WO2002022397A1 - Steer-by-wire system - Google Patents

Steer-by-wire system Download PDF

Info

Publication number
WO2002022397A1
WO2002022397A1 PCT/US2000/025454 US0025454W WO0222397A1 WO 2002022397 A1 WO2002022397 A1 WO 2002022397A1 US 0025454 W US0025454 W US 0025454W WO 0222397 A1 WO0222397 A1 WO 0222397A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
roadwheel
steering wheel
unit
steer
Prior art date
Application number
PCT/US2000/025454
Other languages
French (fr)
Inventor
Timothy W. Kaufman
Michael D. Byers
Original Assignee
Delphi Technologies, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delphi Technologies, Inc. filed Critical Delphi Technologies, Inc.
Priority to EP00965078A priority Critical patent/EP1339567A1/en
Publication of WO2002022397A1 publication Critical patent/WO2002022397A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/008Control of feed-back to the steering input member, e.g. simulating road feel in steer-by-wire applications

Definitions

  • This disclosure relates to steer-by-wire vehicle control systems.
  • Steering equipment for assisting a driver to steer an automobile is well known in the art.
  • the operator controls the direction of the vehicle with the aid of a steering wheel.
  • This wheel is mechanically connected, usually through a gear assembly to the roadwheels.
  • many systems utilize a an auxiliary system to generate a force that is transmitted to a steering gear assembly. The additional force reduces the effort required by the operator in changing the direction of the vehicle.
  • this auxiliary force is generated by either a hydraulic drive or an electric motor.
  • the resulting mechanical assembly that provides the connection can be quite complicated and expensive to produce.
  • the one advantage in having a direct connection is that the operator receives tactile feedback through the steering wheel. For example, if the vehicle changes directions while it is moving, the operator will feel resistance in the steering wheel.
  • the present invention is directed to a control system that provides a vehicle operator with an electronic steering or steer-by- wire control for a vehicle.
  • the steer-by- wire control system comprises a roadwheel unit, a steering wheel unit, and a master control unit that operate together to provide steering control for the vehicle operator.
  • the roadwheel unit has several sensors including a roadwheel position sensor and a tie-rod force sensor that are used to provide a signal to the master control unit.
  • the steering wheel unit has a sensor for detecting steering wheel position, this sensor is used to provide a signal to the master control unit. Signals from the sensors in the roadwheel unit and steering wheel unit are received by the master control unit where they are used to calculate roadwheel command signals and steering wheel reaction torque signals.
  • the resulting roadwheel command signal is sent back to the roadwheel unit to change the direction of the vehicle, while the steering wheel reaction torque signal is sent to the steering wheel unit where it is used to provide tactile feedback to the vehicle operator.
  • the present invention also utilizes an Ackerman correction control to adjust the left and right roadwheel angles to correct for errors in the steering geometry so that the wheels will track about a common turn center.
  • Figure 1 is a block diagram illustrating the steering control system of the present invention.
  • Figure 2 is a block diagram of the steering wheel unit shown in Figure
  • Figure 3 is a block diagram of the roadwheel unit shown in Figure 1.
  • FIG 4 is a block diagram of the master control unit shown in Figure 1.
  • Figure 5 is a block diagram of the position control unit shown in Figure 4.
  • Figure 6 is a block diagram of the roadwheel control unit shown in Figure 3.
  • the steering system 10 comprises several closed loop subsystems that work together to provide an operator with control over the direction of the vehicle.
  • a steering wheel unit 14 detects the position and movement of a steering wheel (not shown) and sends a steering wheel position signal 20 to the master control unit 12.
  • the master control unit 12 combines the information of the steering wheel position 20 with a speed signal 28 from the vehicle speed sensor 29 and the tie rod force signals 24, 26 from the roadwheel unit 16. Using these input signals, the master control unit 12 produces roadwheel command signals 19, 22 that are sent to the roadwheel unit 16.
  • a steering wheel reaction torque signal 18 is sent to the steering wheel unit 14.
  • signal connections may physically take any form capable of transferring a signal, including electrical, optical, or radio.
  • the steering wheel unit 14 is a closed loop control system that uses steering wheel torque as the feedback signal.
  • the steering wheel reaction torque signal 18 is received from input terminal 54 into the steering wheel control unit 30 where the signal is compared to the feedback torque sensor signal 36 (a simple method of comparison is simply to subtract one signal from another. A zero result indicates that the desired torque is being applied).
  • a torque command signal 34 is then passed to the plant dynamics unit 32 as needed to comply with the steering wheel reaction torque signal 18.
  • the steering wheel plant dynamics unit 32 contains the necessary elements to provide a reaction torque to the operator as well as a torque sensor 31 to provide the feedback 36 to the control unit 30 and a steering wheel position sensor 33 that produces and sends a steering wheel position signal via line 20 through the node 21.
  • reaction torque will be imparted to the operator by an electric motor coupled either to the steering column or the rack.
  • Preferred reaction torque motors are those with reduced torque ripple, such as are described in detail in commonly assigned U.S. Patent No. , Serial No. , Attorney Docket No. H-200000, entitled TORQUE RIPPLE FREE
  • the roadwheel unit 16 like the steering wheel unit, is also a closed loop control system that uses roadwheel position as a feedback signal.
  • a roadwheel unit for each steerable wheel, though only one is shown in the drawing.
  • the roadwheel command signal (19 for the left wheel, 22 for the right) is received from the master control unit and compared with the roadwheel position signal 44 within the control unit 38.
  • a roadwheel position command signal 40 is sent to the roadwheel plant dynamics unit 42.
  • the plant dynamics unit 42 contains the necessary elements to control the position of the automobile wheels as well as a roadwheel position sensor 41 to provide feedback signal 44 of the roadwheel position.
  • a tie rod sensor 43 is also located within plant dynamics unit 42.
  • the tie rod sensor 43 detects and also measures the forces on the tie rods and sends a signal (24 for one wheel, 26 for the other) representative of the measured forces to the master control unit 12.
  • Figure 4 shows a more detailed view of the master control unit 12.
  • the roadwheel plant dynamics unit 42 has a tie rod sensor 43.
  • this sensor 43 comprises a left and right tie rod force sensor 35a, 35b that each measure and transmit a signal representative of the left and right roadwheel tie rod respectively.
  • These signals are sent via lines 24, 26 to a torque unit 46 that uses the force signals to calculate a steering wheel reaction torque command signal , which is sent via line 48 to the compensation unit 50.
  • the torque unit 46 will index the composite tie-rod force signals into a set of one or more torque look-up tables. Where more than one look-up table is used, the outputs are preferably blended based upon a ratio dependent upon the vehicle speed signal 28. For example, two lookup tables might be used, one for low speeds and one for highway speeds. As the vehicle speed signal increases, the table for highway speeds becomes increasingly dominant in the blend over the table for low speeds.
  • the steering wheel unit will have a compliant torque sensor (such as a T-bar) with two masses at each end (motor inertia and steering wheel inertia) as is common in the art.
  • a frequency based compensator 50 is preferably used to generate an adjusted steering wheel reaction torque command signal 18 to compensate for the compliancy.
  • the master control unit 12 also receives the steering wheel position signal through line 20 via node 21. This signal 20 is used to generate the roadwheel position command signals 19, 22 within the position control unit 56 and output the signals to nodes 82 and 84.
  • the position control unit 56 has several sub components that are used in the calculation of the left and right hand roadwheel command signals 19, 22.
  • the steering wheel position signal is received by the variable steering ratio unit 62 via line 20.
  • the ratio unit 62 also receives the vehicle speed signal on line 28 from node 23.
  • the signals 20, 28 are used as inputs to a three dimensional look-up table.
  • the resulting ratio signal is passed via line 64 to the roadwheel command unit 66 where it is used along with the position signal from line 20 to calculate the roadwheel command signal 70.
  • the purpose of the roadwheel command unit 66 is to provide theta correction, that is, to correct the roadwheel position to reflect the position of the steering column correctly. This is needed for situations where the reaction torque motor moves to provide a reaction torque to the driver in response to a movement of the roadwheels. However, the driver does not necessarily permit the steering wheel to turn, though he feels the reaction torque. The effect of the roadwheels moving without the steering column moving is undesirable so a theta correction is provided and a theta-corrected roadwheel command signal 70 is generated. The theta-corrected roadwheel command signal 70 passes along to the Ackerman correction unit 68. The Ackerman correction unit 68 adjusts the roadwheel angles to correct for errors in the steering geometry.
  • each wheel to be steered in such a manner as to negotiate a curve along its natural rolling path.
  • the Ackerman unit is optional, it is preferred because the inner wheel tracks a smaller radius than the outer wheel to track a common turn center, thus the inner wheel needs to be steered at a greater angle.
  • An Ackerman command signal 74 is sent to a left roadwheel switch 78 and a right roadwheel switch 76.
  • the switches 76, 78 combine the Ackerman command signal with the roadwheel command signal 70 and a signal representative of the sign of the roadwheel signal 80 to determine the left and right roadwheel signals.
  • the left 19 and right 22 roadwheel signals are then passed back to the roadwheel units 16.
  • the left 19 and right 22 roadwheel signals are typically representative of the desired roadwheel angle.
  • the roadwheel plant dynamics unit 42 may need this information in a signal representative of a linear value.
  • the roadwheel control unit 38 (from Figure 3) may contain additional functionality as shown in Figure 6.
  • a linear correction unit 88 transforms the roadwheel signals 19, 22 into a linear travel signal that is representative of the linear value required for the left or right wheel, respectively.
  • the linear travel signal is passed to the plant dynamics unit 42 (see Figure 3) as the position command signal 40.
  • the linear correction unit 88 uses the given steering geometry of the vehicle to calculate a linear position in order to attain a desired rotational position. It is contemplated that these calculations would be compiled into a lookup table to optimize controller performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

A closed loop steer by wire control system (10) has three main components, a steering wheel unit (14), a roadwheel unit (16), and a master control unit (12). Signals generated by sensors in the steering wheel unit (14) and roadwheel unit (16) are passed back to the master control unit (12) for processing. These signals include tie-rod force signals (24, 26), and a steering wheel position signal. The master control unit (12) uses these signals to calculate a steering wheel reaction torque signal (18) which is sent back to the steering wheel unit (14) to provide the operator with a tactile feedback, while roadwheel command signals (19, 22) are sent to roadwheel units to provide steering direction. An Ackerman correction unit is also used to correct the left and right roadwheel positions to track about a common center.

Description

STEER-BY-WIRE SYSTEM
CROSS-REFERENCE TO RELATED APPLICATIONS
This application is based upon, and claims the benefit of, United States provisional patent application No. 60/154,453, filed September 17, 1999, the disclosures of which are incorporated by reference herein in their entirety.
FIELD OF THE INVENTION
This disclosure relates to steer-by-wire vehicle control systems.
BACKGROUND OF THE INVENTION
Steering equipment for assisting a driver to steer an automobile is well known in the art. In conventional steering assemblies, the operator controls the direction of the vehicle with the aid of a steering wheel. This wheel is mechanically connected, usually through a gear assembly to the roadwheels. To aid the operator, many systems utilize a an auxiliary system to generate a force that is transmitted to a steering gear assembly. The additional force reduces the effort required by the operator in changing the direction of the vehicle. Typically, this auxiliary force is generated by either a hydraulic drive or an electric motor.
Because the steering wheel is connected directly to the roadwheels, the resulting mechanical assembly that provides the connection can be quite complicated and expensive to produce. The one advantage in having a direct connection is that the operator receives tactile feedback through the steering wheel. For example, if the vehicle changes directions while it is moving, the operator will feel resistance in the steering wheel.
Therefore, is it considered advantageous to provide a steering control system that is less expensive than a traditional mechanical system while still providing the tactile feedback to the operator.
BRIEF SUMMARY OF THE INVENTION The present invention is directed to a control system that provides a vehicle operator with an electronic steering or steer-by- wire control for a vehicle. The steer-by- wire control system comprises a roadwheel unit, a steering wheel unit, and a master control unit that operate together to provide steering control for the vehicle operator. The roadwheel unit has several sensors including a roadwheel position sensor and a tie-rod force sensor that are used to provide a signal to the master control unit. The steering wheel unit has a sensor for detecting steering wheel position, this sensor is used to provide a signal to the master control unit. Signals from the sensors in the roadwheel unit and steering wheel unit are received by the master control unit where they are used to calculate roadwheel command signals and steering wheel reaction torque signals. The resulting roadwheel command signal is sent back to the roadwheel unit to change the direction of the vehicle, while the steering wheel reaction torque signal is sent to the steering wheel unit where it is used to provide tactile feedback to the vehicle operator. The present invention also utilizes an Ackerman correction control to adjust the left and right roadwheel angles to correct for errors in the steering geometry so that the wheels will track about a common turn center.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a block diagram illustrating the steering control system of the present invention. Figure 2 is a block diagram of the steering wheel unit shown in Figure
1. Figure 3 is a block diagram of the roadwheel unit shown in Figure 1.
Figure 4 is a block diagram of the master control unit shown in Figure 1.
Figure 5 is a block diagram of the position control unit shown in Figure 4.
Figure 6 is a block diagram of the roadwheel control unit shown in Figure 3.
DETAILED DESCRIPTION OF THE INVENTION Referring to Figure 1, there is shown an automobile steering control system. The steering system 10 comprises several closed loop subsystems that work together to provide an operator with control over the direction of the vehicle. A steering wheel unit 14 detects the position and movement of a steering wheel (not shown) and sends a steering wheel position signal 20 to the master control unit 12. The master control unit 12 combines the information of the steering wheel position 20 with a speed signal 28 from the vehicle speed sensor 29 and the tie rod force signals 24, 26 from the roadwheel unit 16. Using these input signals, the master control unit 12 produces roadwheel command signals 19, 22 that are sent to the roadwheel unit 16. A steering wheel reaction torque signal 18 is sent to the steering wheel unit 14. Each of the major systems may have additional functionality that will be described in more detail herein. As used herein, signal connections may physically take any form capable of transferring a signal, including electrical, optical, or radio.
Referring to Figure 2, the steering wheel unit 14 is a closed loop control system that uses steering wheel torque as the feedback signal. The steering wheel reaction torque signal 18 is received from input terminal 54 into the steering wheel control unit 30 where the signal is compared to the feedback torque sensor signal 36 (a simple method of comparison is simply to subtract one signal from another. A zero result indicates that the desired torque is being applied). A torque command signal 34 is then passed to the plant dynamics unit 32 as needed to comply with the steering wheel reaction torque signal 18. The steering wheel plant dynamics unit 32 contains the necessary elements to provide a reaction torque to the operator as well as a torque sensor 31 to provide the feedback 36 to the control unit 30 and a steering wheel position sensor 33 that produces and sends a steering wheel position signal via line 20 through the node 21. Generally, reaction torque will be imparted to the operator by an electric motor coupled either to the steering column or the rack. Preferred reaction torque motors are those with reduced torque ripple, such as are described in detail in commonly assigned U.S. Patent No. , Serial No. , Attorney Docket No. H-200000, entitled TORQUE RIPPLE FREE
ELECTRIC POWER STEERING, filed September 6, 2000, the disclosures of which are incorporated by reference herein in their entirety. Current control of the reaction torque motor may be desired to minimize damping, though this is not required.
Referring to Figure 3, the roadwheel unit 16, like the steering wheel unit, is also a closed loop control system that uses roadwheel position as a feedback signal. There is a roadwheel unit for each steerable wheel, though only one is shown in the drawing. Within the roadwheel unit 16, the roadwheel command signal (19 for the left wheel, 22 for the right) is received from the master control unit and compared with the roadwheel position signal 44 within the control unit 38. A roadwheel position command signal 40 is sent to the roadwheel plant dynamics unit 42. The plant dynamics unit 42 contains the necessary elements to control the position of the automobile wheels as well as a roadwheel position sensor 41 to provide feedback signal 44 of the roadwheel position. A tie rod sensor 43 is also located within plant dynamics unit 42. The tie rod sensor 43 detects and also measures the forces on the tie rods and sends a signal (24 for one wheel, 26 for the other) representative of the measured forces to the master control unit 12. Figure 4 shows a more detailed view of the master control unit 12. As discussed above, the roadwheel plant dynamics unit 42 has a tie rod sensor 43. In a preferred embodiment, this sensor 43 comprises a left and right tie rod force sensor 35a, 35b that each measure and transmit a signal representative of the left and right roadwheel tie rod respectively. These signals are sent via lines 24, 26 to a torque unit 46 that uses the force signals to calculate a steering wheel reaction torque command signal , which is sent via line 48 to the compensation unit 50. In a preferred embodiment, the torque unit 46 will index the composite tie-rod force signals into a set of one or more torque look-up tables. Where more than one look-up table is used, the outputs are preferably blended based upon a ratio dependent upon the vehicle speed signal 28. For example, two lookup tables might be used, one for low speeds and one for highway speeds. As the vehicle speed signal increases, the table for highway speeds becomes increasingly dominant in the blend over the table for low speeds.
Generally, the steering wheel unit will have a compliant torque sensor (such as a T-bar) with two masses at each end (motor inertia and steering wheel inertia) as is common in the art. A frequency based compensator 50 is preferably used to generate an adjusted steering wheel reaction torque command signal 18 to compensate for the compliancy.
The master control unit 12 also receives the steering wheel position signal through line 20 via node 21. This signal 20 is used to generate the roadwheel position command signals 19, 22 within the position control unit 56 and output the signals to nodes 82 and 84.
Referring to Figure 5, the position control unit 56 has several sub components that are used in the calculation of the left and right hand roadwheel command signals 19, 22. The steering wheel position signal is received by the variable steering ratio unit 62 via line 20. The ratio unit 62 also receives the vehicle speed signal on line 28 from node 23. The signals 20, 28 are used as inputs to a three dimensional look-up table. The resulting ratio signal is passed via line 64 to the roadwheel command unit 66 where it is used along with the position signal from line 20 to calculate the roadwheel command signal 70.
The purpose of the roadwheel command unit 66 is to provide theta correction, that is, to correct the roadwheel position to reflect the position of the steering column correctly. This is needed for situations where the reaction torque motor moves to provide a reaction torque to the driver in response to a movement of the roadwheels. However, the driver does not necessarily permit the steering wheel to turn, though he feels the reaction torque. The effect of the roadwheels moving without the steering column moving is undesirable so a theta correction is provided and a theta-corrected roadwheel command signal 70 is generated. The theta-corrected roadwheel command signal 70 passes along to the Ackerman correction unit 68. The Ackerman correction unit 68 adjusts the roadwheel angles to correct for errors in the steering geometry. This enables each wheel to be steered in such a manner as to negotiate a curve along its natural rolling path. Though the Ackerman unit is optional, it is preferred because the inner wheel tracks a smaller radius than the outer wheel to track a common turn center, thus the inner wheel needs to be steered at a greater angle.
An Ackerman command signal 74 is sent to a left roadwheel switch 78 and a right roadwheel switch 76. The switches 76, 78 combine the Ackerman command signal with the roadwheel command signal 70 and a signal representative of the sign of the roadwheel signal 80 to determine the left and right roadwheel signals. The left 19 and right 22 roadwheel signals are then passed back to the roadwheel units 16.
It is important to note that all the examples provided herein relate to a vehicle having two steerable wheels. However, this type of system could be easily extended to a vehicle that requires all four wheels to be steered simultaneously by adding a second roadwheel unit 16.
The left 19 and right 22 roadwheel signals are typically representative of the desired roadwheel angle. To use this information effectively, the roadwheel plant dynamics unit 42 may need this information in a signal representative of a linear value. Accordingly, the roadwheel control unit 38 (from Figure 3) may contain additional functionality as shown in Figure 6.
Referring to Figure 6, there is shown the roadwheel control unit 38 wherein a linear correction unit 88 transforms the roadwheel signals 19, 22 into a linear travel signal that is representative of the linear value required for the left or right wheel, respectively. The linear travel signal is passed to the plant dynamics unit 42 (see Figure 3) as the position command signal 40. The linear correction unit 88 uses the given steering geometry of the vehicle to calculate a linear position in order to attain a desired rotational position. It is contemplated that these calculations would be compiled into a lookup table to optimize controller performance.
While preferred embodiments have been shown and described, various modifications and substitutions may be made thereto without departing from the spirit and scope of the invention. Accordingly, it is to be understood that the present invention has been described by way of illustration only, and such illustrations and embodiments as have been disclosed herein are not to be construed as limiting to the claims.

Claims

CLAIMSWhat is claimed is:
1. A steer-by- wire control system, comprising: a master control unit; at least one roadwheel unit electrically connected to said master control unit; and, at least one steering wheel unit electrically connected to said master control unit.
2. The steer-by- wire control system of claim 1, wherein: said at least one roadwheel unit includes a roadwheel position sensor and a least one tie rod sensor to produce and transmit a tie rod force signal.
3. The steer-by- wire control system of claim 2, wherein: said at least one steering wheel unit includes a steering wheel position sensor to produce and transmit a steering wheel position signal.
4. The steer-by- wire control system of claim 3 wherein: said roadwheel unit produces a tie rod force signal; said steering wheel unit produces a steering wheel position signal, and; said master control unit calculates at least one roadwheel command signal in response to said tie rod force signal and said steering wheel position signal.
5. The steer-by- wire control system of claim 4 further comprising: a vehicle speed sensor for producing a vehicle speed signal, said vehicle speed sensor electrically connected to said master control unit; and, said master control unit further including a torque unit to calculate and produce a reaction torque signal in response to said tie-rod force signal and said vehicle speed signal.
6. The steer-by- wire control system of claim 5 wherein said torque unit uses said tie rod force signal as an index to a plurality of torque look-up tables and blending the outputs thereof to generate a blended value.
7. The steer-by- wire control system of claim 6 wherein said lookup table outputs are blended in a ratio dependent upon said vehicle speed signal.
8. The steer-by- wire control system of claim 5 further comprising: a position control unit, said position control unit calculates and produces a variable steering ratio signal in response to said steering wheel position signal and said vehicle speed signal.
9. The steer-by- wire control system of claim 8 wherein said variable steering ratio signal is calculated using said steering wheel position signal and said vehicle speed signal as inputs to a steering ratio look-up table.
10. The steer-by- wire control system of claim 8 wherein said position control unit further comprises a roadwheel command unit that calculates a theta correction and generates a theta corrected roadwheel command signal from said variable steering ratio signal and said steering wheel position signal.
11. The steer-by- wire control system of claim 8 wherein said position control unit calculates and produces at least one roadwheel command signal in response to said steering wheel position signal and said steering ratio signal.
12. The steer-by- wire control system of claim 11 wherein said position control unit further includes an Ackerman correction unit for producing a left roadwheel signal and a right roadwheel signal in response to said roadwheel command signal.
13. The steer-by- wire control system of claim 12 wherein said roadwheel unit includes a linear correction unit for calculating and producing a linear position command signal in response to a roadwheel command signal.
14. A method for controlling a vehicle comprising: generating at least one tie-rod force signal; generating a vehicle speed signal; generating a steering wheel position signal; combining said signals in a master control unit; generating a steering wheel reaction torque signal in response to said tie rod force signal and said vehicle speed signal; generating at least one roadwheel command signal in response to said steering wheel position signal and said vehicle speed signal.
15. A method for controlling a vehicle as in claim 14 comprising: calculating a first torque signal from a look-up table; calculating a second torque signal from a second look-up table; calculating said steering wheel reaction torque signal as a blended value of said first and second torque signals.
16. A method for controlling a vehicle as in claim 15 comprising: calculating and producing a variable steering ratio signal in response to said steering wheel position signal and said vehicle speed signal.
17. A method for controlling a vehicle as in claim 16 wherein: said calculating and producing at least one roadwheel command signal is in response to said steering wheel position signal and said steering ratio signal.
18. A method for controlling a vehicle as in claim 17 comprising: calculating an Ackerman correction factor; modifying said roadwheel command signal with said Ackerman correction factor to adjust the vehicle wheels to track about a common center.
19. A method of controlling a vehicle as in claim 18 comprising: calculating and producing a linear position command signal.
20. A method of controlling a vehicle as in claim 17 further comprising: calculating and producing a left and right roadwheel command associated with the vehicles left and right roadwheel respectively.
PCT/US2000/025454 2000-09-17 2000-09-18 Steer-by-wire system WO2002022397A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP00965078A EP1339567A1 (en) 2000-09-17 2000-09-18 Steer-by-wire system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15445300P 2000-09-17 2000-09-17
US60/154,453 2000-09-17

Publications (1)

Publication Number Publication Date
WO2002022397A1 true WO2002022397A1 (en) 2002-03-21

Family

ID=22551413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/025454 WO2002022397A1 (en) 2000-09-17 2000-09-18 Steer-by-wire system

Country Status (2)

Country Link
EP (1) EP1339567A1 (en)
WO (1) WO2002022397A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103562050A (en) * 2011-08-22 2014-02-05 Zf操作系统有限公司 Method for determining a steering rack force for a steering device in a vehicle, steering device and open-loop and/or closed-loop control device for a steering device
DE10338427B4 (en) * 2002-08-26 2016-06-30 Nissan Motor Co. Ltd. Control for the steering system of a vehicle based on a model adaptation strategy
WO2017135884A1 (en) 2016-02-05 2017-08-10 Sentient Sweden Ekonomisk Förening Method for the control of vehicle steering and vehicle behaviour

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576957A (en) * 1994-03-02 1996-11-19 Honda Giken Kogyo Kabushiki Kaisha Control system for a front and rear wheel steering vehicle
US5653304A (en) * 1994-04-20 1997-08-05 University Of Arkansas, N.A. Lever steering system
US5828972A (en) * 1991-09-27 1998-10-27 Honda Giken Kogyo Kabushiki Kaisha Motor vehicle steering system with automatic disturbance suppression
US5925083A (en) * 1996-12-07 1999-07-20 Deutsche Forchungsanstalt Fur Luft Und Raumfahrt E.V. Method of correcting steering of a road driven vehicle
US6018691A (en) * 1993-06-29 2000-01-25 Honda Giken Kogyo Kabushiki Kaisha Vehicle steering system
US6097286A (en) * 1997-09-30 2000-08-01 Reliance Electric Technologies, Llc Steer by wire system with feedback

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5828972A (en) * 1991-09-27 1998-10-27 Honda Giken Kogyo Kabushiki Kaisha Motor vehicle steering system with automatic disturbance suppression
US6018691A (en) * 1993-06-29 2000-01-25 Honda Giken Kogyo Kabushiki Kaisha Vehicle steering system
US5576957A (en) * 1994-03-02 1996-11-19 Honda Giken Kogyo Kabushiki Kaisha Control system for a front and rear wheel steering vehicle
US5653304A (en) * 1994-04-20 1997-08-05 University Of Arkansas, N.A. Lever steering system
US5925083A (en) * 1996-12-07 1999-07-20 Deutsche Forchungsanstalt Fur Luft Und Raumfahrt E.V. Method of correcting steering of a road driven vehicle
US6097286A (en) * 1997-09-30 2000-08-01 Reliance Electric Technologies, Llc Steer by wire system with feedback

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10338427B4 (en) * 2002-08-26 2016-06-30 Nissan Motor Co. Ltd. Control for the steering system of a vehicle based on a model adaptation strategy
CN103562050A (en) * 2011-08-22 2014-02-05 Zf操作系统有限公司 Method for determining a steering rack force for a steering device in a vehicle, steering device and open-loop and/or closed-loop control device for a steering device
WO2017135884A1 (en) 2016-02-05 2017-08-10 Sentient Sweden Ekonomisk Förening Method for the control of vehicle steering and vehicle behaviour
US10858040B2 (en) 2016-02-05 2020-12-08 Sentient Ip Ab Method for the control of vehicle steering and vehicle behaviour

Also Published As

Publication number Publication date
EP1339567A1 (en) 2003-09-03

Similar Documents

Publication Publication Date Title
US6363305B1 (en) Steer-by-wire system
US6625530B1 (en) Feed forward—feed back control for steer-by-wire system
US6678594B2 (en) User-configurable steering control for steer-by-wire systems
CN108698637B (en) Vehicle steering control device
EP1764284B1 (en) Method and system for improved active damping of steering systems
US7966114B2 (en) Electric power steering device, and control method thereof
US6640923B1 (en) Method for steering a vehicle using a power-assisted steering system
EP3594088B1 (en) Steering control apparatus and steering control method
US7383111B2 (en) Steering apparatus
US11059516B2 (en) Steering control apparatus
JP5948843B2 (en) Vehicle steering system
CN110857116B (en) Controller for steering system and method for controlling steering system
JPH10230861A (en) Vehicular steering device
US11407442B2 (en) Steer-by-wire system
JP2012228922A (en) Device and method for detecting steering torque and electric power steering device
CN111017009B (en) Composite intelligent steering system and control and fault diagnosis method thereof
EP1339567A1 (en) Steer-by-wire system
US20200130736A1 (en) Steering control device
WO2017141819A1 (en) Vehicle steering control device
EP4121338B1 (en) A vehicle steering assembly
KR20230033348A (en) Apparatus and method for controlling of wheel steering of vehicle
JP2006131074A (en) Electric steering device
JP2007283926A (en) Steering device for vehicle
EP4417495A1 (en) Steering control method and steering device
JP2007269219A (en) Vehicular steering device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000965078

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000965078

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000965078

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP