WO2002022504A1 - Process for producing and cooling titanium dioxide - Google Patents

Process for producing and cooling titanium dioxide Download PDF

Info

Publication number
WO2002022504A1
WO2002022504A1 PCT/US2001/042176 US0142176W WO0222504A1 WO 2002022504 A1 WO2002022504 A1 WO 2002022504A1 US 0142176 W US0142176 W US 0142176W WO 0222504 A1 WO0222504 A1 WO 0222504A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
titanium dioxide
reaction products
gaseous reaction
spiraling
Prior art date
Application number
PCT/US2001/042176
Other languages
French (fr)
Inventor
William A. Yuill
Charles A. Natalie
Harry E. Flynn
Bita Fillipi
Original Assignee
Kerr-Mcgee Chemical, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=24665571&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2002022504(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to EP01975754A priority Critical patent/EP1326804B1/en
Priority to DE60143902T priority patent/DE60143902D1/en
Priority to KR10-2003-7003567A priority patent/KR20030059134A/en
Priority to UA2003043506A priority patent/UA74008C2/en
Priority to JP2002526705A priority patent/JP2004509045A/en
Application filed by Kerr-Mcgee Chemical, Llc filed Critical Kerr-Mcgee Chemical, Llc
Priority to AU2001295046A priority patent/AU2001295046B2/en
Priority to PL36066001A priority patent/PL360660A1/en
Priority to AU9504601A priority patent/AU9504601A/en
Priority to AT01975754T priority patent/ATE496006T1/en
Priority to MXPA03002302A priority patent/MXPA03002302A/en
Priority to BR0113958-4A priority patent/BR0113958A/en
Publication of WO2002022504A1 publication Critical patent/WO2002022504A1/en
Priority to NO20031203A priority patent/NO20031203L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/07Producing by vapour phase processes, e.g. halide oxidation
    • C01G23/075Evacuation and cooling of the gaseous suspension containing the oxide; Desacidification and elimination of gases occluded in the separated oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/07Producing by vapour phase processes, e.g. halide oxidation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Definitions

  • the present invention relates to processes for producing and cooling titanium dioxide, and more particularly, to such processes wherein the cooling of the titanium dioxide and gaseous reaction products produced is more efficiently carried out.
  • the present invention provides an improved process for producing and cooling titanium dioxide which meets the needs described above and overcomes the deficiencies of the prior art.
  • the improved process of this invention basically comprises the steps of reacting gaseous titanium tetrachloride and oxygen at a high temperature to produce particulate solid titanium dioxide and gaseous reaction products.
  • the produced particulate solid titanium dioxide and gaseous reaction products are cooled by heat exchange with a cooling medium in a tubular heat exchanger.
  • a scouring medium is injected into the heat exchanger for removing deposits of titanium dioxide and other materials from the inside surfaces of the heat exchanger.
  • the scouring medium is caused to follow a spiral path through the heat exchanger. After passing through the heat exchanger, the particulate solid titanium dioxide is separated from the gaseous reaction products.
  • FIGURE 1 is a side cross-sectional view of a tubular heat exchanger section which includes spiraling vanes and recesses in accordance with this invention.
  • FIGURE 2 is an end view taken along line 2-2 of FIG. 1.
  • Titanium dioxide pigment has heretofore been produced by reacting heated gaseous titanium tetrachloride and heated oxygen in a tubular reactor at high temperatures.
  • the titanium tetrachloride can include aluminum chloride in an amount sufficient to produce a rutile pigment containing between about 0.3% to about 3% by weight aluminum oxide.
  • the titanium tetrachloride is preheated to a temperature in the range of from about 650°F to about 1800°F depending upon the particular preheater apparatus utilized.
  • the oxygen is typically preheated to a temperature in the range of from about 1750°F to about 3400°F.
  • the oxidation reaction temperature at a pressure of one atmosphere is typically in the range of from about 2300°F to about 2500°F.
  • the reaction produces particulate solid titanium dioxide and gaseous reaction products.
  • the reaction products are immediately introduced into an elongated tubular heat exchanger wherein the reaction products are cooled by heat exchange with a cooling medium such as cooling water.
  • the elongated tubular heat exchanger is usually made up of a plurality of individual heat exchanger sections which are sealingly bolted together.
  • the heat exchanger sections and overall length of the heat exchanger can vary widely depending on factors such as the titanium dioxide production rate, the desired discharge temperature, the diameter of the heat exchanger, etc.
  • the heat exchanger sections have an internal diameter of 7 inches and are from about 7 feet to about 16 feet long.
  • the elongated tubular heat exchanger often also includes an adapter section which is from 1 foot to 4 feet long. While passing through the elongated tubular heat exchanger, the titanium dioxide and gaseous reaction products are cooled to a temperature of about 1300°F or less.
  • a scouring medium has been injected into the tubular heat exchanger along with the reaction products.
  • scouring media which can be used include, but are not limited to, sand, mixtures of titanium dioxide and water which are pelletized, dried and sintered, compressed titanium dioxide, rock salt, fused alumina, titanium dioxide and salt mixtures and the like.
  • the salt mixed with titanium dioxide can be potassium chloride, sodium chloride and the like. The scouring medium impinges on the inside surfaces of the heat exchanger and removes deposits therefrom.
  • the scouring medium removes some of the deposits, it often does not remove all of the deposits and as a result, a layer of the deposits on the inside surfaces of the heat exchanger remains.
  • the remaining layer of deposited material decreases the heat transfer rate from the reaction products being cooled through the walls of the heat exchanger and into the cooling medium. This in turn significantly decreases the efficiency of the heat exchanger and increases the overall costs of producing the titanium dioxide by requiring the installation and maintenance of a longer heat exchanger and requiring a greater amount of the scouring medium.
  • the particulate solid titanium dioxide is separated from the gaseous reaction products and the scouring medium.
  • the present invention is based on the discovery that the removal of the deposits from the inside surfaces of the heat exchanger can be improved by causing the scouring medium to follow a spiral path through the heat exchanger. While various techniques can be utilized for causing the scouring medium to follow a spiral path through the heat exchanger, a presently preferred technique is to provide one or more spiraling vanes on the inside surfaces of at least a portion of one or more of the individual heat exchanger sections. Preferably, for 7 inch to 11 inch internal diameter heat exchanger sections, two or more spiraling vanes having spiraling recesses therebetween are provided in 8 foot portions of two or more of the individual heat exchanger sections. Most preferably from, four to six spiraling vanes with four to six spiraling recesses therebetween are provided in the spiraled portions of the sections.
  • the heat exchanger section 10 includes four spiraling vanes 12 with four recesses 14 therebetween extending over an 8 foot internal portion thereof. As shown in FIG. 1, the vanes 12 and recesses 14 rotate over the initial 8 foot internal surface length of the heat exchanger 10. The rate of rotation of the spiraling vanes and recesses is constant and is generally in the range of from about 2 degrees per inch to about 6 degrees per inch, preferably about 4.5 degrees per inch. As shown in FIG. 2, the spiraling vanes 12 and recesses 14 have curved rectangular cross-sectional shapes.
  • the heights, widths and rate of rotation of the spiraling vanes are such that for an individual heat exchanger section containing the vanes over its initial 8 feet of internal surface length, the maximum pressure drop at the maximum reaction products flow rate through the section is 0.2 pounds per square inch.
  • the scouring medium completely scours the inside surfaces of the heat exchanger section including the surfaces of the spiraling recesses.
  • a heat exchanger section having a length of 16 feet, an internal surface diameter of 7 inches and having four curved rectangular vanes equally spaced over the initial 8 feet of internal surface therein when the vanes are 0.5 inch high, 1.5 inches wide and have a rate of rotation of 4.3 degrees per inch and when a scouring medium having a specific gravity of 2 and a particle size of 0.028 inch is utilized with an inlet gaseous reaction product flow rate of 6.6 pounds per second at a temperature of l750°F.
  • all of the heat exchanger sections utilized to make up the elongated tubular heat exchanger can include spiraling vanes and recesses.
  • the heat exchanger sections which include spiraling vanes and recesses in the elongated heat exchanger can be separated by several heat exchanger sections which do not include spiraling vanes and recesses. The number of heat exchanger sections which do not include vanes and recesses depends on whether those heat exchanger sections are thoroughly cleaned by the scouring medium under the operating conditions involved.
  • the vanes can be formed of a corrosion resistant alloy such as an alloy of nickel and chromium or they can be formed of a ceramic wear resistant material such as alumina, silicon carbide or the like. Also, the vanes can be hollow so that the cooling medium will keep them cooler, heat transfer will be increased and pigment deposits will be reduced.
  • the improved process of this invention for producing and cooling particulate solid titanium dioxide is comprised of the following steps. Heated gaseous titanium tetrachloride and heated oxygen are reacted at a high temperature, i.e., a temperature of at least about 2200°F, to produce particulate solid titanium dioxide and gaseous reaction products.
  • the titanium dioxide and gaseous reaction products are cooled by passing them through an elongated tubular heat exchanger along with a scouring medium for removing deposits from the inside surfaces of the heat exchanger.
  • the scouring medium and the particulate titanium dioxide and gaseous reaction products are caused to follow a spiral path as they flow through the elongated tubular heat exchanger whereby the scouring medium thoroughly removes the deposits.
  • the particulate titanium dioxide and gaseous reaction products are caused to follow the spiral path by providing one or more spiraling vanes on the inside surfaces of all or spaced portions of the elongated tubular heat exchanger.
  • a more specific process of the present invention for producing particulate solid titanium dioxide comprises the steps of: (a) reacting gaseous titanium tetrachloride and oxygen at a temperature in the range of at least about 2200°F to produce particulate solid titanium dioxide and gaseous reaction products; (b) cooling the produced particulate solid titanium dioxide and gaseous reaction products with a cooling medium in a tubular heat exchanger to a temperature about 1300°F or less; (c) injecting a scouring medium into the heat exchanger for removing deposits from the inside surfaces thereof; (d) causing the scouring medium to follow a spiral path through the heat exchanger and thereby increase the removal of deposits from the surfaces by providing one or more spiraling vanes on the inside surface of all or a portion of the tub
  • Example A series of tests were performed to increase the efficiency of an elongated tubular heat exchanger used for cooling the titanium dioxide and gaseous reaction products produced in the chloride process.
  • the heat exchanger was instrumented to determine the effectiveness of heat transfer and consisted of a number of sections of water jacketed pipe. Cooling water flowed through the jacket and reaction products from the reactor consisting of a mixture of Cl 2 , TiO 2 pigment, and 5 to 10 percent O 2 flowed through the interior of the pipe.
  • the heat exchanger sections were about 16 feet long and were connected together by flanges.
  • An external water pipe called a jumper connected the water jacket of one section to the water jacket of the adjacent section.
  • thermocouple was placed in each jumper and total water flow through the heat exchanger sections was measured at the inlet to the sections.
  • the amount of heat that was transferred from the reaction products stream to the water in each heat exchanger section was determined from the difference in temperature between the water inlet and outlet and the water flow rate.
  • the gas temperature for the heat exchanger sections was calculated from a mass balance for the reactor, the amount of heat fed to the reactor with the reactant feed streams and the total heat lost from the reactor upstream of the sections.
  • a heat transfer coefficient was calculated for each heat exchanger section from the temperature of the product stream and the amount of heat that was transferred to the cooling water in that section. The calculated heat transfer coefficients were then compared to the heat transfer coefficients calculated from empirical heat transfer correlations available in the open literature for particulate free gases.
  • a scouring medium of TiO 2 was prepared by agglomerating unfinished pigment, heat treating the material to produce a suitably hard material and then screening the material to provide a particle size distribution similar to that of the silica sand that had been used.
  • the TiO 2 scouring medium was fed at the front of the reactor. The results of this test were similar to the results of Test 1. Test 4
  • a heat exchanger section having spiraling vanes and recesses as shown in FIGS. 1 and 2 was installed in place of heat exchanger section No. 6.
  • the portion of the heat exchanger section which included the spiraling vanes and recesses was the first 8 feet of the section.
  • the scouring medium was the same as used in Test 3, and the product rate was approximately the same as in Tests 1 and 3.
  • the results indicate that the average heat transfer coefficient for section No. 7 immediately downstream of section No. 6 was significantly higher than the average heat transfer coefficient for section No. 7 in Test 3.
  • the average heat transfer coefficient for section No. 8 that was 32 feet or 55 pipe diameters from the end of the spiraling vanes and recesses was slightly higher than the average heat transfer coefficient for section No. 8 in Test 3.
  • Test 5 The heat exchange section including the spiraling vanes and recesses was installed in place of section No. 11 and a test similar to Test 4 was performed. The results indicate that a significant improvement was obtained even for section No. 13 that was 26 feet or more than 47 pipe diameters from the end of section No. 11. Additional Tests A test similar to Test 5 was performed using spiraling vanes with a ceramic material. The heat transfer results for sections No. 12 and No. 13 with the ceramic vanes were the same as for Test No. 5. The heat transfer within the section containing the vanes was dependent on the conductivity of the material used for the vanes and the design of the vanes. In another set of tests, the temperature of the gases exiting the bag filter was determined when the heat exchanger was operated without spiraling vanes.
  • Vanes were then installed in place of section No. 11 and the production rate increased until the temperature of the gases exiting the bag filters had reached that same temperature. The results were that without the vanes, a production rate of 97 tons per day resulted in an exit temperature of 369°F and with vanes, a production rate of 119 tons per day resulted at an exit temperature of 363°F. "INCONELTM" vanes were operated for over 30 hours. No measurable wear was found on the vanes and raw pigment quality was excellent. No deposits were found on the vanes.
  • spiraling vanes in the elongated heat exchanger can also be utilized if the cost of the vanes permits.
  • the results also indicate the spiraling vanes can be made of an alloy such as "INCONELTM” 600 or ceramic materials such as silicon carbide ceramic, alumina, or a composite ceramic. The use of ceramics is advantageous if wear or chemical attack becomes a problem.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

An improved process for producing titanium dioxide wherein gaseous titanium tetrachloride and oxygen are reacted at a high temperature to produce particulate solid titanium dioxide and gaseous reaction products is provided. The titanium dioxide and gaseous reaction products are cooled by passing them through a tubular heat exchanger along with a scouring medium for removing deposits from the inside surfaces of the tubular heat exchange. By this invention, the particulate scouring medium, the particulate titanium dioxide and the gaseous reaction products are caused to follow a spiral path as they flow through the tubular heat exchanger whereby the scouring medium more thoroughly removes the deposits and the titanium dioxide and gaseous reaction products are cooled more efficiently.

Description

PROCESS FOR PRODUCING AND COOLING TITANIUM DIOXIDE
Background of the Invention
1. Field of the Invention. The present invention relates to processes for producing and cooling titanium dioxide, and more particularly, to such processes wherein the cooling of the titanium dioxide and gaseous reaction products produced is more efficiently carried out.
2. Description of the Prior Art.
In the production of titanium dioxide utilizing the chloride process, heated gaseous titanium tetrachloride and heated oxygen are combined in a tubular reactor at high flow rates. A high temperature oxidation reaction takes place in the reactor whereby particulate solid titanium dioxide and gaseous reaction products are produced. The titanium dioxide and gaseous reaction products are cooled by passing them through a tubular heat exchanger along with a scouring medium for removing deposits from the inside surfaces of the heat exchanger. The scouring medium utilized heretofore has been a particulate solid such as sand, sintered or compressed titanium dioxide, rock salt or the like. In spite of the use of a scouring medium, the solid titanium dioxide and other deposits on the inside surfaces of the tubular heat exchanger have only been partially removed thereby leaving deposits which reduce the heat transfer efficiency of the heat exchanger.
Thus, there are needs for improved processes for producing and cooling titanium dioxide whereby deposits in the heat exchanger utilized are more thoroughly removed and high efficiency cooling takes place.
Summary of the Invention The present invention provides an improved process for producing and cooling titanium dioxide which meets the needs described above and overcomes the deficiencies of the prior art. The improved process of this invention basically comprises the steps of reacting gaseous titanium tetrachloride and oxygen at a high temperature to produce particulate solid titanium dioxide and gaseous reaction products. The produced particulate solid titanium dioxide and gaseous reaction products are cooled by heat exchange with a cooling medium in a tubular heat exchanger. A scouring medium is injected into the heat exchanger for removing deposits of titanium dioxide and other materials from the inside surfaces of the heat exchanger. In order to increase the removal of the deposits from the surfaces and thereby increase the heat transfer efficiency in the heat exchanger, the scouring medium is caused to follow a spiral path through the heat exchanger. After passing through the heat exchanger, the particulate solid titanium dioxide is separated from the gaseous reaction products.
It is, therefore, a general object of the present invention to provide an improved process for producing and cooling titanium dioxide.
Other and further objects, features and advantages of the present invention will be readily apparent to those skilled in the art upon a reading of the description of the preferred embodiments which follows when taken in conjunction with the accompanying drawings.
Brief Description of the Drawings FIGURE 1 is a side cross-sectional view of a tubular heat exchanger section which includes spiraling vanes and recesses in accordance with this invention. FIGURE 2 is an end view taken along line 2-2 of FIG. 1.
Description of Preferred Embodiments Titanium dioxide pigment has heretofore been produced by reacting heated gaseous titanium tetrachloride and heated oxygen in a tubular reactor at high temperatures. The titanium tetrachloride can include aluminum chloride in an amount sufficient to produce a rutile pigment containing between about 0.3% to about 3% by weight aluminum oxide. Typically, the titanium tetrachloride is preheated to a temperature in the range of from about 650°F to about 1800°F depending upon the particular preheater apparatus utilized. The oxygen is typically preheated to a temperature in the range of from about 1750°F to about 3400°F. The oxidation reaction temperature at a pressure of one atmosphere is typically in the range of from about 2300°F to about 2500°F. The reaction produces particulate solid titanium dioxide and gaseous reaction products. The reaction products are immediately introduced into an elongated tubular heat exchanger wherein the reaction products are cooled by heat exchange with a cooling medium such as cooling water. The elongated tubular heat exchanger is usually made up of a plurality of individual heat exchanger sections which are sealingly bolted together. The heat exchanger sections and overall length of the heat exchanger can vary widely depending on factors such as the titanium dioxide production rate, the desired discharge temperature, the diameter of the heat exchanger, etc. Consequently, commercial producers of titanium dioxide that utilize the chloride process, i.e., the process of oxidizing titanium tetrachloride, use heat exchangers of varying diameters and lengths to cool the reaction products. In an example of one such heat exchanger, the heat exchanger sections have an internal diameter of 7 inches and are from about 7 feet to about 16 feet long. The elongated tubular heat exchanger often also includes an adapter section which is from 1 foot to 4 feet long. While passing through the elongated tubular heat exchanger, the titanium dioxide and gaseous reaction products are cooled to a temperature of about 1300°F or less.
In order to prevent the build-up of deposits formed of titanium dioxide and other materials produced in the oxidation reaction, a scouring medium has been injected into the tubular heat exchanger along with the reaction products. Examples of scouring media which can be used include, but are not limited to, sand, mixtures of titanium dioxide and water which are pelletized, dried and sintered, compressed titanium dioxide, rock salt, fused alumina, titanium dioxide and salt mixtures and the like. The salt mixed with titanium dioxide can be potassium chloride, sodium chloride and the like. The scouring medium impinges on the inside surfaces of the heat exchanger and removes deposits therefrom. While the scouring medium removes some of the deposits, it often does not remove all of the deposits and as a result, a layer of the deposits on the inside surfaces of the heat exchanger remains. The remaining layer of deposited material decreases the heat transfer rate from the reaction products being cooled through the walls of the heat exchanger and into the cooling medium. This in turn significantly decreases the efficiency of the heat exchanger and increases the overall costs of producing the titanium dioxide by requiring the installation and maintenance of a longer heat exchanger and requiring a greater amount of the scouring medium. After the reaction products are cooled, the particulate solid titanium dioxide is separated from the gaseous reaction products and the scouring medium. The present invention is based on the discovery that the removal of the deposits from the inside surfaces of the heat exchanger can be improved by causing the scouring medium to follow a spiral path through the heat exchanger. While various techniques can be utilized for causing the scouring medium to follow a spiral path through the heat exchanger, a presently preferred technique is to provide one or more spiraling vanes on the inside surfaces of at least a portion of one or more of the individual heat exchanger sections. Preferably, for 7 inch to 11 inch internal diameter heat exchanger sections, two or more spiraling vanes having spiraling recesses therebetween are provided in 8 foot portions of two or more of the individual heat exchanger sections. Most preferably from, four to six spiraling vanes with four to six spiraling recesses therebetween are provided in the spiraled portions of the sections.
Referring now to the drawings, one of the individual 7 inch internal diameter by 16 feet long heat exchanger sections making up an elongated heat exchanger for cooling the reaction products is illustrated and generally designated by the numeral 10. The heat exchanger section 10 includes four spiraling vanes 12 with four recesses 14 therebetween extending over an 8 foot internal portion thereof. As shown in FIG. 1, the vanes 12 and recesses 14 rotate over the initial 8 foot internal surface length of the heat exchanger 10. The rate of rotation of the spiraling vanes and recesses is constant and is generally in the range of from about 2 degrees per inch to about 6 degrees per inch, preferably about 4.5 degrees per inch. As shown in FIG. 2, the spiraling vanes 12 and recesses 14 have curved rectangular cross-sectional shapes. Generally, the heights, widths and rate of rotation of the spiraling vanes are such that for an individual heat exchanger section containing the vanes over its initial 8 feet of internal surface length, the maximum pressure drop at the maximum reaction products flow rate through the section is 0.2 pounds per square inch. A further requirement is that the scouring medium completely scours the inside surfaces of the heat exchanger section including the surfaces of the spiraling recesses. These criteria are met, for example, by a heat exchanger section having a length of 16 feet, an internal surface diameter of 7 inches and having four curved rectangular vanes equally spaced over the initial 8 feet of internal surface therein when the vanes are 0.5 inch high, 1.5 inches wide and have a rate of rotation of 4.3 degrees per inch and when a scouring medium having a specific gravity of 2 and a particle size of 0.028 inch is utilized with an inlet gaseous reaction product flow rate of 6.6 pounds per second at a temperature of l750°F.
As mentioned, all of the heat exchanger sections utilized to make up the elongated tubular heat exchanger can include spiraling vanes and recesses. Generally, however, the heat exchanger sections which include spiraling vanes and recesses in the elongated heat exchanger can be separated by several heat exchanger sections which do not include spiraling vanes and recesses. The number of heat exchanger sections which do not include vanes and recesses depends on whether those heat exchanger sections are thoroughly cleaned by the scouring medium under the operating conditions involved.
The vanes can be formed of a corrosion resistant alloy such as an alloy of nickel and chromium or they can be formed of a ceramic wear resistant material such as alumina, silicon carbide or the like. Also, the vanes can be hollow so that the cooling medium will keep them cooler, heat transfer will be increased and pigment deposits will be reduced.
The improved process of this invention for producing and cooling particulate solid titanium dioxide is comprised of the following steps. Heated gaseous titanium tetrachloride and heated oxygen are reacted at a high temperature, i.e., a temperature of at least about 2200°F, to produce particulate solid titanium dioxide and gaseous reaction products. The titanium dioxide and gaseous reaction products are cooled by passing them through an elongated tubular heat exchanger along with a scouring medium for removing deposits from the inside surfaces of the heat exchanger. The scouring medium and the particulate titanium dioxide and gaseous reaction products are caused to follow a spiral path as they flow through the elongated tubular heat exchanger whereby the scouring medium thoroughly removes the deposits. In accordance with the presently preferred embodiment of the invention, the particulate titanium dioxide and gaseous reaction products are caused to follow the spiral path by providing one or more spiraling vanes on the inside surfaces of all or spaced portions of the elongated tubular heat exchanger. A more specific process of the present invention for producing particulate solid titanium dioxide comprises the steps of: (a) reacting gaseous titanium tetrachloride and oxygen at a temperature in the range of at least about 2200°F to produce particulate solid titanium dioxide and gaseous reaction products; (b) cooling the produced particulate solid titanium dioxide and gaseous reaction products with a cooling medium in a tubular heat exchanger to a temperature about 1300°F or less; (c) injecting a scouring medium into the heat exchanger for removing deposits from the inside surfaces thereof; (d) causing the scouring medium to follow a spiral path through the heat exchanger and thereby increase the removal of deposits from the surfaces by providing one or more spiraling vanes on the inside surface of all or a portion of the tubular heat exchanger; and (e) separating the particulate solid titanium dioxide from the scouring medium and the gaseous reaction products. In order to further illustrate the improved process of the present invention, the following example is given.
Example A series of tests were performed to increase the efficiency of an elongated tubular heat exchanger used for cooling the titanium dioxide and gaseous reaction products produced in the chloride process. The heat exchanger was instrumented to determine the effectiveness of heat transfer and consisted of a number of sections of water jacketed pipe. Cooling water flowed through the jacket and reaction products from the reactor consisting of a mixture of Cl2, TiO2 pigment, and 5 to 10 percent O2 flowed through the interior of the pipe. The heat exchanger sections were about 16 feet long and were connected together by flanges. An external water pipe called a jumper connected the water jacket of one section to the water jacket of the adjacent section. A thermocouple was placed in each jumper and total water flow through the heat exchanger sections was measured at the inlet to the sections. The amount of heat that was transferred from the reaction products stream to the water in each heat exchanger section was determined from the difference in temperature between the water inlet and outlet and the water flow rate. The gas temperature for the heat exchanger sections was calculated from a mass balance for the reactor, the amount of heat fed to the reactor with the reactant feed streams and the total heat lost from the reactor upstream of the sections. A heat transfer coefficient was calculated for each heat exchanger section from the temperature of the product stream and the amount of heat that was transferred to the cooling water in that section. The calculated heat transfer coefficients were then compared to the heat transfer coefficients calculated from empirical heat transfer correlations available in the open literature for particulate free gases. It was anticipated that the correlations for particulate loaded gases would be different than for clean gases, but it seemed probable that there would be a relatively constant ratio between the coefficient measured for the heat exchanger sections and the coefficients calculated for clean gas. The results indicated that the deviation between the values calculated from empirical correlations and those determined experimentally were much greater for the sections near the exit of the elongated heat exchanger than for those at the inlet. It seemed likely that the difference could be due to deposits in the sections. Tests were then initiated to develop methods for improving heat transfer near the exit of the elongated heat exchanger. The tests were performed using the last 8 sections of the elongated heat exchanger. All of the sections were 7-inches in diameter and approximately 16- feet in length except for the last section which was an adapter for attaching the elongated heat exchanger to the product collection section. The adapter section was 4-feet in length and slightly larger in diameter than the other sections. The results of all of the tests are given in the Table below. Test l
A control test was performed using silica sand as the scouring medium. The product rate for the reactor was set at a level that could be maintained even if heat transfer rates were to change significantly. The ratios of the measured heat transfer coefficients to theoretical heat transfer coefficients were determined. The results indicate that the difference between the actual coefficients and the theoretical coefficients increases as the gases move down the elongated heat exchanger. Test 2
In the second test, a device was placed in the middle of a heat exchanger section to introduce N2 tangentially into the section. The reactor produced TiO2 pigment at a rate of about 130 to 150 pounds per minute. Approximately 200 standard cubic feet of N2 was introduced into the section over a period of several minutes. The result was that the heat transfer improved measurably over the entire product cooler downstream of the point of injection. The increase in heat transfer was attributed to more efficient scouring rather than increased turbulence for two reasons. The first was that the increase in heat transfer was observed as far as 100 section diameters downstream from the point of N2 injection. Calculations and published data indicated that any increase in heat transfer due to turbulence decreases rapidly and disappears completely within about 20 pipe diameters downstream1' 2. The second reason that the increase was due to better scouring was that the increase in heat transfer was observed to continue for sometime after the N2 flow had stopped. Test 3
A scouring medium of TiO2 was prepared by agglomerating unfinished pigment, heat treating the material to produce a suitably hard material and then screening the material to provide a particle size distribution similar to that of the silica sand that had been used. The TiO2 scouring medium was fed at the front of the reactor. The results of this test were similar to the results of Test 1. Test 4
A heat exchanger section having spiraling vanes and recesses as shown in FIGS. 1 and 2 was installed in place of heat exchanger section No. 6. The portion of the heat exchanger section which included the spiraling vanes and recesses was the first 8 feet of the section. The scouring medium was the same as used in Test 3, and the product rate was approximately the same as in Tests 1 and 3. The results indicate that the average heat transfer coefficient for section No. 7 immediately downstream of section No. 6 was significantly higher than the average heat transfer coefficient for section No. 7 in Test 3. The average heat transfer coefficient for section No. 8 that was 32 feet or 55 pipe diameters from the end of the spiraling vanes and recesses was slightly higher than the average heat transfer coefficient for section No. 8 in Test 3. Test 5 The heat exchange section including the spiraling vanes and recesses was installed in place of section No. 11 and a test similar to Test 4 was performed. The results indicate that a significant improvement was obtained even for section No. 13 that was 26 feet or more than 47 pipe diameters from the end of section No. 11. Additional Tests A test similar to Test 5 was performed using spiraling vanes with a ceramic material. The heat transfer results for sections No. 12 and No. 13 with the ceramic vanes were the same as for Test No. 5. The heat transfer within the section containing the vanes was dependent on the conductivity of the material used for the vanes and the design of the vanes. In another set of tests, the temperature of the gases exiting the bag filter was determined when the heat exchanger was operated without spiraling vanes. Vanes were then installed in place of section No. 11 and the production rate increased until the temperature of the gases exiting the bag filters had reached that same temperature. The results were that without the vanes, a production rate of 97 tons per day resulted in an exit temperature of 369°F and with vanes, a production rate of 119 tons per day resulted at an exit temperature of 363°F. "INCONEL™" vanes were operated for over 30 hours. No measurable wear was found on the vanes and raw pigment quality was excellent. No deposits were found on the vanes.
The results of the tests indicate that the spiraling vanes and recesses increase the effectiveness of the scouring medium. It is believed that the decrease in the ratio of the actual to theoretical heat transfer coefficients as the gases approach the end of the elongated heat exchanger is due to increased deposits near the end of the heat exchanger. This is consistent with the vanes being more effective in the No. 11 position than in the No. 6 position. Calculations indicate that at the production rates used in the tests described, the increase in pressure drop through 150 feet of spiraling vanes as compared to smooth pipe would be in the order of only a few pounds per square inch. For this reason, two to four heat exchanger sections including 8-foot spiraling vane portions can be spaced at various distances apart in the elongated heat exchanger. Continuous spiraling vanes in the elongated heat exchanger can also be utilized if the cost of the vanes permits. The results also indicate the spiraling vanes can be made of an alloy such as "INCONEL™" 600 or ceramic materials such as silicon carbide ceramic, alumina, or a composite ceramic. The use of ceramics is advantageous if wear or chemical attack becomes a problem. References:
1. A. H. Algifri, R. K. Bhardwaj, Y.V. N. Rao; "Heat transfer in turbulent decaying swirl flow in a circular pipe," Int. J. Heat & Mass Transfer, Vol. 31(8), pp. 1563-1568 (1988). 2. N. Hay, P. D. West; "Heat transfer in free swirling flow in a pipe," Trans ASME J. Heat Transfer, 97, pp. 411-416 (1975). TABLE Ratios Of Measured To Theoretical Heat Transfer Coefficients
Test Number
TiO2 Production Rate, 104 - 108 105 108 tons per day
Location of Spiraling Vanes None None - N2 None No. 6 No. 11 and Recesses (8' portions) injected at No. 8
Heat Exchange Section 0.8 - 0.81 - 0.81
No. 6 Ratio Heat Exchange Section 0.73 - 0.75 0.86 0.72
No. 7 Ratio Heat Exchange Section 0.57 - 0.61 0.64 0.57
No. 8 Ratio Heat Exchange Section 0.58 - 0.62 0.62 0.55
No. 9 Ratio Heat Exchange Section 0.52 - 0.58 0.56 0.56
No. 10 Ratio Heat Exchange Section 0.50 - 0.58 0.49 -
No. 11 Ratio Heat Exchange Section 0.39 - 0.46 0.44 0.61
No. 12 Ratio Heat Exchange Section 0.42 . 0.53 0.40 0.67
No. 13 Ratio
Thus, the present invention is well adapted to carry out the objects and attain the ends and advantages mentioned as well as those which are inherent therein. Wliile numerous changes may be made by those skilled in the art, such changes are encompassed within the spirit of this invention as defined by the appended claims.
What is claimed is:

Claims

1. In a process for producing titanium dioxide wherein gaseous titanium tetrachloride and oxygen are reacted at a high temperature to produce particulate solid titanium dioxide and gaseous reaction products and the titanium dioxide and gaseous reaction products are cooled by passing them through a tubular heat exchanger along with a scouring medium for removing deposits from the inside surface of the tubular heat exchanger, the improvement in removing said deposits and thereby increasing the cooling of said titanium dioxide and gaseous reaction products which comprises causing said scouring medium, said particulate titanium dioxide and said gaseous reaction products to follow a spiral path as they flow through said tubular heat exchanger whereby said scouring medium thoroughly removes said deposits.
2. The process of claim 1 wherein said scouring medium is selected from the group consisting of mixtures of titanium dioxide and water which are pelletized, dried and sintered, compressed titanium dioxide, rock salt, fused alumina and titanium dioxide and salt mixtures.
3. The process of claim 2 wherein said scouring medium is a mixture of titanium dioxide and water which is pelletized, dried and sintered.
4. The process of claim 1 wherein said scouring medium, said particulate titanium dioxide and said gaseous reaction products are caused to follow a spiral path through said heat exchanger by providing one or more spiraling vanes on the inside surfaces of all or a portion of said tubular heat exchanger.
5. The process of claim 4 wherein all or a portion of said inside surfaces of said tubular heat exchanger includes from four to six spiraling vanes with four to six spiraling recesses therebetween.
6. The process of claim 5 wherein the rate of rotation of said spiraling vanes and recesses is in the range of from about 2 degrees per inch to about 6 degrees per inch.
7. The process of claim 5 wherein said spiraling vanes and recesses have curved rectangular cross-sectional shapes.
8. The process of claim 1 wherein the heat exchange medium utilized in said tubular heat exchanger to cool said particulate titanium dioxide and gaseous reaction products is water.
9. The process of claim 4 wherein said tubular heat exchanger is made up of a plurality of connected together heat exchanger sections.
10. The process of claim 9 wherein less than all of said heat exchanger sections include said spiraling vanes.
11. An improved process for producing particulate solid titanium dioxide comprising the steps of:
(a) reacting gaseous titanium tetrachloride and oxygen at a temperature of at least about 2100°F to produce particulate solid titanium dioxide and gaseous reaction products; (b) cooling said produced particulate solid titanium dioxide and gaseous reaction products with a cooling medium in a tubular heat exchanger to a temperature of about 1300°F or less;
(c) injecting a scouring medium into said heat exchanger for removing deposits from the inside surfaces thereof; (d) causing said scouring medium to follow a spiral path through said heat exchanger and thereby increase the removal of deposits from said surfaces; and
(e) separating said particulate solid titanium dioxide from said scouring medium and said gaseous reaction products.
12. The process of claim 11 wherein said scouring medium is selected from the group consisting of mixtures of titanium dioxide and water which are pelletized, dried and sintered, compressed titanium dioxide, rock salt, fused alumina and titanium dioxide and salt mixtures.
13. The process of claim 12 wherein said scouring medium is a mixture of titanium dioxide and water which is pelletized, dried and sintered.
14. The process of claim 11 wherein said scouring medium, said particulate titanium dioxide and said gaseous reaction products are caused to follow a spiral path through said heat exchanger by providing one or more spiraling vanes on the inside surfaces of all or a portion of said tubular heat exchanger.
15. The process of claim 14 wherein all or a portion of said inside surfaces of said tubular heat exchanger includes four spiraling vanes with four spiraling recesses therebetween.
16. The process of claim 15 wherein the rate of rotation of said spiraling vanes and recesses is in the range of from about 2 degrees per inch to about 6 degrees per inch.
17. The process of claim 15 wherein said spiraling vanes and recesses have curved rectangular cross-sectional shapes.
18. The process of claim 11 wherein said cooling medium is cooling water.
19. The process of claim 14 wherein said tubular heat exchanger is made up of a plurality of connected together heat exchanger sections.
20. The process of claim 19 wherein less than all of said heat exchanger sections include said spiraling vanes.
PCT/US2001/042176 2000-09-18 2001-09-17 Process for producing and cooling titanium dioxide WO2002022504A1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
BR0113958-4A BR0113958A (en) 2000-09-18 2001-09-17 Process and apparatus for the production and cooling of titanium dioxide
PL36066001A PL360660A1 (en) 2000-09-18 2001-09-17 Process for producing and cooling titanium dioxide
KR10-2003-7003567A KR20030059134A (en) 2000-09-18 2001-09-17 Process for producing and cooling titanium dioxide
UA2003043506A UA74008C2 (en) 2000-09-18 2001-09-17 A process for producing and cooling titanium dioxide
JP2002526705A JP2004509045A (en) 2000-09-18 2001-09-17 Method and apparatus for producing and cooling titanium dioxide
EP01975754A EP1326804B1 (en) 2000-09-18 2001-09-17 Process for producing and cooling titanium dioxide
AU2001295046A AU2001295046B2 (en) 2000-09-18 2001-09-17 Process for producing and cooling titanium dioxide
DE60143902T DE60143902D1 (en) 2000-09-18 2001-09-17 PROCESS FOR PREPARING AND COOLING TITANIUM DIOXIDE
AU9504601A AU9504601A (en) 2000-09-18 2001-09-17 Process for producing and cooling titanium dioxide
AT01975754T ATE496006T1 (en) 2000-09-18 2001-09-17 METHOD FOR PRODUCING AND COOLING TITANIUM DIOXIDE
MXPA03002302A MXPA03002302A (en) 2000-09-18 2001-09-17 PROCESS TO PRODUCE AND COOL TITANIUM DIOXIDE.
NO20031203A NO20031203L (en) 2000-09-18 2003-03-17 Process for the preparation and cooling of titanium dioxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/664,334 2000-09-18
US09/664,334 US6419893B1 (en) 2000-09-18 2000-09-18 Process for producing and cooling titanium dioxide

Publications (1)

Publication Number Publication Date
WO2002022504A1 true WO2002022504A1 (en) 2002-03-21

Family

ID=24665571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/042176 WO2002022504A1 (en) 2000-09-18 2001-09-17 Process for producing and cooling titanium dioxide

Country Status (19)

Country Link
US (1) US6419893B1 (en)
EP (1) EP1326804B1 (en)
JP (1) JP2004509045A (en)
KR (1) KR20030059134A (en)
CN (1) CN1197779C (en)
AT (1) ATE496006T1 (en)
AU (2) AU2001295046B2 (en)
BR (1) BR0113958A (en)
CZ (1) CZ2003747A3 (en)
DE (1) DE60143902D1 (en)
MX (1) MXPA03002302A (en)
NO (1) NO20031203L (en)
PL (1) PL360660A1 (en)
RU (1) RU2245303C2 (en)
SA (1) SA02220644B1 (en)
TW (1) TW593154B (en)
UA (1) UA74008C2 (en)
WO (1) WO2002022504A1 (en)
ZA (1) ZA200301574B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010129847A2 (en) * 2009-05-08 2010-11-11 E. I. Du Pont De Nemours And Company Process of using an improved flue in a titanium dioxide process

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050201927A1 (en) * 2004-03-12 2005-09-15 Flynn Harry E. Process for improving raw pigment grindability
US20050249659A1 (en) * 2004-05-04 2005-11-10 Flynn Harry E Scour media for titanium dioxide production
US7708975B2 (en) * 2004-07-20 2010-05-04 E.I. Du Pont De Nemours And Company Process for making metal oxide nanoparticles
CA2512313A1 (en) * 2004-07-20 2006-01-20 E.I. Dupont De Nemours And Company Apparatus for making metal oxide nanopowder
MX2007006381A (en) * 2004-11-30 2008-01-24 Millennium Inorganic Chem Process and device for cooling inorganic pigments.
JP5155865B2 (en) * 2005-09-16 2013-03-06 トロノックス エルエルシー Method for controlling the particle size of titanium dioxide produced by a chlorination process
US20070072783A1 (en) * 2005-09-26 2007-03-29 Tronox Llc Scour medium for titanium dioxide production
US7247200B2 (en) * 2005-11-01 2007-07-24 E. I. Du Pont De Nemours And Company Titanium dioxide finishing process
US20080069764A1 (en) * 2006-09-18 2008-03-20 Tronox Llc Process for making pigmentary titanium dioxide
DE102007048553A1 (en) * 2006-12-20 2008-06-26 Kronos International, Inc. Process for the preparation of titanium dioxide by oxidation of titanium tetrachloride
US7968077B2 (en) * 2006-12-20 2011-06-28 Kronos International, Inc. Method for manufacturing titanium dioxide by oxidizing of titanium tetrachloride
EP2841384B1 (en) 2012-04-27 2018-10-17 Cristal USA Inc. Tio2 based scrubbing granules, and methods of making and using such tio2 based scrubbing granules
KR101382544B1 (en) * 2012-07-13 2014-04-10 한국과학기술연구원 Vanadia-titania catalyst for removing nitrogen oxides and method for manufacturing the same
CN107804870A (en) * 2017-11-14 2018-03-16 黄林海 A kind of production method of titanium dioxide
CN112552149B (en) * 2020-11-03 2023-03-17 金华永和氟化工有限公司 Reaction system and method for preparing perfluoroalkyl vinyl ether

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3615202A (en) * 1969-11-28 1971-10-26 David R Stern Process for the manufacture of titanium dioxide
US5840112A (en) * 1996-07-25 1998-11-24 Kerr Mcgee Chemical Corporation Method and apparatus for producing titanium dioxide

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3273599A (en) 1966-09-20 Internally finned condenser tube
US3443630A (en) 1967-06-19 1969-05-13 Du Pont Magnesium surface for cooling tio2
BE755089A (en) * 1969-08-20 1971-02-22 Montedison Spa REACTOR AND PROCESS FOR THE MANUFACTURE OF TITANIUM DIOXIDE OF PIGMENTAL QUALITY
US4066424A (en) 1976-10-13 1978-01-03 E. I. Du Pont De Nemours And Company Selectively recovering metal chlorides from gaseous effluent
US4462979A (en) 1982-02-25 1984-07-31 E. I. Du Pont De Nemours And Company Process for preparing soft TiO2 agglomerates
US4937064A (en) 1987-11-09 1990-06-26 E. I. Du Pont De Nemours And Company Process of using an improved flue in a titanium dioxide process
US5266108A (en) 1992-04-22 1993-11-30 E. I. Du Pont De Nemours And Company Using compacted titanium dioxide pigment particles in the cooling section of the chloride process for making TiO2
US5372639A (en) 1993-09-03 1994-12-13 E. I. Du Pont De Nemours And Company Use of a bimodal distribution of scrubs in a process for cooling a hot gaseous suspension
US5508015A (en) 1994-07-15 1996-04-16 E. I. Du Pont De Nemours And Company Process for controlling agglomeration in the manufacture of TiO2
US5538708A (en) 1994-12-06 1996-07-23 E. I. Du Pont De Nemours And Company Expansion section as the inlet to the flue in a titanium dioxide process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3615202A (en) * 1969-11-28 1971-10-26 David R Stern Process for the manufacture of titanium dioxide
US5840112A (en) * 1996-07-25 1998-11-24 Kerr Mcgee Chemical Corporation Method and apparatus for producing titanium dioxide
US6207131B1 (en) * 1996-07-25 2001-03-27 Kerr-Mcgee Chemical Llc Method and apparatus for producing titanium dioxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010129847A2 (en) * 2009-05-08 2010-11-11 E. I. Du Pont De Nemours And Company Process of using an improved flue in a titanium dioxide process
WO2010129847A3 (en) * 2009-05-08 2011-11-10 E. I. Du Pont De Nemours And Company Process of using an improved flue in a titanium dioxide process

Also Published As

Publication number Publication date
CN1197779C (en) 2005-04-20
PL360660A1 (en) 2004-09-20
CZ2003747A3 (en) 2003-09-17
EP1326804A1 (en) 2003-07-16
CN1458906A (en) 2003-11-26
JP2004509045A (en) 2004-03-25
US6419893B1 (en) 2002-07-16
DE60143902D1 (en) 2011-03-03
NO20031203L (en) 2003-05-16
AU2001295046B2 (en) 2005-11-10
AU9504601A (en) 2002-03-26
MXPA03002302A (en) 2003-09-10
BR0113958A (en) 2003-07-29
EP1326804B1 (en) 2011-01-19
ATE496006T1 (en) 2011-02-15
EP1326804A4 (en) 2005-04-06
ZA200301574B (en) 2004-02-26
UA74008C2 (en) 2005-10-17
SA02220644B1 (en) 2006-11-27
KR20030059134A (en) 2003-07-07
NO20031203D0 (en) 2003-03-17
TW593154B (en) 2004-06-21
RU2245303C2 (en) 2005-01-27

Similar Documents

Publication Publication Date Title
US6419893B1 (en) Process for producing and cooling titanium dioxide
AU2001295046A1 (en) Process for producing and cooling titanium dioxide
US2721626A (en) Cooling and separating by condensation of hot gaseous suspensions
JP2004509045A5 (en)
US20010021360A1 (en) Processes and apparatus for reacting gaseous reactants containing solid particles
AU2005245362B2 (en) Scour media for titanium dioxide production
US4633935A (en) Method for the cooling of hot gaseous solids suspensions of titanium dioxide
AU2005228841A1 (en) Process for improving raw pigment grindability
EP0438850B1 (en) Process of using an improved flue in a titanium dioxide process
PL93532B1 (en)
RU2003110961A (en) METHOD FOR PRODUCING AND COOLING TITANIUM DIOXIDE
US3519389A (en) Process for removing titanium dioxide scale from reactor walls
JP5323483B2 (en) Use of this abrasive in a method for producing an abrasive and a method for producing rutile titanium dioxide
US4018262A (en) Heat exchange with gas/solids mixtures
US4703793A (en) Minimizing coke buildup in transfer line heat exchangers
AU703683B2 (en) Using an improved expansion section as the inlet to the flue in a titanium dioxide process
US3443630A (en) Magnesium surface for cooling tio2
AU7680494A (en) Use of a bimodal distribution of scrubs in a process for cooling a hot gaseous suspension
CN101102966A (en) Process and device for cooling inorganic pigments

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003/01574

Country of ref document: ZA

Ref document number: 200301574

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 258/KOLNP/2003

Country of ref document: IN

Ref document number: 00258/KOLNP/2003

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020037003567

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: PV2003-747

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 2001295046

Country of ref document: AU

Ref document number: 018157734

Country of ref document: CN

Ref document number: 2002526705

Country of ref document: JP

Ref document number: PA/a/2003/002302

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2001975754

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2003110961

Country of ref document: RU

Kind code of ref document: A

Ref country code: RU

Ref document number: RU A

WWP Wipo information: published in national office

Ref document number: 1020037003567

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001975754

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: PV2003-747

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 2001295046

Country of ref document: AU