WO2001099208A2 - Thermal treatment of solution-processed organic electroactive layer in organic electronic device - Google Patents
Thermal treatment of solution-processed organic electroactive layer in organic electronic device Download PDFInfo
- Publication number
- WO2001099208A2 WO2001099208A2 PCT/US2001/019483 US0119483W WO0199208A2 WO 2001099208 A2 WO2001099208 A2 WO 2001099208A2 US 0119483 W US0119483 W US 0119483W WO 0199208 A2 WO0199208 A2 WO 0199208A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- pani
- solution
- pam
- organic
- Prior art date
Links
- 238000007669 thermal treatment Methods 0.000 title description 4
- 239000000872 buffer Substances 0.000 claims abstract description 19
- 238000002347 injection Methods 0.000 claims description 29
- 239000007924 injection Substances 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 24
- 239000011263 electroactive material Substances 0.000 claims description 20
- 230000005525 hole transport Effects 0.000 claims description 5
- 239000003990 capacitor Substances 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 abstract description 72
- 238000010438 heat treatment Methods 0.000 abstract description 43
- 229920001940 conductive polymer Polymers 0.000 abstract description 8
- 238000003491 array Methods 0.000 abstract description 4
- 238000002955 isolation Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 174
- 229920000767 polyaniline Polymers 0.000 description 117
- 239000000203 mixture Substances 0.000 description 99
- 229920002401 polyacrylamide Polymers 0.000 description 97
- -1 poly(p-phenylene vinylene) Polymers 0.000 description 81
- 239000000463 material Substances 0.000 description 64
- 239000000243 solution Substances 0.000 description 49
- 239000010408 film Substances 0.000 description 44
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 28
- 125000000217 alkyl group Chemical group 0.000 description 24
- 239000011368 organic material Substances 0.000 description 22
- 239000006185 dispersion Substances 0.000 description 21
- 238000005259 measurement Methods 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 229910052751 metal Inorganic materials 0.000 description 17
- 239000002184 metal Substances 0.000 description 17
- 239000002253 acid Substances 0.000 description 16
- 239000000758 substrate Substances 0.000 description 15
- 229920000547 conjugated polymer Polymers 0.000 description 14
- 125000003545 alkoxy group Chemical group 0.000 description 12
- 125000004432 carbon atom Chemical group C* 0.000 description 11
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 11
- 150000002739 metals Chemical class 0.000 description 10
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 229920001577 copolymer Polymers 0.000 description 9
- 238000004528 spin coating Methods 0.000 description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 8
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 125000003118 aryl group Chemical group 0.000 description 8
- 125000000732 arylene group Chemical group 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 230000015556 catabolic process Effects 0.000 description 8
- 238000006731 degradation reaction Methods 0.000 description 8
- 229910052736 halogen Inorganic materials 0.000 description 8
- 150000002367 halogens Chemical group 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 239000004743 Polypropylene Substances 0.000 description 7
- 150000007513 acids Chemical class 0.000 description 7
- 125000004093 cyano group Chemical group *C#N 0.000 description 7
- 238000007641 inkjet printing Methods 0.000 description 7
- 229920001155 polypropylene Polymers 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 229910052709 silver Inorganic materials 0.000 description 7
- 239000004332 silver Substances 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 238000005240 physical vapour deposition Methods 0.000 description 6
- 239000002243 precursor Substances 0.000 description 6
- 239000004593 Epoxy Chemical group 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 5
- 125000003342 alkenyl group Chemical group 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 229920000775 emeraldine polymer Polymers 0.000 description 5
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 5
- 229910044991 metal oxide Inorganic materials 0.000 description 5
- 229920000573 polyethylene Polymers 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 4
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 4
- 229920002125 Sokalan® Polymers 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 4
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 4
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 4
- 125000004644 alkyl sulfinyl group Chemical group 0.000 description 4
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 4
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 4
- 125000003710 aryl alkyl group Chemical group 0.000 description 4
- 229910052788 barium Inorganic materials 0.000 description 4
- 125000001589 carboacyl group Chemical group 0.000 description 4
- 230000001427 coherent effect Effects 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000005401 electroluminescence Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 4
- 238000000059 patterning Methods 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229920002857 polybutadiene Polymers 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 238000010094 polymer processing Methods 0.000 description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 description 4
- 238000007650 screen-printing Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 125000000542 sulfonic acid group Chemical group 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 4
- 229910001887 tin oxide Inorganic materials 0.000 description 4
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- 206010034972 Photosensitivity reaction Diseases 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 125000004450 alkenylene group Chemical group 0.000 description 3
- 229920000109 alkoxy-substituted poly(p-phenylene vinylene) Polymers 0.000 description 3
- 125000002877 alkyl aryl group Chemical group 0.000 description 3
- 125000006350 alkyl thio alkyl group Chemical group 0.000 description 3
- 125000004414 alkyl thio group Chemical group 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 3
- 125000005135 aryl sulfinyl group Chemical group 0.000 description 3
- 125000004391 aryl sulfonyl group Chemical group 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 3
- KAKZBPTYRLMSJV-UHFFFAOYSA-N butadiene group Chemical group C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 3
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000002322 conducting polymer Substances 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 125000000392 cycloalkenyl group Chemical group 0.000 description 3
- 125000000753 cycloalkyl group Chemical group 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 125000000664 diazo group Chemical group [N-]=[N+]=[*] 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000007646 gravure printing Methods 0.000 description 3
- 125000005843 halogen group Chemical group 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- 229910003437 indium oxide Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 230000036211 photosensitivity Effects 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 150000003839 salts Chemical group 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 2
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 2
- 229920000292 Polyquinoline Polymers 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 2
- 150000001448 anilines Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 125000005110 aryl thio group Chemical group 0.000 description 2
- 125000004104 aryloxy group Chemical group 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- DIKBFYAXUHHXCS-UHFFFAOYSA-N bromoform Chemical compound BrC(Br)Br DIKBFYAXUHHXCS-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 150000001893 coumarin derivatives Chemical class 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 2
- 229920001746 electroactive polymer Polymers 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- ZQBFAOFFOQMSGJ-UHFFFAOYSA-N hexafluorobenzene Chemical compound FC1=C(F)C(F)=C(F)C(F)=C1F ZQBFAOFFOQMSGJ-UHFFFAOYSA-N 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 239000011133 lead Substances 0.000 description 2
- IVSZLXZYQVIEFR-UHFFFAOYSA-N m-xylene Chemical group CC1=CC=CC(C)=C1 IVSZLXZYQVIEFR-UHFFFAOYSA-N 0.000 description 2
- 229910003455 mixed metal oxide Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000012454 non-polar solvent Substances 0.000 description 2
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 2
- 210000001331 nose Anatomy 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- SLIUAWYAILUBJU-UHFFFAOYSA-N pentacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 SLIUAWYAILUBJU-UHFFFAOYSA-N 0.000 description 2
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920002959 polymer blend Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 239000004984 smart glass Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical class C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 125000000475 sulfinyl group Chemical group [*:2]S([*:1])=O 0.000 description 2
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 238000005019 vapor deposition process Methods 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- ZPQOPVIELGIULI-UHFFFAOYSA-N 1,3-dichlorobenzene Chemical compound ClC1=CC=CC(Cl)=C1 ZPQOPVIELGIULI-UHFFFAOYSA-N 0.000 description 1
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 1
- 125000001140 1,4-phenylene group Chemical group [H]C1=C([H])C([*:2])=C([H])C([H])=C1[*:1] 0.000 description 1
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical class C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 1
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000006039 1-hexenyl group Chemical group 0.000 description 1
- 125000004066 1-hydroxyethyl group Chemical group [H]OC([H])([*])C([H])([H])[H] 0.000 description 1
- 125000006023 1-pentenyl group Chemical group 0.000 description 1
- 125000006017 1-propenyl group Chemical group 0.000 description 1
- SNTWKPAKVQFCCF-UHFFFAOYSA-N 2,3-dihydro-1h-triazole Chemical compound N1NC=CN1 SNTWKPAKVQFCCF-UHFFFAOYSA-N 0.000 description 1
- VEUMBMHMMCOFAG-UHFFFAOYSA-N 2,3-dihydrooxadiazole Chemical compound N1NC=CO1 VEUMBMHMMCOFAG-UHFFFAOYSA-N 0.000 description 1
- STTGYIUESPWXOW-UHFFFAOYSA-N 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline Chemical compound C=12C=CC3=C(C=4C=CC=CC=4)C=C(C)N=C3C2=NC(C)=CC=1C1=CC=CC=C1 STTGYIUESPWXOW-UHFFFAOYSA-N 0.000 description 1
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 description 1
- QQZOPKMRPOGIEB-UHFFFAOYSA-N 2-Oxohexane Chemical compound CCCCC(C)=O QQZOPKMRPOGIEB-UHFFFAOYSA-N 0.000 description 1
- WBIQQQGBSDOWNP-UHFFFAOYSA-N 2-dodecylbenzenesulfonic acid Chemical compound CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O WBIQQQGBSDOWNP-UHFFFAOYSA-N 0.000 description 1
- CSSJQJWTYJODDJ-UHFFFAOYSA-N 3,10-dioxatricyclo[10.2.2.04,9]hexadeca-1(15),4,6,8,12(16),13-hexaene-2,11-dione Chemical compound O1C(=O)C(C=C2)=CC=C2C(=O)OC2=C1C=CC=C2 CSSJQJWTYJODDJ-UHFFFAOYSA-N 0.000 description 1
- DHDHJYNTEFLIHY-UHFFFAOYSA-N 4,7-diphenyl-1,10-phenanthroline Chemical compound C1=CC=CC=C1C1=CC=NC2=C1C=CC1=C(C=3C=CC=CC=3)C=CN=C21 DHDHJYNTEFLIHY-UHFFFAOYSA-N 0.000 description 1
- KBXXZTIBAVBLPP-UHFFFAOYSA-N 4-[[4-(diethylamino)-2-methylphenyl]-(4-methylphenyl)methyl]-n,n-diethyl-3-methylaniline Chemical compound CC1=CC(N(CC)CC)=CC=C1C(C=1C(=CC(=CC=1)N(CC)CC)C)C1=CC=C(C)C=C1 KBXXZTIBAVBLPP-UHFFFAOYSA-N 0.000 description 1
- DWJXWSIJKSXJJA-UHFFFAOYSA-N 4-n-[4-(4-aminoanilino)phenyl]benzene-1,4-diamine Chemical compound C1=CC(N)=CC=C1NC(C=C1)=CC=C1NC1=CC=C(N)C=C1 DWJXWSIJKSXJJA-UHFFFAOYSA-N 0.000 description 1
- VFUDMQLBKNMONU-UHFFFAOYSA-N 9-[4-(4-carbazol-9-ylphenyl)phenyl]carbazole Chemical group C12=CC=CC=C2C2=CC=CC=C2N1C1=CC=C(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=C1 VFUDMQLBKNMONU-UHFFFAOYSA-N 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- PXXNTAGJWPJAGM-VCOUNFBDSA-N Decaline Chemical compound C=1([C@@H]2C3)C=C(OC)C(OC)=CC=1OC(C=C1)=CC=C1CCC(=O)O[C@H]3C[C@H]1N2CCCC1 PXXNTAGJWPJAGM-VCOUNFBDSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 229920001730 Moisture cure polyurethane Polymers 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-L Phosphate ion(2-) Chemical compound OP([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-L 0.000 description 1
- 206010034960 Photophobia Diseases 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 241001126918 Sycon Species 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 229920006322 acrylamide copolymer Polymers 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 229910052768 actinide Inorganic materials 0.000 description 1
- 150000001255 actinides Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000005160 aryl oxy alkyl group Chemical group 0.000 description 1
- 125000005325 aryloxy aryl group Chemical group 0.000 description 1
- 150000003851 azoles Chemical class 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 229950005228 bromoform Drugs 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- GMGLYSIINJPYLI-UHFFFAOYSA-N butan-2-one;propan-2-one Chemical compound CC(C)=O.CCC(C)=O GMGLYSIINJPYLI-UHFFFAOYSA-N 0.000 description 1
- 125000004744 butyloxycarbonyl group Chemical group 0.000 description 1
- 125000004063 butyryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 150000008422 chlorobenzenes Chemical class 0.000 description 1
- 239000006059 cover glass Substances 0.000 description 1
- 150000001924 cycloalkanes Chemical class 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- DIOQZVSQGTUSAI-NJFSPNSNSA-N decane Chemical compound CCCCCCCCC[14CH3] DIOQZVSQGTUSAI-NJFSPNSNSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 125000004663 dialkyl amino group Chemical group 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229940060296 dodecylbenzenesulfonic acid Drugs 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-N ethanesulfonic acid Chemical group CCS(O)(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-N 0.000 description 1
- 125000003754 ethoxycarbonyl group Chemical group C(=O)(OCC)* 0.000 description 1
- 125000005745 ethoxymethyl group Chemical group [H]C([H])([H])C([H])([H])OC([H])([H])* 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 150000005826 halohydrocarbons Chemical class 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- QYHFIVBSNOWOCQ-UHFFFAOYSA-M hydrogenselenate Chemical compound O[Se]([O-])(=O)=O QYHFIVBSNOWOCQ-UHFFFAOYSA-M 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 238000001659 ion-beam spectroscopy Methods 0.000 description 1
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- 229920000763 leucoemeraldine polymer Polymers 0.000 description 1
- 208000013469 light sensitivity Diseases 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000004170 methylsulfonyl group Chemical group [H]C([H])([H])S(*)(=O)=O 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- DIOQZVSQGTUSAI-UHFFFAOYSA-N n-butylhexane Natural products CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 125000002801 octanoyl group Chemical group C(CCCCCCC)(=O)* 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 125000000636 p-nitrophenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)[N+]([O-])=O 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- CBHCDHNUZWWAPP-UHFFFAOYSA-N pecazine Chemical compound C1N(C)CCCC1CN1C2=CC=CC=C2SC2=CC=CC=C21 CBHCDHNUZWWAPP-UHFFFAOYSA-N 0.000 description 1
- XNLICIUVMPYHGG-UHFFFAOYSA-N pentan-2-one Chemical compound CCCC(C)=O XNLICIUVMPYHGG-UHFFFAOYSA-N 0.000 description 1
- UWEYRJFJVCLAGH-UHFFFAOYSA-N perfluorodecalin Chemical compound FC1(F)C(F)(F)C(F)(F)C(F)(F)C2(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C21F UWEYRJFJVCLAGH-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000003495 polar organic solvent Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000112 poly(2,5-bis(cholestanoxy) phenylene vinylene) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000548 poly(silane) polymer Polymers 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 229920002432 poly(vinyl methyl ether) polymer Polymers 0.000 description 1
- 229920001798 poly[2-(acrylamido)-2-methyl-1-propanesulfonic acid] polymer Polymers 0.000 description 1
- 229920000552 poly[2-methoxy-5-(2'-ethyl-hexyloxy)-p-phenylenevinylene] polymer Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 229920003009 polyurethane dispersion Polymers 0.000 description 1
- 229920002717 polyvinylpyridine Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- KCXFHTAICRTXLI-UHFFFAOYSA-N propane-1-sulfonic acid Chemical compound CCCS(O)(=O)=O KCXFHTAICRTXLI-UHFFFAOYSA-N 0.000 description 1
- 125000001325 propanoyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000006225 propoxyethyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229920003252 rigid-rod polymer Polymers 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- QYHFIVBSNOWOCQ-UHFFFAOYSA-N selenic acid Chemical compound O[Se](O)(=O)=O QYHFIVBSNOWOCQ-UHFFFAOYSA-N 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 125000005556 thienylene group Chemical group 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 125000003774 valeryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 1
- 238000003631 wet chemical etching Methods 0.000 description 1
- 150000003738 xylenes Chemical class 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/10—Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/17—Carrier injection layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/17—Carrier injection layers
- H10K50/171—Electron injection layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/60—Forming conductive regions or layers, e.g. electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- this invention relates to improvements in manufacturing such devices which can lead to improved lifetimes and/or improved performance of such devices.
- Organic electronic devices such as light emitting devices, photodetecting devices and photovoltaic cells, may be formed of a thin layer of electroactive organic material sandwiched between two electrical contact layers.
- Electroactive organic materials are organic materials exhibiting electroluminescence, photosensitivity, charge (hole or electron) transport and/or injection, electrical conductivity, and/or exciton blocking.
- the material may be semiconductive.
- At least one of the electrical contact layers is transparent to light so that light can pass through the electrical contact layer to or from the electroactive organic material layer.
- photoconductive cells photoresistive cells, photodiodes, photoswitches, transistors, capacitors, resistors, chemoresistive sensors (gas/vapor sensitive electronic noses, chemical and biosensors), writing sensors, and electrochromic devices (smart windows).
- Organic electroluminescent materials which emit light upon application of electricity across the electrical contact layers include organic molecules such as anthracene, b ⁇ tadienes, coumarin derivatives, acridine, and stilbene derivatives. See, for example, U.S. Patent No. 4,356,429 to Tang. Semiconductive conjugated polymers have also been used as electroluminescent materials. See, for example, Friend et al., U.S. Patent 5,247,190, Heeger et al., U.S. Patent No. 5,408,109, and Nakano et al., Published European Patent Application 443 861.
- the electroactive organic materials can be tailored to provide emission at various wavelengths.
- Light sensitive devices such as photodetectors and photovoltaic cells, may also use certain conjugated polymers and electro- and photo-luminescent materials to generate an electrical signal in response to radiant energy.
- Cg 0 charge trapping material
- Organic electronic devices offer the advantages of flexibility, low cost and ease of manufacture. (Id.) Their performance approaches and in some cases even exceeds that of traditional photosensitive devices.
- Organic electronic devices such as photoemitting, photodetecting and photovoltaic devices typically include a layer of charge injection/transport material adjacent to the electroluminescent organic material to facilitate charge transport (electron or hole transport) and/or gap matching of the electroactive organic material and an electrical contact.
- Organic semiconducting material may also be used to form thin film transistors.
- Transistors may now be fabricated completely from organic materials. Transistors of organic materials are less expensive than traditional transistors and may be used in low end applications where lower switching speeds maybe acceptable and where it would be uneconomical to use traditional transistors. See, for example, Drury, C.J., et al., "Low-cost all-polymer integrated circuits", Appl. Phys. Lett., vol.
- Organic transistors may be flexible, which would also be advantageous in certain applications, such as to control light emitting diodes on a curved surface of a monitor.
- Organic semiconducting materials include pentacene, polythienylene vinylene, thiophene oligomers, benzothiophene dimers, phthalocyanines and polyacetylenes. See, for example, U.S. Patent No. 5,981,970 to Dimitrakopoulos et al., U.S. Patent No. 5,625,199 to Bauntech, et al., U.S. Patent No.
- Electroactive organic materials maybe applied to one of the electrical contact layers or onto a portion of a transistor by solution processible methods such as spin-coating, casting or ink-jet printing. Alternatively, these materials may be applied directly by vapor deposition processes, depending on the nature of the materials. In another alternate process an electroactive polymer precursor may be applied and converted to a polymer, typically by heat. Such alternate methods may be complex, slow, expensive, lack sufficient resolution and when patterned using the standard lithographic (wet development) techniques, expose the device to deleterious heat and chemical processes.
- arrays of light-emitting diodes are assembled.
- arrays based on a unit body of active polymer and patterned electrodes there is a need to minimize interference or "cross talk" among adjacent pixels. This need has also been addressed by varying the nature of the contacts between the active polymer body and the electrodes.
- the invention relates to an organic electronic device containing at least one solution-processed organic electroactive material, wherein one or more of the at least one solution-processed organic electroactive material is heat-treated.
- the invention also relates to the use of heat treatment to improve the life time and/or performance of an organic electronic device containing at least one layer of solution-processed organic electroactive material, by heat-treating one or more of such solution processed layers.
- the invention further relates to a method of making an organic electronic device containing a first electrode, a second electrode, and at least one solution- processed organic electroactive material between the first and second electrodes, wherein the method involves providing one or more of the at least one solution- processed organic electornic material on the first electrode and one or more steps of heat-treating one or more of the solution-processed organic electroactive material before laying down the second electrode.
- organic electroactive material refers to any organic material that exhibits the specified electroactivity, such as electroluminescence, photosensitivity, charge transport and/or charge injection, electrical conductivity and exciton blocking.
- solution-processed organic electroactive material refers to any organic electroactive material that has been incorporated in a suitable solvent during layer formation in electronic device assembly.
- charge when used to refer to charge injection/transport refers to one or both of hole and electron transport/injection, depending upon the context.
- photoactive organic material refers to any organic material that exhibits the electroactivity of electroluminescence and/or photosensitivity.
- conductivity and “bulk conductivity” are used interchangeably, the value of which is provided in the unit of Siemens per centimeter (S/cm).
- surface resistivity and “sheet resistance” are used interchangeably to refer to the resistance value that is a function of sheet thickness for a given material, the value of which is provided in the unit of ohm per square (ohm/sq).
- bulk resistivity and “electrical resistivity” are used interchangeably to refer to the resistivity that is a basic property of a specific materials (i.e., does not change with the dimension of the substance), the value of which provided in the unit of ohm-centimeter (ohm-cm).
- Electrical resistivity value is the inverse value of conductivity.
- Fig. 1 is a cross-sectional view of a representative solid state devices embodying the invention (not-to-scale).
- Fig. 2 is a graph which shows the stress induced degradation of a device with PANI(ES) and its blend layer at 70°C.
- Fig. 3 is a graph which shows the stress induced degradation of a device from PANI(ES)-PAM blend with different heat treatment at 70°C.
- Fig. 4 is a graph which shows the dependence of the conductivity of
- Fig. 5 is a graph which shows the stress induced degradation of a device with PANI(ES)-PAM blends baked at 200°C for different time at 70°C.
- Fig. 6 is a graph which shows the stress induced degradation of a device with different PANI(ES)-PAM blends at 70°C.
- Fig. 7 is a graph which shows the stress induced degradation of a device with C-PPV layer baked at different temperatures. DESCRIPTION OF THE PREFERRED EMBODIMENTS
- This invention relates generally to the use of thermal treatment of at least one solution-processed organic electroactive layers in an organic electronic device to provide significant improvements in stability and operating life.
- each individual pixel of an organic electronic device of the invention includes a cathode layer 106 and an anode layer 110 that is deposited on an optional substrate 108 (also known as the support) and electroactive layers 102, 112 between the cathode 106 and anode 110.
- Adjacent to the anode 110 is a hole injection/transport layer 112 (also known as the buffer layer). Between the hole injection/transport layer 112 and the cathode 106 is the photoactive layer 102.
- the photoactive layer 102 can be a light-emitting layer that is activated by an applied voltage (such as in a light-emitting diode or light-emitting electrochemical cell), a layer of material that responds to radiant energy and generates a signal with or without an applied bias voltage (such as in a photodetector).
- an applied voltage such as in a light-emitting diode or light-emitting electrochemical cell
- a layer of material that responds to radiant energy and generates a signal with or without an applied bias voltage
- Examples of photodetectors include photoconductive cells, photoresistors, photoswitches, phototransistors, and phototubes, and photovoltaic cells, as these terms are describe in Markus, John, Electronics arid Nucleonics Dictionary, 470 and 476 (McGraw-Hill, Inc. 1966).
- the photoactive layer 102 will emit light when sufficient bias voltage is applied to the electrical contact layers.
- Suitable active light-emitting materials include organic molecular materials such asanthracene, butadienes, coumarin derivatives, acridine, and stilbene derivatives, see, for example, Tang, U.S. Patent 4,356,429, Van Slyke et al., U.S. Patent 4,539,507, the relevant portions of which are incorporated herein by reference.
- such materials can be polymeric materials such as those described in Friend et al. (U.S. Patent 5,247,190), Heeger et al. (U.S.
- the electroluminescent polymer comprises at least one conjugated polymer or a co-polymer which contains segments of ⁇ -conjugated moieties.
- Conjugated polymers are well known in the art (see, e.g., Conjugated Polymers, J.-L. Bredas and R. Silbey edt., Kluwer Academic Press, Dordrecht, 1991). Representative classes of materials include, but are not limited to the following: xxx
- poly(arylene vinylene) where the arylene may be such moieties as naphthalene, anthracene, furylene, thienylene, oxadiazole, and the like, or one of the moieties with functionalized substituents at various positions;
- the light-emitting materials may include but are not limited to poly(phenylenevinylene), PPV, and alkoxy derivatives of PPV, such as for example, poly(2-methoxy-5-(2'-ethyl-hexyloxy)-p-phenylenevinylene) or "MEH-PPV" (United States Patent No. 5,189,136).
- BCHA-PPV is also an attractive light-emitting material.
- Luminescent conjugated polymer which are soluble in common organic solvents are preferred since they enable relatively simple device fabrication [A. Heeger and D. Braun, U.S. Patent 5,408,109 and 5,869,350]. Even more preferred light-emitting polymers and copolymers are the soluble PPV materials described in H. Becker et al., Adv. Mater. 12, 42 (2000) and referred to herein as C-PPV's.
- Blends of these and other semi-conducting polymers and copolymers which exhibit electroluminescence can be used.
- the photoactive layer 102 responds to radiant energy and produces a signal either with or without a biased voltage.
- Materials that respond to radiant energy and is capable of generating a signal with a biased voltage include, for example, many conjugated polymers and electroluminescent materials.
- Materials that respond to radiant energy and are capable of generating a signal without a biased voltage include materials that chemically react to light and thereby generate a signal.
- Such light-sensitive chemically reactive materials include for example, many conjugated polymers and electro- and photo-luminescent materials. Specific examples include, but are not limited to, MEH-PPV ("Optocoupler made from semiconducting polymers", G. Yu, K. Pakbaz, and A. J. Heeger, Journal of Electronic Materials, Vol. 23, pp 925-928 (1994); and MEH-PPV Composites with CN-PPV ("Efficient Photodiodes from Interpenetrating Polymer Networks", J. J. M. Halls et al. (Cambridge group) Nature Vol. 376, pp. 498-500, 1995).
- the electroactive organic materials can be tailored to provide emission at various wavelengths.
- the polymeric photoactive material or organic molecular photoactive material is present in the photoactive layer 102 in .- admixture from 0% to 75% (w, basis overall mixture) of carrier organic material (polymeric or organic molecular).
- carrier organic material polymeric or organic molecular.
- the criteria for the selection of the carrier organic material are as follows. The material should allow for the formation of mechanically coherent films, at low concentrations, and remain stable in solvents that are capable of dispersing, or dissolving the conjugated polymers for forming the film. Low concentrations of carrier materials are preferred in order to minimize processing difficulties, i.e., excessively high viscosity or the formation of gross in homogeneities; however the concentration of the carrier should be high enough to allow for formation of coherent structures.
- carrier polymers are high molecular weight (M.W. > 100,000) flexible chain polymers, such as polyethylene, isotactic polypropylene, polyethylene oxide, polystyrene, and the like.
- M.W. > 100,000 flexible chain polymers such as polyethylene, isotactic polypropylene, polyethylene oxide, polystyrene, and the like.
- these macromolecular materials enable the formation of coherent structures from a wide variety of liquids, including water, acids, and numerous polar and non-polar organic solvents. Films or sheets manufactured using these carrier polymers have sufficient mechanical strength at polymer concentrations as low as 1%, even as low as 0. 1%, by volume to enable the coating and subsequent processing as desired.
- coherent structures examples are those comprised of poly( vinyl alcohol), poly(ethylene oxide), poly-para (phenylene terephthalate), poly-para-benzamide, etc., and other suitable polymers.
- non-polar carrier structures are selected, such as those containing polyethylene, polypropylene, poly(butadiene), and the like.
- one electrode is transparent to enable light emission from the device or light reception by the device.
- the anode is the transparent electrode, although the present invention can also be used in an embodiment where the cathode is the transparent electrode.
- the anode 110 is preferably made of materials containing a metal, mixed metal, alloy, metal oxide or mixed-metal oxide. Suitable metals include the Group 11 metals, the metals in Groups 4, 5, and 6, and the Group 8-10 transition metals. If the anode is to be light-transmitting, mixed-metal oxides of Groups 12, 13 and 14 metals, such as indium-tin-oxide, are generally used.
- the IUPAC numbering system is used throughout, where the groups from the Periodic Table are numbered from left to right as 1-18 (CRC Handbook of Chemistry and
- the anode 110 may also comprise an organic material such as polyaniline as described in "Flexible light-emitting diodes made from soluble conducting polymer," Nature vol. 357, pp 477-479 (11 June 1992).
- Typical inorganic materials which serve as anodes include metals such as aluminum, silver, platinum, gold, palladium, tungsten, indium, copper, iron, nickel, zinc, lead and the like; metal oxides such as lead oxide, tin oxide, indium/tin-oxide and the like; graphite; doped inorganic semiconductors such as silicon, germanium, gallium arsenide, and the like.
- the anode layer When metals such as aluminum, silver, platinum, gold, palladium, tungsten, indium, copper, iron, nickel, zinc, lead and the like are used, the anode layer must be sufficiently thin to be semi-transparent. Metal oxides such as indium/tin-oxide are typically at least semitransparent.
- the term "transparent” is defined to mean “capable of transmitting at least about 25%, and preferably at least about 50%, of the amount of light of a particular wavelength of interest". Thus a material is considered “transparent” even if its ability to transmit light varies as a function of wavelength but does meet the 25% or 50% criteria at a given wavelength of interest. As is known to those working in the field of thin films, one can achieve considerable degrees of transparency with metals if the layers are thin enough, for example in the case of silver and gold below about 300 A, and especially from about 20 A to about 250 A with silver having a relatively colorless (uniform) transmittance and gold tending to favor the transmission of yellow to red wavelengths.
- the conductive metal-metal oxide mixtures can be transparent as well at thicknesses up to as high as 2500 A in some cases.
- the thicknesses of metal-metal oxide (or dielectric) layers is from about 25 to about 1200 A when transparency is desired.
- This layer is conductive and should be low resistance: preferably less than 300 ohms/square and more preferably less than 100 ohms/square.
- the buffer layer 112 facilitates hole injection/transport.
- the buffer layer 112 may include polyaniline (PANI) or an equivalent conjugated conductive polymer such as polypyrole or polythiophene, most commonly in a blend with one or more nonconductive polymers.
- PANI polyaniline
- ES emeraldine salt
- Useful conductive polyanilines include the homopolymer and derivatives usually as blends with bulk polymers (also known as host polymers). Examples of PANI are those disclosed in United States Patent No. 5,232,631.
- the preferred PANI blend materials for this layer have a bulk conductivity of from about 10 "4 S/cm to 10 "1 ' S/cm. More preferred PANI blends have a bulk conductivity of from 10 "5 S/cm to 10 "8 S/cm.
- Suitable conductive materials that can be included in the buffer layer 112 include N,N'-diphenyl-N,N'-bis(3-methylphenyl)-[l, -biphenyl]-4,4'-diamine (TPD) and bis[4-(N,N-diethylamino)-2-methylphenyl] (4-methylphenyl)methane (MPMP), and hole injection/transport polymers such as polyvinylcarbazole
- PVK polyvinylmethyl polysilane, poly(3,4-ethylenedioxythiophene) (PEDOT), and polyaniline (PANI);electron and hole injection/transporting materials such as 4,4'-N,N'-dicarbazole biphenyl (BCP); or light-emitting materials with good electron and hole transport properties, such as chelated oxinoid compounds, such as tris(8-hydroxyquinolato)aluminum (Alq3).
- BCP 4,4'-N,N'-dicarbazole biphenyl
- Alq3 chelated oxinoid compounds
- polyaniline or PANI are used herein, they are used generically to include substituted and unsubstituted materials, as well as any accompanying dopants, particularly acidic materials, used to render the polyaniline conductive.
- polyanilines are polymers and copolymers of film and fiber- forming molecular weight derived from the polymerization of unsubstituted and substituted anilines of the Formula I: Formula I
- n is an integer from 0 to 4
- m is an integer from 1 to 5 with the proviso that the sum of n and m is equal to 5;
- R is independently selected so as to be the same or different at each occurrence and is selected from the group consisting of alkyl, alkenyl, alkoxy, cycloalkyl, cycloalkenyl, alkanoyl, alkythio, aryloxy, alkylthioalkyl, alkylaryl, arylalkyl, a ino, alkylamino, dialkylamino, aryl, alkylsulfinyl, alkoxyalkyl, alkylsulfonyl, arylthio, arylsulfinyl, alkoxycarbonyl, arylsulfonyl, carboxylic acid, halogen, cyano, or alkyl substituted with one or more sulfonic aid, carboxylic acid, halo, nitro, cyano or epoxy moieties; or carboxylic acid, halogen, nitro, cyano, or sulfonic acid moieties; or any two R
- polyanilines useful in the practice of this invention are those of the Formula II to N:
- n, m and R are as described above except that m is reduced by 1 as a hydrogen is replaced with a covalent bond in the polymerization and the sum of n plus m equals 4; y is an integer equal to or greater than 0; x is an integer equal to or greater than 1, with the proviso that the sum of x and y is greater than 1; and z is an integer equal to or greater than 1.
- R groups are alkyl, such as methyl, ethyl, octyl, nonyl, tert-butyl, neopentyl, isopropyl, sec-butyl, dodecyl and the like, alkenyl such as 1-propenyl, 1-butenyl, 1-pentenyl, 1-hexenyl, 1-heptenyl, 1-octenyl and the like; alkoxy such as propoxy, butoxy, methoxy, isopropoxy, pentoxy, nonoxy, ethoxy, octoxy, and the like, cycloalkenyl such as cyclohexenyl, cyclopentenyl and the like; alkanoyl such as butanoyl, pentanoyl, octanoyl, ethanoyl, propanoyl and the like; alkylsulfinyl, alkysulfonyl, alkylsulf
- R groups are divalent moieties formed from any two R groups such as moieties of the formula:
- n* is an integer from about 3 to about 7, as for example -(CH 2 ). ,-(CH 2 ). 3 and -(CH 2 )- 5 , or such moieties which optionally include heteroatoms of oxygen and sulfur such as -CH 2 SCH 2 - and -CH 2 -O-CH 2 -.
- R groups are divalent alkenylene chains including 1 to about 3 conjugated double bond unsaturation such as divalent 1,3-butadiene and like moieties.
- n is an integer from 0 to about 2
- m is an integer from 2 to 4, with the proviso that the sum of n and m is equal to 4;
- R is alkyl or alkoxy having from 1 to about 12 carbon atoms, cyano, halogen, or alkyl substituted with carboxylic acid or sulfonic acid substituents; x is an integer equal to or greater than 1 ; y is an integer equal to or greater than 0. with the proviso that the sum of xand y is greater than about 4, and z is an integer equal to or greater than about 5.
- the polyaniline is derived from unsubstituted amline, i.e., where n is 0 and m is 5 (monomer) or 4 (polymer). In general, the number of monomer repeat units is at least about 50.
- the polyaniline is rendered conductive by the presence of an oxidative or acidic species. Acidic species and particularly “functionalized protonic acids” are preferred in this role.
- a “functionalized protonic acid” is one in which the counter-ion has been functionalized preferably to be compatible with the other components of this layer.
- a “protonic acid” is an acid that protonates the polyaniline to form a complex with said polyaniline.
- functionalized protonic acids for use in the invention are those of Formulas VI and VII: A-R VI
- A is sulfonic acid, selenic acid, phosphoric acid, boric acid or a carboxylic acid group; or hydrogen sulfate, hydrogen selenate, hydrogen phosphate; n is an integer from 1 to 5;
- R is alkyl, alkenyl, alkoxy, alkanoyl, alkylthio, alkylthioalkyl, having from 1 to about 20 carbon atoms; or alkylaryl, arylalkyl, alkylsulfinyl, alkoxyalkyl,alkylsulfonyl, alkoxycarbonyl, carboxylic acid, where the alkyl or alkoxy has from 0 to about 20 carbon atoms; or alkyl having from 3 to about 20 carbon atoms substituted with one or more sulfonic acid, carboxylic acid, halogen, nitro, cyano, diazo, or epoxy moieties; or a substituted or unsubstituted 3, 4, 5, 6 or 7 membered aromatic or alicychc carbon ring, which ring may include one or more divalent heteroatoms of nitrogen, sulfur, sulfinyl, sulfonyl or oxygen such as thiophenyl, pyrolyl,
- R can be a polymeric backbone from which depend a plurality of acid functions "A."
- polymeric acids include sulfonated polystyrene, sulfonated polyethylene and the like.
- the polymer backbone can be selected either to enhance solubility in nonpolar substrates or be soluble in more highly polar substrates in which materials such as polymers, polyacrylic acid or poly(vinylsulfonate), or the like, can be used.
- R' is the same or different at each occurrence and is alkyl, alkenyl, alkoxy, cycloalkyl, cycloalkenyl, alkanoyl, alkylthio, aryloxy, alkylthioalkyl, alkylaryl,arylalkyl, alkylsulfinyl, alkoxyalkyl, alkylsulfonyl, aryl, arylthio, arylsulfinyl, alkoxycarbonyl, arylsulfonyl, carboxylic acid, halogen, cyano, or alkyl substituted with one or more sulfonic acid, carboxylic acid, halogen, nitro, cyano, diazo or epoxy moieties; or any two R substituents taken together are an alkylene or alkenylene group completing a 3, 4, 5, 6 or 7 membered aromatic or alicychc carbon ring or multiples thereof, which ring or rings may include one or more
- A is sulfonic acid, phosphoric acid or carboxylic acid
- n is an integer from 1 to 3;
- R is alkyl, alkenyl, alkoxy, having from 6 to about 14 carbon atoms; or arylalkyl, where the alkyl or alkyl portion or alkoxy has from 4 to about 14 carbon atoms; or alkyl having from 6 to about 14 carbon atoms substituted with one or more, carboxylic acid, halogen, diazo, or epoxy moieties;
- R' is the same or different at each occurrence and is alkyl, alkoxy, alkylsulfonyl, having from 4 to 14 carbon atoms, or alkyl substituted with one or more halogen moieties again with from 4 to 14 carbons in the alkyl.
- A is sulfonic acid
- n is the integer 1 or 2
- R is alkyl or alkoxy, having from 6 to about 14 carbon atoms; or alkyl having from 6 to about 14 carbon atoms substituted with one or more halogen moieties;
- R' is alkyl or alkoxy, having from 4 to 14, especially 12 carbon atoms, or alkyl substituted with one or more halogen, moieties.
- Preferred functionalized protonic acids are organic sulfonic acids such as dodecylbenzene sulfonic acid and more preferably poly(2-acrylamido-2- methyl- 1- propanesulfonic acid) ("PAAMPSA").
- the amount of functionalized protonic acid employed can vary depending on the degree of conductivity required. In general, sufficient functionalized protonic acid is added to the polyaniline-containing admixture to form a conducting material. Usually the amount of functionalized protonic acid employed is at least sufficient to give a conductive polymer (either in solution or in solid form).
- polyaniline can be conveniently used in the practice of this invention in any of its physical forms.
- useful forms are those described in Green, A.G., and Woodhead, A. E., J. Chem. Soc, 101, 1117 (1912) and Kobayashi, et al., J. Electroanl. Chem., 177, 281-91 (1984), which are hereby incorporated by reference.
- useful forms include leucoemeraldine, protoemeraldine, emeraldine, nigraniline and tolu-protoemeraldine forms, with the emeraldine form being preferred.
- Copending United States Patent Application Serial No. 60/168,856 of Cao, Y. and Zhang, C. discloses the formation of low conductivity blends of conjugated polymers with non-conductive polymers and is incorporated herein by reference.
- the particular bulk polymer or polymers added to the conjugated polymer can vary.
- the selection of materials can be based upon the nature of the conductive polymer, the method used to blend the polymers and the method used to deposit the layer in the device. In processes where the layer 112 is provided using a method that is solution-processed, the materials can be blended by dispersing one polymer in the other, either as a dispersion of small particles or as a solution of one polymer in the other.
- the polymer are typically admixed in a fluid phase and the layer is typically laid out of a fluid phase.
- the blend can be formed by dissolving or dispersing the two polymers in water and casting a layer from the solution or dispersion.
- Organic solvents can be used with organic-soluble or organic dispensable conjugated polymers and bulk polymers.
- blends can be formed using melts of the two polymers or by using a liquid pre-polymer or monomer form of the bulk polymer which is subsequently polymerized or cured into the desired final material.
- the bulk polymer should be water soluble or water dispersible.
- the bulk polymer can be selected from, for example, polyacrylamides (PAM), poly(acrylic acid ) (PAA), poly(vinyl pyrrolidone) (PVPd), acrylamide copolymers, cellulose derivatives, carboxyvinyl polymer, poly(ethylene glycols), poly(ethylene oxide) (PEO), poly( vinyl alcohol) (PVA), poly(vinyl methyl ether), polyamines, polyimines, polyvinylpyridines, polysaccharides, and polyurethane dispersions.
- the bulk polymer may be selected from, for example liquefiable polyethylenes, isotactic polypropylene, polystyrene, poly(vinylalcohol), poly(ethylvinylacetate), polybutadienes, polyisoprenes, ethylenevinylene copolymers, ethylene-propylene copolymers, poly(ethyleneterephthalate), poly(butyleneterephthalate) and nylons such as nylon 12, nylon 8, nylon 6, nylon 6.6 and the like, polyester materials, polyamides such as polyacrylamides and the like.
- the common solubility of the various polymers may not be required.
- the relative proportions of the polyaniline and bulk polymer or prepolymer can vary. For each part of polyaniline there can be from 0 to as much as 20 parts by weight of bulk polymer or prepolymer with 0.5 to 10 and especially 1 to 4 parts of bulk material being present for each part of PANI. Solvents for the materials used to cast this layer are selected to compliment the properties of the polymers.
- the PANI and bulk polymer are both water-soluble or water-dispersible and the solvent system is an aqueous solvent system such as water or a mixture of water with one or more polar organic materials such as lower oxyhydrocarbons for example lower alcohols, ketones and esters.
- aqueous solvent system such as water or a mixture of water with one or more polar organic materials such as lower oxyhydrocarbons for example lower alcohols, ketones and esters.
- These materials include, without limitation, water mixed with methanol, ethanol, isopropanol, acetone methyl ethyl ketone and the like. If desired, a solvent system of polar organic liquids could be used. In the case of conducting polymers such as PANI and bulk polymers which are not water-soluble or water-dispersible, nonpolar solvents are most commonly used.
- Illustrative of useful common nonpolar solvents are the following materials: substituted or unsubstituted aromatic hydrocarbons such as benzene, toluene, p-xylene, m-xylene, naphthalene, ethylbenzene, styrene, aniline and the like; higher alkanes such as pentane, hexane, heptane, octane, nonane, decane and the like; cyclic alkanes such as decaLydronaphthalene; halogenated alkanes such as chloroform, bromoform, dichloromethane and the like; halogenated aromatic hydrocarbons such as chlorobenzene, o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenzene and the like; higher alcohols such as 2-butanol, 1-butanol, hexanol, pentano
- the thickness of the conjugated polymer layer will be chosen with the properties of the diode in mind, those situations where the composite anode is to be transparent, it is generally preferable to have the layer of PANI as thin as practically possible bearing in mind that the number of defects in an array increases as film thickness is increased. Typical thicknesses range from about 100 A to about 5000 A. When transparency is desired, thicknesses of from about 100 A to about 3000 A are preferred and especially about 2000 A.
- the electrical resistivity of the PANI(ES) blend layer must be greater than or equal to 10 4 ohm-cm to avoid cross talk and inter-pixel current leakage. Values in excess of 10 5 ohm-cm are preferred. Even at 10 5 ohm-cm, there is some residual current leakage and consequently some reduction in device efficiency. Thus, values of approximately 10 to 10 ohm-cm are even more prefened. Values greater than 10 9 ohm-cm will lead to a significant voltage drop across the injection/buffer layer and therefore should be avoided.
- Suitable materials for use as cathode materials are any metal or nonmetal having a lower work function than the first electrical contact layer (in this case, an anode).
- Materials for the cathode layer 106 can be selected from alkali metals of Group 1 (e.g., Li, Cs), the Group 2 (alkaline earth) metals - - commonly calcium, barium, strontium, the Group 12 metals, the rare earths - commonly ytterbium, the lanthanides, and the actinides.
- Materials such as aluminum, indium and copper, silver, combinations thereof and combinations with calcium and/or barium, Li, magnesium, LiF can be used.
- Alloys of low work function metals such as for example alloys of magnesium in silver and alloys of lithium in aluminum, are also useful.
- the thickness of the electron-injecting cathode layer ranges from less than 15 A to as much as 5,000 A.
- This cathode layer 106 can be patterned to give a pixellated array or it can be continuous and overlaid with a layer of bulk conductor such as silver, copper or preferably aluminum which is, itself, patterned.
- the cathode layer may additionally include a second layer of a second metal added to give mechanical strength and durability.
- the diodes are prepared on a substrate.
- the substrate should be nonconducting. In those embodiments in which light passes through it, it is transparent.
- It can be a rigid material such as a rigid plastic including rigid acrylates, carbonates, and the like, rigid inorganic oxides such as glass, quartz, sapphire, and the like.
- It can also be a flexible transparent organic polymer such as polyester - for example poly(ethyleneterephthalate), flexible polycarbonate, poly (methyl methacrylate), poly(styrene) and the like. The thickness of this substrate is not critical.
- Other Optional Layers 140 and others not shown)
- An optional layer 140 including an electron injection/transport material may be provided between the photoactive layer 102 and the cathode 106.
- This optional layer 140 can function both to facilitate electron injection/transport, and also serve as a buffer layer or confinement layer to prevent quenching reactions at layer interfaces. Preferably, this layer promotes electron mobility and reduces quenching reactions.
- electron transport materials for optional layer 140 include metal chelated oxinoid compounds, such as tris(8-hydroxyquinolato)aluminum (Ak ⁇ ); phenanthroline-based compounds, such as 2,9-dimethyl-4,7-diphenyl- 1 , 10-phenanthroline (DDP A) or 4,7-diphenyl- 1,10-phenanthroline (DP A), and azole compounds such as 2-(4-biphenylyl)-5-(4-t- butylphenyl)-l,3,4-oxadiazole (PBD) and 3-(4-biphenylyl)-4-phenyl-5-(4-t- butylphenyl)-l,2,4-triazole (TAZ), polymers containing DDP A, DPA, PBD, and TAZ moiety and polymer blends thereof, polymer blends containing containing DDP A, DPA, PBD, and TAZ.
- metal chelated oxinoid compounds such as tris(8
- anode layer 110 may be surface treated to increase charge carrier transport efficiency.
- the choice of materials for each of the component layers is preferably determined by balancing the goals of providing a device with high device efficiency.
- the photoactive layer 102, hole injection/transport layer 112, and optional electron transport/injection layer can be solution-processed organic electroactive layers.
- solution-processed organic electroactive refers to a layer containing organic material that exhibits electroactivity and is formed or applied using method that includes the step of formulating a solution of the electroactive component in a suitable solvent (a solution processible method).
- a solution processible method includes spin-coating, casting, and screen printing, gravure printing,ink jet printing, web coating, precursor polymer processing, and the like, or any combination thereof.
- the various elements of the devices of the present invention can be fabricated by any of the techniques well known in the art, such as solution casting, screen printing, web coating, ink jet printing, sputtering, evaporation, precursor polymer processing, and the like, or any combination thereof.
- the diodes are built up by sequential deposit of layers upon a substrate.
- the anode 110 is laid down first.
- the anode layer is 110 usually applied by a physical vapor deposition process or spin-cast process.
- the term "physical vapor deposition" refers to various deposition approaches carried out in vacuo.
- physical vapor deposition includes all forms of sputtering, including ion beam sputtering, as well as all forms of vapor deposition such as e-beam evaporation and resistance evaporation.
- a specific form of physical vapor deposition which is useful is rf magnetron sputtering.
- the hole injection/transport layer 112 is preferably be applied using spin-coating, casting, and screen printing, gravure printing,ink jet printing, web coating, precursor polymer processing, and the like, or any combination thereof.
- the layer can also be applied by ink jet printing, thermal patterning, or physical vapor deposition.
- the buffer layer 112 is a solution-processed organic electroactive layer,water-soluble or water-dispersible material is generally used as the spin-casting medium.
- a non-aqueous solvent such as toluene, xylenes, styrene, aniline, decahydronaphthalene, chloroform, dichloromethane, chlorobenzenes and morpholine.
- the photoactive layer 102 is deposited.
- the photoactive layer 102 containing the photoactive organic material can be applied from solutions by any conventional means, spin-coating, casting, and screen printing, gravure printing,ink jet printing, web coating, precursor polymer processing, and the like, or any combination thereof.
- the photoactive organic materials can be applied directly by vapor deposition processes, depending upon the nature of the materials. It is also possible to apply an electroactive polymer precursor and then convert to the polymer, typically by heating.
- the solvent employed is one which will dissolve the polymer and not interfere with its subsequent deposition.
- organic solvents are used. These can include halohydrocarbons such as methylene chloride, chloroform, and carbon tetrachloride, aromatic hydrocarbons such as xylene, benzene, toluene, other hydrocarbons such as decaline, and the like. Mixed solvents can be used, as well.
- Polar solvents such as water, acetone, tetrabydrofiiran acids and the like may be suitable. These are merely a representative exemplification and the solvent can be selected broadly from materials meeting the criteria set forth above.
- the solution can be relatively dilute, such as from 0.1 to 20% w in concentration, especially 0.2 to 5% w. Film thicknesses of 400-4000 and especially 500-2000 A are typically used.
- the cathode layer 106 is usually applied by a physical vapor deposition process.
- one or more of the electroactive layers 102, 112, 140 and the electrodes 106 and 110 can be patterned. It is understood that the pattern may vary as desired.
- the layers can be applied in a pattern by, for example, positioning a patterned mask or photoresist on the first flexible composite barrier structure prior to applying the first electrical contact layer material.
- the layers can be applied as an overall layer and subsequently patterned using, for example, a photoresist and wet chemical etching.
- the hole injection/transport layer can also be applied in a pattern by ink jet printing, lithography or thermal transfer patterning. Other processes for patterning that are well known in the art can also be used.
- one or more of the solution-processed organic electroactive layers are heat treated.
- this heat treatment leads to improved stability and the operating life of the device.
- the heat treatment lowers its conductivity (increases its resistance) to levels which lead to improved device performance and diminished cross-talk between pixels.
- the heat treating of this invention is carried out in any conventional heating environment including ovens, radinent heaters, hot plates or the like.
- the heat treatment can be carried out in air or in an inert atmosphere such as in nitrogen or in argon or the like.
- the conditions for heat treatment range from about 20 seconds to about two hours at temperatures of from about 80 to 300°C. As with most thermal treatments the longer times are most commonly used with the lower temperatures and the shorter times with the higher temperatures.
- one measurement of the degree of heat treatment to be applied is the resistance of the layer following heat treatment, hi these cases, the heat treatment can be gauged by an increase in resistance of at least about two-fold.
- a heat treatment can be deemed in the case of a PANI(ES) layer by the achievement of a resistance of the layer which yields a conductivity of less than 10 "4 S/cm, preferably less than 10 "5 S/cm, and more preferably less than 10 "6 S/cm.
- good results in these ranges are achieved with heat treatments of from about 0.5 minutes to about 90 minutes at 100 to 300°C and preferably with heat treatments of from about 1.0 minutes to about 60 minutes at 175 to 250°C.
- one measurement of the degree of heat treatment to be applied is the extension of device life brought about by the heat treatment.
- the heat treatment can be gauged by an increase in operating life of at least about 50%, preferably at least about 100% and preferably at least about 200 %.
- the heat treatment conditions which provide this increase are somewhat less strenuous than the conditions used for optimal buffer layer treatment. For example, very good results are achieved with heat treatments in the range of 60 to 180 seconds at temperatures of 80 to 250°C and particularly 75 to 150 seconds at temperatures of 120 to 180°C.
- heat treatment of one or more solution- processed organic electroactive layers takes place before the second electrode is provided on the device.
- the cathode layer 106 is the second electrode. It is understood that where the device is fabricated in the reverse order so that the cathode is first laid down, the anode layer would be the second electrode.
- the layers may be heat- treated sequentially, wherein a first layer is laid down and heat treated before a second layer is laid down and subsequently heat-treated.
- the first layer is heat-treated twice.
- the both layers may be laid down so that heat-treatment of both layers occur at the same time.
- both layers are heat-treated once.
- the present invention is further useful in organic electronic devices including at least one solution-processed organic electroactive layers but do not contain photoactive layers, such as transistors, capacitors, resistors, chemoresistive sensors (gas/vapor sensitive electronic noses, chemical and biosensors), writing sensors, and electrochromic devices (smart window).
- photoactive layers such as transistors, capacitors, resistors, chemoresistive sensors (gas/vapor sensitive electronic noses, chemical and biosensors), writing sensors, and electrochromic devices (smart window).
- PANI(ES) powder was prepared according to the following reference (Y. Cao, et al, Polymer, 30(1989) 2307).
- the emeraldine salt (ES) form was verified by the typical green color.
- HC1 in this reference was replaced by poly(2-acrylamido-2- methyl- 1-propanesulfonic acid (PAAMPSA) (Aldrich).
- PAAMPSA poly(2-acrylamido-2- methyl- 1-propanesulfonic acid
- 30.5 g (0.022 mole) of 15% PAAMPSA in water (Aldrich ) was diluted to 2.3% by adding 170 ml water. While stirring, 2.2 g (0.022M) aniline was added into the PAAMPSA solution.
- Example 2 Four grams (4.0 g) of the PANI(ES) powder as prepared in Example 1 was mixed with 400 g of deionized water in a plastic bottle. The mixture was rotated at room temperature for 48 hours. The solution dispersion was then filtered through a lam polypropylene filter. Different concentrations of PANI(ES) in water were routinely prepared by changing the quantity of PANI(ES) mixed into the water. This Example demonstrates that PANI(ES) can be dissolved/dispersed in water and subsequently filtered through a 1 ⁇ m filter.
- EXAMPLE 3 Four grams (4.0 g) of polyacrylamide (PAM) (M.W. 5,000,000 - 6,000,000, Polysciences) was mixed with 400 ml of deionized water in a plastic bottle. The mixture was rotated at room temperature for at least 48 hours. The solution dispersion was then filtered through a 1 ⁇ m polypropylene filter. Different concentrations of PAM were routinely prepared by changing the quantity of PAM dissolved. This Example demonstrates that PAM can be dissolved/dispersed in water and subsequently filtered through a 1 ⁇ m filter.
- PAM polyacrylamide
- EXAMPLE 4 Solution/Dispersions 202 and 208 of Table 1 above were prepared. Twenty grams of a PANI(ES) solution as prepared in Example 2 was mixed (at room temperature for 12 days) with 10 g of 1% PAM solution as prepared in Example 3 and 2.0 g of 15% PAAMPSA solution (Aldrich). The solution was then filtered through 0.45 ⁇ m polypropylene filters. The weight ratio of PANI(ES): PAM: PAAMPSA in the blend solution was 1:0.5:1.5. Different blend ratios of the PANI(ES): PAM: PAAMPSA blend solutions (including Solution/Dispersion 208 of Table 1 above, with a ratio of 1 : 1.5 :0.5) were prepared by changing the concentrations in the starting solutions.
- EXAMPLE 5 30 g of a solution as prepared in Example 2 was mixed with 7 g of deionized water and 0.6 g of PAM (M.W. 5,000,000 - 6,000,000, Polysciences) under stirring at room temperature for 4 - 5 days. The solution was filtered through a 0.45 ⁇ m polypropylene filter. The weight ratio of PANI(ES) to PAM in the blend solution is 1:2. This is Solution/Dispersion 204 shown in Table 1 above. Blend solutions were also prepared in which the weight ratio of PANI(ES) to PAM was 1 :1, 1:1.5, 1:2.5, 1 :3 (Solution Dispersion 206 of Table 1 above), 1:4, 1:5, 1:6 and 1:9, respectively.
- EXAMPLE 6 Glass substrates were prepared with patterned ITO electrodes. Using the blend solutions 200, 202, 204, 206 and 208 as prepared in Examples 2, 4 and 5, polyaniline blend layers were spin-cast as films on top of the patterned substrates and thereafter, baked at 90°C in a vacuum oven for 0.5 hour. The films prepared from the materials of Example 4 and 5 were then treated at 200°C in a dry box for 30 minutes. The resistance between ITO electrodes was measured using a high resistance electrometer. Thickness of the film was measured by using a Dec-Tac surface profiler (Alpha-Step 500 Surface Profiler, Tencor Instruments). Table 2 below shows the conductivity and thickness of PANI(ES) blend films with different blend compositions and heat treatments.
- the conductivity can be controlled over a wide range.
- the PANI blend After baking at 200°C for 30 min., the PANI blend had a conductivity of less than 10 " S/cm with a thickness of about 2000 A, which is ideal for use in pixellated displays.
- This Example demonstrates that films of the PANI(ES) blends can be prepared win bulk conductivities less than 10 "5 S/cm, and even less than 10 "6 S/cm; i.e. sufficiently low that interpixel current leakage can be limited without need for patterning the PANI(ES) blend film.
- EXAMPLE 7 Light emitting diodes were fabricated using soluble poly(l,4 phenylenevinylene) copolymer (C-PPV) (H. Becker, H. Spreitzer, W. Kreduer, E. Kluge, H. Schenk, ID. Parker and Y. Cao, Adv. Mater. 12, 42 (2000) as the active semiconducting, luminescent polymer; the thickness of the C-PPV films were 700 - 900 A C-PPV emits yellow-green light with emission peak at ⁇ 560 nm. Indium/tin oxide was used as the anode.
- C-PPV soluble poly(l,4 phenylenevinylene) copolymer
- Polyaniline blend buffer layers were spin-cast on top of the patterned substrates from PANI-PAAMPSA solutions 200, 202, 204, 206 and 208, as prepared in Examples 2, 4, and 5, and thereafter, baked at 90°C in a vacuum oven for 0.5 hour. The films prepared from materials of Examples 4 and 5 were then treated at 200°C in a dry box for 30 minutes.
- the device architecture was ITO/Polyaniline blend/C-PPV/metal.
- ITO/Polyaniline blend bilayer was the anode and the hole-injecting contact.
- Devices were made with a layer of either Ca or Ba as the cathode.
- the metal cathode film was fabricated on top of the C-PPV layer using vacuum vapor deposition at pressures below lxlO "6 Torr yielding an photoactive layer with area of 3 cm 2 . The deposition was monitored with a STM-100 thickness/rate meter (Sycon Instruments, Inc.).
- EXAMPLE 8 The devices of Example 7 were encapsulated using a cover glass sandwiched by UV-curable epoxy. The encapsulated device were run at a constant current of 3.3 mA/cm 2 in ambient atmosphere in an oven at 70°C. The total current through the device was 10 mA with luminance of approx. 200 cd/cm 2 . Table 4 below and Figure 2 shows the light output and voltage increase during operation at 70°C. More specifically, Figure 2 shows the stress induced degradation of the encapuslated devices, each device containing layer made from Solutions/Dispersions 200, 202, 204, or 208, as denoted in Table 4 below, in the heat-treated hole injection/transport layer.
- the plots shown in solid lines 200-1 , 202-1 , 204-1 , 206-1 and 208-1 for devices containing a layer made from Solutions/Disperions 200, 202, 204, 208 show the voltage measurement for the devices.
- the plots shown in dashed lines 200-2, 202-2, 204- 2, 206-2 and 208-2 for devices containing layer made from Solutions/Dispersion 200, 202, 204, 208 show the luminance of the devices.
- This Example demonstrates that long lifetime can be obtained for polymer LEDS fabricated with PANT(ES) layers that have resistance sufficiently high to avoid inter-pixel current leakage.
- Example 6 The resistance measurements of Example 6 were repeated, but the PANI(ES) layers were spin-cast from the blend solutions 204 shown in Table 1 above, and prepared in Examples 5.
- the weight ratio of PANI(ES) to PAM in the blend solutions is 1 :2.
- the film was dried in a 90°C vacuum oven for 0.5 hour and then baked at different temperature and in dry box.
- Table 5 shows the conductivity of PANI(ES)-blend films with different bake time. As can be seen from the data, the conductivity can be controlled in a wide range, from 10 "4 to 10 " " S/cm to meet display requirements. Conductivity values less than 10 "5 S/cm can be obtained by baking the blend film at 200°C for 30 minutes or longer. With 90 seconds baking at 230°C or higher, the conductivity dropped below 10 "10 S/cm.
- PANI(ES)-blend films can be prepared with conductivity values of less than 10 "6 S/cm and even less than 10 "8 S/cm by baking the PANI(ES)-blend at high temperature.
- PANi-PAM 2 300°C/90sec 1.3x10 "
- EXAMPLE 10 The device measurements summarized in Example 7 were repeated, but the PANI(ES)-blend layer was prepared as in Examples 9. Table 6 below shows the device performance of LEDs fabricated from PANI-PAM blend with different heat treatment. The optimum heat treatment condition for device performance is at 200°C for 30 minutes. The device performance deteriorated when PANI(ES)-blend was baked at temperature higher than 200°C.
- EXAMPLE 11 The stress measurements summarized in Example 8 were repeated, but the PANI(ES)-blend layer was prepared as in Examples 9.
- Table 7 below and Fig. 3 show the stress life time of LEDs fabricated from polyblend films with different heat treatments. More specifically, Figure 3 shows the stress induced degradation of the encapsulated devices, each device containing a heat-treated layer made from Solution/Dispersion 204 of in Table 1 above, heat-treated at various conditions 204A, 204B, 204B, 204C, 204D, and 204E, as denoted in Table 7 below.
- the plots shown in solid lines 204A-1, 204B-1, 204C-1, 204D- 1, 204E-1 show the voltage measurement for the device at heat treatment conditions 204A, 204B, 204B, 204C, 204D, and 204E.
- the plots shown in dashed lines 204A-2, 204B-2, 204C-2, 204D-2, 204E-2 show the luminance of the device at heat treatment conditions 204A, 204B, 204B, 204C, 204D, and 204E. It can be seen from Figure 3 that the optimum heat treatment condition for the stress life of the device is 200°C for 30 minutes.
- EXAMPLE 12 The resistance measurements of Example 6 were repeated, but the PANI(ES) layer was spin-cast from the blend solution 204 of Table 1 above and prepared in Example 5.
- the weight ratio of PANI(ES) to PAM in the blend solution is 1:2.
- the blend film was baked at 200°C for different time in dry box after dried in 90°C vacuum oven for 0.5 hour.
- Fig. 4 shows the conductivity of PANI(ES)-blend films with different bake time. As can be seen from the data, the conductivity can be controlled in wide range, from 10 "4 to 10 "8 S/cm to meet display requirements. Conductivity values less than 10 "5 S/cm can be obtained by baking the blend film at 200°C for 30 minutes or longer. With one hour baking at 200°C, the conductivity dropped below 10 "8 S/cm.
- EXAMPLE 13 The device measurements summarized in Example 7 were repeated, but the PANI(ES)-blend layer was prepared as in Example 12.
- Table 8 below shows the device performance of LEDs fabricated from PANI-PAM blends with different baking time at 200°C. The optimum baking time for PANI-PAM blend at 200°C is 30 minutes.
- Example 8 The stress measurements summarized in Example 8 were repeated, but the PANI(ES)-blend layer was prepared as in Example 12 (using Dispersion/Solution 204 of Table 1 above).
- Table 9 below and Fig. 5 show stress life of LEDs fabricated from polyblend films with different baking time at 200°C. These various baking conditions are labelled 204F through 204N per Table 9 below. More specifically, Figure 5 shows the stress induced degradation of the encapsulated devices, each device containing a heat-treated layer made from Solution/Dispersion 204 of in Table 1 above, heat-treated at various conditions 204G, 204H, 204J, and 204M as denoted in Table 9 below.
- the plots shown in solid lines 204G-1, 204H-1, 204J-1, and 204M-1 show the voltage measurement for the device at heat treatment conditions 204G, 204H, 204J, and 204M.
- the plots shown in dashed lines 204G-2, 204H-2, 204J-2, and 204M-2 show the luminance of the device at heat treatment 204G, 204H, 204 J, and 204M. It can be seen from Figure 6 that the optimum heat treatment conditions for the stress life of the device are 200°C for 30 minutes.
- PANI(ES) layer was spin-cast from the blend solutions prepared in Example 5.
- the weight ratio of PANI(ES) to PAM in the blend is 1:1, 1:1.5, 1:2, 1 :2.5, 1 :3, 1:4, 1:5, 1:6 and 1:9, respectively.
- the film was baked at 200°C for 30 minutes in a dry box after having dried in a 90°C vacuum oven for 0.5 hour.
- Table 10 shows the conductivity of PANI(ES)-blend films with different PANI(ES) to PAM ratios.
- the conductivity can be controlled in wide range, from 10 "4 to 10 "8 S/cm to meet display requirements. Conductivity values less than 10 "5 S/cm can be obtained by adjusting the PANI(ES) to PAM ratio to 1 : 1.5 or lower. With the PANI(ES) to PAM ratio of 1:9, the conductivity dropped below
- PANi-PAM 1 200°C/30 min 3.8xl0 "4
- PANi-PAM 1 1.5 200°C/30 min 5.3x10 " °
- PANi-PAM 1 200°C/30 min 7.4xl0 "7
- PANi-PAM 1 4 200°C/30 min 4.6xl0 "7
- PANi-PAM 1 9 200°C/30 min 7.5xl0 "8
- Example 11 shows the device performance of LEDs fabricated from polyblend films with different the PANI(ES) to PAM ratios. These data show that the optimum PANI(ES) to PAM ratio is 1 :2 (Device 214). The lower PANI(ES) to PAM ratio results in deterioration of device performance.
- PANi-PAM 1 3 200°C/30 min 6.1 9.7 5.0
- Example 8 The stress measurements summarized in Example 8 were repeated, but the PANI(ES)-blend layer was prepared as in Example 15. As shown in Table 12 below, these devices are labelled 210, 212, 214, 216, 218, 220, 222, 224, and 226. Table 12 below and Fig. 6 show stress life of LEDs fabricated from polyblend films with different PANI(ES) to PAM ratios. As shown in Fig. 6, solid lines 210- 1, 212-1, 214-1, 216-1, 218-1, 220-1, and 222-1 for Devices 210, 212, 214, 216, 218, 220 and 222 show the voltage measurement for the devices.
- EXAMPLE 18 The device measurements summarized in Example 7 were repeated, but C-PPV layer was baked at 90°C, 120°C, 150°C, 150°C and 200°C for 90 seconds in dry box. Table 13 shows the device performance of LEDs fabricated from C PPV film baked at different temperatures. Baking of C-PPV film at elevated temperature results in lower operation voltage as well as lower light output compared to device made with un-baked C-PPV film. This Example demonstrates that the thermal treated C-PPV film can be used to fabricate polymer LEDs with high performance.
- Example 8 The stress measurements summarized in Example 8 were repeated, but the C-PPV layer was prepared as in Example 18. As shown in Table 14 below, these devices are labelled 228, 230, 232, 234, 236, and 238.
- Table 14 and Fig. 7 shows stress life of LEDs fabricated from C-PPV film baked at different temperatures. As shown in Fig. 7, solid lines 228-1, 230-1, 232-1, 234-1, 236-1, and 238-1, for Devices 228, 230, 232, 234, 236, and 238 show the voltage measurement for the devices.
- the plots shown in dashed lines lines 228-2, 230-2, 232-2, 234-2, 236-2, and 238-2, for Devices 228, 230, 232, 234, 236, and 238 show the luminance measurement for the devices
- the voltage increase rate decreases dramatically after C-PPV film was baked at elevated temperatures. It can drop to 0.9 mV/h after C-PPV film baked at 200°C for 90 seconds.
- the half life time of the device with baked (C-PPV film increased 2 to 3 times compared to device with un-baked C-PPV film.
- This Example demonstrates that the heat-treated luminescent polymer layer can improve the stress life of the device by 2 to 3 times.
- the optimum baking condition of C-PPV for the stress life of the device is 150°C for 90 seconds.
- Table 14 Stress life of LED devices with C-PPV layer baked at different temperature
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Electroluminescent Light Sources (AREA)
- Photovoltaic Devices (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002413069A CA2413069A1 (en) | 2000-06-20 | 2001-06-18 | Thermal treatment of solution-processed organic electroactive layer in organic electronic device |
JP2002503958A JP2003536228A (en) | 2000-06-20 | 2001-06-18 | Heat treatment of solution-treated organic electroactive layers in organic electronic devices |
EP01946494A EP1292997A2 (en) | 2000-06-20 | 2001-06-18 | Thermal treatment of solution-processed organic electroactive layer in organic electronic device |
IL15306301A IL153063A0 (en) | 2000-06-20 | 2001-06-18 | Thermal treatment of solution-processed organic electroactive layer in organic electronic device |
AU2001268539A AU2001268539A1 (en) | 2000-06-20 | 2001-06-18 | Thermal treatment of solution-processed organic electroactive layer in organic electronic device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US21293400P | 2000-06-20 | 2000-06-20 | |
US60/212,934 | 2000-06-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2001099208A2 true WO2001099208A2 (en) | 2001-12-27 |
WO2001099208A3 WO2001099208A3 (en) | 2002-05-02 |
Family
ID=22793013
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2001/019483 WO2001099208A2 (en) | 2000-06-20 | 2001-06-18 | Thermal treatment of solution-processed organic electroactive layer in organic electronic device |
Country Status (10)
Country | Link |
---|---|
US (2) | US20020031602A1 (en) |
EP (1) | EP1292997A2 (en) |
JP (1) | JP2003536228A (en) |
KR (1) | KR20030036232A (en) |
CN (1) | CN1437774A (en) |
AU (1) | AU2001268539A1 (en) |
CA (1) | CA2413069A1 (en) |
IL (1) | IL153063A0 (en) |
TW (1) | TWI240444B (en) |
WO (1) | WO2001099208A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1487028A1 (en) | 2003-05-07 | 2004-12-15 | Sony Corporation | Field effect transistor and method for manufacturing the same |
EP1912268A1 (en) * | 2006-10-09 | 2008-04-16 | Novaled AG | Method for spatial structuring the emission density of an OLED, semiconductor device obtained by the method and its use |
JP2011018922A (en) * | 2002-10-10 | 2011-01-27 | Cambridge Display Technology Ltd | Optical device |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0013472D0 (en) * | 2000-06-03 | 2000-07-26 | Univ Liverpool | Ionising radiation detector |
JP2002082627A (en) * | 2000-09-07 | 2002-03-22 | Sony Corp | Display device |
US6699597B2 (en) * | 2001-08-16 | 2004-03-02 | 3M Innovative Properties Company | Method and materials for patterning of an amorphous, non-polymeric, organic matrix with electrically active material disposed therein |
US20040004433A1 (en) * | 2002-06-26 | 2004-01-08 | 3M Innovative Properties Company | Buffer layers for organic electroluminescent devices and methods of manufacture and use |
US7098060B2 (en) * | 2002-09-06 | 2006-08-29 | E.I. Du Pont De Nemours And Company | Methods for producing full-color organic electroluminescent devices |
WO2004070789A2 (en) * | 2003-02-03 | 2004-08-19 | The Regent Of The University Of California | Rewritable nano-surface organic electrical bistable devices |
WO2005011017A1 (en) * | 2003-07-24 | 2005-02-03 | Koninklijke Philips Electronics N.V. | Organic elettroluminescent device with low oxygen content |
US7274035B2 (en) * | 2003-09-03 | 2007-09-25 | The Regents Of The University Of California | Memory devices based on electric field programmable films |
US20050100657A1 (en) * | 2003-11-10 | 2005-05-12 | Macpherson Charles D. | Organic material with a region including a guest material and organic electronic devices incorporating the same |
US7544966B2 (en) * | 2003-12-03 | 2009-06-09 | The Regents Of The University Of California | Three-terminal electrical bistable devices |
GB0329364D0 (en) | 2003-12-19 | 2004-01-21 | Cambridge Display Tech Ltd | Optical device |
US7455793B2 (en) * | 2004-03-31 | 2008-11-25 | E.I. Du Pont De Nemours And Company | Non-aqueous dispersions comprising electrically doped conductive polymers and colloid-forming polymeric acids |
US7750341B2 (en) * | 2004-05-17 | 2010-07-06 | The Regents Of The University Of California | Bistable nanoparticle-polymer composite for use in memory devices |
US7554111B2 (en) * | 2004-05-20 | 2009-06-30 | The Regents Of The University Of California | Nanoparticle-polymer bistable devices |
US20050276910A1 (en) * | 2004-06-09 | 2005-12-15 | Osram Opto Semiconductors Gmbh | Post processing of films to improve film quality |
GB2437188A (en) * | 2004-10-28 | 2007-10-17 | Univ California | Organic-complex thin film for nonvolatile memory applications |
JP2006164808A (en) * | 2004-12-09 | 2006-06-22 | Hitachi Ltd | Light emitting element, lighting system and display device having it |
US7803254B2 (en) * | 2004-12-30 | 2010-09-28 | E. I. Du Pont De Nemours And Company | Processes for forming electronic devices and electronic devices formed by such processes |
JP2007035348A (en) * | 2005-07-25 | 2007-02-08 | Sharp Corp | Electroluminescent display device and manufacturing method of same |
JP4692415B2 (en) * | 2005-09-15 | 2011-06-01 | カシオ計算機株式会社 | Method for manufacturing electroluminescence element |
JPWO2007060826A1 (en) * | 2005-11-24 | 2009-05-07 | コニカミノルタホールディングス株式会社 | Organic electroluminescence element, display device and lighting device |
US7309876B2 (en) * | 2005-12-30 | 2007-12-18 | Lucent Technologies Inc. | Organic semiconductor having polymeric and nonpolymeric constituents |
KR100837397B1 (en) * | 2006-01-05 | 2008-06-17 | 삼성전자주식회사 | Gas sensor using carbon nanotube and method of measuring using the same |
US20070210705A1 (en) * | 2006-03-09 | 2007-09-13 | Hajime Yokoi | Organic electroluminescent element and manufacturing method of an organic electroluminescent element and a display |
EP1873845A1 (en) * | 2006-06-08 | 2008-01-02 | Toppoly Optoelectronics Corp. | System for displaying images |
US20070285001A1 (en) * | 2006-06-08 | 2007-12-13 | Toppoly Optoelectronics Corp. | System for displaying images |
TWI333114B (en) * | 2006-06-20 | 2010-11-11 | Au Optronics Corp | Manufacturing active device array substrate and manufacturing color filter substrate |
JP2010517299A (en) * | 2007-01-30 | 2010-05-20 | ソーラスタ インコーポレイテッド | Photocell and method for producing the same |
US20080202581A1 (en) * | 2007-02-12 | 2008-08-28 | Solasta, Inc. | Photovoltaic cell with reduced hot-carrier cooling |
GB2448730A (en) * | 2007-04-25 | 2008-10-29 | Innos Ltd | Fabrication of Planar Electronic Circuit Devices |
US20080283409A1 (en) * | 2007-05-16 | 2008-11-20 | Qingping Chen | Use of conjugated oligomer as additive for forming conductive polymers |
TW200919751A (en) * | 2007-07-03 | 2009-05-01 | Solasta Inc | Distributed coax photovoltaic device |
DE102010005865A1 (en) * | 2009-12-18 | 2011-06-22 | Franz Binder GmbH & Co Elektrische Bauelemente KG, 74172 | Process for the preparation of a light-emitting activatable component |
CN106981582A (en) * | 2011-06-21 | 2017-07-25 | 科迪华公司 | For OLED microcavity and the material and method of cushion |
US9116409B1 (en) * | 2012-05-21 | 2015-08-25 | Applied Materials, Inc. | Electrochromic devices with Si, Sn, SiO2 and SnO2 doped anodes |
US10134988B2 (en) | 2013-12-13 | 2018-11-20 | E I Du Pont De Nemours And Company | System for forming an electroactive layer |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5334539A (en) * | 1993-01-29 | 1994-08-02 | Iowa State University Research Foundation, Inc. | Fabrication of poly(p-phenyleneacetylene) light-emitting diodes |
DE19627071A1 (en) * | 1996-07-05 | 1998-01-08 | Bayer Ag | Electroluminescent devices |
WO1999039395A1 (en) * | 1998-02-02 | 1999-08-05 | Uniax Corporation | Organic diodes with switchable photosensitivity |
WO2000006665A1 (en) * | 1998-07-28 | 2000-02-10 | The Dow Chemical Company | Organic electroluminescent devices |
WO2001041230A1 (en) * | 1999-12-02 | 2001-06-07 | Uniax Corporation | High resistance polyaniline useful in high efficiency pixellated polymer electronic displays |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3921621A (en) * | 1973-08-23 | 1975-11-25 | Lee R Baessler | Method and system utilizing a disposable transmitter for monitoring a patient{3 s condition |
US4121574A (en) * | 1977-04-11 | 1978-10-24 | Medicgraph Systems, Inc. | Method and apparatus for measuring and recording vital signs of a patient |
US4356429A (en) * | 1980-07-17 | 1982-10-26 | Eastman Kodak Company | Organic electroluminescent cell |
US4495514A (en) * | 1981-03-02 | 1985-01-22 | Eastman Kodak Company | Transparent electrode light emitting diode and method of manufacture |
US4358429A (en) * | 1981-10-06 | 1982-11-09 | The United States Of America As Represented By The United States Department Of Energy | Oxygen stabilized zirconium vanadium intermetallic compound |
US4471354A (en) * | 1981-11-23 | 1984-09-11 | Marathon Medical Equipment Corporation | Apparatus and method for remotely measuring temperature |
US4686998A (en) * | 1985-11-12 | 1987-08-18 | Mediscan Research Limited | Patient temperature and heartbeat rate monitoring system |
GB8909011D0 (en) * | 1989-04-20 | 1989-06-07 | Friend Richard H | Electroluminescent devices |
FR2664430B1 (en) * | 1990-07-04 | 1992-09-18 | Centre Nat Rech Scient | THIN FILM FIELD EFFECT TRANSISTOR WITH MIS STRUCTURE, IN WHICH THE INSULATION AND THE SEMICONDUCTOR ARE MADE OF ORGANIC MATERIALS. |
US5408109A (en) * | 1991-02-27 | 1995-04-18 | The Regents Of The University Of California | Visible light emitting diodes fabricated from soluble semiconducting polymers |
DE4139122C1 (en) * | 1991-11-28 | 1993-04-08 | Fenzlein, Paul-Gerhard, 8500 Nuernberg, De | |
US5723873A (en) * | 1994-03-03 | 1998-03-03 | Yang; Yang | Bilayer composite electrodes for diodes |
US5858561A (en) * | 1995-03-02 | 1999-01-12 | The Ohio State University | Bipolar electroluminescent device |
US5810736A (en) * | 1995-08-22 | 1998-09-22 | Pail; Opher | Wrist pulse monitor |
US5625199A (en) * | 1996-01-16 | 1997-04-29 | Lucent Technologies Inc. | Article comprising complementary circuit with inorganic n-channel and organic p-channel thin film transistors |
KR100479000B1 (en) * | 1996-05-15 | 2005-08-01 | 세이코 엡슨 가부시키가이샤 | Manufacturing method of thin film device, liquid crystal panel and electronic device and thin film device |
US5981970A (en) * | 1997-03-25 | 1999-11-09 | International Business Machines Corporation | Thin-film field-effect transistor with organic semiconductor requiring low operating voltages |
WO1999055221A1 (en) * | 1998-04-30 | 1999-11-04 | Geratherm Medical Ag | Medical telemetry system |
US6593690B1 (en) * | 1999-09-03 | 2003-07-15 | 3M Innovative Properties Company | Large area organic electronic devices having conducting polymer buffer layers and methods of making same |
AU2001259187A1 (en) * | 2000-04-27 | 2001-11-07 | Add-Vision, Inc. | Screen printing light-emitting polymer patterned devices |
US6440084B1 (en) * | 2000-09-14 | 2002-08-27 | Patrick Gentempo | Thermal scanning system and method |
US6593590B1 (en) * | 2002-03-28 | 2003-07-15 | Advanced Micro Devices, Inc. | Test structure apparatus for measuring standby current in flash memory devices |
-
2001
- 2001-06-01 US US09/872,301 patent/US20020031602A1/en not_active Abandoned
- 2001-06-18 CA CA002413069A patent/CA2413069A1/en not_active Abandoned
- 2001-06-18 CN CN01811524A patent/CN1437774A/en active Pending
- 2001-06-18 JP JP2002503958A patent/JP2003536228A/en active Pending
- 2001-06-18 IL IL15306301A patent/IL153063A0/en unknown
- 2001-06-18 WO PCT/US2001/019483 patent/WO2001099208A2/en not_active Application Discontinuation
- 2001-06-18 AU AU2001268539A patent/AU2001268539A1/en not_active Abandoned
- 2001-06-18 KR KR1020027017252A patent/KR20030036232A/en not_active Application Discontinuation
- 2001-06-18 EP EP01946494A patent/EP1292997A2/en not_active Withdrawn
- 2001-06-19 TW TW090114858A patent/TWI240444B/en not_active IP Right Cessation
-
2004
- 2004-09-24 US US10/949,750 patent/US20050118455A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5334539A (en) * | 1993-01-29 | 1994-08-02 | Iowa State University Research Foundation, Inc. | Fabrication of poly(p-phenyleneacetylene) light-emitting diodes |
DE19627071A1 (en) * | 1996-07-05 | 1998-01-08 | Bayer Ag | Electroluminescent devices |
WO1999039395A1 (en) * | 1998-02-02 | 1999-08-05 | Uniax Corporation | Organic diodes with switchable photosensitivity |
WO2000006665A1 (en) * | 1998-07-28 | 2000-02-10 | The Dow Chemical Company | Organic electroluminescent devices |
WO2001041230A1 (en) * | 1999-12-02 | 2001-06-07 | Uniax Corporation | High resistance polyaniline useful in high efficiency pixellated polymer electronic displays |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011018922A (en) * | 2002-10-10 | 2011-01-27 | Cambridge Display Technology Ltd | Optical device |
JP4746875B2 (en) * | 2002-10-10 | 2011-08-10 | ケンブリッジ ディスプレイ テクノロジー リミテッド | Optical device |
EP1487028A1 (en) | 2003-05-07 | 2004-12-15 | Sony Corporation | Field effect transistor and method for manufacturing the same |
US7141816B2 (en) | 2003-05-07 | 2006-11-28 | Sony Corporation | Field effect transistor |
EP1912268A1 (en) * | 2006-10-09 | 2008-04-16 | Novaled AG | Method for spatial structuring the emission density of an OLED, semiconductor device obtained by the method and its use |
Also Published As
Publication number | Publication date |
---|---|
TWI240444B (en) | 2005-09-21 |
WO2001099208A3 (en) | 2002-05-02 |
CA2413069A1 (en) | 2001-12-27 |
US20050118455A1 (en) | 2005-06-02 |
AU2001268539A1 (en) | 2002-01-02 |
JP2003536228A (en) | 2003-12-02 |
EP1292997A2 (en) | 2003-03-19 |
CN1437774A (en) | 2003-08-20 |
IL153063A0 (en) | 2003-06-24 |
US20020031602A1 (en) | 2002-03-14 |
KR20030036232A (en) | 2003-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20020031602A1 (en) | Thermal treatment of solution-processed organic electroactive layer in organic electronic device | |
US7504655B2 (en) | Multilayer structures as stable hole-injecting electrodes for use in high efficiency organic electronic devices | |
US20020038999A1 (en) | High resistance conductive polymers for use in high efficiency pixellated organic electronic devices | |
US5723873A (en) | Bilayer composite electrodes for diodes | |
EP1805826B1 (en) | Heteroatomic regioregular poly(3-substitutedthiophenes) in electroluminescent devices | |
US7033646B2 (en) | High resistance polyaniline blend for use in high efficiency pixellated polymer electroluminescent devices | |
WO2001041230A1 (en) | High resistance polyaniline useful in high efficiency pixellated polymer electronic displays | |
EP1292985A2 (en) | High resistance conductive polymers for use in high efficiency pixellated organic electronic devices | |
EP1419540A2 (en) | Electroluminescent device | |
EP1705729B1 (en) | Polymer and small molecule based hybrid light source |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2001268539 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 153063 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001946494 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2413069 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020027017252 Country of ref document: KR |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2002 503958 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 018115241 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 2001946494 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWP | Wipo information: published in national office |
Ref document number: 1020027017252 Country of ref document: KR |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2001946494 Country of ref document: EP |