WO2001097580A1 - Electronic device and method of manufacturing the electronic device - Google Patents

Electronic device and method of manufacturing the electronic device Download PDF

Info

Publication number
WO2001097580A1
WO2001097580A1 PCT/JP2001/004891 JP0104891W WO0197580A1 WO 2001097580 A1 WO2001097580 A1 WO 2001097580A1 JP 0104891 W JP0104891 W JP 0104891W WO 0197580 A1 WO0197580 A1 WO 0197580A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder paste
circuit board
solder
electronic device
semiconductor device
Prior art date
Application number
PCT/JP2001/004891
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiharu Ishida
Tasao Soga
Hanae Shimokawa
Tetsuya Nakatsuka
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Publication of WO2001097580A1 publication Critical patent/WO2001097580A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3485Applying solder paste, slurry or powder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10636Leadless chip, e.g. chip capacitor or resistor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0502Patterning and lithography
    • H05K2203/0545Pattern for applying drops or paste; Applying a pattern made of drops or paste
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3421Leaded components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3436Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3442Leadless components having edge contacts, e.g. leadless chip capacitors, chip carriers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3463Solder compositions in relation to features of the printed circuit board or the mounting process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the surface mounting of electronic components using lead-free (Pb) -free solder alloy instead of lead-tin eutectic solder, and particularly to the occurrence of solder pools or solder ridges in surface mounting. It is about prevention.
  • Pb lead-free
  • solders that can replace Sn-37mass% Pb (hereinafter abbreviated as Sn-37Pb) solders.
  • Sn-Zn, Sn-Ag, Sn- Sb-based, Sn-Ag-Bi-based, etc. have been mentioned.
  • the alternative Pb-free solder has lower wettability and melt-separability than the Sn-37Pb eutectic solder.
  • the supply of solder to the wiring pattern of the circuit board is performed by transferring the solder paste by printing, using a print mask shape that matches the pattern, and using the conventional Sn-37Pb eutectic solder.
  • the pattern and print mask pattern generally had the same shape.
  • An object of the present invention is to reliably connect an electronic component to a conventional circuit board using Pb-free solder instead of Sn-37Pb solder. Disclosure of the invention
  • the printed shape of the solder paste supplied to the connection wiring pattern of the circuit board is V-shaped (concave or convex is also effective), and V-shaped (concave or convex) is used for leadless chip components. I turned to the direction.
  • the method for manufacturing an electronic device further comprising using a print mask having a pattern different from the connection wiring pattern of the circuit board, for example, a print mask having a pattern smaller than the connection wiring pattern of the circuit board, to form the connection wiring pattern on the circuit board.
  • the solder is supplied, the semiconductor device is mounted on the circuit board, and the circuit board and the semiconductor device are connected by reflow.
  • FIG. 1 is a diagram showing a state in which a semiconductor device is mounted on a wiring circuit.
  • FIG. 2 is a view showing a longitudinal section of a lead portion of a mounted semiconductor device.
  • FIG. 3 is a view showing a cross section of a mounted state of the semiconductor device.
  • FIG. 4 is a diagram showing a state where the semiconductor device is mounted on the wiring circuit.
  • FIG. 5 is a view showing a longitudinal section in a mounted state of the semiconductor device.
  • FIG. 6 is a diagram showing a cross section of a lead portion of a mounted semiconductor device.
  • FIG. 7 is a diagram showing a state where the semiconductor device is mounted on the wiring circuit.
  • FIG. 8 is a view showing a cross section of a mounted state of the semiconductor device.
  • FIG. 9 is a view showing a cross section of a lead portion of a mounted semiconductor device.
  • FIG. 10 is a diagram illustrating the description of the occurrence of solder poles.
  • FIG. 11 is a view showing a mounted state of a leadless chip component.
  • FIG. 12 is a diagram showing an entire cross section of mounting a leadless chip component.
  • FIG. 13 is a diagram showing a cross section of an electrode portion of a leadless chip component.
  • FIG. 14 is a diagram showing a mounted state of a leadless chip component.
  • FIG. 15 is a diagram showing an entire cross section of mounting a leadless chip component.
  • FIG. 16 is a diagram showing a cross section of an electrode portion of a leadless chip component.
  • FIG. 17 is a view showing a mounting state of a leadless chip component.
  • FIG. 18 is a diagram showing an entire cross section of mounting a leadless chip component.
  • FIG. 19J is a view showing a cross section of an electrode portion of the leadless chip component.
  • FIG. 20 is a diagram showing a cross section and a plane of the semiconductor module.
  • FIG. 21 is a diagram showing a connection state between a semiconductor module and a circuit board.
  • FIG. 22 is a diagram showing a manufacturing process of the electronic device. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 22 shows an example of a manufacturing process of an electronic device including a semiconductor device (semiconductor chip) and the like.
  • a semiconductor device semiconductor device
  • device circuits are formed on a wafer, and a spring probe and plated contact terminals are brought into contact with the electrodes of the wafer to perform probe inspection.
  • the wafer on which the circuit pattern has been formed is diced and individualized, placed on an island such as a lead frame, and attached (mounted).
  • the mounted chip and lead frame are wire-bonded with gold wire or the like to make electrical connection.
  • the lead frame is set in the mold, the temperature is increased, and the fluidized resin is pumped to seal the entire chip with the resin.
  • the non-defective semiconductor device that has passed the sorting process is mounted on a mounting board such as a mother board using solder. As a result, electronic devices (including multi-chip modules) are manufactured.
  • a so-called wafer-level chip size package (WL-CSP) is used in which relocation wiring is formed from electrodes on the wafer at the wafer level, external connection terminals (for example, solder bumps) are formed, and then dicing is performed. May be used.
  • the method for preparing the semiconductor device and the circuit board (mounting board) is not limited to the above.
  • FIG. 1 shows, for example, a solder paste 4 a to 4 d printed on a predetermined wiring pattern 3 a to 3 d in order to connect a semiconductor device 2 having relatively wide I leads 5 a to 5 d to a circuit board 1.
  • This shows a state in which the transfer is supplied and the semiconductor device 2 is mounted thereon.
  • 2 and 3 are cross-sectional views of the cross-section observation finger portions XX ′ (6) and YY ′ (7).
  • the solder pastes 4a to 4d are applied to the wiring patterns 3a to 3d in a state where the solder pastes 4a to 4d face the wiring patterns 3a to 3d and the leads 5a to 5d of the semiconductor device 2.
  • the semiconductor device 2 is transferred and supplied so as to be V-shaped on the leads 3a to 3d.
  • the solder is partially soldered to the leads 5a to 5d. There is no best. That is, it is supplied in a shape having a notch.
  • the solder paste melts. The molten solder tends to be repelled by the side bands of the leads 5a to 5d due to the weight of the semiconductor device 2, or spreads over the metallized portions of the leads 5a to 5d.
  • the resistance of the metallized portion is smaller than the resistance of the side band at the time of rejection, so that it spreads over the metallized portion facing the unprinted portions 8a and 8b of the solder paste.
  • This becomes a leading role and the solder spreads and spreads even on the unprinted portions 8a and 8b of the solder paste of the wiring patterns 3a to 3d facing each other, and there is little elution to the side band of the wiring pattern, The generation of solder poles or the generation of a bridge between the wiring patterns is suppressed.
  • FIGS. 4, 5, and 6 show, for example, a predetermined wiring pattern for connecting the semiconductor device 2 having the I leads 5a to 5d to the circuit board 1.
  • 4D is a state diagram of a semiconductor device 2 which is transferred and supplied in a concave shape to form a semiconductor device 2 thereon.
  • the solder pastes 4a to 4d are melted and spread along the metallized portions of the leads 5a to 5d. If there is residual solder, as in Example 1, the resistance at the time of metallization is lower than the rejection resistance, so that it spreads over the metallized side of the lead facing the unprinted portions 8a and 8b of the solder paste, Led by it
  • solder also wets the unsoldered paste printed part of the wiring pattern. As a result, the occurrence of solder poles and bridges is suppressed.
  • FIGS. 7, 8, and 9 show, for example, solder pastes 4 a to 4 d on a predetermined wiring pattern 3 a to 3 d for connecting a semiconductor device 2 having I leads 5 a to 5 d to a circuit board 1.
  • FIG. 6 is a state diagram of a semiconductor device 2 transferred and supplied in a convex shape, and a semiconductor device 2 placed thereon.
  • the solder pastes 4a to 4d are melted and the metallized portions 1 of the leads 5a to 5d 1 "Wetting spreads along 0a> 10b. If there is residual solder, the unprinted portion of solder paste 8a, 8 Wet spreads on the metallized side of the lead opposite to b, leading to it, the solder also wets the unsoldered paste printed part of the wiring pattern
  • Fig. 10 shows a 1608 chip with metallization for electrodes 10a and 10b, a Sn-AgCu-based solder paste 4 for a 2125 chip, and a common Pb-Sn for the wiring pattern 3 on the circuit board 1. It shows the appearance in which a large pole 11 with a diameter of 100 to 500 m is formed on the side of the chip after solder printing with the mask pattern used for polycrystalline solder and passing it through a furnace with a riff opening of max 245 ° C. Such a pole 11 is formed even if the amounts of Ag and Cu in the solder are slightly different.
  • the cause is poor wettability to the Cu pad, so the solder that has been ejected by press-fitting when mounting the chip cannot return to the Cu pad due to the effect of the resist step, and remains as a large pole.
  • FIGS. 11, 12, and 13 show the connection of the leadless chip component 9 to the circuit board 1 with the soldering pastes 4a, 4b applied to the predetermined wiring patterns 3a, 3b and inside the electrodes.
  • FIG. 4 is a diagram showing a state in which a transfer and supply are performed in a V-shape, and a leadless chip component is mounted thereon.
  • the solder paste is passed through a reflow furnace in this state, the solder pastes 4a and 4b are melted and spread along the metallized portions 10a and 10b. If there is residual solder, the occurrence of solder poles can be suppressed.
  • the area of the Cu pad portion is increased, the wetted portion is increased, and the probability of pole generation is further reduced.
  • the V type is superior in producing less poles than the concave and convex types shown below.
  • the chip if the chip is mounted with misalignment, the portion where the paste and the chip come into contact changes linearly, so even a slight misalignment does not cause a problem.
  • the chip touches the concave side surface, and the degree of influence on wetting without touching it May be adversely affected.
  • FIG. 4 is a state diagram of a state in which a transfer and supply are performed so as to form a concave shape toward, and a leadless chip component is mounted thereon.
  • the unprinted solder paste 8a, 8b is provided on the wiring patterns 3a, 3b. It can suppress the occurrence of solder poles.
  • FIG. 6 is a diagram showing a state in which transfer and supply are performed so as to project toward a portion, and a leadless chip component is mounted thereon. Even in the present embodiment, even if residual solder is generated as in the case of the fourth and fifth embodiments, the solder balls are provided by providing the unprinted solder paste 8a and 8b on the wiring patterns 3a and 3b. Can be suppressed. (Example 7)
  • Figure 20 shows the connection between the terminals of the module package, the terminal of the chip carrier, the terminal of the chip component, etc., which are practically used in mobile devices such as mobile phones. It uses the LGA (Lead Grid Array) method taken by comrades. In high-density mounting of solder paste, it is important not to generate solder residue defects such as pole residues and bridges. Pb-free solder has poor wettability and spreads, so only the printed portion gets wet on the free surface, but when pressurized, it is affected by it and spreads out where there is metallization. For this reason, if the amount of solder is large and there is no wet spot, the excess solder will protrude from the terminal, forming an independent pole or bridging with the adjacent terminal.
  • LGA Lead Grid Array
  • FIG. 20 (a) is a cross-sectional view including terminals of a module on which an LSI is mounted, and FIG.
  • (b) is a plan view thereof.
  • (C) is a cross section in a state where the solder paste 15 is printed on the circuit board 18 and the terminals 13 of the module 12 are positioned.
  • the bump height (h) in the module differs due to the unevenness and warpage of the circuit board, the inclination after connection between the module and the circuit board, or the difference in the amount of printed solder. For this reason, the terminals with a narrow gap and a large amount of solder may spill out and become an independent solder pole or a bridge with an adjacent terminal. Therefore, module side terminal diameter; b, solder printing diameter; a, circuit board terminal diameter; c, and a ⁇ b ⁇ c, terminals with narrow gaps and large amount of solder were applied.
  • solder is wet (effective when the amount of solder is large) 19 to secure the area 14 that can absorb the solder.
  • 2 At the time of repair, it is always broken by the solder on the module terminal side.
  • the pad is not peeled off by strengthening it with the resist film 16 even after several repairs.
  • the Cu pad surface is Ni / Au plated, the amount of solder may be insufficient. At this time (when the gap is wide), even if there is a portion where the substrate surface is not wet, there is no problem of Cu oxidation. Note that even if the connection terminals are terminals for heat dissipation, the views on solder poles and bridges are the same. Industrial applicability

Abstract

An electronic device capable of being connected, with high reliability, to a conventional circuit board using Pb-free solder as the substitute of Sn-37Pb solder, wherein solder paste (4) is fed onto the inner side of the wiring pattern (3) on the circuit board (1) in V-shape, recessed-shape, or projected-shape, and the solder paste is connected to a semiconductor device (2), whereby the electronic device with high reliability of connection can be provided.

Description

電子機器及びその製造方法 技術分野  Electronic equipment and its manufacturing method
本発明は、 鉛—錫共晶はんだの代替の鉛 (以下 Pbと記す) フリーはんだ合金 を用いた電子部品の表面実装に関わり、 特に表面実装におけるはんだポ一ルある いははんだプリッジの発生の防止に関するもである。 技術背景  The present invention relates to the surface mounting of electronic components using lead-free (Pb) -free solder alloy instead of lead-tin eutectic solder, and particularly to the occurrence of solder pools or solder ridges in surface mounting. It is about prevention. Technology background
現在、 Sn— 37ma s s %Pb (以下 S n— 37 P bと略す) はんだに替わ るはんだの開発 '研究が行われ、 代替のはんだとして、 Sn— Zn系、 Sn— A g系、 Sn— Sb系、 Sn— Ag— B i系等が取りあげられている。 代替 Pbフ リーはんだは、 ぬれ性、 溶融分離性が、 Sn— 37 Pb共晶はんだに比較して低 下している。 回路基板の配線パターンへのはんだの供給は、 印刷により、 パター ンに合わせた印刷マスク形状により、 はんだペーストを転写することで行われ、 従来の S n— 37 P b共晶はんだでは回路基板のパターンと印刷マスクパターン は同型形状が一般的であった。  At present, research is under way on the development of solders that can replace Sn-37mass% Pb (hereinafter abbreviated as Sn-37Pb) solders. Sn-Zn, Sn-Ag, Sn- Sb-based, Sn-Ag-Bi-based, etc. have been mentioned. The alternative Pb-free solder has lower wettability and melt-separability than the Sn-37Pb eutectic solder. The supply of solder to the wiring pattern of the circuit board is performed by transferring the solder paste by printing, using a print mask shape that matches the pattern, and using the conventional Sn-37Pb eutectic solder. The pattern and print mask pattern generally had the same shape.
しかしながら、 この従来の転写 (印刷)パターンで Pbフリーはんだを供給する と、 S n— 37 P b共晶はんだに比べてぬれ性が低下するため、 ぬれ拡がらず、 単位面積当たりのはんだ量が多くなる。 また、 Pbフリ一はんだは印刷した場所 のみぬれる傾向にある。 継手形成に必要なはんだ量は、 Pbフリーはんだも従来 はんだも変わらないことから、 ぬれ性が悪い分、 取り残されて不要なはんだポー ルが発生し易い。 特に、 チップ部品搭載時に、 チップ下のはんだべ一ストは一部 外側にはみ出し、 リフロー後にぬれ拡がり性が悪いためパッド上に戻れず、 大き なはんだポールをチップ脇に残す。 Pbフリーはんだのぬれ拡がりは、 部品電極 もしくはリードと Cuパッド間に挟まれた対向部分がほとんどである。 その為、 対 向部分以外のはんだ量が増すと、 リフローにより、 はんだポール、 ブリッジの発 生につながりやすい。 However, if Pb-free solder is supplied in this conventional transfer (printing) pattern, the wettability will be lower than that of Sn-37Pb eutectic solder, so wetting will not spread and the amount of solder per unit area will be reduced. More. Also, Pb-free solder tends to get wet only at the printed area. The amount of solder required to form the joint is the same for Pb-free solders and conventional solders, so the poor wettability tends to cause unnecessary solder poles to be left behind. In particular, when a chip component is mounted, a portion of the solder paste under the chip protrudes outside, and cannot be returned to the pad due to poor wettability after reflow, leaving a large solder pole beside the chip. In most cases, the wetting spread of Pb-free solder is at the opposing portion between the component electrode or lead and the Cu pad. Therefore, If the amount of solder other than the direction part increases, reflow tends to lead to the generation of solder poles and bridges.
本発明の目的は、 S n— 3 7 P bはんだの代替用 P bフリーはんだを用いた従 来の回路基板への電子部品の接続を高信頼に行うことにある。 発明の開示  An object of the present invention is to reliably connect an electronic component to a conventional circuit board using Pb-free solder instead of Sn-37Pb solder. Disclosure of the invention
上記目的を達成するために、 本願において開示される発明のうち、 代 表的なものの概要を簡単に説明すれば、 次の通りである。  In order to achieve the above object, among the inventions disclosed in the present application, typical ones are briefly described as follows.
回路基板の接続用配線パターンに供給するはんだペーストの印刷形状を V形に し(凹形あるいは凸形も効果がある)、 さらにリードレスチップ部品においては V 形 (凹形あるいは凸形)をィンナ方向に向けることとした。  The printed shape of the solder paste supplied to the connection wiring pattern of the circuit board is V-shaped (concave or convex is also effective), and V-shaped (concave or convex) is used for leadless chip components. I turned to the direction.
また、 電子機器の製造方法であって、 回路基板の接続用配線パターンと異なる パターン、 例えば回路基板の接続用配線パターンよりも小さいパターンを有する 印刷マスクを用いて、 回路基板の接続用配線パターンにはんだを供給し、 半導体 装置を回路基板に実装し、 リフローすることにより回路基板と半導体装置を接続 するものである。  The method for manufacturing an electronic device, further comprising using a print mask having a pattern different from the connection wiring pattern of the circuit board, for example, a print mask having a pattern smaller than the connection wiring pattern of the circuit board, to form the connection wiring pattern on the circuit board. The solder is supplied, the semiconductor device is mounted on the circuit board, and the circuit board and the semiconductor device are connected by reflow.
また、 チップが置かれる位置においては、 Cuパッド上ではんだペーストが印刷 されない部分を形成することにより、 リフロー時にはんだはチップの外にはみ出 さず、 チップ下の印刷されない Cuパッド上にぬれ拡がることになる。 真上にチッ プ電極があることにより、 その下のパッド上にはぬれにくい P bフリ一はんだで も、 ぬれてしまう特性を利用した。 図面の簡単な説明  Also, by forming a part where the solder paste is not printed on the Cu pad at the position where the chip is placed, the solder does not protrude out of the chip during reflow and spreads on the unprinted Cu pad under the chip become. The fact that the chip electrode is located directly above it makes use of the property that even a Pb-free solder, which is difficult to get wet on the pad below it, gets wet. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 配線回路への半導体装置の搭載状態を示す図である。 FIG. 1 is a diagram showing a state in which a semiconductor device is mounted on a wiring circuit.
第図 2は、 搭載半導体装置リード部の長手断面を示す図である。 FIG. 2 is a view showing a longitudinal section of a lead portion of a mounted semiconductor device.
第 3図は、 半導体装置の搭載状態の横断面を示す図である。 第 4図は、 配線回路への半導体装置の搭載状態を示す図である。 FIG. 3 is a view showing a cross section of a mounted state of the semiconductor device. FIG. 4 is a diagram showing a state where the semiconductor device is mounted on the wiring circuit.
第 5図は、 半導体装置の搭載状態の長手断面を示す図である。 FIG. 5 is a view showing a longitudinal section in a mounted state of the semiconductor device.
第 6図は、 搭載半導体装置リード部の横断面を示す図である。 FIG. 6 is a diagram showing a cross section of a lead portion of a mounted semiconductor device.
第 7図は、 配線回路への半導体装置の搭載状態を示す図である。 FIG. 7 is a diagram showing a state where the semiconductor device is mounted on the wiring circuit.
第 8図は、 半導体装置の搭載状態の断面を示す図である。 FIG. 8 is a view showing a cross section of a mounted state of the semiconductor device.
第 9図は、 搭載半導体装置リード部の断面を示す図である。 FIG. 9 is a view showing a cross section of a lead portion of a mounted semiconductor device.
第 1 0図は、 はんだポール発生の説明を示す図である。 FIG. 10 is a diagram illustrating the description of the occurrence of solder poles.
第 1 1図は、 リードレスチップ部品の搭載状態を示す図である。 FIG. 11 is a view showing a mounted state of a leadless chip component.
第 1 2図は、'リードレスチップ部品の搭載の全体断面を示す図である。 FIG. 12 is a diagram showing an entire cross section of mounting a leadless chip component.
第 1 3図は、 リードレスチップ部品の電極部の断面を示す図である。 FIG. 13 is a diagram showing a cross section of an electrode portion of a leadless chip component.
第 1 4図は、 リードレスチップ部品の搭載状態を示す図である。 FIG. 14 is a diagram showing a mounted state of a leadless chip component.
第 1 5図は、 リードレスチップ部品の搭載の全体断面を示す図である。 FIG. 15 is a diagram showing an entire cross section of mounting a leadless chip component.
第 1 6図は、 リードレスチップ部品の電極部の断面を示す図である。 FIG. 16 is a diagram showing a cross section of an electrode portion of a leadless chip component.
第 1 7図は、 リードレスチップ部品の搭載状態を示す図である。 FIG. 17 is a view showing a mounting state of a leadless chip component.
第 1 8図は、 リードレスチップ部品の搭載の全体断面を示す図である。 FIG. 18 is a diagram showing an entire cross section of mounting a leadless chip component.
第 1 9J¾は、 リードレスチップ部品の電極部の断面を示す図である。 FIG. 19J is a view showing a cross section of an electrode portion of the leadless chip component.
第 2 0図は、 半導体モジュールの断面および平面を示す図である。 FIG. 20 is a diagram showing a cross section and a plane of the semiconductor module.
第 2 1図は、 半導体モジュールと回路基板の接続状態を示す図である。 FIG. 21 is a diagram showing a connection state between a semiconductor module and a circuit board.
第 2 2図は、 電子機器の製造工程を示す図である。 発明を実施するための最良の形態 FIG. 22 is a diagram showing a manufacturing process of the electronic device. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を実施例により更に詳細に説明する。  Hereinafter, the present invention will be described in more detail with reference to Examples.
図 2 2は、半導体装置 (半導体チップ) 等を備えた電子機器の製造工程の一例 を示す。まず、 フォトリソ技術を用いて、 ウェハに素子回路を形成し、 ウェハの電 極にスプリングプロ一ブゃ、 めっき形成された接触端子を接触させ、 プローブ検 查を行う。 ' 続いて、 回路パターンが形成されたウェハをダイシングして個別化し、 リード フレーム等のアイランド上に載せ、貼り付ける (マウント)。マウントされたチッ プとリードフレームは金線等でワイヤーボンディングし、 電気的接続を取る。 その後、 リ一ドフレームを金型にセットし、 温度を上げて流動化した樹脂を圧 送し、 チップ全体を樹脂封止する。 リードフレームから I Cを切り離し、 リード を成形し、 リード線にはんだめつきする。 最後に I Cの電気的特性をテス夕一で 検査し、 選別する。 選別工程を通過した良品の半導体装置をマザ一ボード等の実 装基板にはんだを用いて実装する。これにより、 電子機器 (マルチチップモジュ —ル等も含む) が製造される。 FIG. 22 shows an example of a manufacturing process of an electronic device including a semiconductor device (semiconductor chip) and the like. First, using photolithography technology, device circuits are formed on a wafer, and a spring probe and plated contact terminals are brought into contact with the electrodes of the wafer to perform probe inspection. 'Subsequently, the wafer on which the circuit pattern has been formed is diced and individualized, placed on an island such as a lead frame, and attached (mounted). The mounted chip and lead frame are wire-bonded with gold wire or the like to make electrical connection. After that, the lead frame is set in the mold, the temperature is increased, and the fluidized resin is pumped to seal the entire chip with the resin. Separate the IC from the lead frame, form the leads, and solder them to the leads. Finally, the electrical characteristics of the IC are inspected and sorted by test. The non-defective semiconductor device that has passed the sorting process is mounted on a mounting board such as a mother board using solder. As a result, electronic devices (including multi-chip modules) are manufactured.
なお、 半導体装置として、 ウェハレベルでウェハの電極から、 再配置配線を形 成し、 外部接続端子 (例えば、 はんだバンプ) を形成した後にダイシングする、 いわゆるウェハレベルチップサイズパッケージ(WL- C S P ) を用いてもよい。 半導体装置および回路基板 (実装基板) を準備する方法は、 上記に限定される ものではない。  In addition, as a semiconductor device, a so-called wafer-level chip size package (WL-CSP) is used in which relocation wiring is formed from electrodes on the wafer at the wafer level, external connection terminals (for example, solder bumps) are formed, and then dicing is performed. May be used. The method for preparing the semiconductor device and the circuit board (mounting board) is not limited to the above.
以下、 鉛フリーはんだをもちいた、 半導体装置等と回路基板 (実装基板) の接 続について詳しく説明する。  The connection between semiconductor devices and circuit boards (mounting boards) using lead-free solder will be described in detail below.
(実施例 1 )  (Example 1)
図 1は例えば、 比較的幅広の Iリード 5 a〜 5 dを有する半導体装置 2を回路 基板 1に接続するため、 所定の配線パターン 3 a〜3 dにはんだペースト 4 a〜 4 dを印刷により転写 '供給し、 そこに半導体装置 2を搭載した状態を示すもの である。 図 2、 図 3は断面観察指差部 X-X ' ( 6 )、 Y-Y ' ( 7 ) の断面である。 本実施例でははんだ 4 a〜 4 dは該配線パターン 3 a〜 3 dと該半導体装置 2の 該リード 5 a〜5 dと対向する状態で該はんだペースト 4 a〜4 dが該配線パタ ーン 3 a〜3 dに V状になる如くに、 転写、 供給し、 該半導体装置 2を該回路基 板 1に搭載したリフロー前の状態では、 該リード 5 a〜5 dに部分的にはんだべ 一ストがない。 すなわち切り欠き部分を有した形状で供給される。 この様な状態 —のものを所定の温度プロファイルを有するリフロー炉を通過させると、 該はんだ ペーストが溶融する。 溶融はんだは、 該半導体装置 2の自重により、 該リード 5 a〜5 dの側帯に排斥されようとしたり、 該リ一ド 5 a〜5 dのメタライズ部分 にぬれ拡がって行く。 このとき残余はんだが有ると、 メタライズ部分の抵抗は排 斥時の側帯側の抵抗に比べて小さいため、 はんだペーストの未印刷部分 8 a、 8 bに対向するメタライズ部分にぬれ広がる。 これが先導役となり、 対向する該配 線パターン 3 a〜 3 dのはんだペーストの未印刷部分 8 a、 8 bにもはんだがぬ れ広がって行き、 該配線パターンの側帯に溶出するものが少なく、 はんだポール の生成、 あるいは該配線パターン間のプリッジの発生が抑止される。 FIG. 1 shows, for example, a solder paste 4 a to 4 d printed on a predetermined wiring pattern 3 a to 3 d in order to connect a semiconductor device 2 having relatively wide I leads 5 a to 5 d to a circuit board 1. This shows a state in which the transfer is supplied and the semiconductor device 2 is mounted thereon. 2 and 3 are cross-sectional views of the cross-section observation finger portions XX ′ (6) and YY ′ (7). In the present embodiment, the solder pastes 4a to 4d are applied to the wiring patterns 3a to 3d in a state where the solder pastes 4a to 4d face the wiring patterns 3a to 3d and the leads 5a to 5d of the semiconductor device 2. The semiconductor device 2 is transferred and supplied so as to be V-shaped on the leads 3a to 3d. In a state before the reflow in which the semiconductor device 2 is mounted on the circuit board 1, the solder is partially soldered to the leads 5a to 5d. There is no best. That is, it is supplied in a shape having a notch. Such a state When passing through a reflow oven having a predetermined temperature profile, the solder paste melts. The molten solder tends to be repelled by the side bands of the leads 5a to 5d due to the weight of the semiconductor device 2, or spreads over the metallized portions of the leads 5a to 5d. At this time, if there is residual solder, the resistance of the metallized portion is smaller than the resistance of the side band at the time of rejection, so that it spreads over the metallized portion facing the unprinted portions 8a and 8b of the solder paste. This becomes a leading role, and the solder spreads and spreads even on the unprinted portions 8a and 8b of the solder paste of the wiring patterns 3a to 3d facing each other, and there is little elution to the side band of the wiring pattern, The generation of solder poles or the generation of a bridge between the wiring patterns is suppressed.
(実施例 2 )  (Example 2)
図 4、 図 5、 図 6は例えば、 Iリード 5 a〜5 dを有する半導体装置 2を回路 基板 1に接続するため、 所定の配線パタ一ン.3 a〜 3 dに、 はんだペースト 4 a 〜4 dを凹状になるように転写、 供給し、 その上に半導体装置 2を載せたものの 状態図である。 この状態のものを実施例 1と同様にリフ口一炉を通過させると、 該はんだペースト 4 a〜 4 dが溶融し、 該リード 5 a〜 5 dのメタライズ部分に 沿ってぬれ広がる。 残余はんだがある場合、 実施例 1と同様に、 排斥の抵抗より メタライズがぬれ時の抵抗が低い為、 はんだペース卜の未印刷部分 8 a、 8 bに 対向するリードのメタライズ側にぬれ広がり、 それに先導されて  FIGS. 4, 5, and 6 show, for example, a predetermined wiring pattern for connecting the semiconductor device 2 having the I leads 5a to 5d to the circuit board 1. 4D is a state diagram of a semiconductor device 2 which is transferred and supplied in a concave shape to form a semiconductor device 2 thereon. When the solder paste in this state is allowed to pass through a furnace with a riff opening in the same manner as in Example 1, the solder pastes 4a to 4d are melted and spread along the metallized portions of the leads 5a to 5d. If there is residual solder, as in Example 1, the resistance at the time of metallization is lower than the rejection resistance, so that it spreads over the metallized side of the lead facing the unprinted portions 8a and 8b of the solder paste, Led by it
、 配線パターンの未はんだべ一スト印刷部分にもはんだがぬれる。 これによりは んだポール、 ブリッジの発生が抑止される。 The solder also wets the unsoldered paste printed part of the wiring pattern. As a result, the occurrence of solder poles and bridges is suppressed.
(実施例 3 )  (Example 3)
図 7、 図 8、 図 9は例えば、 Iリード 5 a〜 5 dを有する半導体装置 2を回路 基板 1に接続するため、 所定の配線パターン 3 a〜 3 dに、 はんだペースト 4 a 〜4 dを凸状になるように転写、 供給し、 その上に半導体装置 2を載せたものの 状態図である。 この状態のものを実施例 1と同様にリフ口一炉を通過させると、 該はんだペースト 4 a〜4 dが溶融し、 該リード 5 a〜5 dのメタライズ部分 1 "0 a > 1 0 bに沿ってぬれ広がる。 残余はんだがある場合、 実施例 1と同様に、 排斥の抵抗よりメタライズがぬれ時の抵抗が低い為、 はんだペーストの未印刷部 分 8 a、 8 bに対向するリードのメタライズ側にぬれ広がり、それに先導されて、 配線パターンの未はんだペースト印刷部分にもはんだがぬれる FIGS. 7, 8, and 9 show, for example, solder pastes 4 a to 4 d on a predetermined wiring pattern 3 a to 3 d for connecting a semiconductor device 2 having I leads 5 a to 5 d to a circuit board 1. FIG. 6 is a state diagram of a semiconductor device 2 transferred and supplied in a convex shape, and a semiconductor device 2 placed thereon. When the solder paste in this state is passed through a furnace with a riff opening in the same manner as in Example 1, the solder pastes 4a to 4d are melted and the metallized portions 1 of the leads 5a to 5d 1 "Wetting spreads along 0a> 10b. If there is residual solder, the unprinted portion of solder paste 8a, 8 Wet spreads on the metallized side of the lead opposite to b, leading to it, the solder also wets the unsoldered paste printed part of the wiring pattern
。 これによりはんだポール、 ブリッジの発生が抑止される。 . This suppresses the occurrence of solder poles and bridges.
(実施例 4 )  (Example 4)
図 1 0は電極用メタライズ 1 0 a、 1 0 bを有する 1608チップ、 2125チップに Sn- Ag Cu系はんだべ一スト 4を用いて、 回路基板 1の配線パターン 3に通常の Pb - Sn共晶はんだで使用されているマスクパターンではんだ印刷して、 max245°C のリフ口一炉に通した後、 チップ脇に 100〜500 m径の大きなポール 1 1が形成 された外観を示す。 はんだの Ag、 Cuの量が多少異なっても、 このようなポール 1 1は形成される。 原因は Cuパッドへのぬれ性が悪いため、 チップ搭載時に圧入で 飛び出したはんだが、 レジストの段差の影響もあって Cuパッド上に戻れなくなり 、 大きなポールとなって残留する。 このボール発生を防ぐためにはんだペースト のマスク形状及び Cuパッドとの位置関係の検討を行った。  Fig. 10 shows a 1608 chip with metallization for electrodes 10a and 10b, a Sn-AgCu-based solder paste 4 for a 2125 chip, and a common Pb-Sn for the wiring pattern 3 on the circuit board 1. It shows the appearance in which a large pole 11 with a diameter of 100 to 500 m is formed on the side of the chip after solder printing with the mask pattern used for polycrystalline solder and passing it through a furnace with a riff opening of max 245 ° C. Such a pole 11 is formed even if the amounts of Ag and Cu in the solder are slightly different. The cause is poor wettability to the Cu pad, so the solder that has been ejected by press-fitting when mounting the chip cannot return to the Cu pad due to the effect of the resist step, and remains as a large pole. In order to prevent this ball generation, we examined the mask shape of the solder paste and its positional relationship with the Cu pad.
図 1 1、 図 1 2、 図 1 3はリードレスチップ部品 9を回路基板 1に接続する為 、 所定の配線パターン 3 a、 3 bに、 はんだペースト 4 a、 4 bを電極内部に向 かって V状になるように転写、 供給し、 その上にリードレスチップ部品を載せた 状態図である。 この状態でリフロー炉を通過させると、 該はんだペースト 4 a、 4 bが溶融し、 メタライズ部分 1 0 a、 1 0 bに沿ってぬれ広がる。 残余はんだ がある場合、 はんだポール発生を抑止できる。 Vのインナ一側を更に Cuパッド部 を突き出すことにより、 Cuパッド部の面積が増して、 ぬれ拡がり部分が増え、 更 にポール発生の確率は低減する。 V形は以下に示す凹形、 凸形に比べポール発生 は少なく、 優れている。 V形の場合、 チップがズレて搭載された場合、 ペースト とチップが接する部分が直線的に変わるので、 多少の位置ズレでも問題に成らな い。 凹形の場合、 チップが凹の側面部に接する、 接しないでぬれに及ぼす影響度 が大きいため、 その悪影響がでる恐れがある。 FIGS. 11, 12, and 13 show the connection of the leadless chip component 9 to the circuit board 1 with the soldering pastes 4a, 4b applied to the predetermined wiring patterns 3a, 3b and inside the electrodes. FIG. 4 is a diagram showing a state in which a transfer and supply are performed in a V-shape, and a leadless chip component is mounted thereon. When the solder paste is passed through a reflow furnace in this state, the solder pastes 4a and 4b are melted and spread along the metallized portions 10a and 10b. If there is residual solder, the occurrence of solder poles can be suppressed. By further projecting the Cu pad portion from the inner side of V, the area of the Cu pad portion is increased, the wetted portion is increased, and the probability of pole generation is further reduced. The V type is superior in producing less poles than the concave and convex types shown below. In the case of the V type, if the chip is mounted with misalignment, the portion where the paste and the chip come into contact changes linearly, so even a slight misalignment does not cause a problem. In the case of a concave shape, the chip touches the concave side surface, and the degree of influence on wetting without touching it May be adversely affected.
(実施例 5 )  (Example 5)
図 1 4、 図 1 5、 図 1 6は例えば、 リードレスチップ部品 9を回路基板 1に接 続する為、 所定の配線パターン 3 a、 3 bにはんだペースト 4 a、 4 bを電極内 部に向かって凹状になるように転写、 供給し、 その上にリードレスチップ部品を 載せたものの状態図である。 本実施例においても、 実施例 1、 実施例 2、 実施例 3と同様に残余はんだが生じても、 配線パターン 3 a、 3 bにはんだペーストの 未印刷 8 a、 8 bを設けることにより、 はんだポールの発生を抑止することが出 来る。  For example, Fig. 14, Fig. 15 and Fig. 16 show soldering pastes 4a and 4b inside the electrodes to connect the leadless chip components 9 to the circuit board 1 and to the predetermined wiring patterns 3a and 3b. FIG. 4 is a state diagram of a state in which a transfer and supply are performed so as to form a concave shape toward, and a leadless chip component is mounted thereon. Even in the present embodiment, even when residual solder is generated similarly to the first, second, and third embodiments, the unprinted solder paste 8a, 8b is provided on the wiring patterns 3a, 3b. It can suppress the occurrence of solder poles.
(実施例 6 )  (Example 6)
図 1 7、 図 1 8、 図 1 9は例えば、 リ一ドレスチップ部品 9を回路基板 1に接 続する為、 所定の配線パターン 3 a、 3 bにはんだペースト 4 a、 4 bを電極内 部に向かって凸状になるように転写、 供給し、 その上にリードレスチップ部品を 載せたものの状態図である。 本実施例においても、 実施例 4、 実施例 5と同様に 残余はんだが生じても、 配線パターン 3 a、 3 bにはんだべ一ストの未印刷 8 a 、 8 bを設けることにより、 はんだボールの発生を抑止することが出来る。 (実施例 7 )  Fig. 17, Fig. 18 and Fig. 19 show, for example, solder pastes 4a and 4b on the predetermined wiring patterns 3a and 3b to connect the leadless chip components 9 to the circuit board 1. FIG. 6 is a diagram showing a state in which transfer and supply are performed so as to project toward a portion, and a leadless chip component is mounted thereon. Even in the present embodiment, even if residual solder is generated as in the case of the fourth and fifth embodiments, the solder balls are provided by providing the unprinted solder paste 8a and 8b on the wiring patterns 3a and 3b. Can be suppressed. (Example 7)
図 2 0は携帯電話等のモパイル製品に実用化されているモジュールパッケージ の端子、 チップキャリアの端子、 チップ部品の端子等の接続は、 小型高密度実装 に対応するため、 端子間の接続を面同志でとる L GA (Lead Gri d Array)方式が使 用されている。 はんだペーストの高密度実装において、 はんだ付け欠陥であるポ ール残留、 ブリッジを発生させないことが重要である。 Pbフリーはんだはぬれ拡 がり性が劣るので、 自由表面では印刷した個所のみがぬれるが、 加圧されている 時はその影響を受けて、 メタライズがある場所ではぬれ拡がる性質がある。 この ため、 はんだ量が多く、 ぬれる個所がないと余分のはんだは端子をはみ出し、 独 立したポールになったり、 隣接端子とのブリッジを起こす要因となる。 他方、 基 板側端子の問題点として、 Pbフリーはんだになると、 リフロー温度は max245°C前 後になるので、従来の Sn-Pb共晶はんだに比べ、約 20で高いため、補修でのリペア 回数を 2〜 3回を考えると、 基板と Cuパッドとの高温での樹脂の密着力の低下に. よる剥離の問題がある。 このため、 Cuパッドの周辺を耐熱性レジスト膜で補強す る必要がある。 特に、 接続端子と配線に繋がる接点部は応力が集中するのでレジ ストがしっかり覆っている必要がある。 図 2 0 (a)は L S Iを実装したモジユー ルの端子部を入れた断面図であり、 (b)はその平面図である。 (c)は回路基板 18に はんだペースト 15を印刷した後、 該モジュール 12の端子 13を位置決めした状態の 断面である。 回路基板の凹凸、 反り、 モジュールと回路基板との接続後の傾き、 あるいははんだ印刷量の差の違い等でモジュール内のバンプ高さ(h)は異なって くる。 このため、 間隙が狭く、 はんだ量が多い端子でははんだがはみ出して、 独 立した.はんだポールになったり、 隣接端子とのブリッジになる可能性がある。 そ こで、 モジュール側端子径; b、 はんだ印刷径; a、 回路基板の端子径; c、 と し、 a < b < cとすることにより、 間隙が狭い端子、 はんだ量の多く塗布された 端子において、 ①はんだがぬれる(はんだ量が多い場合には有効に作用) 19ことに より、 はんだを吸収できる領域 14を確保できること、 ②リペアのとき常にモジュ ール側端子部側のはんだで破壊すること、 ③数回のリペアでもレジスト膜 16で補 強することで、パッド剥がれが起こらないこと、④ Cuパッド表面は Ni/Auめっきが 施されているため、 仮にはんだ量が足りない状態の時(間隙が広い場合)、 基板表 面がぬれない部分があっても、 Cuの酸ィ匕の問題はない。 なお、 接続端子が熱放散 用の端子であっても、 はんだポール、 ブリッジに対する見方は同じである。 産業上の利用可能性 Figure 20 shows the connection between the terminals of the module package, the terminal of the chip carrier, the terminal of the chip component, etc., which are practically used in mobile devices such as mobile phones. It uses the LGA (Lead Grid Array) method taken by comrades. In high-density mounting of solder paste, it is important not to generate solder residue defects such as pole residues and bridges. Pb-free solder has poor wettability and spreads, so only the printed portion gets wet on the free surface, but when pressurized, it is affected by it and spreads out where there is metallization. For this reason, if the amount of solder is large and there is no wet spot, the excess solder will protrude from the terminal, forming an independent pole or bridging with the adjacent terminal. On the other hand, One of the problems with the board-side terminals is that when Pb-free solder is used, the reflow temperature is around 245 ° C, which is about 20 higher than the conventional Sn-Pb eutectic solder. Considering three times, there is a problem of delamination due to a decrease in the adhesion of the resin at high temperatures between the substrate and the Cu pad. Therefore, it is necessary to reinforce the periphery of the Cu pad with a heat-resistant resist film. In particular, the contact points connected to the connection terminals and the wiring concentrate stress, so the resist must be covered tightly. FIG. 20 (a) is a cross-sectional view including terminals of a module on which an LSI is mounted, and FIG. 20 (b) is a plan view thereof. (C) is a cross section in a state where the solder paste 15 is printed on the circuit board 18 and the terminals 13 of the module 12 are positioned. The bump height (h) in the module differs due to the unevenness and warpage of the circuit board, the inclination after connection between the module and the circuit board, or the difference in the amount of printed solder. For this reason, the terminals with a narrow gap and a large amount of solder may spill out and become an independent solder pole or a bridge with an adjacent terminal. Therefore, module side terminal diameter; b, solder printing diameter; a, circuit board terminal diameter; c, and a <b <c, terminals with narrow gaps and large amount of solder were applied. In the terminal, ① Solder is wet (effective when the amount of solder is large) 19 to secure the area 14 that can absorb the solder. ② At the time of repair, it is always broken by the solder on the module terminal side. 3) The pad is not peeled off by strengthening it with the resist film 16 even after several repairs. 4) Since the Cu pad surface is Ni / Au plated, the amount of solder may be insufficient. At this time (when the gap is wide), even if there is a portion where the substrate surface is not wet, there is no problem of Cu oxidation. Note that even if the connection terminals are terminals for heat dissipation, the views on solder poles and bridges are the same. Industrial applicability
本発明によれば、 S n— 3 7 P bはんだの代替用 P bフリーはんだを用いた従 来の回路基板への電子部品の接続を高信頼にて行うことができる。  According to the present invention, it is possible to connect an electronic component to a conventional circuit board using Pb-free solder instead of Sn—37 Pb solder with high reliability.

Claims

' 請 求 の 範 囲 ' The scope of the claims
1 . 所定の配線パターンに Sn系はんだペーストもしくは Sn-Ag系はんだペースト もしくは Sn- Ag- Cu系はんだペーストもしくは Sn-Cu系はんだペーストもしくは Sn - Zn系はんだべ一ストを供給した後、 該はんだペーストを溶融させることで該回路 基板に電子部品を接続した電子回路基板を有する電子機器において、 1. After supplying Sn-based solder paste, Sn-Ag-based solder paste, Sn-Ag-Cu-based solder paste, Sn-Cu-based solder paste or Sn-Zn-based solder paste to the specified wiring pattern, In an electronic device having an electronic circuit board in which electronic components are connected to the circuit board by melting the paste,
該回路基板の配線パターン上に供給するはんだペーストの形状をィンナー側に V形もしくは凹形もしくは凸形としたことを特徴とする電子機器。  An electronic device, wherein the shape of the solder paste supplied onto the wiring pattern of the circuit board is V-shaped, concave or convex on the inner side.
2 . 所定の配線パターンに Sn系はんだペーストもしくは Sn- Ag系はんだペースト もしくは Sn- Ag- Cu系はんだペーストもしくは Sn-Cu系はんだペーストもしくは Sn- Zn系はんだペーストを供給した後、 該はんだペーストを溶融させることで該回路 基板に電子部品を接続した電子回路基板を有する電子機器において、  2. After supplying Sn-based solder paste, Sn-Ag-based solder paste, Sn-Ag-Cu-based solder paste, Sn-Cu-based solder paste or Sn-Zn-based solder paste to a predetermined wiring pattern, apply the solder paste. In an electronic device having an electronic circuit board in which electronic components are connected to the circuit board by melting,
該回路基板の配線パターン上に供給するはんだペーストの形状が切り欠き部分 を有することを特徴とする電子機器。  An electronic device, wherein a shape of a solder paste supplied onto a wiring pattern of the circuit board has a cutout portion.
3 . 前記はんだペーストに、 Bi、 In、 Ge、 Niのいずれか一つ以上を添加したこ とを特徴とする請求項 1または 2に記載の電子機器。  3. The electronic device according to claim 1, wherein at least one of Bi, In, Ge, and Ni is added to the solder paste.
4 . 素子を有するチップキャリア、 モジュール部品、 C S P等の LGA (Lead Gr i d Array) 接続用端子を Sn- Ag系もしくは Sn- Ag- Cu系もしくは Sn- Cu系もしくは Sn - Zn 系等のはんだペーストを用いて、回路基板に印刷して接続した電子機器において、 該回路基板のパッド寸法は該 LGA端子寸法より大きく、該パッド周辺をレジス卜で 覆い、該はんだペーストの塗布寸法は該 LGA端子寸法より小さく、印刷しない個所 を残したことを特徴とした電子機器。  4. Solder paste of chip carrier, module parts, LGA (Lead Grid Array) such as CSP, etc., with the solder paste of Sn-Ag, Sn-Ag-Cu, Sn-Cu or Sn-Zn, etc. In an electronic device printed and connected to a circuit board using the above method, the pad size of the circuit board is larger than the LGA terminal size, the periphery of the pad is covered with a resist, and the solder paste application size is the LGA terminal size. An electronic device characterized by leaving smaller, non-printing areas.
5 . 半導体装置と回路基板を有する電子機器の製造方法であって、半導体装置お よび回路基板を準備する工程と、該回路基板の上に印刷マスクを配置する工程と、 該配線基板の配線パターンの上であり、 かつ該配線パターンのィンナー側に V形 もしくは凹形もしくは凸形となるようにはんだペーストを供給する工程と、 該配 線基板に該半導体装置を搭載する工程と、 該はんだペーストをリフ口一する工程 を有することを特徴とする電子機器の製造方法。 5. A method for manufacturing an electronic device having a semiconductor device and a circuit board, comprising the steps of: preparing a semiconductor device and a circuit board; arranging a print mask on the circuit board; Supplying a solder paste on the inner side of the wiring pattern so as to have a V shape, a concave shape, or a convex shape; A method for manufacturing an electronic device, comprising: a step of mounting the semiconductor device on a wire substrate; and a step of flushing the solder paste.
PCT/JP2001/004891 2000-06-12 2001-06-11 Electronic device and method of manufacturing the electronic device WO2001097580A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-180711 2000-06-12
JP2000180711 2000-06-12

Publications (1)

Publication Number Publication Date
WO2001097580A1 true WO2001097580A1 (en) 2001-12-20

Family

ID=18681744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/004891 WO2001097580A1 (en) 2000-06-12 2001-06-11 Electronic device and method of manufacturing the electronic device

Country Status (1)

Country Link
WO (1) WO2001097580A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1263270A2 (en) * 2001-06-01 2002-12-04 Nec Corporation A method of packaging electronic components without creating unnecessary solder balls
US11285569B2 (en) 2003-04-25 2022-03-29 Henkel Ag & Co. Kgaa Soldering material based on Sn Ag and Cu

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112179U (en) * 1986-01-07 1987-07-17
JPH01186388A (en) * 1988-01-22 1989-07-25 Hitachi Ltd Solder-printing mask, production thereof, and solder-printing method
EP0957520A2 (en) * 1998-04-16 1999-11-17 Sony Corporation Semiconductor package and mount board, and mounting method
EP0976489A1 (en) * 1996-12-17 2000-02-02 Sony Corporation Solder material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112179U (en) * 1986-01-07 1987-07-17
JPH01186388A (en) * 1988-01-22 1989-07-25 Hitachi Ltd Solder-printing mask, production thereof, and solder-printing method
EP0976489A1 (en) * 1996-12-17 2000-02-02 Sony Corporation Solder material
EP0957520A2 (en) * 1998-04-16 1999-11-17 Sony Corporation Semiconductor package and mount board, and mounting method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1263270A2 (en) * 2001-06-01 2002-12-04 Nec Corporation A method of packaging electronic components without creating unnecessary solder balls
EP1263270A3 (en) * 2001-06-01 2004-06-02 Nec Corporation A method of packaging electronic components without creating unnecessary solder balls
US7013557B2 (en) 2001-06-01 2006-03-21 Nec Corporation Method of packaging electronic components without creating unnecessary solder balls
US11285569B2 (en) 2003-04-25 2022-03-29 Henkel Ag & Co. Kgaa Soldering material based on Sn Ag and Cu

Similar Documents

Publication Publication Date Title
KR100398716B1 (en) Semiconductor module and circuit substrate
US6657124B2 (en) Advanced electronic package
KR20030078854A (en) Semiconductor device
EP0852395B1 (en) Method of multiplexed joining of solder bumps to a substrate during assembly of an integrated circuit package
JP2011040606A (en) Method of manufacturing semiconductor device
US5973406A (en) Electronic device bonding method and electronic circuit apparatus
KR100636364B1 (en) Bonding method for solder-pad in flip-chip package
US7215030B2 (en) Lead-free semiconductor package
KR20080038028A (en) Method for mounting electronic component on substrate and method for forming solder surface
US20060242825A1 (en) Method of making a circuitized substrate
JP2928484B2 (en) Method and apparatus for testing IC chips
KR100648039B1 (en) method of forming solder ball and related fabrication and structure of semiconductor package using the method
US6303407B1 (en) Method for the transfer of flux coated particles to a substrate
Oppert et al. A roadmap to low cost flip chip and CSP using electroless Ni/Au
Elenius Flex on cap-solder paste bumping
JPH08288291A (en) Semiconductor device
JP2010123676A (en) Manufacturing method of semiconductor device and semiconductor device
WO2001097580A1 (en) Electronic device and method of manufacturing the electronic device
JP2002076605A (en) Semiconductor module and circuit board for connecting semiconductor device
JP2002076599A (en) Electronic apparatus
JP3257011B2 (en) Method of assembling semiconductor device
JPH0888297A (en) Electronic component and electronic component-connecting structure
JP2000151086A (en) Printed circuit unit and its manufacture
JP3006957B2 (en) Semiconductor device package
JP2011216813A (en) Solder joint method, semiconductor device and method of manufacturing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase