WO2002020537A2 - Linker phosphoramidites for oligonucleotide synthesis - Google Patents
Linker phosphoramidites for oligonucleotide synthesis Download PDFInfo
- Publication number
- WO2002020537A2 WO2002020537A2 PCT/CA2001/001263 CA0101263W WO0220537A2 WO 2002020537 A2 WO2002020537 A2 WO 2002020537A2 CA 0101263 W CA0101263 W CA 0101263W WO 0220537 A2 WO0220537 A2 WO 0220537A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- substituted
- unsubstituted
- hydrogen
- aryl
- Prior art date
Links
- 0 C*[C@]1O[C@](CO)CC1C Chemical compound C*[C@]1O[C@](CO)CC1C 0.000 description 15
- BPLCXEOSKQVKCX-YSLANXFLSA-N B[C@@H]1O[C@H](CO)C(C)C1 Chemical compound B[C@@H]1O[C@H](CO)C(C)C1 BPLCXEOSKQVKCX-YSLANXFLSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H19/00—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
- C07H19/02—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
- C07H19/04—Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
- C07H19/06—Pyrimidine radicals
- C07H19/10—Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H19/00—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H19/00—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
- C07H19/02—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
- C07H19/04—Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
- C07H19/16—Purine radicals
- C07H19/20—Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H21/00—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B2200/00—Indexing scheme relating to specific properties of organic compounds
- C07B2200/11—Compounds covalently bound to a solid support
-
- C—CHEMISTRY; METALLURGY
- C40—COMBINATORIAL TECHNOLOGY
- C40B—COMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
- C40B40/00—Libraries per se, e.g. arrays, mixtures
Definitions
- the present invention relates to a novel series of phosphorus- containing compounds useful in oligonucleotide synthesis. In another of its aspects, the present invention relates the use of these compounds in oligonucleotide synthesis.
- Oligonucleotides have become widely used as reagents for biochemistry and molecular biology (G. M. Blackburn and M. J. Gait, Nucleic Acids in Chemistry and Biology, 1990, IRL Press, Oxford). These materials are used as DNA sequencing primers (C. J. Howe and E. S. Ward, Nucleic Acids Sequencing: A Practical Approach, 1989, IRL Press, Oxford), polymerase chain reaction or "PCR” (N. Smyth Templeton, 1992, Diagnostic Molecular Pathology 1, 58-72) primers, DNA probes (L. J. Kaicka, Nomsotopic DNA Probe Techniques, 1992, Academic Press, San Diego) and in the construction of synthetic or modified genes (S. A. Narang, Synthesis and Applications of DNA and RNA, 1987, Academic Press, San Diego). Modified oligonucleotides are also finding widespread use as diagnostic and therapeutic agents - see one or more of:
- Solid-phase chemical synthesis is the only method capable of producing the number of synthetic oligonucleotides required and automated synthesis using phosphoramidite coupling chemistry (S. L. Beaucage and R. P. Iyer, 1992, Tetrahedron 12, 2223-2311) has become the preferred synthetic method.
- the first step in solid-phase synthesis is attachment of a nucleoside residue to the surface of an insoluble support, such as a controlled pore glass or polystyrene bead, through a covalent linkage (R. T. Pon, "Solid- phase supports for oligonucleotide synthesis", Unit 3T in Current Protocols in Nucleic Acid Chemistry, eds., S. L. Beaucage, D. E.
- the product released from the support have a terminus which is well defined and can participate in subsequent enzymatic reactions, i.e. be recognized by enzymes such as polymerases.
- the preferred strategies for solid-phase oligonucleotide synthesis all attach the 3 '-terminal residue to the support and assemble the oligonucleotide sequence in the 3'- to 5'- direction. After cleavage from the support, a 3'- hydroxyl group is desired since this is identical with the structure created by enzymatic cleavage.
- a 3'-terminal phosphate is not as satisfactory since this is not extendable by polymerases and such oligonucleotides cannot function as PCR or sequencing primers.
- the chemistry required to form the carboxylic ester or amide attachments to the supports is different from the phosphoramidite chemistry required to build up the oligonucleotide sequence. Therefore, the nucleoside attachment step is usually done separately from the automated synthesis.
- the correct prederivatized supports, containing either A, C, G, T or other minor nucleosides, must be selected in advance of automated synthesis. This is satisfactory when producing small numbers of oligonucleotides but becomes tedious and a potential source of error when large numbers of different sequences are synthesized, such as in 96 well plates.
- nucleoside-3'-phosphoramidite reagents used to synthesize the oligonucleotide sequence are used to attach the first nucleoside residue to the support.
- the present invention provides a compound having Formula I:
- X comprises a protected nucleoside moiety selected from the .following structures:
- R 1 is hydrogen, fluorine or -OR 3 ;
- R 2 and R 3 are the same or different and each is selected from hydrogen, methyl and a protecting group;
- B is a nucleic acid base
- Q is a moiety selected from:
- Q 1 is an organic moiety
- Q 2 is selected from -O-, -N(H)- -N(R 7 )- and -S-;
- Q 3 is selected from -S(O) 2 - -S(O)-, -C(O)-, -O-, -O-(R 8 )-O ⁇ and
- a 1 and A 2 may be the same or different and each is selected from hydrogen, halogen, a Ci-io alkyl group, a C5-10 aryl group, a C 3- IQ cycloalkyl group, —COOR 7 , —CONH, -CONR 7 , -CN, -NO 2 , -SR 7 , -S(O)R 7 , -S(O) 2 R 7 , -SC(C 6 H 5 ) 3 , a C O alkylsulfonyl group, a Cs-io aryl group, a C Q alkylthio group, — Si(R 7 ) 3 , a C O haloalkyl group, naphthyl, 9-fluorenyl, 2-anthraquinonyl,
- G is C or N with at least one G being N, and
- a 3 and A 4 may be the same or different and each is selected from hydrogen, halogen, a C O alkyl group, a C5-10 aryl group, a C3.1 0 cycloalkyl group and an electron withdrawing group, provided that at least one of A 3 and A 4 comprises an electron withdrawing group;
- R 3 , R 4 , R 5 and R 6 are the same or different and each is selected from hydrogen, halogen, a C MO alkyl group, a C 5-10 aryl group and a C 3-10 cycloalkyl group;
- R is selected from a C MO alkyl group, a C 5 . 1.0 aryl group and a C 3-10 cycloalkyl group;
- R 8 is a C O alkyl group or a C 5 - 10 aryl group
- R 9 is a C 5-1 o aryl group or — CH 2 — ;
- the present invention provides a process for producing a compound having Formula I:
- X 1 comprises a protected nucleoside moiety selected from the following structures:
- R » 1 is hydrogen, fluorine or -OR ;
- R 2 and R 3 are the same or different and each is selected from hydrogen, methyl and a protecting group; and B is a nucleic acid base;
- Q is a moiety selected from:
- Q 1 is an organic moiety
- Q 2 is selected from -O-, -N(H)-, -N(R 7 )- and -S-;
- Q 3 is selected from -S(O) 2 - -S(O)-, -C(O)-, -O-, -O-(R 8 )-O- and
- a 1 and A 2 may be the same or different and each is selected from hydrogen, halogen, a C O alkyl group, a C 5- ⁇ 0 aryl group, a C 3-10 cycloalkyl group, —COOR 7 , -CONH, -CONR 7 , -CN, -NO 2 , -SR 7 , -S(O)R 7 , -S(O) 2 R 7 , -SC(C 6 H 5 ) 3 , a C M0 alkylsulfonyl group, a C 5- ⁇ o aryl group, a C MO allcylthio group, — Si(R 7 ) 3 , a C O haloallcyl group, naphthyl, 9-fluorenyl, 2-anthraquinonyl,
- G is C or N with at least one G being N, and
- a 3 and A 4 may be the same or different and each is selected from-hydrogen, halogen, a C MO alkyl group, a C 5 -10 aryl group, a C 3- ⁇ 0 cycloalkyl group and an electron withdrawing group, provided that at least one of A 3 and A 4 comprises and an electron withdrawing group;
- R 3 , R 4 , R 5 and R 6 are the same or different and each is selected from hydrogen, halogen, a C MO . alkyl group, a C 5 - 10 aryl group and a C 3 . 10 cycloalkyl group;
- R 7 is selected from a C MO alkyl group, a C 5 . 10 aryl group and a C 3-1 o cycloalkyl group;
- R 8 is a C MO alkyl group or a C 5-1 o aryl group
- R 9 is a C5..1 0 aryl group or — CH 2 — ;
- m, n and p are independently 0 or 1; o is an integer in the range 0-30; and q is an integer in the range 0-50; and
- Z 1 is a phosphorylation moiety
- R 18 is a protecting group and Z 2 is a phosphorus containing precursor to Z 1 or activated phosphorylatoin moiety.
- the present invention provides a process for producing a derivatized nucleoside having Formula Va or FormulaVb: (Va)
- X 1 comprises a protected nucleoside moiety selected from the following structures:
- R 1 is hydrogen, fluorine or -OR 3 ;
- R 2 and R 3 are the same or different and each is selected from hydrogen, methyl and a protecting group
- B is a nucleic acid base
- Q 1 is an organic moiety
- Q 2 is selected from -O- -N(H)-, -N(R 7 )- and -S-;
- Q 3 is selected from -S(O) 2 - -S(O)-, -C(O)-, -O-, -O-(R 8 )-O- and -R 9 -;
- a 1 and A 2 may be the same or different and each is selected from hydrogen, halogen, a C ⁇ -10 allcyl group, a C 5-1 o aryl group, a C 3- ⁇ o cycloalkyl group, —COOR 7 , —CONH, —CONR 7 , -CN, -NO 2 , -SR 7 , -S(O)R 7 , -S(O) 2 R 7 , -SC(C 6 H 5 ) 3 , a C M0 alkylsulfonyl group, a C 5 - 10 aryl group, a C MO alkylthio group, — Si.(R 7 ) 3 , a C O haloalkyl group, naphthyl, 9-fluorenyl, 2- anthraquinonyl,
- G is C or N with at least one G being N, and
- a 3 and A 4 may be the same or different and each is selected from hydrogen, halogen, a C MO alkyl group, a C 5- ⁇ o aryl group, a C 3-10 cycloalkyl group and an electron withdrawing group, provided that at least one of A 3 and A 4 comprises an electron withdrawing group;
- R 3 , R 4 , R 5 and R 6 are the same or different and each is selected from hydrogen, halogen, a C M O alkyl group, a C 5- ⁇ o aryl group and a C 3- ⁇ o cycloalkyl group;
- R 7 is selected from a C MO alkyl group, a C5 0 aryl group and a C -1 o cycloalkyl group;
- R 8 is a CM O alkyl group or a C5..10 aryl group
- R 9 is a C 5 0 aryl group or — CH 2 — ;
- n and p are independently 0 or 1; o is an integer in the range 0-30; q is an integer in the range 0-50; and
- R 25 is hydrogen or a protecting group
- R >26 is hydrogen or a protecting group, with a compound having Formula Vila (in the case where the nucleoside of Formula Va is being produced) or Vllb (in the case where the nucleoside of Formula Vb is being produced):
- the present inventors have developed a novel approach for combining the ease of cleavage of carboxylic acid linlcer arms with the single phosphoramidite coupling chemistry of the universal supports.
- This entails synthesis of a new class of phosphoramidite reagents, linker phosphoramidites, which contain a biftmctional linker arm with a protected nucleoside linked through a 3 '-ester bond on one end and a reactive phosphoramidite group or other phosphate precursor group on the other end - see Figures 2 and 3.
- the phosphoramidite group on the linlcer phosphoramidite is activated under the same conditions and has similar reactivity as conventional nucleoside-3 '-phosphoramidite reagents lacking the intermediate linker arm.
- the 3'- ester linkage contained within the linlcer phosphoramidite has similar properties to the linkages on prederivatized supports.
- the ester linkage is stable to all subsequent synthesis steps, but upon treatment with a cleavage reagent, such as ammonium hydroxide, the ester linkage is hydrolyzed. This releases the oligonucleotide product with the desired 3'-hydroxyl terminus and leaves the phosphate portion of the reagent attached to the support, which is subsequently discarded.
- oligonucleotide is intended to have a broad meaning and encompasses conventional oligonucleotides, backbone-modified oligonucleotides (e.g., phosphorothioate, phosphorodithioate and methyl-phophonate analogs useful as ohgotherapeutic agents), labeled oligonucleotides, sugar-modified oligonucleotides and oligonucleotide derivatives such as oligonucleotide-peptide conjugates.
- backbone-modified oligonucleotides e.g., phosphorothioate, phosphorodithioate and methyl-phophonate analogs useful as ohgotherapeutic agents
- labeled oligonucleotides e.g., sugar-modified oligonucleotides and oligonucleotide derivatives such as oligonucleotide-peptide conjugates.
- substitution when reference is made to a substituted moiety, the nature of the substitution is not specification restricted and may be one or more members selected from the group consisting of hydrogen, a C ⁇ -C 20 alkyl group, a C 5 -C 30 aryl group, a C 5 - C 4 o alkaryl group (each of the foregoing hydrocarbon groups may themselves be substituted with one or more of a halogen, oxygen and sulfur), a halogen, oxygen and sulfur.
- alkyl as used throughout this specification, is intended to encompass hydrocarbon moieties having single bonds, one or more doubles bonds, one or more triples bond and mixtures thereof.
- the compound of Formula I is useful in producing oligonucleotides of desired sequence on a support material.
- support and “support material” are used interchangeably and are intended to encompass a conventional solid support.
- the nature of the solid support is not particularly restricted and is within the purview of a person skilled in the art.
- the solid support may be an inorganic substance.
- suitable inorganic substances may be selected from the group consisting of silica, porous glass, aluminosilicates, borosilicates, metal oxides (e.g., aluminum oxide, iron oxide, nickel oxide) and clay containing one or more of these.
- the solid support may be an organic substance such as a cross-linked polymer.
- Non-limiting examples of a suitable cross- linked polymer may be selected from the group consisting of polyamide, polyether, polystyrene and mixtures thereof.
- One preferred solid support for use herein is conventional and may be selected from controlled pore glass beads and polystyrene beads.
- Figure la illustrates a prior art synthesis of attaching a nucleoside to a support
- Figure lb illustrates a prior art approach for synthesizing oligonucleotides in tandem
- Figures 2 and 3 illustrate preferred embodiments of the present process
- Figure 4 illustrates a preferred embodiment of the present process for synthesizing oligonucleotides in tandem
- Figure 5 illustrates the synthetic routes used in Examples 1-3 below
- Figure 6 illustrates the synthesis of a preferred reagent for tandem synthesis.
- Phosphoramidite reagents are usually prepared by reacting an alcohol with a trivalent phosphite, such as 2-cyanoethyl diisopropylchlorophosphoramidite, N,N-diisopropylmethyl- phosphonamidic chloride, or bis-(diisopropylamino)-2-cyanoethoxyphosphine.
- a trivalent phosphite such as 2-cyanoethyl diisopropylchlorophosphoramidite, N,N-diisopropylmethyl- phosphonamidic chloride, or bis-(diisopropylamino)-2-cyanoethoxyphosphine.
- nucleoside phosphoramidite reagents can be used to assemble oligonucleotide sequences.
- many other reagents such as amino or thiol end-modifiers, non-nucleotide spacers, fluorescent dyes, lipophilic groups such cholesterol or Vitamin E, and non-isotopic labels, such as biotin have also been converted into alcohols and then into phosphoramidite reagents.
- the phosphoramidite group is used as a reactive group to permanently attach the reagent to the oligonucleotide sequence through a stable phosphate linkage.
- a reagent such as a protected nucleoside or a non-nucleoside end modifier with a free hydroxyl group is esterified to a carboxylic acid linker arm.
- the resulting ester linkage will become the site of subsequent cleavage when exposed to ammonium hydroxide or other cleavage conditions.
- This internal cleavage site differentiates the linker phosphoramidites of this invention from previous phosphoramidite reagents which never separate the phosphate group from the product.
- the carboxylic linker arm should have a second site (e.g., hydroxyl) which can react with a trivalent phosphite to convert the reagent into a phosphoramidite reagent.
- a second site e.g., hydroxyl
- the linker can be any compound with both a carboxylic acid group and an alcohol - see Figure 2.
- linkers examples include, but are not limited to: 4-hydroxymethylphenoxyacetic acid (HMPA); 4-hydroxymethylbenzoic acid (HMBA); 4-(4- hydroxymethyl-3-methoxyphenoxy)-butyric acid (HMPB); 3-(4-hydroxymethylphenoxy)- propionic acid; glycolic acid; lactic acid; 4-hydroxybutyric acid; 3-hydroxybutyric acid; 10- hydroxy decanoic acid; 12-hydroxydodecanoic acid; 16-hydroxyhexadecanoic acid; or 12- hydroxystearic acid.
- HMPA 4-hydroxymethylphenoxyacetic acid
- HMBA 4-hydroxymethylbenzoic acid
- HMPB 4-(4- hydroxymethyl-3-methoxyphenoxy)-butyric acid
- HMPB 3-(4-hydroxymethylphenoxy)- propionic acid
- glycolic acid lactic acid
- 4-hydroxybutyric acid 3-hydroxybutyric acid
- 10- hydroxy decanoic acid 12-hydroxydodecanoic acid
- linker arms for solid-phase oligonucleotide synthesis have been dicarboxylic acids such as succinic acid, hydroquinone-QO'-diacetic acid, diglycolic acid, oxalic acid, malonic acid, etc. and it is desirable to maintain these types of linker arms in the invention because their useful properties have been well established. Therefore, a second route towards synthesis of linker phosphoramidite reagents ( Figure 3) which uses well-known dicarboxylic acids is also possible. In this procedure the cleavable ester linkage is produced by attaching one end of the dicarboxylic acid linker to a nucleoside.
- dicarboxylic acids such as succinic acid, hydroquinone-QO'-diacetic acid, diglycolic acid, oxalic acid, malonic acid, etc.
- the other end of the dicarboxylic acid is then coupled through an ester or amide linkage to a second diol or amino-alcohol which serves to convert the carboxyl group into an alcohol or amino group capable of forming the phosphoramidite portion of the linker phosphoramidite.
- Examples of possible compounds for the second portion of the linker arm include, but are not limited too: ethylene glycol; diethylene glycol; triethylene glycol; tetraethylene glycol, pentaethylene glycol; hexaethylene glycol; 2- aminoethanol; 1,2-diaminoethane; 1,3-propanediol; 3-ammo-l-propanol; 1,3-diaminopropane; 1,4-butanediol; 4-amino-l-butanol; 1,4-diaminobutane; 1,5-pentanediol; 1,6-hexanediol; 6- amino-l hexanol; 1,6-diaminohexane; or 4-amino-cyclohexanol.
- the phosphorus containing group on the end of the linker may be any type of precursor which can be activated and react under oligonucleotide synthesis conditions.
- a variety of chemistries are known for oligonucleotide synthesis, such as the phosphodiester method, the phosphotriester method, the modified phosphotriester method, the chlorophosphite or phosphite- triester method, the H-phosphonate method, and the phosphoramidite method.
- the phosphoramidite method is by the far the most popular.
- activation or “activated phosphorylation moiety” is intended to have broad meaning and refers to the various ways in which a phosphorus group can be attached through either a phosphite ester, phosphate ester, or phosphonate linkage.
- Phosphorus moieties containing either trivalent (P m ) or pentavalent (P v ) oxidation states are possible and the oxidation state of the phosphorus may change (usually from P ⁇ to P ⁇ ) during the course of the coupling reactions.
- reagents which are precursors to the desired products may have a different oxidation state than the product.
- the reagents used for phosphorylation may be inherently reactive so that no external activating or coupling reagents are required. Examples of this type include chlorophosphite, chlorophosphate, and imidazole, triazole, or tetrazole substituted phosphite and phosphate reagents. Phosphorylation reagents which are stable until activated by the presence of a separate activating agent are more convenient and are widely used.
- reagents examples include phosphoramidite and bis- phosphoramidite reagents such as 2-cyanoethyl-N,N'-diisopropylphosphoramidite derivatives and bis-(N,N'-diisopiOpylamino)-2-cyanoethylphosphine.
- Reagents with reactive groups may also be substituted with other reactive groups to make for more desirable coupling properties.
- An example of this is the conversion of highly reactive phosphorus trichloride into phosphorus tris- (imidazolide) or phosphorus tris-(triazolide) species before use.
- Phosphorylation reagents may also require in situ conversion into activated species by additional coupling reagents.
- carbodiimide coupling reagents such as dicyclohexylcarbodiimide or l-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride and similar reagents
- uronium coupling reagents such as O-benzotriazol-1-yl- N,N,N',N'-tetramethyluronium hexafluorophosphate (HBTU), 6>-benzotriazol-l-yl-N,N,N',N'- tetramethyluronium tetrafluoroborate (TBTU) or 0-(7-azabenzotriazol-l-yl)-N,N,N',N'- tetramethyluronium hexafluorophosphate (HATU) and similar reagents; and phosphonium coupling reagents, such as
- Phosphorylation reagents may also have protecting groups which allow them to be more easily handled as neutral, uncharged species. These protecting groups are removable to allow the charged species to be produced in situ without isolation and then this charged species participates in the coupling reaction.
- An example of this approach is known as the modified phosphotriester approach.
- Linker phosphoramidite reagents of the four common bases (A, C, G, and T) or other minor bases can be prepared and installed on automated DNA synthesizers in the same manner as the four conventional nucleoside-3 '-phosphoramidite reagents ( Figures 2 and 3). Inexpensive and readily available underivatized amino or hydroxyl solid-phase supports can then be used as "universal" supports in either column or plate formats.
- Standard phosphoramidite coupling cycles can then be used to attach the linker phosphoramidite in the first synthesis cycle before switching to conventional phosphoramidite reagents for the subsequent chain extension steps.
- No additional coupling reagents are required since the activator (usually tetrazole) remains the same for both types of phosphoramidite reagent.
- Automated synthesizers which can support eight different phosphoramidite reagents at one time are already widely . available and so having a set of four linker phosphoramidites and four conventional phosphoramidites installed simultaneously is not a problem.
- cleavage of the product can be performed using the same reagents and conditions as previously used with prederivatized supports and the products will be released with the desired 3'-hydroxyl ends.
- the phosphate moiety of the linker phosphoramidite will remain attached to the support and is discarded.
- the cleavage step can be quite rapid. For example, using a linlcer phosphoramidite containing hydroquinone-QO'-diacetic acid, treatment with room temperature ammonium hydroxide for only two minutes is sufficient.
- oligonucleotides can also be produced in tandem on the same synthesis column ( Figure 4).
- the first oligonucleotide sequence is synthesized on the support with a 5'-terminal hydroxyl group, i.e., without a 5'-dimethoxytrityl group.
- the terminal 5 '-hydroxyl group of the first oligonucleotide can then serve as a reactive site for a linker phosphoramidite containing the 3 '-terminal base of a second oligonucleotide sequence.
- This second sequence can be the same or different from the first sequence prepared.
- linker phosphoramidite reagents are then used to synthesize the remainder of the second sequence. Additional sequences may continue to be built-up on the support until the total number of bases exceeds the pore capacity of the solid-phase support.
- the multiple oligonucleotides prepared in this fashion preferably are simultaneously released from each other and the surface of the support when treated with the reagent which cleaves the first sequence from the surface of the support.
- use of different linker phosphoramidites between the oligonucleotide products allows selective and sequential release of the products from the support by adjusting the cleavage conditions for each particular linker phosphoramidite.
- the phosphate residue from the linker phosphoramidite used to attach the first oligonucleotide sequence to the support may be discarded with the used support. However, the phosphate residue from the subsequent linker phosphoramidite additions will remain attached to the 5'-end of the preceding oligonucleotide. Depending upon the choice of linker phosphoramidite, some residual linker moiety may remain attached to the phosphate residue generating a 5 '-terminal phosphodiester group.
- a preferred linker phosphoramidite reagent includes a linking group which is eliminated from the 5'-terminal phosphate group under the same conditions as the cleavage. This linker phosphoramidite produces a natural 5'-monophosphate and a natural 3'-OH group on the ends of the preceding oligonucleotide.
- Oligonucleotides produced using the preferred linker phosphoramidite can participate in both ligation reactions involving the 5'-terminus and primer extension reactions involving the 3'-terminus.
- X 1 comprises a protected nucleoside moiety selected from the following structures:
- R 1 is hydrogen, fluorine or -OR 3 ;
- R 2 and R 3 are the same or different and each is selected from hydrogen, methyl and a protecting group
- B is a nucleic acid base
- Q is a moiety selected from:
- Q 1 is an organic moiety
- Q 2 is selected from -O-, -N(H)- -N(R 7 )- and -S-;
- Q 3 is selected from -S(O) 2 - -S(O)-, -C(O)-, -O-, -O-(R 8 )-O- and
- -R y A and A may be the same or different and each is selected from hydrogen, halogen, a C MO alkyl group, a C5- 10 aryl group, a C 3 .10 cycloalkyl group, —COOR 7 , —CONH, -CONR 7 , -CN, -NO 2 , -SR 7 , -S(O)R 7 , -S(O) 2 R 7 , -SC(C 6 H 5 ) 3 , a C M0 alkylsulfonyl group, a C5-10 aryl group, a C O allcylthio group, — Si(R 7 ) 3 , a C MO haloalkyl group, naphthyl, 9-fluorenyl, 2-anthraquinonyl,
- G is C or N with at least one G being N, and
- a and A may be the same or different and each is selected from hydrogen, halogen, a C O alkyl group, a C 5 -10 aryl group, a C 3 -10 cycloalkyl group and an electron withdrawing group, provided that at least one of A 3 and A 4 comprises an electron withdrawing group;
- R 3 , R 4 , R 5 and R 6 are the same or different and each is selected from hydrogen, halogen, a C MO alkyl group, a C 5 - 10 aryl group and a C 3 _ ⁇ o cycloalkyl group;
- R 7 is selected from a C M O alkyl group, a C5-10 aryl group and a C 3-1 o cycloalkyl group;
- R 8 is a C MO alkyl group or a C 5- ⁇ o aryl group
- R 9 is a C5-10 aryl group or — CH2— ;
- phosphorylation moiety is selected from the group comprising:
- R 11 andR 12 are the same or different and each may be a substituted or unsubstituted C 1-2 o alkyl group, a substituted or unsubstituted Cs- 20 aryl group, a substituted or unsubstituted C 5- o aralkyl group or R 11 and R 12 together form a C 3- ⁇ o cycloalkyl group, all of these optionally substituted with one or more heteroatoms selected from oxygen, nitrogen and sulfur; and
- R 10 , R 13 , R 14 , R 15 andR 16 are the same or different and each is a protecting group.
- the protecting group is selected from the group comprising a substituted or unsubstituted -20 alkyl group, a substituted or unsubstituted C 5-30 aryl group, a C 3-10 cycloalkyl group, a C 5 - 4 o alkaryl group, a C 1 .
- haloalkyl group a C 5-30 haloaryl group, a C 3- ⁇ o halocycloalkyl group, a d-2 0 nitroalkyl group, a C5..20 nifroaryl group, a C 3-1 o nitrocycloalkyl group, a C ⁇ - 20 thioalkyl group, a Cs -3 o thioaryl group, a C 3-1 o thiocycloalkyl group, a C ⁇ -20 cyanoalkyl group, a C 5-3 o cyanoaryl group, a C 3-10 cyanocycloalkyl group, a C 1 .
- the protecting group is selected from the group comprising a C MO alkyl group, a C 5- ⁇ o aryl group, a C 3- ⁇ 0 cycloalkyl group a C MO alkylsilyl group, a C 5- ⁇ o arylsilyl group and analogs thereof substituted with one or more of a halogen, oxygen, sulfur, a nitro group, a silyl group, a thio group and a cyano group.
- a more preferred phosphorylation moiety is
- R 10 , R ⁇ and R 12 are as defined above.
- R 10 , R 11 and R 12 are the same or different and each is a C MO alkyl group, optionally substituted with one or more of a halogen, a nitro group, a thio group and a cyano group. More preferably, R 11 and R 12 are the same. Most preferably, each of R 11 and R 12 is z-propyl. More preferably, R 10 is a C MO cyanoalkyl group.
- R 10 is a cyanoethyl group.
- Q 1 is an organic moiety.
- the organic moiety is a C ⁇ -3 oo hydrocarbon moiety, optionally substituted with one or more of oxygen, nitrogen, halogen and sulfur.
- Q 1 is selected from the group comprising a C 1-4 o alkyl group, a C 5-4 o aryl group, a C 5 - o alkyaryl group, a C 3-4 o cycloalkyl group and analogs thereof substituted with one or more of a halogen, oxygen, sulfur, a nitro group, a silyl group, a thio group and a cyano group.
- Q 1 has the formula
- Q 1 has the formula
- Q 1 has the formula:
- R 17 , R 1S and R 19 are the same or different each is selected from the group comprising hydrogen, halide, a substituted or unsubstituted C 1 -C 20 alkyl group, a substituted or unsubstituted C 5 -C 30 aryl group and a substituted or unsubstituted C 5 -C 40 alkylaryl group;
- R and R are the same or different and each is selected from the group comprising hydrogen, a halogen, a substituted or unsubstituted C ⁇ -C 2 o alkyl group, a substituted or unsubstituted C 5 -C 3 o aryl group and a substituted or unsubstituted C 5 -C 4 o alkylaryl group;
- Q 4 is selected from the group consisting of — O— , — S— , — C(O)— , — S(O) 2 — and — N(R)— ;
- R is selected from the
- Q 7 is selected from the group consisting of — O— , — S— , — C(O) — , — S(O) 2 — and — N(R)—
- R is selected from the group comprising hydrogen, a substituted or unsubstituted C C 2 o alkyl group, a substituted or unsubstituted C 5 -C 3 o aryl group and a substituted or unsubstituted C5- 0 alkylaryl group
- R 22 and R 23 are the same or different and are selected from the group consisting of hydrogen, halogen, a substituted or unsubstituted C]-C 20 alkyl group, a substituted or unsubstituted C 5 -C 3 o aryl group and a substituted or unsubstituted C 5 -C o alkylaryl group, and s is 0, 1 or 2.
- R .17 , R , 18 and R 1 19 are the same or different each is selected from the group comprismg hydrogen, halide, a substituted or unsubstituted C 1 -C 20 alkyl group, a substituted or unsubstituted C 5 -C 3 o aryl group and a substituted or unsubstituted C 5 -C 40 alkylaryl group; R 20 and R 21 are the same or different and.
- each is selected from the group comprising hydrogen, a substituted or unsubstituted C 1 -C 20 allcyl group, a substituted or unsubstituted C 5 -C 3 o aryl group and a substituted or unsubstituted C 5 -C 4 o alkylaryl group;
- Q 4 is selected from the group consisting of — O— , — S— , — C(O)— , — S(O) 2 — and — N(R)— ;
- R is selected from the group comprising hydrogen, a substituted or unsubstituted C 1 -C 2 o alkyl group, a substituted or unsubstituted C 5 -C 3 o aryl group and a substituted or unsubstituted C 5 -C 40 alkylaryl group;
- Q 7 is selected from the group consisting of— O— , — S— , — C(O) — , — S(O) 2 — and — N(R)—
- R is selected from the group comprising hydrogen, a substituted or unsubstituted C ⁇ -C 2 o alkyl group, a substituted or unsubstituted C 5 -C 3 o aryl group and a substituted or unsubstituted C 5 -C 0 alkylaryl group
- R 22 and R 23 are the same or different and are selected from the group consisting of hydrogen, a halogen, a substituted or unsubstituted C1-C 20 alkyl group, a substituted or unsubstituted C 5 -C 3 o aryl group and a substituted or unsubstituted C 5 -C 4 o alkylaryl group, and s is 0, 1 or 2;
- a 1 , A 2 , R 3 , R 4 , R 5 , R 6 are all hydrogen; and l ⁇ has the following structure:
- R 10 is 2-cyanoethyl
- R 11 and R 12 are each isopropyl
- the compound of Formula may produced by a process comprising the step of reacting together compounds of Formula II, III and IV:
- R 24 is hydrogen or a protecting group and Z 2 is a phosphorus containing precursor to Z 1 or an activated phosphorylatoin moiety.
- R 24 is a protecting group and the process comprises the steps of reacting compounds of Formula II and III to produce a reaction product, and thereafter reacting the reaction product with the compound of Formula IV to produce the compound of Formula I.
- R 24 is hydrogen and the process comprises the steps of reacting compounds of Formula III and IV to produce a reaction product, and thereafter reacting the reaction product with the compound of Formula II to produce the compound of Formula I.
- protecting groups is conventional in the art and the selection thereof is within the purview of a person skilled in the art. Thus, it possible to utilize other protecting groups not specifically referred to in this specification without deviating from the scope of the present invention.
- Another aspect of the present invention relates to the use of the compound of Formula I to synthesis one or more oligonucleotides of interest. This is achieved by a process comprising the steps of:
- X is selected from — O— and — NR 19 —
- R 19 is selected from hydrogen, a C MO alkyl group, a C 5-1 o aryl group and a C 3- ⁇ o cycloalkyl group to produce a first derivatized support having Formula IX:
- the solution was concentrated by evaporation, ⁇ diluted with chloroform, and washed with water, saturated aqueous NaHCO 3 , and water (2x).
- the crude product was purified by silica gel chromatography using 0-3 % methanol/chloroform to yield 5'-dimethoxytritylthymidine-3'-O-(l,2-ethanediol hydroquinone diacetate) 3c in 35% yield (830 mg).
- Linker phosphoramidites 4a, 4b, and 4c were dissolved in anhydrous acetonitrile to yield 0.1 M solutions. These solutions were installed on a spare base position of a PE/Biosystems 394 automated DNA synthesizer.
- a 1 ⁇ mole scale synthesis column containing either underivatized long chain alkylamine controlled pore glass (LCAA-CPG) or underivatized glycerol controlled pore glass (Gly-CPG) supports were installed along with the usual tetrazole, deblock, capping, oxidation, and wash reagents for DNA synthesis.
- LCAA-CPG underivatized long chain alkylamine controlled pore glass
- Gly-CPG underivatized glycerol controlled pore glass
- Example 5 Oligonucleotide synthesis of (Tp) 7 T using linker phosphoramidite reagents
- the octathymidine sequence, TTTTTTTT was prepared on an PE/Biosystems 394 DNA synthesizer using standard 1 ⁇ mole scale synthesis conditions except the first nucleoside was added using 0.1M linker phosphoramidite reagents 4a-c. Underivatized LCAA-CPG or Gly-CPG supports were used. The initial nucleoside loading was determined by quantitation of the amount of dimethoxytrityl cation released by the first linker phosphoramidite coupling cycle. Overall and average coupling efficiencies were estimated from the first and last trityl colours.
- the (Tp) T products prepared from reagents 4a-c on LCAA-CPG support were analyzed by MALDI-TOF mass specfrometry and each oligonucleotide had the expected mass (M+H, calc. 2371.57, observed 2373.0-2374.6). Therefore, the products produced from linker phosphoramidites were identical to the products prepared from conventional synthesis.
- the 17 base-long Ml 3 universal priming sequence was prepared on an PE/Biosystems 394 DNA synthesizer using standard 1 ⁇ ole scale synthesis' conditions except that the first nucleoside was added using 0.1 M linker phosphoramidite reagents 4a-c. Underivatized LCAA-CPG or Gly-CPG supports were used. The initial nucleoside loading was determined by quantitation of the amount of dimethoxytrityl cation released by the first linker phosphoramidite coupling cycle.
- the Ml 3 primer oligonucleotides prepared from reagents 4a-c on LCAA-CPG support were analyzed by MALDI-TOF mass spectrometry. In each case, the product gave the expected ' mass (M+H calc. 5228.41, observed 5225.7-5228.2).
- a control synthesis of the same sequence on a conventional prederivatized LCAA-CPG support was also found to give a similar result by MALDI-TOF mass spectrometry (M+H calc. 5228.41, observed 5229.3). Therefore, the products produced from linker phosphoramidites were identical to the products prepared from conventional synthesis.
- Example 7 Comparison of the products from linker phosphoramidite synthesis with products prepared from conventional pre-derivatized supports
- Samples of the six unpurified octathymidine products prepared in Example 5 and the six 17 base-long Ml 3 universal primer sequences prepared in Example 6 were analyzed by polyacrylamide gel electrophoresis using a 24% polyacrylamide/7M urea gel.
- Authentic octathymidine and Ml 3 universal primer sequences, synthesized on a conventional long chain alkylamine CPG support prederivatized with 5'- dimethoxytritylthymidine were run along side the above samples for comparison.
- octathymidine and Ml 3 universal primer sequences were synthesized with 3'- phosphate and not 3'-hydroxyl groups. These samples were also run alongside the above samples to identify any products which might contain unwanted 3 '-phosphate residues. The results show that the linlcer phosphoramidite products migrate similarly to the authentic products. The 3'-phosphorylated octathymidine marker migrated much faster than any of the linker phosphoramidite products. The 3'-phosphorylated 17 base-long sequence also migrated faster than the non-3 '-phosphoiylated products, but in this case the difference in mobility was much less.
- oligonucleotides were also analyzed by capillary gel electrophoresis (CGE) using a Hewlett-Packard 3-D CE instrument, 100 ⁇ m x 48.5 cm PVA coated capillary, HP replaceable oligonucleotide Polymer A, and HP oligonucleotide buffer.
- CGE analysis of a mixture of the Ml 3 universal primer sequence made with the 5'-DMT-T-3'-succinic acid phosphoramidite 4a and a 3'-phosphorylated oligonucleotide with the same sequence showed that the 3'-phosphorylated sequence migrates differently and is completely resolved from the products obtained from the linker phosphoramidites.
- An ABI 394 DNA synthesizer was configured for synthesis on a 1 ⁇ mole scale according to standard methods, except 0.1-0.15M solutions of linker phosphoramidite reagent 6 were installed on spare base positions 5-8. Synthesis columns containing underivatized long chain alkylamine controlled pore glass (LCAA-CPG) containing 102 ⁇ mol/g of amino groups were installed in place of prederivatfzed LCAA- CPG. The synthesizer was then programmed to prepare the sequences shown in Table 4. Aiter synthesis, the products were automatically cleaved from the support using NH 4 OH (60 min) and deprotected by heating (55°, 16 h). The crude products were quantitated by UV, coupling yields were estimated from trityl colors, and the sequence identity confirmed by MALDI-TOF mass spectrometry (Table 4).
- the 17 base long oligonucleotide sequence with a terminal 5'-phosphate group, 5'-p-dGTAAAACGACGGCCAGT, was prepared as in Example 9, but an additional coupling cycle was performed using reagent 6 (B T) to add an additional thymidine nucleoside and a 5'-phosphate to the end of the sequence.
- the sequence was then cleaved from the support and deprotected as in Example 9. During this step the terminal thymidine nucleoside was cleaved from the end of the 17-mer leaving a 5'- phosphate residue.
- the identical sequence was also synthesized using a conventional "Phosphate On” phosphoramidite reagent to add the terminal 5'-phosphate group.
- the two products had identical mobility on polyacrylamide gel electrophoresis.
- MACDI-TOF mass spectronictry was also used to confirm the correct and identical structure of the two oligonucleotides. Oligonucleotide phosphorylated with 6, M+H calc. 5308.4, obs. 5306.1; oligonucleotide phosphorylated with "Phosphate On” reagent, M+H calc. 5308.4, obs 5308-8.
- a solution of Phosphate On phosphoramidite was installed on position #5. All other reagents were installed as for conventional synthesis.
- a synthesis column containing 34 mg of 5'- dimethoxytritylthymidine attached to LCAA-CPG through a hydroquinone-O,O'-diacetic acid linlcer arm was used.
- the synthesizer was then programmed to prepare the four trinucleotides, d(pAAT), d(pCCT), d(pGGT), and d(pTTT) in one single tandem synthesis by entering the sequence: 5AA8GG8CC8TTT. After synthesis, the products were automatically cleaved from the support using NH 4 OH (60 min) and deprotected (16 h, 55°). Yield: 70.6 A 260 units.
- Linker phosphoramidite solutions of 6 corresponding to the A, G, C, and T nucleosides were respectively installed on positions #5, 6, 7, and 8 on the 394 DNA synthesizer.
- a synthesis column containing 34.1 mg of 1000 A low loading LCAA-CPG (10.7 ⁇ mol/g) derivatized with 5'-dimethoxytrityl-N4-benzoyl-2'-deoxycytidine was installed.
- the synthesizer was then programmed to prepared the following twenty trinucleotide-5 '-phosphates, each corresponding to a codon for one amino acid: d(pAAA), d(pAAG), d(pACT), d(pATG), d(pATC), d(pCAC), d(pCAT), d(pCCC), d(CGT), d(pCTC), d(GAA), d(pGAG), d(pGCT), d(pGGT), d(pGTT), d(pTAG), d(pTCT), d(pTGG), d(pTGC), d(pTTC) in one single tandem synthesis by entering the sequence: AA5AA6AC8AT6AT7CA7CA8CC7CG8CT7GA5GA6GC8GG8GT8TA6TC8TG6TG7- TTC.
- This Example illustrates the rapid rate with which the sulfonyldiethanol (SE) linker phosphoramidite is hydrolyzed.
- SE sulfonyldiethanol
- a 21 base long sequence dAGCTAGCTAGCTAGCTAGCTT was prepared using a trityl-off/manual ending.
- the initial loading of the linker phosphoramidite was determined by dimethoxytrityl analysis to be 20 ⁇ mol/g and the average coupling efficiency for the entire synthesis was 99.8%.
- a special automated ending procedure was then used to deliver portions of aqueous 28% ammonium hydroxide to a collection vial at one minute intervals for a period of 15 minutes. This synthesis produced the oligonucleotide sequence with a free 3'-OH terminus.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Saccharide Compounds (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2001291540A AU2001291540A1 (en) | 2000-09-08 | 2001-09-10 | Linker phosphoramidites for oligonucleotide synthesis |
EP01971543A EP1319013A2 (en) | 2000-09-08 | 2001-09-10 | Linker phosphoramidites for oligonucleotide synthesis |
JP2002525158A JP2004507565A (en) | 2000-09-08 | 2001-09-10 | Linker phosphoramidites for oligonucleotide synthesis |
CA002421266A CA2421266A1 (en) | 2000-09-08 | 2001-09-10 | Linker phosphoramidites for oligonucleotide synthesis |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US23130100P | 2000-09-08 | 2000-09-08 | |
US60/231,301 | 2000-09-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2002020537A2 true WO2002020537A2 (en) | 2002-03-14 |
WO2002020537A3 WO2002020537A3 (en) | 2002-09-06 |
Family
ID=22868634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CA2001/001263 WO2002020537A2 (en) | 2000-09-08 | 2001-09-10 | Linker phosphoramidites for oligonucleotide synthesis |
Country Status (6)
Country | Link |
---|---|
US (1) | US20030036066A1 (en) |
EP (1) | EP1319013A2 (en) |
JP (1) | JP2004507565A (en) |
AU (1) | AU2001291540A1 (en) |
CA (1) | CA2421266A1 (en) |
WO (1) | WO2002020537A2 (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002020541A2 (en) * | 2000-09-05 | 2002-03-14 | University Technologies International Inc. | Process for producing multiple oligonucleotides on a solid support |
WO2002026756A2 (en) * | 2000-09-25 | 2002-04-04 | Picoliter Inc. | Arrays of partially nonhybridizing oligonucleotides and preparation thereof using focused acoustic energy |
US9403141B2 (en) | 2013-08-05 | 2016-08-02 | Twist Bioscience Corporation | De novo synthesized gene libraries |
US9677067B2 (en) | 2015-02-04 | 2017-06-13 | Twist Bioscience Corporation | Compositions and methods for synthetic gene assembly |
US9895673B2 (en) | 2015-12-01 | 2018-02-20 | Twist Bioscience Corporation | Functionalized surfaces and preparation thereof |
US9981239B2 (en) | 2015-04-21 | 2018-05-29 | Twist Bioscience Corporation | Devices and methods for oligonucleic acid library synthesis |
US10053688B2 (en) | 2016-08-22 | 2018-08-21 | Twist Bioscience Corporation | De novo synthesized nucleic acid libraries |
US10417457B2 (en) | 2016-09-21 | 2019-09-17 | Twist Bioscience Corporation | Nucleic acid based data storage |
US10669304B2 (en) | 2015-02-04 | 2020-06-02 | Twist Bioscience Corporation | Methods and devices for de novo oligonucleic acid assembly |
US10696965B2 (en) | 2017-06-12 | 2020-06-30 | Twist Bioscience Corporation | Methods for seamless nucleic acid assembly |
US10844373B2 (en) | 2015-09-18 | 2020-11-24 | Twist Bioscience Corporation | Oligonucleic acid variant libraries and synthesis thereof |
US10894959B2 (en) | 2017-03-15 | 2021-01-19 | Twist Bioscience Corporation | Variant libraries of the immunological synapse and synthesis thereof |
US10894242B2 (en) | 2017-10-20 | 2021-01-19 | Twist Bioscience Corporation | Heated nanowells for polynucleotide synthesis |
US10907274B2 (en) | 2016-12-16 | 2021-02-02 | Twist Bioscience Corporation | Variant libraries of the immunological synapse and synthesis thereof |
US10936953B2 (en) | 2018-01-04 | 2021-03-02 | Twist Bioscience Corporation | DNA-based digital information storage with sidewall electrodes |
US11332738B2 (en) | 2019-06-21 | 2022-05-17 | Twist Bioscience Corporation | Barcode-based nucleic acid sequence assembly |
US11377676B2 (en) | 2017-06-12 | 2022-07-05 | Twist Bioscience Corporation | Methods for seamless nucleic acid assembly |
US11407837B2 (en) | 2017-09-11 | 2022-08-09 | Twist Bioscience Corporation | GPCR binding proteins and synthesis thereof |
US11492665B2 (en) | 2018-05-18 | 2022-11-08 | Twist Bioscience Corporation | Polynucleotides, reagents, and methods for nucleic acid hybridization |
US11492727B2 (en) | 2019-02-26 | 2022-11-08 | Twist Bioscience Corporation | Variant nucleic acid libraries for GLP1 receptor |
US11492728B2 (en) | 2019-02-26 | 2022-11-08 | Twist Bioscience Corporation | Variant nucleic acid libraries for antibody optimization |
US11512347B2 (en) | 2015-09-22 | 2022-11-29 | Twist Bioscience Corporation | Flexible substrates for nucleic acid synthesis |
US11550939B2 (en) | 2017-02-22 | 2023-01-10 | Twist Bioscience Corporation | Nucleic acid based data storage using enzymatic bioencryption |
US12091777B2 (en) | 2019-09-23 | 2024-09-17 | Twist Bioscience Corporation | Variant nucleic acid libraries for CRTH2 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8129517B1 (en) | 2006-05-23 | 2012-03-06 | Integrated Dna Technologies, Inc. | Labeled solid supports for organic synthesis |
US8084589B2 (en) * | 2007-08-31 | 2011-12-27 | University Of Massachusetts | Phosphoramidite nucleoside analogs |
DE102007044765A1 (en) * | 2007-09-19 | 2009-04-02 | Identif Gmbh | Process for the liquid phase synthesis of a polymer |
US20090088330A1 (en) * | 2007-09-28 | 2009-04-02 | Leproust Emily M | Methods And Kits For Producing Labeled Target Nucleic Acids For Use In Array Based Hybridization Applications |
US20110105417A1 (en) * | 2008-06-26 | 2011-05-05 | The Curators Of The University Of Missouri | Drug Conjugates |
US20140350235A1 (en) * | 2013-05-23 | 2014-11-27 | The Board Of Trustees Of The Leland Stanford Junior University | In situ oligonucleotide synthesis on a paramagnetic support |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992006103A1 (en) * | 1990-10-04 | 1992-04-16 | Imperial Chemical Industries Plc | Synthesis of oligonucleotides |
WO1997023497A1 (en) * | 1995-12-22 | 1997-07-03 | University Technologies International Inc. | Linker arm for solid support oligonucleotide synthesis and process for production thereof |
-
2001
- 2001-09-10 AU AU2001291540A patent/AU2001291540A1/en not_active Withdrawn
- 2001-09-10 EP EP01971543A patent/EP1319013A2/en not_active Withdrawn
- 2001-09-10 CA CA002421266A patent/CA2421266A1/en not_active Abandoned
- 2001-09-10 JP JP2002525158A patent/JP2004507565A/en not_active Withdrawn
- 2001-09-10 WO PCT/CA2001/001263 patent/WO2002020537A2/en not_active Application Discontinuation
- 2001-09-10 US US09/948,918 patent/US20030036066A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992006103A1 (en) * | 1990-10-04 | 1992-04-16 | Imperial Chemical Industries Plc | Synthesis of oligonucleotides |
WO1997023497A1 (en) * | 1995-12-22 | 1997-07-03 | University Technologies International Inc. | Linker arm for solid support oligonucleotide synthesis and process for production thereof |
Non-Patent Citations (2)
Title |
---|
HARDY P M ET AL: "REAGENTS FOR THE PREPARATION OF TWO OLIGONUCLEOTIDES PER SYNTHESIS" NUCLEIC ACIDS RESEARCH, OXFORD UNIVERSITY PRESS, SURREY, GB, vol. 22, no. 15, 1994, pages 2998-3004, XP002196437 ISSN: 0305-1048 * |
PON R T ET AL: "Multiple oligonucleotide synthesis in tandem on solid-phase supports for small and large scale synthesis" NUCLEOSIDES, NUCLEOTIDES AND NUCLEIC ACIDS, MARCEL DEKKER, ANN HARBOR, MI, US, vol. 20, no. 4-7, 2001, pages 985-989, XP002196438 ISSN: 1525-7770 * |
Cited By (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002020541A2 (en) * | 2000-09-05 | 2002-03-14 | University Technologies International Inc. | Process for producing multiple oligonucleotides on a solid support |
WO2002020541A3 (en) * | 2000-09-05 | 2002-08-22 | Univ Technologies Int | Process for producing multiple oligonucleotides on a solid support |
WO2002026756A2 (en) * | 2000-09-25 | 2002-04-04 | Picoliter Inc. | Arrays of partially nonhybridizing oligonucleotides and preparation thereof using focused acoustic energy |
WO2002026756A3 (en) * | 2000-09-25 | 2002-08-22 | Picoliter Inc | Arrays of partially nonhybridizing oligonucleotides and preparation thereof using focused acoustic energy |
US6806051B2 (en) | 2000-09-25 | 2004-10-19 | Picoliter Inc. | Arrays of partially nonhybridizing oligonucleotides and preparation thereof using focused acoustic energy |
US11452980B2 (en) | 2013-08-05 | 2022-09-27 | Twist Bioscience Corporation | De novo synthesized gene libraries |
US11559778B2 (en) | 2013-08-05 | 2023-01-24 | Twist Bioscience Corporation | De novo synthesized gene libraries |
US9555388B2 (en) | 2013-08-05 | 2017-01-31 | Twist Bioscience Corporation | De novo synthesized gene libraries |
US9403141B2 (en) | 2013-08-05 | 2016-08-02 | Twist Bioscience Corporation | De novo synthesized gene libraries |
US9833761B2 (en) | 2013-08-05 | 2017-12-05 | Twist Bioscience Corporation | De novo synthesized gene libraries |
US9839894B2 (en) | 2013-08-05 | 2017-12-12 | Twist Bioscience Corporation | De novo synthesized gene libraries |
US9889423B2 (en) | 2013-08-05 | 2018-02-13 | Twist Bioscience Corporation | De novo synthesized gene libraries |
US11185837B2 (en) | 2013-08-05 | 2021-11-30 | Twist Bioscience Corporation | De novo synthesized gene libraries |
US10639609B2 (en) | 2013-08-05 | 2020-05-05 | Twist Bioscience Corporation | De novo synthesized gene libraries |
US10632445B2 (en) | 2013-08-05 | 2020-04-28 | Twist Bioscience Corporation | De novo synthesized gene libraries |
US10272410B2 (en) | 2013-08-05 | 2019-04-30 | Twist Bioscience Corporation | De novo synthesized gene libraries |
US9409139B2 (en) | 2013-08-05 | 2016-08-09 | Twist Bioscience Corporation | De novo synthesized gene libraries |
US10384188B2 (en) | 2013-08-05 | 2019-08-20 | Twist Bioscience Corporation | De novo synthesized gene libraries |
US10773232B2 (en) | 2013-08-05 | 2020-09-15 | Twist Bioscience Corporation | De novo synthesized gene libraries |
US10583415B2 (en) | 2013-08-05 | 2020-03-10 | Twist Bioscience Corporation | De novo synthesized gene libraries |
US10618024B2 (en) | 2013-08-05 | 2020-04-14 | Twist Bioscience Corporation | De novo synthesized gene libraries |
US10669304B2 (en) | 2015-02-04 | 2020-06-02 | Twist Bioscience Corporation | Methods and devices for de novo oligonucleic acid assembly |
US11697668B2 (en) | 2015-02-04 | 2023-07-11 | Twist Bioscience Corporation | Methods and devices for de novo oligonucleic acid assembly |
US9677067B2 (en) | 2015-02-04 | 2017-06-13 | Twist Bioscience Corporation | Compositions and methods for synthetic gene assembly |
US11691118B2 (en) | 2015-04-21 | 2023-07-04 | Twist Bioscience Corporation | Devices and methods for oligonucleic acid library synthesis |
US9981239B2 (en) | 2015-04-21 | 2018-05-29 | Twist Bioscience Corporation | Devices and methods for oligonucleic acid library synthesis |
US10744477B2 (en) | 2015-04-21 | 2020-08-18 | Twist Bioscience Corporation | Devices and methods for oligonucleic acid library synthesis |
US10844373B2 (en) | 2015-09-18 | 2020-11-24 | Twist Bioscience Corporation | Oligonucleic acid variant libraries and synthesis thereof |
US11807956B2 (en) | 2015-09-18 | 2023-11-07 | Twist Bioscience Corporation | Oligonucleic acid variant libraries and synthesis thereof |
US11512347B2 (en) | 2015-09-22 | 2022-11-29 | Twist Bioscience Corporation | Flexible substrates for nucleic acid synthesis |
US9895673B2 (en) | 2015-12-01 | 2018-02-20 | Twist Bioscience Corporation | Functionalized surfaces and preparation thereof |
US10987648B2 (en) | 2015-12-01 | 2021-04-27 | Twist Bioscience Corporation | Functionalized surfaces and preparation thereof |
US10384189B2 (en) | 2015-12-01 | 2019-08-20 | Twist Bioscience Corporation | Functionalized surfaces and preparation thereof |
US10975372B2 (en) | 2016-08-22 | 2021-04-13 | Twist Bioscience Corporation | De novo synthesized nucleic acid libraries |
US10053688B2 (en) | 2016-08-22 | 2018-08-21 | Twist Bioscience Corporation | De novo synthesized nucleic acid libraries |
US12056264B2 (en) | 2016-09-21 | 2024-08-06 | Twist Bioscience Corporation | Nucleic acid based data storage |
US10754994B2 (en) | 2016-09-21 | 2020-08-25 | Twist Bioscience Corporation | Nucleic acid based data storage |
US11263354B2 (en) | 2016-09-21 | 2022-03-01 | Twist Bioscience Corporation | Nucleic acid based data storage |
US11562103B2 (en) | 2016-09-21 | 2023-01-24 | Twist Bioscience Corporation | Nucleic acid based data storage |
US10417457B2 (en) | 2016-09-21 | 2019-09-17 | Twist Bioscience Corporation | Nucleic acid based data storage |
US10907274B2 (en) | 2016-12-16 | 2021-02-02 | Twist Bioscience Corporation | Variant libraries of the immunological synapse and synthesis thereof |
US11550939B2 (en) | 2017-02-22 | 2023-01-10 | Twist Bioscience Corporation | Nucleic acid based data storage using enzymatic bioencryption |
US10894959B2 (en) | 2017-03-15 | 2021-01-19 | Twist Bioscience Corporation | Variant libraries of the immunological synapse and synthesis thereof |
US10696965B2 (en) | 2017-06-12 | 2020-06-30 | Twist Bioscience Corporation | Methods for seamless nucleic acid assembly |
US11377676B2 (en) | 2017-06-12 | 2022-07-05 | Twist Bioscience Corporation | Methods for seamless nucleic acid assembly |
US11332740B2 (en) | 2017-06-12 | 2022-05-17 | Twist Bioscience Corporation | Methods for seamless nucleic acid assembly |
US11407837B2 (en) | 2017-09-11 | 2022-08-09 | Twist Bioscience Corporation | GPCR binding proteins and synthesis thereof |
US11745159B2 (en) | 2017-10-20 | 2023-09-05 | Twist Bioscience Corporation | Heated nanowells for polynucleotide synthesis |
US10894242B2 (en) | 2017-10-20 | 2021-01-19 | Twist Bioscience Corporation | Heated nanowells for polynucleotide synthesis |
US10936953B2 (en) | 2018-01-04 | 2021-03-02 | Twist Bioscience Corporation | DNA-based digital information storage with sidewall electrodes |
US12086722B2 (en) | 2018-01-04 | 2024-09-10 | Twist Bioscience Corporation | DNA-based digital information storage with sidewall electrodes |
US11492665B2 (en) | 2018-05-18 | 2022-11-08 | Twist Bioscience Corporation | Polynucleotides, reagents, and methods for nucleic acid hybridization |
US11732294B2 (en) | 2018-05-18 | 2023-08-22 | Twist Bioscience Corporation | Polynucleotides, reagents, and methods for nucleic acid hybridization |
US11492728B2 (en) | 2019-02-26 | 2022-11-08 | Twist Bioscience Corporation | Variant nucleic acid libraries for antibody optimization |
US11492727B2 (en) | 2019-02-26 | 2022-11-08 | Twist Bioscience Corporation | Variant nucleic acid libraries for GLP1 receptor |
US11332738B2 (en) | 2019-06-21 | 2022-05-17 | Twist Bioscience Corporation | Barcode-based nucleic acid sequence assembly |
US12091777B2 (en) | 2019-09-23 | 2024-09-17 | Twist Bioscience Corporation | Variant nucleic acid libraries for CRTH2 |
Also Published As
Publication number | Publication date |
---|---|
EP1319013A2 (en) | 2003-06-18 |
JP2004507565A (en) | 2004-03-11 |
AU2001291540A1 (en) | 2002-03-22 |
CA2421266A1 (en) | 2002-03-14 |
WO2002020537A3 (en) | 2002-09-06 |
US20030036066A1 (en) | 2003-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1319013A2 (en) | Linker phosphoramidites for oligonucleotide synthesis | |
CA2627208C (en) | Polynucleotide containing a phosphate mimetic | |
US4959463A (en) | Intermediates | |
CA2011430C (en) | Method and reagent for sulfurization of organophosphorous compounds | |
JP3170241B2 (en) | Nucleotide reagents | |
EP0815114B1 (en) | Nucleic acid synthesis using photoremovable protecting groups | |
US20050027116A1 (en) | Solid phase synthesis | |
KR19990064332A (en) | Liquid phase synthesis method of oligonucleotide | |
WO2005014609A2 (en) | Method of producing a highly stereoregular phosphorus atom-modified nucleotide analogue | |
WO1992006103A1 (en) | Synthesis of oligonucleotides | |
EP1272501B1 (en) | Process for the preparation of phosphorothioate triesters | |
EP1319012A1 (en) | Process for producing multiple oligonucleotides on a solid support | |
US20030195351A1 (en) | Methods for the integrated synthesis and purification of oligonucleotides | |
US20020103365A1 (en) | Process for the synthesis of nucleic acids on a solid support and compounds which are useful in particular as solid supports in the said process | |
Caruthers et al. | Phosphoramidites as Synthons for Polynucleotide Synthesis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2421266 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002525158 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001971543 Country of ref document: EP Ref document number: 2001291540 Country of ref document: AU |
|
WWP | Wipo information: published in national office |
Ref document number: 2001971543 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2001971543 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2001291540 Country of ref document: AU |