WO2002024677A1 - N-disubstituted carbamoyloxy flavones - Google Patents

N-disubstituted carbamoyloxy flavones Download PDF

Info

Publication number
WO2002024677A1
WO2002024677A1 PCT/US2001/029579 US0129579W WO0224677A1 WO 2002024677 A1 WO2002024677 A1 WO 2002024677A1 US 0129579 W US0129579 W US 0129579W WO 0224677 A1 WO0224677 A1 WO 0224677A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
compound
methyl
ethyl
group
Prior art date
Application number
PCT/US2001/029579
Other languages
French (fr)
Inventor
Mihókné B. ILDIKO
Tóth GYÖRGY
Molnár SÁNDOR
Tamás TIVADAR
György SULYOK
Eva K. MUDRÁNÉ
Original Assignee
Biogal Pharmaceutical Co., Ltd.
Teva Pharmaceuticals Usa, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biogal Pharmaceutical Co., Ltd., Teva Pharmaceuticals Usa, Inc. filed Critical Biogal Pharmaceutical Co., Ltd.
Priority to EP01971275A priority Critical patent/EP1322632A1/en
Priority to AU2001291178A priority patent/AU2001291178A1/en
Priority to IL15498501A priority patent/IL154985A0/en
Publication of WO2002024677A1 publication Critical patent/WO2002024677A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/22Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4
    • C07D311/26Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3
    • C07D311/28Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3 with aromatic rings attached in position 2 only
    • C07D311/30Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3 with aromatic rings attached in position 2 only not hydrogenated in the hetero ring, e.g. flavones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/14Vasoprotectives; Antihaemorrhoidals; Drugs for varicose therapy; Capillary stabilisers

Definitions

  • the invention relates to novel flavones and to processes of making them.
  • Flavonoids such as flavones, are natural products produced by living organisms. Many of these compounds are natural products that do not appear to have any obvious metabolic or evolutionary function and may be formed by "metabolic accident" or are by-products of the synthetic machinery of the cellular enzymes. Regardless of their utility to the parent organism, their value to man as drugs, herbs, flavorings, poisons, dyes, and the like is undisputed.
  • the subject flavones comprise oxygenated derivatives of aromatic ring structures.
  • Derivatives of flavone are found throughout the plant kingdom and especially in the higher plants. Although many biologically active flavone derivatives have been found in nature, they also have been produced synthetically. Certain of these compounds are useful as respiratory stimulants (U.S. Patent No. 3,147,258), as an inhibitor of MAP kinase (Mahboobi, S., Pongratz, H., Synthesis of2'-Amino-3'methoxyflavone (PD 98059), Synth.
  • Flavonoids serve as antioxidants and chemoprotectants against molecular damage from reactive oxygen species (ROS). Their antioxidative activity has been the subject of many studies (e.g., van Acker SA, et al., Structural aspects of antioxidant activity of flavonoids, Free Radic. Biol. Med., 1996;20(3):331-42). Oxidative stress, manifested by, for example, protein oxidation and lipid peroxidation is one characteristic of the brain of a person suffering from Alzheimer's Disease (AD) (Cf. Naradarajan S, et al., Alzheimer's amyloid beta- peptide-associatedfree radical oxidative stress and neurotoxicity, J. Struct. Biol., 2000 Jun;130(2-3):184-208.
  • AD Alzheimer's Disease
  • Various compounds incorporating a carbamoyl functionality are useful for the treatment of AD via enhancement of cholinergic transmission through inhibition of acetylcholinesterase (AChE).
  • the compounds of the present invention were designed as potential therapeutic agents for the treatment of AD by combining both AChE inhibitory activity and antioxidant activity (by virtue of their carbamoyl and flavonoid pharmacophores) .
  • R 1 , R 2 , R 3 , R 4 and R 5 is a substituent selected from the group consisting of: hydrogen;
  • OOCNR 6 (R 7 ), in which each of R 6 and R 7 is hydrogen, or a lower alkyl (C 1 -C 4 ) and in which each of R 6 and R 7 may be the same or different;
  • R 8 is hydrogen or a lower alkyl (C1.C4)
  • each of R and R is hydrogen or a lower alkyl (C1-C4); a halogen atom selected from the group consisting of fluoride, chloride, bromide and iodide;
  • R 11 is hydrogen, sodium, potassium, or a lower alkyl
  • R 12 and R 13 are hydrogen or a lower alkyl (C1-C4);
  • R 1 , R 2 , R 3 , R 4 and R 5 is OOCNR 6 (R 7 ).
  • the invention relates to new flavone derivatives of Formula I above which have at least one N-disubstituted carbamoyloxy unit (OOCNR 6 (R 7 )) coupled directly to one or both aromatic rings of the flavone molecule. Accordingly, the invention embraces compounds of Formulae I A, IB and IC, below.
  • Compounds of Formula I A are characterized by the formula:
  • R 4 is OOCNR 6 (R 7 ), in which each of R 6 and R 7 is hydrogen or a lower alkyl of 1 to 4 carbon atoms and in which each of R 6 and R 7 may be the same or different, and wherein R 4 occurs in the 2, 3 or 4 position; and wherein each of R 1 .
  • R 2 , R 3 , and R 5 is a substituent selected from the group consisting of: hydrogen;
  • R 8 is hydrogen or a lower alkyl of 1 to 4 carbon atoms
  • R wherein each of R and R is hydrogen or a lower alkyl (C1.C4); a halogen atom selected from the group consisting of fluoride, chloride, bromide and iodide;
  • R 11 is hydrogen, sodium, potassium, or a lower alkyl
  • R 1 is OOCNR 6 (R 7 ), in which each of R 6 and R 7 is hydrogen or a lower alkyl (C1.C4) and in which each of R 6 and R 7 may be the same or different, and wherein R 1 occurs in the 5, 6, 7, or 8 position; and wherein each of R 2 , R 3 , R 4 and R 5 is a substituent selected from the group consisting of: hydrogen;
  • R 8 is hydrogen or a lower alkyl (C_ ⁇ . C ); , wherein each of R and R is hydrogen or a lower alkyl (C ⁇ _C 4 ); a halogen atom selected from the group consisting of fluoride, chloride, bromide and iodide;
  • R 11 is hydrogen, sodium, potassium, or a lower alkyl (C1.C4);
  • each of R 12 and R 13 is hydrogen or a lower alkyl (C 1 -C 4 );
  • each of R 1 and R 4 is OOCNR 6 (R 7 ) and R 1 occurs in the 5, 6, 7, or 8 position and R 4 occurs in the 2, 3, or 4 position, and each of R 6 and R 7 is hydrogen or a lower alkyl (C 1 -C 4 ) and in which each of R 6 and R 7 may be the same or different; and wherein each of R 2 , R 3 , and R 5 is a substituent selected from the group consisting of: hydrogen; OR 8 , wherein R 8 is hydrogen or a lower alkyl (C 1 -C 4 );
  • each of R 9 and R 10 is hydrogen or a lower alkyl (C ⁇ -C 4 ); a halogen atom selected from the group consisting of fluoride, chloride, bromide and iodide; COOR 11 , wherein R 11 is hydrogen, sodium, potassium, or a lower alkyl
  • each of R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 indicates that each may be an alkyl of 1 to 4 carbon atoms, for example, methyl, ethyl, isopropyl, butyl, isobutyl or t-butyl.
  • the reaction is carried out in an organic solvent such as dimethylformamide, acetonitrile or in a mixture of dimethylformamide and acetonitrile.
  • the reaction can be undertaken at room temperature or up to about the boiling or reflux temperature of the solvent.
  • the solvent contains acetonitrile
  • the reaction can be carried out at up to about 82°C, as determined by the boiling point of acetonitrile.
  • hydroxyflavone reactant used for production of the invention compounds in the reaction scheme set forth above, can be prepared by many methods. Various methods of hydroxyflavone synthesis are described in "The
  • the starting material is an appropriately substituted 2- hydroxyacetophenone derivative.
  • the 2- hydroxyacetophenone derivative is the precursor for production of a phenolester derivative.
  • the phenolester derivative is synthesized by reacting an aromatic acid chloride with the 2- hydroxyacetophenone derivative in a manner described, for example, in Org. Synth. Coll., vol. IV, 478 (1963), which is relied upon and incorporated by reference herein.
  • That phenolester is treated with alkali hydroxide(s) in pyridine to effect a Baker- enkataraman rearrangement to produce a 1, 3-diketone, as described in J. Chem. Soc, 1381 (1933) and in Curr. Sci.. 4, 214 (1933), each of which is relied upon and incorporated by reference herein.
  • This compound is subjected to a dealkylation resulting in the desired hydroxyflavone compound as a precursor for the synthesis of new dialkylaminocarbamoyloxy derivatives of flavones.
  • R , 1 , ⁇ R>2 , R ⁇ j3 and R are selected from the group consisting of: hydrogen;
  • OOCNR 5 (R 6 ), wherein each of R 5 and R 6 is a lower alkyl (C 1 -C 4 ) and in which each of R 5 and R 6 may be the same or different; OR 7 , wherein R 7 is a lower alkyl (C ⁇ );
  • each of R 8 and R 9 is hydrogen or a lower alkyl (C 1 .C 4 ); a halogen atom selected from the group consisting of fluoride, chloride, bromide and iodide;
  • R 10 is hydrogen, sodium, potassium, or a lower alkyl (C ⁇ .C 4 );
  • acetylcholine may either increase muscle contraction (frog skeletal muscle) or decrease it (frog cardiac muscle) depending on the identity of the choline receptor affected and treated (Molecular Biology. Scientific American Books (Third Edition), p. 957 (1997)).
  • acetylcholine may either increase muscle contraction (frog skeletal muscle) or decrease it (frog cardiac muscle) depending on the identity of the choline receptor affected and treated (Molecular Biology. Scientific American Books (Third Edition), p. 957 (1997)).
  • toxins prolong the action of acetylcholine, prolonging the period of membrane depolarization.
  • Such inhibitors can be lethal if they prevent relaxation of the muscles necessary for breathing (Id. at 965).
  • the carbamoyl derivatives of flavones of the invention can be compounded or diluted with pharmaceutically acceptable carriers and diluents, both liquid and solid, and formed into capsules or tablets for oral administration or formulated as solutions for parenteral administration, by intravenous or intramuscular administration.
  • pharmaceutically acceptable carriers and diluents both liquid and solid, and formed into capsules or tablets for oral administration or formulated as solutions for parenteral administration, by intravenous or intramuscular administration.
  • the invention also embraces inhibiting acetylcholine esterase activity by administering a compound of Formula I to a mammalian host in need of acetylcholine esterase inhibition.
  • composition of the invention recommend application of therapeutically effective amounts of composition of the invention to mammalian hosts, including human hosts, to inhibit acetylcholine esterase activity, and diseases associated with such activity, for example, AD.
  • mammalian hosts including human hosts
  • diseases associated with such activity for example, AD.
  • the following examples are illustrative of the invention. However, the examples simply present specific embodiments of the invention.
  • the invention embraces the subject matter of the appended claims and all equivalents thereof.
  • the crude compound was obtained, following the general procedure of Example lg, from the reaction of 2 '-hydroxyflavone (2.38 g, 0.01 mol), N-ethyl- N-methylcarbamoyloxy chloride (1.46 g, 0.12 mol) and sodium hydride.
  • the crude product was purified by column chromatography (silica, 7:1 CH 2 Cl 2 /EtOAc as eluent) and crystallized from acetone-water. The yield was 1.52 g (47.0%) (m.p.: 68-70°C). Analysis: calculated for C 19 H ⁇ 7 NO 4 : C, 70.58; H, 5.30; N, 4.33.
  • Example 4 3'-(N-Ethyl-N-methylcarbamoyloxy)flavone Starting from 3 '-hydroxyflavone (2.38 g, 0.01 mol), N-ethyl-N- methylcarbamoyl chloride (1.46 g, 0.012 mol) and 55-60% sodium hydride in mineral oil (0.48 g), the compound was synthesized utilizing the procedure of Example lg to give 2.60 g (80.4%) (m.p.: 109-111°C).
  • 2,4-Dihydroxyacetophenone was alkylated with bromoethane in acetone in the presence of potassium carbonate to obtain 2-hydroxy-4-methoxyacetophenone.
  • the syntheses according to Examples la, b, c, and d yielded the compound (m.p.: 153- 154.5°C).
  • Example lg. 7-Ethoxy-2' -hydroxyflavone (2.82 g, 0.01 mol) and N-ethyl-N- methylcarbamoyl chloride (1.46 g, 0.012 mol) were used as starting materials.
  • the crude title compound was crystallized from methanol to afford 1.35 g (36.7%) (m.p.: 91-93.5°C).
  • N-Acetyl-p-anisidine (m.p.: 127-130 °C) was obtained from p-anisidine which was boiled in a mixture of acetic anhydride and acetic acid.
  • 5-Acetamido- 2-hydroxyacetophenone (m.p.: 165-167 °C) was synthesized by Friedel-Crafts reaction from N-acetyl-p-anisidine (J. Chem. Soc, 3414 (1961)). Starting from 3- methoxy-benzoic acid and 5-acetamido-2-hydroxyacetophenone, the compound,
  • the compound was produced from 6-amino-3 '-hydroxyflavone (2.53 g, 0.01 mol) according to the procedure of Example 3.
  • the crude compound was purified by column chromatography (silica, 3 : 1 EtOH/CHCl 3 as eluent) to yield 2.38 g (73.4%) (m.p.: 157-159°C).
  • 6-Amino-3 '-methoxy flavone l-(2-Hydroxy-5-acetamidophenyl)-3-(3-metho ⁇ y ⁇ henyl)-propan-l,3-dione 0 (98.2 g, 0.3 mol, m.p.: 72-73°C) was synthesized from 5-acetamido-2- hydroxyacetophenone and 3-methoxybenzoic acid according to Examples la, b, and c. It was then added to a combined solution of acetic acid (300 ml) and 36% hydrochloric acid (150 ml). The reaction mixture was refluxed for 16 hours; then it was allowed to stand at room temperature for 16 hours.
  • Example 10b Trimethyl-6-(3 '-methoxyflavony I) ammonium iodide A mixture of 6-amino-3'-methoxyflavone (53.5 g, 0.20 mol) and potassium carbonate (96.7 g, 0.70 mol) in dimethylformamide (1250 ml) was stirred at room temperature for half an hour. Iodomethane (99.4 g, 44 ml, 0.70 mol) was added and the reaction mixture was agitated at the same temperature for 8 days. The solid was filtered off, thoroughly washed with water, and dried. The yield was 73.6 g (84.1 %) (m.p.: 189-191°C). Example 10c 6-Dimethylamino-3'-methoxy flavone
  • Trimethyl-6-(3'-methoxyflavonyl)ammonium iodide (43.7 g., 0.10 mol) in ethanol-amine (175 ml) was stirred at 70 °C for an hour. The reaction mixture was evaporated to dryness under reduced pressure. Methanol (100 ml) was added to the residue; and the solid was collected by filtration. The wet crude product was boiled in chloroform (80 ml) for 10 minutes; and the solid was filtered off from the hot suspension. Methanol (170 ml) was added to the filtrate; and the solution was concentrated to 100 ml under reduced pressure by distillation. After standing for 16 hours, the compound was collected by filtration and washed with methanol to give 12.4 g (42.0%) (m.p.: 169-170.5°C). IR (KBr): 1618 cm -1 (CO).
  • 6-Dimethylamino-3'-methoxyflavone (11.8 g, 0.04 mol) was added to a mixture of 33% hydrobromic acid in acetic acid (40 ml) and 47%> hydrobromic acid in water (80 ml). The reaction mixture was refluxed for an hour and then cooled to 10°C. The crystals were filtered off and washed with water and ethanol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Pyrane Compounds (AREA)

Abstract

The invention relates to new flavone derivatives which have at least one N-disubstituted carbamoyloxy unit (OOCNR6(R7)) coupled directly to one or both aromatic rings of the flavone molecule.

Description

N-DISUBSTITUTED CARBAMOYLOXY FLAVONES FIELD OF THE INVENTION
The invention relates to novel flavones and to processes of making them.
BACKGROUND OF THE INVENTION Flavonoids, such as flavones, are natural products produced by living organisms. Many of these compounds are natural products that do not appear to have any obvious metabolic or evolutionary function and may be formed by "metabolic accident" or are by-products of the synthetic machinery of the cellular enzymes. Regardless of their utility to the parent organism, their value to man as drugs, herbs, flavorings, poisons, dyes, and the like is undisputed.
The subject flavones comprise oxygenated derivatives of aromatic ring structures. Derivatives of flavone are found throughout the plant kingdom and especially in the higher plants. Although many biologically active flavone derivatives have been found in nature, they also have been produced synthetically. Certain of these compounds are useful as respiratory stimulants (U.S. Patent No. 3,147,258), as an inhibitor of MAP kinase (Mahboobi, S., Pongratz, H., Synthesis of2'-Amino-3'methoxyflavone (PD 98059), Synth. Commun., 1999;29:1645), and as an antitumor agent (Akama T., et a., Structure-activity relationships of the 7- substituents of5,4'-diamino-6,8,3'-t}'ifluoroflavone, a potent antitumor agent, J. Med. Chem., 1998 Jun 4;41(12):2056-67). An acetylcholine esterase inhibitor compound was described in Rampa A., et al., Acetylcholinesterase inhibitors: synthesis and structure-activity relationships of omega- [N-methyl-N-(3- alkylcarbamoyloxyphenyl) methyl] aminoalkoxyheteroaryl derivatives, J. Med. Chem., 1998 Oct 8;41(21):3976-86, in which the flavone structure has a phenyl group bearing an N-methylcarbamoyloxy radical connected with the oxygen atom of the flavone skeleton via a five membered chain:
Figure imgf000002_0001
Flavonoids serve as antioxidants and chemoprotectants against molecular damage from reactive oxygen species (ROS). Their antioxidative activity has been the subject of many studies (e.g., van Acker SA, et al., Structural aspects of antioxidant activity of flavonoids, Free Radic. Biol. Med., 1996;20(3):331-42). Oxidative stress, manifested by, for example, protein oxidation and lipid peroxidation is one characteristic of the brain of a person suffering from Alzheimer's Disease (AD) (Cf. Naradarajan S, et al., Alzheimer's amyloid beta- peptide-associatedfree radical oxidative stress and neurotoxicity, J. Struct. Biol., 2000 Jun;130(2-3):184-208. The beneficial effect of various antioxidants in the treatment of AD is now widely recognized. Cf. Pratico D, Delanty Ν., Oxidative injury in diseases of the central nervous system: focus on Alzheimer's disease, Am. J. Med., 2000 Νov;109(7):577-85; Giacobini E., Present and future of Alzheimer therapy, J. Neural. Transm. Suppl., 2000;59:231-42; Aisen, PS., et al., Anti-inflammatory and antioxidant therapies in Alzheimer's disease, Funct. Neurobio. Aging, 487-492 (Hof and Mobbs edS., Academic Press: San Diego, California 2001). Various compounds incorporating a carbamoyl functionality (e.g., rivastigmine and physostigmine) are useful for the treatment of AD via enhancement of cholinergic transmission through inhibition of acetylcholinesterase (AChE). The compounds of the present invention were designed as potential therapeutic agents for the treatment of AD by combining both AChE inhibitory activity and antioxidant activity (by virtue of their carbamoyl and flavonoid pharmacophores) . SUMMARY OF THE INVENTION The invention relates to compounds of the general Formula I:
Figure imgf000003_0001
wherein each of R1, R2, R3, R4 and R5 is a substituent selected from the group consisting of: hydrogen;
OOCNR6(R7), in which each of R6 and R7 is hydrogen, or a lower alkyl (C1-C4) and in which each of R6 and R7may be the same or different;
OR8, wherein R8 is hydrogen or a lower alkyl (C1.C4);
Rs
H i 3| 10 , wherein each of R and R is hydrogen or a lower alkyl (C1-C4); a halogen atom selected from the group consisting of fluoride, chloride, bromide and iodide;
COOR11, wherein R11 is hydrogen, sodium, potassium, or a lower alkyl
(C1.C4);
CONR12R13, wherein each of R12 and R13 is hydrogen or a lower alkyl (C1-C4);
NO2; and
CN; and wherein at least one of R1, R2, R3, R4 and R5 is OOCNR6(R7).
DETAILED DESCRIPTION OF THE INVENTION The invention relates to new flavone derivatives of Formula I above which have at least one N-disubstituted carbamoyloxy unit (OOCNR6(R7)) coupled directly to one or both aromatic rings of the flavone molecule. Accordingly, the invention embraces compounds of Formulae I A, IB and IC, below. Compounds of Formula I A are characterized by the formula:
Figure imgf000004_0001
wherein R4 is OOCNR6(R7 ), in which each of R6 and R7 is hydrogen or a lower alkyl of 1 to 4 carbon atoms and in which each of R6 and R7may be the same or different, and wherein R4 occurs in the 2, 3 or 4 position; and wherein each of R1. R2, R3, and R5 is a substituent selected from the group consisting of: hydrogen;
> OR8, wherein R8 is hydrogen or a lower alkyl of 1 to 4 carbon atoms,
FT
N. . 10
R ,wherein each of R and R is hydrogen or a lower alkyl (C1.C4); a halogen atom selected from the group consisting of fluoride, chloride, bromide and iodide;
COOR11 , wherein R11 is hydrogen, sodium, potassium, or a lower alkyl
(C1-C4);
CONR R , wherein each of R and R is hydrogen or a lower alkyl (C1.C4);
NO2; and
CN.
Compounds of Formula IB are characterized by the following formula:
Figure imgf000005_0001
wherein R1 is OOCNR6(R7), in which each of R6 and R7 is hydrogen or a lower alkyl (C1.C4) and in which each of R6 and R7may be the same or different, and wherein R1 occurs in the 5, 6, 7, or 8 position; and wherein each of R2, R3, R4 and R5 is a substituent selected from the group consisting of: hydrogen;
OR8, wherein R8 is hydrogen or a lower alkyl (C_ι . C );
Figure imgf000006_0001
, wherein each of R and R is hydrogen or a lower alkyl (Cι_C4); a halogen atom selected from the group consisting of fluoride, chloride, bromide and iodide;
COOR11, wherein R11 is hydrogen, sodium, potassium, or a lower alkyl (C1.C4);
CONR12R13, wherein each of R12 and R13 is hydrogen or a lower alkyl (C1-C4);
NO2; and
CN. The compounds of Formula IC are characterized by the following formula:
Figure imgf000006_0002
wherein each of R1 and R4 is OOCNR6(R7 ) and R1 occurs in the 5, 6, 7, or 8 position and R4 occurs in the 2, 3, or 4 position, and each of R6 and R7 is hydrogen or a lower alkyl (C1-C4) and in which each of R6 and R7may be the same or different; and wherein each of R2, R3, and R5 is a substituent selected from the group consisting of: hydrogen; OR8, wherein R8 is hydrogen or a lower alkyl (C1-C4);
, wherein each of R9 and R10 is hydrogen or a lower alkyl (Cι-C4);
Figure imgf000006_0003
a halogen atom selected from the group consisting of fluoride, chloride, bromide and iodide; COOR11, wherein R11 is hydrogen, sodium, potassium, or a lower alkyl
(C1-C4);
CONR , 12τ R3 13 , wherein each of R 12 and R . 13 is hydrogen or a lower alkyl
( . );
NO2; and
CN.
The definitions of each of R6, R7, R8, R9, R10, R11, R12, R13 indicates that each may be an alkyl of 1 to 4 carbon atoms, for example, methyl, ethyl, isopropyl, butyl, isobutyl or t-butyl.
Compounds of the invention are prepared by reacting a hydroxyflavone reactant with dialkylcarbamoyl chloride (R R NCOC1) in the presence of a base such as sodium hydride or potassium carbonate, according to the following reaction scheme:
Figure imgf000007_0001
The reaction is carried out in an organic solvent such as dimethylformamide, acetonitrile or in a mixture of dimethylformamide and acetonitrile. The reaction can be undertaken at room temperature or up to about the boiling or reflux temperature of the solvent. For example, when the solvent contains acetonitrile, the reaction can be carried out at up to about 82°C, as determined by the boiling point of acetonitrile.
The hydroxyflavone reactant, used for production of the invention compounds in the reaction scheme set forth above, can be prepared by many methods. Various methods of hydroxyflavone synthesis are described in "The
Chemistry of Flavonoid Compounds," Geissman, ed., Perg. Press (1962), which is relied upon and incorporated by reference herein. According to the synthetic method, shown below, the starting material is an appropriately substituted 2- hydroxyacetophenone derivative. The 2- hydroxyacetophenone derivative is the precursor for production of a phenolester derivative. In turn, the phenolester derivative is synthesized by reacting an aromatic acid chloride with the 2- hydroxyacetophenone derivative in a manner described, for example, in Org. Synth. Coll., vol. IV, 478 (1963), which is relied upon and incorporated by reference herein. That phenolester is treated with alkali hydroxide(s) in pyridine to effect a Baker- enkataraman rearrangement to produce a 1, 3-diketone, as described in J. Chem. Soc, 1381 (1933) and in Curr. Sci.. 4, 214 (1933), each of which is relied upon and incorporated by reference herein.
Figure imgf000008_0001
Ring closure of the 1, 3-diketone, in the presence of mineral acid in acetic acid as a solvent, results in a flavone derivative having at least one alkoxy group. This compound is subjected to a dealkylation resulting in the desired hydroxyflavone compound as a precursor for the synthesis of new dialkylaminocarbamoyloxy derivatives of flavones.
Specific embodiments of the invention include compounds of Formula II:
Figure imgf000009_0001
(II) wherein R , 1 , τ R>2 , R τj3 and R are selected from the group consisting of: hydrogen;
OOCNR5(R6), wherein each of R5 and R6 is a lower alkyl (C1-C4) and in which each of R5 and R6 may be the same or different; OR7, wherein R7 is a lower alkyl (C^ );
RB /
R , wherein each of R8 and R9 is hydrogen or a lower alkyl (C1.C4); a halogen atom selected from the group consisting of fluoride, chloride, bromide and iodide;
COOR10, wherein R10 is hydrogen, sodium, potassium, or a lower alkyl (Cι.C4);
1 1 19 1 1 19
CONR R , wherein each of R and R is hydrogen, or a lower alkyl
(C1-C4);
NO2; and CN; and wherein at least one of R 11, D R2z, D R3J and XV is OOCNR > 5D/(ΓR> 6°N) Specific compounds of Formula II are set forth in Table I:
Table I
Figure imgf000010_0002
In the table, Me is methyl and Et is ethyl. Compounds of Examples 1 and 2 below were prepared by the following synthetic route:
Figure imgf000010_0001
Compounds of Examples 5, 6, 7 and 8 below were prepared by the following synthetic route:
Figure imgf000011_0001
2fe
Compounds of Examples 9 and 10 below were prepared by the following synthetic route:
Figure imgf000012_0001
Compounds of the invention were tested for acetylcholine esterase inhibition and did exhibit acetylcholine esterase inhibition. By way of background, acetylcholine may either increase muscle contraction (frog skeletal muscle) or decrease it (frog cardiac muscle) depending on the identity of the choline receptor affected and treated (Molecular Biology. Scientific American Books (Third Edition), p. 957 (1997)). During hydrolysis of acetylcholine by acetylcholine esterase, the acetyl group reacts with serine to produce toxins and inhibitors. Such toxins prolong the action of acetylcholine, prolonging the period of membrane depolarization. Such inhibitors can be lethal if they prevent relaxation of the muscles necessary for breathing (Id. at 965).
As pharmaceutical reagents, the carbamoyl derivatives of flavones of the invention can be compounded or diluted with pharmaceutically acceptable carriers and diluents, both liquid and solid, and formed into capsules or tablets for oral administration or formulated as solutions for parenteral administration, by intravenous or intramuscular administration. The invention also embraces inhibiting acetylcholine esterase activity by administering a compound of Formula I to a mammalian host in need of acetylcholine esterase inhibition.
The results of the acetylcholine esterase inhibitory activity testing are set forth in Table II:
TABLE II
Figure imgf000013_0001
Figure imgf000014_0001
The foregoing ex vivo results recommend application of therapeutically effective amounts of composition of the invention to mammalian hosts, including human hosts, to inhibit acetylcholine esterase activity, and diseases associated with such activity, for example, AD. The following examples are illustrative of the invention. However, the examples simply present specific embodiments of the invention. The invention embraces the subject matter of the appended claims and all equivalents thereof.
EXAMPLES Example 1 V (N,N-Dimethylcarbamoyloxy) flavone
Example la 2-Methoxybenzoyl chloride
A mixture of 2-methoxybenzoic acid (45.6 g, 0.3 mol), thionyl chloride (53.5 g, 33 ml, 0.45 mol) and dimethylformamide (two drops) was refluxed for an hour. Excess thionyl chloride was then distilled off under reduced pressure. Benzene (50 ml) was added to the residue and the solvent was distilled off until the weight of the residue remained unchanged (about 51 g).
Example lb 2-[(2-Methoxybenzoyl)oxy]-acetophenone
2-Methoxybenzoyl chloride (about 51 g) from Example la was added dropwise to a mixture of 2-hydroxyacetophenone (27.2 g, 24.1 ml, 0.20 mol) and pyridine (40 ml). The reaction mixture was warmed to about 60°C exothermically. After stirring for 15 minutes, the reaction mixture was poured onto a mixture of ice (800 g) and 36% hydrochloric acid (120 ml). The solid was filtered off, washed with water, and dried. The crude product was crystallized from methanol to yield 48.4 g (89.6%) of the compound (m.p.: 78-79°C). Example lc l-(2-Hydroxyphenyl)~3-(2-methoxyphenyl)-propan-l,3-dione
2-[(3-Methoxybenzoyl)oxy]-acetophenone (40.5 g, 0.15 mol) in pyridine (135 ml) was warmed to 50°C, and pulverized potassium hydroxide (12.6 g, 0.225 mol) was added to the solution gradually. The temperature of the reaction mixture rose spontaneously to 70-80°C. The ixture was mechanically stirred for 15 minutes, during which time a copious precipitate formed. The mixture was cooled to room temperature and acidified with 10% acetic acid (200 ml). The product was collected on a filter and washed with water and methanol. The yield was 29.3 g (72.3%) (m.p.: 80-84°C). Example Id
2 '-Methoxy flavone
A solution of l-(2-hydroxyphenyl)-3-(2-methoxyphenyl)-propan-l,3-dione (27 g, 0.1 mol) in acetic acid (130 ml) and concentrated sulfuric acid (5 ml) were placed in a flask fitted with a reflux condenser and a stirrer. The flask was heated in a bath maintained at 100°C for an hour. Then the reaction mixture was poured onto crushed ice (750 g). The solid was filtered off, washed with water, dried and crystallized from methanol to give 24.3 g (96.2 %) of the compound (m.p.: 97- 98.5°C). In the literature ( J. Org. Chem., 27, 381 (1962)), 102-103°C is given for the product melting point.
Example le
2 '-Hydroxyflavone from 2 '-methoxy-flavone
A mixture of 2'-methoxyflavone (12.6 g, 0.05 mol), 33% hydrogen bromide in acetic acid (80 ml) and 47% hydrogen bromide in water (115 ml) was refluxed for 8 hours; then the mixture was left to cool to room temperature. The solid was isolated by filtration and washed with acetic acid, water and acetone to afford 11.0 g (92.3 %) of the compound (m.p.: 248-249°C). The literature (J. Org. Chem., 1962, 27, 381 (1962)) reports the product melting point as 246-247°C.
Example If 2 '-Hydroxyflavone from l-(2-hydroxyphenyl)-3-(2-methoxyphenyl)-propan-l,3- dione
1,3-Diketone (13.5 g, 0.05 mol) from Example lc was used instead of 2'- methoxy-flavone and the compound was prepared according to the procedure described in Example le. The yield was 10.6 g (89.2 %) (m.p.: 248-249°C). Example Is
2'-(N,N-dimethylcarbamoyloxy)flavone
2 '-Hydroxyflavone (2.38 g, 0.01 mol) was dissolved in dimethylformamide (100 ml), and 55-60% sodium hydride in mineral oil (0.48 g) was added to the solution. The reaction mixture was stirred at room temperature for an hour. N,N-dimethylcarbamoyl chloride (1.29 g, 1.10 ml, 0.012 mol) in dimethylformamide (5 ml) was added to the reaction mixture dropwise. The reaction mixture was stirred at room temperature for an hour. The inorganic salt was filtered off; and the filtrate was evaporated to dryness under reduced pressure. During the evaporation, the bath temperature was not allowed to exceed 65°C. The residue was dissolved in warm diethyl ether and treated with charcoal and aluminium oxide. The solution was evaporated to a small volume. The white crystals were collected by filtration, washed with petroleum ether (boiling range 40-60°C) to afford 1.79 g (57.8%) of the compound (m.p.: 86.5-87.5°C).
Analysis: calculated for Cι85NO4: C, 69.89; H, 4.89; N, 4.53. Found: C, 69.89; H, 4.73; N, 4.58. IR (KBr) : 1723 , 1646 cm"1 (CO).
1HNMR (CDC13): δ = 2.97 (s, 3H), 3.09 (s, 3H), 6.69 (s, 1H), 7.2-8.3 (m, 8H).
Example 2
2'-(N-Ethyl-N-methylcarbamoyloxy)flavone
The crude compound was obtained, following the general procedure of Example lg, from the reaction of 2 '-hydroxyflavone (2.38 g, 0.01 mol), N-ethyl- N-methylcarbamoyloxy chloride (1.46 g, 0.12 mol) and sodium hydride. The crude product was purified by column chromatography (silica, 7:1 CH2Cl2/EtOAc as eluent) and crystallized from acetone-water. The yield was 1.52 g (47.0%) (m.p.: 68-70°C). Analysis: calculated for C197NO4: C, 70.58; H, 5.30; N, 4.33.
Found: C, 70.45; H, 5.32; N, 4.29.
IR (KBr): 1712, 1640 cm4 (CO).
1H NMR (CDCI3): δ = 1.14 (dt, 3H), 3.00 (ds, 3H), 3.41 (dq, 2H), 6.67 (s, 1H), 7.2-8.3 (m, 8H). Example 3
3'-(N$N-Dimethylcarbamoyloxy)flavone
2.38 g (0.01 mol) of 3 '-hydroxyflavone (m.p.: 209-211°C) prepared from 3-methoxybenzoic acid and 2-hydroxyacetophenone (according to Examples la, b, c, f)) and potassium carbonate (2.21 g, 0.016 mol), was stirred in a combined solvent of dimethylformamide (50 ml) and acetonitrile (20 ml). N,N-
Dimethylcarbamoyl chloride (1.18 g, 1.0 ml, 0.11 mol) in acetonitrile (10 ml) was added to the reaction mixture over a period of 20 minutes. The reaction mixture was boiled under a reflux condenser for 3 hours then poured onto crushed ice (400 g) and neutralized with hydrochloric acid. The product was filtered off and washed with water to afford 2.89 g (93.4%) (m.p.: 125-126°C).
Analysis: calculated for Cι85NO4: C, 69.89; H, 4.89; N, 4.53. Found: C, 69.76; H, 4.71; N, 4.41. IR (KBr): 1718, 1654 cm"1 (CO).
1H NMR (CDC13): δ = 3.07 (s, 3H), 3.17 (s, 3H), 6.83 (s, 1H), 7.2-8.3 (m, 8H). Example 4 3'-(N-Ethyl-N-methylcarbamoyloxy)flavone Starting from 3 '-hydroxyflavone (2.38 g, 0.01 mol), N-ethyl-N- methylcarbamoyl chloride (1.46 g, 0.012 mol) and 55-60% sodium hydride in mineral oil (0.48 g), the compound was synthesized utilizing the procedure of Example lg to give 2.60 g (80.4%) (m.p.: 109-111°C).
Analysis: calculated for Cι97NO : C, 70.58; H, 5.30; N, 4.33. Found: C, 70.21; H, 5.03; N, 4.37.
IR (KBr): 1738, 1652 cm"1 (CO).
1H NMR (CDCI3): δ = 1.22 (dt, 3H), 3.09 (ds, 3H), 3.50 (dq, 2H), 6.83 (s, 1H), 7.2-8.4 (m, 8H).
Example 5 7-Ethoxy-2'-(N,N-dimethylcarbamoyloxy)flavone
Example 5a
7-Ethoxy-2 '-methoxy flavone
2,4-Dihydroxyacetophenone was alkylated with bromoethane in acetone in the presence of potassium carbonate to obtain 2-hydroxy-4-methoxyacetophenone. Using this compound and 2-methoxy-benzoic acid as starting materials, the syntheses according to Examples la, b, c, and d yielded the compound (m.p.: 153- 154.5°C).
IR (KBr): 1623cm"1 (CO).
1H NMR (CDCI3): δ = 1.49 (t, 3H), 3.94 (s, 3H), 4.15 (q, 2H), 6.8-8.2 (m, 8H). Example 5b
7-Ethoxy-2 '-hydroxyflavone
7-Ethoxy-2'-methoxyflavone (7.4 g, 0.025 mol) was agitated in dichloromethane (100 ml). Boron tribromide (9.4 g, 3.6 ml, 0.0375 mol) in dichloromethane (100 ml) was added dropwise for an hour. The agitation was continued at room temperature for 24 hours. The reaction mixture was poured onto a mixture of crushed ice (100 g) and 36% hydrochloric acid (10 ml). After stirring the mixture for an hour, the precipitate was filtered off. 2.15 g (29%) of unreacted 7-ethoxy-2'-methoxyflavone was recovered. The filtrate was evaporated under reduced pressure to remove dichloromethane. From the aqueous residue, crude 7-ethoxy-2' -hydroxyflavone was obtained by filtration. The crude product was dried, thoroughly pulverized and treated with boiling chloroform for half an hour. The undissolved product was collected by filtration from the cooled mixture; and the crude 7-ethoxy-2' -hydroxyflavone was crystallized from dimethylformamide to give 3.10 g (43.9%) (m.p. : 295-297°C).
IR (KBr): 1624 cm"1 (CO).
1H NMR (DMSO): δ = 1.40 (t, 3H), 4.20 (q, 2H), 6.9-8.1 (m, 8H), 10.76 (s, 1H).
Example 5c
7-Ethoxy-2 '-(N, N-dimethlylcarbamoyloxy) flavone Using 7-ethoxy-2' -hydroxyflavone (2.82 g, 0.01 mol) as starting material, the compound was obtained according to Example lg. The crude product was crystallized from methanol to give 1.25g (35.4%) (m.p.: 166-168° C).
Analysis: calculated for C209NO5: C, 67.98; H, 5.42; N, 3.96 Found: C, 67.95; H, 5.29; N, 3.99. IR (KBr): 1736, 1637 cm"1 (CO).
1H NMR (CDCI3): δ = 1.50 (t, 3H), 2.99 (s, 3H), 3.10 (s, 3H), 4.14 (q, 2H), 6.67
(s, 1H), 6.8-8.2 (m, 7H). Example 6 7-Ethoxy-2'-(N~ethyl-N-methylcarbamoyloxy) flavone The experiment was conducted in a manner analogous to the procedure of
Example lg. 7-Ethoxy-2' -hydroxyflavone (2.82 g, 0.01 mol) and N-ethyl-N- methylcarbamoyl chloride (1.46 g, 0.012 mol) were used as starting materials. The crude title compound was crystallized from methanol to afford 1.35 g (36.7%) (m.p.: 91-93.5°C).
Analysis: calculated for C2ιH21NO5: C, 68.65; H, 5.76; N, 3.81. Found: C, 68.30; H, 5.71; N, 3.80.
IR (KBr): 1731, 1643 cm"1 (CO).
1HNMR (CDC13): δ = 1.14 (q, 3H), 1.49 (t, 3H), 3.03 (s, 3H), 3.42 (m, 2H), 4.13
(q, 2H), 6.5-8.3 (m, 8H).
Example 7 7-(N,N-Dimethylcarbamoyloxy)-2'-methoxyflavone
Example 7a
7-Hydroxy-2 '-methox flavone
A mixture of 7-ethoxy-2'-methoxyflavone (8.89 g, 0.03 mol) and aluminum chloride (20 g, 0.15 mol) in dichloromethane (300 ml) was stirred at room temperature for 16 hours. The reaction mixture was poured onto a mixture of crushed ice (500 g) and 36% hydrochloric acid (50 ml). The precipitate formed was filtered off, washed with water, dried and the crude compound was crystallized from dimethylformamide to afford 6.0 g (74.6%) (m.p.: 260-264°C).
IR (KBr): 1625 cm"1 (CO). 1H NMR (DMSO): δ = 3.91 (s, 3H), 6.8 (s, IH), 6.85-8.0 (m, 7H), 10.83 (s, IH).
Example 7b
7-(N,N-Dimethylcarbamoyloxy)-2'-methoxyflavone
Starting from 7-hydroxy-2'-methoxyflavone (2.68 g, 0.01 mol), the compound was prepared using a procedure analogous to that of Example lg. The crude product was crystallized from methanol to give 1.36 g (40.1 %) (m.p. :
133.5-135°C).
Analysis: calculated for Cι97NO5: C, 67.25; H, 5.05; N, 4.13.
Found: C, 66.86; H, 4.90; N, 4.08.
IR (KBr): 1728, 1642 cm"1 (CO). 1H NMR (DMSO); δ = 2.97 (s, 3H), 3.10 (s, 3H), 3.94 (s, 3H), 6.94 (s, IH), 7.0-
8.2 (m, 7H).
Example 8
7,2'-Di(N,N-dimethylcarbamoxyloxy)flavone Example 8a
7,2 '-Dihydroxy flavone
7-Ethoxy-2'-methoxyflavone (7.4 g, 0.025 mol) and boron tribromide
(12.5 g, 4.4 ml, 0.05 mol) were added to dichloromethane (50 ml). The reaction mixture was refluxed for two hours and then cooled to room temperature. The solid was collected by filtration and washed with dichloromethane. The crude product was agitated in a mixture of cold water (100 ml) and 36% hydrochloric acid (10 ml) for half an hour. After filtration and washing with water, the wet product was dried and crystallized from dimethylformamide to afford 5.63 g (88.6%) (m.p.: 335-339°C).
The literature (Berichte, 32, 1033(1899)) reports 320° C as the melting point of this compound.
IR (KBr): 1618 cm"1 (CO).
1HNMR (DMSO); δ = 6.80 (s, IH), 6.85-8.0 (m, 7H), 10.67 (s, IH), 10.80 (s, IH).
Example 8b
7,2'-Di(N, N-dimethylcarbamoyloxy)flavone
7-2'-Dihydroxyflavone (5.09 g, 0.02 mol) and 55-60% sodium hydride in mineral oil (1.92 g) were added into dimethylformamide (200 ml). The mixture was stirred at room temperature for an hour. N,N-Dimethylcarbamoyl chloride
(5.16 g, 4.4 ml, 0.048 mol) in dimethylformamide (20 ml) was added dropwise for
15 minutes. The reaction mixture was stirred at room temperature for 24 hours; then the solvent was distilled off under reduced pressure. Ice-cold water (200 g) was added to the residue and the pH was adjusted to 7.0 with 17% hydrochloric acid. The crude product was filtered off, washed with water, and crystallized from methanol and then acetone. The pure compound weighed 3.27 g (41.2%) (m.p.:
145.5-147°C).
Analysis: calculated for C2ιH20N2O6: C, 63.63; H, 5.09; N, 7.07.
Found: C, 63.67; H, 5.05; N, 7.04. IR (KBr): 1718, 1641 cm"1 (CO).
1H NMR (CDC13); δ = 2.97 (s, 3H), 3.03 (s, 3H) 3.09 (s, 3H), 3.13 (s, 3H), 6.69 (s,
IH), 7.1-8.3 (m, 7H). Example 9
6-Amino-3 ' -(N,N-dimethylcarbamoyloxy)flavone
Example 9a
6-Amino-3 '-hydroxyflavone
5 N-Acetyl-p-anisidine (m.p.: 127-130 °C) was obtained from p-anisidine which was boiled in a mixture of acetic anhydride and acetic acid. 5-Acetamido- 2-hydroxyacetophenone (m.p.: 165-167 °C) was synthesized by Friedel-Crafts reaction from N-acetyl-p-anisidine (J. Chem. Soc, 3414 (1961)). Starting from 3- methoxy-benzoic acid and 5-acetamido-2-hydroxyacetophenone, the compound,
10 6-amino-3 'hydroxyflavone, was synthesized according to Examples la, b, c, and f. The compound melted at 265-268°C. IR (KBr): 1620 cm"1 (CO).
1HNMR (DMSO); δ = 5.52 (s, 2H), 6.75 (s, IH), 6.9-7.6 (m, 7H), 9.89 (s, IH). Example 9b
X 5 6-Amino-3 '-(N,N-dimethylcarbamoyloxy)flavone
The compound was produced from 6-amino-3 '-hydroxyflavone (2.53 g, 0.01 mol) according to the procedure of Example 3. The crude compound was purified by column chromatography (silica, 3 : 1 EtOH/CHCl3 as eluent) to yield 2.38 g (73.4%) (m.p.: 157-159°C). 0 Analysis: calculated for Cι8H16N2O4: C, 66.66; H, 4.97; N, 8.64. Found: C, 66.23; H, 4.87; N, 8.77. IR (KBr): 1716, 1629 cm"1 (CO).
1HNMR (DMSO); δ = 2.93 (s, 3H), 3.19 (s, 3H), 5.53 (s, 2H), 6.90 (s, IH), 6.95- 8.0 (m, 7H). 5 Example 10
6-Dimethylamino-3'-(N,N-dimethylcarbamoyloxy)flavone
Example 10a
6-Amino-3 '-methoxy flavone l-(2-Hydroxy-5-acetamidophenyl)-3-(3-methoχyρhenyl)-propan-l,3-dione 0 (98.2 g, 0.3 mol, m.p.: 72-73°C) was synthesized from 5-acetamido-2- hydroxyacetophenone and 3-methoxybenzoic acid according to Examples la, b, and c. It was then added to a combined solution of acetic acid (300 ml) and 36% hydrochloric acid (150 ml). The reaction mixture was refluxed for 16 hours; then it was allowed to stand at room temperature for 16 hours. The product was isolated by filtration and washed with methanol. The wet product was agitated in water (1000 ml), and the pH was adjusted to 11 with 25% ammonium hydroxide. The product was filtered off and washed with water and ethanol to afford 75.4 g (94.0%) (m.ρ.: 203-206°C). IR (KBr): 1614 cm"1 (CO).
1HNMR (DMSO); δ = 3.88 (s, 3H), 5.53 (s, 2H), 6.92 (s, IH), 7.0-7.7 (m, 7H). Example 10b Trimethyl-6-(3 '-methoxyflavony I) ammonium iodide A mixture of 6-amino-3'-methoxyflavone (53.5 g, 0.20 mol) and potassium carbonate (96.7 g, 0.70 mol) in dimethylformamide (1250 ml) was stirred at room temperature for half an hour. Iodomethane (99.4 g, 44 ml, 0.70 mol) was added and the reaction mixture was agitated at the same temperature for 8 days. The solid was filtered off, thoroughly washed with water, and dried. The yield was 73.6 g (84.1 %) (m.p.: 189-191°C). Example 10c 6-Dimethylamino-3'-methoxy flavone
Trimethyl-6-(3'-methoxyflavonyl)ammonium iodide (43.7 g., 0.10 mol) in ethanol-amine (175 ml) was stirred at 70 °C for an hour. The reaction mixture was evaporated to dryness under reduced pressure. Methanol (100 ml) was added to the residue; and the solid was collected by filtration. The wet crude product was boiled in chloroform (80 ml) for 10 minutes; and the solid was filtered off from the hot suspension. Methanol (170 ml) was added to the filtrate; and the solution was concentrated to 100 ml under reduced pressure by distillation. After standing for 16 hours, the compound was collected by filtration and washed with methanol to give 12.4 g (42.0%) (m.p.: 169-170.5°C). IR (KBr): 1618 cm-1 (CO).
1H NMR (CDC13); δ = 3.06 (s, 6H), 3.39 (s, 3H), 6.80 (s, IH), 6.9-7.6 (m, 7H). Example lOd 6-Dimethylamino-3-hydroxyflavone
6-Dimethylamino-3'-methoxyflavone (11.8 g, 0.04 mol) was added to a mixture of 33% hydrobromic acid in acetic acid (40 ml) and 47%> hydrobromic acid in water (80 ml). The reaction mixture was refluxed for an hour and then cooled to 10°C. The crystals were filtered off and washed with water and ethanol.
The crude compound was crystallized from a mixture of dimethylformamide and methanol to afford 9.35 g (83.2%) (m.p.: 233-235°C).
IR (KBr): 1617 cm"1 (CO). 1H NMR (DMSO); δ = 3.01 (s, 6H), 6.84 (s, IH), 6.9-7.7 (m, 7H), 9.87 (s, IH).
Example IQe
6-Dimethylamino-3'-(N,N-dimethylcarbamoyloxy)flavone
. Using 6-dimethylamino-3' -hydroxyflavone as starting material (2.81 g,
0.01 mol), the reaction was conducted in a manner analogous to the process of Example 3. The crude title compound was crystallized from a mixture of chloroform and methanol to give 2.18 g (61.9%) (m.p.: 167-168°C).
Analysis: calculated for C2oH20N2O4: C, 68.17; H, 5.72; N, 7.95.
Found: C, 68.12; H, 5.65; N, 8.08.
IR (KBr): 1727, 1637 cm"1 (CO). 1H MR (CDC13); δ = 3.03 (s, 9H), 3.14 (s, 3H), 6.80 (s, IH), 7.1-7.9 (m, 7H).

Claims

WHAT IS CLAIMED IS:
1. A compound of the formula
Figure imgf000025_0001
wherein each of R1, R2, R3, R4 and R5 is a substituent selected from the group consisting of: hydrogen;
OOCNR6(R7), in which each of R6 and R7 is hydrogen, methyl or ethyl and in which each of R6 and R7may be the same or different; OR8, wherein R8 is hydrogen, methyl or ethyl
Figure imgf000025_0002
, wherein each of R and R is hydrogen or methyl; a halogen atom selected from the group consisting of fluoride, chloride and iodide;
COOR11, wherein R11 is hydrogen, sodium, potassium, or an alkyl of one to two carbon atoms;
CONR12R13, wherein each of R12 and R13 is hydrogen, methyl or ethyl; NO2; and
CN; and wherein at least one of R1, R2, R3, R4 and R5 is OOCNR6(R7).
A compound of the formula
Figure imgf000026_0001
wherein R4 is OOCNR6(R7 ), in wliich each of R6 and R7 is hydrogen, methyl or ethyl and in which each of R6 and R7may be the same or different, and wherein R4 occurs in the 2, 3 or 4 position; and wherein each of R1, R2, R3, and R5 is a substituent selected from the group consisting of: hydrogen;
OR8, wherein R8 is hydrogen, methyl, or ethyl;
R9
Λ 10
R , wherein each of R and R is hydrogen or methyl; a halogen atom selected from the group consisting of fluoride, chloride, and iodide;
COOR11 , wherein R11 is hydrogen, sodium, potassium, or an alkyl of one to two carbon atoms;
CONR12R13, wherein each of R12 and R13 is hydrogen, methyl, or ethyl;
NO2; and
CN.
3. A compound of the formula
Figure imgf000027_0001
wherein R1 is OOCNR6(R7), in which each of R6 and R7 is hydrogen, methyl or ethyl and in which each of R6 and R7may be the same or different; and wherein R1 occurs in the 5, 6, 7, or 8 position; and wherein each of R2, R3, R4 and R5 is a substituent selected from the group consisting of: hydrogen; OR8, wherein R8 is hydrogen, methyl, or ethyl;
Figure imgf000027_0002
, wherein each of R9 and R10 is hydrogen or methyl; a halogen atom selected from the group consisting of fluoride, chloride, and iodide;
COOR11, wherein R11 is hydrogen, sodium, potassium, or an alkyl of one to two carbon atoms;
CONR12R13, wherein each of R12,and R13 is hydrogen, methyl, or ethyl;
NO ; and
CN.
4. A compound of the formula
Figure imgf000028_0001
wherein each of R1 and R4 is OOCNR6(R7 ) and R1 occurs in the 5, 6, 7, or 8 position and R4 occurs in the 2, 3, or 4 position, and each of R6 and R7 is hydrogen, methyl or ethyl and in which each of R6 and R7may be the same or different; and wherein each of R2, R3, and R5 is a substituent selected from the group consisting of: hydrogen;
OR8, wherein R8 is hydrogen, methyl, or ethyl;
R9 \ 1Q , wherein each of R9 and R10 is hydrogen or methyl; R a halogen atom selected from the group consisting of fluoride, chloride, and iodide; COOR11, wherein R11 is hydrogen, sodium, potassium, or an alkyl of one to two carbon atoms;
CONR12R13, wherein each of R12 and R13 is hydrogen, methyl, or ethyl;
NO2; and
CN. A compound of the formula
Figure imgf000029_0001
(II) wherein R , R , R and R are selected from the group consisting of: hydrogen;
OOCNR5(R6), wherein each of R5 and R6 is methyl or ethyl and in which each of R5 and R6 may be the same or different; OR7, wherein R7 is methyl or ethyl;
R'
9
, wherein each of R8 and R9 is hydrogen or methyl; a halogen atom selected from the group consisting of fluoride, chloride, and iodide;
COOR10, wherein R10 is hydrogen, sodium, potassium, or an alkyl of one to two carbon atoms;
CONRnR12, wherein each of R11 and R12 is hydrogen, methyl, or ethyl; NO2; and
CN; and wherein at least one of R1, R2, R3 and R4 is OOCNR5(R6). A compound of the formula
Figure imgf000030_0001
wherein each of R1, R2, R3, R4 and R5 is a substituent selected from the group consisting of: hydrogen;
OOCNR6(R7), in which each of R6 and R7 is hydrogen, or a lower alkyl of 1 to 4 carbon atoms and in which each of R6 and R7may be the same or different;
OR8, wherein R8 is hydrogen, or a lower alkyl of 1 to 4 carbon atoms;
pj 10 , wherein each of R9 and R10 is hydrogen or a lower alkyl of 1 to 4 carbon atoms; a halogen atom selected from the group consisting of fluoride, chloride, bromide and iodide;
COOR .11 , wherein R .11 is hydrogen, sodium, potassium, or a lower alkyl of 1 to 4 carbon atoms;
CONR R , wherein each of R and R is hydrogen or a lower alkyl of 1 to 4 carbon atoms;
NO2; and CN; and wherein at least one of R1, R2, R3, R4 and R5 is OOCNR6(R7).
7. The compound of Claim 6, wherein each of said a lower alkyl is methyl or ethyl.
8. A pharmaceutical composition comprising the compound of Claim 1 and a pharmaceutically acceptable carrier for said compound.
9. A pharmaceutical composition comprising the compound of Claim 2 and a pharmaceutically acceptable carrier for said compound. 10. A pharmaceutical composition comprising the compound of Claim 3 and a pharmaceutically acceptable carrier for said compound.
11. A pharmaceutical composition comprising the compound of Claim 4 and a pharmaceutically acceptable carrier for said compound.
12. A pharmaceutical composition comprising the compound of Claim 5 and a pharmaceutically acceptable carrier for said compound.
13. A pharmaceutical composition comprising the compound of Claim 6 and a pharmaceutically acceptable carrier for said compound.
14. A method for inhibiting acetylcholine esterase activity by administering a compound of Claim 1 to a host in need of acetylcholine esterase inhibition. 15. A method for inhibiting acetylcholine esterase activity by administering a compound of Claim 5 to a host in need of acetylcholine esterase inliibition. 16. A method for inhibiting acetylcholine esterase activity by administering a compound of Claim 6 to a host in need of acetylcholine esterase inhibition.
PCT/US2001/029579 2000-09-21 2001-09-21 N-disubstituted carbamoyloxy flavones WO2002024677A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP01971275A EP1322632A1 (en) 2000-09-21 2001-09-21 N-disubstituted carbamoyloxy flavones
AU2001291178A AU2001291178A1 (en) 2000-09-21 2001-09-21 N-disubstituted carbamoyloxy flavones
IL15498501A IL154985A0 (en) 2000-09-21 2001-09-21 N-disubstituted carbamoyloxy flavones

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US23423900P 2000-09-21 2000-09-21
US60/234,239 2000-09-21

Publications (1)

Publication Number Publication Date
WO2002024677A1 true WO2002024677A1 (en) 2002-03-28

Family

ID=22880527

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2001/029135 WO2002024676A1 (en) 2000-09-21 2001-09-19 N-disubstituted carbamoyloxy flavones
PCT/US2001/029579 WO2002024677A1 (en) 2000-09-21 2001-09-21 N-disubstituted carbamoyloxy flavones

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/US2001/029135 WO2002024676A1 (en) 2000-09-21 2001-09-19 N-disubstituted carbamoyloxy flavones

Country Status (5)

Country Link
US (1) US6610738B2 (en)
EP (1) EP1322632A1 (en)
AU (2) AU2001291077A1 (en)
IL (1) IL154985A0 (en)
WO (2) WO2002024676A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009109230A1 (en) * 2008-03-06 2009-09-11 Rottapharm S.P.A. 2-aryl and 2 -heteroaryl 4h-1-benzopyran-4-one-6-amidino derivatives for the treatment of arthritis, cancer and related pain
JP2012072171A (en) * 2004-11-08 2012-04-12 Emcure Pharmaceuticals Ltd Efficient production method of (s)-3-[(1-dimethylamino)ethyl]-phenyl-n-ethyl-n-methyl-carbamic acid

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102755312A (en) * 2012-07-16 2012-10-31 中国科学院大连化学物理研究所 Application of compound with flavone skeleton structure as Parkinsonism treating medicine
EP3369730B1 (en) 2012-11-05 2020-08-05 Emory University 7,8-dihydoxyflavone and 7,8-substituted flavone derivatives, compositions, and methods related thereto

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2156469A1 (en) * 1971-10-21 1973-06-01 Blaise Rolland Tetrahydroisoquinolinoylalkoxy-7-(2-phenyl)-gamma - -benzopyrones - as spasmolytics and vascular protecting agents
US4202825A (en) * 1977-03-07 1980-05-13 Rogador Sociedad Anonima Quercetin pentamethyl carbamate and a process for its preparation
WO1997049693A1 (en) * 1996-06-27 1997-12-31 Cobra Therapeutics Limited Analogues or derivatives of quercetin (prodrugs)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE595656A (en) 1959-10-16 1961-02-01 Recordati Lab Farmacologico S New organic compounds with central nervous system stimulating activity and process for their preparation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2156469A1 (en) * 1971-10-21 1973-06-01 Blaise Rolland Tetrahydroisoquinolinoylalkoxy-7-(2-phenyl)-gamma - -benzopyrones - as spasmolytics and vascular protecting agents
US4202825A (en) * 1977-03-07 1980-05-13 Rogador Sociedad Anonima Quercetin pentamethyl carbamate and a process for its preparation
WO1997049693A1 (en) * 1996-06-27 1997-12-31 Cobra Therapeutics Limited Analogues or derivatives of quercetin (prodrugs)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 74, no. 27, 1971, Columbus, Ohio, US; abstract no. 87763a, OWADA,ETSURO ET AL.: "SYNTHESIS OF ALKYL OR ARYL 7-FLAVONYL CARBONATES" page 419; XP002190636 *
CHEMICAL ABSTRACTS, vol. 98, no. 5, 1983, Columbus, Ohio, US; abstract no. 156357f, RAO,D. ET AL.: "ON THE ACTION OF A CARBAMATE ANALOG AS A JUVENILE HORMONE" page 147; XP002190637 *
CURR. SCI., vol. 52, no. 3, 1983, ENGL., pages 142 - 3 *
NIPPON KAGAKU ZASSHI, vol. 91, no. 9, 1970, TOKYO, pages 868 - 873 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072171A (en) * 2004-11-08 2012-04-12 Emcure Pharmaceuticals Ltd Efficient production method of (s)-3-[(1-dimethylamino)ethyl]-phenyl-n-ethyl-n-methyl-carbamic acid
WO2009109230A1 (en) * 2008-03-06 2009-09-11 Rottapharm S.P.A. 2-aryl and 2 -heteroaryl 4h-1-benzopyran-4-one-6-amidino derivatives for the treatment of arthritis, cancer and related pain
US8372866B2 (en) 2008-03-06 2013-02-12 Rottapharm S.P.A. 2-aryl and 2-heteroaryl 4H-1-benzopyran-4-one-6-amidino derivatives, new pharmacological agents for the treatment of arthritis, cancer and related pain

Also Published As

Publication number Publication date
AU2001291077A1 (en) 2002-04-02
US6610738B2 (en) 2003-08-26
EP1322632A1 (en) 2003-07-02
AU2001291178A1 (en) 2002-04-02
US20020128494A1 (en) 2002-09-12
WO2002024676A1 (en) 2002-03-28
IL154985A0 (en) 2003-10-31

Similar Documents

Publication Publication Date Title
Moffett Central nervous system depressants. VII. 1 pyridyl coumarins
Talapatra et al. (−)-Regiolone, an α-tetralone from Juglans regia: structure, stereochemistry and conformation
Desideri et al. Synthesis and anti-rhinovirus activity of 2-styrylchromones
FI70699C (en) FRAMEWORK FOR ANTIVIRAL SUBSTITUTE ACCOUNTING
Mateeva et al. Synthesis of novel flavonoid derivatives as potential HIV‐Integrase inhibitors
Jayaprakasam et al. Dihydroechioidinin, a flavanone from Andrographis echioides
US7208518B2 (en) Substituted furochromene compounds of antiinflammatory action
Zhou et al. Synthesis and antitumor activity of scopoletin derivatives
US4200577A (en) Coumarin derivatives
US8501803B2 (en) Garcinia derivative, its preparing method and medicinal use
US6610738B2 (en) N-disubstituted carbamoyloxy flavones
CN106883244B (en) Scutellarin derivative and its preparation method and application
KR900004929B1 (en) Methylflavone-8-carboxylates
FR2748025A1 (en) NOVEL ACIDS AND ESTERS OF DIOSMETIN AND THE PHARMACEUTICAL COMPOSITIONS CONTAINING SAME
Gupta et al. Synthesis and Investigation of antidiabetic response of new coumarin derivatives against streptozotocin induced diabetes in experimental rats
EP2984072B1 (en) Synthetic analogues of xanthohumol
JP3246741B2 (en) Novel derivative of 2,3-dihydrobenzofuranol and process for producing the same
US4211791A (en) Indanediones
WO2009049493A1 (en) Preparation of seselin and its derivatives
CN111995605B (en) Chrysin cinnamate or its derivative and its preparation method
CA1284640C (en) Therapeutic compositions based on 3-alkoxyflavone derivatives, and novel 3-alkoxyflavone derivatives
Shao et al. Synthesis, characterization, and antiradical activity of 6-hydroxygenistein
US4207335A (en) Indan-1,3-diones
Menezes et al. Synthesis of 7, 8-methylenedioxy-4′-methoxyisoflavone from Indigofera linnaei and two new related flavonoids
US6191279B1 (en) Dipyrano-quinolinones useful as anti viral agents and a process for preparing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 154985

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2001971275

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001971275

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2001971275

Country of ref document: EP