WO2001091238A1 - E h antenna - Google Patents
E h antenna Download PDFInfo
- Publication number
- WO2001091238A1 WO2001091238A1 PCT/US2001/016852 US0116852W WO0191238A1 WO 2001091238 A1 WO2001091238 A1 WO 2001091238A1 US 0116852 W US0116852 W US 0116852W WO 0191238 A1 WO0191238 A1 WO 0191238A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radiating element
- antenna system
- field component
- radio frequency
- radio device
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/29—Combinations of different interacting antenna units for giving a desired directional characteristic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/24—Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
Definitions
- the present invention relates to radio frequency communications and, more specifically, to an antenna system employed in radio frequency communications.
- Radio signals usually start with electrical signals that have been modulated onto a radio frequency carrier wave.
- the resulting radio signal is transmitted using an antenna.
- the antenna is a resonant system that generates an electrical field (E field) and a magnetic field (H field) that vary in correspondence with the radio signal, thereby forming radio frequency radiation.
- E field electrical field
- H field magnetic field
- S the Poynting vector
- E the E field vector
- H the H field vector.
- Most conventional antenna systems are resonant systems that take the form of wire dipoles that run electrically in parallel to the output circuitry of radio frequency transmitters and receivers. Such antenna systems require that the length of the wires of the dipoles be at least one fourth of the wavelength of the radiation being transmitted or received. For example, if the wavelength of the radiation is 1000 ft., the length of the wire must be 250 ft. Thus, the typical wire antenna requires a substantial amount of space as a function of the wavelength being transmitted and received.
- the disadvantages of the prior art are overcome by the present invention which, in one aspect, is an antenna system for transmitting and receiving, in association with a radio device, electromagnetic radiation having an E-field component and an H- field component.
- the electromagnetic radiation corresponds to a radio frequency power signal having a current and a voltage at a radio frequency.
- the antenna system includes a first radiating element and a second radiating element, each comprising a conductive material.
- the second radiating element is spaced apart from, and in alignment with, the first radiating element.
- a phasing and matching network is in electrical communication with the first radiating element, the second radiating element and the radio device. The phasing and matching network aligns the relative phase between the current and the voltage of the radio frequency power signal so that the H- field component of the corresponding electromagnetic signal is nominally in time phase with the E-field component.
- FIG. 2 is a schematic diagram of a second illustrative embodiment of the invention.
- FIG. 3 is a schematic diagram of the embodiment of FIG. 2 with covers added to the conic sections of the antenna.
- FIG. 4 is a schematic diagram of a third illustrative embodiment of the invention adapted for generating a substantially directed beam of radiation.
- one embodiment of the invention is illustrated as an antenna system 100 for transmitting and receiving, in association with a radio device 102 (such as a transmitter or a receiver), electromagnetic radiation having an E-field component and an H-field component.
- the electromagnetic radiation corresponds to a radio frequency power signal having a current and a voltage at a radio frequency.
- the antenna system 100 includes an antenna unit 110 and a phasing/matching network 120.
- the antenna unit 110 includes a first radiating element 112 made of a conductive material such as a metal (for example, aluminum) and a spaced-apart second radiating element 114, also made of a conductive material such as a metal.
- the first radiating element 112 and the second radiating element 114 are substantially in alignment with each other, so that both tend to be disposed along a common axis 116. While the first radiating element is ideally coaxial with the second radiating element, they may be off coaxial without departing from the scope of the invention. However, performance of the antenna may degrade as the radiating elements get further off coaxial. Typically, the height of the antenna unit 110 need only be about 1.5% of the wavelength. Thus, the invention allows for relatively compact antenna designs.
- the first radiating element 112 and the second radiating element 114 each comprise a cylinder.
- the radiating elements could include conic sections as well, or many other shapes (or combinations thereof), as will be readily understood by those of skill in the art of antenna design.
- the phasing and matching network 120 is in electrical communication with the first radiating element 112, the second radiating element 114 and the radio device 102.
- the phasing and matching network 120 aligns the relative phase between the current and the voltage of the radio frequency power signal so that the H-field component of the corresponding electromagnetic signal is nominally in time phase with the E-field component.
- the wires connecting the phasing and matching network 120 to the antenna unit 110 should be as short as practical so as to minimize transmission line effects. Because the E field and the H field are substantially in phase with each other near antenna unit 110 a Poynting vector is created almost immediately near the antenna unit 110.
- phasing and matching network 120 performs the step of aligning the relative phase between the current and the voltage of the radio frequency power signal so that the H-field component of the corresponding electromagnetic signal is nominally in time phase with the E-field component.
- the specific circuit elements and configuration used are unimportant so long as the result is proper performance of the phase alignment function.
- the first inductor 122 has an inductance of 17 ⁇ H
- the first capacitor 124 has a capacitance of 30 pf
- the second inductor has an inductance of 19 ⁇ H
- the second capacitor has a capacitance of 42 pf.
- the phasing and matching network 120 is connected to the transmitter/receiver 102 by a coaxial cable (not shown).
- the first radiating element 112 and the second radiating element 114 are each aluminum cylinders having a height of 12 in. and a diameter of 4.5 in. and are spaced apart by 4.5 in. It was observed that this embodiment resulted in a system Q of (+/- 3 dB bandwidth) of approximately 7.5.
- the wide ends of the conic sections have a diameter of 14.49 feet and a height of 1.95 feet each, with a 30° angle between the operative surfaces 218.
- the radiating elements 212 and 214 are supported by a coaxial 8 in. PVC pipe.
- a first cover 316 may be added to the first radiating element 312 to keep rain, snow and bird nests, etc., out of the first radiating element 312.
- a second cover 318 may be added to the second radiating element 314 to keep out similar such debris.
- the antenna unit 410 may be placed in a reflective shape 430. Such an embodiment could be used in directing a beam 432 at a selected object. Such a shape 430 could be a parabolic reflector or some other shape (such as an inverted cone). When the beam is directed upward by the reflective shape 430 so that the beam 432 follows a near vertical profile, the embodiment of FIG. 4 could be used in near vertical incidence communications.
- One advantage of the antenna system of the invention is that it responds only to true radiated signals, not to electrical noise. Therefore, the invention increases the signal-to-noise ratio compared to prior art systems.
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP01939399A EP1307946A4 (en) | 2000-05-23 | 2001-05-23 | E h antenna |
AU2001264922A AU2001264922A1 (en) | 2000-05-23 | 2001-05-23 | E h antenna |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/576,449 | 2000-05-23 | ||
US09/576,449 US6486846B1 (en) | 2000-05-23 | 2000-05-23 | E H antenna |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001091238A1 true WO2001091238A1 (en) | 2001-11-29 |
Family
ID=24304465
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2001/016852 WO2001091238A1 (en) | 2000-05-23 | 2001-05-23 | E h antenna |
Country Status (4)
Country | Link |
---|---|
US (1) | US6486846B1 (en) |
EP (1) | EP1307946A4 (en) |
AU (1) | AU2001264922A1 (en) |
WO (1) | WO2001091238A1 (en) |
Cited By (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1570545A2 (en) * | 2002-11-22 | 2005-09-07 | Robert Hart | Method and apparatus for creating an eh antenna |
US9496921B1 (en) | 2015-09-09 | 2016-11-15 | Cpg Technologies | Hybrid guided surface wave communication |
US9857402B2 (en) | 2015-09-08 | 2018-01-02 | CPG Technologies, L.L.C. | Measuring and reporting power received from guided surface waves |
US9859707B2 (en) | 2014-09-11 | 2018-01-02 | Cpg Technologies, Llc | Simultaneous multifrequency receive circuits |
US9882436B2 (en) | 2015-09-09 | 2018-01-30 | Cpg Technologies, Llc | Return coupled wireless power transmission |
US9882397B2 (en) | 2014-09-11 | 2018-01-30 | Cpg Technologies, Llc | Guided surface wave transmission of multiple frequencies in a lossy media |
US9887556B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Chemically enhanced isolated capacitance |
US9887558B2 (en) | 2015-09-09 | 2018-02-06 | Cpg Technologies, Llc | Wired and wireless power distribution coexistence |
US9887587B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Variable frequency receivers for guided surface wave transmissions |
US9885742B2 (en) | 2015-09-09 | 2018-02-06 | Cpg Technologies, Llc | Detecting unauthorized consumption of electrical energy |
US9887557B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Hierarchical power distribution |
US9887585B2 (en) | 2015-09-08 | 2018-02-06 | Cpg Technologies, Llc | Changing guided surface wave transmissions to follow load conditions |
US9893402B2 (en) | 2014-09-11 | 2018-02-13 | Cpg Technologies, Llc | Superposition of guided surface waves on lossy media |
US9893403B2 (en) | 2015-09-11 | 2018-02-13 | Cpg Technologies, Llc | Enhanced guided surface waveguide probe |
US9899718B2 (en) | 2015-09-11 | 2018-02-20 | Cpg Technologies, Llc | Global electrical power multiplication |
US9910144B2 (en) | 2013-03-07 | 2018-03-06 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US9912031B2 (en) | 2013-03-07 | 2018-03-06 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US9916485B1 (en) | 2015-09-09 | 2018-03-13 | Cpg Technologies, Llc | Method of managing objects using an electromagnetic guided surface waves over a terrestrial medium |
US9923385B2 (en) | 2015-06-02 | 2018-03-20 | Cpg Technologies, Llc | Excitation and use of guided surface waves |
US9921256B2 (en) | 2015-09-08 | 2018-03-20 | Cpg Technologies, Llc | Field strength monitoring for optimal performance |
US9927477B1 (en) | 2015-09-09 | 2018-03-27 | Cpg Technologies, Llc | Object identification system and method |
US9941566B2 (en) | 2014-09-10 | 2018-04-10 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US9960470B2 (en) | 2014-09-11 | 2018-05-01 | Cpg Technologies, Llc | Site preparation for guided surface wave transmission in a lossy media |
US9973037B1 (en) | 2015-09-09 | 2018-05-15 | Cpg Technologies, Llc | Object identification system and method |
US9997040B2 (en) | 2015-09-08 | 2018-06-12 | Cpg Technologies, Llc | Global emergency and disaster transmission |
US10001553B2 (en) | 2014-09-11 | 2018-06-19 | Cpg Technologies, Llc | Geolocation with guided surface waves |
US10027131B2 (en) | 2015-09-09 | 2018-07-17 | CPG Technologies, Inc. | Classification of transmission |
US10027177B2 (en) | 2015-09-09 | 2018-07-17 | Cpg Technologies, Llc | Load shedding in a guided surface wave power delivery system |
US10027116B2 (en) | 2014-09-11 | 2018-07-17 | Cpg Technologies, Llc | Adaptation of polyphase waveguide probes |
US10033197B2 (en) | 2015-09-09 | 2018-07-24 | Cpg Technologies, Llc | Object identification system and method |
US10033198B2 (en) | 2014-09-11 | 2018-07-24 | Cpg Technologies, Llc | Frequency division multiplexing for wireless power providers |
US10031208B2 (en) | 2015-09-09 | 2018-07-24 | Cpg Technologies, Llc | Object identification system and method |
US10062944B2 (en) | 2015-09-09 | 2018-08-28 | CPG Technologies, Inc. | Guided surface waveguide probes |
US10063095B2 (en) | 2015-09-09 | 2018-08-28 | CPG Technologies, Inc. | Deterring theft in wireless power systems |
US10074993B2 (en) | 2014-09-11 | 2018-09-11 | Cpg Technologies, Llc | Simultaneous transmission and reception of guided surface waves |
US10079573B2 (en) | 2014-09-11 | 2018-09-18 | Cpg Technologies, Llc | Embedding data on a power signal |
US10084223B2 (en) | 2014-09-11 | 2018-09-25 | Cpg Technologies, Llc | Modulated guided surface waves |
US10101444B2 (en) | 2014-09-11 | 2018-10-16 | Cpg Technologies, Llc | Remote surface sensing using guided surface wave modes on lossy media |
US10103452B2 (en) | 2015-09-10 | 2018-10-16 | Cpg Technologies, Llc | Hybrid phased array transmission |
US10122218B2 (en) | 2015-09-08 | 2018-11-06 | Cpg Technologies, Llc | Long distance transmission of offshore power |
US10135301B2 (en) | 2015-09-09 | 2018-11-20 | Cpg Technologies, Llc | Guided surface waveguide probes |
US10141622B2 (en) | 2015-09-10 | 2018-11-27 | Cpg Technologies, Llc | Mobile guided surface waveguide probes and receivers |
US10175048B2 (en) | 2015-09-10 | 2019-01-08 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10175203B2 (en) | 2014-09-11 | 2019-01-08 | Cpg Technologies, Llc | Subsurface sensing using guided surface wave modes on lossy media |
US10193595B2 (en) | 2015-06-02 | 2019-01-29 | Cpg Technologies, Llc | Excitation and use of guided surface waves |
US10193229B2 (en) | 2015-09-10 | 2019-01-29 | Cpg Technologies, Llc | Magnetic coils having cores with high magnetic permeability |
US10205326B2 (en) | 2015-09-09 | 2019-02-12 | Cpg Technologies, Llc | Adaptation of energy consumption node for guided surface wave reception |
US10230270B2 (en) | 2015-09-09 | 2019-03-12 | Cpg Technologies, Llc | Power internal medical devices with guided surface waves |
US10312747B2 (en) | 2015-09-10 | 2019-06-04 | Cpg Technologies, Llc | Authentication to enable/disable guided surface wave receive equipment |
US10324163B2 (en) | 2015-09-10 | 2019-06-18 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10396566B2 (en) | 2015-09-10 | 2019-08-27 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10408915B2 (en) | 2015-09-10 | 2019-09-10 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10408916B2 (en) | 2015-09-10 | 2019-09-10 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10447342B1 (en) | 2017-03-07 | 2019-10-15 | Cpg Technologies, Llc | Arrangements for coupling the primary coil to the secondary coil |
US10498393B2 (en) | 2014-09-11 | 2019-12-03 | Cpg Technologies, Llc | Guided surface wave powered sensing devices |
US10498006B2 (en) | 2015-09-10 | 2019-12-03 | Cpg Technologies, Llc | Guided surface wave transmissions that illuminate defined regions |
US10559867B2 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Llc | Minimizing atmospheric discharge within a guided surface waveguide probe |
US10560147B1 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Llc | Guided surface waveguide probe control system |
US10559893B1 (en) | 2015-09-10 | 2020-02-11 | Cpg Technologies, Llc | Pulse protection circuits to deter theft |
US10559866B2 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Inc | Measuring operational parameters at the guided surface waveguide probe |
US10581492B1 (en) | 2017-03-07 | 2020-03-03 | Cpg Technologies, Llc | Heat management around a phase delay coil in a probe |
US10630111B2 (en) | 2017-03-07 | 2020-04-21 | Cpg Technologies, Llc | Adjustment of guided surface waveguide probe operation |
US10998993B2 (en) | 2015-09-10 | 2021-05-04 | CPG Technologies, Inc. | Global time synchronization using a guided surface wave |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2836601A1 (en) * | 2002-02-22 | 2003-08-29 | Thales Sa | BROADBAND MONOPOLAR OR DIPOLAR ANTENNA |
SE522054C2 (en) * | 2002-07-08 | 2004-01-07 | Saab Ab | Electrically controlled broadband group antenna, antenna element suitable to be included in such a group antenna, and antenna module comprising a plurality of such antenna elements |
US7142166B2 (en) * | 2003-10-10 | 2006-11-28 | Shakespeare Company, Llc | Wide band biconical antennas with an integrated matching system |
US7339529B2 (en) * | 2003-10-10 | 2008-03-04 | Shakespeare Company Llc | Wide band biconical antennas with an integrated matching system |
JP2009284459A (en) * | 2008-04-22 | 2009-12-03 | Panasonic Corp | Antenna matching part, and high-frequency receiving part using the same |
US9647326B1 (en) * | 2013-03-15 | 2017-05-09 | WorldWide Antenna Systems LLC | High-efficiency broadband antenna |
US10644404B2 (en) * | 2013-03-15 | 2020-05-05 | WorldWide Antenna Systems LLC | High-efficiency broadband antenna |
US10135143B2 (en) * | 2013-03-15 | 2018-11-20 | WorldWide Antenna Systems LLC | High-efficiency broadband antenna |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3159838A (en) * | 1962-01-19 | 1964-12-01 | Aero Geo Astro Corp | Vertically stacked hollow dipoles conductively supported on a mast |
US3829863A (en) * | 1973-03-12 | 1974-08-13 | Gen Instrument Corp | Polarizing feed apparatus for biconical antennas |
US5534880A (en) * | 1993-03-18 | 1996-07-09 | Gabriel Electronics Incorporated | Stacked biconical omnidirectional antenna |
US5892485A (en) * | 1997-02-25 | 1999-04-06 | Pacific Antenna Technologies | Dual frequency reflector antenna feed element |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3475687A (en) | 1965-09-29 | 1969-10-28 | Bell Telephone Labor Inc | Radio receiving apparatus responsive to both electric and magnetic field components of the transmitted signal |
US3521284A (en) | 1968-01-12 | 1970-07-21 | John Paul Shelton Jr | Antenna with pattern directivity control |
GB1284727A (en) | 1968-10-21 | 1972-08-09 | C S Antennas Ltd | Improvements in aerials |
US4003056A (en) | 1975-05-20 | 1977-01-11 | Ross Alan Davis | Windshield antenna system with resonant element and cooperating resonant conductive edge |
US4183027A (en) | 1977-10-07 | 1980-01-08 | Ehrenspeck Hermann W | Dual frequency band directional antenna system |
US4187507A (en) | 1978-10-13 | 1980-02-05 | Sperry Rand Corporation | Multiple beam antenna array |
US4388625A (en) | 1981-01-12 | 1983-06-14 | Harris Corporation | Multimode diagonal feed horn |
GB8316510D0 (en) * | 1983-06-17 | 1983-07-20 | Hately M C | Antenna |
US4809009A (en) | 1988-01-25 | 1989-02-28 | Grimes Dale M | Resonant antenna |
GB8802204D0 (en) | 1988-02-02 | 1988-03-02 | Hately M C | Twin feeder crossed field antenna systems |
EP0501169B1 (en) | 1991-02-25 | 1995-08-23 | Asea Brown Boveri Ag | Device for measuring field-strength |
US5304998A (en) | 1992-05-13 | 1994-04-19 | Hazeltine Corporation | Dual-mode communication antenna |
US5495259A (en) | 1994-03-31 | 1996-02-27 | Lyasko; Gennady | Compact parametric antenna |
US5760747A (en) | 1996-03-04 | 1998-06-02 | Motorola, Inc. | Energy diversity antenna |
US6147653A (en) * | 1998-12-07 | 2000-11-14 | Wallace; Raymond C. | Balanced dipole antenna for mobile phones |
-
2000
- 2000-05-23 US US09/576,449 patent/US6486846B1/en not_active Expired - Fee Related
-
2001
- 2001-05-23 WO PCT/US2001/016852 patent/WO2001091238A1/en not_active Application Discontinuation
- 2001-05-23 AU AU2001264922A patent/AU2001264922A1/en not_active Abandoned
- 2001-05-23 EP EP01939399A patent/EP1307946A4/en not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3159838A (en) * | 1962-01-19 | 1964-12-01 | Aero Geo Astro Corp | Vertically stacked hollow dipoles conductively supported on a mast |
US3829863A (en) * | 1973-03-12 | 1974-08-13 | Gen Instrument Corp | Polarizing feed apparatus for biconical antennas |
US5534880A (en) * | 1993-03-18 | 1996-07-09 | Gabriel Electronics Incorporated | Stacked biconical omnidirectional antenna |
US5892485A (en) * | 1997-02-25 | 1999-04-06 | Pacific Antenna Technologies | Dual frequency reflector antenna feed element |
Non-Patent Citations (1)
Title |
---|
See also references of EP1307946A4 * |
Cited By (89)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1570545A4 (en) * | 2002-11-22 | 2008-05-14 | Robert Hart | Method and apparatus for creating an eh antenna |
EP1570545A2 (en) * | 2002-11-22 | 2005-09-07 | Robert Hart | Method and apparatus for creating an eh antenna |
US10680306B2 (en) | 2013-03-07 | 2020-06-09 | CPG Technologies, Inc. | Excitation and use of guided surface wave modes on lossy media |
US9912031B2 (en) | 2013-03-07 | 2018-03-06 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US9910144B2 (en) | 2013-03-07 | 2018-03-06 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US10224589B2 (en) | 2014-09-10 | 2019-03-05 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US10998604B2 (en) | 2014-09-10 | 2021-05-04 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US9941566B2 (en) | 2014-09-10 | 2018-04-10 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US9887556B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Chemically enhanced isolated capacitance |
US10498393B2 (en) | 2014-09-11 | 2019-12-03 | Cpg Technologies, Llc | Guided surface wave powered sensing devices |
US9887587B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Variable frequency receivers for guided surface wave transmissions |
US10355480B2 (en) | 2014-09-11 | 2019-07-16 | Cpg Technologies, Llc | Adaptation of polyphase waveguide probes |
US9887557B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Hierarchical power distribution |
US10320045B2 (en) | 2014-09-11 | 2019-06-11 | Cpg Technologies, Llc | Superposition of guided surface waves on lossy media |
US9893402B2 (en) | 2014-09-11 | 2018-02-13 | Cpg Technologies, Llc | Superposition of guided surface waves on lossy media |
US10320200B2 (en) | 2014-09-11 | 2019-06-11 | Cpg Technologies, Llc | Chemically enhanced isolated capacitance |
US10074993B2 (en) | 2014-09-11 | 2018-09-11 | Cpg Technologies, Llc | Simultaneous transmission and reception of guided surface waves |
US9882397B2 (en) | 2014-09-11 | 2018-01-30 | Cpg Technologies, Llc | Guided surface wave transmission of multiple frequencies in a lossy media |
US10381843B2 (en) | 2014-09-11 | 2019-08-13 | Cpg Technologies, Llc | Hierarchical power distribution |
US10193353B2 (en) | 2014-09-11 | 2019-01-29 | Cpg Technologies, Llc | Guided surface wave transmission of multiple frequencies in a lossy media |
US10079573B2 (en) | 2014-09-11 | 2018-09-18 | Cpg Technologies, Llc | Embedding data on a power signal |
US10355481B2 (en) | 2014-09-11 | 2019-07-16 | Cpg Technologies, Llc | Simultaneous multifrequency receive circuits |
US10084223B2 (en) | 2014-09-11 | 2018-09-25 | Cpg Technologies, Llc | Modulated guided surface waves |
US9859707B2 (en) | 2014-09-11 | 2018-01-02 | Cpg Technologies, Llc | Simultaneous multifrequency receive circuits |
US9960470B2 (en) | 2014-09-11 | 2018-05-01 | Cpg Technologies, Llc | Site preparation for guided surface wave transmission in a lossy media |
US10175203B2 (en) | 2014-09-11 | 2019-01-08 | Cpg Technologies, Llc | Subsurface sensing using guided surface wave modes on lossy media |
US10177571B2 (en) | 2014-09-11 | 2019-01-08 | Cpg Technologies, Llc | Simultaneous multifrequency receive circuits |
US10001553B2 (en) | 2014-09-11 | 2018-06-19 | Cpg Technologies, Llc | Geolocation with guided surface waves |
US10153638B2 (en) | 2014-09-11 | 2018-12-11 | Cpg Technologies, Llc | Adaptation of polyphase waveguide probes |
US10135298B2 (en) | 2014-09-11 | 2018-11-20 | Cpg Technologies, Llc | Variable frequency receivers for guided surface wave transmissions |
US10027116B2 (en) | 2014-09-11 | 2018-07-17 | Cpg Technologies, Llc | Adaptation of polyphase waveguide probes |
US10101444B2 (en) | 2014-09-11 | 2018-10-16 | Cpg Technologies, Llc | Remote surface sensing using guided surface wave modes on lossy media |
US10033198B2 (en) | 2014-09-11 | 2018-07-24 | Cpg Technologies, Llc | Frequency division multiplexing for wireless power providers |
US10193595B2 (en) | 2015-06-02 | 2019-01-29 | Cpg Technologies, Llc | Excitation and use of guided surface waves |
US9923385B2 (en) | 2015-06-02 | 2018-03-20 | Cpg Technologies, Llc | Excitation and use of guided surface waves |
US9921256B2 (en) | 2015-09-08 | 2018-03-20 | Cpg Technologies, Llc | Field strength monitoring for optimal performance |
US10132845B2 (en) | 2015-09-08 | 2018-11-20 | Cpg Technologies, Llc | Measuring and reporting power received from guided surface waves |
US9857402B2 (en) | 2015-09-08 | 2018-01-02 | CPG Technologies, L.L.C. | Measuring and reporting power received from guided surface waves |
US10467876B2 (en) | 2015-09-08 | 2019-11-05 | Cpg Technologies, Llc | Global emergency and disaster transmission |
US9887585B2 (en) | 2015-09-08 | 2018-02-06 | Cpg Technologies, Llc | Changing guided surface wave transmissions to follow load conditions |
US10320233B2 (en) | 2015-09-08 | 2019-06-11 | Cpg Technologies, Llc | Changing guided surface wave transmissions to follow load conditions |
US10122218B2 (en) | 2015-09-08 | 2018-11-06 | Cpg Technologies, Llc | Long distance transmission of offshore power |
US10274527B2 (en) | 2015-09-08 | 2019-04-30 | CPG Technologies, Inc. | Field strength monitoring for optimal performance |
US9997040B2 (en) | 2015-09-08 | 2018-06-12 | Cpg Technologies, Llc | Global emergency and disaster transmission |
US9882436B2 (en) | 2015-09-09 | 2018-01-30 | Cpg Technologies, Llc | Return coupled wireless power transmission |
US10536037B2 (en) | 2015-09-09 | 2020-01-14 | Cpg Technologies, Llc | Load shedding in a guided surface wave power delivery system |
US10148132B2 (en) | 2015-09-09 | 2018-12-04 | Cpg Technologies, Llc | Return coupled wireless power transmission |
US10027131B2 (en) | 2015-09-09 | 2018-07-17 | CPG Technologies, Inc. | Classification of transmission |
US9496921B1 (en) | 2015-09-09 | 2016-11-15 | Cpg Technologies | Hybrid guided surface wave communication |
US10027177B2 (en) | 2015-09-09 | 2018-07-17 | Cpg Technologies, Llc | Load shedding in a guided surface wave power delivery system |
US9973037B1 (en) | 2015-09-09 | 2018-05-15 | Cpg Technologies, Llc | Object identification system and method |
US9927477B1 (en) | 2015-09-09 | 2018-03-27 | Cpg Technologies, Llc | Object identification system and method |
US10062944B2 (en) | 2015-09-09 | 2018-08-28 | CPG Technologies, Inc. | Guided surface waveguide probes |
US9916485B1 (en) | 2015-09-09 | 2018-03-13 | Cpg Technologies, Llc | Method of managing objects using an electromagnetic guided surface waves over a terrestrial medium |
US10205326B2 (en) | 2015-09-09 | 2019-02-12 | Cpg Technologies, Llc | Adaptation of energy consumption node for guided surface wave reception |
US10516303B2 (en) | 2015-09-09 | 2019-12-24 | Cpg Technologies, Llc | Return coupled wireless power transmission |
US10230270B2 (en) | 2015-09-09 | 2019-03-12 | Cpg Technologies, Llc | Power internal medical devices with guided surface waves |
US10135301B2 (en) | 2015-09-09 | 2018-11-20 | Cpg Technologies, Llc | Guided surface waveguide probes |
US10063095B2 (en) | 2015-09-09 | 2018-08-28 | CPG Technologies, Inc. | Deterring theft in wireless power systems |
US10031208B2 (en) | 2015-09-09 | 2018-07-24 | Cpg Technologies, Llc | Object identification system and method |
US10425126B2 (en) | 2015-09-09 | 2019-09-24 | Cpg Technologies, Llc | Hybrid guided surface wave communication |
US10033197B2 (en) | 2015-09-09 | 2018-07-24 | Cpg Technologies, Llc | Object identification system and method |
US9882606B2 (en) | 2015-09-09 | 2018-01-30 | Cpg Technologies, Llc | Hybrid guided surface wave communication |
US9887558B2 (en) | 2015-09-09 | 2018-02-06 | Cpg Technologies, Llc | Wired and wireless power distribution coexistence |
US10333316B2 (en) | 2015-09-09 | 2019-06-25 | Cpg Technologies, Llc | Wired and wireless power distribution coexistence |
US9885742B2 (en) | 2015-09-09 | 2018-02-06 | Cpg Technologies, Llc | Detecting unauthorized consumption of electrical energy |
US10498006B2 (en) | 2015-09-10 | 2019-12-03 | Cpg Technologies, Llc | Guided surface wave transmissions that illuminate defined regions |
US10175048B2 (en) | 2015-09-10 | 2019-01-08 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10324163B2 (en) | 2015-09-10 | 2019-06-18 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10396566B2 (en) | 2015-09-10 | 2019-08-27 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10408915B2 (en) | 2015-09-10 | 2019-09-10 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10408916B2 (en) | 2015-09-10 | 2019-09-10 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10103452B2 (en) | 2015-09-10 | 2018-10-16 | Cpg Technologies, Llc | Hybrid phased array transmission |
US10998993B2 (en) | 2015-09-10 | 2021-05-04 | CPG Technologies, Inc. | Global time synchronization using a guided surface wave |
US10193229B2 (en) | 2015-09-10 | 2019-01-29 | Cpg Technologies, Llc | Magnetic coils having cores with high magnetic permeability |
US10141622B2 (en) | 2015-09-10 | 2018-11-27 | Cpg Technologies, Llc | Mobile guided surface waveguide probes and receivers |
US10601099B2 (en) | 2015-09-10 | 2020-03-24 | Cpg Technologies, Llc | Mobile guided surface waveguide probes and receivers |
US10559893B1 (en) | 2015-09-10 | 2020-02-11 | Cpg Technologies, Llc | Pulse protection circuits to deter theft |
US10312747B2 (en) | 2015-09-10 | 2019-06-04 | Cpg Technologies, Llc | Authentication to enable/disable guided surface wave receive equipment |
US10355333B2 (en) | 2015-09-11 | 2019-07-16 | Cpg Technologies, Llc | Global electrical power multiplication |
US10326190B2 (en) | 2015-09-11 | 2019-06-18 | Cpg Technologies, Llc | Enhanced guided surface waveguide probe |
US9893403B2 (en) | 2015-09-11 | 2018-02-13 | Cpg Technologies, Llc | Enhanced guided surface waveguide probe |
US9899718B2 (en) | 2015-09-11 | 2018-02-20 | Cpg Technologies, Llc | Global electrical power multiplication |
US10559867B2 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Llc | Minimizing atmospheric discharge within a guided surface waveguide probe |
US10560147B1 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Llc | Guided surface waveguide probe control system |
US10559866B2 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Inc | Measuring operational parameters at the guided surface waveguide probe |
US10581492B1 (en) | 2017-03-07 | 2020-03-03 | Cpg Technologies, Llc | Heat management around a phase delay coil in a probe |
US10630111B2 (en) | 2017-03-07 | 2020-04-21 | Cpg Technologies, Llc | Adjustment of guided surface waveguide probe operation |
US10447342B1 (en) | 2017-03-07 | 2019-10-15 | Cpg Technologies, Llc | Arrangements for coupling the primary coil to the secondary coil |
Also Published As
Publication number | Publication date |
---|---|
AU2001264922A1 (en) | 2001-12-03 |
US6486846B1 (en) | 2002-11-26 |
EP1307946A1 (en) | 2003-05-07 |
EP1307946A4 (en) | 2005-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6486846B1 (en) | E H antenna | |
US6864849B2 (en) | Method and apparatus for creating an EH antenna | |
US6956535B2 (en) | Coaxial inductor and dipole EH antenna | |
US5592183A (en) | Gap raidated antenna | |
US3680135A (en) | Tunable radio antenna | |
US4369449A (en) | Linearly polarized omnidirectional antenna | |
AU5573596A (en) | Method and antenna for providing an omnidirectional pattern | |
CN1340165A (en) | Encapsulated antenna in passive transponders | |
US5926149A (en) | Coaxial antenna | |
US5999141A (en) | Enclosed dipole antenna and feeder system | |
US6046700A (en) | Antenna arrangement | |
EP0444357A2 (en) | Ceiling mount microwave transceiver with 360 degree radiation pattern | |
US4675691A (en) | Split curved plate antenna | |
US4223317A (en) | Dual polarization antenna couplets | |
US5307078A (en) | AM-FM-cellular mobile telephone tri-band antenna with double sleeves | |
US4131895A (en) | Apparatus for isolating from ground and exciting a conductive tower for use as a vertical antenna | |
US6961024B1 (en) | Transmitting and receiving apparatus | |
US4825224A (en) | Broad band impedance matching system and method for low-profile antennas | |
US5796369A (en) | High efficiency compact antenna assembly | |
US20020122008A1 (en) | Antenna including integrated filter | |
CA2504683A1 (en) | A transmit antenna | |
RU2099827C1 (en) | High-altitude omnidirectional antenna | |
Rana et al. | A review on types of antenna | |
CA2244407C (en) | Low profile mobile satellite antenna | |
KR200239005Y1 (en) | apparatus for improving the sensitivity of small type receiving antenna |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2001939399 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2001939399 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2001939399 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP |