WO2002002992A1 - Incinerateur de dechets et son procede de fonctionnement - Google Patents

Incinerateur de dechets et son procede de fonctionnement Download PDF

Info

Publication number
WO2002002992A1
WO2002002992A1 PCT/JP2001/005746 JP0105746W WO0202992A1 WO 2002002992 A1 WO2002002992 A1 WO 2002002992A1 JP 0105746 W JP0105746 W JP 0105746W WO 0202992 A1 WO0202992 A1 WO 0202992A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature distribution
temperature
waste
combustion chamber
gas temperature
Prior art date
Application number
PCT/JP2001/005746
Other languages
English (en)
French (fr)
Inventor
Minoru Suzuki
Hirohito Ishibashi
Masaaki Nishino
Kazuhito Harigae
Original Assignee
Nkk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000211240A external-priority patent/JP2002022133A/ja
Priority claimed from JP2000216315A external-priority patent/JP2002031314A/ja
Priority claimed from JP2000215308A external-priority patent/JP2002031310A/ja
Priority claimed from JP2000217055A external-priority patent/JP2002031320A/ja
Priority claimed from JP2000384582A external-priority patent/JP2002081628A/ja
Application filed by Nkk Corporation filed Critical Nkk Corporation
Priority to EP01947795A priority Critical patent/EP1304525A1/en
Publication of WO2002002992A1 publication Critical patent/WO2002002992A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J3/00Removing solid residues from passages or chambers beyond the fire, e.g. from flues by soot blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/14Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion
    • F23G5/16Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion in a separate combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/16Systems for controlling combustion using noise-sensitive detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2203/00Furnace arrangements
    • F23G2203/10Stoker grate furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/10Arrangement of sensing devices
    • F23G2207/101Arrangement of sensing devices for temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/10Arrangement of sensing devices
    • F23G2207/101Arrangement of sensing devices for temperature
    • F23G2207/1015Heat pattern monitoring of flames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/20Waste supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/30Oxidant supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/50Cooling fluid supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/16Controlling secondary air

Definitions

  • the present invention relates to a waste incinerator provided with a combustion chamber for incinerating waste such as municipal solid waste and an operation method thereof.
  • grate-type waste incinerators (hereinafter referred to as grate-type incinerators) are widely known.
  • Fig. 7 shows a cross-sectional side view of a representative example.
  • the grate-type incinerator 1 is composed of a hono ° 2, a dry stove 3, a combustion stove 4, a post-burn stall 5, a main combustion chamber 6, and a secondary combustion chamber 7.
  • an intermediate ceiling 8 is installed, and a main flue 9 and a sub flue 10 are provided between the main combustion chamber 6 and the secondary combustion chamber 7.
  • the municipal solid waste 1 1 put into the hopper 2 is sent to the drying strike 3 through the chute, dried by the air from below and the radiant heat in the furnace, and heated to ignite.
  • the municipal solid waste 1 1 that has been ignited and has started burning is sent to the combustion strike 4, where it is gasified by the combustion air sent from below and partly burned. Further, the unburned components are completely burned at the post-combustion strike force of 5.
  • the ash remaining after the combustion is taken out from the main ash chute 12. Combustion takes place in the main combustion chamber 6, and the flue gas is discharged separately to the main flue 9 and the secondary flue 10 due to the presence of the intermediate ceiling. Combustion exhaust gas passing through the main flue 9 contains almost no unburned components and about 10% oxygen.
  • the flue gas passing through the auxiliary flue 10 contains about 8% of unburned components. These combustion exhaust gases are mixed in the secondary combustion chamber 7, and secondary combustion is performed to completely burn unburned components.
  • the flue gas from the secondary combustion chamber 7 is sent to a waste heat boiler 14 after dust having a large particle size is removed in a dust removal chamber 13 and is subjected to heat exchange. Released to outside via Will be issued.
  • thermocouple with a protective tube to determine the combustion state inside the furnace, and the properties of the combustion gas inside the furnace are investigated by sampling the gas inside the furnace.
  • the contact-type measurement method using a thermocouple as the furnace temperature measurement method has problems such as durability of the thermocouple body or the thermocouple protection tube and measurement errors due to radiation.
  • measuring the gas temperature in the central part of the furnace requires a long probe, and it may be difficult to measure the temperature.
  • radiation temperature measurement using spectral characteristics such as flame is a non-contact type measurement method.
  • Force generally an observation window (for example, an infrared camera) is installed and can be seen from the observation window. Only the range can be measured, which is not appropriate in an environment where there is a lot of dust due to contamination or scattering of the measurement window.
  • An object of the present invention is to provide a waste incinerator capable of stabilizing the combustion state in the furnace and a method of operating the same.
  • the present invention provides a combustion chamber for burning waste, a plurality of sonic gas temperature measuring devices, an estimating means for estimating a temperature distribution in the combustion chamber, and a temperature distribution. And a control means for controlling the gas temperature distribution.
  • the plurality of sonic gas temperature measuring devices measure the gas temperature in the combustion chamber.
  • the estimating means estimates the temperature distribution in the combustion chamber from the measured gas temperature.
  • the comparing means compares the estimated temperature distribution with the set temperature.
  • the control unit is at least one selected from the group consisting of a plurality of primary air blowing devices, a plurality of secondary air blowing devices, a plurality of cooling fluid blowing devices, a waste supply unit, and a waste feed unit based on a comparison result.
  • the gas temperature distribution is controlled by adjusting one control element.
  • the comparison means and the control means are preferably as follows:
  • control element selected from the group consisting of a plurality of primary air blowing devices, a plurality of secondary air blowing devices, and a plurality of cooling fluid blowing devices;
  • Control means for controlling the gas temperature distribution by adjusting the at least one control element corresponding to the position where the degree difference has occurred.
  • the incinerator is a grate-type incinerator, and the combustion chamber may be composed of a main combustion chamber, or the combustion chamber may be composed of a main combustion chamber and a secondary combustion chamber.
  • the incinerator is flowing It may be an incinerator having a bed, wherein the combustion chamber of the above-mentioned 3 is made up of free ports on a fluidized bed of a fluidized bed.
  • the means for estimating the temperature distribution comprises means for estimating a three-dimensional temperature distribution in the combustion chamber.
  • the means for estimating the temperature distribution may be a means for estimating a temperature distribution in a combustion chamber cross-sectional direction or a means for estimating a temperature distribution in a combustion chamber longitudinal cross-section.
  • the present invention provides a combustion chamber for burning waste, a plurality of sonic gas temperature measuring devices, a means for estimating a temperature distribution in the combustion chamber, a block address recognition means, and each block.
  • the present invention provides a waste incinerator comprising: means for estimating a temperature distribution at an address; comparison means for comparing temperature distributions; and control means for controlling gas temperature.
  • a plurality of sonic gas temperature measuring devices measure the gas temperature in the combustion chamber. It is preferable that the gas temperature measuring device is provided at a plurality of positions in a length direction and a height direction of both side walls of the combustion chamber.
  • the estimating means estimates the temperature distribution in the combustion chamber from the measured gas temperature.
  • the estimating means preferably comprises a means for estimating the temperature distribution by computer tomography.
  • the means for recognizing and recognizing the block address recognizes the space in the combustion chamber as the address of a block consisting of a plurality of divided blocks.
  • the means for estimating the temperature distribution of each block address estimates the temperature distribution of each block address from the block address and the estimated temperature distribution.
  • the comparing means compares the estimated temperature distribution of each block address with the set temperature of each block address.
  • the control means controls the gas temperature distribution at each block address based on the comparison result.
  • the means for controlling the gas temperature distribution at the addresses of the blocks includes a plurality of primary air blowing devices, a plurality of secondary air blowing devices, a plurality of cooling fluid blowing devices, a waste supply device, and a waste feed device. It preferably comprises control means for controlling the gas temperature distribution by adjusting at least one control element selected from the group.
  • the control means corresponds to an address of each block for at least one control element selected from the group consisting of a plurality of primary air blowing devices, a plurality of secondary air blowing devices, and a plurality of cooling fluid blowing devices. More preferably, it comprises a control means for controlling the gas temperature distribution by adjusting the at least one control element.
  • the present invention provides a method for operating a waste incinerator comprising a step of measuring a gas temperature, a step of estimating a temperature distribution, a comparing step, and a step of controlling the gas temperature. In the process of measuring gas temperature, the gas temperature in the combustion chamber for burning waste is measured using a plurality of sonic gas temperature measuring devices.
  • the temperature distribution in the combustion chamber is estimated from the measured gas temperature.
  • the comparing step compares the estimated temperature distribution with the set temperature.
  • the step of controlling the gas temperature is performed based on the comparison result, based on the group consisting of a plurality of primary air blowing devices, a plurality of secondary air blowing devices, a plurality of cooling fluid blowing devices, a waste supply means, and a waste sending means.
  • the gas temperature distribution is controlled by adjusting at least one selected control element.
  • the comparing step and the controlling step are as follows:
  • the comparing step includes comparing the estimated temperature distribution with a set temperature range, and specifying a temperature range from the set temperature range and a position where the temperature range has occurred.
  • the control step generates a temperature range for at least one control element selected from the group consisting of a plurality of primary air blowing devices, a plurality of secondary air blowing devices, and a plurality of cooling fluid blowing devices. Controlling the gas temperature distribution by adjusting the at least one control element corresponding to the set position.
  • the step of estimating the temperature distribution comprises the step of estimating a three-dimensional temperature distribution in the combustion chamber.
  • the estimating step may estimate a temperature distribution in a horizontal section in the combustion chamber, or may estimate a temperature distribution in a vertical section in the combustion chamber.
  • the present invention provides a process of measuring a gas temperature, a process of estimating a temperature distribution, a process of recognizing a block address, a process of estimating a temperature distribution, a temperature comparing process, and controlling a gas temperature distribution.
  • a method for operating a waste incinerator comprising the steps of:
  • the process of measuring gas temperature consists of measuring the gas temperature in the combustion chamber where the waste is burned using a plurality of sonic gas thermometers. It is preferable that a plurality of the sonic gas temperature measuring devices are provided in the length direction and the height direction of both side walls of the combustion chamber.
  • the step of estimating the temperature distribution consists of estimating the temperature distribution in the combustion chamber from the measured gas temperature. It is preferable to estimate the temperature distribution by computer tomography. In the block address recognition step, the space in the combustion chamber is divided One
  • the step of estimating the temperature distribution includes estimating the temperature distribution of each block address from the block address and the estimated temperature distribution.
  • the temperature comparison step consists of comparing the estimated temperature distribution of each block address with the set temperature of each block address.
  • the step of controlling the gas temperature distribution comprises controlling the gas temperature distribution at each block address based on the comparison result.
  • the step of controlling the gas temperature distribution at the addresses of the blocks includes a plurality of primary air blowing devices, a plurality of secondary air blowing devices, a plurality of cooling fluid blowing devices, a waste supply device, and a waste feeding device.
  • the method comprises controlling the gas temperature distribution by adjusting at least one control element selected from the group consisting of the means.
  • the control step corresponds to an address of each block with respect to at least one control element selected from the group consisting of a plurality of primary air blowing devices, a plurality of secondary air blowing devices, and a plurality of cooling fluid blowing devices. More preferably, the method comprises controlling the gas temperature distribution by adjusting the at least one control element. Further, another object of the present invention is to provide a waste incinerator capable of stably suppressing the concentration of dioxins at an outlet of a waste heat poiler to a remarkably low value, and a method of operating the same.
  • the present invention provides a combustion chamber for burning waste, a waste heat boiler connected to the combustion chamber, and a plurality of sonic gas temperatures for measuring a gas temperature in the waste heat poiler.
  • a measuring device a unit for estimating a gas temperature distribution in the waste heat poiler from the measured gas temperature, a unit for comparing the estimated temperature distribution with the set temperature distribution, and based on the comparison result, Means for controlling a temperature distribution in a waste heat boiler; and a waste incinerator having:
  • the control means is preferably a control device for avoiding stagnation or standing in a temperature range of 300 to 400 ° C. generated in a flow of exhaust gas passing through the waste heat boiler.
  • the means for controlling the gas temperature distribution at each block address is selected from the group consisting of soot blow, hammering, air blowing and circulating gas blowing in a waste heat boiler. Further, it is preferable that a control device is provided for controlling at least one of the blocks to control the gas temperature at the address of each block.
  • the means for controlling the gas temperature distribution at the addresses of the blocks is selected from the group consisting of the primary air volume, the secondary air volume, the waste feed rate, the waste supply amount, and the cooling fluid amount of the waste incinerator. It is preferable that the control device be configured to control at least one of the blocks to control the gas temperature at the address of each block. Further, the present invention provides a combustion chamber for burning waste, a waste heat boiler connected to the combustion chamber, a plurality of sonic gas temperature measuring devices, a means for estimating a gas temperature distribution, Provided is a waste incinerator comprising: a recognition unit; a unit for estimating a temperature distribution at an address of each block; a temperature comparing unit; and a control unit for controlling a gas temperature distribution.
  • the plurality of sonic gas temperature measuring devices measure the gas temperature in the waste heat poirer.
  • the means for estimating the gas temperature distribution estimates the gas temperature distribution in the waste heat poirer from the measured gas temperature.
  • the recognizing means recognizes the space in the waste heat poiler as an address of a block including a plurality of blocks.
  • the estimating means estimates the temperature distribution of the address of each block from the address of the block and the estimated temperature distribution.
  • the comparing means compares the estimated temperature distribution of the address of each block with the set temperature of the address of each block.
  • the control means controls the gas temperature distribution at the address of each block based on the comparison result.
  • the present invention provides a method for operating a waste incinerator comprising a step of measuring a gas temperature, a step of estimating a gas temperature distribution, a step of comparing the temperature distribution, and a step of controlling the temperature distribution.
  • the gas temperature in the waste heat boiler connected to the combustion chamber for burning the waste is measured using a plurality of sonic gas temperature measuring devices.
  • the estimating step estimates a gas temperature distribution in the waste heat poirer from the measured gas temperature.
  • the comparing step compares the estimated temperature distribution with the set temperature distribution.
  • the control step controls the temperature distribution in the waste heat boiler based on the comparison result.
  • the step of controlling the temperature distribution occurs in the flow of exhaust gas passing through the waste heat boiler. It is preferable that the control be performed to avoid stagnation or standing in a temperature range of 300 to 400 ° C.
  • the step of controlling the temperature distribution includes controlling at least one selected from the group consisting of soot processing, hammering, air blowing, and circulating gas blowing in the waste heat boiler to control the gas temperature at the address of each block. It preferably comprises:
  • the step of controlling the temperature distribution comprises adjusting at least one selected from the group consisting of a primary air amount, a secondary air amount, a waste feed 3 ⁇ 43 ⁇ 4, a waste supply amount and a cooling fluid amount of the waste incinerator. It may consist of controlling the gas temperature at the address of each block. Furthermore, the present invention provides a gas temperature measurement step, a gas temperature distribution estimation step, a block address recognition step, a temperature distribution estimation step for each block address, a temperature comparison step, and a gas temperature distribution control step. To provide a method for operating a waste incinerator.
  • the gas temperature in the waste heat poirer connected to the combustion chamber for burning the waste is measured using a plurality of sonic gas temperature measuring devices.
  • the gas temperature distribution estimating step estimates a gas temperature distribution in the waste heat boiler from the measured gas temperature.
  • the recognition step recognizes a space in the waste heat poiler as an address of a block including a plurality of blocks.
  • the temperature distribution of each block address is estimated from the block address and the estimated temperature distribution.
  • the estimated temperature distribution of the address of each block is compared with the set temperature of the address of each block.
  • the control step controls the gas temperature distribution at the address of each block based on the comparison result.
  • FIG. 1 is a perspective view of a waste incinerator according to the first embodiment.
  • FIG. 2 is a diagram showing a control system related to the waste incinerator according to the first embodiment.
  • FIG. 3 is a schematic diagram illustrating an example of a temperature distribution in a block in a cross-sectional direction (plane direction) of the waste incinerator according to the first embodiment.
  • FIG. 4 is a schematic diagram showing an example of the temperature distribution of the block in the longitudinal section (height direction) shown in FIG.
  • FIG. 5 is a perspective view of another waste incinerator according to the first embodiment.
  • FIG. 6 is a partially cutaway side view showing an example of the fluidized bed furnace according to the first embodiment.
  • FIG. 7 is a diagram showing a method for controlling the combustion temperature of a conventional refuse incinerator.
  • FIG. 8 is a schematic perspective view showing a waste heat poiler according to the second embodiment.
  • FIG. 9 is a schematic diagram illustrating a temperature distribution at a divided block address relating to the waste heat poirer according to the second embodiment.
  • FIG. 10 is a diagram illustrating a control system related to the waste heat poirer according to the second embodiment.
  • FIG. 11 is a schematic side sectional view showing a grate-type waste incinerator according to the third embodiment.
  • FIG. 12 is a schematic sectional side view showing a single-strike waste incinerator according to the fourth embodiment.
  • FIG. 13 is a schematic configuration diagram of a single-strike waste incineration according to the fourth embodiment.
  • FIG. 14 is a schematic configuration diagram of piping according to the fourth embodiment as viewed from above.
  • FIG. 15 is a schematic configuration diagram of piping according to the fourth embodiment as viewed from above.
  • FIG. 16 is a schematic cross-sectional side view showing a stoichiometric waste incinerator according to the fifth embodiment.
  • FIG. 17 is a diagram showing a configuration in Embodiment 5 in which a radiator is provided on a part of the furnace wall.
  • FIG. 18 is a diagram illustrating a configuration and a heating control method when an electric heater is used as a heating unit in the fifth embodiment.
  • FIG. 19 is a diagram showing a configuration and a heating control method in the case where the combustion exhaust gas is used in the fifth embodiment.
  • FIG. 20 is a diagram showing a configuration and a heating control method in Embodiment 5 in which an electric heater is incorporated in a heat-resistant brick.
  • FIG. 21 is a diagram showing a configuration and a heating control method in the case where the flue gas is introduced into the space provided inside the heat-resistant brick in the fifth embodiment.
  • FIG. 22 is a diagram showing a configuration and a cooling control method in the case where an air cooling device is provided as a cooling means in the fifth embodiment.
  • FIG. 23 is a diagram showing a means in Embodiment 5 for preventing fly ash from melting and solidifying on the radiator surface layer to reduce the efficiency of radiant heating without using a cooling means.
  • the combustion chamber preferably the combustion chamber is provided with a grate and comprises a main combustion chamber and a secondary combustion chamber, and the space in the combustion chamber, the main combustion chamber and the ⁇ or secondary combustion chamber is
  • the sonic gas temperature measuring device that is divided into multiple blocks and input as block addresses and measures the temperature distribution in those rooms, and the data of the gas temperature distribution by the measuring device are combined to obtain the gas temperature at each block address. Based on the distribution data, the temperatures in the high and low temperature ranges of the combustion chamber, main combustion chamber and / or secondary combustion chamber are calculated and compared with the set temperature in the reference temperature range.
  • the combustion chamber Main combustion chamber
  • the actual temperature distribution due to the incineration of municipal solid waste in each part of the ⁇ ⁇ or secondary combustion chamber can be accurately grasped as the gas temperature distribution by the block address, and the temperature in the temperature area of the block address is set to the reference temperature area.
  • the temperature range of the block address is treated as an abnormal state, and the above operation amount is adjusted to make the temperature of the temperature range of the block address normal.
  • a free board is provided on a fluidized bed of a combustion chamber force fluidized bed, and a sonic gas temperature measuring device and a control device are provided on the free board, and the main body is provided with the fire grid.
  • the operation amount is adjusted in order to normalize the temperature in the temperature range of the block address in the freeboard.
  • FIG. 1 is a # view of a waste incinerator according to the first embodiment.
  • the grate-type incinerator 2 1 is equipped with a hood 22 °,
  • the system consists of a single combustion chamber 24, a post-combustion chamber 25, a main combustion chamber 26, and a secondary combustion chamber 27.
  • an intermediate ceiling 28 is provided, and a main flue 29 and a sub-flue 30 are provided between the main combustion chamber 26 and the secondary combustion chamber 27.
  • the main combustion chamber 26 is provided with a sonic gas temperature measuring device (hereinafter referred to as a sonic measuring device) 31 and a control device 32.
  • a sonic gas temperature measuring device hereinafter referred to as a sonic measuring device
  • the space in the main combustion chamber 26 is divided into a plurality of blocks and input to the control device 32 as block addresses.
  • the gas temperature in the main combustion chamber 26 is continuously measured by the sonic measuring device 31.
  • the data of the gas temperature distribution based on the measured temperature values is combined by the control device 32 to obtain the gas temperature distribution data (three-dimensional data) at each block address.
  • the controller 32 calculates the temperature of the gas temperature distribution at each block address in the main combustion chamber 26 by comparing the temperatures in the high and low temperature ranges with the temperature set values in the reference temperature range, and based on that, calculates the primary air Volume, secondary air volume, refuse feed speed, and the amount of operation of the cooling fluid volume based on the water spray volume are adjusted in one or more combinations, and the temperature in the high or low temperature range due to the block address deviating from the temperature set value in the reference temperature range Is controlled so that it becomes the temperature set value in the reference temperature range.
  • Gas temperature measurement using sound waves is based on the fact that the speed c of sound traveling through a gas is expressed as a function of the temperature T shown below.
  • a is a constant determined by the gas composition and the like.
  • the temperature sensor comprises a sound wave transmitter and a sound wave receiver. If a sound wave transmitter and a sound wave receiver are installed at a known distance and the sound wave emitted from one sound wave transmitter is received by the receiver and the propagation time is measured, the sound wave between the sound wave transmitter and the sound wave receiver is determined. Gas temperature can be measured. A temperature distribution can be obtained by installing multiple temperature sensors in the measurement unit, measuring the propagation times of multiple paths, and processing the data using the Computing-Tomography method (CT method). In the CT method, the measurement part is divided into several elements, and the temperature inside these elements is assumed to be constant, and simultaneous equations are created for one path. A simultaneous equation is created for multiple paths, and the temperature of each element is determined by solving the equation.
  • the sonic measurement device 31 is composed of a temperature sensor 33, a signal processing device 34, and a CT processing device 35.
  • the temperature sensor 33 is composed of a speaker 36, a microphone 37 and a horn (not shown).
  • the plurality of temperature sensors 33 are mounted on both walls of the main combustion chamber 26 in a grid pattern.
  • the tessellation was performed by measuring the temperature distribution in the cross section orthogonal to the flow direction of the municipal solid waste passing through the main combustion chamber 26, and the temperature distribution in the vertical cross section in the flow direction of the municipal solid waste. By combining them with the control device 32, the actual temperature distribution of each part due to the incineration of municipal solid waste can be accurately grasped as a three-dimensional gas temperature distribution at the block address.
  • the temperature range of the block address When the temperature of the temperature range of the block address becomes higher or lower than the temperature set value of the reference temperature range, the temperature range of the block address is treated as abnormal, and the temperature of the temperature range of the block address is regarded as abnormal. Perform temperature control to make it normal.
  • the number and mounting position of the temperature sensors 33 are selected and determined according to the shape and size of the target main combustion chamber 26 and secondary combustion chamber 27.
  • the temperature measured value by each temperature sensor 33 is processed by the signal processing device 34, and the CT processing device 35 displays the temperature distribution in the vertical and horizontal cross section of the space inside the main combustion chamber 26.
  • the data of the temperature distribution by the CT processing unit 35 is input to the control unit 32, where the data of the temperature distribution of the vertical and horizontal cross sections are combined to obtain the data of the ⁇ -dimensional temperature distribution, and the data in the main combustion chamber 26 This is grasped as a three-dimensional temperature distribution by the block address of each part.
  • the temperature set values of the main combustion chamber on the high temperature range side and the low temperature range side are input in advance, and the measured temperature of the block address temperature range is set in the reference temperature range. If the calculated temperature is compared with the temperature set value for the block and the temperature set value for the high-temperature area is exceeded or the temperature set value for the low-temperature area is not reached, the primary air volume and secondary
  • the most suitable control pattern is selected from one or more of the air flow rate, waste feed rate (including waste supply rate), and cooling fluid flow rate. Depending on the control pattern, the high or low temperature range of the main combustion chamber is selected. The temperature is controlled to normalize the temperature.
  • the temperature force S is normalized by the temperature range of the block address in the main combustion chamber 26, and as a result, the combustion gas temperature in the main combustion chamber 26 is stabilized.
  • Combustion gas temperature in main combustion chamber 26 When is stabilized, it is easy to stabilize the temperature of the combustion gas in the secondary combustion chamber 27 connected to the main combustion chamber 26.
  • the flue gas passing through the main flue 29 contains almost no unburned components, and the flue gas passing through the sub-flue 26 contains non-combustible components unevenly.
  • the combustion gas passing through the auxiliary flue 26 according to the present invention is stabilized by the temperature of the temperature range of the block address by each part in the main combustion chamber 26, the combustion gas temperature is stabilized, and the combustion exhaust gas is unburned. Since these components are uniformly contained, when these combustion exhaust gases are mixed in the secondary combustion chamber 7, unburned components can be completely burned by secondary combustion.
  • the flue gas from the secondary combustion chamber 27 is sent to a waste heat boiler 44 after dust having a large particle size is removed in a dust removal chamber 43, where it is subjected to heat exchange. Released to the outside via
  • FIG. 2 is a diagram showing a control system related to the waste incinerator according to the first embodiment.
  • FIG. 3 is a schematic diagram illustrating an example of a temperature distribution of a block in a cross-sectional direction (plane direction) of the waste incinerator according to the first embodiment.
  • FIG. 4 is a schematic diagram showing an example of the temperature distribution of the block in the longitudinal section (height direction) shown in FIG. The blocks are shown with a space between them for clarity.
  • a plurality of temperature sensors 33 are mounted on both walls in a grid pattern in the main combustion chamber 26 as shown in FIG. Are continuously input to the signal processing device 34.
  • the signal processing device 34 processes the temperature measured by each temperature sensor 33, and the CT processing device 35 images the temperature distribution in the vertical and horizontal cross sections of the space inside the main combustion chamber 26.
  • the data of the temperature distribution imaged by the CT processing device 35 is input to the control device 32.
  • the control device 32 forms a three-dimensional temperature distribution in the temperature range of the block address by combining the temperature distributions in the vertical and horizontal sections.
  • the block address is treated as a three-dimensional temperature range by the axes A and B by the plane and the height axis C with respect to the plane axes A and B in the coordinates by the image. Can be.
  • the starting address of this block address is determined by the axis ABC, and the address is specified.
  • the block addresses where the temperature in the low-temperature region occurs are captured as A1B1 C1, A2B1C1, A5B1CL A6B1C1, A2B2Cl, A6B2Cl, AlB2C2, and A6B2 C2.
  • a block address having a high temperature can be similarly detected.
  • a thin pattern at the block address indicates a low temperature range, a dark pattern indicates a high temperature range, and no pattern indicates a normal temperature range.
  • the temperature range of each block address is compared with two reference temperature set values for each block, and when the temperature exceeds the temperature set value on the high temperature range side, the primary air is determined by the location where the block address is formed.
  • the control pattern is selected from at least one of the following depending on the amount of air, the amount of secondary air, the feed rate of the refuse on the grate, the amount of water spray, and the amount of refuse supplied, and based on that, the temperature control is performed to normalize. Done. Since the temperature range of each block address constituting the space in the main combustion chamber 26 is restored to normal, the combustion gas temperature in the main combustion chamber is stabilized as a result.
  • the control pattern is selected from one or more types based on the amount of primary air, the amount of secondary air, the feed rate of refuse on the grate, the amount of water spray, and the amount of refuse supplied.In general, the control pattern in the main combustion chamber 26
  • the control pattern for the block address corresponding to the spatial part is determined based on experience. If the temperature in the temperature range at the block address exceeds the temperature set value on the high temperature range side, the temperature is controlled by operating the control valve of the manipulated variable corresponding to the selected control pattern. If restoration cannot be performed by the selected control pattern, the control pattern is changed one after another so that the temperature becomes normal.
  • municipal solid waste 1 1 The control of the combustion gas temperature by the main combustion chamber 26 during continuous incineration will be described in detail.
  • the municipal solid waste 1 1 put into the hopper 2 2 is sent through a chute to the drying station 23, where it is dried by the preheated air (primary air) from below and the radiant heat in the furnace, and heated to ignite. I do.
  • the refuse 11 that has ignited and started burning is sent to a combustion strike 24, where it is gasified by combustion air sent from below, and partly burns. Further, the unburned components are completely burned by the post-combustion strike force of 25.
  • the ash remaining after the combustion is taken out from the main ash chute 12.
  • Combustion is performed in the main combustion chamber 26, and the flue gas is discharged separately to the main flue 29 and the secondary flue 30 due to the presence of the intermediate ceiling 28.
  • These combustion exhaust gases are mixed in the secondary combustion chamber 27, and secondary combustion is performed to completely burn unburned components.
  • the flue gas from the secondary combustion chamber 27 is removed from the dust removal chamber 43 by removing large-diameter dust, sent to the waste heat steam generator 44, heat exchanged, and then passed through an exhaust gas treatment device, etc. It is released to the outside as exhaust gas.
  • the main combustion chamber 26 is provided with a sonic measuring device 31 and a control device 32 for continuously measuring the gas temperature distribution in the room, and the space inside the main combustion chamber 26 is divided into a plurality of blocks. It is divided and input to the control device 32 as a block address.
  • the control device 32 combines the gas temperature distribution data from the temperature measurement values measured by the sonic measuring device 31 in the main combustion chamber 26 as three-dimensional gas temperature distribution data in the temperature region at the block address. Then, the temperature in the temperature range of the block address is compared with the temperature set value in the high temperature range or the low temperature range (reference temperature range).
  • the temperature set value on the high temperature range side is 1000 ° C
  • the temperature set value on the low temperature range side is 700 ° C.
  • block addresses AlB l Cl, A2B l Cl, A5B l Cl, A6 B lCl, A2B2C1, A6B2Cl, AlB2C2 A6B2C2 generate temperatures below the low temperature setting. are doing.
  • the temperature in the temperature range of these block addresses is immediately detected by the controller 32.
  • the operation amount of the waste supply amount 38, the waste feed speed on the grate 39, the water spray amount 40, the secondary air amount 41, and the primary air amount 42 A control pattern based on the primary air amount 42 and the water spray amount 40 is selected.
  • the regulating valves 42a and 40a are adjusted. Is adjusted.
  • Reference numerals 38a, 39a, and 41a are control valves corresponding to the amount of waste supply and the amount of waste feed 3 ⁇ 43 ⁇ 439, and the amount of secondary air flow 41.
  • the primary air volume 4 2 is supplied with air preheated by a steam-type air preheater from below the drying stoichiometric power 23 to burn municipal solid waste 1 1. Therefore, in order to normalize the temperature of the block address where the low-temperature region has occurred, the regulating valve 42 a is opened, and a large amount of primary air is blown from below the dry strut 23.
  • the water spray amount supply unit 41 cools by water spray when the combustion gas temperature rises due to the mixing of plastics with a high calorific value at the combustion stove force 24 etc. Valve 40a is closed. After adjusting the adjusting valve 42a and the adjusting valve 40a, measure and confirm the temperature in the temperature range of those block addresses.
  • the temperature range at the block address due to the upper part of the drying stalling force 2.3 was low due to the generation of a large amount of water vapor, according to the sonic measurement device 31, even if a large amount of water vapor was generated, Accurate measurement without being affected. Therefore, the above-mentioned measures can be taken promptly.
  • the temperature of the temperature area at the block address can be measured by the acoustic wave measuring device 31, so that a control pattern suitable for that is selected. It can be restored and adjusted to normal by adjusting the control valve.
  • the main flue 29 in the secondary combustion chamber 27 Mixing with the combustion exhaust gas sent from the fuel cell can be performed smoothly, and the unburned portion of the combustion exhaust gas can be completely burned in the secondary combustion chamber 27. Therefore, the temperature at the exhaust gas outlet of the secondary combustion chamber 27 is reliably controlled at 850 ° C to 950 ° C, and stable exhaust gas temperature control with little variation can be performed. CO and NOX concentrations can be significantly reduced below the specified levels.
  • the flue gas from the secondary combustion chamber 27 is sent to the waste heat boiler 44 after large-size dust is removed in the dust removal chamber 43 and passed through an exhaust gas treatment device after heat exchange. And released to the outside.
  • the temperature control power S of the combustion gas by the main combustion chamber 26 can be accurately performed for each temperature range of the block address, so that the exhaust gas temperature in the secondary combustion chamber can be controlled. Stable control is possible. Therefore, both the concentrations of C ⁇ and NOX in the exhaust gas passing through the exhaust gas outlet of the secondary combustion chamber can be stabilized below the specified values.
  • FIG. 5 is a perspective view of another waste incinerator according to the first embodiment.
  • FIG. 5 parts common to FIGS. 1 to 4 are denoted by the same reference numerals, a part of the description is omitted, and in FIG. 5, the grate-type incinerator 3.
  • an intermediate ceiling 28 is provided, and a main flue 29 and a sub-flue 30 are provided between the main combustion chamber 26 and the secondary combustion chamber 27.
  • the sonic measuring device 31 and the control device 32 are installed in the secondary combustion chamber 27 described above.
  • the space in the secondary combustion chamber 27 is divided into a plurality of blocks and input to the control device 32 as block addresses.
  • the gas temperature in the secondary combustion chamber 27 is continuously measured by the sonic measurement device 31.
  • the data of the gas temperature distribution based on the measured temperature values are combined by the control device 32 to become the data (three-dimensional data) of the gas temperature distribution at each block address.
  • the controller 32 calculates the temperature of the gas temperature distribution at each block address in the secondary combustion chamber 27 by comparing the temperature in the high temperature range and the low temperature range with the temperature set value in the reference temperature range. Based on the primary air amount, secondary air amount, refuse feed rate, and cooling fluid amount manipulated by the water spray amount, adjust the amount of operation based on one or more combinations based on the block address and deviate from the reference temperature range. The temperature of the area is controlled so that it becomes the temperature set value of the reference temperature area.
  • the sonic measuring device 31 is composed of a temperature sensor 13, a signal processing device 34, and a CT processing device 35. Temperature sensor 1 3 3 is speaker 36, microphone 3 7 and horn (Fig. (Not shown) Force is composed.
  • the signals of the measured values from the plurality of temperature sensors 33 mounted on both walls in the secondary combustion chamber 27 in a grid pattern are continuously input to the signal processing device 34. It is.
  • the signal processor 34 processes the measured value of each temperature sensor 13, and the CT processor 35 images the temperature distribution of the vertical and horizontal sections of the space inside the secondary combustion chamber 27.
  • the temperature distribution data imaged by the CT processing device 35 is input to the control device 32.
  • the control device 32 combines the temperature distributions in the vertical and horizontal cross sections and regards the temperature distribution as a three-dimensional temperature distribution in the temperature range of the block address.
  • the temperature set values of the high temperature range and the low temperature range by the secondary combustion chamber 27 are input in advance, and the measured temperature range of the block address is set. If the temperature is compared with the temperature set value in the reference temperature range and exceeds the temperature set value in the high temperature range or is less than the temperature set value in the low temperature range, the primary air for the block address is The most suitable control pattern is selected from at least one of the following depending on the amount, secondary air amount, waste feed rate (including waste supply amount), and cooling fluid amount, and the control pattern determines the high temperature range of the main combustion chamber. Alternatively, temperature control is performed to normalize the temperature in the low temperature range.
  • the temperature in the temperature range of the block address by each part in the secondary combustion chamber 27 is normalized, and as a result, the temperature of the combustion gas in the secondary combustion chamber 27 can be stabilized.
  • Both CO and NOX in the flue gas passing through the flue gas outlet of the combustion chamber can be stabilized below the specified levels.
  • Figures 1 to 5 have described in detail the case where a sonic gas temperature measuring device for measuring gas temperature distribution is installed in the main combustion chamber or secondary combustion chamber of a grate-type incinerator. The same effect can be obtained when an acoustic gas temperature measuring device that measures the gas temperature distribution is provided in both the chamber and the secondary combustion chamber.
  • the case where the temperature distribution in the furnace is measured or controlled in detail has been described.
  • a microphone may be used. It is only necessary to dispose one pair of temperature sensors with speed and speed, and the number or arrangement of temperature sensors can be set individually according to the furnace shape. Needless to say.
  • FIG. 6 is a partially cutaway side view showing an example of the fluidized bed furnace according to the first embodiment.
  • the fluidized bed furnace 45 has an incinerator 46.
  • the incinerator 46 has a free port (combustion chamber) 47 at the top.
  • a sound wave type measuring device 31 and a control device 32 are installed on the side surface of the free port 47.
  • the space in the secondary combustion chamber 27 is divided into a plurality of blocks and input to the control device 32 as a block address.
  • the gas temperature in the free board 47 ' is continuously measured by the sonic measuring device 31.
  • the data of the gas temperature distribution based on the measured temperature values is combined by the control device 32 to obtain three-dimensional gas temperature distribution data based on the temperature range of each block address.
  • the temperature setpoints of the high temperature range and the low temperature range by the free port 47 are input in advance, and the measured temperature in the block at the block address is compared with the temperature setpoint in the reference temperature range. If the calculated value exceeds the temperature set value on the high-temperature area side or is less than the temperature set value on the low-temperature area side, the primary air volume, secondary air volume, and waste feed speed for the block address.
  • the most suitable control pattern is selected from one or more types depending on the operation amount of the cooling fluid (including the amount of waste supply). Temperature is controlled.
  • the sonic measurement device 31 is composed of a temperature sensor 33, a signal processing device 34, and a CT processing device 35.
  • the temperature sensor 133 is composed of a speaker, a microphone and a horn as described above.
  • the signals of the measurement values obtained by the plurality of temperature sensors 133 mounted in a grid pattern on both walls in the free port 47 are continuously input to the signal processing device 34.
  • the signal processor 34 processes the measured values from the temperature sensors 33, and the CT processor 35 images the temperature distribution in the vertical and horizontal sections of the space inside the secondary combustion chamber 27.
  • the data of the temperature distribution imaged by the CT processing device 35 is input to the control device 32.
  • the control device 32 combines the temperature distributions in the vertical and horizontal sections and captures the data as a three-dimensional temperature distribution in the temperature range of the block address.
  • the temperature set values of the high temperature range and the low temperature range by the secondary combustion chamber 27 are input in advance, and the measured temperature range of the block address is set. If the temperature is compared with the temperature set value in the reference temperature range and exceeds the temperature set value in the high temperature range or is less than the temperature set value in the low temperature range, the primary air for the block address is The most suitable control pattern is selected from at least one of the following depending on the amount, secondary air amount, waste feed rate (including waste supply amount), and cooling fluid amount, and the control pattern determines the high temperature range of the main combustion chamber. Alternatively, the temperature is controlled in order to normalize the temperature in the low temperature range.
  • the temperature of the temperature range of the block address by each part in the secondary combustion chamber 27 is normalized, and as a result, the combustion gas temperature in the secondary combustion chamber 27 can be stabilized. Both C ⁇ and NOX in the flue gas passing through the flue gas outlet of the next combustion chamber can be stabilized below the specified values.
  • the incinerator 46 of the fluidized bed furnace 45 is provided with an air diffuser 48 provided with a dispersion plate 48a at the bottom. At the center of the dispersion plate 48a, an incombustible discharge port 49 is provided over the entire width of the incinerator 46.
  • a wind box 50 for supplying primary air is provided below the air diffuser 48, and the primary air is blown out above the air diffuser 48 via the dispersion plate 48a.
  • a fluidized bed 51 is formed by a sand circulation method. Sand flow is by bubbling method.
  • Reference numeral 52 is a sand blowing nozzle.
  • the bed is fluidized while the fluidized sand is heated to about 500-700 ° C with kerosene or gas parner at the start.
  • a waste supply device 54 provided with a hopper 53 supplying municipal waste 11 to the fluidized bed 51 is provided on the side of the incinerator 46.
  • a wind box 50 is formed into a split type, and the primary air is blown out with a smaller or larger amount of blown air to generate a vortex flow in the fluidized bed 51.
  • the combustion exhaust gas which has been converted into a dry distillation gas and partially burned burns unburned components and light refuse in the free port 47.
  • the free board 47 secondary air is positively blown from the nozzle 55, and is mixed with the above-mentioned combustion exhaust gas and burned.
  • an intermediate ceiling 55 is provided inside the freeboard 47 to create a double flow gas for collision mixing, and complete combustion is achieved by mixing the double flow gas above the intermediate ceiling 55.
  • the sonic measurement device 31 and the control device 32 are installed on the side of the freeport 47.
  • the temperature in the temperature range of the block address in the free board 47 is measured and compared with the temperature set value in the reference temperature range, and when it exceeds the temperature set value in the high temperature range or in the low temperature range, If the temperature is less than the set value, the block address is most suitable from one or more of the primary air amount, secondary air amount, waste feed speed (including waste supply amount), and cooling fluid amount.
  • the selected control pattern is selected, and the control pattern is used to control the temperature in order to normalize the temperature in the high temperature range or the low temperature range of the free board 47. Therefore, the temperature at the exhaust gas outlet of the free board 47 can be reliably controlled to 850 ° C to 95 Ot: and stable exhaust gas temperature control with little variation can be achieved. Can be greatly reduced below the specified value.
  • the flue gas from the free board 47 is sent to the waste heat poirer 44 after large-size dust is removed in the dust removal chamber 43, where it undergoes heat exchange, and then passes through an exhaust gas treatment device and the like. Released to the outside.
  • the flow of exhaust gas passing through the waste heat poirer is generated at 300 to 400 °. Adjustment is made to avoid stagnation and Z or standing in the temperature range of C, and the gas temperature range of each block address can be controlled, so that dioxins are easily generated. Temperature range can be avoided. Therefore, the concentration of dioxins at the outlet of the waste heat poirer can always be suppressed to a low value.
  • the concentration of dioxins at the outlet of the waste heat boiler in the waste heat boiler can be always suppressed to a low value in a waste heat boiler of a refuse incinerator.
  • the following shows the flow of the exhaust gas passing through the waste heat boiler based on the three-dimensional gas temperature distribution data by combining the gas temperature distribution data measured by the sonic gas temperature measurement device using the gas temperature distribution device.
  • Stagnation is a state in which exhaust gas cannot pass through the temperature range of 300 T: up to 400 ° C in a short time
  • standing is a state in which exhaust gas stays in the temperature range of 300 ° (: up to 400 ° C). is there.
  • FIG. 8 is a schematic side view showing a preferred embodiment according to the present invention, which has a cutout.
  • a grate-type incinerator 101 is composed of a hopper 102, a dry stove 103, a combustion stove 104, a post-combustion stove 105, a main combustion chamber 106, and a secondary combustion chamber 107.
  • an intermediate ceiling 108 is provided, and a main flue 109 and a secondary flue 110 are provided between the main combustion chamber 106 and the secondary combustion chamber 107.
  • the waste heat boiler 111 connected to the secondary combustion chamber 107 of the above-described grate-type incinerator 101 is provided.
  • the waste heat poirer 111 includes a second radiation chamber 112 connected to a secondary combustion chamber (also referred to as a first radiation chamber) 107, and an evaporating pipe 113a, a superheater 114, and evaporating pipes 113b, 113c along an upstream side to a downstream side. It comprises a cooling chamber 116 in which a economizer 115 is arranged.
  • a bypass passage 117 is provided between the second radiation chamber 112 and the cooling chamber 116.
  • Reference numeral 131 is a sootblow 'hammering device.
  • the exhaust gas passing through the second radiation chamber 112 of the waste heat boiler 111 and the cooling chamber 116 A control device 118 is provided for controlling the gas temperature distribution by the passage portion of the gas.
  • the space in the heat boiler is divided into a plurality of three-dimensional blocks and input as block addresses.
  • an area address where block addresses are assembled at key points is provided.
  • the first area is the space below the second radiation chamber 112
  • the second area is the space below the boiler hopper 119
  • the third area is the space between the evaporator tube 113a and the superheater 114 and the evaporator tube 113b.
  • Area No. 4 is the space between evaporator pipe 113b and evaporator pipe 113c
  • Area No. 5 is the space between evaporator pipe 113c and economizer 115
  • Area No. 6 is the space between evaporator pipe 115c. It was a space on the downstream side.
  • a block address is provided in each area address.
  • each of the first to sixth area addresses described above is measured.
  • a sonic gas temperature measuring device (hereinafter referred to as an sonic measuring device) 120 that continuously measures the gas temperature distribution in the block address is installed, and the gas temperature distribution in the horizontal and vertical sections measured by the sonic measuring device 120 By combining these data, the data of the three-dimensional gas temperature distribution is calculated, and the temperature range in the first to sixth areas is compared with the reference temperature range in that area.
  • Reference numeral 134 denotes an air blowing device provided with control valves 134a to 134e.
  • a commercially available sonic measuring device 120 can be used, which is composed of a sensor 121, a signal processing device 122, and a CT processing device 123.
  • the sensor 121 includes a speaker, a microphone, and a horn.
  • the acoustic wave type is used for the exhaust gas temperature measuring device, but any device that can measure the temperature of exhaust gas in which dust is scattered can be used in the same manner.
  • the plurality of sensors 121 are mounted in a grid pattern on both walls forming the space from the first area address to the sixth area address.
  • the flow of exhaust gas passing through the area No. 1 to No. 6 was installed in a grid pattern.
  • the temperature distribution of the cross section perpendicular to the direction and the temperature distribution of the vertical section in the exhaust gas flow direction are measured and combined, and the temperature distribution of the 1st to 6th areas is measured in a three-dimensional block. It is to catch as. However, if it is permissible to reduce the measurement accuracy, the intervals between the sensors may be increased or they may be arranged irregularly.
  • the actual temperature distribution of each part due to the exhaust gas from the 1st to 6th areas can be accurately determined as a block address.
  • the block address of each area address exceeds the reference temperature set value for each area address, the block address of that area address is treated as abnormal and the block address is treated as abnormal. Control to make the temperature range normal.
  • the number and mounting position of the sensors 133 are selected and determined according to the shape and size of the target area address.
  • the values measured by the sensors 121 are processed by the signal processor 122, and the CT processor 123 displays the temperature distribution in the vertical and horizontal sections of the first to sixth areas.
  • the data of the temperature distribution by the CT processing device 123 is input to the control device 118.
  • the control device 118 combines the data of the temperature distributions and grasps as a three-dimensional temperature distribution of the block addresses of the first to sixth areas.
  • the block 118 of the first to sixth blocks and the set value of the reference temperature range for each of the block addresses are input in advance to the control device 118, and the measured blocks of the block addresses are input.
  • the temperature of the address is compared with the set value of the reference temperature range of the area address, and if it exceeds the set value, the primary air amount, the secondary air amount, and the dust on the grate are determined based on the block address.
  • the most suitable control pattern is selected from one or more of feed speed, cooling fluid amount, refuse supply amount, blow blow 'hammering, air blowing, and circulating exhaust gas blowing, and' controlled by the control pattern. It is controlled to normalize each block address for each area address.
  • the temperature distribution from 800 to 950 from the inlet to the outlet of the exhaust gas from the waste heat boiler changes to less than 300 ° C, Temperature range around 300 ° C to 400 ° C where dioxins are actively produced
  • dioxins at the outlet of the waste heat poiler can be stably suppressed to a specified value or less.
  • FIG. 2 is a schematic diagram showing the state of the block address of each area address input to the control device used in the present invention.
  • Each area address and its block address were drawn out as shown by the bold arrow to make it easier to understand, and the coordinates of the axes A, B, and C in the image were displayed.
  • the axes A and B by plane and the height axis C with respect to the plane A and axis B make it possible to control the temperature region by three-dimensional block addresses.
  • the block addresses in the area addresses are specified by determining the starting point by the axis ABC for each of the area addresses. For example, in the 4th area, 5th area, and 6th area, the block addresses AlBlCl, A2BlCl, A3BlCl, AlB2Cl, A2B2Cl, A3B2Cl, AlB3Cl, A2B3Cl, A3B3C1 Can be caught.
  • Each block address in the sixth area is an area of less than 300 ° C, and the reference temperature set value is set to 250 ° C or less. Therefore, by design, the reference temperature set value of each upstream area address is determined based on the temperature area of the 6th area address, and if the exhaust gas exchanges heat smoothly, the above-mentioned range will be ensured at the 6th area address. I am trying to be.
  • the reference temperature setting for the 5th area is 300 ° C
  • the reference temperature setting for the 4th area is 500 ° C
  • the reference temperature setting for the 3rd area is 700 ° C.
  • the reference temperature set value for the second area address and the first area address is 900 ° C.
  • the temperature distribution at each area address is based on the standard at each area address. If the temperature exceeds the set temperature range, it is determined that an abnormality has occurred in the exhaust gas at the area address etc. in front of that area address, and temperature control is performed to return to normal by the most suitable control pattern. .
  • the adjustment items for controlling are the primary air amount, secondary air amount, waste feed rate on the grate, cooling fluid amount, waste supply amount, soot blow hammering, air blowing, and circulating exhaust gas blowing.
  • the control pattern is configured by combining at least one of the above.
  • the generation of dioxins in the waste heat poiler is greatly affected by the operating conditions of the waste incinerator in the previous process, so it is necessary to strictly prevent the generation of dioxins, including their operation control items. It is.
  • the accumulation of dust is suppressed by the spray blow 'hammering' of the control items in the waste heat poiler, the deposition of dioxins is prevented, and the primary air is prevented.
  • the spray blow 'hammering' of the control items in the waste heat poiler the deposition of dioxins is prevented, and the primary air is prevented.
  • FIG. 10 is a diagram showing an example of the control system according to the present invention.
  • signals of measurement values from a plurality of sensors 121 mounted in a grid pattern on both walls of the first to sixth areas of the waste heat boiler 111 are continuously input to the signal processing device 122. Is done.
  • the signal processor 122 processes the values measured by the sensors 121, and the CT processor 123 images the temperature distribution of the vertical and horizontal sections of the space at the first to sixth areas and inputs them to the controller 118. You.
  • control device 118 the set value of each block address and the reference temperature range for each area address are input in advance, and the data of the gas temperature distribution of the horizontal and vertical cross sections measured by the sonic measurement device 120 are combined to obtain a tertiary value.
  • the original gas temperature distribution data is used, and the temperature range in the first to sixth area addresses is compared with the reference temperature range in that area address, and when the difference exceeds the specified range, Based on it, control the primary air amount, secondary air amount, garbage feed rate on grate, water spray amount, garbage supply amount, one or more types of blow blow hammering, air blowing, circulating exhaust gas blowing .
  • the control device 132 If the temperature area exceeds the reference temperature area at the block address in the area address, the control device 132 immediately detects the temperature area, and in order to normalize the block addresses, the waste supply amount supply unit 126 and the Dust feed rate adjustment device on grid 127, Primary air supply unit 128, Water spray supply unit 129, Secondary air supply unit 130, Soot blow hammering device 131, Air blowing device 134 (Circulation exhaust gas blowing Which can be switched to the device), and they are provided with respective regulating valves 126a, 127a, 128a, 129a, 130a, 131a, 134a to 134e. As shown in FIG.
  • the temperature ranges of the block addresses A1 Bl C1, A2B2C1, and A3B3 C1 in the fourth area address and the fifth area address are higher than the reference temperature areas. If captured, the control pattern will determine the sootblow Hanmarinda and secondary airflow. When a control pattern is selected from the control device 132, the control valve 131a of the sootblow hammerinder 131 is adjusted accordingly.
  • Stationary sootbout hammering device 131 is a economizer 115 between the 6th and 5th area, a discharge 113c between the 5th and 4th area, and a 4th area
  • the third evacuation pipe 113b, and the evaporating pipe 113a is equipped with a long-removal sootblow hammering device.
  • the economizer 115 and the evaporating pipe 113c are installed.
  • the installed stationary blow blow and hammering device 131 is operated, and steam is blown from the 27 nozzle holes to the economizer 115 and the evaporating pipe 113c to remove attached dust and the like. .
  • the heat exchange returns to normal by removing dust adhering to the economizer 115 and the evaporating pipe 113c, and the temperature of the exhaust gas decreases uniformly.
  • the temperature of the exhaust gas can be uniformly reduced by steam or cold air, and the dioxins can easily pass through a temperature range of about 300 ° C. to about 400 ° C. in a short time.
  • the secondary air supply amount is adjusted by the control valve 129a to control the exhaust gas outlet temperature of the secondary combustion chamber (first radiation chamber) of the refuse incinerator 101.
  • the exhaust gas in a normal state is sent into the waste heat poirer 111.
  • the control pattern is as follows: Based on experience from each area address, as a waste heat boiler for refuse incinerators, the comprehensive determination of exhaust gas treatment ensures that the concentration of dioxins stabilizes below the specified value at the outlet of the waste heat boiler. It is selected and decided to enter.
  • the municipal waste 111 is continuously incinerated by the grate-type incinerator 101, and the temperature of the combustion gas is controlled by the waste heat poirer connected to it.
  • a method for suppressing generation to a low value will be described in detail.
  • the municipal solid waste put into the hopper 102 is sent to the drying strike 103 through the chute, dried by the primary air from below and the radiant heat in the furnace, and heated to ignite.
  • the refuse that has been ignited and has started burning is sent to the combustion station 104 and sent from below. It is gasified by primary air and partly burns. Further, the unburned components are completely burned by the post-combustion strike force of 105. The ash remaining after the combustion is taken out from the main ash chute 124.
  • the combustion takes place in the main combustion chamber 106, and the flue gas is discharged separately to the main flue 109 and the secondary flue 110 due to the presence of the intermediate ceiling 108.
  • These combustion exhaust gases are mixed in the secondary combustion chamber (first radiation chamber) 107, and secondary combustion is performed to completely burn unburned components.
  • the combustion exhaust gas from the secondary combustion chamber 107 is sent to a waste heat poiler 111.
  • a second radiation chamber 112 and a cooling chamber 116 are arranged from the upstream side, and in order to keep the exhaust gas temperature of 850 to 950 ° C at the inlet to 250 ° C or less at the outlet,
  • the temperature range where dioxins are actively generated in the waste heat poirer 111.It includes a temperature range of around 300 ° C to 400 ° C. It is said that it is synthesized by a catalytic reaction involving unburned carbon and hydrocarbons (the catalytic action of copper and iron in dust is strong in the presence of HC) and unburned carbon in an atmosphere of 500 ° C. In order to prevent the production of these dioxins, the following control is performed.
  • a sonic gas temperature measuring device 120 that continuously measures the gas temperature distribution is installed, and the data of the gas temperature distribution of the horizontal and vertical sections measured by the sonic measuring device 120 are combined.
  • a three-dimensional gas temperature distribution is used to calculate the temperature range between addresses 1 to 6 and the reference temperature range within that address, and when the difference exceeds a predetermined range. Based on that, control the primary air amount, the secondary air amount, the garbage feed rate on the grate, the water spray amount, the garbage supply amount, sootblow hammering, air blowing, circulating exhaust gas blowing .
  • FIGS. 8 to 10 has described the waste heat poirer of the grate incinerator
  • the present invention can be similarly applied to the waste heat poirer of the waste incinerator such as a fluidized-bed furnace.
  • the present invention it is possible to continuously measure the gas temperature distribution in each block address in the first to sixth area addresses.
  • the temperature can be reduced to 50 ° C or less, and the temperature range around 300 ° C to 400 ° C where dioxins are easily generated can be avoided or the exhaust gas can be passed in a short time.
  • the production of dioxins can be stably suppressed to a concentration below the specified value.
  • Embodiment 3 is a method for controlling the grate temperature in a waste incinerator having a grate, wherein the surface temperature of the grate group located on the upstream side in the waste transport direction is set on the downstream side. The temperature is controlled so as to be higher than the surface temperature of the lattice group.
  • the surface temperature of the grate group located on the upstream side with respect to the waste transport direction is higher than the surface temperature of the grate group located on the downstream side, a large amount of moist household waste etc. Even in the case of contamination, the grate group located on the upstream side is prevented from dew condensation due to overcooling, and the grate group due to the condensation is prevented from being corroded. In addition, it has the effect of preventing combustion instability and uneven combustion temperature due to supercooling of the grate group located on the upstream side.
  • the method comprises, for example, adding a grate heating means or a grate heating means and a grate cooling means to a grate group located on the upstream side in the waste transport direction, and a fire located on the downstream side in the waste transport direction. This can be achieved by providing a grate cooling means in the grate group.
  • the "grate group located upstream with respect to the waste transport direction" provided with the grate heating means or the grate heating means and the grate cooling means is an area mainly for drying and burning waste.
  • the grate group provided with grate cooling means is referred to as the "grate group located downstream with respect to the waste transport direction".
  • the grate mainly located in an area where combustion of waste and post-combustion are performed.
  • the positions where the grate heating means and the grate cooling means are provided are appropriately selected according to the size and configuration of the waste incinerator.
  • FIG. 11 is a schematic sectional side view showing a grate-type waste incinerator according to the third embodiment.
  • This waste incinerator is a grate-type waste incinerator having a drying storage power 203, a combustion storage power 204, and a post-combustion storage power 205. It is conveyed to the drying strike 203 through the heat sink, dried on the fire grate by the air from below and the radiant heat in the furnace, and heated to gas to ignite.
  • the waste 202 that has ignited and started burning is sent to a combustion stirrer 204, where it is gasified by combustion air sent from below and burned on a grate. Then, the unburned components are completely burned on the grate of the post-combustion strike 205. Ash remaining after the combustion is taken out of the main ash chute 206.
  • Combustion takes place in the main combustion chamber 207, and the flue gas is split into two parts by the presence of the intermediate ceiling 208 provided in the main combustion chamber 207, and the main flue 209 downstream of the furnace and the auxiliary flue 209 upstream of the furnace. It is separated from the flue 210 and discharged from the main combustion chamber 207.
  • the main flue gas discharged through the raw flue 209 and the sub-flue gas discharged through the sub-flue 210 are mixed and stirred in the secondary combustion chamber 211 connected to the main combustion chamber 207. As a result, secondary combustion is performed and the unburned components are completely burned.
  • Exhaust gas from the secondary combustion chamber 211 is sent to a waste heat poirer 213 after removing dust with a large particle size in a dust removal chamber 212, and is discharged to the outside via an exhaust gas treatment facility after heat exchange. Is done.
  • the present embodiment relates to a method for controlling the grate temperature in a grate-type waste incinerator having the above-described configuration, wherein the surface temperature of the grate group of the drying stoichiometric force is determined by the combustion stoichiometry and the post-combustion stoichiometry. Is controlled so as to be higher than the surface temperature of the grate group.
  • the surface temperature of the dry grate group located upstream with respect to the waste transport direction is higher than the surface temperature of the combustion grate group and downstream grate group located downstream.
  • it can prevent dew condensation due to the cooling of the dry grate and prevent corrosion of the grate group due to the dew condensation. Is prevented.
  • it also has the effect of preventing in-furnace combustion from becoming unstable due to supercooling of the dry grate grate group, and preventing uneven combustion temperature.
  • the method can be achieved by the following means.
  • the grate heating means or the grate heating means and the grate cooling means, and the grate for the combustion stoichiometry and Z or the post-combustion stoichiometry Cooling means are provided in the grate-type waste incinerator having the above-described configuration, the grate heating means or the grate heating means and the grate cooling means, and the grate for the combustion stoichiometry and Z or the post-combustion stoichiometry Cooling means.
  • steam for the heat ⁇ in the group of grate of dry strike and as the heating means, for example, as shown in FIG.
  • a steam passage 220 provided, a steam generator 221 for generating steam, and a steam supply pipe 222 for supplying steam from the steam generator to the steam passage 220 provided in the grate group of the dry strike.
  • a steam flow meter 223 and a flow control valve 224 provided in the steam supply pipe 222; a thermometer 225 for measuring the temperature in the grate group; and a steam flow rate based on the temperature measured by the thermometer 225.
  • a grate temperature control device 226 for controlling the steam temperature.
  • thermometer 225 for measuring the surface temperature in the grate group may be installed at one place where a typical temperature in the grate group can be measured, but it may be installed at multiple places in the grate group. Preferably. By controlling the steam flow rate and the steam temperature based on the measured temperatures from the thermometers installed at multiple locations, the temperature distribution in the grate group can be more finely controlled.
  • the grate temperature control device 226 includes a signal (temperature) from a thermometer 225 installed on the grate group, a signal (flow rate) from the steam flow meter 223, and a set temperature signal of steam generated by the steam generation device 221. Then, the flow rate control valve 224 or the steam generator 221 is controlled so that the temperature becomes a preset temperature to control the steam flow rate and the steam temperature.
  • the steam generator 221 can be replaced by the waste heat poiler 213 provided in the waste incinerator.
  • a grate cooling means in the grate group having a dry strike. This is because, depending on the type of waste, combustion on a grate with a strong dry strike may occur and cooling may be required.
  • the same means as the above-mentioned dry stove force grate cooling means can be used.
  • the grate cooling means will be described based on the configuration diagram shown in FIG. 11 as the combustion stirrer 204. It can be configured.
  • cooling means for example, cooling air disposed in a grate group having a combustion storage force of 204 Or a cooling water passage 227, a cooling air or cooling water supply device 228, and cooling air or cooling water provided from the cooling air or cooling water supply device 228 in the grate group of the drying stalling force.
  • the grate temperature control device 226 controls the flow rate and the temperature of the cooling air or cooling water based on the temperature measured by the thermometer 232.
  • thermometer used for the drying means can share the thermometer used for the above-mentioned heating means.
  • the grate temperature control device 226 used in the above-described grate heating means and each grate cooling means has the same It is preferable to control with an apparatus.
  • the grate temperature control device 226 includes a signal (temperature) from a thermometer 232 installed on the grate group, a signal (flow rate) from a flow meter 230, and a cooling air or cooling water supply device 228.
  • the flow rate and temperature of the cooling air or cooling water are controlled by controlling the flow control valve 231 or the cooling air or cooling water supply device 228 so that the air or cooling water set temperature signal, etc., is taken in and the temperature is set in advance. Control.
  • the method of controlling the grate temperature it is preferable to control so that the surface temperature of the grate group in the furnace width direction becomes lower as approaching the center of the furnace.
  • the temperature of the grate group is controlled to be lower as it approaches the center of the furnace. Can be effectively prevented from being thermally damaged. Furthermore, the difference in furnace temperature in the furnace width direction on the grate group becomes smaller, which contributes to combustion stability.
  • the above-described control method in the case of performing heating by supplying steam into the grate group of a dry strike is to supply steam from the peripheral part to the central part of the furnace.
  • the steam passages in the grate group as described above.
  • the high-temperature steam heats the periphery first, and the steam whose temperature has dropped slightly heats the center. It can be controlled so that the temperature becomes lower as it approaches the center.
  • the number of steam passages to be installed in a grate group with a dry strike is selected according to the equipment configuration and the like.
  • the above control method in the case where cooling air or cooling water is supplied into the grate group of the drying stove force, the combustion stove force, and the post-burning stove force to perform cooling is based on the case where the above-described grate cooling means is used.
  • This is achieved by arranging cooling air or cooling water passages in the grate group to supply cooling air or cooling water from the central part of the furnace to the peripheral part.
  • the central part is cooled first by the cooling air or cooling water, and the gas whose temperature has risen slightly cools the peripheral part. It can be controlled so that the temperature of the grate group becomes lower as it approaches the center.
  • the number of cooling air or cooling water passages provided in each grate group is appropriately selected depending on the type of cooling air or cooling water or the configuration of the apparatus.
  • the surface temperature of the grate group in the waste transport direction it is preferable to control the surface temperature of the grate group in the waste transport direction to be lower toward the downstream side.
  • the combustion temperature of the waste on the grate group tends to be higher on the downstream side in the waste transport direction, controlling the temperature of the grate group on the downstream side in the waste transport direction Thermal damage on the downstream side can be effectively prevented. Furthermore, the temperature difference in the furnace in the direction of waste transport on the grate group is reduced, which contributes to stabilization of combustion.
  • the above-described control method in the case of performing heating by supplying steam into the grate group having a drying stoichiometric force includes: from the upstream side to the downstream side in the waste transport direction of the grate group. This can be achieved by arranging steam passages in the grate group to supply steam toward. By supplying steam downstream from the upstream rule in the waste transport direction, the upstream side is heated first by the high-temperature steam, and the steam whose temperature has dropped slightly heats the downstream side. It can be controlled so that the temperature decreases as the temperature approaches the downstream side.
  • the number of steam passages arranged in the dry grate group is appropriately selected depending on the equipment configuration and the like.
  • the above-mentioned control method when cooling air or cooling water is supplied into the grate group of the drying grease, the combustion grit and the post-combustion grit for cooling is performed by using the above-described grate cooling means. Achieved by arranging cooling air or cooling water passages in the grate group to supply cooling air or cooling water from the downstream side to the upstream side in the waste transport direction in the grate group Is done.
  • Cooling in the grate group from the downstream side to the upstream side in the waste transport direction By supplying cooling air or cooling water, the downstream side is cooled first by the cooling air or cooling water, and the gas with a slightly higher temperature cools the upstream side, and the temperature of the grate group decreases Can be controlled so that the temperature decreases as the temperature approaches.
  • the number of cooling air or cooling water passages provided in each grate group is appropriately selected depending on the type of cooling air or cooling water, or the device configuration.
  • the grate heating means and the grate cooling means described above are a grate-type grate using an integrated grate group that does not have a distinction between dry strike, combustion strike, and post-combustion strike. It goes without saying that the same applies to waste incinerators.
  • FIG. 12 is a schematic side sectional view of a single-strike waste incinerator according to the fourth embodiment.
  • This waste incinerator has a drying capacity of 303, a combustion capacity of 304, and a post-combustion capacity of 305! 302 is sent to a drying stowing force 303 through a chute, dried on a grate by air from below and radiant heat in the furnace, and heated to ignite.
  • the refuse 302 that has started burning by being ignited is sent to a combustion stowing force 304, where it is gasified by combustion air sent from below and burns on a grate. Then, the unburned components are completely burned on the grate of the post-combustion strike 305.
  • the ash remaining after the combustion is taken out from the main ash shot 306.
  • the combustion is performed in the main combustion chamber 307, and the flue gas is divided into two parts by the presence of the intermediate ceiling 308 provided in the main combustion chamber 307, and the main flue 309 on the downstream side in the furnace and the sub-flue on the upstream side in the furnace. It is separated from the flue 310 and discharged from the main combustion chamber 307.
  • the main flue gas discharged through the main flue 309 and the secondary flue gas discharged through the secondary flue 310 are mixed and agitated in the secondary combustion chamber 311 connected to the main combustion chamber 307.
  • Exhaust gas from the secondary combustion chamber 311 is sent to a waste heat boiler 313 after large-size dust is removed in a dust removal chamber 312, and after heat exchange, is discharged outside through an exhaust gas treatment facility etc. Is done.
  • the stoichiometric waste incinerator according to the present embodiment has a means for circulating a part of the main flue gas upstream in the furnace in the above configuration.
  • the main flue gas since the main flue gas has a relatively high gas temperature of about 800 to 900 ° C. and contains about 8 to 15% of oxygen, the main flue gas goes upstream in the incinerator. By circulating, it promotes the drying of the refuse and further contributes to the stability of combustion in the combustion start region.
  • a pipe 320 for circulating gas shown in FIG. 12 shows an example of an embodiment of a means for circulating a part of the main flue gas to the upstream side in the furnace. It has a nozzle 322 and a heating means 323 for preventing the gas temperature in the pipe 320 from lowering. By having the heating means, it is possible to prevent dust from adhering to the pipes and a decrease in the furnace temperature due to a decrease in temperature of the circulating gas.
  • the heating means for example, a method of winding an electric heater or the like around the own pipe 320 can be used.
  • the position where the electric heater 1 is wound is preferably a pipe downstream of the dust remover 321, but may be the entire pipe 320.
  • the pipe 320 is preferably provided with a flow control valve 324, and the circulating gas flow rate is preferably changed according to the properties of the refuse, the amount of refuse input, the combustion state in the furnace, and the like.
  • the gas in the main flue 309 is sucked into a pipe 320 by a blower 322 from a gas suction nozzle 325 provided on the furnace wall near the main flue, and after dust is removed by a dust remover 321,
  • the gas is again introduced into the furnace through a blowing nozzle 326 provided on the furnace wall on the ⁇ flow side.
  • the position where the blow-out nozzle 326 is installed is, for example, a position where the gas can be supplied so as to form a gas stagnation region in a part of the drying stove force 303 or the combustion stove force 304 just above the dust layer. It is preferably installed, and is appropriately selected depending on the shape of the furnace and the like.
  • FIG. 13 is a schematic configuration diagram of the piping viewed from the side of the furnace
  • FIG. 14 is a schematic configuration diagram of the piping viewed from above the furnace. This embodiment shows a case where pipes for circulating gas are provided on both sides of the side wall of the furnace.
  • Part of the main flue gas is piped in heat-resistant bricks from the pipe inlet 330 provided in the main flue. It is sucked into 331 and introduced again into the furnace from a pipe outlet 332 provided on the upstream side in the furnace.
  • the pipe outlet 332 may be installed at a position where a stagnation area can be formed so as to form a stagnation area in a portion immediately above the dust layer of the drying strike force 303 or the combustion stove force 304, for example.
  • it is appropriately selected depending on the shape of the furnace and the like.
  • the location and number of pipes are not particularly limited, and may be appropriately selected depending on the shape of the furnace.
  • piping for circulating gas may be provided in the furnace so as to be in contact with the inner wall of the furnace.
  • a pipe made of a refractory material such as a heat-resistant brick or a cascade.
  • the circulating gas passes through the pipe exposed to the high temperature environment.
  • combustion is further promoted, and the heat recovery efficiency, that is, the power generation efficiency is greatly improved.
  • the material cost and the construction cost of the pipe can be reduced.
  • a method of increasing the gas flow rate in the pipe for circulating gas for example, a method of installing a heat-resistant fan 333 with a cooling device in the pipe or installing a high-speed burner near the pipe outlet is used.
  • a method utilizing the project effect can be used.
  • Fig. 15 shows an example of an embodiment in which a device for generating a pulsating flow is provided in a pipe for circulating gas provided in a heat-resistant brick constituting a side wall of a furnace.
  • the figure is a schematic diagram of the piping viewed from above the furnace.
  • a pulse combustion burner 334 can be used as a device for generating the pulsating flow. Ejecting the pulse combustion parner by arranging so that the opening of the pulse combustion parner 334 that has a tail pipe of about 1 m and generates one dynamic flow of about 150 Hz communicates with the pipe outlet 332 Due to the effect, the gas can be circulated with a pulsating flow.
  • the main flue gas that vents through the pipe is discharged by the eject effect, At the same time as increasing the flow velocity, the temperature distribution in the pipe is kept small, and dust can be prevented from adhering to the inner wall of the pipe due to the thermophoretic effect.
  • the means for generating the pulsating flow can be similarly applied to the pipe 320 shown in FIG. 12, and in this case, for example, the opening of the pulse combustion burner is connected to the blowing nozzle 326. It can be used by arranging it as follows.
  • FIG. 16 is a schematic side sectional view showing one embodiment of the stoichiometric waste incinerator of the present invention.
  • This waste incinerator is a single-strike waste incinerator having a drying strike 403, a combustion strike 404, and a post-combustion strike 405, and a hopper 401 for charging waste and an incineration treatment for waste.
  • Secondary combustion chamber 411 that performs secondary combustion of the burned combustion gas
  • a dust removal chamber 412 that removes dust having a large particle diameter from exhaust gas generated in the secondary combustion chamber 411
  • the refuse 402 put into the hopper 401 is sent to a drying strike 403 through a shot, dried by combustion air from below and radiant heat in the furnace, and heated to ignite.
  • the refuse 402 that has started burning by being ignited is sent to a combustion stalling force 404, where it is gasified and burned by combustion air sent from below. Then, the unburned components are completely burned by the post-combustion strike force 405. The ash remaining after the combustion is taken out from the main ash shot 406.
  • the stoichiometric waste incinerator according to the present invention is characterized in that an externally-heated radiator is disposed on a part of the furnace wall in the above configuration.
  • the radiator 420 may be installed in the vicinity of an area where stagnation occurs due to the flow of gas in the furnace. For example, as shown in FIG. 16, between the main ash shot 406 and the main flue 409 or the waste heat It is preferable to install it in a waste heat boiler room or the like in 413.
  • the position where the radiator is installed, the size of the radiator, the shape of the radiator, and the like are appropriately selected depending on the shape of the incinerator and the like.
  • the radiant heat from the radiator heated to high temperature selectively heats the fly ash in the stagnation region, and the fly ash itself
  • the temperature range (300 to 400 ° C) suitable for resynthesizing dioxins By avoiding the temperature range (300 to 400 ° C) suitable for resynthesizing dioxins, the synthesis of dioxins is suppressed and the unburned components in fly ash are heated and burned.
  • the radiant heat from the radiator heated to a high temperature can heat a wide range of gas, and can effectively heat fly ash near the furnace wall where the radiator is installed.
  • Fig. 17 shows an example of the configuration when a radiator is provided on a part of the furnace wall.
  • the furnace wall is composed of a steel shell 421, a heat insulating material 422, and a heat-resistant brick 423, and the heat-resistant wringer 423 forms the inner wall of the incinerator.
  • the radiator 420 is preferably installed at a position in contact with the heat-resistant brick 423 so as to be embedded in the heat insulating material 422. With this configuration, the radiant heat is effectively irradiated into the furnace without the radiator being burned by the flame in the furnace.
  • the radiator is not particularly limited as long as it has heat resistance.
  • a radiator made of a refractory material such as a castable.
  • a radiator heating means for example, an electric heater can be used.
  • Fig. 18 shows an example of the configuration and heating control method when an electric heater is used as the heating means.
  • the same components as those in FIG. 17 are denoted by the same reference numerals, and description thereof is omitted.
  • FIG. 18 shows a case where the radiator 420 is installed at the position shown in FIG. 17, and the radiator 420 has a configuration in which an electric heater 431 is built-in.
  • a temperature controller 32 for controlling the temperature of the radiator 420 is connected to the built-in electric heater 431, and the temperature controller 432 has a gas temperature in the furnace near the furnace wall where the radiator 420 is installed.
  • the signal (temperature) from the thermometer 430 installed so that can be measured is input.
  • the temperature control device 432 controls the temperature of the heater so that the temperature of the thermometer 430 falls within a predetermined temperature range.
  • thermometer As a method of controlling the temperature, for example, when the temperature of the thermometer falls below 400 ° C A method of turning on the power of the electric heater and turning off the electric heater when the temperature reaches 600 ° C. or more, or a method of controlling the temperature of the thermometer to a predetermined temperature may be used.
  • a configuration in which an electric heater is directly embedded in the radiator may be employed, but a configuration in which a pipe or the like is embedded in the radiator and a heater is disposed therein is preferable. This is because a pipe or the like is buried inside the radiator, and the sun is arranged inside the radiator, which facilitates repair work such as replacement work when the sun breaks.
  • combustion exhaust gas can be used as another heating means of the radiator.
  • flue gas for example, LNG, LPG, kerosene, heavy oil, etc.
  • FIG. 19 shows an example of a configuration and a heating control method when using combustion exhaust gas. Note that the same components as those in FIG. 17 are denoted by the same reference numerals and description thereof is omitted.
  • the radiator 420 shown in FIG. 19 has a configuration in which high-temperature flue gas accompanying the combustion of the external combustion device can be introduced into the inside.
  • the radiator 420 is heated by introducing combustion exhaust gas into a space provided inside the radiator 420.
  • the flue gas after heating the radiator may be blown into an incinerator or an exhaust gas treatment device installed in an incinerator.
  • it is needless to say that it is necessary to provide a means for avoiding the temperature at which the dioxins recombined and become dim (300 to 400 ° C).
  • a temperature control device 432 for controlling the temperature of the radiator 420 is connected to the external combustion device 433, and the temperature control device 432 controls the gas temperature in the furnace near the furnace wall where the radiator 420 is installed.
  • a signal (temperature) from thermometer 430 installed so that measurement can be performed is input.
  • the heated air control device 432 controls the combustion of the external combustion device 433 so that the temperature of the thermometer 430 falls within a predetermined temperature range.
  • the method of controlling the temperature for example, when the temperature of the thermometer becomes 400 ° C. or less, the external combustion device 433 is burned, high-temperature combustion exhaust gas is introduced into the radiator 420, and In such a case, the method of stopping the combustion of the external combustion device 433 may be used. May be a method of controlling combustion so that the temperature of the thermometer becomes a predetermined temperature.
  • the method of heating the radiator is not limited to the above method, as long as the radiator can be heated to a predetermined temperature.
  • thermometer In the above temperature measurement, most dioxins are adsorbed on the surface layer of fly ash, so the particle temperature is desirable as the temperature to be monitored. Therefore, it is most desirable to use a radiation thermometer as the thermometer, but it is also possible to control with a thermometer such as a thermocouple. Also, the number of thermometers is not limited to one, but it is also possible to install and control multiple thermometers.
  • the heater or the flue gas for heating the radiator may be built in the heat-resistant brick constituting the inner wall of the furnace or may be passed through the heat-resistant brick.
  • a heat-resistant brick with a built-in heat sink or a heat-resistant brick through which heated air is passed constitutes a radiator, and there is no need to separately install a radiator.
  • FIG. 20 shows a configuration in which the electric heater 431 is built in the heat-resistant brick 423 in FIG. 18, and the other configuration is the same as that shown in FIG.
  • a method similar to the method described with reference to FIG. 18 can be used for a temperature control method, a method for incorporating an electric heater, and the like.
  • FIG. 21 shows a configuration in which the high-temperature flue gas accompanying the combustion of the external combustion device in FIG. 19 can be introduced into the space provided inside the heat-resistant 423, and other configurations are shown in FIG. The same as The same method as the method described with reference to FIG. 19 can be used for the temperature control method and the like.
  • heat-resistant bricks in the furnace can be effectively used without the necessity of separately installing a radiator.
  • FIG. 22 shows an example of a configuration and a cooling control method when an air cooling device is provided.
  • FIG. 22 shows a configuration in which the air cooled by the air cooling device 434 can be introduced into a space provided inside the heat-resistant brick 423.
  • Other configurations are the same as those shown in FIG. 21. .
  • thermometer installed on the inner wall of the radiator (the wall exposed to the combustion exhaust gas in the furnace) becomes 1000 DC or more
  • a method of operating the air cooling device 434 and introducing the cooled air into the space provided inside the heat-resistant brick 423 for cooling, and stopping the air cooling device 434 when the temperature becomes 800 ° C or less may be used.
  • Fig. 23 shows an example of a means to prevent fly ash from melting and solidifying on the radiator surface layer without using cooling means, thereby reducing the efficiency of radiant heating. It is the one that the rooster was set up by himself.
  • Fig. 23 shows the case where the electric heater is built in the heat-resistant brick shown in Fig. 20, but it goes without saying that the configuration shown in Figs. 18, 19, and 21 can also be applied.
  • a vortex is formed near the surface of the radiator, and the flow of exhaust gas containing fly ash does not directly contact the radiator. Melting and solidification in the surface layer of the radiator can be prevented.
  • the temperature of the fly ash in the air stream which is the object to be heated, can be directly measured by using the radiation thermometer 435 as the thermometer, and the fly ash can be overheated or be applied to the nearby furnace wall, etc. Melting and solidification can be effectively prevented.
  • a radiation thermometer it is necessary to provide a wide-angle observation window on the furnace wall.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Incineration Of Waste (AREA)

Description

明細書 藤物麟炉及びその操 m
漏分野
本発明は、 都市ごみ等の廃棄物を焼却する燃焼室を備えた廃棄物焼却炉及びその 操業方法に関する。 背景翻
都市ごみ等の廃棄物の増加に'ともない、 廃棄物を焼却する種々の廃棄物焼却炉が 実用化されている。 特に火格子式廃棄物焼却炉 (以下火格子式ごみ焼却炉と云う) が広く知られている。 その代表的なものの側断面図を図 7に示す。
図 7において、 火格子式ごみ焼却炉 1は、 ホッノ° 2、 乾燥スト一力 3、 燃焼ス トー力 4、 後燃焼スト一力 5 , 主燃焼室 6、 二次燃焼室 7から構成されている。 こ こでは中間天井 8を設置して、 主燃焼室 6と二次燃焼室 7との間に主煙道 9と副煙 道 1 0を設けている。
ホッパ 2に投入された都市ごみ 1 1は、 シュートを通して乾燥スト一力 3に送ら れ、 下からの空気と炉内の輻射熱により乾燥されると共に、 昇温されて着火する。 着火して燃焼を開始した都市ごみ 1 1は、 燃焼スト一力 4に送られ、 下から送られ る燃焼用空気によりガス化され、 一部は燃焼する。 そして、 さらに、 後燃焼スト一 力 5で、 未燃分が完全に燃焼する。 そして、 燃焼後に残った灰は、 主灰シュート 1 2より外部に取出される。 燃焼は主燃焼室 6内で行われ、 燃焼排ガスは、 中間天井 の存在により、 主煙道 9と副煙道 1 0に別れて排出される。 主煙道 9を通る燃焼排 ガスには、 未燃分は殆ど含まれず、 酸素が 1 0 %程度含まれている。 副煙道 1 0を 通る燃焼排ガスには、 未燃分が 8 %程度含まれている。 これらの燃焼排ガスは、 二 次燃焼室 7で混合され、 二次的な燃焼が行われて未燃分が完全に燃焼する。 二次燃 焼室 7からの燃焼排ガスは、 除塵室 1 3で粒径の大きなダストが除去された後、 廃 熱ボイ'ラ 1 4に送られ、 熱交換された後に、 排ガス処理装置等を経由して外部に放 出される。
このような火格子式ごみ焼却炉 1において、 都市ごみ 1 1を焼却処理する場合、 都市ごみ 1 1カ 生状の異なる数多くの物質からなるため、 炉内の燃焼状態を一定に 維持することは困難であり、 主燃焼室 6の温度や燃焼ガスの濃度の分布が時間的、 空間的に不均一となることは避けられない。 特に、 乾燥スト一力 3上の乾燥領域で は、 都市ごみ 1 1の性状によっては水蒸気が大量に発生したり、 都市ごみ 1 1中の 可燃分が一時的に低下することにより着火が不安定になることがあり、 これらに起 因して C Oスパイクと云われる現象が発生することがある。 これは火炎が部分的に 消炎して C Oを多量に含む未燃ガス力 t次燃焼室 7に流込み、 ここでも燃焼しきれ ずに外部に放出されることにな'り、 公害防止の上から好ましくない。 また、 主燃焼 室 7での火炎温度が高くなると、 ダストが中間天井 8ゃ炉壁に溶着し、 クリン力と 呼ばれる付着物が発生して炉内燃焼ガスの流路を狭めたり、 巨大ィヒしたクリン力が 炉底部に落下して火格子等を損傷させるという問題がある。 更に、 火炎の状態が不 安定であると、 火炎が吹飛び易く、 高負荷燃焼が困難であるという問題がある。 このような問題点を解決するためには、 まず、 炉内の燃焼状態を把握し、 その上 で炉内における火炎を安定させる手段を設けることが必要である。
従来の火格子式ごみ焼却炉においては、 炉内の燃焼状態を把握するために保護管 付熱電対により炉内温度を測定したり、 炉内のガスサンプリングにより炉内燃焼ガ スの性状を調査したりする方法が通常用いられ、 これらのデータを炉内の燃焼制御 に反映させている。
前述した火格子式ごみ焼却炉では、 主燃焼室と二次燃焼室での不均一燃焼に伴う 高温域や低温域の部位の温度を把握し、 炉内の燃焼を安定化することが必要である。 しかしながら、 炉内温度測定法として熱電対を用いた接触式計測法では、 熱電対 本体または熱電対の保護管の耐久性や輻射による計測誤差などの問題がある。
更に、 炉内中央部のガス温度測定には長いプローブが必要であり、 温度計測する ことが困難な場合がある。
また、 火炎などの分光特性を利用した放射式温度計測法は非接触式計測法である 力、 一般に観測窓 (例えば赤外線カメラ) が設置され、 その観測窓から可視できる 範囲のみ計測可能であり、 計測窓の汚れや散乱などによりダストが多く存在する環 境下では不適当である。
また、 炉内のガスサンプリングにより炉内燃焼ガスの性状を調査する方法は、 炉 内の燃焼状態を一定に維持することが困難な箇所で連続的にガスサンプリングして も変動が激しく、 それにより適正な処置を施すことは困難である。 発明の開示
本発明は、 炉内の燃焼状態を安定化できる廃棄物焼却炉およびその操業方法を提 供することを目的とする。
上記目的を達成するために、 第 1に、 本発明は、 廃棄物を燃焼させる燃焼室と、 複数の音波式ガス温度計測装置と、 燃焼室内の温度分布を推定する推定手段と、 温 度分布を比較する比較手段と、 ガス温度分布を制御する制御手段とからなる廃棄物 焼却炉を提供する。 前記複数の音波式ガス温度計測装置は燃焼室内のガス温度を計 測する。 前記推定手段は計測されたガス温度から燃焼室内の温度分布を推定する。 前記比較手段は推定された温度分布と設定された温度とを比較する。 前記制御手段 は、 比較結果に基づいて、 複数の一次空気吹き込み装置、 複数の二次空気吹き込み 装置、 複数の冷却流体吹き込み装置、 廃棄物供給手段及び廃棄物送り手段からなる 群から選択された少なくとも一つの制御要素を調整することにより、 ガス温度分布 を制御する。
前記比較手段と前記制御手段は、 次のようなものが好ましい:
( a ) 前記推定された温度分布と設定温度範囲とを比較し、 設定温度範囲からの温 度較差及び前記温度較差が生じた位置を特定する比較手段;
( b ) 複数の一次空気吹き込み装置、 複数の二次空気吹き込み装置及び複数の冷却 流体吹き込み装置からなる群から選択された少なくとも一つの制御要素に対し、 温
'度較差が生じた位置に対応する前記少なくとも一つの制御要素を調整することによ り、 ガス温度分布を制御する制御手段。
前記焼却炉は火格子式焼却炉であり、 前記燃焼室が主燃焼室からなるものでもよ く、 前記燃焼室が主燃焼室と二次燃焼室からなるものでもよい。 前記焼却炉は流動 床を有する焼却炉であり、 前 Ϊ3燃焼室が流動床の流動層上のフリ一ポードからなる ものでもよい。
前記温度分布を推定する手段は、 燃焼室内の三次元方向の温度分布を推定する手 段からなるのが最も好ましい。 前記温度分布を推定する手段は、 燃焼室横断面方向 の温度分布を推定する手段からなるものでも、 燃焼室縦断面方向の温度分布を推定 する手段からなるものでもよい。
第 2に、 本発明は、 廃棄物を燃焼させる燃焼室と、 複数の音波式ガス温度計測装 置と、 燃焼室内の温度分布を推定する手段と、 ブロック番地の認識手段と、 各プロ ックの番地の温度分布を推測する手段と、 温度分布を比較する比較手段と、 ガス温 度を制御する制御手段とからなる廃棄物焼却炉を提供する。 複数の音波式ガス温度 計測装置は燃焼室内のガス温度を計測する。 前記ガス温度計測装置は、 前記燃焼室 の両側壁の長さ方向と高さ方向に対して複数箇所設けられているのが好ましい。 推 定手段は計測されたガス温度から燃焼室内の温度分布を推定する。 推定手段は、 コ ンピュ一夕トモグラフィ法により温度分布を推定する手段からなるのが好ましい。 ブロック番地の認、識手段は、 燃焼室内の空間を、 区分された複数のブロックからな るプロックの番地として認識する。 各プロックの番地の温度分布を推測する手段は、 プロックの番地と推定された温度分布とから各ブ口ックの番地の温度分布を推測す る。 前記比較手段は、 各ブロックの番地の推測された温度分布と各ブロックの番地 の設定された温度とを比較する。 前記制御手段は、 比較結果に基づいて、 各ブロッ クの番地のガス温度分布を制御する。
前記各プロックの番地のガス温度分布を制御する手段は、 複数の一次空気吹き込 み装置、 複数の二次空気吹き込み装置、 複数の冷却流体吹き込み装置、 廃棄物供給 手段及び廃棄物送り手段からなる群から選択された少なくとも一つの制御要素を調 整することにより、 ガス温度分布を制御する制御手段からなるのが好ましい。
前記制御手段が、 複数の一次空気吹き込み装置、 複数の二次空気吹き込み装置及 び複数の冷却流体吹き込み装置からなる群から選択された少なくとも一つの制御要 素に対し、 各プロックの番地に対応する前記少なくとも一つの制御要素を調整する ことにより、 ガス温度分布を制御する制御手段からなるのがより好ましい。 第 3に、 本発明は、 ガス温度を計測する工程と、 温度分布を推定する工程と、 比 較工程と、 ガス温度を制御する工程とからなる廃棄物焼却炉の操業方法を提供する。 ガス温度を計測する工程は、 廃棄物を燃焼させる燃焼室内のガス温度を複数の音波 式ガス温度計測装置を使用して計測する。 温度分布を推定する工程は、 計測された ガス温度から燃焼室内の温度分布を推定する。 比較工程は、 推定された温度分布と 設定された温度とを比較する。 ガス温度を制御する工程は、 比較結果に基づいて、 複数の一次空気吹き込み装置、 複数の二次空気吹き込み装置、 複数の冷却流体吹き 込み装置、 廃棄物供給手段及び廃棄物送り手段からなる群から選択された少なくと も一つの制御要素を調整することにより、 ガス温度分布を制御する。
前記比較工程と制御工程は以下であるのが好ましい:
( a) 前記比較工程が、 前記推定された温度分布と設定温度範囲とを比較し、 設定 温度範囲からの温度較差及び前記温度較差が生じた位置を特定することからなる。
( b ) 前記制御工程が、 複数の一次空気吹き込み装置、 複数の二次空気吹き込み装 置及び複数の冷却流体吹き込み装置からなる群から選択された少なくとも一つの制 御要素に対し、 温度較差が生じた位置に対応する前記少なくとも一つの制御要素を 調整することにより、 ガス温度分布を制御することからなる。
温度分布を推定する工程は、 燃焼室内の三次元方向の温度分布を推定する工程か らなるのが最も好ましい。 前記推定工程は、 燃焼室内の横断面方向の温度分布を推 定してもよく、 燃焼室内の縦断面方向の温度分布を推定してもよい。
第 4に、 本発明は、 ガス温度を計測する工程と、 温度分布を推定する工程と、 ブ ロック番地の認識工程と、 温度分布を推測する工程と、 温度比較工程と、 ガス温度 分布を制御する工程とからなる廃棄物焼却炉の操業方法を提供する。 ガス温度を計 測する工程は、 廃棄物を燃焼させる燃焼室内のガス温度を複数の音波式ガス温度計 測装置を使用して計測することからなる。 前記音波式ガス温度計測装置は、 前記燃 焼室の両側壁の長さ方向と高さ方向に対して複数箇所設けられるのが好ましい。 温 度分布を推定する工程は、 計測されたガス温度から燃焼室内の温度分布を推定する ことからなる。 温度分布の推定は、 コンピュータ卜モグラフィ法により温度分布を 推定するのが好ましい。 ブロック番地の認識工程は、 前記燃焼室内の空間を、 区分 1
6
された複数のブロックからなるブロックの番地として認識することからなる。 温度 分布を推測する工程は、 前記プロックの番地と推定された温度分布とから各ブ口ッ クの番地の温度分布を推測することからなる。 温度比較工程は、 各ブロックの番地 の推測された温度分布と各プロックの番地の設定された温度とを比較することから なる。 ガス温度分布を制御する工程は、 比較結果に基づいて、 各ブロックの番地の ガス温度分布を制御することからなる。
前記各プロックの番地のガス温度分布を制御する工程は、 複数の一次空気吹き込 み装置、 複数の二次空気吹き込み装置、 複数の冷却流体吹き込み装置、 廃棄物供糸厶 b 手段及び廃棄物送り手段からなる群から選択された少なくとも一つの制御要素を調 整することにより、 ガス温度分布を制御することからなるのが好ましい。
前記制御工程が、 複数の一次空気吹き込み装置、 複数の二次空気吹き込み装置及 び複数の冷却流体吹き込み装置からなる群から選択された少なくとも一つの制御要 素に対し、 各ブロックの番地に対応する前記少なくとも一つの制御要素を調整する ことにより、 ガス温度分布を制御することからなるのがより好ましい。 更に、 本発明は、 廃熱ポイラの出口でのダイォキシン類の濃度を格段に低い値に 安定して抑えることのできる廃棄物焼却炉及びその操業方法を提供することを目的 とする。
上記目的を達成するために、 本発明は、 廃棄物を燃焼させる燃焼室と、 前記燃焼 室に接続された廃熱ボイラと、 前記廃熱ポイラ内のガス温度を計測する複数の音波 式ガス温度計測装置と、 計測されたガス温度から廃熱ポイラ内のガス温度分布を推 定する手段と、 前記推定された温度分布と設定された温度分布を比較する手段と、 該比較結果に基づいて、 廃熱ボイラ内の温度分布を制御する手段と、 を有する廃棄 物焼却炉を提供する。
前記制御手段は、 廃熱ボイラ内を通過する排ガスの流れに生じる 3 0 0〜4 0 0 °Cの温度域におけるよどみまたは定在の回避を行う制御装置であるのが好ましい。 前記各プロックの番地のガス温度分布を制御する手段は、 廃熱ボイラ内のスート ブロー ·ハンマリング、 空気吹き込みと循環ガス吹き込みからなる群から選択され た少なくとも一つを調整して各プロックの番地のガス温度を制御する制御装置から なるのが好ましい。
前記各プロックの番地のガス温度分布を制御する手段は、 廃棄物焼却炉の一次空 気量、 二次空気量、 廃棄物送り速度、 廃棄物供給量と冷却流体量からなる群から選 択された少なくとも一つを調整して各プロックの番地のガス温度を制御する制御装 置からなるのがよい。 さらに、 本発明は、 廃棄物を燃焼させる燃焼室と、 前記燃焼室に接続された廃熱 ボイラと、 複数の音波式ガス温度計測装置と、 ガス温度分布を推定する手段と、 ブ ロック番地の認識する手段と、 各ブロックの番地の温度分布を推測する手段と、 温 度比較手段と、 ガス温度分布を制御する制御手段と、 からなる廃棄物焼却炉を提供 する。 前記複数の音波式ガス温度計測装置は、 廃熱ポイラ内のガス温度を計測する。 前記ガス温度分布を推定する手段は、 計測されたガス温度から廃熱ポイラ内のガス 温度分布を推定する。 前記認識手段は、 廃熱ポイラ内の空間を、 複数のブロックか らなるブロックの番地として認識する。 前記推測手段は、 ブロックの番地と推定さ れた温度分布とから各ブロックの番地の温度分布を推測する。 前記比較手段は、 各 ブロックの番地の推測された温度分布と各ブロックの番地の設定され.た温度とを比 較する。 前記制御手段は、 比較結果に基づいて、 各ブロックの番地のガス温度分布 を制御する。 更に、 本発明は、 ガス温度を計測する工程と、 ガス温度分布を推定する工程と、 温度分布を比較する工程と、 温度分布を制御する工程とからなる廃棄物焼却炉の操 業方法を提供する。 前記計測工程は、 廃棄物を燃焼させる燃焼室に接続された廃熱 ボイラ内のガス温度を複数の音波式ガス温度計測装置を使用して計測する。 前記推 定工程は、 計測されたガス温度から廃熱ポイラ内のガス温度分布を推定する。 前記 比較工程は、 推定された温度分布と設定された温度分布を比較する。 前記制御工程 は、 該比較結果に基づいて、 廃熱ボイラ内の温度分布を制御する。
前記温度分布を制御する工程は、 廃熱ボイラ内を通過する排ガスの流れに生じ る 3 0 0〜4 0 0 °Cの温度域におけるよどみまたは定在の回避を行う制御からなる のが好ましい。
前記温度分布を制御する工程は、 廃熱ボイラ内のスートプロ一 ·ハンマリング、 空気吹き込みと循環ガス吹き込みからなる群から選択された少なくとも一つを調整 して各プロックの番地のガス温度を制御することからなるのが好ましい。
前記温度分布を制御する工程は、 廃棄物焼却炉の一次空気量、 二次空気量、 廃棄 物送り ¾¾、 廃棄物供給量と冷却流体量からなる群から選択された少なくとも一つ を調整して各ブロックの番地のガス温度を制御することからなるでもよい。 さらにまた、 本発明は、 ガス温度計測工程と、 ガス温度分布推定工程と、 ブロッ ク番地の認識工程と、 各ブロック番地の温度分布推測工程と、 温度比較工程と、 ガ ス温度分布制御工程と、 カゝらなる廃棄物焼却炉の操業方法を提供する。
前記ガス温度計測工程は、 廃棄物を燃焼させる燃焼室に接続された廃熱ポイラ内 のガス温度を複数の音波式ガス温度計測装置を使用して計測する。
前記ガス温度分布推定工程は、 計測されたガス温度から廃熱ボイラ内のガス温度 分布を推定する。
前記認識工程は、 前記廃熱ポイラ内の空間を、 複数のブロックからなるブロック の番地として認識する。
前記温度分布推測工程は、 前記プロックの番地と推定された温度分布とから各ブ ロックの番地の温度分布を推測する。
前記温度比較工程は、 前記各プロックの番地の推測された温度分布と各プロック の番地の設定された温度とを比較する。
前記制御工程は、 比較結果に基づいて、 各ブロックの番地のガス温度分布を制御 する。 図面の簡単な説明
図 1は、 実施の形態 1に係わる廃棄物焼却炉の斜視図である。
図 2は、 実施の形態 1の廃棄物焼却炉に係わる制御系統を示す図である。 図 3は、 実施の形態 1の廃棄物焼却炉に係わる横断面方向 (平面方向) ブロック の温度分布の一例を示す模式図である。
図 4は、 図 3による縦断面方向 (高さ方向) ブロックの温度分布の一例を示す模 式図である。
図 5は、 実施の形態 1に係わる他の廃棄物焼却炉の斜視図である。
図 6は、 実施の形態 1に係わる流動床炉の一例を示す一部切欠き側面図である。 図 7は、 従来のごみ焼却炉による燃焼温度の制御方法を示す図である。
図 8は、 実施の形態 2に係わる廃熱ポイラを示す概略斜視図である。
図 9は、 実施の形態 2の廃熱ポイラに係わる区分プロック番地の温度分布を示す 模式図である。
図 1 0は、 実施の形態 2の廃熱ポイラに係わる制御系統を示す図である。
図 1 1は、 実施の形態 3の火格子式廃棄物焼却炉を示す概略側断面図である。 図 1 2は、 実施の形態 4のスト一力型廃棄物焼却炉を示す概略側断面図である。 図 1 3は、 実施の形態 4に係わるスト一力型廃棄物焼却の概略構成図である。 図 1 4は、 実施の形態 4に係わる上方から見た配管の概略構成図である。
図 1 5は、 実施の形態 4に係わる上方から見た配管の概略構成図である。
図 1 6は、 実施の形態 5に係わるストー力型廃棄物焼却炉を示す概略側断面図で ある。
図 1 7は、 実施の形態 5において、 炉壁の一部に輻射体を配設した場合の構成を 示す図である。
図 1 8は、 実施の形態 5において、 電気ヒータを加熱手段として用いる場合の構 成及び加熱制御方法を示す図である。
図 1 9は、 実施の形態 5において、 燃焼排ガスを用いる場合の構成及び加熱制御 方法を示す図である。
図 2 0は、.実施の形態 5において、 電気ヒータを耐熱レンガ内に内蔵した場合の 構成及び加熱制御方法を示す図である。
図 2 1は、 実施の形態 5において、 燃焼排ガスを耐熱レンガの内部に設けた空間 部に導入する場合の構成及び加熱制御方法を示す図である。 図 2 2は、 実施の形態 5において、 冷却手段として空気冷却装置を有する場合の 構成及び冷却制御方法を示す図である。
図 2 3は、 実施の形態 5において、 冷却手段を用いることなく、 輻射体表層部に 飛灰が溶融 ·固化し輻射加熱の効率を低下させることを防止する手段を示す図であ る。 発明を実 ¾ するための形態
実施の形態 1
実施の形態 1によれば、 燃焼室、 好ましくは燃焼室が火格子を備えて主燃焼室と 二次燃焼室からなり、 それらの燃焼室、 主燃焼室及び Ζ又は二次燃焼室内の空間が 複数のプロックに区分されてプロック番地として入力され、 それらの室内の温度分 布を計測する音波式ガス温度計測装置と、 その計測装置によるガス温度分布のデー 夕を組み合わせて各プロック番地のガス温度分布のデータとし、 それによる燃焼室、 主燃焼室及び/又は二次燃焼室の高温域と低温域との温度を基準温度域の設定温度 と比較演算し、 それに基づいて一次空気量、 二次空気量、 廃棄物送り速度、 冷却流 体量の操作量を一種以上組合わせてそのプロック番地の温度域の温度を基準温度域 の設定温度に制御する制御装置を設けたので、 前記燃焼室、 主燃焼室及び Ζ又は二 次燃焼室内の各部位の都市ごみの焼却による実際の温度分布をブロック番地による ガス温度分布として正確に捉えることができ、 そのプロック番地の温度域の温度が 基準温度域の温度設定値に対して高温又は低温になった際にはそのプロック番地の 温度域を異常状態として扱い、 そのブロック番地の温度域の温度を正常にするため に前記操作量による調整を行う。
また、 実施の形態 1では、 好ましくは燃焼室力流動床の流動層上のフリーボード からなり、 フリーボードに音波式ガス温度計測装置と制御装置を設けで、 前記火格 子を備えて主燃焼室と二次燃焼室からなる燃焼室の場合と同様に、 フリーボ一ド内 のプロック番地の温度域の温度を正常にするために前記操作量による調整を行う。 図 1は、 実施の形態 1に係わる廃棄物焼却炉の # 見図である。
図 1において、 火格子式ごみ焼却炉 2 1は、 ホッノ° 2 2、 乾燥スト一力 2 3、 燃 焼スト一力 2 4、 後燃焼スト一力 2 5, 主燃焼室 2 6、 二次燃焼室 2 7から構成さ れている。 ここでは中間天井 2 8を設置して、 主燃焼室 2 6と二次燃焼室 2 7との 間に主煙道 2 9と副煙道 3 0を設けている。
実施の形態 1では、 上記した主燃焼室 2 6に音波式ガス温度計測装置 (以下音波 式計測装置と呼称する) 3 1と制御装置 3 2が設置されている。 主燃焼室 2 6内の 空間は複数のプロックに区分されてプロック番地として制御装置 3 2に入力されて いる。
主燃焼室 2 6内は音波式計測装置 3 1によりガス温度が連続的に計測される。 そ の温度計測値によるガス温度分布のデータは制御装置 3 2で組み合わされて各プロ ック番地のガス温度分布のデータ (三次元のデータ) とされる。
制御装置 3 2では主燃焼室 2 6内の各プロック番地によるガス温度分布のデータ について、 高温域と低温域との温度を基準温度域の温度設定値と比較演算し、 それ に基づいて一次空気量、 二次空気量、 ごみ送り速度、 水噴霧量による冷却流体量の 操作量を一種以上組合わせで調整し基準温度域の温度設定値から外れたプロック番 地による高温域又は低温域の温度を基準温度域の温度設定値になるように温度制御 する。
音波を利用したガス温度計測は、 ガス中を伝わる音の速度 cが以下に示す温度 T の関数として表されることに基づいている。
c = a · T
ここで、 aはガス組成などによって決まる定数である。
温度センサ一は音波発信機と音波受信機から構成される。 既知の距離を隔てて音 波発信機と音波受信機を設置し、 一方の音波発信機から発した音波を受信機で受信 し、 伝播時間を測定すれば、 音波発信機と音波受信機の間のガス温度が測定できる。 測定部に複数の温度センサーを設置し、 複数の経路の伝播時間を測定し、 コン プ—夕 · トモグラフィ法 (C T法) に処理すれば温度分布を求めることができる。 C T法においては、 測定部を幾つかの要素に分割し、 この要素内の温度は一定であ ると仮定し、 一つの経路について連立方程式を作る。 複数の経路について連立方程 式を作り、 これを解くことによって各要素の温度が求まる。 音波式計測装置 3 1は、 温度センサー 3 3と信号処理装置 3 4と C T処理装置 3 5から構成されている。
温度センサー 3 3はスピーカ 3 6、 マイク 3 7とホーン (図示しない) から構成さ れている。
複数の温度センサー 3 3は主燃焼室 2 6の両壁に碁盤目状に取付けている。
碁盤目状に取付けたのは主燃焼室 2 6内を通過する都市ごみ群の流れ方向に直交す る横断面の温度分布と、 都市ごみ群の流れ方向の縦断面の温度分布を計測して、 そ れらを制御装置 3 2で組合わせて、 都市ごみの焼却による各部位の実際の温度分布 をプロック番地による三次元のガス温度分布として正確に捉えるためである。
そのプロック番地の温度域の温度が基準温度域の温度設定値に対して高温又は低 温になった際にはそのプロック番地の温度域を異常状態として扱い、 そのプロック 番地の温度域の温度を正常にするための温度制御を行う。
温度センサー 3 3の数、 取付け位置は対象とする主燃焼室 2 6、 二次燃焼室 2 7 の形状、 大きさ等によって選択して決定される。
各温度センサー 3 3による温度計測値は信号処理装置 3 4で処理され、 C T処理 装置 3 5で主燃焼室 2 6内空間の縦横断面による温度分布が表示される。
C T処理装置 3 5による温度分布のデ一タは制御装置 3 2に入力され、 そこで、 縦横断面の温度分布のデータを組み合わせて Ξ次元の温度分布のデータとし、 主燃 焼室 2 6内の各部位のブロック番地による三次元の温度分布として捉える。
制御装置 3 2では主燃焼室による高温域側と低温域側の温度設定値 (基準温度域 の温度設定値) が予め入力されており、 計測されたブロック番地の温度域の温度が 基準温度域の温度設定値と比較演算されて、 その高温域側の温度設定値を超えた場 合又はその低温域側の温度設定値に満たない場合には、 そのプロック番地について、 一次空気量、 二次空気量、 廃棄物送り速度 (ごみ供給量含) 、 冷却流体量の操作量 による一種以上のうちから最も適した制御パターンが選択されて、 その制御パター ンにより主燃焼室の高温域又は低温域の温度を正常化するために温度制御される。 従って、 主燃焼室 2 6内のブロック番地の温度域による温度力 S正常化され、 その結 果、 主燃焼室 2 6内の燃焼ガス温度が安定化する。 主燃焼室 2 6内の燃焼ガス温度 が安定化すると、 主燃焼室 2 6に接続された二次燃焼室 2 7内の燃焼ガス温度を安 定化することが容易である。
即ち、 上記したように主燃焼室 6内で都市ごみの燃焼が行われ、 発生した燃焼排 ガスが中間天井 2 8の存在により、 主煙道 2 9と副煙道 2 6に別れて排出され、 燃 焼排ガスは、 二次燃焼室 7で混合され、 二次的な燃焼が行われて未燃分が完全に燃 焼する。
この際、 一般に主煙道 2 9を通る燃焼排ガスには未燃分は殆ど含まれていなく、 副煙道 2 6を通る燃焼排ガスには未燃分が不均一に含まれているが、 本発明による 副煙道 2 6を通る燃焼 ガスは主燃焼室 2 6内の各部位によるブロック番地の温度 域の温度が正常化されて燃焼ガス温度が安定化されて、 該燃焼排ガスには未燃分が 均一に含まれているので、 二次燃焼室 7でこれらの燃焼排ガスが混合された際に、 二次的な燃焼により未燃分を完全に燃焼することができる。 二次燃焼室 2 7からの 燃焼排ガスは、 除塵室 4 3で粒径の大きなダストが除去された後、 廃熱ボイラ 4 4 に送られ、 熱交換された後に、 排ガスとして排ガス処理装置等を経由して外部に放 出される。
図 2は、 実施の形態 1の廃棄物焼却炉に係わる制御系統を示す図である。 図 3は、 実施の形態 1の廃棄物焼却炉に係わる横断面方向 (平面方向) ブロックの温度分布 の一例を示す模式図である。 図 4は、 図 3による縦断面方向 (高さ方向) ブロック の温度分布の一例を示す模式図である。 ブロック間はわかり易くするために間隔を 開けて表示している。
図 2において、 主燃焼室 2 6内には図 1で示したように両壁に碁盤目状に複数 の温度センサー 3 3が取付けられているので、 複数の温度センサー 3 3による計測 値の信号が連続的に信号処理装置 3 4に入力される。 信号処理装置 3 4では各温度 センサー 3 3による温度計測値が処理され、 C T処理装置 3 5で主燃焼室 2 6内空 間の縦横断面の温度分布が画像される。
C T処理装置 3 5で画像された温度分布のデータが制御装置 3 2に入力される。 制御装置 3 2は縦横断面の温度分布を組合わせて、 ブロック番地の温度域の三次元 による温度分布を形成する。 ブロック番地は、 図 3、 図 4から明らかなように、 画像による座標において平面 による軸 A、 軸 Bと、 その平面軸 A、 軸 Bに対する高さ軸 Cにより、 3次元の温度 域として扱うことができる。
従って、 このブロック番地は軸 AB Cにより起点を決めて番地が特定される。 例 えば、 図 3、 図 4において、 低温域の温度が発生しているブロック番地が A1B1 C 1、 A2B1C1, A5B1CL A6B1C1、 A2B2Cl、 A6B2Cl、 AlB2C2、 A6B2 C2 として捉えられる。 また、 高温域の温度になっているブロック番地も同様にし て捉えることができる。 ブロック番地の薄模様は低温域、 濃模様は高温域、 模様無 しは正常な温度域を示す。
図 2において、 主燃焼室 2 6のプロック番地の温度が高温域 (概略 1 0 0 0 °C以 上) と低温域 (概略 7 0 0 °C以下) になっているかどうかを選別するために、 高温 域側では 1 0 0 0 °Cを基準温度域の温度設定値とし、 低温域側では 7 0 0 °Cを基準 温度域の温度設定値とした。
各プロック番地の温度域がプロック単位で二つの基準温度設定値と比較演算され て、 高温域側の温度設定値を超えた際には、 そのブロック番地が形成されている部 位によって、 一次空気量、 二次空気量、 火格子上のごみ送り速度、 水噴霧量、 ごみ 供給量の操作量による一種以上から制御パタ一ンが選定され、 それに基づいて、 正 常化するために温度制御が行われる。 主燃焼室 2 6内の空間を構成する各ブロック 番地の温度域が正常に復元されることによつて、 結果として主燃焼室の燃焼ガス温 度が安定化する。
制御パターンは一次空気量、 二次空気量、 火格子上のごみ送り速度、 水噴霧量、 ごみ供給量の操作量による一種以上から選定されるが、 一般的には主燃焼室 2 6内 の空間部位から、 それに対応するブロック番地について、 制御パターンが経験等に よつて決められる。 プロック番地の温度域の温度が高温域側の温度設定値を超えた 場合には、 選定された制御パターンに対応する操作量の調整弁を操作して温度制御 される。 選定された制御パターンにより復元ができない場合には、 次々に制御パ ターンを変えて正常な温度域の温度になるようにされる。
次に、 図 1〜図 4に基づいて、 火格子式ごみ焼却炉 2 1により都市ごみ 1 1を連 続的に焼却した際の主燃焼室 2 6による燃焼ガス温度の制御について詳述する。 ホッパ 2 2に投入された都市ごみ 1 1は、 シュートを通して乾燥スト一力 2 3に 送られ、 下からの予熱空気 (一次空気) と炉内の輻射熱により乾燥されると共に、 昇温されて着火する。 着火して燃焼を開始したごみ 1 1は、 燃焼スト一力 2 4に送 られ、 下から送られる燃焼用空気によりガス化され、 一部は燃焼する。 そして、 更 に、 後燃焼スト一力 2 5で、 未燃分が完全に燃焼する。 そして、 燃焼後に残った灰 は、 主灰シュート 1 2より外部に取出される。
燃焼は主燃焼室 2 6内で行われ、 燃焼排ガスは、 中間天井 2 8の存在により、 主 煙道 2 9と副煙道 3 0に別れて排出される。 これらの燃焼排ガスは、 二次燃焼室 2 7で混合され、 二次的な燃焼が行われて未燃分が完全に燃焼される。 二次燃焼室 2 7からの燃焼排ガスは、 除塵室 4 3で粒径の大きなダストを除去された後、 廃熱ポ イラ 4 4に送られ、 熱交換された後に、 排ガス処理装置等を経由して外部に排ガス として放出される。
主燃焼室 2 6には、 室内のガス温度分布を連続的に計測する音波式計測装置 3 1 と制御装置 3 2とが設置されており、 主燃焼室 2 6内の空間は複数のプロックに区 分されてブロック番地として制御装置 3 2に入力されている。 制御装置 3 2では主 燃焼室 2 6内の音波式計測装置 3 1で計測された温度計測値によるガス温度分布の データを組み合わせてプロック番地の温度域の三次元によるガス温度分布のデータ として捉え、 それによるブロック番地の温度域の温度を高温域側又は低温域側 (基 準温度域) の温度設定値と比較演算する。 高温域側の温度設定値は 1 0 0 0 °Cであ り、 低温域側の温度設定値は 7 0 0 °Cである。
図 3、 図 4に示すように、 ブロック番地 AlB l C l、 A2B l Cl、 A5B l C l、 A6 B lCl、 A2B2C1, A6B2Cl、 AlB2C2 A6B2C2では低温域側の温度設定 値に満たない温度が発生している。 これらプロック番地の温度域の温度は制御装置 3 2で直ぐに捉えられる。 その温度域の温度を正常化するために、 ごみ供給量 3 8、 火格子上のごみ送り速度 3 9、 水噴霧量 4 0、 二次空気量 4 1、 一次空気量 4 2の 操作量から一次空気量 4 2と水噴霧量 4 0による制御パターンが選定される。 一次 空気量 4 2と水噴霧量 4 0の操作量を調整するために、 調整弁 4 2 a、 4 0 aが調 整される。 符号 3 8 a、 3 9 a、 4 1 aはごみ供給量、 ごみ送り ¾¾ 3 9、 二次空 気量 4 1の操作量に対応する調節弁である。
一次空気量 4 2には都市ごみ 1 1を燃焼するために乾燥ストー力 2 3の下方から 蒸気式空気予熱器で予熱された空気が供給する。 従って、 上記低温域の発生したブ ロック番地の温度を正常化させるために、 調整弁 4 2 aを開とし、 一次空気量を乾 燥スト一力 2 3の下方から多く吹込む。 また、 水噴霧量供給部 4 1は燃焼ストー力 2 4等において高発熱量のプラスチック等が混入して、 燃焼ガス温度が上昇した際 に、 水噴霧により冷却するものであるので、 ここでは調整弁 4 0 aを閉とする。 調 整弁 4 2 aと調整弁 4 0 aを調整した後、 それらブロック番地の温度域の温度を計 測して確認する。 低温域が発生しているとして計測されたプロック番地 Al B 1 C 1、 A2B l Cl、 A5Bl Cl、 A6B1 C1、 A2B2Cl、 A6B2Cl、 AlB2C2、 A6B2C2 の三次元による温度分布が復元しているときは、 正常な状態として操業が続けられ る。 また、 復元していない場合には、 そのまま継続して様子をみるか、 又は他の制 御パターンに変えて正常化を図る。
乾燥ストー力 2· 3の上方によるプロック番地の温度域は、 水蒸気が大量に発生し て低温域になったが、 音波式計測装置 3 1によれば、 水蒸気が大量に発生してもそ れに影響されることなく正確に計測できる。 そのために、 上記のような処置を迅速 にとることができる。 また、 ブロック番地に高温領域が'発生しても、 そのブロック 番地の温度域の'温度を音波式計測装置 3 1によって計測することができるので、 そ れに適した制御パターンを選定して、 調節弁の調整によって復元させ、■正常化する ことが可能である。
主燃焼室 2 6内の空間を構成する各プロック番地の温度域による三次元の温度分 布の全てが正常に制御されている場合には、 二次燃焼室 2 7において主煙道 2 9か ら送られてくる燃焼排ガスとの混合を円滑に行うことができ、 二次燃焼室 2 7で燃 焼排ガスの未燃分を完全に燃焼することができる。 従って、 二次燃焼室 2 7の排ガ ス出口での温度を 8 5 0 °C〜9 5 0 °Cに確実に管理してばらつきの少ない安定した 排ガス温度制御ができるので、 そこで測定される C O、 NOXの濃度を規定以下に 大幅に低減させることができる。 二次燃焼室 2 7からの燃焼排ガスは、 除塵室 4 3で粒径の大きなダストが除去さ れた後、 廃熱ボイラ 4 4に送られ、 熱交換された後に、 排ガス処理装置等を経由し て外部に放出される。
以上のように、 実施の形態 1によれば、 主燃焼室 2 6による燃焼ガスの温度制御 力 S、 プロック番地の温度域毎に的確に行うことができるので二次燃焼室での排ガス 温度の安定制御ができる。 従って、 二次燃焼室の排ガス出口を通過する排ガス中の C〇、 NOXの濃度を共に規定以下に安定させることができる。
図 5は、 実施の形態 1に係わる他の廃棄物焼却炉の斜視図である。
図 5において、 図 1〜図 4と共通する箇所は同じ符号を用い、 説明の一部を省略し 図 5において、 火格子式ごみ焼却炉 2 1は、 ホッノ° 2 2、 乾燥スト一力 2 3、 燃 焼スト一力 2 4、 後燃焼スト一力 2 5, 主燃焼室 2 6、 二次燃焼室 2 7から構成さ れている。 ここでは中間天井 2 8を設置して、 主燃焼室 2 6と二次燃焼室 2 7との 間に主煙道 2 9と副煙道 3 0を設けている。
■ 実施の形態 1では、 上記した二次燃焼室 2 7内に音波式計測装置 3 1と制御装置 3 2が設置されている。 二次燃焼室 2 7内の空間は複数のブロックに区分されてブ ロック番地として制御装置 3 2に入力されている。
二次燃焼室 2 7内は音波式計測装置 3 1によりガス温度が連続的に計測される。 その温度計測値によるガス温度分布のデータは制御装置 3 2で組み合わされて各ブ ロック番地のガス温度分布のデータ (三次元のデ一夕) とされる。
制御装置 3 2では二次燃焼室 2 7内の各ブロック番地によるガス温度分布のデ一 夕について、 高温域と低温域との温度を基準温度域の温度設定値と比較演算し、 そ れに基づいて一次空気量、 二次空気量、 ごみ送り速度、 水噴霧量による冷却流体量 の操作量を一種以上組合わせで調整し基準温度域の温度設定値から外れたプロック 番地による高温域又は低温域の温度を基準温度域の温度設定値になるように温度制' 御する。
音波式計測装置 3 1は温度センサ一 3 3と信号処理装置 3 4と C T処理装置 3 5 から構成されている。 温度センサ一 3 3はスピーカ 3 6、 マイク 3 7とホーン (図 示しない) 力 ^ら構成されている。
音波式計測装置 3 1によれば二次燃焼室 2 7内の両壁に碁盤目状に取付けられた 複数の温度センサー 3 3による計測値の信号が連続的に信号処理装置 3 4に入力さ れる。 信号処理装置 3 4では各温度センサ一 3 3による計測値が処理され、 C T処 理装置 3 5で二次燃焼室 2 7内空間の縦横断面の温度分布が画像される。
C T処理装置 3 5で画像された温度分布のデータが制御装置 3 2に入力される。 制御装置 3 2は縦横断面の温度分布を組合わせて、 ブロック番地の温度域の三次元 による温度分布のデ一夕として捉える。
制御装置 3 2では二次燃焼室 2 7による高温域側と低温域側との温度設定値 (基 準温度域の温度設定値) が予め入力されており、 計測されたブロック番地の温度域 の温度が基準温度域の温度設定値と比較演算されて、 その高温域側の温度設定値を 超えた場合又はその低温域側の温度設定値に満たない場合には、 そのプロック番地 について、 一次空気量、 二次空気量、 廃棄物送り速度 (ごみ供給量含) 、 冷却流体 量の操作量による一種以上のうちから最も適した制御パターンが選択されて、 その 制御パターンにより主燃焼室の高温域又は低温域の温度を正常化するために温度制 御される。
従って、 二次燃焼室 2 7内の各部位によるブロック番地の温度域の温度が正常化 され、 その結果、 二次燃焼室 2 7内の燃焼ガス温度を安定化することができるので、 二次燃焼室の排ガス出口を通過する燃焼排ガス中の C O、 NOXを共に規定以下に 安定させることができる。
図 1〜図 5においては、 火格子式ごみ焼却炉の主燃焼室又は二次燃焼室にガス温 度分布を計測する音波式ガス温度計測装置を設けた場合について詳述したが、 主燃 焼室及び二次燃焼室の両方にガス温度分布を計測する音波式ガス温度計測装置を設 けた場合も、 同様の効果を得ることができる。
なお、 上記実施形態では炉内の温度分布を詳細に計測又は制御する場合について 述べたが、 例えば炉の特定位置の対向する壁と壁との間の平均温度をモニターする だけでよければ、 マイクとスピー力を備えた温度センサ一を一対対向配置するだけ でよく、 温度センサーの設置個数又は配置は炉形状等によって個別に設定できるこ とは云うまでもない。
次に廃棄物焼却炉として実用化されている流動床炉の場合について詳述する。 図 6は実施の形態 1による流動床炉の一例を示す一部切欠き側面図である。
流動床炉 4 5は焼却炉 4 6を具備している。 該焼却炉 4 6は上部にフリーポード (燃焼室) 4 7を設けている。 フリ一ポード 4 7の側面には音波式計測装置 3 1と 制御装置 3 2が設置されている。 二次燃焼室 2 7内の空間は複数のブロックに区分 されてブ口ック番地として制御装置 3 2に入力されている。
フリ一ボード 4 7'内は音波式計測装置 3 1によりガス温度が連続的に計測される。 その温度計測値によるガス温度分布のデータは制御装置 3 2で組み合わされて各ブ 口ック番地の温度域による三次元のガス温度分布のデータとされる。
制御装置 3 2ではフリーポ一ド 4 7による高温域側と低温域側との温度設定値が 予め入力されており、 計測されたプロック番地の温度域の温度が基準温度域の温度 設定値と比較演算されて、 その高温域側の温度設定値を超えた場合又はその低温域 側の温度設定値に満たない場合には、 そのブロック番地について、 一次空気量、 二 次空気量、 廃棄物送り速度 (ごみ供給量含) 、 冷却流体量の操作量による一種以上 のうちから最も適した制御パターンが選択されて、 その制御パターンによりフリー ボード 4 7の高温域又は低温域の温度を正常化するために温度制御される。
従って、 フリ一ボード 4 7の各部位によるプロック番地の温度域の温度が正常化 され、 その結果、 フリーボード 4 7内の燃焼ガス温度を安定ィ匕することができるの で、 フリ一ボード 4 7の排ガス出口を通過する'燃焼排ガス中の C〇、 NOXを共に 規定以下に安定させることができる。
音波式計測装置 3 1は温度センサー 3 3と信号処理装置 3 4と C T処理装置 3 5 から構成されている。 温度センサ一 3 3は前述したようにスピーカ、 マイクとホー ンから構成されている。
音波式計測装置 3 1によればフリーポ一ド 4 7内の両壁に碁盤目状に取付けられ た複数の温度センサ一 3 3による計測値の信号が連続的に信号処理装置 3 4に入力 される。 信号処理装置 3 4では各温度センサー 3 3による計測値が処理され、 C T 処理装置 3 5で二次燃焼室 2 7内空間の縦横断面の温度分布が画像される。 C T処理装置 3 5で画像された温度分布のデータが制御装置 3 2に入力される。 制御装置 3 2は縦横断面の温度分布を組合わせて、 ブロック番地の温度域の三次元 による温度分布のデータとして捉える。
制御装置 3 2では二次燃焼室 2 7による高温域側と低温域側との温度設定値 (基 準温度域の温度設定値) が予め入力されており、 計測されたブロック番地の温度域 の温度が基準温度域の温度設定値と比較演算されて、 その高温域側の温度設定値を 超えた場合又はその低温域側の温度設定値に満たない場合には、 そのプロック番地 について、 一次空気量、 二次空気量、 廃棄物送り速度 (ごみ供給量含) 、 冷却流体 量の操作量による一種以上のうちから最も適した制御パターンが選択されて、 その 制御パターンにより主燃焼室の高温域又は低温域の温度を正常ィ匕するために温度制 御される。
従って、 二次燃焼室 2 7内の各部位によるブロック番地の温度域の温度が正常化 され、 その結果、 二次燃焼室 2 7内の燃焼ガス温度を安定ィ匕することができるので、 二次燃焼室の排ガス出口を通過する燃焼排ガス中の C〇、 NOXを共に規定以下に 安定させることができる。
流動床炉 4 5の焼却炉 4 6は下部に分散板 4 8 aを備えた散気装置 4 8を設けて レ る。 分散板 4 8 aの中央には焼却炉 4 6の全幅にわたる不燃物排出口 4 9が設け られている。 散気装置 4 8の下側には一次空気を供給する風箱 5 0を設けて、 前記 分散板 4 8 aを介して一次空気を散気装置 4 8の上方に噴出させる。
分散板 4 8 aの上面には砂循環方式による流動層 5 1が形成されている。 砂の流 動はバブリング方式による。 符号 5 2は砂吹込みノズルである。
流動砂はスタート時に灯油またはガスパーナにより、 流動砂を約 5 0 0〜7 0 0 °Cに加熱しながらべッドの流動化を行う。
焼却炉 4 6の側面には流動層 5 1に都市ごみ 1 1を供給するホッ.パ 5 3を備えた ごみ供給装置 5 4が設けられている。
流動層 5 1には風箱 5 0を分割型にして一次空気の吹込み量を大小して噴出させ 前記流動層 5 1に渦流れを発生するようにしている。
前記流動層 5 1に都市ごみ 1 1が投入されると、 自燃により層内が約 7 0 0 °Cに 保たれる。 投入された都市ごみ 1 1は流動層 5 1内で高温の砂と激しく混合されて 短時間で乾留ガス化し、 かつ燃焼する。 その際、 流動層 5 1は渦流れが発生してい るので、 都市ごみ 1 1が拡散されて、 都市ごみ 1 1に含まれる不燃物が不燃物排出 口 4 9に急速移動する。
前記流動層 5 1では乾留ガス化し一部燃焼した燃焼排ガスがフリーポード 4 7内 で未燃分や軽いごみを燃焼させる。 フリ一ボード 4 7では二次空気をノズル 5 5か ら積極的に吹き込んで、 上記燃焼排ガスと混合させて燃焼させる。
その際に、 フリーボード 4 7内には中間天井 5 5を設けて、 衝突混合させるため の二回流ガスを作り、 中間天井 5 5の上方での二回流ガスの混合により完全燃焼を 図っている。
フリーボ一ド 4 7内の燃焼排ガスの温度は一般に不均一になり易いが、 本発明で は前述したようにフリ一ポード 4 7の側面に音波式計測装置 3 1と制御装置 3 2を 設置し、 フリ一ボード 4 7内のブロック番地の温度域の温度を計測し、 基準温度域 の温度設定値と比較演算されて、 その高温域側の温度設定値を超えた場合又はその 低温域側の温度設定値に満たない場合には、 そのブロック番地について、 一次空気 量、 二次空気量、 廃棄物送り速度 (ごみ供給量含) 、 冷却流体量の操作量による一 種以上のうちから最も適した制御パターンを選択して、 その制御パターンによりフ リ一ボード 4 7の高温域又は低温域の温度を正常化するために温度制御する。 従って、 フリーボード 4 7の排ガス出口での温度を 8 5 0 °C〜9 5 O t:に確実に 管理してばらつきの少ない安定した排ガス温度制御ができるので、 そこで測定され る C〇、 NOXの濃度を規定以下に大幅に低減させることができる。
フリ一ボード 4 7からの燃焼排ガスは、 除塵室 4 3で粒径の大きなダストが除去 された後、 廃熱ポイラ 4 4に送られ、 熱交換された後に、 排ガズ処理装置等を経由 して外部に放出される。
本実施の形態では、 火格子式焼却炉と流動床炉の説明をしたが、 ごみ焼却残さの 灰を溶融あるいは熱処理を行う灰溶融炉または灰熱処理炉をごみ焼却炉に接続して 設けた設備に用いることもできる。 実施の形態 2
実施の形態 2の廃棄物焼却炉の廃熱ボイラによれば、 上記温度計測装置と制御装 置を設けることにより、 廃熱ポイラ内を通過する排ガスの流れに生じる 3 0 0〜4 0 0 °Cの温度域のよどみ及び Z又は定在を回避する調整を行い、 各ブロック番地の ガス温度域を制御することができるので、 ダイォキシン類が生成し易い 3 0 0 °C〜 4 0 0 °Cの温度域を回避することができる。 従って、 廃熱ポイラの出口でのダイォ キシン類の濃度を常時低い値に抑制することができる。
本発明ではごみ焼却炉の廃熱ボイラを対象として、 廃熱ボイラ内で廃熱ポイラの 出口でのダイォキシン類の濃度を常時低い値に抑制することのできるものである。 以下に、 音波式ガス温度計測装置を用い、 該計測装置で計測されたガス温度分布の データを組み合わせて三次元のガス温度分布のデータとして、 それに基づいて廃熱 ボイラ内を通過する排ガスの流れに生じる 3 0 0〜4 0 0 °Cの温度域のよどみ及び ノ又は定在を回避する調整を行い、 各プロック番地のガス温度域を制御する制御装 置を設けた廃熱ボイラの好ましい実施の形態を図によって詳述する。 よどみは温度 域 3 0 0 T:〜4 0 0 °Cを排ガスが短時間で通過できない状態であり、 定在は温度域 3 0 0 ° (:〜 4 0 0でに排ガスが滞留する状態である。
図 8は本発明による実施の形態を示す一部切欠きを有する概略側面図である。 図 8において、 火格子式ごみ焼却炉 101は、 ホッパ 102、 乾燥スト一力 103、 燃焼 スト一力 104、 後燃焼ストー力 105, 主燃焼室 106、 二次燃焼室 107から構成され ている。 ここでは中間天井 108を設置して、 主燃焼室 106と二次燃焼室 107との間 に主煙道 109と副煙道 110を設けている。
本発明では、 上記した火格子式ごみ焼却炉 101の二次燃焼室 107に接続して配設 した廃熱ボイラ 111を対象とする。 廃熱ポイラ 111は二次燃焼室 (第 1放射室とも 云う) 107に接続した第 2放射室 112と、 上流側から下流側に沿って蒸発管 113a、 過熱器 114、 蒸発管 113b, 113c,節炭器 115を配置した冷却室 116から構成されてい る。 第 2放射室 112と冷却室 116の間にはバイパス通路 117が設けられている。 符号 131はスートブロー · 'ハンマリング装置である。
本発明では、 廃熱ボイラ 111の第 2放射室 112と、 冷却室 116を通過する排ガス の通過部位によるガス温度分布を制御する制御装置 118を設ける。 制御装置 118に は虔熱ボイラ内の空間を三次元の複数のプロックに区分し、 プロック番地として入 力しておく。 廃熱ポイラ内の空間の場合は、 ガス温度分布領域が上流側から下流側 に沿って異なるので、 要所にブロック番地を集合した区域番地を設ける。 第一区域 番地は第 2放射室 112の下部の空間とし、 第 2区域番地はボイラ下ホッパ 119の空 間とし、 第 3区域番地は蒸発管 113a、 過熱器 114と蒸発管 113bの間の空間とし、 第 4区域番地は蒸発管 113bと蒸発管 113cの間の空間とし、 第 5区域番地は蒸発管 113cと節炭器 115の間の空間とし、 そして第 6区域番地は節炭器 115の下流側の 空間とした。 各区域番地の中にはプロック番地を設けた。
本発明では、 第 1区域番地〜第 6区域番地内の各プロック番地の温度領域をミ次元 のガス温度分布によるデータにより計測するために、 上記した第 1区域番地〜第 6 区域番地内の各プロック番地内のガス温度分布を連続的に計測する音波式ガス温度 計測装置 (以下音波式計測装置と呼称する) 120を設置し、 音波式計測装置 120で 計測された横縦断面のガス温度分布のデ一夕を組み合わせて、 三次元のガス温度分 布のデータとし、 それにより第 1区域番地〜第 6区域番地内の温度域とその区域番 地内の基準温度域とを比較演算し、 その差が所定範囲を超えた際には、 それに基づ いて一次空気量、 二次空気量、 火格子上のごみ送り速度、 噴霧量、 ごみ供給量、 ス一トブロー 'ハンマリング、 空気吹込み、 循環排ガスの吹込みの一種以上を制御 するようにしている。 符号 134は空気吹込み装置で調節弁 134a〜: 134eが設けられ ている。
音波式計測装置 120は市販品を利用することができ、 それはセンサー 121 と信号 処理装置 122と C T処理装置 123から構成されている。
センサー 121はスピーカ、 マイク、 ホーンから構成されている。
ここでは排ガス温度計測装置に音波式を用いたが、 ダストが散在する排ガスの牡 温度を計測できるものであれば、 同様に使用することができる。
複数のセンサー 121 は第 1区域番地〜第 6区域番地の空間を形成する両壁に碁盤 目状に取付けられている。
碁盤目状に取付けたのは第 1区域番地〜第 6区域番地内を通過する排ガスの流れ 方向に直交する横断面の温度分布と、 排ガスの流れ方向縦断面の温度分布を計測し て、 それらを組合わせて、 第 1区域番地〜第 6区域番地の温度分布を三次元のプロ ックとして捉えるためである。 但し、 計測精度の低下が許容される場合には、 セン サ一の間隔を大きくしたり、 不規則に配置してもよい。
第 1区域番地〜第 6区域内の空間の温度分布をプロックとして Ξ次元に捉えるこ とによって、 第 1区域番地〜第 6区域番地の排ガスによる各部位の実際の温度分布 をブロック番地として正確に捉えることができ、 各区域番地のプロック番地が区域 番地毎の各基準温度設定値に対して超えた温度域になった際には、 その区域番地の プロック番地を異常状態として扱い、 そのプロック番地の温度域を正常にするため の制御を行う。
センサー 133 の数、 取付け位置は対象とする区域番地の形状、 大きさ等によって 選択して決定される。
各センサ一 121による計測値は信号処理装置 122で処理され、 C T処理装置 123 で第 1区域番地〜第 6区域番地の縦横断面による温度分布が表示される。
C T処理装置 123による温度分布のデータは制御装置 118に入力される。
制御装置 118では、 それらの温度分布のデータを組合わせて、 第 1区域番地〜第 6区域番地のプロック番地の三次元による温度分布として捉える。
制御装置 118には、 第 1区域番地〜第 6区域番地の各プロック番地とその区域番 地毎の基準温度域の設定値が予め入力されており、 計測された各区域番地のブ口ッ ク番地の温度がその区域番地の基準温度域の設定値と比較演算されて、 その設定値 を超えた場合には、 そのブロック番地に基づいて一次空気量、 二次空気量、 火格子 上のごみ送り速度、 冷却流体量、 ごみ供給量、 ス一トブロー'ハンマリング、 空気 吹込み、 循環排ガス吹込みの一種以上から最も適した制御パターンが選択されて、 ' 制御パ夕ーンにより制御されて、 各区域番地毎の各ブロック番地を正常化にするた めに制御される。
従って、 各ブロック番地の温度計測に基づくきめ細かな制御により、 廃熱ボイラ による排ガスの入口から出口までの 8 0 0〜 9 5 0でから 3 0 0 °C未満に変化する 温度分布の中で、 ダイォキシン類の生成が盛んな 3 0 0 °C〜4 0 0 °C前後の温度域 回避するか又は排ガスを極力短時間で通過させ、 廃熱ポイラ出口でのダイォキシ ン類を規定値以下に安定して抑制することができる。
図 2は本発明に用いる制御装置に入力された各区域番地のプロック番地の状態を 示す模式図である。 各区域番地及びその中のプロック番地を分かり易くするために 太矢印に示すように引き出し、 画像による軸 A、 B、 Cの座標を表示した。 即ち、 平面による軸 A、 軸 Bと、 その平面軸 A、 軸 Bに対する高さ軸 Cにより、 3次元 のブロック番地による温度領域の制御ができるようにしている。
従って、 この各区域番地は温度領域の温度範囲が異なるので、 その中のブロッ ク番地は各区域番地毎に軸 A B Cにより起点を決めて番地を特定している。 例えば、 第 4区域番地、 第 5区域番地、 第 6区域番地には、 各ブロック番地 AlB l Cl、 A2 B l Cl、 A3 B l C l、 AlB2Cl、 A2B2Cl、 A3B2Cl、 AlB3 Cl、 A2B3Cl、 A3B3C1として捉えられる。
第 6区域番地の各プロック番地は 3 0 0 °C未満の区域であり、 基準温度設定値と して 2 5 0 °C以下が設定される。 従って、 設計上、 第 6区域番地の温度領域を基準 として、 上流側の各区域番地の基準温度設定値が決められ、 排ガスが円滑に熱交換 した場合には第 6区域番地で確実に上記範囲になるようにしている。 一例として、 第 5区域番地の基準温度設定値は 3 0 0 °C、 第 4区域番地の基準温度設定値は 5 0 0 °C、 第 3区域番地の基準温度設定値は 7 0 0 °C、 第 2区域番地、 第 1区域番地の 基準温度設定値は 9 0 0 °Cとする。
本発明では廃熱ボイラ内に 8 5 0〜9 5 0 °Cの排ガスが送り込まれた際に、 第 2 放射室、 冷却室の水管壁による伝熱、 冷却室内の蒸発管、 過熱器、 節炭器による伝 熱によって、 廃熱ポイラ出口の排ガスの温度が 2 5 0 °C未満になるように設計され ているので、 各要所の区域番地での温度分布が各区域番地での基準温度設定値の範 囲を超えた場合には、 その区域番地の前の区域番地等で排ガスに異常が生じたもの と判断し、 最も適した制御パターンによって正常に戻すための温度制御が行われる。 制御を行うための調節項目は一次空気量、 二次空気量、 火格子上のごみ送り速度、 冷却流体量、 ごみ供給量、 スートブロー ·ハンマリング、 空気吹込み、 循環排ガス 吹込みであり、 これらの一種以上を組み合わせて制御パターンが構成される。 廃熱ポイラでのダイォキシン類の生成は、 前工程のごみ焼却炉の操業条件に大き く影響されるので、 それらの操業調節項目も含めて、 ダイォキシン類のより厳重な 生成防止を図ることが必要である。
従って、 制御パターンとしては、 一般に、 冷却室 116では、 廃熱ポイラ内の調節 項目のス一トブロー 'ハンマリングにより、 ダスト付着'堆積を抑制し、 ダイォキ シン類の生成防止を行うとともに、 一次空気量、 二次空気量、 火格子上のごみ送り 速度、 冷却流体量、 ごみ供給量、 空気吹込み、 循環排ガス吹込みの一種以上と組み 合わせて、 ダイォキシン類の厳重な生成防止を図る。
図 1 0は本発明による制御系統の一例を示す図である。
図 1 0において、 廃熱ボイラ 111の第 1区域番地〜第 6区域番地の両壁に碁盤目 状に取付けられた複数のセンサ一 121 による計測値の信号が連続的に信号処理装置 122に入力される。 信号処理装置 122では各センサー 121による計測値が処理され、 C T処理装置 123で第 1区域番地〜第 6区域番地による空間の縦横断面の温度分布 'が画像され、 それらが制御装置 118に入力される。
制御装置 118では各ブロック番地とその区域番地毎の基準温度域の設定値が予め 入力されており、 音波式計測装置 120で計測された横縦断面のガス温度分布のデー 夕を組み合わせて、 三次元のガス温度分布のデータとし、 それによる第 1区域番地 〜第 6区域番地内の温度域とその区域番地内の基準温度域とを比較演算し、 その差 が所定範囲を超えた際には、 それに基づいて一次空気量、 二次空気量、 火格子上の ごみ送り速度、 水噴霧量、 ごみ供給量、 ス一トブロー'ハンマリング、 空気吹込み、 循環排ガス吹込みの一種以上を制御する。
区域番地内のプロック番地で温度領域が基準温度域を超えた場合は制御装置 132 で直ぐに捉えられ、 それらのブロック番地を正常ィ匕するために、 調整項目としてご み供給量供給部 126、 火格子上のごみ送り速度調整装置 127、 一次空気量供給部 128、 水噴霧量供給部 129、 二次空気量供給部 130、 スートブロー 'ハンマリング装 置 131、 空気吹込み装置 134 (循環排ガス吹込み装置に切り替えることができる) が設けられており、 それらには各調整弁 126a、 127a, 128a、 129a, 130a、 131a, 134a〜134eが設けられている。 図 9に示すように、 例えば、 第 4囟域番地、 第 5区域番地の各ブロック番地 A1 Bl C l、 A2B2C 1、 A3B3 C 1 の温度域がそれらの基準温度領域を超えて高い温 度として捉えられて場合、 制御パターンは、 スートブロー ·ハンマリンダと二次空 気量が決められる。 制御装置 132から制御パターンに選定されると、 それに従って スートブロー ·ハンマリンダ 131 の調節弁 131a は調節される。 定置型スートブ 口一 ·ハンマリング装置 131は第 6区域番地と第 5区域番地の間の節炭器 115と、 第 5区域番地と第 4区域番地の間の発管 113c と、 第 4区域番地と第 3区域番地の 間の蒸発管 113bとに設置され、 蒸発管 113aには長抜差型スートブロー ·ハンマリ ング装置が設置されているが、 ここでは、 節炭器 115 と、 蒸発管 113cに設置した 定置型ス一トブロー .ハンマリング装置 131が作動され、 その 2 7箇所のノズル孔 から蒸気が節炭器 115 と蒸発管 113cに吹き付けられ、 付着したダスト等が除去さ れる。 .
ス一トブロー ·ハンマリングによれば、 節炭器 115、 蒸発管 113cの付着ダスト 等の除去により熱交換が正常に戻り、 排ガスの温度が均一に低下する。 また、 蒸気 または冷空気による排ガス温度の低下を均一に行うことができ、 ダイォキシン類の 生成し易い 3 0 0 °C〜4 0 0 °C前後の温度域を短時間で通過させることができる。 また、 この際、 二次空気供給量を調節弁 129a により二次空気供給量を調節する ことによって、 ごみ焼却炉 101の二次燃焼室 (第 1放射室) の排ガス出口温度を調 節して、 正常な状態の排ガスを廃熱ポイラ 111内に送り込むようにする。
制御パターンは、 各区域番地の部位から経験等によって、 ごみ焼却炉の廃熱ボイ ラとして、 排ガス処理の総合的判断により、 ダイォキシン類の濃度が廃熱ポイラ出 口で規定値以下に安定して入るように選択、 決定される。
次に、 図 8〜図 1 0に基づいて、 火格子式ごみ焼却炉 101により都市ごみ 111を 連続的に焼却して、 それに接続した廃熱ポイラによる燃焼ガス温度を制御し、 ダイ ォキシン類の生成を低い値に抑制する方法について詳述する。
ホッパ 102に投入された都市ごみは、 シュートを通して乾燥スト一力 103に送ら れ、 下からの一次空気と炉内の輻射熱により乾燥されると共に、 昇温されて着火す る。 着火して燃焼を開始したごみは、 燃焼スト一力 104に送られ、 下から送られる 一次空気によりガス化され、 一部は燃焼する。 そして、 さらに、 後燃焼スト一力 105で、 未燃分が完全に燃焼する。 そして、 燃焼後に残った灰は、 主灰シュート 124より外部に取出される。
燃焼は主燃焼室 106内で行われ、 燃焼排ガスは、 中間天井 108の存在により、 主 煙道 109と副煙道 110に別れて排出される。 これらの燃焼排ガスは、 二次燃焼室 ( 第 1放射室) 107で混合され、 二次的な燃焼が行われて未燃分が完全に燃焼する。 二次燃焼室 107からの燃焼排ガスは廃熱ポイラ 111に送り込まれる。
廃熱ボイラ 111は上流側から第 2放射室 112、 冷却室 116を配置し、 入口での 8 5 0〜9 5 0 °Cの排ガス温度を出口で 2 5 0 °C以下にするために、 水管壁、 過熱器 114、 蒸発管 113a、 113b, 1130;節炭器 115で給水等と熱交換させる。
廃熱ポイラ 111内ではダイォキシン類の生成が盛んな温度域である.3 0 0 °C〜4 0 0 °C前後の温度域を含むものであり、 この生成反応には、 3 0 0〜4 5 0 0 °Cの 雰囲気で、 未燃炭素や炭化水素 (H Cの存在下で、 ダスト中の銅や鉄の触媒作用が 強い) や未燃炭素等が関係した触媒反応によって合成されると云われているので、 それらのダイォキシン類の生成を防止するために、 つぎの制御を行う。
第 1区域番地〜第 6区域番地内の各プロック番地の温度領域を三次元のガス温度 分布によるデータにより計測するために、 上記した第 1区域番地〜第 6区域番地内 の各プロック番地内のガス温度分布を連続的に計測する音波式ガス温度計測装置 ( 以下音波式計測装置と呼称する) 120を設置し、 音波式計測装置 120で計測された 横縦断面のガス温度分布のデータを組み合わせて、 三次元のガス温度分布とし、 そ れにより第 1区域番地〜第 6区域番地内の温度域とその区域番地内の基準温度域と を比較演算し、 その差が所定範囲を超えた際には、 それに基づいて一次空気量、 二 次空気量、 火格子上のごみ送り速度、 水噴霧量、 ごみ供給量、 スートブロー 'ハン マリング、 空気吹込み、 循環排ガス吹込みの一種以上を制御する。
図 8〜図 1 0に示す実施の形態では火格子式ごみ焼却炉の廃熱ポイラについて説 明したが、 流動炉等のごみ焼却炉の廃熱ポイラについても同様に適用できる。
以上のように、 本発明によれば、 第 1区域番地〜第 6区域番地内の各ブロック番 地内のガス温度分布を連続的に計測することができるので、 出口の排ガス温度を 2 5 0 °C以下にすることができるとともに、 3 0 0 °C〜4 0 0 °C前後のダイォキシン 類の生成し易い温度領域を回避するか又は排ガスを短時間で通過させることができ るので、 ダイォキシン類の生成を規定値以下の濃度に安定して抑制することができ る。 実施の形態 3
実施の形態 3は、 火格子を有する廃棄物焼却炉における火格子温度の制御方法で あって、 廃棄物搬送方向に対して上流側に位置する火格子群の表面温度が下流側に 位置する火格子群の表面温度より高くなるように制御するものである。
廃棄物搬送方向に対して上流側に位置する火格子群の表面温度を下流側に位置す る火格子群の表面温度より高くなるように制御することにより、 水分の多い家庭ご み等が大量に混入した場合においても、 上流側に位置する火格子群が過冷却される ことによる結露を防止し、 結露に伴う火格子群の腐食が防止される。 さらに、 上流 側に位置する火格子群が過冷却されることによる燃焼の不安定化、 燃焼温度の不均 一化を防止する効果も有する。
前記方法は、 例えば廃棄物搬送方向に対して上流側に位置する火格子群に火格子 加熱手段又は火格子加熱手段及び火格子冷却手段と、 廃棄物搬送方向に対して下流 側に位置する火格子群に火格子冷却手段とを設けることにより達成することができ る。
ここで、 火格子加熱手段又は火格子加熱手段及び火格子冷却手段を設ける前記 「 廃棄物搬送方向に対して上流側に位置する火格子群」 とは、 主として廃棄物の乾燥 及び燃焼を行う領域にある火格子群をいい、 火格子冷却手段を設ける前記 「廃棄物 搬送方向に対して下流側に位置する火格子群」 とは、 主として廃棄物の燃焼及び後 燃焼を行う領域にある火格子群をいう。 なお、 前記火格子加熱手段及び火格子冷却 手段を設ける位置は、 廃棄物焼却炉の大きさ及び構成等により適宜選択される。 図 1 1は実施の形態 3の火格子式廃棄物焼却炉を示す概略側断面図である。 この 廃棄物焼却炉は、 乾燥ストー力 203、 燃焼スト一力 204、 後燃焼ストー力 205を有 する火格子式廃棄物焼却炉であり、 ホッパ 201に投入された廃棄物 202は、 シユー トを通して乾燥スト一力 203に搬送され、 下からの空気と炉内の輻射熱により火格 子上で乾燥されると共に、 昇温されてガス化し着火する。 着火して燃焼を開始した 廃棄物 202は、 燃焼スト一力 204に送られ、 下から送られる燃焼空気によりガス化 され火格子上で燃焼する。 そして、 更に後燃焼スト一力 205の火格子上で未燃分が 完全に燃焼する。 燃焼後に残った灰は、 主灰シュート 206より外部に取出される。 燃焼は主燃焼室 207内で行われ、 燃焼排ガスは、 主燃焼室 207内に設けられた中 間天井 208の存在により二分され、 炉内下流側め主煙道 209と炉内上流側の副煙道 210に別れて主燃焼室 207から排出される。 生煙道 209を通って排出される主煙道 ガスと副煙道 210を通って排出される副煙道ガスは、 主燃焼室 207に連設されてい る 2次燃焼室 211で混合 ·攪拌され、 2次的な燃焼が行われて未燃分が完全に燃焼 する。 2次燃焼室 211からの排ガスは、 除塵室 212で粒径の大きなダストを除去さ れた後、 廃熱ポイラ 213に送られ、 熱交換された後に排ガス処理設備等を経由して 外部に放出される。
本実施形態は、 上記の構成を有する火格子式廃棄物焼却炉における火格子温度の 制御方法であって、 乾燥ストー力の火格子群の表面温度を燃焼ス卜^力及び後燃焼 スト一力の火格子群の表面温度より高くなるように制御するものである。
廃棄物搬送方向に対して上流側に位置する乾燥スト一力の火格子群の表面温度を 下流側に位置する燃焼ストー力及び後燃焼ストー力の火格子群の表面温度より高く なるように制御することにより、 水分の多い家庭ごみ等が大量に^入した場合にお いても、 乾燥スト一力の火格子群力 冷却されることによる結露を防止し、 結露に 伴う火格子群の腐食が防止される。 さらに、 乾燥スト一力の火格子群が過冷却され ることによる炉内燃焼の不安定化、 燃焼温度の不均一ィ匕を防止する効果も有する。 前記方法は、 以下の手段により達成すること力 rきる。
つまり、 上記の構成を有する火格子式廃棄物焼却炉において、 乾燥スト一力に火 格子加熱手段又は火格子加熱手段及び火格子冷却手段と、 燃焼ストー力及び Z又は 後燃焼ストー力に火格子冷却手段とを設けたものである。
ここで、 乾燥スト一力の火格子群内の力 α熱には蒸気を用いることが好ましく、 加 熱手段としては、 例えば、 図 1 1に示すように乾燥スト一力 203の火格子群内に配 設した蒸気通路 220と、 蒸気を発生させるための蒸気発生装置 221と、 該蒸気発生 装置から前記乾燥スト一力の火格子群内に配設した蒸気通路 220に蒸気を供給する 蒸気供給配管 222と、 該蒸気供給配管 222に設けた蒸気流量計 223及び流量調整弁 224と、 火格子群内の温度を測定するための温度計 225と、 該温度計 225で測定し た温度に基づき蒸気流量及び蒸気温度の制御を行う火格子温度制御装置 226とを有 する構成とすることにより達成できる。
なお、 火格子群内の表面温度を測定するための温度計 225は、 火格子群内の代表 的な温度の測定ができる 1箇所に設置しても良いが、 火格子群内に複数箇所設置す ることが好ましい。 複数箇所に設置した温度計からの測定温度に基づき蒸気流量及 び蒸気温度の制御を行うことにより、 火格子群内の温度分布をより細かく制御する ことが可能となるからである。
前記火格子温度制御装置 226は、 火格子群上に設置した温度計 225からの信号 ( 温度) と蒸気流量計 223からの信号 (流量) と蒸気発生装置 221での発生蒸気の設 定温度信号等を取り込み、 予め設定された温度となるように流量調整弁 224或いは 蒸気発生装置 221を制御して蒸気流量及び蒸気温度の制御を行う。
なお、 蒸気発生装置 221は、 廃棄物焼却炉に併設されている廃熱ポイラ 213にて 代用できることは言うまでもない。
さらに、 乾燥スト一力の火格子群内には火格子冷却手段を設ける構成とすること も好ましい。 廃棄物の種類によっては乾燥スト一力の火格子上での燃焼が激しく起 こり冷却することも必要となるからである。
また、 燃焼ストー力及び Z又は後燃焼ストー力に設ける火格子冷却手段としては、 上記乾燥ストー力の火格子冷却手段と同様の手段を用いることができる。
以下、 作図の都合上、 図 1 1の燃焼スト一力 204に示した構成図に基づき火格子 冷却手段について説明するが、 乾燥スト一力、 後燃焼スト一力の火格子冷却手段も 同様の構成とすることができる。
ここで、 各火格子群内の冷却には冷却用空気または冷却水を用いることが好まし レ^ 以下、 図 1 1の燃焼スト一力 204の図に基づき説明する。
冷却手段としては、 例えば燃焼ストー力 204の火格子群内に配設した冷却用空気 または冷却水通路 227と、 冷却用空気または冷却水の供給装置 228と、 該冷却用空 気または冷却水供給装置 228から前記乾燥ストー力の火格子群内に配設した冷却用 空気または冷却水通路 227に冷却用空気または冷却水を供給する供給配管 229と、 該供給配管 229に設けた流量計 230及び流量調整弁 231と、 火格子群内の温度を測 定するための温度計 232と、 該温度計 232で測定した温度に基づき流量及び冷却用 空気または冷却水温度の制御を行う火格子温度制御装置 226とを有する構成とする ことにより達成できる。 なお、 乾燥スト一力に設置する温度計は上述の加熱手段で 用いた温度計を共用することができる。 さらに、 各火格子群の温度は他の火格子群 の温度を考慮した制御が必要であるため、 上述の火格子加熱手段及び各火格子冷却 手段で用いる火格子温度制御装置 226は、 同一の装置で制御することが好ましい。 前記火格子温度制御装置 226は、 火格子群上に設置した温度計 232からの信号 ( 温度) と流量計 230からの信号 (流量) と冷却用空気または冷却水の供給装置 228 での冷却用空気または冷却水設定温度信号等を取り込み、 予め設定された温度とな るように流量調整弁 231或いは冷却用空気または冷却水供給装置 228を制御して冷 却用空気または冷却水の流量及び温度の制御を行う。
また、 火格子温度の制御方法においては、 火格子群の炉幅方向の表面温度が炉の 中央部に近づくほど低温になるように制御することが好ましい。
火格子群上の廃棄物の燃焼温度は中央部が高くなる傾向にあるので、 火格子群の 温度が炉の中央部に近づくほど低温になるように制御することにより、 火格子群の 中央部の熱損傷を効果的に防止できる。 さらに、 火格子群上の炉内幅方向の炉内温 度差が小さくなり燃焼の安定ィヒに寄与する。
乾燥スト一力の火格子群内に蒸気を供給して加熱を行う場合の前記制御方法は、 上述の火格子加熱手段を用いる場合において、 炉の周辺部から中央部に向けて蒸気 を供給するように火格子群内に蒸気通路を配設することにより達成される。 炉の周 辺部から中央部に向けて蒸気を供給することで、 高温の蒸気により周辺部が先に加 熱され温度の若干下がつた蒸気が中央部を加熱することになり、 火格子群の温度が 中央部に近づくほど低温になるように制御することができる。 なお、 乾燥スト一力 の火格子群内に配設する蒸気通路の数は、 装置構成等により 選択される。 乾燥スト一力、 燃焼ストー力及び後燃焼ストー力の火格子群内に冷却用空気又は 冷却水を供給して冷却を行う場合の前記制御方法は、 上述の火格子冷却手段を用い る場合において、 炉の中央部から周辺部に向けて冷却用空気又は冷却水を供給する ように火格子群内に冷却用空気又は冷却水通路を配設することにより達成される。 炉の中央部から周辺部に向けて冷却用空気又は冷却水を供給することで、 冷却用空 気又は冷却水により中央部が先に冷却され温度の若干上がったガスが周辺部を冷却 することになり、 火格子群の温度が中央部に近づくほど低温になるように制御する ことができる。 なお、 各火格子群内に配設する冷却用空気又は冷却水通路の数は、 冷却用空気又は冷却水の別、 或いは装置構成等により適宜選択される。
また、 火格子温度の制御方法においては、 火格子群の廃棄物搬送方向の表面温度 が下流側ほど低温になるように制御することが好ましい。
火格子群上の廃棄物の燃焼温度は廃棄物搬送方向下流側が高くなる傾向にあるの で、 火格子群の温度が下流側に近づくほど低温になるように制御することにより、 廃棄物搬送方向下流側の熱損傷を効果的に防止できる。 さらに、 火格子群上の廃棄 物搬送方向の炉内温度差が小さくなり燃焼の安定化に寄与する。
乾燥ストー力の火格子群内に蒸気を供給して加熱を行う場合の前記制御方法は、 上述の火格子加熱手段を用いる場合において、 火格子群の廃棄物搬送方向上流側か ら下流側に向けて蒸気を供給するように火格子群内に蒸気通路を配設することによ り達成される。 廃棄物搬送方向上流 ί則から下流側に向けて蒸気を供給することで、 高温の蒸気により上流側が先に加熱され温度の若干下がった蒸気が下流側を加熱す ることになり、 火格子群の温度が下流側に近づくほど低温になるように制御するこ とができる。 なお、 乾燥スト一力の火格子群内に配設する蒸気通路の数は、 装置構 成等により適宜選択される。
乾燥ス 1 力、 燃焼スト一力及び後燃焼ストー力の火格子群内に冷却用空気又は 冷却水を供給して冷却を行う場合の前記制御方法は、 上述の火格子冷却手段を用い る場合において、 火格子群内に廃棄物搬送方向下流側から上流側に向けて冷却用空 気又は冷却水を供給するように火格子群内に冷却用空気又は冷却水通路を配設する ことにより達成される。 火格子群内に廃棄物搬送方向下流側から上流側に向けて冷 却用空気又は冷却水を供給することで、 冷却用空気又は冷却水により下流側が先に 冷却され温度の若干上がつたガスが上流側を冷却することになり、 火格子群の温度 が下流側に近づくほど低温になるように制御することができる。 なお、 各火格子群 内に配設する冷却用空気又は冷却水通路の数は、 冷却用空気又は冷却水の別、 或い は装置構成等により適宜選択される。
なお、 上述した火格子加熱手段及び火格子冷却手段は、 乾燥スト一力、 燃焼ス ト一力及び後燃焼スト一力等の明確な区別のない一体型の火格子群を用いた火格子 式廃棄物焼却炉においても、 同様に適応できることは言うまでもない。 実施の形態 4
図 1 2は実施の形態 4のスト一力型廃棄物焼却炉の概略側断面図である。 この廃 棄物焼却炉は、 乾燥スト一力 303、 燃焼スト一力 304、 後燃焼スト一力 305を有す るス! ^一力型廃棄物焼却炉であり、 ホッパ 301に投入されたごみ 302は、 シュート を通して乾燥ストー力 303におくられ、 下からの空気と炉内の輻射熱により火格子 上で乾燥されると共に、 昇温されて着火する。 着火して燃焼を開始したごみ 302は、 燃焼ストー力 304に送られ、 下から送られる燃焼空気によりガス化され火格子上で 燃焼する。 そして、 更に後燃焼スト一力 305の火格子上で未燃分が完全に燃焼する。 燃焼後に残った灰は、 主灰シユート 306より外部に取出される。
燃焼は主燃焼室 307内で行われ、 燃焼排ガスは、 主燃焼室 307内に設けられた中 間天井 308の存在により二分され、 炉内下流側の主煙道 309と炉内上流側の副煙道 310に別れて主燃焼室 307から排出される。 主煙道 309を通って排出される主煙道 ガスと副煙道 310を通って排出される副煙道ガスは、 主燃焼室 307に連設されてい る 2次燃焼室 311で混合 ·攪拌され、 2次的な燃焼が行われて未燃分が完全に燃焼 する。 2次燃焼室 311からの排ガスは、 除塵室 312で粒径の大きなダストを除去さ れた後、 廃熱ボイラ 313に送られ、 熱交換された後に排ガス処理設備等を経由して 外部に放出される。
本実施形態にかかるストー力型廃棄物焼却炉は、 上記構成において、 主煙道ガス の一部を炉内の上流側に循環させる手段を有するものである。 ここで、 前記主煙道ガスは、 ガス温度が 8 0 0〜9 0 0 °C程度の比較的高温で且 つ 8〜1 5 %程度の酸素を含有するため、 焼却炉内の上流側へ循環させることによ り、 ごみの乾燥を促進させさらに燃焼開始領域での燃焼の安定ィ匕に寄与する。
図 1 2に示すガスを循環させるための配管 320は主煙道ガスの一部を炉内の上流側 に循環させる手段の実施形態の一例を示したもので、 配管 320には除塵器 321とブ 口ヮ 322を有しており、 さらに配管 320内のガス温度の低下を防止するための加熱 手段 323を有している。 加熱手段を有することにより、 循環ガスの温度が低下する' ことによる配管内へのダストの付着及び炉内温度の低下を防止する。
ここで、 前記加熱手段としては、 例えば己管 320に電気ヒ一夕一等を巻き付ける 方法を用いることができる。 電気ヒータ一を巻き付ける位置としては、 除塵器 321 の下流側の配管とすることが好ましいが、 配管 320の全体とすることもできる。 な お、 配管 320には流量調節弁 324を設けることが好ましく、 循環させるガス流量は、 ごみの性状、 ごみの投入量、 炉内燃焼状態等に応じて M:変更することが好ましい。 主煙道 309のガスの一部は、 主煙道付近の炉壁に設けられたガス吸引ノズル 325 からブロワ 322により配管 320内に吸引され、 除塵器 321でダストが除去された後、 炉内の ±流側の炉壁に設けた吹き出しノズル 326より再び炉内に導入される。 ここ で、 吹き出しノズル 326を設置する位置としては、 例えば乾燥ストー力 303あるい は燃焼ストー力 304のごみ層直上付近の一部に、.ガスのよどみ領域が形成されるよ うに供給できる位置に設置することが好ましく、 炉の形状等により適宜選択される。 これにより、 ごみの乾燥を促進させつつ燃焼開始領域での燃焼の安定化を図り、 空 気比低減による排ガス量の減少、 排ガス循環などによる熱回収効率の向上すなわち 発電効率の向上を図ることができる。
.図 1 3及び図 1 4は、 主煙道ガスの一部を炉内の上流側に循環させる手段が炉の 内壁を構成する耐熱レンガ内に配設したガスを循環させるための配管からなる場合 の実施形態の一例を示したもので、 図 1 3は炉の側面から見た前記配管の概略構成 図、 図 1 4は炉の上方から見た前記配管の概略構成図である。 本実施形態はガスを 循環させるための配管を炉の側壁部両側に設けた場合を示したものである。
主煙道ガスの一部は主煙道に設けられた配管入口 330より耐熱レンガ内の配管 331に吸入され、 炉内の上流側に設けた配管出口 332より再び炉内に導入される。 ここで、 配管出口 332を設置する位置としては、 例えば乾燥スト一力 303あるいは 燃焼ストー力 304のごみ層直上付近の一部によどみ領域が形成されるように供給で きる位置に設置することが好ましく、 炉の形状等により適宜選択される。 また、 配 管の配設位置及び数についても特に限定されるものではなく、 炉の形状等により適 宜選択される。
また、 ガスを循環させるための配管は炉の内壁に接するように炉内に設けること もできる。 この場合前記配管は、 例えば耐熱レンガ、 キャス夕ブル等の耐火物で構 成したものを用いることが好ましい。
上記構成とすることにより、循環ガスは高温環境下にさらされた配管内を通過す ることになる。 これにより、 ガスを循環させる配管に加熱手段を設けることなく、 ガスを循環させる配管内での熱損失による循環ガス温度の低下を防止できるので、 高温を維持した循環ガスを利用でき、 ごみの乾燥および燃焼をさらに促進し、 熱回 収効率の向上すなわち発電効率の向上が極めて大きくなる。
さらに、 炉の内壁が配管を構成する壁の一部になるように前記配管を配設するこ とにより、 配管の材料費及び施工費を節約できる。
ここで、 ガスを循環させるための配管内でのガス流速を高める方法として、 例え ば、 前記配管内に冷却装置付耐熱ファン 333を設置する方法や配管出口付近に高速 バ一ナを設置しそのェジェクト効果を利用する方法などを用いることができる。 図 1 5は、 炉内の側壁を構成する耐熱レンガ内に配設したガスを循環させるため の配管に脈動流を発生させるための装置を配設した場合の実施形態の一例を示した もので、 図は炉の上方から見た配管の概略構成図である。
ここで、 脈動流を発生させるための装置としては、 例えばパルス燃焼パーナ 334 を用いることができる。 1 m程度のテールパイプを有し、 1 5 0 H z程度の 1動流 を発生させるパルス燃 パーナ 334の開口部を配管出口 332に連通するように配設 することにより、 パルス燃焼パーナのェジェクト効果により脈動流を伴ったガスの 循環を行うことができる。
配管内を通気する主煙道ガスをェジェクト効果により、 そのガス流量およびガス 流速を増加させると同時に、 配管内の温度分布を小さく抑え、 熱泳動効果によりダ ストが配管の内壁に付着するのを防止できる。
上記構成とすることにより、燃焼開始領域への循環ガスの流速増加により、 ごみ の乾燥促進及び炉内燃焼の安定化がより促進されるとともに、 配管内のダストトラ ブルを防止できる。
また、 前記脈動流を発生させるための手段は、 図 1 2に示す配管 320にも同じよ うに適応できることは言うまでもなく、 この場合は、 例えばパルス燃焼バーナの開 口部を吹き出しノズル 326に連通するように配設することにより用いることができ る。 実施の形態 5
図 1 6は本発明のストー力型廃棄物焼却炉の一実施形態を示す概略側断面図であ る。 この廃棄物焼却炉は、 乾燥スト一力 403、 燃焼スト一力 404、 後燃焼スト一力 405を有するスト一力型廃棄物焼却炉であり、 ごみを投入するホッパ 401 と、 ごみ を焼却処理する主燃焼室 407と、 主燃焼室 407で発生した燃焼ガスを主煙道 409と 副煙道 410に分けて排出させる中間天井 410と、 主煙道 409と副煙道 410に分けて 排出された燃焼ガスの 2次燃焼を行う 2次燃焼室 411と、 2次燃焼室 411で発生し た排ガス中から粒径の大きなダストを除去する除塵室 412と、 熱交換を行うための 廃熱ボイラ 413とを有している。 ここで、 ホッパ 401に投入されたごみ 402は、 シ ユートを通して乾燥スト一力 403におくられ、 下からの燃焼空気と炉内の輻射熱に より乾燥されると共に、 昇温されて着火する。 着火して燃焼を開始したごみ 402は、 燃焼ストー力 404に送られ、 下から送られる燃焼空気によりガス化され燃焼する。 そして、 更に後燃焼スト一力 405で未燃分が完全に燃焼する。 燃焼後に残った灰は、 主灰シユート 406より外部に取出される。
本発明にかかるストー力型廃棄物焼却炉は、 上記構成において炉壁の一部に外熱 '式の輻射体を配設したことを特徴とするものである。
ここで、 輻射体 420は炉内のガスの流れによどみが生じる領域付近に設置すれば 良く、 例えば、 図 1 6に示すように主灰シユート 406と主煙道 409の間や廃熱ボイ ラ 413内の廃熱ボイラニ室などに設置するのが好ましい。 なお、 輻射体を設置する 位置、 輻射体の大きさ、 輻射体の形状等は焼却炉の形状等により適宜選択される。 ガスの流れによどみが生じる領域付近の炉壁に輻射体を設置することにより、 高 温に加熱された輻射体からの輻射熱がよどみ領域の飛灰を選択的に加熱し、 飛灰自 身がダイォキシン類の再合成に適した温度域 (3 0 0〜4 0 0 °C) になるのを回避 することにより、 ダイォキシン類の合成を抑制すると同時に飛灰中の未燃分を加熱 燃焼させる。 高温に加熱された輻射体からの輻射熱は、 広範囲のガスを加熱するこ とが可能であり、 輻射体が配設されている炉壁近傍の飛灰を効果的に加熱すること ができる。
図 1 7に炉壁の一部に輻射体を配設した場合の構成の一例を示す。 図 1 7に示す ように炉壁は、 鉄皮 421、 断熱材 422、 耐熱レンガ 423で構成されており、 耐熱レ. ンガ 423が焼却炉の内壁を構成している。 輻射体 420は、 耐熱レンガ 423と接する 位置に断熱材 422に埋め込むように設置することが好ましい。 このような構成とす ることにより、 炉内の火炎により輻射体が焼損を受けることなく輻射熱が炉内に有 効に照射される。
ここで輻射体は、 耐熱性を有するものであれば特に限定されないが、 例えばキヤ スタブル等の耐火物で構成したものを用いることが好ましい。
輻射体の加熱手段としては、 例えば電気ヒータを用いることができる。 電気ヒー 夕を加熱手段として用いた場合の構成及び加熱制御方法の一例を図 1 8に示す。 な お、 図 1 7と共通の構成部分については同一番号を付し説明を省略する。
図 1 8は、 輻射体 420を図 1 7に示す位置に設置した場合を示したもので、 輻射 体 420は電気ヒータ 431を内蔵した構成としたものである。 内蔵された電気ヒータ 431には輻射体 420の温度を制御するための温度制御装置 32が接続され、 この温 度制御装置 432には輻射体 420が設置されている炉壁近傍の炉内ガス温度が測定で きるように設置された温度計 430からの信号 (温度) が入力されている。
温度制御装置 432は、 温度計 430の温度が所定の温度範囲となるようにヒー夕の 温度制御を行う。
温度の制御方法としては、 例えば、 温度計の温度が 4 0 0 °C以下になった場合に 電気ヒータの電源を ONさせ、 6 0 0 °C以上になった場合に電気ヒータを O F Fす るという方法でも良く、 或いは温度計の温度が所定温度になるように制御を行う方 法でも良い。
輻射体に電気ヒー夕を内蔵させる方法としては、 輻射体内部に電気ヒータを直接 埋め込む構成としても良いが、 輻射体内部にパイプ等を埋め込みその内部にヒータ を配する構成とすることが好ましい。 輻射体内部にパイプ等を埋め込みその内部に ヒ一夕を配する構成とすることにより、 ヒ一夕断線時の交換作業等の補修作業が容 易となるからである。
また、 輻射体の他の加熱手段としては、 燃焼排ガスを用いることもできる。 ここ で燃焼排ガスとしては、 例えば L N G, L P G, 灯油, 重油等の燃焼排ガスが利用 できる。 燃焼排ガスを用いる場合の構成及び加熱制御方法の一例を図 1 9に示す。 なお、 図 1 7と共通の構成部分については同一番号を付し説明を省略する。
図 1 9に示す輻射体 420は、 外部燃焼装置の燃焼に伴う高温の燃焼排ガスを内部 に導入できる構成としたものである。 輻射体 420内部に設けた空間部に燃焼排ガス を導入することで輻射体 420の加熱を行うものである。 なお、 輻射体を加熱した後 の燃焼排ガスは、 炉内或いは焼却炉に設置されている排ガス処理装置内に吹き込ん でも良い。 ただし、 排ガス処理装置に吹き込む場合には、 ダイォキシン類が再合成 しゃすい温度 (3 0 0〜4 0 0 °C) を回避する手段を備える必要があることは言う までもない。
外部燃焼装置 433には輻射体 420の温度を制御するための温度制御装置 432が接 続され、 この温度制御装置 432には輻射体 420が設置されている炉壁近傍の炉内ガ ス温度が測定できるように設置された温度計 430からの信号 (温度) が入力されて いる。
加熱空気制御装置 432は、 温度計 430の温度が所定の温度範囲となるように外部 燃焼装置 433の燃焼の制御を行う。
温度の制御方法としては、 例えば、 温度計の温度が 4 0 0 °C以下になった場合に 外部燃焼装置 433の燃焼を行い高温の燃焼排ガスを輻射体 420に導入し、 6 0 0 °C 以上になった場合に外部燃焼装置 433の燃焼を停止するという方法でも良ぐ 或い は温度計の温度が所定温度になるように燃焼の制御を行う方法でも良い。
なお、 輻射体の加熱方法は、 輻射体を所定の温度に加熱できる方法であれば良ぐ 上記方法に限定されるものではない。
上記温度計測において、 ダイォキシン類の大部分は飛灰表層部に吸着されている ため、 モニタすべき温度として粒子温度が望ましい。 従って、 温度計として輻射温 度計を採用することが最も望ましいが、 熱電対等の温度計でも制御可能である。 ま た、 温度計の数は 1つに限定されるものではなぐ 複数個を設置して制御すること も可能である。
上記輻射体を加熱するためのヒータ或いは燃焼排ガスは、 炉の内壁を構成する耐 熱レンガ内に内蔵或いは耐熱レンガ内を通す構成とすることもできる。 この場合、 ヒ一夕を内蔵した耐熱レンガ或いは加熱空気を通す耐熱レンガが輻射体を構成する こととなり、 輻射体を別に設置する必要がない。
図 2 0は、 図 1 8において電気ヒータ 431を耐熱レンガ 423内に内蔵した構成と したもので、 その他の構成は図 1 8に示したものと同様である。 また、 温度の制御 方法及び電気ヒータを内蔵させる方法等についても図 1 8で説明した方法と同様の 方法を用いることができる。
図 2 1は、 図 1 9において外部燃焼装置の燃焼に伴う高温の燃焼排ガスを耐熱レ ンガ 423の内部に設けた空間部に導入できる構成としたもので、 その他の構成は図 1 9に示したものと同様である。 また、 温度の制御方法等についても図 1 9で説明 した方法と同様の方法を用いることができる。
図 2 0または図 2 1の構成とすることにより、 輻射体を別に設置する必要がなぐ 炉内の耐熱レンガを有効利用できる。
また、 本発明においては、 輻射体の過熱を防止するための冷却手段を有すること が好ましい。
冷却手段としては、 例えば空気冷却装置を用いることができる。 空気冷却装置を 有する場合の構成及び冷却制御方法の一例を図 2 2に示す。 図 2 2は、 空気冷却装 置 434により冷却された空気を耐熱レンガ 423の内部に設けた空間部に導入できる 構成としたもので、 その他の構成は図 2 1に示したものと同様である。 輻射体の温度の制御方法としては、 例えば、 輻射体の内壁 (炉内燃焼排ガスにさ らされる壁) に配設された温度計の温度が 1 0 0 0 DC以上になった場合に空気冷却 装置 434を作動させ冷却された空気を耐熱レンガ 423の内部に設けた空間部に導入 し冷却を行い、 8 0 0 °C以下になった場合には空気冷却装置 434を停止するという 方法でも良く、 或いは温度計の温度が所定温度になるように制御を行う方法でも良 い。
前記冷却手段を有することにより、 輻射体の過熱を防止することができる。 これ により、 輻射体表層部に飛灰が溶融'固化し輻射加熱の効率が低下するのを防止で き、 さらに燃料代または電気代を節約することが出来る。
図 2 3は、 冷却手段を用いることなぐ 輻射体表層部に飛灰が溶融 ·固化し輻射 加熱の効率を低下させることを防止する手段の一例を示したもので、 炉壁の凹部に 輻射体を酉己設したものである。 図 2 3は、 図 2 0の耐熱レンガ内に電気ヒー夕を内 蔵した場合を示したものであるが、 図 1 8, 1 9, 2 1の構成においても適応でき ることは言うまでもない。
図 2 3に示したように凹部に輻射体を配設することで、 輻射体表層部近傍に渦流 が形成され、 飛灰を含有した排ガスの流れが輻射体に直接接触しないため、 飛灰が 輻射体表層部に溶融 ·固化することを防止することができる。
また、 図 2 3に示すように、 温度計として輻射温度計 435を用いることにより被 加熱体である気流中の飛灰の温度が直接計測でき、 飛灰の過熱や近傍の炉壁等への 溶融 ·固化を効果的に防止できる。 なお、 輻射温度計を用いる場合は炉壁に広角で 内部を観察できる観察窓を設ける必要がある。

Claims

請求の範囲
1 . 廃棄物を燃焼させる燃焼室と、
前記燃焼室内のガス温度を計測する複数の音波式ガス温度計測装置と、 計測されたガス温度から燃焼室内の温度分布を推定する推定手段と、 前記推定された温度分布と設定温度範囲とを比較する比較手段と、
比較結果に基づいて、 複数の一次空気吹き込み装置、 複数の二次空気吹き込み 装置、 複数の冷却流体吹き込み装置、 廃棄物供給手段及び廃棄物送り手段からなる 群から選択された少なくとも一つの制御要素を調整することにより、 ガス温度分布 を制御する制御手段と、
を有する廃棄物焼却炉。
2 . 前記比較手段が前記推定された温度分布と設定温度範囲とを比較し、 設定温度 範囲からの温度較差及び前記温度 ¾ が生じた位置を特定する比較手段からなり、 前記制御手段が、 複数の一次空気吹き込み装置、 複数の二次空気吹き込み装置 及び複数の冷却流体吹き込み装置からなる群から選択された少なくとも一つの制御 要素に対し、 温度較差が生じた位置に対応する前記少なくとも一つの制御要素を調 整することにより、 ガス温度分布を制御する制御手段からなる、
請求の範囲 1記載の廃棄物焼却炉。
3 . 前記温度分布を推定する手段が、 燃焼室横断面方向の温度分布を推定する手段 からなる請求の範囲 1記載の廃棄物焼却炉。
4. 前記温度分布を推定する手段が、 燃焼室縦断面方向の温度分布を推定する手段 からなる請求の範囲 1記載の廃棄物焼却炉。
5 . 前記温度分布を推定する手段が、 燃焼室内の三次元方向の温度分布を推定する 手段からなる請求の範囲 1記載の廃棄物焼却炉。
6 . 廃棄物を燃焼させる燃焼室と、
前記燃焼室内のガス温度を計測する複数の音波式ガス温度計測装置と、 計測されたガス温度から燃焼室内の温度分布を推定する手段と、
前記燃焼室内の空間を、 区分された複数のプロックからなるブロックの番地と して認識する手段と、
前記プロックの番地と推定された温度分布とから各プロックの番地の温度分布 を推測する手段と、
前記各プロックの番地の推測された温度分布と各プロックの番地の設定された 温度とを比較する比較手段と、
比較結果に基づいて、 各プロックの番地のガス温度分布を制御する手段と、 を有する廃棄物焼却炉。
7 . 前記各プロックの番地のガス温度分布を制御する手段が、 複数の一次空気吹き 込み装置、 複数の二次空気吹き込み装置、 複数の冷却流体吹き込み装置、 廃棄物供 給手段及び廃棄物送り手段からなる群から選択された少なくとも一つの制御要素を 調整することにより、 ガス温度分布を制御する制御手段からなる請求の範囲 6記載 の廃棄物焼却炉。
8 . 前記制御手段が、 複数の一次空気吹き込み装置、 複数の二次空気吹き込み装置 及び複数の冷却流体吹き込み装置からなる群から選択された少なくとも一つの制御 要素に対し、 '各ブロックの番地に対応する前記少なくとも一つの制御要素を調整す ることにより、 ガス温度分布を制御する制御手段からなる請求の範囲 7記載の廃棄 物焼却炉。
9 . 前記焼却炉が火格子式焼却炉であり、 前記燃焼室が主燃焼室からなる請求の範 囲 1又は 6に記載の廃棄物焼却炉。
1 0 . 前記焼却炉が火格子式焼却炉であり、 前記燃焼室が主燃焼室と二次燃焼室か らなる請求の範囲 1又は 6に記載の廃棄物焼却炉。
1 1 . 前記焼却炉が流動床を有する焼却炉であ,り、 前記燃焼室が流動床の流動層上 ' のフリーボードからなる請求の範囲 1又は 6に記載の廃棄物焼却炉。
1 2 . 前記音波式ガス温度計測装置が、 前記燃焼室の両側壁の長さ方向と高さ方向 に対して複数箇所設けられている請求の範囲 1又は 6に記載の廃棄物焼却炉。
1 3 . 前記温度分布を推定する手段が、 コンピュータトモグラフィ法により温度分 布を推定する手段からなる請求の範囲 1又は 6に記載の廃棄物焼却炉。
1 4. 廃棄物を燃焼させる燃焼室内のガス温度を複数の音波式ガス温度計測装置を 使用して計測する工程と、
計測されたガス温度から燃焼室内の温度分布を推定する工程と、
前記推定された温度分布と設定された温度範囲とを比較する工程と、 比較結果に基づいて、 複数の一次空気吹き込み装置、 複数の二次空気吹き込み 装置、 複数の冷却流体吹き込み装置、 廃棄物供給手段及び廃棄物送り手段からなる 群から選択された少なくとも一つの制御要素を調整することにより、 ガス温度分布 を制御する制御工程と、
を有する廃棄物焼却炉の操業方法。
1 5 . 前記比較工程が、 前記推定された温度分布と設定温度範囲とを比較し、 設定 温度範囲からの温度較差及び前記温度較差が生じた位置を特定することカゝらなり、 前記制御工程が、 複数の一次空気吹き込み装置、 複数の二次空気吹き込み装置 及び複数の冷却流体吹き込み装置からなる群から選択された少なくとも一つの制御 要素に対し、 温度較差が生じた位置に対応する前記少なくとも一つの制御要素を調 整することにより、 ガス温度分布を制御することからなる、
請求の範囲 1 4記載の廃棄物焼却炉の操業方法。
1 6 . 前記温度分布を推定する工程が、 燃焼室内の横断面方向の温度分布を推定す る工程からなる請求の範囲 1 4記載の廃棄物焼却炉の操業方法。
1 7 . 前記温度分布を推定する工程が、 燃焼室内の縦断面方向の温度分布を推定す. る工程からなる請求の範囲 1 4記載の廃棄物焼却炉の操業方法。
1 8 · 前記温度分布を推定する工程が、 燃焼室内の三次元方向の温度分布を推定す る工程からなる請求の範囲 1 4記載の廃棄物焼却炉の操業方法。
1 9. 廃棄物を燃焼させる燃焼室内のガス温度を複数の音波式ガス温度計測装置を 使用して計測する工程、
計測されたガス温度から燃焼室内の温度分布を推定する工程と、
前記燃焼室内の空間を、 区分された複数のプロックからなるプロックの番地と して認識する工程と、
前記プロックの番地と推定された温度分布とから各ブ口ックの番地の温度分布 を推測する工程と、
前記各プロックの番地の推測された温度分布と各プロックの番地の設定された 温度とを比較する工程と、
比較結果に基づいて、 各プロックの番地のガス温度分布を制御する工程と、 を有する廃棄物焼却炉の操業方法。
2 0. 前記各ブロックの番地のガス温度分布を制御する工程力 複数の一次空気吹 き込み装置、 複数の二次空気吹き込み装置、 複数の冷却流体吹き込み装置、 廃棄物 供給手段及び廃棄物送り手段からなる群から選択された少なくとも一つの制御要素 を調整することにより、 ガス温度分布を制御することからなる請求の範囲 1 9記載 の廃棄物焼却炉。
2 1 . 前記制御工程が、 複数の一次空気吹き込み装置、 複数の二次空気吹き込み装 置及び複数の冷却流体吹き込み装置からなる群から選択された少なくとも一つの制 御要素に対し、 各ブロックの番地に対応する前記少なくとも一つの制御要素を調整 することにより、 ガス温度分布を制御することからなる請求の範囲 2 0記載の廃棄 物焼却炉。
2 2. 前記音波式ガス温度計測装置が、 前記燃焼室の両側壁の長さ方向と高さ方向 に対して複数箇所設けられている請求の範囲 1 4又は 1 9に記載の廃棄物焼却炉の 操業方法。
2 3 . 前記温度分布を推定する工程が、 コンピュータトモグラフィ法により温度分 布を推定する工程からなる請求の範囲 1 4又は 1 9に記載の廃棄物焼却炉の操業方 法。
2 4. 廃棄物を燃焼させる燃焼室と、
前記燃焼室に接続された廃熱ボイラと、
前記廃熱ポイラ内のガス温度を計測する複数の音波式ガス温度計測装置と、 計測されたガス温度から廃熱ポイラ内のガス温度分布を推定する手段と、 前記推定された温度分布と設定された温度分布を比較する手段と、 該比較結果に基づいて、 廃熱ボイラ内の温度分布を制御する手段と、 を有する廃棄物焼却炉。
2 5 . 前記制御手段が、 廃熱ポイラ内を通過する排ガスの流れに生じる 3 0 0〜4 0 0 °Cの温度域におけるよどみまたは定在の回避を行う制御装置である請求の範囲 2 4に記載の廃棄物焼却炉。
2 6 . 前記制御手段が、 複数の一次空気吹き込み装置、 複数の二次空気吹き込み装 置、 複数の冷却流体吹き込み装置、 廃棄物供給手段及び廃棄物送り手段からなる群 力 選択された少なくとも一つの制御要素を調整することにより、 ガス温度分布を 制御する制御手段からなる請求の範囲 2 4記載の廃棄物焼却炉。
2 7 . 前記制御手段が、 廃熱ポイラ内のスートブロー ·ハンマリンダ装置、 空気吹 き込み装置と循環ガス吹き込み装置からなる群から選択された少なくとも一つを調 整してガス温度分布を制御する制御装置からなる請求の範囲 2 4に記載の廃棄物焼 却炉。
' 2 8 . 廃棄物を燃焼させる燃焼室と、
前記燃焼室に接続された廃熱ボイラと、
前記廃熱ポイラ内のガス温度を計測する複数の音波式ガス温度計測装置と、 計測されたガス温度から廃熱ポイラ内のガス温度分布を推定する手段と、 前記廃熱ボイラ内の空間を、 複数のプロックからなるプロックの番地として 認識する手段と、
前記プロックの番地と推定された温度分布とから各ブ口ックの番地の温度分 布を推測する手段と、
前記各ブロックの番地の推測された温度分布と各プロックの番地の設定され た温度とを比較する比較手段と、
比較結果に基づいて、 各プロックの番地のガス温度分布を制御する制御手段 と、 を有する廃棄物焼却炉。
2 9 . 廃棄物を燃焼させる燃焼室に接続された廃熱ポイラ内のガス温度を複数の音 波式ガス温度計測装置を使用して計測する工程と、
計測されたガス温度から廃熱ポイラ内のガス温度分布を推定する工程と、 前記推定された温度分布と設定された温度分布を比較する工程と、 該比較結果に基づいて、 廃熱ボイラ内の温度分布を制御する工程と、 を有する廃棄物焼却炉の操業方法。
3 0 . 前記温度分布を制御する工程が、 廃熱ポイラ内を通過する排ガスの流れに生 じる 3 0 0〜4 0 0 °Cの温度域におけるよどみまたは定在の回避を行う制御からな る請求の範囲 2 9に記載の廃棄物焼却炉の操業方法。
3 1 . 前記温度分布を制御する工程が、 廃熱ポイラ内のス一トブロー
グ、 空気吹き込みと循環ガス吹き込みからなる群から選択された少なくとも一つを 調整して各プロックの番地のガス温度を制御することからなる請求の範囲 2 9ない し 3 0に記載の廃棄物焼却炉の操業方法。
3 2 . 廃棄物を燃焼させる燃焼室に接続された廃熱ポイラ内のガス温度を複数の音 波式ガス温度計測装置を使用して計測する工程と、
計測されたガス温度から廃熱ポイラ内のガス温度分布を推定する工程と、 前記廃熱ボイラ内の空間を、 複数のブロックからなるプロックの番地として 認識する工程と、
前記プロックの番地と推定された温度分布とから各プロックの番地の温度分 布を推測する工程と、
前記各プロックの番地の推測された温度分布と各プロックの番地の設定され た温度とを比較する工程と、
比較結果に基づいて、 各ブロックの番地のガス温度分布を制御する工程と、 を有する廃棄物焼却炉の操業方法。
PCT/JP2001/005746 2000-07-05 2001-07-03 Incinerateur de dechets et son procede de fonctionnement WO2002002992A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP01947795A EP1304525A1 (en) 2000-07-05 2001-07-03 Waste incinerator and method of operating the incinerator

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2000203571 2000-07-05
JP2000-203571 2000-07-05
JP2000211240A JP2002022133A (ja) 2000-07-12 2000-07-12 廃棄物焼却炉の廃熱ボイラ及びその排ガス温度制御方法
JP2000-211240 2000-07-12
JP2000216315A JP2002031314A (ja) 2000-07-17 2000-07-17 ストーカ型廃棄物焼却炉
JP2000-215308 2000-07-17
JP2000215308A JP2002031310A (ja) 2000-07-17 2000-07-17 ストーカ型廃棄物焼却炉
JP2000-216315 2000-07-17
JP2000-217055 2000-07-18
JP2000217055A JP2002031320A (ja) 2000-07-18 2000-07-18 火格子温度の制御方法及び火格子式廃棄物焼却炉
JP2000384582A JP2002081628A (ja) 2000-07-05 2000-12-19 廃棄物焼却炉
JP2000-384582 2000-12-19

Publications (1)

Publication Number Publication Date
WO2002002992A1 true WO2002002992A1 (fr) 2002-01-10

Family

ID=27554809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005746 WO2002002992A1 (fr) 2000-07-05 2001-07-03 Incinerateur de dechets et son procede de fonctionnement

Country Status (3)

Country Link
EP (1) EP1304525A1 (ja)
KR (1) KR20030019364A (ja)
WO (1) WO2002002992A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004092648A1 (ja) * 2003-04-18 2004-10-28 Jfe Engineering Corporation 火格子式廃棄物焼却炉及びその燃焼制御方法
CN111536532A (zh) * 2020-05-12 2020-08-14 湖南现代环境科技股份有限公司 一种生活垃圾焚烧炉流场及控制系统
CN111947162A (zh) * 2020-08-11 2020-11-17 潮州深能环保有限公司 一种垃圾焚烧炉第一烟道烟气主控温度的测算方法
CN112775164A (zh) * 2021-03-17 2021-05-11 广东烁鼎环境科技有限公司 垃圾焚烧飞灰宽温段熔融预测控制系统及控制方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2194325A1 (en) * 2008-12-02 2010-06-09 ABB Research Ltd. Flame detection device and method for detecting a flame
KR101044975B1 (ko) * 2008-12-04 2011-06-29 (주)대우건설 연소실의 온도 제어 방법 및 장치
KR100938904B1 (ko) * 2009-05-01 2010-01-27 나광범 건조 장치
DE102010036749A1 (de) * 2010-07-19 2012-01-19 Heizkraftwerksgesellschaft Cottbus Mbh Verfahren zur Leistungssteigerung bei gleichzeitiger Verminderung von Ablagerungen in Kesseln mit Wirbelschicht-Feuerung
CN102954473A (zh) * 2012-11-29 2013-03-06 华南理工大学 一种垃圾低氮和低二噁英炉排焚烧炉送风装置
CN103244964B (zh) * 2013-04-27 2015-04-22 国家电网公司 基于声波测量炉膛温度场的燃烧优化控制系统及控制方法
AT514699B1 (de) * 2013-12-19 2015-03-15 Andritz Energy & Environment Gmbh Verbrennungsanlage
CN105841164A (zh) * 2016-06-04 2016-08-10 上海市环境工程设计科学研究院有限公司 一种抽取燃尽段顶空热烟气通入干燥段的垃圾焚烧炉
WO2022032483A1 (zh) * 2020-08-11 2022-02-17 潮州深能环保有限公司 一种垃圾焚烧炉第一烟道烟气主控温度的测算方法
RU2754911C1 (ru) * 2020-11-11 2021-09-09 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный энергетический университет" (ФГБОУ ВО "КГЭУ") Установка для газификации углеродсодержащих отходов

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637409A (en) * 1979-08-31 1981-04-11 Mitsubishi Heavy Ind Ltd Fluidized bed type incinerator
JPS5938523A (ja) * 1982-08-30 1984-03-02 Babcock Hitachi Kk 廃棄物燃焼処理装置
JPS61265540A (ja) * 1985-05-20 1986-11-25 Tokyo Electric Power Co Inc:The 燃焼ガス体温度測定方法
JPH02191784A (ja) * 1989-01-19 1990-07-27 Jujo Paper Co Ltd 回収ボイラの炉内温度分布処理装置
JPH0634118A (ja) * 1992-07-17 1994-02-08 Kubota Corp 焼却炉の燃焼制御装置
JPH08145812A (ja) * 1994-11-25 1996-06-07 Babcock Hitachi Kk ボイラ制御装置
JPH09310834A (ja) * 1996-05-24 1997-12-02 Mitsubishi Heavy Ind Ltd ロータリーキルンの燃焼制御方法
JPH10318517A (ja) * 1997-05-20 1998-12-04 Nkk Corp 流動床焼却炉の燃焼制御方法および燃焼制御装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637409A (en) * 1979-08-31 1981-04-11 Mitsubishi Heavy Ind Ltd Fluidized bed type incinerator
JPS5938523A (ja) * 1982-08-30 1984-03-02 Babcock Hitachi Kk 廃棄物燃焼処理装置
JPS61265540A (ja) * 1985-05-20 1986-11-25 Tokyo Electric Power Co Inc:The 燃焼ガス体温度測定方法
JPH02191784A (ja) * 1989-01-19 1990-07-27 Jujo Paper Co Ltd 回収ボイラの炉内温度分布処理装置
JPH0634118A (ja) * 1992-07-17 1994-02-08 Kubota Corp 焼却炉の燃焼制御装置
JPH08145812A (ja) * 1994-11-25 1996-06-07 Babcock Hitachi Kk ボイラ制御装置
JPH09310834A (ja) * 1996-05-24 1997-12-02 Mitsubishi Heavy Ind Ltd ロータリーキルンの燃焼制御方法
JPH10318517A (ja) * 1997-05-20 1998-12-04 Nkk Corp 流動床焼却炉の燃焼制御方法および燃焼制御装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004092648A1 (ja) * 2003-04-18 2004-10-28 Jfe Engineering Corporation 火格子式廃棄物焼却炉及びその燃焼制御方法
CN111536532A (zh) * 2020-05-12 2020-08-14 湖南现代环境科技股份有限公司 一种生活垃圾焚烧炉流场及控制系统
CN111536532B (zh) * 2020-05-12 2022-12-13 湖南现代环境科技股份有限公司 一种生活垃圾焚烧炉流场及控制系统
CN111947162A (zh) * 2020-08-11 2020-11-17 潮州深能环保有限公司 一种垃圾焚烧炉第一烟道烟气主控温度的测算方法
CN112775164A (zh) * 2021-03-17 2021-05-11 广东烁鼎环境科技有限公司 垃圾焚烧飞灰宽温段熔融预测控制系统及控制方法
CN112775164B (zh) * 2021-03-17 2024-01-09 广东烁鼎环境科技有限公司 垃圾焚烧飞灰宽温段熔融预测控制系统及控制方法

Also Published As

Publication number Publication date
KR20030019364A (ko) 2003-03-06
EP1304525A1 (en) 2003-04-23

Similar Documents

Publication Publication Date Title
JP6011295B2 (ja) 廃棄物焼却炉及び廃棄物焼却方法
JP4479655B2 (ja) 火格子式廃棄物焼却炉及びその燃焼制御方法
WO2002002992A1 (fr) Incinerateur de dechets et son procede de fonctionnement
JP6146673B2 (ja) 廃棄物焼却炉及び廃棄物焼却方法
JP4830140B2 (ja) 燃焼制御方法及び焼却装置
JP2004084981A (ja) 廃棄物焼却炉
JP5861880B2 (ja) 廃棄物焼却炉及び廃棄物焼却方法
JP5818093B2 (ja) 廃棄物焼却炉及び廃棄物焼却方法
JP3887149B2 (ja) ストーカ炉及びそれによる焼却方法
JP5800237B2 (ja) 廃棄物焼却炉及び廃棄物焼却方法
JP6465351B2 (ja) 火格子式廃棄物焼却炉及び廃棄物焼却方法
JP3956862B2 (ja) 廃棄物焼却炉の燃焼制御方法及び廃棄物焼却炉
JP2009058216A (ja) ガス化溶融システムの燃焼制御方法及び該システム
JP5871207B2 (ja) 廃棄物焼却炉及び廃棄物焼却方法
JP7384078B2 (ja) 廃棄物焼却装置及び廃棄物焼却方法
JP6455717B2 (ja) 火格子式廃棄物焼却炉及び廃棄物焼却方法
JP6443758B2 (ja) 火格子式廃棄物焼却炉及び廃棄物焼却方法
JP4234727B2 (ja) 溶融炉の炉内状況監視・制御方法及び該装置
JP6146671B2 (ja) 廃棄物焼却炉及び廃棄物焼却方法
JP6008187B2 (ja) 廃棄物焼却炉及び廃棄物焼却方法
JP2015209992A (ja) 廃棄物焼却処理装置及び廃棄物焼却処理方法
JP6965842B2 (ja) 廃棄物焼却装置及び廃棄物焼却方法
JP7103021B2 (ja) 廃棄物焼却装置及び廃棄物焼却方法
JP7093709B2 (ja) 焼却炉
JP6183787B2 (ja) 火格子式廃棄物焼却炉及び廃棄物焼却方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020027014599

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2001947795

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027014599

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001947795

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001947795

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020027014599

Country of ref document: KR