和電 流密度が減少し、開放電圧は増加する。 し力 し、 p型基板において抵抗率が 2 . 0 Ω · c m程度の場合、 光劣化の問題を検討しておく必要がある。 光劣化とは、 太陽電池セ ルに強い光を照射すると太陽電池基板のライフタイムの低下が起こり、十分な変換効 率を得ることができなくなる現象である。 この光劣化の有無を調べるために、上記ガリゥムドープ C Zシリコン単結晶基板を 用レ、て作製した太陽電池と、通常のボロンドープ C Zシリコン単結晶基板(抵抗率 0 . 5 Ω · c m)を用いた以外は全く同様の方法にて作製した太陽電池とを、 2 5 °Cにて、 上記ソーラーシミュレータの下で疑似太陽光を照射し続け、電流電圧特性の光照射時 間依存性を調べた。 その結果、 ボロンドープ基板から作製された太陽電池は擬似太陽 光下で 1 0時間照射すると、 1割程度の変換効率の劣化がみられた。 それに対し、 ガ リ.ゥムドープ基盤を用いた太陽電池は、若干の変換効率の変動が見られたが、 劣化に 相当する特性の変化は見られなかった。 このように、 ガリウムドープ基板を利用する ことで光劣化の問題は回避でき、開放電圧と変換効率を改善することができた。なお、 本実施例では C Z法によるガリウムドープの p型基板を利用したが、格子間酸素濃度 を数 p p m以下とした MC Z基板、 F Z基板でも光劣化問題は回避可能である。また、 n型基板を用い、ボロン等を用いて p型のエミッタ層を形成しても光劣化問題は回避 可能である。 (実験例 3 )
Figure imgf000026_0001
According to this, it can be seen that the short circuit current is reduced in the example product 3 as compared with the example products 1 and 2 described above, while the open circuit voltage is increased. It is considered that the reason why the short-circuit current decreased was that the electrode width and electrode pitch were not different from those of the conventional method. That is, the shadowing area was increased as compared with the products of Examples 1 and 2 shown in Table 1. On the other hand, the reason why the open-circuit voltage increased was thought to be that the substrate resistivity was reduced from 2.0 Ω · 111 to 0.5 Ω · cm. In general, lowering the substrate resistivity decreases the reverse saturation current density and increases the open-circuit voltage. However, if the resistivity of a p-type substrate is about 2.0 Ω · cm, it is necessary to consider the problem of light degradation. Photodegradation is a phenomenon in which when solar cells are irradiated with strong light, the lifetime of the solar cell substrate is reduced and sufficient conversion efficiency cannot be obtained. In order to examine the presence or absence of this photodegradation, a solar cell fabricated using the above-mentioned gallium-doped CZ silicon single crystal substrate and a normal boron-doped CZ silicon single crystal substrate (resistivity 0.5 Ω · cm) were used. We continued irradiating the solar cell fabricated by exactly the same method with the simulated sunlight at 25 ° C under the above-mentioned solar simulator, and examined the light irradiation time dependency of the current-voltage characteristics. As a result, the conversion efficiency of the solar cell fabricated from the boron-doped substrate was reduced by about 10% when irradiated under simulated solar light for 10 hours. On the other hand, the solar cell using the gallium-doped substrate showed a slight change in conversion efficiency, but no change in characteristics corresponding to deterioration. Thus, by using a gallium-doped substrate, the problem of light degradation could be avoided, and the open-circuit voltage and conversion efficiency could be improved. In this example, a gallium-doped p-type substrate by the CZ method was used, but the photodegradation problem can be avoided even with an MCZ substrate or an FZ substrate having an interstitial oxygen concentration of several ppm or less. Also, even if an n-type substrate is used and a p-type emitter layer is formed using boron or the like, the problem of light degradation can be avoided. (Experimental example 3)
図 6に示す太陽電池 1 0 4を以下のようにして作製した (なお、 図 6では煩雑とな ることを避けるため、 凹凸部及び反射防止膜を描かずに、 表面近傍の部分のみを示し た)。 まず、 C Z法にて作製した p型単結晶シリコン基板 1 (厚さ 2 5 0 m、 抵抗 率 2 Ω · c mのボロンドープ品) を用意し、 ダイサを用いて、 第一主表面に断面が三 角形をしたリブ状の凸部 4 5 , 4 5を 2 mm間隔で形成した (凸部 4 5, 4 5の間の 領域は凹部とみなすことができる)。 この際、 基板 1の第一主表面から各凸部 4 5, 4 5の頂上までの高さを約 3 0 μ πιとした。  The solar cell 104 shown in FIG. 6 was manufactured as follows (note that in FIG. 6, in order to avoid complication, only the portion near the surface is shown without drawing the uneven portions and the antireflection film). T). First, a p-type single-crystal silicon substrate 1 (boron-doped product having a thickness of 250 m and a resistivity of 2 Ω · cm) prepared by the CZ method was prepared. Square rib-shaped protrusions 45, 45 were formed at intervals of 2 mm (the area between the protrusions 45, 45 can be regarded as a recess). At this time, the height from the first main surface of the substrate 1 to the top of each of the projections 45, 45 was set to about 30 μπι.
次に、 ダメージ層を化学エッチングした後、 両主表面に凹凸部として、 高さ 5 μ πι 程度のランダムテクスチャ構造を形成した。その後、実験例 2と同様に熱拡散を行レ、、 表面にシート抵抗が約 1 0 0 Ω /口の η型拡散層 2を形成し、続いて、熱酸化を行う ことにより絶縁膜 3としての酸ィヒ膜を形成した。 そして、 第二主表面側に実験例 1と 同様の方法によりエッチング保護膜を形成する一方、第一主表面にはエッチング保護 膜として、 ゴム系樹脂からなる耐フッ酸仕様の印刷レジストを、厚さ 2 0 / mとなる ようにスクリーン印刷を用いて塗布した。 こうすることにより、 最初にダイサで形成 した凸部 4 5 , 4 5の頂上部 2 5が稜線方向に周期的に印刷レジスト表面から突き出 ることになる。 Next, after the damaged layer was chemically etched, a random texture structure with a height of about 5 μππ was formed on both main surfaces as irregularities. After that, thermal diffusion is performed in the same manner as in Experimental Example 2, an η-type diffusion layer 2 having a sheet resistance of about 100 Ω / port is formed on the surface, and then thermal oxidation is performed. As a result, an oxygen film as the insulating film 3 was formed. Then, an etching protection film is formed on the second main surface side in the same manner as in Experimental Example 1, while a hydrofluoric acid resistant printing resist made of rubber resin is formed on the first main surface as an etching protection film. It was applied using screen printing so as to have a thickness of 20 / m. By doing so, the tops 25 of the projections 45, 45 first formed by the dicer periodically protrude from the print resist surface in the ridge direction.
レジストを乾燥後、 1 0質量%フッ酸水溶液に基板 1を浸漬し、 凸部 4 5, 4 5の 頂上部 2 5に半導体層露出部 5を形成した。 次いで、溶媒を用いてレジストを洗い流 した後、 スクリーン印刷法により、 第一主表面には銀ペーストを用いて図 6に示す出 力取出用電極 7のパターンを、第二主表面にはアルミニウムペーストを用いて全面に 出力取出用電極 8のパターンを形成した。 この時、 第一主表面側の出力取出用電極 7 は、 凸部 4 5 , 4 5の頂上の半導体層露出部 5に重なる形で印刷されるよう、 位置合 わせする必要があるが、 コンタクト幅に対して電極 7の幅が半導体層露出部 5の幅の 1 0倍程度あるため、 比較的ラフに位置合わせが可能である。 続いて、 反射防止膜と して T i〇2膜 (図示せず) を常圧 C V Dによって 6 0 n mの厚さに形成し、 太陽電 池 1 0 4を完成させた (実施例品 4 )。 After the resist was dried, the substrate 1 was immersed in a 10% by mass aqueous hydrofluoric acid solution to form a semiconductor layer exposed portion 5 on the tops 25 of the projections 45, 45. Then, after the resist was washed away using a solvent, the pattern of the output electrode 7 shown in FIG. 6 was formed on the first main surface using silver paste by screen printing, and the aluminum was printed on the second main surface. The pattern of the output electrode 8 was formed on the entire surface using the paste. At this time, it is necessary to align the output extraction electrode 7 on the first main surface side so as to be printed so as to overlap the semiconductor layer exposed portion 5 on the tops of the projections 45, 45. Since the width of the electrode 7 is about 10 times the width of the semiconductor layer exposed portion 5 with respect to the width, the positioning can be performed relatively roughly. Subsequently, as the anti-reflection film T I_〇 2 film was formed to a thickness of a (not shown) 6 0 nm by normal pressure CVD, thereby completing the solar cell 1 0 4 (Example Product 4) .
該実施例品 4の性能評価を実験例 1と同様に行なったところ、 開放電圧 0 . 6 6 7 V、短絡電流密度 3 6 . 9 mA/ c m 2、 フィルファクタ 0 . 7 7 0、変換効率 1 9 . 0 %が得られ、 従来のスクリーン印刷 フアイヤースルー方式より特性が向上した。 The performance of Example product 4 was evaluated in the same manner as in Experimental example 1. Open circuit voltage 0.667 V, short-circuit current density 36.9 mA / cm 2 , fill factor 0.770, conversion efficiency 19.0% was obtained, and the characteristics were improved compared to the conventional screen printing fire-through method.

Claims

請 求 の 範 囲 The scope of the claims
1 . 半導体基板の主表面に凹凸部が形成され、該主表面が絶縁膜で被覆されている太 陽電池において、前記凹凸部を形成する凸部の少なくとも一部のものの頂上部を包含 する形にて前記絶縁膜にて被覆されていない半導体層露出領域が前記主表面に形成 されてなり、該半導体層露出領域内において前記凸部の頂上部の先端高さ位置力 該 半導体層露出領域の外周縁における前記絶縁膜の最大高さ位置よりも高くなってお り、かつ前記半導体層露出領域内の前記凸部の頂上部に直接又は他の導電層を介して 間接的に接触するように、出力取出用電極が形成されていることを特徴とする太陽電 池。 1. In a solar cell in which an uneven portion is formed on a main surface of a semiconductor substrate and the main surface is covered with an insulating film, a shape including at least a part of a top of the convex portion forming the uneven portion. A semiconductor layer exposed region not covered with the insulating film is formed on the main surface, and a tip height position force of a top of the convex portion in the semiconductor layer exposed region. It is higher than the maximum height position of the insulating film at the outer peripheral edge, and is in direct contact with the top of the protrusion in the semiconductor layer exposed region or indirectly via another conductive layer. A solar cell, wherein an output extraction electrode is formed.
2 . 前記凸部の基端側外周面が前記絶縁膜にて覆われてなり、 その凸部の先端部が前 記絶縁膜の上縁よりも突出している請求の範囲第 1項記載の太陽電池。  2. The solar cell according to claim 1, wherein a base end side outer peripheral surface of the convex portion is covered with the insulating film, and a distal end portion of the convex portion protrudes from an upper edge of the insulating film. battery.
3 .前記半導体層露出領域の外周縁をなす前記絶縁膜の内周縁部上面が平坦に形成さ れている請求の範囲第 1項又は第 2項に記載の太陽電池。  3. The solar cell according to claim 1, wherein an upper surface of an inner peripheral portion of the insulating film that forms an outer peripheral edge of the semiconductor layer exposed region is formed flat.
4 . 前記他の導電層は、 前記半導体層露出領域と前記絶縁膜とを一括して覆う透明導 電層であり、該透明導電層上に前記出力取出用電極が形成されている請求の範囲第 1 項ないし第 3項のいずれかに記載の太陽電池。 4. The other conductive layer is a transparent conductive layer that covers the semiconductor layer exposed region and the insulating film collectively, and the output extraction electrode is formed on the transparent conductive layer. A solar cell according to any one of Items 1 to 3.
5 . 半導体基板の主表面が絶縁膜で被覆されている太陽電池において、前記絶縁膜に て被覆されていない半導体層露出領域が前記主表面に形成されてなり、前記半導体層 露出領域と前記絶縁膜とを一括して覆う透明導電層が形成され、該透明導電層上に出 力取出用電極が形成されていることを特徴とする太陽電池。  5. In a solar cell in which a main surface of a semiconductor substrate is covered with an insulating film, a semiconductor layer exposed region that is not covered with the insulating film is formed on the main surface, and the semiconductor layer exposed region and the insulating layer are not covered with the insulating film. A solar cell, wherein a transparent conductive layer covering the film and the film is formed, and an output extraction electrode is formed on the transparent conductive layer.
6 . 前記半導体層露出領域が前記主表面に複数形成され、 それら半導体層露出領域の 一部のものにおいて、前記出力取出用電極が前記半導体層に直接接して形成される一 方、前記出力取出用電極が形成されない残余の半導体層露出領域が透明な補助絶縁層 にて被覆されている請求の範囲第 1項ないし第 3項のいずれかに記載の太陽電池。 6. The plurality of semiconductor layer exposed regions are formed on the main surface, and in some of the semiconductor layer exposed regions, the output extraction electrode is formed directly in contact with the semiconductor layer, while the output extraction electrode is formed. The solar cell according to any one of claims 1 to 3, wherein a remaining semiconductor layer exposed region where no electrode is formed is covered with a transparent auxiliary insulating layer.
7 . 半導体基板の主表面が絶縁膜で被覆されている太陽電池において、前記絶縁膜に て被覆されていない半導体層露出領域が前記主表面に複数形成されてなり、それら半 導体層露出領域の一部のものにおいて、前記出力取出用電極が前記半導体層に直接接 して形成される一方、前記出力取出用電極が形成されない残余の半導体層露出領域が 透明な補助絶縁層にて被覆されていることを特徴とする太陽電池。 7. In a solar cell in which the main surface of a semiconductor substrate is covered with an insulating film, a plurality of semiconductor layer exposed regions not covered with the insulating film are formed on the main surface, and the semiconductor layer exposed region is In some, the output extraction electrode is formed in direct contact with the semiconductor layer, while the remaining semiconductor layer exposed region where the output extraction electrode is not formed is covered with a transparent auxiliary insulating layer. A solar cell.
8 .前記補助絶縁層が前記残余の半導体層露出領域と前記絶縁膜と前記出力取出用電 極とを一括して覆うものである請求の範囲第 6項又は第 7項に記載の太陽電池。  8. The solar cell according to claim 6, wherein the auxiliary insulating layer collectively covers the remaining semiconductor layer exposed region, the insulating film, and the output extraction electrode.
9 . 前記半導体層露出領域は、 前記半導体基板の前記主表面を、 前記 HQ凸部を含む形 にて前記絶縁膜で覆い、 さらに前記凸部の前記頂上部以外の領域にて前記絶縁膜をェ ツチング保護膜で覆い、その後エッチングによって前記凸部の前記頂上部の絶縁膜を 除去して形成されたものである請求の範囲第 1項ないし第 8項のいずれかに記載の 太陽電池。  9. The semiconductor layer exposed region covers the main surface of the semiconductor substrate with the insulating film so as to include the HQ convex portion, and further covers the insulating film in a region other than the top of the convex portion. 9. The solar cell according to any one of claims 1 to 8, wherein the solar cell is formed by covering with an etching protective film, and thereafter removing the insulating film on the top of the projection by etching.
1 0 . 半導体基板の主表面に凹凸部が形成され、 該主表面が絶縁膜で被覆され、 前記 凹凸部を形成する凸部の少なくとも一部のものの頂上部を包含する形にて前記絶縁 膜にて被覆されていない半導体層露出領域が前記主表面に形成されてなり、かつ前記 半導体層露出領域内の前記凸部の頂上部に直接又は他の導電層を介して間接的に接 触するように、 出力取出用電極が形成された太陽電池において、  10. An uneven portion is formed on a main surface of the semiconductor substrate, the main surface is covered with an insulating film, and the insulating film is formed so as to include a top of at least a part of the convex portion forming the uneven portion. A semiconductor layer exposed region not covered by the semiconductor layer is formed on the main surface, and directly or indirectly contacts the top of the projection in the semiconductor layer exposed region via another conductive layer. Thus, in the solar cell in which the output extraction electrode is formed,
前記半導体層露出領域は、 前記半導体基板の前記主表面を、 前記凹凸部を含む形に て前記絶縁膜で覆い、 さらに前記凸部の前記頂上部以外の領域にて前記絶縁膜をエツ チング保護膜で覆い、その後エッチングによって前記凸部の前記頂上部の絶縁膜を除 去して形成されたものであることを特徴とする太陽電池。  The semiconductor layer exposed region covers the main surface of the semiconductor substrate with the insulating film so as to include the irregularities, and further etches the insulating film in a region other than the top of the convex portion. A solar cell formed by covering with a film and then removing the insulating film on the top of the convex portion by etching.
1 1 . 前記凹凸部がテクスチャ、 V溝及び逆ビラミッドの少なくともいずれかよりな る請求の範囲第 1項ないし第 1 0項のいずれかに記載の太陽電池。  11. The solar cell according to any one of claims 1 to 10, wherein the uneven portion comprises at least one of a texture, a V-groove, and an inverted viramid.
1 2 .前記半導体層露出領域は、当該半導体層露出領域の形成される主表面において、 合計面積率が 1 %以下となるように形成されている請求の範囲第 1項ないし第 1 1 項のいずれかに記載の太陽電池。 12. The semiconductor layer exposure region according to claim 1, wherein the semiconductor layer exposure region is formed such that a total area ratio is 1% or less on a main surface on which the semiconductor layer exposure region is formed. A solar cell according to any one of the above items.
1 3 . 前記出力取出用電極は、 前記半導体層露出領域と周囲の絶縁層とにまたがる形 で形成されている請求の範囲第 1項ないし第 1 2項のいずれかに記載の太陽電池。 13. The solar cell according to any one of claims 1 to 12, wherein the output extraction electrode is formed so as to extend over the semiconductor layer exposed region and a surrounding insulating layer.
1 4 . 半導体基板の主表面に HQ凸部を形成する工程と、 14. A step of forming an HQ projection on the main surface of the semiconductor substrate;
その半導体基板の前記主表面を、前記凹凸部を含む形にて前記絶縁膜で覆う工程と、 前記凹凸部を形成する凸部の頂上部以外の領域にて前記絶縁膜をエッチング保護 膜で覆う工程と、  A step of covering the main surface of the semiconductor substrate with the insulating film so as to include the irregularities; and covering the insulating film with an etching protection film in a region other than the top of the convexes forming the irregularities. Process and
その後エッチングによって前記凸部の前記頂上部の絶縁膜を除去することにより、 前記凸部の少なくとも一部のものの頂上部を包含する形にて前記絶縁膜にて被覆さ れていない半導体層露出領域を形成する工程と、  Thereafter, the insulating film on the top of the projection is removed by etching to expose a semiconductor layer exposed region not covered with the insulating film so as to include the top of at least a part of the projection. Forming a;
前記半導体層露出領域内の前記凸部の頂上部に直接又は他の導電層を介して間接 的に接触するように、 出力取出用電極を形成する工程と、  Forming an output extraction electrode so as to directly or indirectly contact the top of the protrusion in the semiconductor layer exposed region via another conductive layer;
を含むことを特徴とする太陽電池の製造方法。 A method for manufacturing a solar cell, comprising:
1 5 .前記回凸部をエッチングにて形成する工程を含む請求の範囲第 1 4項に記載の 太陽電池の製造方法。  15. The method of manufacturing a solar cell according to claim 14, further comprising a step of forming the round protrusion by etching.
1 6 . 前記凹凸部を機械的加工によって形成する工程を含む請求の範囲第 1 4項又は 第 1 5項に記載の太陽電池の製造方法。  16. The method of manufacturing a solar cell according to claim 14 or 15, further comprising a step of forming the uneven portion by mechanical processing.
1 7 . 前記半導体層露出領域を前記主表面に複数形成する工程と、 それら半導体層露 出領域の一部のものにおいて、前記出力取出用電極を前記半導体層に直接接して形成 する工程と、前記出力取出用電極が形成されない残余の半導体層露出領域を補助絶縁 層にて被覆する工程とを含む請求の範囲第 1 4項ないし第 1 6項のいずれかに記載 の太陽電池の製造方法。  17. A step of forming a plurality of the semiconductor layer exposed regions on the main surface, and a step of forming the output extraction electrode in direct contact with the semiconductor layer in a part of the semiconductor layer exposed regions; 17. The method for manufacturing a solar cell according to claim 14, further comprising: covering the remaining semiconductor layer exposed region where the output extraction electrode is not formed with an auxiliary insulating layer.
1 8 . 前記補助絶縁層を、 前記残余の半導体層露出領域と前記絶縁膜と前記出力取出 用電極とを一括して覆うものとして形成する請求の範囲第 1 7項記載の太陽電池の 製造方法。  18. The method for manufacturing a solar cell according to claim 17, wherein the auxiliary insulating layer is formed so as to collectively cover the remaining semiconductor layer exposed region, the insulating film, and the output extraction electrode. .
PCT/JP2000/008486 2000-10-06 2000-11-30 Solar cell and method of manufacture thereof WO2002031892A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002535178A JP3872428B2 (en) 2000-10-06 2000-11-30 Manufacturing method of solar cell
KR1020037004838A KR100790956B1 (en) 2000-10-06 2000-11-30 Solar cell and method of manufacture thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000/308516 2000-10-06
JP2000308516 2000-10-06

Publications (1)

Publication Number Publication Date
WO2002031892A1 true WO2002031892A1 (en) 2002-04-18

Family

ID=18788811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/008486 WO2002031892A1 (en) 2000-10-06 2000-11-30 Solar cell and method of manufacture thereof

Country Status (5)

Country Link
JP (1) JP3872428B2 (en)
KR (1) KR100790956B1 (en)
CN (1) CN1284248C (en)
TW (1) TW480737B (en)
WO (1) WO2002031892A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041489A1 (en) * 2006-09-29 2008-04-10 Sanyo Electric Co., Ltd. Solar cell module
JP2009021541A (en) * 2007-07-13 2009-01-29 Samsung Sdi Co Ltd Solar cell, and method of manufacturing the same
JP2010519732A (en) * 2007-02-15 2010-06-03 マサチューセッツ インスティテュート オブ テクノロジー Solar cell with uneven surface
WO2011161813A1 (en) * 2010-06-25 2011-12-29 三菱電機株式会社 Solar cell and method for manufacturing same
JP2013511838A (en) * 2009-11-18 2013-04-04 ソーラー ウィンド テクノロジーズ, インコーポレイテッド Photovoltaic cell manufacturing method, photovoltaic cell manufactured thereby, and use thereof
JP2013524514A (en) * 2010-03-26 2013-06-17 テトラサン インコーポレイテッド Doping through shielded electrical contacts and passivated dielectric layers in high efficiency crystalline solar cells, and their structure and manufacturing method
JP2014512673A (en) * 2011-03-08 2014-05-22 アライアンス フォー サステイナブル エナジー リミテッド ライアビリティ カンパニー Efficient black silicon photovoltaic device with improved blue sensitivity
JP5830147B1 (en) * 2014-09-04 2015-12-09 信越化学工業株式会社 Solar cell and method for manufacturing solar cell
JP2017135210A (en) * 2016-01-26 2017-08-03 三菱電機株式会社 Solar cell and method of manufacturing solar cell
JP2021009958A (en) * 2019-07-02 2021-01-28 株式会社東芝 Solar cell, laminate, multi-junction solar cell, solar cell module and photovoltaic power generation system
US11742438B2 (en) 2014-11-13 2023-08-29 Shin-Etsu Chemical Co., Ltd. Solar cell and solar cell module

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100579318C (en) * 2003-04-25 2010-01-06 高通股份有限公司 Methods and apparatus for extending mobile IP
KR101010531B1 (en) * 2006-05-02 2011-01-24 스페이스 에너지 가부시키가이샤 Method for manufacturing semiconductor substrate, sola semiconductor substrate, and etching liquid
CN101017857B (en) * 2006-05-31 2010-04-14 成都加佳好科技有限公司 Te solar battery composed of non-planar battery chip
KR100879594B1 (en) * 2006-12-08 2009-01-21 송청담 Solar cell of thin amorphous sillicon film and method of making the solar cell
KR101447433B1 (en) * 2007-12-28 2014-10-10 주성엔지니어링(주) Wafer type Solar Cell and Method for manufacturing the same
KR100882140B1 (en) * 2008-03-19 2009-02-06 한국철강 주식회사 Microcrystalline silicon solar cell and fabrication method
WO2010068331A1 (en) * 2008-12-10 2010-06-17 Applied Materials, Inc. Enhanced vision system for screen printing pattern alignment
US20130000721A1 (en) * 2010-03-15 2013-01-03 Yoshiyuki Nasuno Substrate for photoelectric conversion device, photoelectric conversion device using the substrate, and method for producing the substrate and device
US8071418B2 (en) * 2010-06-03 2011-12-06 Suniva, Inc. Selective emitter solar cells formed by a hybrid diffusion and ion implantation process
TWI423456B (en) * 2010-07-27 2014-01-11 Au Optronics Corp Photoelectric transducer
TWI433341B (en) 2010-12-29 2014-04-01 Au Optronics Corp Method of fabricating a solar cell
JP5425349B1 (en) * 2012-04-25 2014-02-26 株式会社カネカ SOLAR CELL, MANUFACTURING METHOD THEREOF, AND SOLAR CELL MODULE
WO2014180471A1 (en) * 2013-05-10 2014-11-13 Rct Solutions Gmbh Solar cell and method for producing same
TWI566424B (en) * 2015-01-12 2017-01-11 財團法人工業技術研究院 Optoelectronic element and solar cell employing the same
US9673341B2 (en) 2015-05-08 2017-06-06 Tetrasun, Inc. Photovoltaic devices with fine-line metallization and methods for manufacture
CN105762076B (en) * 2016-02-29 2019-01-18 重庆平伟实业股份有限公司 A kind of production technology of diffused high-voltage great-current Schottky chip
CN108987413B (en) * 2017-06-02 2023-12-29 信越化学工业株式会社 Substrate for semiconductor and method for manufacturing the same
CN112993064B (en) * 2021-05-20 2021-07-30 浙江晶科能源有限公司 Solar cell, preparation method thereof and photovoltaic module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206272A (en) * 1985-03-08 1986-09-12 Sharp Corp Solar cell
JPS62237768A (en) * 1986-04-08 1987-10-17 Oki Electric Ind Co Ltd Manufacture of compound semiconductor sorar battery
JPH05291597A (en) * 1992-04-14 1993-11-05 Toyota Motor Corp Single crystal silicon solar cell
JPH09199738A (en) * 1996-01-19 1997-07-31 Hitachi Ltd Solar cell
JPH10303443A (en) * 1997-04-23 1998-11-13 Mitsubishi Electric Corp Solar battery, manufacture thereof, and semiconductor manufacturing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206272A (en) * 1985-03-08 1986-09-12 Sharp Corp Solar cell
JPS62237768A (en) * 1986-04-08 1987-10-17 Oki Electric Ind Co Ltd Manufacture of compound semiconductor sorar battery
JPH05291597A (en) * 1992-04-14 1993-11-05 Toyota Motor Corp Single crystal silicon solar cell
JPH09199738A (en) * 1996-01-19 1997-07-31 Hitachi Ltd Solar cell
JPH10303443A (en) * 1997-04-23 1998-11-13 Mitsubishi Electric Corp Solar battery, manufacture thereof, and semiconductor manufacturing device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041489A1 (en) * 2006-09-29 2008-04-10 Sanyo Electric Co., Ltd. Solar cell module
JP2010519732A (en) * 2007-02-15 2010-06-03 マサチューセッツ インスティテュート オブ テクノロジー Solar cell with uneven surface
US8569099B2 (en) 2007-02-15 2013-10-29 Massachusetts Institute Of Technology Enhanced methods for fabricating solar cells with textured surfaces
JP2009021541A (en) * 2007-07-13 2009-01-29 Samsung Sdi Co Ltd Solar cell, and method of manufacturing the same
JP2013511838A (en) * 2009-11-18 2013-04-04 ソーラー ウィンド テクノロジーズ, インコーポレイテッド Photovoltaic cell manufacturing method, photovoltaic cell manufactured thereby, and use thereof
JP2013524514A (en) * 2010-03-26 2013-06-17 テトラサン インコーポレイテッド Doping through shielded electrical contacts and passivated dielectric layers in high efficiency crystalline solar cells, and their structure and manufacturing method
WO2011161813A1 (en) * 2010-06-25 2011-12-29 三菱電機株式会社 Solar cell and method for manufacturing same
JP4980494B2 (en) * 2010-06-25 2012-07-18 三菱電機株式会社 Solar cell and manufacturing method thereof
US8981210B2 (en) 2010-06-25 2015-03-17 Mitsubishi Electric Corporation Solar battery cell and method of manufacturing the solar battery cell
US11251318B2 (en) 2011-03-08 2022-02-15 Alliance For Sustainable Energy, Llc Efficient black silicon photovoltaic devices with enhanced blue response
JP2014512673A (en) * 2011-03-08 2014-05-22 アライアンス フォー サステイナブル エナジー リミテッド ライアビリティ カンパニー Efficient black silicon photovoltaic device with improved blue sensitivity
JP5830147B1 (en) * 2014-09-04 2015-12-09 信越化学工業株式会社 Solar cell and method for manufacturing solar cell
KR20170053614A (en) * 2014-09-04 2017-05-16 신에쓰 가가꾸 고교 가부시끼가이샤 Solar cell and solar cell manufacturing method
EP3190628A4 (en) * 2014-09-04 2018-08-22 Shin-Etsu Chemical Co., Ltd. Solar cell and solar cell manufacturing method
WO2016035229A1 (en) * 2014-09-04 2016-03-10 信越化学工業株式会社 Solar cell and solar cell manufacturing method
KR102420807B1 (en) * 2014-09-04 2022-07-13 신에쓰 가가꾸 고교 가부시끼가이샤 Solar cell and solar cell manufacturing method
US11742438B2 (en) 2014-11-13 2023-08-29 Shin-Etsu Chemical Co., Ltd. Solar cell and solar cell module
JP2017135210A (en) * 2016-01-26 2017-08-03 三菱電機株式会社 Solar cell and method of manufacturing solar cell
JP2021009958A (en) * 2019-07-02 2021-01-28 株式会社東芝 Solar cell, laminate, multi-junction solar cell, solar cell module and photovoltaic power generation system
JP7362317B2 (en) 2019-07-02 2023-10-17 株式会社東芝 Solar cells, laminates, multijunction solar cells, solar cell modules, and solar power generation systems

Also Published As

Publication number Publication date
TW480737B (en) 2002-03-21
KR100790956B1 (en) 2008-01-03
JP3872428B2 (en) 2007-01-24
KR20030036893A (en) 2003-05-09
CN1284248C (en) 2006-11-08
CN1454395A (en) 2003-11-05
JPWO2002031892A1 (en) 2004-02-26

Similar Documents

Publication Publication Date Title
JP3872428B2 (en) Manufacturing method of solar cell
US8421074B2 (en) Semiconductor device with heterojunctions and an interdigitated structure
US8603851B2 (en) Solar cell and method of manufacturing the same by simultaneously forming first and second doping regions
KR100847741B1 (en) Point-contacted heterojunction silicon solar cell having passivation layer between the interface of p-n junction and method for fabricating the same
US20180190919A1 (en) Conductive polymer/si interfaces at the backside of solar cells
US20110100459A1 (en) Solar cell and method for manufacturing the same
JP4170701B2 (en) Solar cell and manufacturing method thereof
JP2015029126A (en) Solar cell and method for manufacturing the same
JP2013526053A (en) Solar cell and manufacturing method thereof
US20100147368A1 (en) Photovoltaic cell with shallow emitter
KR101878397B1 (en) Solar cell and method for fabricating the same
EP2538447B1 (en) Solar cell and method for manufacturing the same
JP2010130023A (en) Solar cell and method of manufacturing the same
US9997647B2 (en) Solar cells and manufacturing method thereof
KR100990108B1 (en) Solar cell and method for manufacturing the same
JP5501549B2 (en) Photoelectric conversion element and photoelectric conversion module composed thereof
KR20130068962A (en) Solar cell and method for manufacturing the same
KR102132741B1 (en) Solar cell and method for manufacturing the same
JP2003158275A (en) Photoelectric conversion element and its manufacturing method
KR101322626B1 (en) Solar cell and manufacturing method thereof
KR20160034062A (en) Solar cell and method for manufacturing the same
KR20100136640A (en) Solar cell and mehtod for manufacturing the same
KR20130113002A (en) Selective emitter solar cells and fabrication method using acid solution protection layer
KR20110072300A (en) Back junction solar cells using a floating junction and method for manufacturing thereof
WO2014148065A1 (en) Solar cell

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002535178

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 008199493

Country of ref document: CN

Ref document number: 1020037004838

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020037004838

Country of ref document: KR

122 Ep: pct application non-entry in european phase