WO2002028771A1 - Method and apparatus for plasma-catalytic conversion of fossil fuels into a hydrogen-rich gas - Google Patents

Method and apparatus for plasma-catalytic conversion of fossil fuels into a hydrogen-rich gas Download PDF

Info

Publication number
WO2002028771A1
WO2002028771A1 PCT/ES2000/000380 ES0000380W WO0228771A1 WO 2002028771 A1 WO2002028771 A1 WO 2002028771A1 ES 0000380 W ES0000380 W ES 0000380W WO 0228771 A1 WO0228771 A1 WO 0228771A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
gas
microwave
air
plasmacatalytic
Prior art date
Application number
PCT/ES2000/000380
Other languages
Spanish (es)
French (fr)
Inventor
Fateev Vladimir
Boris Potapkin
Victor K. Jivotov
Ricardo Blach Vizoso
Original Assignee
David Systems Technology, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by David Systems Technology, S.L. filed Critical David Systems Technology, S.L.
Priority to AU2000277905A priority Critical patent/AU2000277905A1/en
Priority to PCT/ES2000/000380 priority patent/WO2002028771A1/en
Publication of WO2002028771A1 publication Critical patent/WO2002028771A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications
    • H05B6/806Apparatus for specific applications for laboratory use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01BBOILING; BOILING APPARATUS ; EVAPORATION; EVAPORATION APPARATUS
    • B01B1/00Boiling; Boiling apparatus for physical or chemical purposes ; Evaporation in general
    • B01B1/005Evaporation for physical or chemical purposes; Evaporation apparatus therefor, e.g. evaporation of liquids for gas phase reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/342Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents with the aid of electrical means, electromagnetic or mechanical vibrations, or particle radiations
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/36Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B51/00Other methods of operating engines involving pretreating of, or adding substances to, combustion air, fuel, or fuel-air mixture of the engines
    • F02B51/02Other methods of operating engines involving pretreating of, or adding substances to, combustion air, fuel, or fuel-air mixture of the engines involving catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00159Controlling the temperature controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0845Details relating to the type of discharge
    • B01J2219/0849Corona pulse discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0871Heating or cooling of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0881Two or more materials
    • B01J2219/0883Gas-gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0892Materials to be treated involving catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/12Processes employing electromagnetic waves
    • B01J2219/1203Incoherent waves
    • B01J2219/1206Microwaves
    • B01J2219/1209Features relating to the reactor or vessel
    • B01J2219/1221Features relating to the reactor or vessel the reactor per se
    • B01J2219/1224Form of the reactor
    • B01J2219/1227Reactors comprising tubes with open ends
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the invention relates to an apparatus and a method for plasmacatalytic conversion of fossil fuels into a hydrogen rich gas.
  • the method allows to carry out the vapor-air / fossil fuel or air / fossil fuel conversion reactions.
  • the air is preheated, a part of the fossil fuel is burned in the combustion chamber, the waste is mixed with the combustion products and, optionally, with water vapor, and the heated reagents are introduced into the plasmacatalytic reactor where the plasma acts as a catalyst accelerating the process of fossil fuel conversion.
  • the method object of the invention in comparison with other known methods of converting fossil fuels into hydrogen-rich gas, achieves greater conversion of the fossil fuel, improves the composition of the gas mixture produced as a result of the process and improves energy efficiency .
  • the first is "how quickly the converter can be started up”: the most efficient converter today takes about 5 minutes to warm up;
  • the second is "the transient response": how long does it take a car to respond when the driver steps on the accelerator; a gasoline engine responds in thousandths of a second, but a converter that reacts slowly makes the car's responses to the driver's demands slow so the drivers would reject it;
  • the third is that the "thermal and electrical energy consumption" necessary to meet the needs of the converter process, are very small and are within parameters that allow it to be covered with part of the energy generated by the internal combustion engine or fuel cell that uses the converter;
  • Phase 1 of this program included an analysis of the poly fuel converters, hydrogen on-board storage technologies and the requirements of the hydrogen infrastructure.
  • Phase 2 will involve the development and testing of a 10 Kw converter and a 1 kg capacity hydrogen storage unit.
  • Alternatives to the direct supply of hydrogen to the fuel cell include liquid hydrogen or compressed hydrogen tanks, carbon absorption and hydride storage.
  • Liquid hydrogen has been tested in various vehicles since the 1970s in the United States and other countries.
  • the weighted volumetric density of liquid hydrogen, when used with the fuel cell, is the same or better than that of diesel fuel used with an internal combustion engine. Its drawbacks include high energy for liquefaction, handling problems and the inevitable release of boiling gas.
  • Compressed hydrogen on board is the simplest technology to conceptualize and could benefit from the recent advances in composite materials and cost improvements derived from the progress in vehicles powered by natural gas.
  • High pressure tanks constructed of advanced materials could provide reasonable performance, but only marginal volumetric performance.
  • Technical issues pending resolution include cylinder permeability, standards for tank design for higher pressures and hydrogen compressor design for refueling.
  • Steam reforming SR This process basically represents a catalytic conversion of methane and water (steam) into hydrogen and carbon dioxide, through three main stages. Numerous companies, namely Haldor-Topsoe (USA-Denmark), Howe-Baker Engineers (USA), IFI / ONSI (USA), Ballard Power Systems (Canada) and Chiyoida (Japan) have worked on the design and construction of this system.
  • Partial oxidation it is an exothermic process whereby hydrogen and carbon dioxide are produced from hydrocarbon fuels (gasoline and others) and oxygen (or air). PO processes have a number of advantages over SR processes. Companies such as Arthur D. Little (EPYX), Chrysler Corp. and Hydrogen Burner Technologies (all of them from the US) have announced plans for the development of PO converters.
  • the stages of the EPYX PO cell fuel converter include (1) vaporization of the fuel (gasoline) by the application of heat; (2) the vaporized fuel is combined with a small amount of air in the partial oxidation reactor, producing hydrogen and carbon monoxide; (3) the vapor on the carbon monoxide reacts with a catalyst to convert most of the carbon monoxide and carbon dioxide and additional hydrogen; (4) In the preferential oxidation stage, the injected air reacts with the remaining carbon monoxide on the catalyst to form carbon dioxide and water vapor, leaving hydrogen rich gases.
  • Autothermal conversion In this exothermic process, the hydrocarbon fuel reacts with a mixture of water and oxygen. The energy released by the hydrocarbon oxidation reaction drives the steam conversion process. Companies like Rolls-Royce / Johnson-
  • Thermal decomposition (TD) (or pyrolysis, cracking) of hydrocarbon fuel: hydrogen and clean carbon are produced in this process.
  • the energy demand per mole of hydrogen produced from methane is somewhat lower than for the SR process.
  • the technical-economic evaluation of hydrogen production by SR, PO and TD processes indicates that the cost (in US $ / 1000 m 3 ) of hydrogen produced by TD (US $ 57) is lower than for the processes of SR (US $ 67) and PO (US $ 109).
  • Plasma catalysis is another process of conversion of hydrocarbons helped by plasma; in this process cold non-thermal plasma is used as a source of an active species, in order to accelerate chemical reactions. The energy requirements of the process can be satisfied, in this case, through thermal energy (low temperature), so that the plasma acts as a catalyst.
  • DAVID SYSTEMS AND TECNOLOGY S.L. He is working on this line and has developed a plasmacatalytic fuel converter.
  • Plasma can be produced through the action of very high temperators, strong electric fields or powerful magnetic fields.
  • a discharge free electrons gain energy from an imposed electric field and lose it through collisions.
  • the discharge plasma is characterized by high electron temperators and low gas temperature, having electron concentrations of approximately 109 to 1012 cm 3 and absence of thermal equilibrium, which makes possible a plasma in which the gas temperature is close at room temperature, to obtain a plasma in which electrons are sufficiently energized to cause the breakage of molecular bonds.
  • MPCR the molecular bonds of the gas mixture (water + gasoline + air) producing synthetic fuel (hydrogen and carbon monoxide).
  • Cold non-thermal plasma only charged particles (electrons, ions) gain energy from the applied electric field, while neutral particles remain almost at room temperature.
  • Cold non-thermal plasma can be created by an electric shock normally operated at reduced pressure.
  • Discharge plasmas are very suitable for the promotion of chemical reactions in which thermally sensitive materials participate.
  • the electrical energy necessary to maintain the plasma state can be transmitted to the discharge gas either by resistive coupling with internal electrodes, by capacitive coupling with external electrodes or by inductive coupling with an external coil, or, in the case of microwave discharge , by means of a slow wave structure. Due to the many reactive species in a plasma, it has not been possible to fully explain the mechanisms of chemical reactions in a plasma.
  • the reformers produce a synthetic gas formed mainly of hydrogen and carbon monoxide, but to be able to use said synthetic gas in a fuel cell it is necessary remove synthetic gas components mixed with hydrogen.
  • reactions are carried out between the hydrocarbons present in the fossil fuel and air, or between said hydrocarbons, water vapor and air, said process comprising the following operational phases:
  • Incinerate part of the fossil fuel which results in reaction products and waste.
  • the invention also concerns the apparatus for the implementation of said method, apparatus in which a fuel evaporator, a water evaporator and an air feeder are involved, which supply the respective materials, through a heat exchanger, specifically the air and part of the fuel from an inlet chamber and the water and the rest of the fuel to a mixing chamber, which also receives the materials or coming from the inlet chamber, said mixing chamber being fed to a chemical reactor assisted by a microwave generator, for the obtaining the synthesis gas (syn-gas).
  • a fuel evaporator, a water evaporator and an air feeder are involved, which supply the respective materials, through a heat exchanger, specifically the air and part of the fuel from an inlet chamber and the water and the rest of the fuel to a mixing chamber, which also receives the materials or coming from the inlet chamber, said mixing chamber being fed to a chemical reactor assisted by a microwave generator, for the obtaining the synthesis gas (syn-gas).
  • FIG 1 shows the scheme of an apparatus (in the form of blocks) provided by this invention.
  • Figure 2 shows the diagram of the pre-chamber and mixing chamber of an apparatus provided by this invention.
  • FIG. 3 shows the scheme of the chemical mixing reactor of an apparatus provided by this invention.
  • Figure 4 shows the reactor scheme based on a quasi-stationary microwave discharge.
  • the invention provides a method for plasmacatalytic conversion of a fossil fuel (MF) into synthetic gas (syn-gas), in which reactions are carried out between the hydrocarbons present in said
  • MF and air or between said hydrocarbons, water vapor and air comprising: preheating the air; incinerate part of the MF with which reaction products and residues are obtained; mixing said wastes with the combustion products and, optionally, with water vapor, whereby a reaction mixture is obtained; and bringing said reaction mixture into a plasmacatalytic reactor where the plasma acts as a catalyst accelerating the conversion of MF into syn-gas.
  • the plasmachemical acceleration of conversion of the MF into syn-gas is carried out either by passing the reaction mixture through periodic pulse discharge plasma in a continuous pseudocoron effect arrester at atmospheric pressure, or by passing the mixture of reaction through quasi-stationary torch discharge plasma with a radiation pulse length of less than 100 milliseconds (ms).
  • the chemical reaction of conversion of the MF into syn-gas takes place by means of a periodic microwave discharge of impulses on the preheated gas previously.
  • the chemical transformation of the gas mixture from the mixing chamber that is introduced into the chemical reactor is converted into a mixture of carbon monoxide and hydrogen carrying energy after microwave discharge on the preheated gas previously.
  • a subcritical value of microwave pulse electric field strength is established, a discharge of microwave pseudocoron injectors is initiated at the edges of the crown elements, and at the heads of the microwave injectors establishes an electric field equal to or greater than 1,000 kV / cm.
  • the establishment of this high electric field allows microwave injectors to propagate for a period of time not exceeding 1 ⁇ s practically up to the reactor walls, branching into space simultaneously and filling the entire cross section of a chemical reactor practically completely.
  • the microwave energy source generates the pulse set with a pulse duration between 0.1 and 1 microseconds ( ⁇ s) and a pulse period to pulse duration ratio between 100 and 1,000 in a microwave radiation range included within the X and S bands (decimeters and centimeters), with specific impulse power, which provide the necessary level of electric field in the resonator and in the heads of the continuous microwave dischargers.
  • a total reagent flow rate (Q) and a specific average power (W) should be selected from the following considerations: to perform the specific plasma catalysis process with plasma energy input of 0.05- 0.2 kWh / m 3 , so that the plasma input value does not exceed 10% of the enthalpy value of the reagent at the working temperature.
  • the plasma-catalytic conversion of the MF into syn-gas is carried out by reaction between the hydrocarbons present in said MF, water vapor and air, and the reactant temperators of the inlet of the plasmacatalytic reactor are comprised between 800 K and 15,000 K.
  • the ratio between the incinerated part of the MF and its residue is preferably between 0.5 and 2, and the water / air molar ratio will be appropriate.
  • the plasma-catalytic conversion of the MF into syn-gas is carried out by reaction between the hydrocarbons present in said MF and air, and the temperatures of the reagents at the plasmacatalytic reactor inlet are between 600 K and 1,100 K.
  • the ratio between the incinerated part of the MF and its residue is preferably between 0.4 and 2, and the air / MF molar ratio at the inlet
  • the plasmacatalytic reactor is between 16 and 20.
  • the invention also provides an apparatus for plasmacatalytic conversion of a fossil fuel (MF) into a synthetic gas (syn-gas) comprising an air heater and a plasma-catalytic chemical reactor implemented said reactor as a cylindrical microwave resonator for the Hll wave type and microwave energy source within the range of wavelengths of the X and S bands, which is connected to the reactor and excites within the resonator a periodic pulse discharge in a continuous pseudocoron effect arrester with a duration of the pulse between 0.1 and 1 ⁇ s and a pulse-to-pulse period duration between 100 and 1,000, and a combustion chamber is located between the air heater and the reactor-resonator along the line of air flow, said combustion chamber having 2 different inputs for the autonomous entry of the incinerated part of the MF and its residue, optionally mixed or with water vapor, in different areas of the combustion chamber.
  • MF fossil fuel
  • syn-gas synthetic gas
  • microwave radiation from the generator to the microwave resonator is performed either with the help of a rectangular waveguide along the axis of the resonator or with the help of a rectangular waveguide through a lateral side of the resonator, in both cases being located in a cylindrical resonator an excitation node of wave type Hll between the waveguide and the resonator, which includes an coupling element for the resonator-waveguide connection.
  • This resonator coupling element with the waveguide is designed so that its value provides a subcritical value of the intensity of Electric microwave field for a specific diameter of the chemical resonator reactor.
  • the reflectors at the rear end of the microwave resonator may overlap with the comical elements for the reagent entry and removal of the reaction products, or alternatively, a reflector at the rear end of the microwave resonator may overlap with the conical element. for reagent entry and removal of reaction products and another reflector from the rear end of the microwave resonator io overlaps the Hll wave type excitation node in the cylindrical waveguide.
  • the longitudinal axis of the rectangular waveguide is located at a distance of a few lengths of
  • the diameter of the cylindrical resonator is selected from the wave type excitation condition Hll in the waveguide; and the length of the resonator is equal to an integer number of half-wavelengths of radiation in a waveguide
  • the microwave discharge of the continuous pseudocoron unloader is initiated in the microwave resonator through a set of metal edges inserted into the resonator in the area of
  • each rod 25 maximum electric field.
  • the location of the edge of each rod is selected on the condition that, at the edges of each rod and on the heads of the microwave arresters, there is an electric field equal to or greater than 1,000 kV / cm.
  • the apparatus provided by this invention further comprises
  • a combustion chamber that, in a particular embodiment, includes 2 series systems of concentric supersonic injectors, connected separately with the reagent inlets and located along the gas flow line, and (ii) a heater implements, for example, as a heat recovery ⁇ itercambiador.
  • an apparatus for plasmacatalytic conversion of fossil fuels is provided in a hydrogen-rich gas comprising a pre-chamber, a mixing chamber, an energy input microwave, a plasma-catalytic chemical reactor, a heat exchanger, a fossil fuel evaporator, a water evaporator, and an air supply.
  • Said apparatus operates in the manner described below.
  • Fossil fuel and water vapor from the corresponding evaporators and the air from a compressor by means of thermally insulated pipes flow to a heat exchanger, where they are additionally heated by the heat of synthesis gas (syn-gas ) leaving the chemical reactor.
  • a part of the fossil fuel vapor (approximately 25% of the total) and all the air feed the pre-chamber where a mixture of carbon dioxide and water vapor is formed at a high temperature, usually between 2,200 K and 2,400 K when the Fossil fuel burns.
  • the resulting mixture flows into the mixing chamber where it is mixed with water vapor and the rest of the fossil fuel (approximately 75% of the total) from the heat exchanger through injectors.
  • a gas is formed with a temperature normally between 1,200 K and 1,400 K flowing to the chemical reactor.
  • the reaction of the conversion of the mixture into syn-gas is carried out in the chemical reactor under the action of a periodic discharge of microwave pulse.
  • the syn-gas flows to the heat exchanger and transfers the heat to the fossil fuel, water and air, which feed the pre-chamber and mixing chamber.
  • the pre-chamber is intended to burn a part of the fossil fuel to reach an elevated temperature of the gas that feeds the mixing chamber.
  • the mixing chamber serves to create a gas flow with a very defined temperature and reagent concentration, optimal for the catalysis plasma reaction, this objective is achieved by mixing a certain amount of gas from the pre-chamber with a certain amount of fossil fuel and water vapor.
  • the purpose of the microwave energy input is the emission of microwave energy, supplying said energy to the chemical reactor, and comprises a modulator, a microwave generator, a waveguide system and a unit for the input of microwave energy to the chemical reactor.
  • the modulator produces a sequence of periodic voltage pulses that are necessary for the operation of the microwave generator.
  • said microwave generator is of the magnetron type.
  • the waveguide system provides microwave radiation to the device.
  • the chemical reaction of the conversion of the fossil fuel into a hydrogen-rich gas takes place in the chemical reactor by means of a periodic microwave discharge of impulses on the preheated gas.
  • the chemical transformation of the gas mixture from the mixing chamber that is introduced into the chemical reactor is converted into a mixture of carbon monoxide and hydrogen carrying energy after microwave discharge on the preheated gas previously.
  • the heat exchanger is responsible for the heat recovery of the fossil fuel input syn-gas and the water and air vapor that It feeds the pre-chamber and mixing chamber and also condenses the unreacted water vapor and fossil fuel to trap the coal dust that can form in the reactor.
  • the maximum temperature of the syn-gas at the heat exchanger inlet is 1,200 K, while the temperature of the syn-gas at the heat exchanger outlet is below 100-C.
  • the fossil fuel evaporator is responsible for evaporating the liquid fossil fuel, while the water evaporator is responsible for evaporating the water.
  • the air is supplied to the device through the air supply.
  • the device consists of the following components:
  • FIG. 1 A main scheme of the device is shown in Figure 1.
  • the device works as follows. Fuel and water vapor from the corresponding evaporators and compressor air will flow through thermally insulated pipes into the heat exchanger. In this part they will be heated further, recovering the heat of the synthesis gas that emanates from the chemical reactor. A part of the fuel vapor (25% of the total consumption) and all the air will be fed into the inlet chamber. When he burns Fuel will form the mixture of carbon dioxide and high temperature water vapor (2200 to 2400 Kelvin). This mixture flows into the mixing chamber. Water vapor and a large part (75%) of the heat exchanger fuel will flow into the mixing chamber, through the injectors.
  • a gas will be formed at a temperature of 1200-1400 Kelvin, which flows into the chemical reactor block.
  • the reaction of the conversion of the mixture into a synthesis gas is carried out in the chemical reactor, under the action of a periodic microwave pulse discharge.
  • the synthesis gas flows into the heat exchanger, transferring its heat to the liquid fuel, water and air, which feed the inlet and mixing chambers.
  • composition of the synthesis gas at the PMPCR output hydrogen + CO and
  • Percentage of hydrogen in the synthesis gas not less than 55%.
  • Fuel consumption, water vapor and air for the production of 1 nanometer 3 of synthesis gas fuel consumption: 0.288 kg water vapor consumption: 0.108 kg air consumption: 1.018 kg total energy consumption (electrical and thermal): less than 1 kilowatt hour per 1 nanometer 3 of synthesis gas. Electric power consumption: less than 0.1 kilowatt hour per 1 nanometer 3 of synthesis gas.
  • the inlet chamber (CE) block is designed to burn a portion of fuel, so that it reaches the high temperature of a gas, located beyond the mixing chamber.
  • the mixing chamber block is designed to create a gas flow rate with a high concentration of defined reagents and temperature, appropriate to carry out the catalytic reaction of the plasma. This will be achieved by mixing a certain amount of a gas that flows from the inlet chamber, with fuel and water vapor.
  • Fuel and air jets are injected into the inlet chamber through individual injectors (I) (see Figure 2).
  • the above forms a gas flow whose composition is calculated as follows: C0 2 - 13.29%; H 2 0 - 13.29%; N 2 - 73.42%, with a consumption of 16,002 kg hour.
  • the additional flow rate of this hot gas is fed to the mixing chamber (CM) (see Figure 2).
  • the fuel vapor will flow from the heat exchanger to the interior of the mixing chamber at a temperature of 340 ° C and with a consumption of 3,270 kg hour.
  • Water vapor will flow from the heat exchanger to the interior of the mixing chamber at a temperature of 400 ° C and with a consumption of 1,620 kg hour.
  • the fuel and water jets are injected radially through injectors.
  • the following gas mixture is formed after agitatingly mixing these jets with a hot gas (calculated as follows): C n H 22 - 3.15%; H 2 0 - 24.43%; C0 2 - 11.10%; N 2 - 61.32%.
  • the temperature of this gas mixture is 1730 ° Kelvin.
  • the distance over which the gas is to be mixed is determined by the expression (3).
  • the minimum number of injectors, which are uniformly located on an end face of the channel of the mixer (see Figure 2) in which a turbulent mixing of various components of mixed substances will be performed through the following jets, is determined by the expression (5).
  • H 0.25D mixer
  • H / d 2 2,2q 0 '5
  • q Vl Pl 2 / p 2 2 (7).
  • H is the depth of penetration of a jet in a downward flow rate
  • pyv constitute the density and velocity of the gas
  • indices 1 and 2 refer to the radially injected jets and the hot gas emanating from the injection chamber
  • d 2 is a diameter of the injector.
  • the diameter of the injector should be 17 times smaller than the diameter of the mixing chamber. In case the diameter of the displacement chamber is equal to 3sm, then the diameters of the injectors should be equal to 0.17sm.
  • the diameter of the jet should be about 10 times smaller than the diameter of the mixture.
  • the microwave power input block (GM) is designed for the emission of energy from microwaves, to supply it to the Prototype and to introduce it into the reactor, and consists of a modulator, a microwave generator, a waveguide system and a unit for microwave energy input inside the prototype reactor.
  • the modulator produces a sequence of periodic voltage pulses, which are necessary for the operation of the microwave generator.
  • the microwave generator is of the magnetron type.
  • the waveguide system supplies the microwave radiation to the Prototype.
  • the average power of the microwave generator W average is:
  • radiation frequency 2.9 Gigaherzios
  • radiation pulse duration 0.5-1 ⁇ s
  • impulse repetition up to lKiloherzio
  • pulse power 1.7 Megawatts
  • average power 1.7 Kilowatts
  • radiation wavelength 10 sm.
  • the chemical plasma reactor (RQ) is designed to favor the chemical reaction by the action of a periodic impulse microwave discharge on a previously heated gas.
  • the Prototype produces 25 nanometers 3 of synthesis gas hour of the compound: H 2 - 55, 33%; CO - 44.67%.
  • the critical wavelength ⁇ cr and the critical diameter of the waveguide D cr and ⁇ 0 are comprised in the proportion:
  • the diameter of the chemical reactor D should allow the propagation of the wave of type H n and will be beyond the interruption of the wave of type E 01 : D cr ⁇ D ⁇ D c .
  • the diameter of the chemical reactor D 75 mm was selected.
  • the wavelength of the waveguide Ü is:
  • ⁇ 0 / (l - ( ⁇ 0 / ⁇ cr ) 2 ) & - 174.2 mm.
  • the scheme of the chemical reactor is shown in Figure 3.
  • the reactor is a spherical waveguide with a diameter of 75 mm, being joined by an airtight unit, on the side of the microwave generator (GM), and on the opposite side, by a metallic piston. Drills (T) (2-3 mm diameter) are drilled in the metal piston (PM) to visualize the discharge.
  • the hermetic unit is designed to prevent a hot gas from the chemical reactor from entering the 5-wave guide system.
  • the hermetic unit (AH) consists of a quartz plate, which is installed perpendicular to the waveguides. The quartz plate vacuum isolates the reactor chamber from the waveguide system. The tightness must withstand heating up to 600 ° C.
  • the waveguide system (from the magnetron to the quartz plate) is pressurized by an SF gas in order to prevent microwave interruption.
  • the output of the mixing chamber is coupled to the spherical waveguide, such that its axes are perpendicular to each other.
  • a pointed tungsten needle (1-2 mm in diameter) is used to start the microwave discharge.
  • the needle is inserted into the chemical reactor (RQ), perpendicular to the waveguide, to the mixing chamber through the hole (T ') in the waveguide wall.
  • the tungsten needle can move in the direction of its axis.
  • thermocouple is used to measure the temperature in the chemical reactor. It is inserted through the hole, which is located in a diametrically opposite manner, to the hole for the tungsten needle. The thermocouple is removed from the waveguide, at the moment the discharge of the
  • the range of measured temperators will range from 300 to 300 ° C.
  • the heat exchanger (IC) block is designed so that it can recover heat from the inlet synthesis gas, from steam
  • the maximum temperature of the synthesis gas at the heat exchanger inlet is 1200 ° Kelvin, while the temperature of the synthesis gas at the heat exchanger outlet is less than 100 ° C.
  • the heat exchanger maintains continuous operation for 1 hour (between the purge of the liquid).
  • the heat exchanger consists of a chamber that is coupled to the wall of the spherical waveguide, so that its axes are perpendicular to each other. The axes of the heat exchanger and the chemical reactor are the same.
  • the heat exchanger contains hollow stainless nozzles, which are located parallel to the axis of said heat exchanger.
  • the fuel and water vapors from the fuel and water evaporators and the air from the air supply block flow into the heat exchanger and the stainless nozzles, in a manner opposite to the flow of the synthesis gas Emanating from the chemical reactor.
  • the fuel vapor is heated in the heat exchanger, from a temperature of 170 ° C to 400 ° C. In this previous procedure, a power of 660 watts of the synthesis gas is obtained.
  • one part of the fuel vapor flows into the inlet chamber, and the other part flows into the mixing chamber.
  • the water vapor is heated in the heat exchanger, from a temperature of 100 ° C to reach 300 ° C, thus allowing to recover my power of 170 watts, after the water vapor of the heat exchanger flows into The mixing chamber.
  • the air is heated in the heat exchanger, from a temperature of 20 ° C to reach 400 ° C, obtaining a power of 1700 watts from the synthesis gas, after the heat exchanger air flows into the chamber input
  • the synthesis gas transfers a power of 5000 watts to the heat exchanger, when it is cooled from 1200 Kelvin to 300 Kelvin. In this way, the heat exchanger performance will not be less than 50%.
  • the fuel evaporation block (EC) is designed for the evaporation of a liquid fuel and can be running continuously for 1 hour (between filling).
  • the volume of the fuel evaporator is 8 liters.
  • the fuel vapor consumption is 4.3 kg hour.
  • the output fuel vapor temperara is 180 ° C.
  • the electric power of the evaporator is 1.7 kilowatts, the voltage of 220 volts, the electric current 8 A, the heater resistance of 27.5 Ohms.
  • the evaporator yield is 50%.
  • the evaporator is equipped with a pressure gauge of up to 10 atmospheres and a thermocouple in the outlet connection.
  • the water evaporation block (EA) is designed for the evaporation of water and can be running continuously for 1 hour (between filling).
  • the volume of the water evaporator is 2.5 liters.
  • Water vapor consumption is 1.6 kg hour.
  • the temperature of the outlet water vapor is 100 ° C.
  • the electric power of the evaporator is 2.3 Kilowatts, the voltage of 220 volts, the electric current 11 A, the heater resistance of 22 Ohms.
  • the evaporator yield is 50%.
  • the evaporator is equipped with a pressure gauge of up to 10 atmospheres and a thermocouple in the outlet connection.
  • the air supply (AA) block is designed to supply pumped air to the Prototype.
  • the air productivity of your compressor is 12 nanometers 3 hours (16 kg hours).
  • the air outlet pressure shall not be less than 3 atmospheres.
  • the pumped air flows into the heat exchanger to recover the heat of the synthesis gas and subsequently, inside the inlet chamber.
  • the plasmacatalytic converter of motor fuel impulses in a synthesis gas is based on the use of a periodic impact microwave discharge equipped with a high driving power (100-200 Kilowatts), in the short duration of an impulse (l ⁇ s) and in the large porosity of the periodic impact method (around 1000 in the pulse repetition frequency of 1 Kiloherzio).
  • This approach provides the small ratio P ⁇ / P p of electrical power from the discharge P ⁇ to the preliminary heating power of the reagent P p .
  • a discharge of the torch from the quasi-stationary microwaves (the duration of a pulse of radiation is around one tenth of a meter per second, the porosity of a periodic impact method is about 2).
  • the stability of the operation of said devices, at a given atmospheric pressure is provided by the use of specific properties of microwave resonators. Whenever the significant part of the Energy used for the maintenance of electric shock will be valid, if it is obtained from the procedure of burning a part of fuel in a discharge zone, said converter will maintain, the basic advantage of the microwave plasma converter, the small ratio P ⁇ IP qu ⁇ t ⁇ ca will be desirable.
  • the almost fixed converter in any case, is influenced by the fixed hydrogen power converters of high productivity.
  • quasi-stationary sources of microwave radiation for the type of discharge given are cheaper, smaller and less heavy, which is essential for selecting a converter variable.
  • the manufacture of the converter equipped with a power of the order of 1 Kilowatt will not cause any essential difficulties. Therefore, as described above, in the optimization of power flows (first of all, the ratio P ⁇ / P chem i ca ) > said converter represents the urgent need to obtain an alternative design of the System Prototype selected.
  • the conceptual design variable of the Prototype of the converter - based on the quasi-stationary microwave discharge - will be described below.
  • the scheme of the discharge of the torch of quasi-stationary microwaves is also indicated.
  • the discharge of the type provided exists in an atmosphere of 500/1000 watts.
  • the output of the synthesis gas from the converter could reach the order of 10-20 nanometers 3 / hour, which corresponds to a deposit of energy in the initial reagent, of the order of 0.5 eV / mol.
  • Said level of energy deposit is characteristic for the above described scheme of the converter based on the discharge of periodic impacts. In this way, the system provided can represent itself, as the Catalyst of the conversion process into a fairly low plasma energy reservoir.
  • the scheme described above is convenient for carrying out the partial process of oxidation of the fuel in a synthesis gas.
  • the previously heated reagent 5 is not needed, since the reaction is exothermic.
  • a basic portion of energy enters the system, not as a discharge plasma, but during combustion.
  • the assigned energy can be partially used to perform the vapor-oxygen conversion of the fuel.
  • the proportions of a mixture of fuel vapor, water and air will be provided, so that the entire conversion process is transformed into a thermoneutral procedure.
  • the diagram of the converter prototype block is shown in Figure 3.
  • For the evaporation of fuel and water water - in the steam-oxygen conversion variable), two steam generators are used.
  • the fuel vapor and water are mixed with air and move over an inlet of a plasmotron of the microwave torch.
  • the parameters of a microwave radiation source which can be used to design the Prototype of the converter, of the type provided above (as an example of a radiation source, the standard magnetron of a domestic microwave oven can be considered):
  • the mixture of fuel, water and air vapors sends us to a discharge zone or zone through a tobo, which is simultaneously constituted as an internal explorer of a coaxial line
  • the output of the microwave radiation from the resonator in a coaxial line is carried out with the help of a closed current circuit.
  • the reactor chamber also represents the microwave radiation resonator.
  • the converter's electrodynamic scheme is represented by the system consisting of two microwave resonators connected to each other. The presence of the resonator in the reactor chamber will facilitate interruption. Virtually all gas passes through a plasma torch. A high degree of evolutionary operation of the reagent will be achieved, through the plasma.
  • One of the advantages of the system described above is its strength. To power a magnetron it is possible to use the simple power supply, which is not contained in the rectifier. In contrast to the converter based on the discharge of periodic impacts, depending on the design provided above, the modulator that feeds the magnetron may not be required. It is also possible to use the magnetron of a microwave oven. The system is distinguished by its simplicity and its low price.

Abstract

The method involves pre-heating the raw materials, fuel and water, which have been previously evaporated in corresponding evaporators (EC, EA) and the air coming from the corresponding feeder (AA) in a heat exchanger (IC). From said exchanger, the materials are fed into an input chamber (CE), then to a mixing chamber (CM) and finally to a plasma-catalytic reactor (RQ) assisted by a microwave generator (GM). The corresponding synthesis gas (GS) that is used as heat source in the heat exchanger (IC) is obtained from the plasma-catalytic reactor in which the plasma acts as catalyst accelerating the conversion of fossil fuel into synthesis gas.

Description

MÉTODO Y APARATO PARA LA CONVERSIÓN METHOD AND APPARATUS FOR CONVERSION
PLASMACATALÍTICA DE COMBUSTIBLES FÓSILES EN UNPLASMACATALÍTICA DE FOSSIL FUELS IN A
GAS RICO EN -HIDRÓGENOGAS RICO IN HYDROGEN
D E S C R I P C I Ó ND E S C R I P C I Ó N
OBJETO DE LA INVENCIÓNOBJECT OF THE INVENTION
La invención se refiere a un aparato y a un método para la conversión plasmacatalítica de combustibles fósiles en un gas rico en hidrógeno. El método permite llevar a cabo la reacciones de conversión vapor-aire/combustible fósil o aire/combustible fósil. El aire es precalentado, una parte del combustible fósil es quemado en la cámara de combustión, los residuos se mezclan con los productos de combustión y, opcionalmente, con vapor de agua, y los reactivos calentados se introducen en el reactor plasmacatalítico donde el plasma actúa como catalizador acelerando el proceso de conversión del combustible fósil.The invention relates to an apparatus and a method for plasmacatalytic conversion of fossil fuels into a hydrogen rich gas. The method allows to carry out the vapor-air / fossil fuel or air / fossil fuel conversion reactions. The air is preheated, a part of the fossil fuel is burned in the combustion chamber, the waste is mixed with the combustion products and, optionally, with water vapor, and the heated reagents are introduced into the plasmacatalytic reactor where the plasma acts as a catalyst accelerating the process of fossil fuel conversion.
El método objeto de la invención, en comparación con otros métodos conocidos de conversión de combustibles fósiles en gas rico en hidrógeno, logra una mayor conversión del combustible fósil, mejora la composición de la mezcla del gas producido como consecuencia del proceso y mejora la eficiencia energética.The method object of the invention, in comparison with other known methods of converting fossil fuels into hydrogen-rich gas, achieves greater conversion of the fossil fuel, improves the composition of the gas mixture produced as a result of the process and improves energy efficiency .
ANTECEDENTES DE LA INVENCIÓNBACKGROUND OF THE INVENTION
De acuerdo con todos los análisis de los especialistas en el sector el hidrógeno se considera como el combustible que se utilizará en el siglo XXI.According to all the analyzes of specialists in the sector, hydrogen is considered as the fuel that will be used in the 21st century.
En la utilización de la célula combustible, el principal problema que se plantea radica en cómo conseguir el hidrógeno para alimentar las células de combustible. Actualmente, una célula de combustible de alta tecnología necesita 1 m3/h de hidrógeno para producir 1 Kwh. La única forma técnico-económica viable para la utilización de células de combustible implicará el disponer de una mini-fábrica química, llamada reformador o convertidor de combustible, para convertir los combustibles fósiles o alcoholes en gas rico en hidrógeno (con procesos como la conversión- reforma del vapor, oxidación parcial, conversión-reforma auto-térmica, pirólisis catalítica, etc,).In the use of the fuel cell, the main problem The question is how to get hydrogen to fuel the fuel cells. Currently, a high-tech fuel cell needs 1 m 3 / h of hydrogen to produce 1 Kwh. The only viable technical-economic way for the use of fuel cells will involve having a chemical mini-factory, called a fuel reformer or converter, to convert fossil fuels or alcohols into hydrogen-rich gas (with processes such as conversion- steam reform, partial oxidation, auto-thermal conversion-reform, catalytic pyrolysis, etc,).
Existen cuatro "variables críticas" que determinan la utilización comercial del convertidor en un automóvil:There are four "critical variables" that determine the commercial use of the converter in a car:
- la primera es "con cuánta rapidez se puede poner en marcha el convertidor": el convertidor más eficiente hoy en día tarda alrededor de 5 minutos en calentarse;- the first is "how quickly the converter can be started up": the most efficient converter today takes about 5 minutes to warm up;
- la segunda es "la respuesta transitoria": cuánto tarda un automóvil en responder cuando el conductor pisa el acelerador; un motor de gasolina responde en milésimas de segundo, pero un convertidor que reacciona despacio hace que las respuestas del automóvil a las demandas del conductor sean lentas por lo que los conductores lo rechazarían;- the second is "the transient response": how long does it take a car to respond when the driver steps on the accelerator; a gasoline engine responds in thousandths of a second, but a converter that reacts slowly makes the car's responses to the driver's demands slow so the drivers would reject it;
- la tercera es que los "consumos de energía térmica y eléctrica" necesarios para cubrir las necesidades del proceso del convertidor, sean muy reducidos y estén dentro de unos parámetros que permitan ser cubiertos con parte de la energía generada por el motor a combustión interna o célula de combustible que utilicen el convertidor; y- the third is that the "thermal and electrical energy consumption" necessary to meet the needs of the converter process, are very small and are within parameters that allow it to be covered with part of the energy generated by the internal combustion engine or fuel cell that uses the converter; Y
- si los convertidores pudieran ser perfeccionados, entonces el último obstáculo a solucionar sería el "coste del reformador".- If the converters could be perfected, then the last obstacle to solve would be the "cost of the reformer".
En 1992, Arthur D. Little inició un programa, conjuntamente con un estudio DOE, para desarrollar opciones adicionales a la conversión a bordo de metanol como medio de suministro de hidrógeno para los vehículos de células de combustible. La fase 1 de este programa incluía un análisis de los conversores de poli combustible, las tecnologías de almacenamiento a bordo de hidrógeno y de los requisitos de i-t-ifraestructura del hidrógeno. La fase 2 implicará el desarrollo y ensayo de un conversor de 10 Kw y de una unidad de almacenamiento de hidrógeno de 1 kg de capacidad.In 1992, Arthur D. Little initiated a program, in conjunction with a DOE study, to develop additional options for conversion to Methanol board as a means of hydrogen supply for fuel cell vehicles. Phase 1 of this program included an analysis of the poly fuel converters, hydrogen on-board storage technologies and the requirements of the hydrogen infrastructure. Phase 2 will involve the development and testing of a 10 Kw converter and a 1 kg capacity hydrogen storage unit.
Las alternativas al suministro directo de hidrógeno a la célula de combustible incluyen tanques de hidrógeno líquido o hidrógeno comprimido, absorción sobre carbono y almacenamiento de hidruros.Alternatives to the direct supply of hydrogen to the fuel cell include liquid hydrogen or compressed hydrogen tanks, carbon absorption and hydride storage.
El hidrógeno líquido se ha probado en diversos vehículos desde los años 1970 en los Estados Unidos y en otros países. La densidad volumétrica ponderada del hidrógeno líquido, cuando se utiliza con la célula de combustible, es la misma o mejor que la del combustible diesel usado con un motor de combustión interna. Sus inconvenientes incluyen una alta energía para la licuefacción, problemas de manipulación y la inevitable liberación de gas en ebullición.Liquid hydrogen has been tested in various vehicles since the 1970s in the United States and other countries. The weighted volumetric density of liquid hydrogen, when used with the fuel cell, is the same or better than that of diesel fuel used with an internal combustion engine. Its drawbacks include high energy for liquefaction, handling problems and the inevitable release of boiling gas.
El hidrógeno comprimido a bordo es la tecnología más sencilla de conceptuar y se podría beneficiar de los recientes avances en materiales compuestos y mejoras de costes derivados del progreso en los vehículos propulsados por gas natural. Los tanques de alta presión construidos con materiales avanzados podrían proporcionar un rendimiento razonable, pero sólo un rendimiento volumétrico marginal. Los temas técnicos pendientes de resolución incluyen la permeabilidad de los cilindros, los estándares para el diseño de tanques para presiones más elevadas y el diseño del compresor de hidrógeno para repostar.Compressed hydrogen on board is the simplest technology to conceptualize and could benefit from the recent advances in composite materials and cost improvements derived from the progress in vehicles powered by natural gas. High pressure tanks constructed of advanced materials could provide reasonable performance, but only marginal volumetric performance. Technical issues pending resolution include cylinder permeability, standards for tank design for higher pressures and hydrogen compressor design for refueling.
Varias compañías están desarrollando procesadores de poli combustibles, con diferentes procesos, tales como: Conversión de vapor (Steam reforming SR): este proceso representa básicamente una conversión catalítica de metano y agua (vapor) en hidrógeno y dióxido de carbono, a través de tres etapas principales. Numerosas compañías, concretamente Haldor-Topsoe (EEUU-Dinamarca), Howe-Baker Engineers (EEUU), IFI/ONSI (EEUU), Ballard Power Systems (Canadá) y Chiyoida (Japón) han trabajado en el diseño y construcción de este sistema.Several companies are developing poly fuel processors, with different processes, such as: Steam reforming SR: This process basically represents a catalytic conversion of methane and water (steam) into hydrogen and carbon dioxide, through three main stages. Numerous companies, namely Haldor-Topsoe (USA-Denmark), Howe-Baker Engineers (USA), IFI / ONSI (USA), Ballard Power Systems (Canada) and Chiyoida (Japan) have worked on the design and construction of this system.
Oxidación parcial (PO): es un proceso exotérmico por el que se producen hidrógeno y dióxido de carbono a partir de combustibles de hidrocarburos (gasolina y otros) y oxígeno (o aire). Los procesos de PO tienen una serie de ventajas sobre los procesos de SR. Compañías tales como Arthur D. Little (EPYX), Chrysler Corp. e Hydrogen Burner Technologies (todas ellas de EEUU) han anunciado planes para el desarrollo de conversores de PO. Las etapas del conversor celular de combustible de PO de EPYX incluyen (1) vaporización del combustible (gasolina) mediante la aplicación de calor; (2) el combustible vaporizado se combina con una pequeña cantidad de aire en el reactor de oxidación parcial, produciendo hidrógeno y monóxido de carbono; (3) el vapor sobre el monóxido de carbono reacciona con un catalizador para convertir la mayor parte del monóxido de carbono y dióxido de carbono e hidrógeno adicional; (4) en la etapa de oxidación preferencial, el aire inyectado reacciona con el monóxido de carbono restante sobre el catalizador para formar dióxido de carbono y vapor de agua, dejando gases ricos en hidrógeno.Partial oxidation (PO): it is an exothermic process whereby hydrogen and carbon dioxide are produced from hydrocarbon fuels (gasoline and others) and oxygen (or air). PO processes have a number of advantages over SR processes. Companies such as Arthur D. Little (EPYX), Chrysler Corp. and Hydrogen Burner Technologies (all of them from the US) have announced plans for the development of PO converters. The stages of the EPYX PO cell fuel converter include (1) vaporization of the fuel (gasoline) by the application of heat; (2) the vaporized fuel is combined with a small amount of air in the partial oxidation reactor, producing hydrogen and carbon monoxide; (3) the vapor on the carbon monoxide reacts with a catalyst to convert most of the carbon monoxide and carbon dioxide and additional hydrogen; (4) In the preferential oxidation stage, the injected air reacts with the remaining carbon monoxide on the catalyst to form carbon dioxide and water vapor, leaving hydrogen rich gases.
Conversión autotérmica (AR): en este proceso exotérmico, el combustible de hidrocarburo reacciona con una mezcla de agua y oxígeno. La energía liberada por la reacción de oxidación del hidrocarburo impulsa el proceso de conversión del vapor. Compañías como Rolls-Royce/Johnson-Autothermal conversion (AR): In this exothermic process, the hydrocarbon fuel reacts with a mixture of water and oxygen. The energy released by the hydrocarbon oxidation reaction drives the steam conversion process. Companies like Rolls-Royce / Johnson-
Matthey (Reino Unido) e International Fuel Cell/ONSI (EEUU) están trabajando en el desarrollo del proceso de AR.Matthey (United Kingdom) and International Fuel Cell / ONSI (USA) are working on the development of the AR process.
Descomposición térmica (TD) (o pirólisis, craqueo) del combustible de hidrocarburo: en este proceso se produce hidrógeno y carbono limpio. La demanda de energía por mol de hidrógeno producido a partir del metano es algo inferior que para el proceso de SR. La evaluación técnico-económica de la producción de hidrógeno por los procesos de SR, PO y TD indica que el coste (en US$/1000 m3) de hidrógeno producido por TD (US$ 57) es más bajo que para los procesos de SR (US$ 67) y PO (US$ 109).Thermal decomposition (TD) (or pyrolysis, cracking) of hydrocarbon fuel: hydrogen and clean carbon are produced in this process. The energy demand per mole of hydrogen produced from methane is somewhat lower than for the SR process. The technical-economic evaluation of hydrogen production by SR, PO and TD processes indicates that the cost (in US $ / 1000 m 3 ) of hydrogen produced by TD (US $ 57) is lower than for the processes of SR (US $ 67) and PO (US $ 109).
Plasma catálisis: es otro proceso de conversión de hidrocarburos ayudada por plasma; en este proceso se utiliza plasma no térmico frío como fuente de una especie activa, con el fin de acelerar las reacciones químicas. Los requisitos de energía del proceso se pueden satisfacer, en este caso, a través de energía térmica (baja temperatura), por lo que el plasma actúa como catalizador. DAVID SYSTEMS AND TECNOLOGY S.L. está üivestigando en esta línea y ha desarrollado un conversor de combustibles plasmacatalítico.Plasma catalysis: is another process of conversion of hydrocarbons helped by plasma; in this process cold non-thermal plasma is used as a source of an active species, in order to accelerate chemical reactions. The energy requirements of the process can be satisfied, in this case, through thermal energy (low temperature), so that the plasma acts as a catalyst. DAVID SYSTEMS AND TECNOLOGY S.L. He is working on this line and has developed a plasmacatalytic fuel converter.
El plasma se puede producir a través de la acción de temperatoras muy altas, fuertes campos eléctricos o potentes campos magnéticos. En una descarga, los electrones libres ganan energía a partir de un campo eléctrico impuesto y la pierden a través de las colisiones. El plasma de descarga se caracteriza por elevadas temperatoras de los electrones y baja temperatura del gas, teniendo concentraciones de electrones de 109 a 1012 cm3 aproximadamente y ausencia de equilibrio térmico, lo que hace posible un plasma en el que la temperatura del gas quede próxima a la temperatura ambiente, para obtener un plasma en el que los electrones están lo suficientemente energizado como para causar la rotura de las uniones moleculares. En el caso de MPCR se rompen los enlaces moleculares de la mezcla de gas (agua + gasolina + aire) produciendo el combustible sintético (hidrógeno y monóxido de carbono).Plasma can be produced through the action of very high temperators, strong electric fields or powerful magnetic fields. In a discharge, free electrons gain energy from an imposed electric field and lose it through collisions. The discharge plasma is characterized by high electron temperators and low gas temperature, having electron concentrations of approximately 109 to 1012 cm 3 and absence of thermal equilibrium, which makes possible a plasma in which the gas temperature is close at room temperature, to obtain a plasma in which electrons are sufficiently energized to cause the breakage of molecular bonds. In the case of MPCR the molecular bonds of the gas mixture (water + gasoline + air) producing synthetic fuel (hydrogen and carbon monoxide).
Se ha observado que en los plasmas tiene lugar un amplio espectro de reacciones, entre las que se incluyen reacciones entre electrones y moléculas, iones y moléculas, iones y iones, y electrones y iones. En los últimos veinte años, han estado disponibles diferentes tipos de descarga. La disponibilidad de generadores de frecuencias de radio y de microondas ha centrado la atención, durante los últimos años, en el uso de descargas libres de electrodos.It has been observed that a wide spectrum of reactions takes place in plasmas, including reactions between electrons and molecules, ions and molecules, ions and ions, and electrons and ions. In the past twenty years, different types of downloads have been available. The availability of radio frequency and microwave generators has focused attention, in recent years, on the use of electrode-free discharges.
En el plasma no térmico frío, solamente las partículas cargadas (electrones, iones) ganan energía a partir del campo eléctrico aplicado, en tanto que las partículas neutras se mantienen casi a temperatura ambiente. El plasma no térmico frío se puede crear por una descarga eléctrica operada normalmente a presión reducida. Los plasmas de descarga son muy adecuados para la promoción de reacciones químicas en las que participan materiales térmicamente sensibles.In cold non-thermal plasma, only charged particles (electrons, ions) gain energy from the applied electric field, while neutral particles remain almost at room temperature. Cold non-thermal plasma can be created by an electric shock normally operated at reduced pressure. Discharge plasmas are very suitable for the promotion of chemical reactions in which thermally sensitive materials participate.
La energía eléctrica necesaria para mantener el estado de plasma se puede transmitir al gas de descarga ya sea mediante acoplamiento resistivo con electrodos internos, por acoplamiento capacitativo con electrodos externos o por acoplamiento inductivo con una bobina externa, o, en el caso de descarga de microondas, por medio de una estructura de onda lenta. Debido a la muchas especies reactivas en un plasma, no ha sido posible explica por completo los mecanismos de las reacciones químicas en un plasma.The electrical energy necessary to maintain the plasma state can be transmitted to the discharge gas either by resistive coupling with internal electrodes, by capacitive coupling with external electrodes or by inductive coupling with an external coil, or, in the case of microwave discharge , by means of a slow wave structure. Due to the many reactive species in a plasma, it has not been possible to fully explain the mechanisms of chemical reactions in a plasma.
Los reformadores producen un gas sintético formado principalmente por hidrógeno y monóxido de carbono, pero para poder utilizar dicho gas sintético en una célula de combustible es necesario eliminar los componentes del gas sintético mezclados con el hidrógeno.The reformers produce a synthetic gas formed mainly of hydrogen and carbon monoxide, but to be able to use said synthetic gas in a fuel cell it is necessary remove synthetic gas components mixed with hydrogen.
DESCRIPCIÓN DE LA INVENCIÓNDESCRIPTION OF THE INVENTION
5 En el método que la invención propone se llevan a cabo reacciones entre los hidrocarburos presentes en el combustible fósil y aire, o entre dichos hidrocarburos, vapor de agua y aire, comprendiendo dicho procedimiento las siguientes fases operativas:In the method proposed by the invention, reactions are carried out between the hydrocarbons present in the fossil fuel and air, or between said hydrocarbons, water vapor and air, said process comprising the following operational phases:
0 - Precalentar el aire.0 - Preheat the air.
Incinerar parte del combustible fósil, con lo que se obtienen unos productos de reacción y unos residuos. Mezclar dichos residuos con los productos de combustión y, opcionalmente con vapor de agua, con lo que se obtiene una 5 mezcla de reacción.Incinerate part of the fossil fuel, which results in reaction products and waste. Mixing said waste with the combustion products and, optionally with water vapor, whereby a reaction mixture is obtained.
Llevar dicha mezcla de reacción al interior de un reactor plasmacatalítico en donde el plasma actúa como catalizador acelerando la conversión del combustible fósü en syn-gas.Bring said reaction mixture into a plasmacatalytic reactor where the plasma acts as a catalyst accelerating the conversion of fossil fuel into syn-gas.
o Los detalles específicos de dicho proceso aparecen especificados tanto en la descripción detallada de la invención como en las reivindicaciones.o The specific details of said process are specified both in the detailed description of the invention and in the claims.
La invención concierne también al aparato para la puesta en práctica de 5 dicho método, aparato en el que participan un evaporador de combustible, un evaporador de agua y un alimentador de aire, que suministran las respectivas materias, a través de un intercambiador de calor, concretamente el aire y parte del combustible de una cámara de entrada y el agua y el resto del combustible a una cámara de mezcla, que recibe también las materias o provenientes de la cámara de entrada, alimentando dicha cámara de mezcla a un reactor químico asistido por un generador de microondas, para la obtención del gas de síntesis (syn-gas).The invention also concerns the apparatus for the implementation of said method, apparatus in which a fuel evaporator, a water evaporator and an air feeder are involved, which supply the respective materials, through a heat exchanger, specifically the air and part of the fuel from an inlet chamber and the water and the rest of the fuel to a mixing chamber, which also receives the materials or coming from the inlet chamber, said mixing chamber being fed to a chemical reactor assisted by a microwave generator, for the obtaining the synthesis gas (syn-gas).
DESCRIPCIÓN DE LOS DIBUJOSDESCRIPTION OF THE DRAWINGS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características del invento, de acuerdo con un ejemplo preferente de realización práctica del mismo, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:To complement the description that is being made and in order to help a better understanding of the characteristics of the invention, according to a preferred example of practical implementation thereof, a set of drawings is attached as an integral part of said description. In an illustrative and non-limiting manner, the following has been represented:
La Figura 1 muestra el esquema de un aparato (en forma de bloques) proporcionado por esta invención.Figure 1 shows the scheme of an apparatus (in the form of blocks) provided by this invention.
La Figura 2 muestra el esquema de la pre-cámara y de la cámara de mezcla de un aparato proporcionado por esta invención.Figure 2 shows the diagram of the pre-chamber and mixing chamber of an apparatus provided by this invention.
La Figura 3 muestra el esquema del reactor químico de mezcla de un aparato proporcionado por esta invención.Figure 3 shows the scheme of the chemical mixing reactor of an apparatus provided by this invention.
La Figura 4 muestra el esquema del reactor basado en una descarga de microondas cuasi-estacionaria.Figure 4 shows the reactor scheme based on a quasi-stationary microwave discharge.
DESCRIPCIÓN DETALLADADE LAINVENCIÓNDETAILED DESCRIPTION OF THE INVENTION
La invención proporciona un método para la conversión plasmacatalítica de un combustible fósil (MF) en gas sintético (syn-gas), en el que se llevan a cabo reacciones entre los hidrocarburos presentes en dichoThe invention provides a method for plasmacatalytic conversion of a fossil fuel (MF) into synthetic gas (syn-gas), in which reactions are carried out between the hydrocarbons present in said
MF y aire o entre dichos hidrocarburos, vapor de agua y aire, que comprende: precalentar el aire; incinerar parte del MF con lo que se obtienen unos productos de reacción y unos residuos; mezclar dichos residuos con los productos de combustión y, opcionalmente, con vapor de agua, con lo que se obtiene una mezcla de reacción; y llevar dicha mezcla de reacción al interior de un reactor plasmacatalítico en donde el plasma actúa como catalizador acelerando la conversión del MF en syn-gas.MF and air or between said hydrocarbons, water vapor and air, comprising: preheating the air; incinerate part of the MF with which reaction products and residues are obtained; mixing said wastes with the combustion products and, optionally, with water vapor, whereby a reaction mixture is obtained; and bringing said reaction mixture into a plasmacatalytic reactor where the plasma acts as a catalyst accelerating the conversion of MF into syn-gas.
En una realización particular, la aceleración plasmaquímica de conversión del MF en syn-gas se realiza bien pasando la mezcla de reacción a través de plasma de descarga periódica de impulsos en un descargador continuo de efecto pseudocorona a presión atmosférica, o bien pasando la mezcla de reacción a través de plasma de descarga de efecto antorcha cuasi- estacionaria con una longitud de impulso de radiación inferior a 100 milisegundos (ms).In a particular embodiment, the plasmachemical acceleration of conversion of the MF into syn-gas is carried out either by passing the reaction mixture through periodic pulse discharge plasma in a continuous pseudocoron effect arrester at atmospheric pressure, or by passing the mixture of reaction through quasi-stationary torch discharge plasma with a radiation pulse length of less than 100 milliseconds (ms).
En el reactor químico plasmacatalítico tiene lugar la reacción química de conversión del MF en syn-gas mediante la acción de una descarga de microondas periódica de impulsos sobre el gas precalentado previamente. La transformación química de la mezcla de gas procedente de la cámara de mezcla que se introduce en el reactor químico se convierte en una mezcla monóxido de carbono e hidrógeno portadora de energía tras la descarga de microondas sobre el gas precalentado previamente. En dicho reactor químico plasmacatalítico se establece un valor subcrítico de intensidad de campo eléctrico de impulsos de microondas, se inicia una descarga de inyectores de pseudocorona de microondas en los bordes de los elementos de la corona, y en los cabezales de los inyectores de microondas se establece un campo eléctrico igual o superior a 1.000 kV/cm. El establecimiento de este elevado campo eléctrico permite a los inyectores de microondas propagar durante un periodo de tiempo no mayor de 1 μs prácticamente hasta las paredes del reactor, ramificándose en el espacio de manera simultánea y llenando prácticamente por completo toda la sección de cruce de un reactor químico.In the plasmacatalytic chemical reactor the chemical reaction of conversion of the MF into syn-gas takes place by means of a periodic microwave discharge of impulses on the preheated gas previously. The chemical transformation of the gas mixture from the mixing chamber that is introduced into the chemical reactor is converted into a mixture of carbon monoxide and hydrogen carrying energy after microwave discharge on the preheated gas previously. In said plasmacatalytic chemical reactor a subcritical value of microwave pulse electric field strength is established, a discharge of microwave pseudocoron injectors is initiated at the edges of the crown elements, and at the heads of the microwave injectors establishes an electric field equal to or greater than 1,000 kV / cm. The establishment of this high electric field allows microwave injectors to propagate for a period of time not exceeding 1 μs practically up to the reactor walls, branching into space simultaneously and filling the entire cross section of a chemical reactor practically completely.
La fuente de energía de microondas genera el conjunto de impulsos con una duración del impulso comprendida entre 0,1 y 1 microsegundos (μs) y una relación de periodo de pulso a duración de pulso comprendida entre 100 y 1.000 en un intervalo de radiación de microondas incluido dentro de las bandas X y S (decímetros y centímetros), con potencia específica de impulso, que proporcionan el nivel necesario de campo eléctrico en el resonador y en los cabezales de los descargadores continuos de microondas.The microwave energy source generates the pulse set with a pulse duration between 0.1 and 1 microseconds (μs) and a pulse period to pulse duration ratio between 100 and 1,000 in a microwave radiation range included within the X and S bands (decimeters and centimeters), with specific impulse power, which provide the necessary level of electric field in the resonator and in the heads of the continuous microwave dischargers.
En general, se debe seleccionar un caudal total de los reactivos (Q) y una potencia específica media (W) a partir de las siguientes consideraciones: para realizar el proceso específico de catálisis de plasma con entrada de energía en plasma de 0,05-0,2 kWh/m3, de forma que el valor de entrada de plasma no sobrepase el 10% del valor de la entalpia del reactivo a la temperatura de trabajo.In general, a total reagent flow rate (Q) and a specific average power (W) should be selected from the following considerations: to perform the specific plasma catalysis process with plasma energy input of 0.05- 0.2 kWh / m 3 , so that the plasma input value does not exceed 10% of the enthalpy value of the reagent at the working temperature.
En una realización particular, la conversión plasma-catalítica del MF en syn-gas se realiza mediante reacción entre los hidrocarburos presentes en dicho MF, vapor de agua y aire, y las temperatoras de los reactivos a la entrada del reactor plasmacatalítico están comprendidas entre 800 K y 15.000 K. En este caso, la relación entre la parte incinerada del MF y su residuo está comprendida, preferentemente, entre 0,5 y 2, y la relación molar agua/aire será la apropiada.In a particular embodiment, the plasma-catalytic conversion of the MF into syn-gas is carried out by reaction between the hydrocarbons present in said MF, water vapor and air, and the reactant temperators of the inlet of the plasmacatalytic reactor are comprised between 800 K and 15,000 K. In this case, the ratio between the incinerated part of the MF and its residue is preferably between 0.5 and 2, and the water / air molar ratio will be appropriate.
En otra realización particular, la conversión plasma-catalítica del MF en syn-gas se realiza mediante reacción entre los hidrocarburos presentes en dicho MF y aire, y las temperaturas de los reactivos a la entrada del reactor plasmacatalítico están comprendidas entre 600 K y 1.100 K. En este caso, la relación entre la parte incinerada del MF y su residuo está comprendida, preferentemente, entre 0,4 y 2, y la relación molar aire/MF a la entrada del reactor plasmacatalítico está comprendida entre 16 y 20.In another particular embodiment, the plasma-catalytic conversion of the MF into syn-gas is carried out by reaction between the hydrocarbons present in said MF and air, and the temperatures of the reagents at the plasmacatalytic reactor inlet are between 600 K and 1,100 K. In this case, the ratio between the incinerated part of the MF and its residue is preferably between 0.4 and 2, and the air / MF molar ratio at the inlet The plasmacatalytic reactor is between 16 and 20.
La invención también proporciona un aparato para la conversión plasmacatalítica de un combustible fósil (MF) en un gas sintético (syn-gas) que comprende un calentador de aire y un reactor químico plasma-catalítico implementado dicho reactor como un resonador cilindrico de microondas para el tipo de onda Hll y fuente de energía de microondas comprendida dentro del intervalo de longitudes de onda de las bandas X y S, que se conecta al reactor y excita dentro del resonador una descarga periódica de impulsos en un descargador continuo de efecto pseudocorona con una duración del impulso comprendida entre 0,1 y 1 μs y una relación de duración periodo de pulso a pulso comprendida entre 100 y 1.000, y entre el calentador de aire y el reactor-resonador se localiza una cámara de combustión a lo largo de la línea de flujo de aire, teniendo dicha cámara de combustión 2 entradas diferentes para la entrada autónoma de la parte incinerada del MF y su residuo, opcionalmente mezclado con vapor de agua, en diferentes zonas de la cámara de combustión.The invention also provides an apparatus for plasmacatalytic conversion of a fossil fuel (MF) into a synthetic gas (syn-gas) comprising an air heater and a plasma-catalytic chemical reactor implemented said reactor as a cylindrical microwave resonator for the Hll wave type and microwave energy source within the range of wavelengths of the X and S bands, which is connected to the reactor and excites within the resonator a periodic pulse discharge in a continuous pseudocoron effect arrester with a duration of the pulse between 0.1 and 1 μs and a pulse-to-pulse period duration between 100 and 1,000, and a combustion chamber is located between the air heater and the reactor-resonator along the line of air flow, said combustion chamber having 2 different inputs for the autonomous entry of the incinerated part of the MF and its residue, optionally mixed or with water vapor, in different areas of the combustion chamber.
En una realización particular, la radiación de microondas desde el generador al resonador de microondas se realiza bien con la ayuda de una guía de onda rectangular a lo largo del eje del resonador o bien con la ayuda de una guía de onda rectangular a través de un lado lateral del resonador, localizándose en ambos casos en un resonador cilindrico un nodo de excitación de tipo de onda Hll entre la guía de onda y el resonador, que incluye un elemento de acople para la conexión resonador-guía de onda. Este elemento de acople del resonador con la guía de onda se diseña de forma que su valor proporciona un valor subcrítico de la intensidad de campo eléctrico de microondas para un diámetro específico del reactor- resonador químico.In a particular embodiment, microwave radiation from the generator to the microwave resonator is performed either with the help of a rectangular waveguide along the axis of the resonator or with the help of a rectangular waveguide through a lateral side of the resonator, in both cases being located in a cylindrical resonator an excitation node of wave type Hll between the waveguide and the resonator, which includes an coupling element for the resonator-waveguide connection. This resonator coupling element with the waveguide is designed so that its value provides a subcritical value of the intensity of Electric microwave field for a specific diameter of the chemical resonator reactor.
Los reflectores del extremo posterior del resonador de 5 microondas se pueden solapar con los elementos cómeos para la entrada de los reactivos y eliminación de los productos de reacción, o alternativamente, un reflector del extremo posterior del resonador de microondas se puede solapar con el elemento cónico para la entrada de reactivos y eliminación de los productos de reacción y otro reflector del extremo posterior del i o resonador de microondas se solapa con el nodo de excitación de tipo de onda Hll en la guía de onda cilindrica.The reflectors at the rear end of the microwave resonator may overlap with the comical elements for the reagent entry and removal of the reaction products, or alternatively, a reflector at the rear end of the microwave resonator may overlap with the conical element. for reagent entry and removal of reaction products and another reflector from the rear end of the microwave resonator io overlaps the Hll wave type excitation node in the cylindrical waveguide.
En una realización particular, el eje longitudinal de la guía de onda rectangular se localiza a una distancia de unas pocas longitudes deIn a particular embodiment, the longitudinal axis of the rectangular waveguide is located at a distance of a few lengths of
15 media onda de radiación en la guía de onda cilindrica con tipo de onda Hll desde un reflector del extremo posterior; el diámetro del resonador cilindrico se selecciona a partir de la condición de excitación de tipo onda Hll en la guía de onda; y la longitud del resonador es igual a un número entero de longitudes de media onda de radiación en una guía de onda15 half wave of radiation in the cylindrical waveguide with Hll wave type from a rear end reflector; the diameter of the cylindrical resonator is selected from the wave type excitation condition Hll in the waveguide; and the length of the resonator is equal to an integer number of half-wavelengths of radiation in a waveguide
2 o cilindrica con onda de tipo Hl 1.2nd cylindrical with wave of type Hl 1.
La descarga de microondas del descargador continuo de pseudocorona se inicia en el resonador de microondas a través de un conjunto de bordes metálicos insertados dentro del resonador en el área deThe microwave discharge of the continuous pseudocoron unloader is initiated in the microwave resonator through a set of metal edges inserted into the resonator in the area of
25 máximo campo eléctrico. La localización del borde de cada varilla se selecciona a partir de la condición de que, en los bordes de cada varilla y en los cabezales de los descargadores de microondas, haya un campo eléctrico igual o superior a 1.000 kV/cm.25 maximum electric field. The location of the edge of each rod is selected on the condition that, at the edges of each rod and on the heads of the microwave arresters, there is an electric field equal to or greater than 1,000 kV / cm.
30 El aparato proporcionado por esta invención comprende, además,The apparatus provided by this invention further comprises
(i) una cámara de combustión que, en una realización particular, incluye 2 sistemas en serie de inyectores concéntricos supersónicos, conectados de manera separada con las entradas de los reactivos y localizados a lo largo de la línea de flujo de gas, y (ii) un calentador implementa, por ejemplo, como un ñitercambiador recuperador de calor.(i) a combustion chamber that, in a particular embodiment, includes 2 series systems of concentric supersonic injectors, connected separately with the reagent inlets and located along the gas flow line, and (ii) a heater implements, for example, as a heat recovery ñitercambiador.
En una realización particular de esta invención, cuyo esquema se muestra en la Figura 1, se proporciona un aparato para la conversión plasmacatalítica de combustibles fósiles en un gas rico en hidrógeno que comprende una pre-cámara, una cámara de mezcla, una entrada de energía de microondas, un reactor químico plasmacatalítico, un intercambiador de calor, un evaporador de combustible fósil, un evaporador de agua, y una alimentación de aire.In a particular embodiment of this invention, whose scheme is shown in Figure 1, an apparatus for plasmacatalytic conversion of fossil fuels is provided in a hydrogen-rich gas comprising a pre-chamber, a mixing chamber, an energy input microwave, a plasma-catalytic chemical reactor, a heat exchanger, a fossil fuel evaporator, a water evaporator, and an air supply.
Dicho aparato funciona de la manera que se describe a continuación. El combustible fósil y el vapor de agua procedente de los evaporadores correspondientes y el aire procedente de un compresor por medio de unas tuberías aisladas térmicamente fluyen a un intercambiador de calor, donde se calientan adicionalmente por acción del calor de gas de síntesis (syn-gas) que sale del reactor químico. Una parte del vapor del combustible fósil (aproximadamente un 25% del total) y todo el aire alimentan la pre-cámara donde se forma una mezcla de dióxido de carbono y vapor de agua a elevada temperatura, normalmente entre 2.200 K y 2.400 K cuando el combustible fósil se quema. La mezcla resultante fluye a la cámara de mezcla donde se mezcla con vapor de agua y el resto del combustible fósil (aproximadamente un 75% del total) procedente del intercambiador de calor a través de unos inyectores. Tras la mezcla, se forma un gas con una temperatura comprendida normalmente entre 1.200 K y 1.400 K que fluye al reactor químico. La reacción de la conversión de la mezcla en syn-gas se realiza en el reactor químico bajo la acción de una descarga periódica de pulso de microondas. A continuación, el syn-gas fluye al intercambiador de calor y transfiere el calor al combustible fósil, agua y aire, que alimentan la pre-cámara y la cámara de mezcla.Said apparatus operates in the manner described below. Fossil fuel and water vapor from the corresponding evaporators and the air from a compressor by means of thermally insulated pipes flow to a heat exchanger, where they are additionally heated by the heat of synthesis gas (syn-gas ) leaving the chemical reactor. A part of the fossil fuel vapor (approximately 25% of the total) and all the air feed the pre-chamber where a mixture of carbon dioxide and water vapor is formed at a high temperature, usually between 2,200 K and 2,400 K when the Fossil fuel burns. The resulting mixture flows into the mixing chamber where it is mixed with water vapor and the rest of the fossil fuel (approximately 75% of the total) from the heat exchanger through injectors. After mixing, a gas is formed with a temperature normally between 1,200 K and 1,400 K flowing to the chemical reactor. The reaction of the conversion of the mixture into syn-gas is carried out in the chemical reactor under the action of a periodic discharge of microwave pulse. Next, the syn-gas flows to the heat exchanger and transfers the heat to the fossil fuel, water and air, which feed the pre-chamber and mixing chamber.
La pre-cámara tiene como finalidad quemar una parte del combustible fósil para alcanzar una temperatura elevada del gas que alimenta a la cámara de mezcla. La cámara de mezcla sirve para crear un flujo de gas con una temperatura y concentración de reactivo muy definidas, óptimas para la reacción de plasma catálisis, este objetivo se consigue mezclando una cierta cantidad de gas procedente de la pre-cámara con una cierta cantidad de combustible fósil y vapor de agua.The pre-chamber is intended to burn a part of the fossil fuel to reach an elevated temperature of the gas that feeds the mixing chamber. The mixing chamber serves to create a gas flow with a very defined temperature and reagent concentration, optimal for the catalysis plasma reaction, this objective is achieved by mixing a certain amount of gas from the pre-chamber with a certain amount of fossil fuel and water vapor.
La finalidad de la entrada de energía de microondas es la de la emisión de la energía de microondas, suministrando dicha energía al reactor químico, y comprende un modulador, un generador de microondas, un sistema de guía de ondas y una unidad para la entrada de energía de microondas al reactor químico. El modulador produce una secuencia de impulsos de voltaje periódicos que son necesarios para el funcionamiento del generador de microondas. En una realización particular, dicho generador de microondas es de tipo magnetrón. El sistema de guía de ondas suniinistra radiación de microondas al aparato.The purpose of the microwave energy input is the emission of microwave energy, supplying said energy to the chemical reactor, and comprises a modulator, a microwave generator, a waveguide system and a unit for the input of microwave energy to the chemical reactor. The modulator produces a sequence of periodic voltage pulses that are necessary for the operation of the microwave generator. In a particular embodiment, said microwave generator is of the magnetron type. The waveguide system provides microwave radiation to the device.
En el reactor químico tiene lugar la reacción química de conversión del combustible fósil en un gas rico en hidrógeno mediante la acción de una descarga de microondas periódica de impulsos sobre el gas precalentado previamente. La transformación química de la mezcla de gas procedente de la cámara de mezcla que se introduce en el reactor químico se convierte en una mezcla monóxido de carbono e hidrógeno portadora de energía tras la descarga de microondas sobre el gas precalentado previamente.The chemical reaction of the conversion of the fossil fuel into a hydrogen-rich gas takes place in the chemical reactor by means of a periodic microwave discharge of impulses on the preheated gas. The chemical transformation of the gas mixture from the mixing chamber that is introduced into the chemical reactor is converted into a mixture of carbon monoxide and hydrogen carrying energy after microwave discharge on the preheated gas previously.
El intercambiador de calor se encarga de la recuperación de calor del syn-gas de entrada al combustible fósil y del vapor de agua y aire que alimenta la pre-cámara y la cámara de mezcla y también de condensar el vapor de agua que no ha reaccionado y el combustible fósil para atrapar el polvo de carbón que puede formarse en el reactor. La temperatura máxima del syn-gas en la entrada del intercambiador de calor es de 1.200 K, mientras que la temperatura del syn-gas a la salida del intercambiador de calor es inferior a 100-C.The heat exchanger is responsible for the heat recovery of the fossil fuel input syn-gas and the water and air vapor that It feeds the pre-chamber and mixing chamber and also condenses the unreacted water vapor and fossil fuel to trap the coal dust that can form in the reactor. The maximum temperature of the syn-gas at the heat exchanger inlet is 1,200 K, while the temperature of the syn-gas at the heat exchanger outlet is below 100-C.
El evaporador de combustible fósil se encarga de la evaporación del combustible fósil líquido, mientras que el evaporador de agua se encarga de evaporar el agua. El aire se suministra al aparato mediante la alimentación de aire.The fossil fuel evaporator is responsible for evaporating the liquid fossil fuel, while the water evaporator is responsible for evaporating the water. The air is supplied to the device through the air supply.
Específicamente el aparato consta de los siguientes componentes:Specifically, the device consists of the following components:
- Un bloque de cámara de entrada (CE).- An input chamber block (CE).
- Un bloque de cámara de mezcla (CM).- A mixing chamber block (CM).
- Un bloque de entrada de energía de microondas (GM).- A microwave energy input block (GM).
- Un bloque del reactor químico (RQ).- A chemical reactor block (RQ).
- Un bloque del intercambiador de calor (IC). - Un bloque del evaporador de combustible (EC) .- A block of the heat exchanger (IC). - A block of the fuel evaporator (EC).
- Un bloque del evaporador de agua (EA).- A block of the water evaporator (EA).
- Un bloque de alimentación de aire (AA).- An air supply block (AA).
En la Figura 1 se muestra un esquema principal del dispositivo. El dispositivo funciona de la siguiente manera. El vapor de combustible y de agua de los correspondientes evaporadores y el aire del compresor, fluirán a través de unas tuberías aisladas térmicamente hacia el interior del intercambiador de calor. En esta parte se caldearán adicionalmente, recuperando el calor del gas de síntesis que emana del reactor químico. Una parte del vapor de combustible (el 25% del consumo total) y todo el aire, serán alimentados dentro de la cámara de entrada. Cuando se queme el combustible se formará la mezcla de dióxido de carbono y vapor de agua a alta temperatura (2200 a 2400 Kelvin). Esta mezcla fluye hacia el interior de la cámara de mezcla. El vapor de agua y una gran parte (el 75%) del combustible del intercambiador de calor fluirán hacia el interior de la cámara de mezcla, a través de los inyectores. Una vez que se ha realizado la mezcla, se formará un gas a una temperatura de 1200-1400 Kelvin, el cual fluye hacia el interior del bloque del reactor químico. La reacción de la conversión de la mezcla en un gas de síntesis se realiza en el reactor químico, bajo la acción de una descarga de impulsos periódicos de microondas. A continuación, el gas de síntesis fluye hacia el interior del intercambiador de calor, transfiriendo su calor al combustible líquido, al agua y al aire, que alimentan las cámaras de entrada y de mezcla.A main scheme of the device is shown in Figure 1. The device works as follows. Fuel and water vapor from the corresponding evaporators and compressor air will flow through thermally insulated pipes into the heat exchanger. In this part they will be heated further, recovering the heat of the synthesis gas that emanates from the chemical reactor. A part of the fuel vapor (25% of the total consumption) and all the air will be fed into the inlet chamber. When he burns Fuel will form the mixture of carbon dioxide and high temperature water vapor (2200 to 2400 Kelvin). This mixture flows into the mixing chamber. Water vapor and a large part (75%) of the heat exchanger fuel will flow into the mixing chamber, through the injectors. Once the mixture has been made, a gas will be formed at a temperature of 1200-1400 Kelvin, which flows into the chemical reactor block. The reaction of the conversion of the mixture into a synthesis gas is carried out in the chemical reactor, under the action of a periodic microwave pulse discharge. Next, the synthesis gas flows into the heat exchanger, transferring its heat to the liquid fuel, water and air, which feed the inlet and mixing chambers.
Descripción de la invención con un ejemplo de un equipo con las siguientes especificaciones técnicas:Description of the invention with an example of a device with the following technical specifications:
Productividad: hasta 17 nanometros3 de gas hidrógeno hora.Productivity: up to 17 nanometers 3 of hydrogen gas per hour.
Dimensiones y peso del reactor que incluye las cámaras de entrada y de mezcla:Dimensions and weight of the reactor that includes the inlet and mixing chambers:
longitud :35 cm diámetro : 10 cm peso :10 kglength: 35 cm diameter: 10 cm weight: 10 kg
Procedimiento de conversión: oxidación parcial y oxidación parcial asistida por vapor.Conversion procedure: partial oxidation and partial steam-assisted oxidation.
Composición del gas de síntesis en la salida PMPCR: hidrógeno + CO yComposition of the synthesis gas at the PMPCR output: hydrogen + CO and
C02 + N2 (del aire) + / C4 C0 2 + N 2 (from air) + / C 4
Porcentaje de hidrógeno en el gas de síntesis: no menos del 55%.Percentage of hydrogen in the synthesis gas: not less than 55%.
Porcentaje de la mezcla de 02 + C02 + alcalenos. menos del 2% Consumo de combustible, vapor de agua y aire para la producción de 1 nanometro3 de gas de síntesis: consumo de combustible: 0,288 kg consumo de vapor de agua: 0,108 kg consumo de aire : 1 , 018 kg consumo total de energía (eléctrica y térmica): menos de 1 kilovatio hora por 1 nanometro3 de gas de síntesis. consumo de energía eléctrica:menos de 0,1 kilovatio hora por 1 nanometro3 de gas de síntesis.Percentage of the mixture of 0 2 + C0 2 + alkanes. less than 2% Fuel consumption, water vapor and air for the production of 1 nanometer 3 of synthesis gas: fuel consumption: 0.288 kg water vapor consumption: 0.108 kg air consumption: 1.018 kg total energy consumption (electrical and thermal): less than 1 kilowatt hour per 1 nanometer 3 of synthesis gas. Electric power consumption: less than 0.1 kilowatt hour per 1 nanometer 3 of synthesis gas.
El bloque de la cámara de entrada (CE) está diseñado para quemar una parte de combustible, de manera que alcance la temperatura elevada de un gas, situado más allá de la cámara de mezcla. El bloque de la cámara de mezcla está diseñado para crear un caudal de gas con una alta concentración de reactivos definidos y temperatura, apropiadas para llevar a cabo la reacción catalítica del plasma. Lo anterior se logrará mezclando cierta cantidad de un gas que fluye desde la cámara de entrada, con combustible y vapor de agua.The inlet chamber (CE) block is designed to burn a portion of fuel, so that it reaches the high temperature of a gas, located beyond the mixing chamber. The mixing chamber block is designed to create a gas flow rate with a high concentration of defined reagents and temperature, appropriate to carry out the catalytic reaction of the plasma. This will be achieved by mixing a certain amount of a gas that flows from the inlet chamber, with fuel and water vapor.
El vapor de combustible fluye desde el intercambiador de calor (IC) hacia el interior de la cámara de entrada (CE) a una temperatora de 340°C y con un consumo de 1,050 kg hora. El aire fluye desde el intercambiador de calor hacia el interior de la cámara de entrada a una temperatora de 400°C y con un consumo de 15,265 kg hora. En la cámara de entrada se inyectan unos chorros de combustible y aire a través de unos inyectores individuales (I) (véase la Figura 2). La mezcla de combustible y aire, cuya cantidad medida en chorros corresponde a la siguiente ecuación esto- quiométrica: 6,81CnH22+112,402+414N2=74,93C02+74,93H20-r-414N2 (1), dará como resultado la combustión del combustible y la formación de dióxido de carbono y agua a una temperatora de 2320°Kelvin. Lo anterior forma un caudal de gas cuya composición está calculada de la manera siguiente: C02 - 13,29%; H20 - 13,29%; N2 - 73,42%, con un consumo de 16,002 kg hora. El caudal adicional de este gas caliente es alimentado a la cámara de mezcla (CM) (véase la Figura 2). El vapor de combustible fluirá desde el intercambiador de calor hasta el interior de la cámara de mezcla a una temperatora de 340°C y con un consumo de 3,270 kg hora. El vapor de agua fluirá desde el intercambiador de calor hasta el interior de la cámara de mezcla a una temperatura de 400°C y con un consumo de 1,620 kg hora. En la cámara de mezcla, los chorros de combustible y de agua son inyectados radialmente a través de unos inyectores. La siguiente mezcla de gases se forma después de mezclar agitadamente estos chorros con un gas caliente (calculada de la manera siguiente): CnH22 - 3,15%; H20 - 24,43%; C02 - 11,10%; N2 - 61,32% . La temperatura de esta mezcla de gas es de 1730°Kelvin.Fuel vapor flows from the heat exchanger (IC) into the inlet chamber (CE) at a temperature of 340 ° C and with a consumption of 1,050 kg hour. The air flows from the heat exchanger into the inlet chamber at a temperature of 400 ° C and consumes 15,265 kg hours. Fuel and air jets are injected into the inlet chamber through individual injectors (I) (see Figure 2). The mixture of fuel and air, whose quantity measured in jets corresponds to the following stoichiometric equation: 6.81C n H 22 +112.40 2 + 414N 2 = 74.93C0 2 + 74.93H 2 0-r-414N 2 (1), will result in the combustion of fuel and the formation of carbon dioxide and water at a temperature of 2320 ° Kelvin. The above forms a gas flow whose composition is calculated as follows: C0 2 - 13.29%; H 2 0 - 13.29%; N 2 - 73.42%, with a consumption of 16,002 kg hour. The additional flow rate of this hot gas is fed to the mixing chamber (CM) (see Figure 2). The fuel vapor will flow from the heat exchanger to the interior of the mixing chamber at a temperature of 340 ° C and with a consumption of 3,270 kg hour. Water vapor will flow from the heat exchanger to the interior of the mixing chamber at a temperature of 400 ° C and with a consumption of 1,620 kg hour. In the mixing chamber, the fuel and water jets are injected radially through injectors. The following gas mixture is formed after agitatingly mixing these jets with a hot gas (calculated as follows): C n H 22 - 3.15%; H 2 0 - 24.43%; C0 2 - 11.10%; N 2 - 61.32%. The temperature of this gas mixture is 1730 ° Kelvin.
La distribución de los chorros de combustible y de aire en la cámara de entrada (CE), se ha descrito con la ayuda de una proporción semi-empírica propuesta en [1], para unos chorros turbulentos de libre caudal. Según las mediciones experimentales y las proporciones teóricas resumidas en [1], la longitud de una posición inicial del núcleo no perturbado de un chorro turbulento, viene determinada por la expresión:The distribution of the fuel and air jets in the inlet chamber (CE) has been described with the help of a semi-empirical proportion proposed in [1], for turbulent jets of free flow. According to the experimental measurements and the theoretical proportions summarized in [1], the length of an initial position of the undisturbed core of a turbulent jet is determined by the expression:
Figure imgf000020_0001
Figure imgf000020_0001
La distancia desde los inyectores hasta una cierta región de un chorro turbulento expandido, dotado de la concentración L ya establecida, está asociada con el tamaño de la intersección del chorro D, por la siguiente proporción [1]The distance from the injectors to a certain region of an expanded turbulent jet, provided with the concentration L already established, is associated with the size of the intersection of the jet D, by the following proportion [1]
L=(1,7-2,3)D (4).L = (1.7-2.3) D (4).
Por lo tanto, para reducir la longitud del mezclador es necesario reducir el diámetro de su canal. No obstante, para hacer posible lo anterior hasta que el valor L sea igual que la longitud de una región inicial del núcleo no perturbado de un chorro (de manera que la concentración de gas sea uniforme en la sección del canal), por tanto, el diámetro mínimo del mezclador tendría N inyectoresTherefore, to reduce the length of the mixer it is necessary to reduce the diameter of its channel. However, to make the above possible until the value L is equal to the length of an initial region of the nucleus not disturbed from a jet (so that the gas concentration is uniform in the section of the channel), therefore, the minimum diameter of the mixer would have N injectors
5 Dsm=N0'5 *(2,5-3,5)d, (5).5 D sm = N 0 ' 5 * (2.5-3.5) d, (5).
De esta manera, la distancia sobre la que se va a mezclar el gas viene determinada por la expresión (3). La cantidad mínima de inyectores, que están uniformemente situados sobre una cara extrema del canal del i o mezclador (véase la Figura 2) en la cual se realizará una mezcla torbulenta de varios componentes de sustancias mixtas a través de los chorros siguientes, viene determinada por la expresión (5).In this way, the distance over which the gas is to be mixed is determined by the expression (3). The minimum number of injectors, which are uniformly located on an end face of the channel of the mixer (see Figure 2) in which a turbulent mixing of various components of mixed substances will be performed through the following jets, is determined by the expression (5).
Los cálculos numéricos se realizaron asumiendo que se ha propor- 15 cionado el diámetro del mezclador y que es igual a Dm=3sm, y el diámetro del inyector no debería ser menor que 0,lmm (d, > 0,lmm), para evitar la contaminación del canal del inyector impulsada a través del mismo por las sustancias. Se determinó la velocidad del gas en el inyector por medio de la expresión:The numerical calculations were performed assuming that the diameter of the mixer has been provided and that it is equal to D m = 3sm, and the diameter of the injector should not be less than 0, lmm (d,> 0, lmm), for avoid contamination of the injector channel driven through it by substances. The speed of the gas in the injector was determined by means of the expression:
Figure imgf000021_0001
Figure imgf000021_0001
25 en la que Q es el consumo total de gas (en g/s), n es la concentración de gas, (μm/NA) el peso de una molécula (NA - número avogrado). De las fórmulas mencionadas anteriormente se desprende entonces que para los inyectores cuyos diámetros sean iguales a 0,lmm, 0,2mm, 0,3mm, 0,4mm, se darán las siguientes cantidades de inyectores N, de distancias L, en las25 in which Q is the total gas consumption (in g / s), n is the gas concentration, (μm / N A ) the weight of a molecule (N A - avocado number). It follows from the formulas mentioned above that for the injectors whose diameters are equal to 0, lmm, 0.2mm, 0.3mm, 0.4mm, the following quantities of injectors N, of distances L, will be given in the
3 o que existirá una mezcla de gas, y la velocidad del gas en el inyector U.
Figure imgf000022_0001
3 or that there will be a mixture of gas, and the speed of the gas in the injector U.
Figure imgf000022_0001
N 90 22 10 6N 90 22 10 6
L(sm) 1,2 2,4 3,6 4,8L (sm) 1.2 2.4 3.6 4.8
U(sm/seg) 5000 1250 555 312U (sm / sec) 5000 1250 555 312
Se conoce que la mejor mezcla se proporciona inyectando los chorros de un componente de gas en flujo cruzado con otro componente en el caudal. De esta manera, existen dos mecanismos de organización del procedimiento de la mezcla. En la operación (2) se realiza la mezcla de manera que los chorros, en interacción con un caudal y entre ellos mismos, rellenen uniformemente la sección de la cámara de mezcla (principio de distribución umforme de los chorros: considerándose aquí que la profundidad de penetración de un chorro en un caudal de arrastre descendente debería constituir una cuarta parte del diámetro del chorro). En el otro mecanismo (3), se considera que la mezcla es más efectiva con el impacto intensivo de los chorros entre sí (es el principio de los chorros que colisionan intensamente, aquí la profundidad de penetración de los chorros en un caudal de arrastre descendente no debería ser menor que el radio del mezclador). Para calcular los parámetros de la cámara de mezcla por el principio de distribución uniforme de los chorros, se utilizó la siguiente proporción (2):It is known that the best mixture is provided by injecting the jets of a gas component in cross flow with another component in the flow. In this way, there are two mechanisms for organizing the mixing procedure. In operation (2) the mixing is carried out so that the jets, in interaction with a flow rate and between themselves, uniformly fill the section of the mixing chamber (principle of umform distribution of the jets: considering here that the depth of penetration of a jet into a downward flow rate should constitute a quarter of the diameter of the jet). In the other mechanism (3), the mixture is considered to be more effective with the intensive impact of the jets on each other (it is the principle of the jets that collide intensely, here the depth of penetration of the jets in a downward flow rate should not be less than the mixer radius). To calculate the parameters of the mixing chamber by the principle of uniform distribution of the jets, the following proportion (2) was used:
H=0,25Dmezclador,H/d2=2,2q0'5, q=Pl Vl 2/p2 2 (7).H = 0.25D mixer, H / d 2 = 2,2q 0 '5, q = Vl Pl 2 / p 2 2 (7).
En la que, H es la profundidad de penetración de un chorro en un caudal de arrastre descendente; p y v constituyen la densidad y velocidad del gas, los índices 1 y 2 se refieren a los chorros inyectados radialmente y al gas caliente emanado de la cámara de inyección; d2 es un diámetro del inyector. Estando los diámetros del mezclador y del inyector relacionados con la proporción:Wherein, H is the depth of penetration of a jet in a downward flow rate; pyv constitute the density and velocity of the gas, indices 1 and 2 refer to the radially injected jets and the hot gas emanating from the injection chamber; d 2 is a diameter of the injector. Being the diameters of the mixer and injector related to the proportion:
Q = l,3.10-2 .(Dmezclador /d2 )2 (8). El cálculo numérico muestra que:Q = l, 3.10 - 2. (D mixer / d 2) 2 (8). The numerical calculation shows that:
d2 = nezclador ¡^ (9) .d 2 = nezclador ¡^ (9).
Es decir, que el diámetro del inyector debería ser 17 veces menor que el diámetro de la cámara de mezcla. En caso que el diámetro de la cámara de desplazamiento sea igual que 3sm, entonces los diámetros de los inyectores deberían ser igual que 0,17sm.That is, the diameter of the injector should be 17 times smaller than the diameter of the mixing chamber. In case the diameter of the displacement chamber is equal to 3sm, then the diameters of the injectors should be equal to 0.17sm.
Para calcular la mezcla organizada bajo el principio de colisión intensa de los chorros, se utilizó la siguiente proporción:To calculate the mixture organized under the principle of intense collision of the jets, the following proportion was used:
Z > 0,5Dmezclador, z.a/d2 = 0,335 a=0,07 (10).Z > 0.5D mixer , za / d 2 = 0.335 a = 0.07 (10).
En la que, z es la longitud del núcleo no perturbado de un chorro, entonces los diámetros del mezclador y del myector se relacionan mediante:Where, z is the length of the undisturbed core of a jet, then the diameters of the mixer and the meter are related by:
Dmezclador ^0d2 (11) .Mixer ^ 0d 2 (11).
De esta manera, al realizar la mezcla por el principio de colisión intensiva de los chorros, el diámetro del myector debería ser unas 10 veces menor que el diámetro de la mezcla.Thus, when mixing by the principle of intensive collision of the jets, the diameter of the jet should be about 10 times smaller than the diameter of the mixture.
De esta manera, los cálculos realizados bajo la fórmula (6) permitirán determinar el número de inyectores necesarios para inyectar radialmente el combustible, el aire y el agua.In this way, the calculations made under the formula (6) will allow to determine the number of injectors necessary to radially inject the fuel, air and water.
-'- 'combustible = -^ . ^ agua = J , 1 ^ agua = -^"-'- 'fuel = - ^. ^ water = J, 1 ^ water = - ^ "
El bloque de entrada de energía de las microondas (GM) está diseñado para la emisión de energía de las microondas, para suministrarla hacia el Prototipo y para introducirla dentro del reactor, y consta de un modulador, un generador de microondas, un sistema de guía de ondas y una unidad para la entrada de energía de las microondas dentro del reactor Prototipo.The microwave power input block (GM) is designed for the emission of energy from microwaves, to supply it to the Prototype and to introduce it into the reactor, and consists of a modulator, a microwave generator, a waveguide system and a unit for microwave energy input inside the prototype reactor.
El modulador produce una secuencia de impulsos periódicos de tensión, que son necesarios para la operación del generador de microondas. El generador de microondas es del tipo magnetrón. El sistema de guía de ondas suministra la radiación de las microondas hacia el Prototipo.The modulator produces a sequence of periodic voltage pulses, which are necessary for the operation of the microwave generator. The microwave generator is of the magnetron type. The waveguide system supplies the microwave radiation to the Prototype.
Dado que el consumo de energía eléctrica óel es igual que 0,1 kilovatios hora por 1 nanometro3 de gas de síntesis y la productividad del Prototipo Q = 17 nanometros3 de gas hidrógeno hora, consecuentemente, la potencia media del generador de microondas Wmedia es de:Since the electric power consumption or the same is 0.1 kilowatt hours per 1 nanometer 3 of synthesis gas and the productivity of Prototype Q = 17 nanometers 3 of hydrogen gas hour, consequently, the average power of the microwave generator W average is:
-nedfa = εel *Q= 1,7 kilovatios- nedf a = ε the * Q = 1.7 kilowatts
La investigación del efecto catalizador del plasma ha establecido que la duración de la radiación p debe estar comprendida entre 0,5-1 μs. De esta manera, la potencia de impulsos Wimp es de:The investigation of the catalytic effect of plasma has established that the duration of the radiation p must be between 0.5-1 μs. In this way, the pulse power W imp is:
imp = Wmedia lτ= 1,7 Megavatios imp = W average lτ = 1.7 Megawatts
Existe un sistema de microondas que cumple con los requisitos anteriores. Se conoce con el nombre de "Buton" . Los parámetros del sistema "Buton" se muestran a continuación:There is a microwave system that meets the above requirements. It is known by the name of "Buton". The "Buton" system parameters are shown below:
Parámetros de la radiación de las microondas:Microwave radiation parameters:
frecuencia de radiación : 2,9 Gigaherzios; duración del impulso de radiación : 0,5-1 μs; repetición del impulso : hasta lKiloherzio; potencia del impulso : 1,7 Megavatios; potencia media : 1,7 Kilovatios; longitud de onda de la radiación : 10 sm.radiation frequency: 2.9 Gigaherzios; radiation pulse duration: 0.5-1 μs; impulse repetition: up to lKiloherzio; pulse power: 1.7 Megawatts; average power: 1.7 Kilowatts; radiation wavelength: 10 sm.
El reactor químico de plasma (RQ) está diseñado para favorecer la reacción química mediante la acción de una descarga de microondas de impulso periódico, sobre un gas previamente caldeado.The chemical plasma reactor (RQ) is designed to favor the chemical reaction by the action of a periodic impulse microwave discharge on a previously heated gas.
La transformación química de la mezcla de gas, que fluye de la cámara de mezcla y que penetra en el reactor químico a través del portador de energía CO y H2, se realizó después del efecto producido por la descarga de las microondas sobre el gas previamente caldeado. De esta manera, la reacción total del procedimiento efectuado en la cámara química se describirá por medio de la siguiente ecuación estoquiométrica:The chemical transformation of the gas mixture, which flows from the mixing chamber and enters the chemical reactor through the carrier of energy CO and H 2 , was carried out after the effect produced by the discharge of microwaves onto the gas previously heated. In this way, the total reaction of the procedure carried out in the chemical chamber will be described by means of the following stoichiometric equation:
21,24CnH22 + 74,93C02 + 414N2 + 164,93H20 = 308CO + 398,7 H2 +21.24C n H 22 + 74.93C0 2 + 414N 2 + 164.93H 2 0 = 308CO + 398.7 H 2 +
414N2 (2)414N 2 (2)
Forma la mezcla de la siguiente composición: H2 - 33,2%; CO -Form the mixture of the following composition: H 2 - 33.2%; CO -
26,2%; N2 - 38,5%; CH4 - 0,2%; C02 - 0,2%; H20 - 0,35%; C^ - 0,7% a una temperatura de 1170°Kelvin y con un consumo de gas de 32,366 kg hora. De esta manera, el Prototipo produce 25 nanometros3 de gas de síntesis hora del compuesto: H2 - 55 ,33 % ; CO - 44,67 % .26.2%; N 2 - 38.5%; CH 4 - 0,2%; C0 2 - 0.2%; H 2 0-0.35%; C ^ - 0.7% at a temperature of 1170 ° Kelvin and with a gas consumption of 32,366 kg hour. In this way, the Prototype produces 25 nanometers 3 of synthesis gas hour of the compound: H 2 - 55, 33%; CO - 44.67%.
Para calcular el diámetro del reactor químico. El Prototipo utiliza el sistema de generación de microondas "Buton", cuya frecuencia es de v=2,9 Gigaherzios. La longitud de onda en el vacío Ü0 para esta frecuencia es de: λ0 = c/v = 103 mm (c=2,99* 108 m/s - velocidad de la luz en el vacío). Para el método más bajo de generación Hn, la longitud de onda crítica λcr y el diámetro crítico de la guía de ondas Dcr y λ0 están comprendidos en la proporción:To calculate the diameter of the chemical reactor. The Prototype uses the "Buton" microwave generation system, whose frequency is v = 2.9 Gigaherz. The vacuum wavelength Ü 0 for this frequency is: λ 0 = c / v = 103 mm (c = 2.99 * 10 8 m / s - speed of light in a vacuum). For the lowest generation method H n , the critical wavelength λ cr and the critical diameter of the waveguide D cr and λ 0 are comprised in the proportion:
λcr = λ0 ; λcr = 3,41*Dcr/2.λ cr = λ 0 ; λ cr = 3.41 * D cr / 2.
Permitiendo así determinar el Dcr: Dcr = 60,4 mm.Thus allowing to determine the D cr : D cr = 60.4 mm.
Para el siguiente método de ó01, la longitud de onda crítica λcr* es de: λcr = 2,6*Dcr72.For the following method of or 01 , the critical wavelength λ cr * is: λ cr = 2.6 * D cr 72.
Por tanto, el diámetro crítico de la guía de ondas Dc es de: DC1* = 79,2 mm.Therefore, the critical diameter of the waveguide D c is: D C1 * = 79.2 mm.
El diámetro del reactor químico D deberá permitir la propagación de la onda del tipo Hn y estará comprendido más allá de la interrupción de la onda del tipo E01: Dcr < D < Dc .The diameter of the chemical reactor D should allow the propagation of the wave of type H n and will be beyond the interruption of the wave of type E 01 : D cr <D <D c .
Se seleccionó el diámetro del reactor químico D=75 mm. La longitud de onda crítica para este diámetro es igual que: λcl = 3,41 * D/2 = 127,87 mm.The diameter of the chemical reactor D = 75 mm was selected. The critical wavelength for this diameter is the same as: λ cl = 3.41 * D / 2 = 127.87 mm.
La longitud de onda de la guía de ondas Ü es:The wavelength of the waveguide Ü is:
Λ = λ0/(l - (λ0 / λcr)2 )& - 174,2 mm.Λ = λ 0 / (l - (λ 0 / λ cr ) 2 ) & - 174.2 mm.
En la Figura 3 se muestra el esquema del reactor químico. El reactor es una guía de ondas esférica con un diámetro de 75 mm, estando unido por una unidad hermética, por el lado del generador de microondas (GM), y por el lado opuesto, por un pistón metálico. Se perforan unos taladros (T) (de 2-3 mm diámetro) en el pistón metálico (PM) para visualizar la descarga. La unidad hermética está diseñada para evitar que penetre un gas caliente procedente del reactor químico, dentro del sistema de guía de 5 ondas. La unidad hermética (AH) está constituida por una placa de cuarzo, que se instala perpendicularmente a las guías de ondas. La placa de cuarzo aisla al vacío la cámara del reactor del sistema de guía de ondas. La hermeticidad deberá resistir al calentamiento de, hasta una temperatura de 600 °C. El sistema de guía de ondas (desde el magnetrón hasta la placa de i o cuarzo) está presurizado por un gas SF con el fin de evitar la interrupción de las microondas.The scheme of the chemical reactor is shown in Figure 3. The reactor is a spherical waveguide with a diameter of 75 mm, being joined by an airtight unit, on the side of the microwave generator (GM), and on the opposite side, by a metallic piston. Drills (T) (2-3 mm diameter) are drilled in the metal piston (PM) to visualize the discharge. The hermetic unit is designed to prevent a hot gas from the chemical reactor from entering the 5-wave guide system. The hermetic unit (AH) consists of a quartz plate, which is installed perpendicular to the waveguides. The quartz plate vacuum isolates the reactor chamber from the waveguide system. The tightness must withstand heating up to 600 ° C. The waveguide system (from the magnetron to the quartz plate) is pressurized by an SF gas in order to prevent microwave interruption.
La salida de la cámara de mezcla está acoplada a la guía de ondas esférica, de tal manera que sus ejes sean perpendiculares entre sí. Se utiliza 15 una aguja de wolframio puntiaguda (de 1-2 mm de diámetro) para iniciar la descarga de las microondas. Se inserta la aguja dentro del reactor químico (RQ), perpendicularmente a la guía de ondas, hasta la cámara de mezcla a través del taladro (T') en la pared de la guía de ondas. La aguja de wolframio se puede desplazar en dirección a su eje.The output of the mixing chamber is coupled to the spherical waveguide, such that its axes are perpendicular to each other. A pointed tungsten needle (1-2 mm in diameter) is used to start the microwave discharge. The needle is inserted into the chemical reactor (RQ), perpendicular to the waveguide, to the mixing chamber through the hole (T ') in the waveguide wall. The tungsten needle can move in the direction of its axis.
20twenty
El termopar se utiliza para medir la temperatura en el reactor químico. Se inserta a través del taladro, que está situado de una manera diametralmente opuesta, al taladro para la aguja de wolframio. Se retira el termopar de la guía de ondas, en el momento que se inicia la descarga de lasThe thermocouple is used to measure the temperature in the chemical reactor. It is inserted through the hole, which is located in a diametrically opposite manner, to the hole for the tungsten needle. The thermocouple is removed from the waveguide, at the moment the discharge of the
25 microondas en el reactor químico. La gama de las temperatoras medidas oscilará entre 300 300°C.25 microwaves in the chemical reactor. The range of measured temperators will range from 300 to 300 ° C.
El bloque del intercambiador de calor (IC) está diseñado de manera que pueda recuperar el calor del gas de síntesis de entrada, del vaporThe heat exchanger (IC) block is designed so that it can recover heat from the inlet synthesis gas, from steam
30 de combustible y de agua y del aire que alimentan las cámaras de entrada y de mezcla, así como para condensar el vapor de agua y combustible no reactantes, para atrapar el polvo de carbono que pueda formarse en el reactor químico. La temperatora máxima del gas de síntesis en la entrada del intercambiador de calor es de 1200° Kelvin, mientras que la temperatura del gas de síntesis en la salida del intercambiador de calor es menor que 100 °C. El intercambiador de calor mantiene un funcionamiento continuo durante 1 hora (entre la purga del líquido). El intercambiador de calor consiste en una cámara que está acoplada a la pared de la guía de ondas esférica, de manera que sus ejes sean perpendiculares entre sí. Los ejes del intercambiador de calor y del reactor químico son iguales. El intercambiador de calor contiene unos tobos inoxidables huecos, que están situados paralelamente al eje de dicho intercambiador de calor. Los vapores de combustible y de agua procedentes de los evaporadores de combustible y de agua y el aire del bloque de alimentación de aire, fluyen hacia el interior del intercambiador de calor y de los tobos inoxidables, de una manera opuesta al flujo del gas de síntesis que emana del reactor químico. El vapor de combustible se caldea en el intercambiador de calor, desde una temperatora de 170°C hasta alcanzar 400 °C. En este procedimiento anterior, se obtiene una potencia de 660 vatios del gas de síntesis. Después de pasar por el intercambiador de calor, una parte del vapor de combustible fluye hacia el interior de la cámara de entrada, y la otra parte fluye hacia el interior de la cámara de mezcla.30 of fuel and water and air that feed the inlet and mixing chambers, as well as to condense water vapor and non-fuel reactants, to trap carbon dust that may form in the chemical reactor. The maximum temperature of the synthesis gas at the heat exchanger inlet is 1200 ° Kelvin, while the temperature of the synthesis gas at the heat exchanger outlet is less than 100 ° C. The heat exchanger maintains continuous operation for 1 hour (between the purge of the liquid). The heat exchanger consists of a chamber that is coupled to the wall of the spherical waveguide, so that its axes are perpendicular to each other. The axes of the heat exchanger and the chemical reactor are the same. The heat exchanger contains hollow stainless nozzles, which are located parallel to the axis of said heat exchanger. The fuel and water vapors from the fuel and water evaporators and the air from the air supply block flow into the heat exchanger and the stainless nozzles, in a manner opposite to the flow of the synthesis gas Emanating from the chemical reactor. The fuel vapor is heated in the heat exchanger, from a temperature of 170 ° C to 400 ° C. In this previous procedure, a power of 660 watts of the synthesis gas is obtained. After passing through the heat exchanger, one part of the fuel vapor flows into the inlet chamber, and the other part flows into the mixing chamber.
El vapor de agua se caldea en el intercambiador de calor, desde una temperatora de 100°C hasta alcanzar 300°C, permitiendo así recuperar mía potencia de 170 vatios, después de que el vapor de agua del intercambiador de calor fluya hacia el interior de la cámara de mezcla.The water vapor is heated in the heat exchanger, from a temperature of 100 ° C to reach 300 ° C, thus allowing to recover my power of 170 watts, after the water vapor of the heat exchanger flows into The mixing chamber.
El aire se caldea en el intercambiador de calor, desde una temperatura de 20°C hasta alcanzar 400°C, obteniéndose del gas de síntesis una potencia de 1700 vatios, después de que el aire del intercambiador de calor fluya hacia el interior de la cámara de entrada. El gas de síntesis transfiere al intercambiador de calor una potencia de 5000 vatios, cuando se enfría desde 1200 Kelvin hasta 300 Kelvin. De esta manera, el rendimiento del intercambiador de calor no será menor del 50% .The air is heated in the heat exchanger, from a temperature of 20 ° C to reach 400 ° C, obtaining a power of 1700 watts from the synthesis gas, after the heat exchanger air flows into the chamber input The synthesis gas transfers a power of 5000 watts to the heat exchanger, when it is cooled from 1200 Kelvin to 300 Kelvin. In this way, the heat exchanger performance will not be less than 50%.
El bloque de evaporación del combustible (EC) está diseñado para la evaporación de un combustible líquido y puede estar funcionando continuamente durante 1 hora (entre el llenado). El volumen del evaporador de combustible es de 8 litros. El consumo del vapor de combustible es de 4,3 kg hora. La temperatora del vapor de combustible de salida es de 180°C. La potencia eléctrica del evaporador es de 1,7 kilovatios, la tensión de 220 voltios, la corriente eléctrica 8 A, la resistencia del calefactor de 27,5 Ohmios. El rendimiento del evaporador es del 50%. El evaporador está dotado de un manómetro de hasta 10 atmósferas y de un termopar en la conexión de salida.The fuel evaporation block (EC) is designed for the evaporation of a liquid fuel and can be running continuously for 1 hour (between filling). The volume of the fuel evaporator is 8 liters. The fuel vapor consumption is 4.3 kg hour. The output fuel vapor temperara is 180 ° C. The electric power of the evaporator is 1.7 kilowatts, the voltage of 220 volts, the electric current 8 A, the heater resistance of 27.5 Ohms. The evaporator yield is 50%. The evaporator is equipped with a pressure gauge of up to 10 atmospheres and a thermocouple in the outlet connection.
El bloque de evaporación del agua (EA) está diseñado para la evaporación del agua y puede estar funcionando continuamente durante 1 hora (entre el llenado). El volumen del evaporador de agua es de 2,5 litros. El consumo del vapor de agua es de 1,6 kg hora. La temperatura del vapor de agua de salida en de 100°C. La potencia eléctrica del evaporador es de 2,3 Kilovatios, la tensión de 220 voltios, la corriente eléctrica 11 A, la resistencia del calefactor de 22 Ohmios. El rendimiento del evaporador es del 50% . El evaporador está dotado de un manómetro de hasta 10 atmósferas y de un termopar en la conexión de salida.The water evaporation block (EA) is designed for the evaporation of water and can be running continuously for 1 hour (between filling). The volume of the water evaporator is 2.5 liters. Water vapor consumption is 1.6 kg hour. The temperature of the outlet water vapor is 100 ° C. The electric power of the evaporator is 2.3 Kilowatts, the voltage of 220 volts, the electric current 11 A, the heater resistance of 22 Ohms. The evaporator yield is 50%. The evaporator is equipped with a pressure gauge of up to 10 atmospheres and a thermocouple in the outlet connection.
El bloque de alimentación (AA) de aire está diseñado para suministrar aire bombeado al Prototipo. La productividad de aire de su compresor es de 12 nanometros3 hora (16 kg hora). La presión de salida del aire no será menor de 3 atmósferas. El aire bombeado fluye dentro del intercambiador de calor para recuperar el calor del gas de síntesis y posteriormente, dentro de la cámara de entrada.The air supply (AA) block is designed to supply pumped air to the Prototype. The air productivity of your compressor is 12 nanometers 3 hours (16 kg hours). The air outlet pressure shall not be less than 3 atmospheres. The pumped air flows into the heat exchanger to recover the heat of the synthesis gas and subsequently, inside the inlet chamber.
Diseño Conceptual del Reactor Plasmacatalítico basado en una Descarga cuasiestacionaria.Conceptual Design of the Plasmacatalytic Reactor based on a quasi-stationary Discharge.
El convertidor plasmacatalítico de impulsos de combustible del motor en un gas de síntesis, se basa en el uso de una descarga de microondas de impacto periódico dotada de una alta potencia de impulsión (de 100-200 Kilovatios), en la pequeña duración de un impulso (lμs) y en la gran porosidad del método de impacto periódico (alrededor de 1000 en la frecuencia de repetición de impulsos de 1 Kiloherzio). Dicho enfoque proporciona la pequeña relación Pδ / Pp de potencia eléctrica de la descarga Pδ hasta la potencia de caldeo preliminar del reactivo Pp.The plasmacatalytic converter of motor fuel impulses in a synthesis gas, is based on the use of a periodic impact microwave discharge equipped with a high driving power (100-200 Kilowatts), in the short duration of an impulse (lμs) and in the large porosity of the periodic impact method (around 1000 in the pulse repetition frequency of 1 Kiloherzio). This approach provides the small ratio P δ / P p of electrical power from the discharge P δ to the preliminary heating power of the reagent P p .
Actualmente, el caldeo preliminar del reactivo (por cuenta de la oxidación), se transforma también en energía del sistema Pquímica, requerido para la realización del procedimiento endotérmico de conversión: Pp está próximo a Pquímica. Este hecho constituye la ventaja principal del convertidor de plasma de microondas. Al mismo tiempo, en una variable tecnológica del convertidor para efectuar el caldeo preliminar de un reactivo, es natural que se utilice energía de combustión (oxidación), una parte de combustible en oxígeno del aire. Por otra parte, existen unos dispositivos de plasma de microondas que permiten, actualmente, realizar un procedimiento de conversión a una parte del combustible. Es decir una descarga del soplete de las microondas cuasiestacionarias (la duración de un impulso de radiación es de alrededor de una décima de metro por segundo, la porosidad de un método de impacto periódico es de alrededor de 2). La estabilidad del funcionamiento de dichos dispositivos, a una presión atmosférica determinada, viene proporcionada por el uso de unas propiedades específicas de los resonadores de microondas. Siempre que la parte significativa de la energía que se utiliza para el mantenimiento de la descarga eléctrica será válida, si se obtiene del procedimiento de quemar una parte de combustible en una zona de descarga, dicho convertidor mantendrá, la ventaja básica del convertidor de plasma de microondas, la pequeña relación Pδ IPquítτάca será deseable. Estas fuentes son, por término medio, mucho más poderosas que las análogas de impulsos (con una potencia máxima más baja). Por lo tanto, el convertidor casi fijo, en cualquier caso, está influido por los convertidores fijos de potencia de fabricación de hidrógeno de gran productividad. Al mismo tiempo, las fuentes cuasiestacionarias de radiación de microondas para el tipo de descarga dado son más baratas, más pequeñas y menos pesadas, lo cual es esencial para seleccionar una variable del convertidor. La fabricación del convertidor dotado de una potencia del orden de 1 Kilovatio, no causará ningún tipo de dificultades esenciales. Por lo tanto, según se ha descrito anteriormente, en la optimización de los flujos de potencia (lo primero de todo, la relación Pδ/Pquímica)> dicho convertidor representa la necesidad urgente de obtener un diseño alternativo del Prototipo del sistema seleccionado. La variable del diseño conceptual del Prototipo del convertidor - basado en la descarga de microondas cuasiestacionaria - se describirá a continuación.Currently, the preliminary heating of the reagent (on account of oxidation), is also transformed into energy of the chemical system P, required for the completion of the endothermic conversion procedure: P p is close to chemical P. This fact constitutes the main advantage of the microwave plasma converter. At the same time, in a technological variable of the converter to carry out the preliminary heating of a reagent, it is natural that combustion energy (oxidation), a part of oxygen fuel from the air, is used. On the other hand, there are microwave plasma devices that allow, at present, a conversion procedure to a part of the fuel. In other words, a discharge of the torch from the quasi-stationary microwaves (the duration of a pulse of radiation is around one tenth of a meter per second, the porosity of a periodic impact method is about 2). The stability of the operation of said devices, at a given atmospheric pressure, is provided by the use of specific properties of microwave resonators. Whenever the significant part of the Energy used for the maintenance of electric shock will be valid, if it is obtained from the procedure of burning a part of fuel in a discharge zone, said converter will maintain, the basic advantage of the microwave plasma converter, the small ratio P δ IP quítτάca will be desirable. These sources are, on average, much more powerful than impulse analogs (with a lower maximum power). Therefore, the almost fixed converter, in any case, is influenced by the fixed hydrogen power converters of high productivity. At the same time, quasi-stationary sources of microwave radiation for the type of discharge given are cheaper, smaller and less heavy, which is essential for selecting a converter variable. The manufacture of the converter equipped with a power of the order of 1 Kilowatt will not cause any essential difficulties. Therefore, as described above, in the optimization of power flows (first of all, the ratio P δ / P chem i ca ) > said converter represents the urgent need to obtain an alternative design of the System Prototype selected. The conceptual design variable of the Prototype of the converter - based on the quasi-stationary microwave discharge - will be described below.
Según se ha indicado previamente, mediante el esquema en perspectiva del Prototipo del convertidor basado en el procedimiento parcial de oxidación de combustible, se indica también el esquema de la descarga del soplete de las microondas cuasiestacionarias. La descarga del tipo proporcionado, existe en una atmósfera de 500/1000 vatios. La salida del gas de síntesis del convertidor podría alcanzar el orden de 10-20 nanometros3/hora, lo que corresponde a un depósito de energía en el reactivo inicial, del orden de 0,5 eV/mol. Dicho nivel de depósito de energía es característico para el esquema descrito anteriormente del convertidor basado en la descarga de impactos periódicos. De esta manera, el sistema proporcionado puede representarse por sí mismo, como el catalizador del procedimiento de conversión en un depósito de energía de plasma bastante bajo. El esquema descrito anteriormente es conveniente para la realización del procedimiento parcial de oxidación del combustible en un gas de síntesis. De esta manera, no se necesita el reactivo caldeado 5 previamente, dado que la reacción es exotérmica. Una porción básica de energía entra en el sistema, no como un plasma de descarga, sino durante la combustión. Por otra parte la energía asignada puede utilizarse parcialmente para realizar la conversión vapor-oxígeno del combustible. De esta manera, las proporciones de una mezcla de vapor de combustible, agua y aire se 0 dotarán, de tal manera que todo el procedimiento de conversión se transforme en un procedimiento termoneutral. El diagrama del bloque del Prototipo del convertidor se muestra en la Figura 3. Para la evaporación del combustible y del agua (el agua - en la variable de conversión vapor- oxígeno), se utilizan dos generadores de vapor. (En las variables de un 5 diseño, es posible inyectar un reactivo líquido en el reactor). El vapor de combustible y agua se mezclan con aire y se desplazan sobre una entrada de un plasmotrón del soplete de microondas.As previously indicated, by means of the perspective scheme of the Prototype of the converter based on the partial process of oxidation of fuel, the scheme of the discharge of the torch of quasi-stationary microwaves is also indicated. The discharge of the type provided exists in an atmosphere of 500/1000 watts. The output of the synthesis gas from the converter could reach the order of 10-20 nanometers 3 / hour, which corresponds to a deposit of energy in the initial reagent, of the order of 0.5 eV / mol. Said level of energy deposit is characteristic for the above described scheme of the converter based on the discharge of periodic impacts. In this way, the system provided can represent itself, as the Catalyst of the conversion process into a fairly low plasma energy reservoir. The scheme described above is convenient for carrying out the partial process of oxidation of the fuel in a synthesis gas. In this way, the previously heated reagent 5 is not needed, since the reaction is exothermic. A basic portion of energy enters the system, not as a discharge plasma, but during combustion. On the other hand, the assigned energy can be partially used to perform the vapor-oxygen conversion of the fuel. In this way, the proportions of a mixture of fuel vapor, water and air will be provided, so that the entire conversion process is transformed into a thermoneutral procedure. The diagram of the converter prototype block is shown in Figure 3. For the evaporation of fuel and water (water - in the steam-oxygen conversion variable), two steam generators are used. (In the variables of a design, it is possible to inject a liquid reagent into the reactor). The fuel vapor and water are mixed with air and move over an inlet of a plasmotron of the microwave torch.
Los parámetros de una fuente de radiación de microondas, que o pueden utilizarse para diseñar el Prototipo del convertidor, del tipo proporcionado anteriormente (como ejemplo de una fuente de radiación se puede considerar el magnetrón estándar de un horno microondas doméstico):The parameters of a microwave radiation source, which can be used to design the Prototype of the converter, of the type provided above (as an example of a radiation source, the standard magnetron of a domestic microwave oven can be considered):
método casi fijo; 5 frecuencia 2,45 Gigaherzios; potencia de impulso de 1 ,2 Kilovatios potencia media 600 vatios.almost fixed method; 5 frequency 2.45 Gigaherzios; impulse power of 1.2 Kilowatts average power 600 watts.
La mezcla de vapores de combustible, agua y aire nos remite a una o zona de descarga a través de un tobo, que está constituido, simultáneamente, como un explorador interno de una línea coaxial La salida de la radiación de microondas del resonador en una línea coaxial se realiza con la ayuda de un circuito cerrado de corriente. La cámara del reactor representa también al resonador de radiación de las microondas. Actualmente, el esquema electrodinámico del Convertidor, viene representado por el sistema que consiste en dos resonadores de microondas conectados entre sí. La presencia del resonador en la cámara del reactor facilitará la interrupción. Prácticamente, todo el gas pasa a través de un soplete del plasma. Se alcanzará un alto grado de operación evolutiva del reactivo, a través del plasma. Para dividir una cavidad del primer resonador y de la cámara de descarga, es necesario utilizar una condensación ajustada, la cual debería ser, simultáneamente, transparente a la radiación de las microondas. Dado que el caldeo preliminar (véase la Figura 3) solamente sirve para la evaporación de combustible y de agua, entonces el reactivo actoará en la cámara a una temperatura que no sobrepase los 400°C. De esta manera, para realizar una división ajustada del resonador y de la cámara, podrá utilizarse una condensación de teflon transparente de microondas.The mixture of fuel, water and air vapors sends us to a discharge zone or zone through a tobo, which is simultaneously constituted as an internal explorer of a coaxial line The output of the microwave radiation from the resonator in a coaxial line is carried out with the help of a closed current circuit. The reactor chamber also represents the microwave radiation resonator. Currently, the converter's electrodynamic scheme is represented by the system consisting of two microwave resonators connected to each other. The presence of the resonator in the reactor chamber will facilitate interruption. Virtually all gas passes through a plasma torch. A high degree of evolutionary operation of the reagent will be achieved, through the plasma. To divide a cavity of the first resonator and the discharge chamber, it is necessary to use an adjusted condensation, which should simultaneously be transparent to microwave radiation. Since preliminary heating (see Figure 3) only serves to evaporate fuel and water, then the reagent will act in the chamber at a temperature that does not exceed 400 ° C. In this way, in order to perform a tight division of the resonator and the chamber, a condensation of transparent microwave teflon can be used.
Una de las ventajas del sistema descrito anteriormente es su solidez. Para alimentar un magnetrón es posible utilizar el suministro eléctrico simple, que no esté contenido en el rectificador. En contraposición al convertidor basado en la descarga de impactos periódicos, según el diseño proporcionado anteriormente, es posible que no se requiera el modulador que alimenta al magnetrón. Es posible utilizar también el magnetrón de un horno microondas. El sistema se distingue por su simplicidad y su bajo precio. One of the advantages of the system described above is its strength. To power a magnetron it is possible to use the simple power supply, which is not contained in the rectifier. In contrast to the converter based on the discharge of periodic impacts, depending on the design provided above, the modulator that feeds the magnetron may not be required. It is also possible to use the magnetron of a microwave oven. The system is distinguished by its simplicity and its low price.

Claims

R E I V I N D I C A C I O N E S R E I V I N D I C A C I O N E S
Ia.- Método para la conversión plasmacatalítica de un combustible fósil (MF) en gas sintético (syn-gas), en el que se llevan a cabo reacciones entre los hidrocarburos presentes en dicho MF y aire o entre dichos hidrocarburos, vapor de agua y aire, que comprende: precalentar el aire; incinerar parte del MF con lo que se obtienen unos productos de reacción y unos residuos; mezclar dichos residuos con los productos de combustión y, opcionalmente, con vapor de agua, con lo que se obtiene una mezcla de reacción; y llevar dicha mezcla de reacción al interior de un reactor plasmacatalítico en donde el plasma actúa como catalizador acelerando la conversión del MF en un gas de síntesis (syn-gas).I a .- Method for plasmacatalytic conversion of a fossil fuel (MF) into synthetic gas (syn-gas), in which reactions are carried out between the hydrocarbons present in said MF and air or between said hydrocarbons, water vapor and air, which comprises: preheating the air; incinerate part of the MF with which reaction products and residues are obtained; mixing said wastes with the combustion products and, optionally, with water vapor, whereby a reaction mixture is obtained; and bringing said reaction mixture into a plasmacatalytic reactor where the plasma acts as a catalyst accelerating the conversion of MF into a synthesis gas (syn-gas).
2a.- Método según la reivindicación 1, en el que dicha aceleración plasmaquímica de conversión del MF en syn-gas se realiza bien pasando la mezcla de reacción a través de plasma de descarga periódica de impulsos en un descargador continuo de efecto pseudocorona a presión atmosférica, o bien pasando la mezcla de reacción a través de plasma de descarga de efecto antorcha cuasi-estacionaria con una longitud de impulso de radiación inferior a 100 milisegundos (ms).2 .- Method according to claim 1, wherein said plasmaquímica acceleration conversion MF syn-gas is performed either by passing the reaction mixture through plasma periodic pulse discharge in a continuous unloader pseudocorona effect pressure atmospheric, or by passing the reaction mixture through a plasma with a quasi-stationary torch effect with a radiation pulse length of less than 100 milliseconds (ms).
3a.- Método según la reivindicación 1, en el que en el reactor plasmacatalítico se establece un valor subcrítico de intensidad de campo eléctrico de impulsos de microondas, se inicia una descarga de inyectores de pseudocorona de microondas en los bordes de los elementos de la corona, y en los cabezales de los inyectores de microondas se establece un campo eléctrico igual o superior a 1.000 kV/cm. 4a.- Método según la reivindicación 3, en el que la fuente de energía de microondas genera el conjunto de impulsos con una duración del impulso comprendida entre 0,1 y 1 microsegundos (μs) y una relación de periodo de pulso a duración de pulso comprendida entre 100 y 1.000 en un intervalo de radiación de microondas incluido dentro de las bandas X y S, con potencia específica de impulso, que proporcionan el nivel necesario de campo eléctrico en el resonador y en los cabezales de los descargadores continuos de microondas.3 .- Method according to claim 1, wherein in a subcritical reactor plasmacatalytic value of electric field intensity of the microwave pulses is established, a discharge starts pseudocorona injectors microwave at the edges of the elements of the crown, and an electric field equal to or greater than 1,000 kV / cm is established on the heads of the microwave injectors. 4 .- Method according to claim 3, wherein the power source generates microwaves set pulse with a duration of the impulse ranging between 0.1 and 1 microseconds () and a ratio of pulse period duration Pulse between 100 and 1,000 in a microwave radiation range included within the X and S bands, with specific impulse power, which provide the necessary level of electric field in the resonator and in the heads of the continuous microwave arresters.
5a.- Método según la reivindicación 4, en el que la entrada de energía en plasma está comprendida entre 0,05 y 0,2 kWh/m3, controlándose de manera que el valor de entrada de energía en plasma no sobrepase el 10% del valor de la entalpia del reactivo a la temperatora de trabajo.5 .- A method according to claim 4, wherein the power input in plasma is between 0.05 and 0.2 kWh / m 3, controlled so that the input value of plasma energy does not exceed 10 % of the enthalpy value of the reagent at the working temper.
6a.- Método según las reivindicaciones 1 y 4 ó 5, en el que la conversión plasmacatalítica del MF en syn-gas se realiza mediante reacción entre los hidrocarburos presentes en dicho MF, vapor de agua y aire, y las temperatoras de los reactivos a la entrada del reactor plasmacatalítico están comprendidas entre 800 K y 15.000 K.6 .- Method according to claims 1 and 4 or 5, wherein plasmacatalytic converting the MF syn-gas, steam and air, and temperatoras of reactants is performed by reaction between hydrocarbons present in said MF at the entrance of the plasmacatalytic reactor are between 800 K and 15,000 K.
7a.- Método según cualquiera de las reivindicaciones 1, 4 ó 6, en el que la relación entre la parte incinerada del MF y su residuo está comprendida entre 0,5 y 2.7 .- method according to any of claims 1, 4 or 6, wherein the ratio of the MF part incinerated and residue is between 0.5 and 2.
8a- Método según las reivindicaciones 1 y 4 ó 5, en el que la conversión plasmacatalítica del MF en syn-gas se realiza mediante reacción entre los hidrocarburos presentes en dicho MF y aire, y las temperatoras de los reactivos a la entrada del reactor plasmacatalítico están comprendidas entre 600 K y 1.100 K. 9a.- Método según la reivindicación 8, en el que la relación entre la parte incinerada del MF y su residuo está comprendida entre 0,4 y 2.8 a - Method according to claims 1 and 4 or 5, wherein the plasma-catalytic conversion of the MF into syn-gas is carried out by reaction between the hydrocarbons present in said MF and air, and the reactant temperators of the reactor inlet plasmacatalytic are between 600 K and 1,100 K. 9 .- Method according to claim 8, wherein the ratio of the MF part incinerated and residue is between 0.4 and 2.
10a.- Método según la reivindicación 9, en el que la relación molar aire/MF a la entrada del reactor plasmacatalítico está comprendida entre 16 y 20.10 .- Method according to claim 9, wherein the molar ratio air / MF to the input of the plasmacatalytic reactor is between 16 and 20.
11a.- Aparato para la conversión plasmacatalítica de combustibles fósiles en un gas rico en hidrógeno, según el método de una o más de las reivnidicaciones anteriores, caracterizado porque en el mismo participan un evaporador de combustible (EC), un evaporador de agua (EA) y un alimentador de aire (AA), que suministran las respectivas materias, a través de un intercambiador de calor (IC), el aire y parte del combustible a una cámara de entrada (CE) y el agua y el resto de combustible a una cámara de mezcla (CM), que recibe también las materias provenientes de la cámara de entrada (CE), alimentando dicha cámara de mezcla a un reactor químico (RQ) asistido por un generador de microondas (GM) para la obtención de un gas de síntesis (GS).11 .- plasmacatalytic Apparatus for converting fossil fuels into a hydrogen rich gas according to the method of one or more of the preceding reivnidicaciones, characterized therein a fuel evaporator (EC) engaged a water evaporator ( EA) and an air feeder (AA), which supply the respective materials, through a heat exchanger (IC), the air and part of the fuel to an inlet chamber (CE) and the water and the rest of the fuel to a mixing chamber (CM), which also receives the materials from the inlet chamber (CE), feeding said mixing chamber to a chemical reactor (RQ) assisted by a microwave generator (GM) to obtain a synthesis gas (GS).
12a .- Aparato para la conversión plasmacatalítica de combustibles fósñes en un gas rico en hidrógeno, según reivindicación 11, caracterizado porque la cámara de entrada (CE) incorpora una pluralidad de inyectores (I) en disposición axial, para el combustible y el aire, dispuestos alternadamente, y se continua sin solución de continuidad en la cámara de mezcla (CM), en la que se establecen radialmente los myectores (I) de agua y combustible.12 .- apparatus plasmacatalytic conversion fosnes fuel into a hydrogen rich gas according to claim 11, characterized in that the inlet chamber (CE) incorporating a plurality of injectors (I) in axial arrangement, for the fuel and air , arranged alternately, and continued without continuity solution in the mixing chamber (CM), in which the water and fuel injectors (I) are radially established.
13a.- Aparato para la conversión plasmacatalítica de combustibles fósües en un gas rico en hidrógeno, según reivindicación 11, caracterizado porque el generador de microondas (GM) consta de un modulador, un magnetrón, .. sistema de guía de ondas y una unidad para la entrada de energía de las microondas dentro del reactor (RQ).13 .- plasmacatalytic Apparatus for converting a fuel fósües hydrogen rich gas according to claim 11, characterized in that the microwave generator (GM) comprises a modulator, a magnetron, .. waveguide system and a unit for the entrance of microwave energy inside the reactor (RQ).
14a.- Aparato para la conversión plasmacatalítica de combustibles fósiles en un gas rico en hidrógeno, según reivindicación 11, caracterizado porque el reactor químico (RQ) consiste en una guía de ondas esférica con un acoplamiento hermético (AH) al generador de microondas (GM), con un pistón metálico (PM) en el lado opuesto, provisto de unos taladros (T) para visualizar la descarga de las microondas, descarga que se inicia con una aguja de wolframio puntiaguda inserta en el reactor químico (RQ), concretamente en un taladro ( ) de la pared de la guía de ondas, siendo dicha aguja de wolframio desplazable en dirección a su eje.14 .- apparatus plasmacatalytic converting fossil fuels into a hydrogen rich gas according to claim 11, wherein the chemical reactor (RQ) is a guide spherical waves with a sealed coupling (AH) to the microwave generator ( GM), with a metal piston (PM) on the opposite side, provided with holes (T) to visualize the microwave discharge, discharge that starts with a pointed tungsten needle inserted in the chemical reactor (RQ), specifically in a hole () of the waveguide wall, said tungsten needle being movable in the direction of its axis.
15a.- Aparato para la conversión plasmacatalítica de combustibles fósiles en un gas rico en hidrógeno, según reivindicación 14, caracterizado porque el citado acoplamiento hermético (AH) está constituido por una placa de cuarzo que se instala perpendicularmente a las guías de onda.15 .- apparatus plasmacatalytic converting fossil fuels into a hydrogen rich gas according to claim 14, characterized in that said sealing engagement (AH) consists of a quartz plate that is installed perpendicular to the waveguides.
16a.- Aparato para la conversión plasmacatalítica de combustibles fósiles en un gas rico en hidrógeno, según reivindicación 11, caracterizado porque el intercambiador de calor (IC) consiste en una cámara acoplada a la pared de la guía de ondas esférica correspondiente al reactor químico, de manera que sus ejes sean perpendiculares entre sí, situándose en su seno tubos inoxidables para entrada del agua, el combustible y el aire en disposición paralela a su propio eje. 16 .- apparatus plasmacatalytic converting fossil fuels into a hydrogen rich gas according to claim 11, wherein the heat exchanger (IC) is a camera attached to the wall of the guide spherical waves corresponding to the chemical reactor , so that its axes are perpendicular to each other, placing stainless tubes inside it to enter water, fuel and air in parallel arrangement with its own axis.
PCT/ES2000/000380 2000-10-05 2000-10-05 Method and apparatus for plasma-catalytic conversion of fossil fuels into a hydrogen-rich gas WO2002028771A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2000277905A AU2000277905A1 (en) 2000-10-05 2000-10-05 Method and apparatus for plasma-catalytic conversion of fossil fuels into a hydrogen-rich gas
PCT/ES2000/000380 WO2002028771A1 (en) 2000-10-05 2000-10-05 Method and apparatus for plasma-catalytic conversion of fossil fuels into a hydrogen-rich gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2000/000380 WO2002028771A1 (en) 2000-10-05 2000-10-05 Method and apparatus for plasma-catalytic conversion of fossil fuels into a hydrogen-rich gas

Publications (1)

Publication Number Publication Date
WO2002028771A1 true WO2002028771A1 (en) 2002-04-11

Family

ID=8244274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2000/000380 WO2002028771A1 (en) 2000-10-05 2000-10-05 Method and apparatus for plasma-catalytic conversion of fossil fuels into a hydrogen-rich gas

Country Status (2)

Country Link
AU (1) AU2000277905A1 (en)
WO (1) WO2002028771A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004033368A1 (en) * 2002-10-08 2004-04-22 Hrl Laboratories, Llc A fuel reforming apparatus for producing a carbon-monoxide free reformed fuel gas comprising hydrogen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB355210A (en) * 1929-02-16 1931-08-20 Ruhrchemie Ag Processes for recovering higher hydrocarbons and hydrogen or gases containing hydrogen
WO1992002448A1 (en) * 1990-07-31 1992-02-20 Exxon Research And Engineering Company Conversion of methane and carbon dioxide using microwave radiation
US5409784A (en) * 1993-07-09 1995-04-25 Massachusetts Institute Of Technology Plasmatron-fuel cell system for generating electricity
ES2119224T3 (en) * 1993-08-20 1998-10-01 Massachusetts Inst Technology INTERNAL COMBUSTION ENGINE SYSTEM AND PLASMATRON.
US5887554A (en) * 1996-01-19 1999-03-30 Cohn; Daniel R. Rapid response plasma fuel converter systems
WO2000026518A1 (en) * 1998-10-29 2000-05-11 Massachusetts Institute Of Technology Plasmatron-catalyst system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB355210A (en) * 1929-02-16 1931-08-20 Ruhrchemie Ag Processes for recovering higher hydrocarbons and hydrogen or gases containing hydrogen
WO1992002448A1 (en) * 1990-07-31 1992-02-20 Exxon Research And Engineering Company Conversion of methane and carbon dioxide using microwave radiation
US5409784A (en) * 1993-07-09 1995-04-25 Massachusetts Institute Of Technology Plasmatron-fuel cell system for generating electricity
ES2119224T3 (en) * 1993-08-20 1998-10-01 Massachusetts Inst Technology INTERNAL COMBUSTION ENGINE SYSTEM AND PLASMATRON.
US5887554A (en) * 1996-01-19 1999-03-30 Cohn; Daniel R. Rapid response plasma fuel converter systems
WO2000026518A1 (en) * 1998-10-29 2000-05-11 Massachusetts Institute Of Technology Plasmatron-catalyst system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004033368A1 (en) * 2002-10-08 2004-04-22 Hrl Laboratories, Llc A fuel reforming apparatus for producing a carbon-monoxide free reformed fuel gas comprising hydrogen
US7329290B2 (en) 2002-10-08 2008-02-12 Hrl Laboratories, Llc Fuel reforming apparatus for producing a carbon-monoxide free reformed fuel gas comprising hydrogen

Also Published As

Publication number Publication date
AU2000277905A1 (en) 2002-04-15

Similar Documents

Publication Publication Date Title
CN103270371B (en) Use the electricity generation system of plasma gasifier
KR101277123B1 (en) Plasma dry reforming apparatus
AU2008275202B2 (en) Carbon free dissociation of water and production of hydrogen related power
ES2243306T3 (en) FUEL CONVERTER BY PLASMA OF LOW POWER AND COMPACT.
US7442364B1 (en) Plasma-induced hydrogen production from water
US20070274905A1 (en) Thermal disassociation of water
JP2003506300A (en) Plasma converter for converting fossil fuel to hydrogen-rich gas
US8623285B2 (en) Ammonia flame cracker system, method and apparatus
CN102363521B (en) Vehicle-mounted microwave low-temperature plasma reformer system for online hydrogen production
WO2002089536A1 (en) Method for plasma-catalytic conversion of fuels that can be used in an internal combustion engine or a gas turbine into a synthetic gas and the plasma-catalytic converter used for same
KR20000069717A (en) Method and devices for producing hydrogen by plasma reformer
AU8313998A (en) Conversion of hydrocarbons assisted by gliding electric arcs in the presence of water vapor and/or carbon dioxide
WO2001009031A1 (en) Plasma transformer for the transformation of fossil fuels into hydrogen-rich gas
TW200919815A (en) Fuel cell apparatus
US10240815B2 (en) Efficient dissociation of water vapor in arrays of microchannel plasma devices
WO2002028771A1 (en) Method and apparatus for plasma-catalytic conversion of fossil fuels into a hydrogen-rich gas
Eckert Energy transfer in non-equilibrium reacting gas flows: Applications in plasma assisted combustion and chemical gas lasers
KR20140090417A (en) System for reuse of carbon dioxide
JP2006188397A (en) Hydrogen producing method, hydrogen producing reactor, hydrogen producing apparatus and fuel cell power-generation apparatus
RU2675732C2 (en) Hydrocarbon fuel combustion method and device for its implementation
CN202272731U (en) Vehicle-mounted on-line hydrogen-production microwave low-temperature plasma reformer system
CN103011076B (en) Vehicle-mounted microwave low-temperature plasma reformer system for online hydrogen production
CN103030112A (en) Vehicle mounted microwave low temperature plasma reformer system for online hydrogen production
KR20020039326A (en) Plasma transformer for the transformation of fossil fuels into hydrogen-rich gas
CN207572465U (en) Fuel cell electric vehicle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP