WO2001079169A2 - Prostaglandin d2 receptor antagonists - Google Patents

Prostaglandin d2 receptor antagonists Download PDF

Info

Publication number
WO2001079169A2
WO2001079169A2 PCT/CA2001/000490 CA0100490W WO0179169A2 WO 2001079169 A2 WO2001079169 A2 WO 2001079169A2 CA 0100490 W CA0100490 W CA 0100490W WO 0179169 A2 WO0179169 A2 WO 0179169A2
Authority
WO
WIPO (PCT)
Prior art keywords
compound
human
treatment
pharmaceutically acceptable
effective amount
Prior art date
Application number
PCT/CA2001/000490
Other languages
French (fr)
Other versions
WO2001079169A3 (en
Inventor
Marc Labelle
Claudio Sturino
Bruno Roy
Original Assignee
Merck Frosst Canada & Co.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Frosst Canada & Co. filed Critical Merck Frosst Canada & Co.
Priority to CA002405248A priority Critical patent/CA2405248A1/en
Priority to AU2001250205A priority patent/AU2001250205A1/en
Publication of WO2001079169A2 publication Critical patent/WO2001079169A2/en
Publication of WO2001079169A3 publication Critical patent/WO2001079169A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents

Definitions

  • Leukotriene antagonists are now part of the arsenal for the treatment of asthma, and antihistamines have long been used to treat symptoms of allergic rhinitis. Because allergic conditions are attributed to multiple mediators, blocking the interaction of one mediator with its receptor may not be sufficient to alleviate the symptoms often associated with allergic conditions.
  • PWD2 Prostaglandin D2
  • Nasal provocation with PGD2 provoked a dose-dependent increase in nasal congestion, the most manifest symptom of allergic rhinitis (Doyle et al., 1990).
  • elevated levels of PGD2 were noted in the nasal wash fluid of allergic patients that underwent a nasal antigen challenge.
  • US Patent 4,808,608 discloses tetrahydrocarbazole-1-alkanoic acids as prostaglandin antagonists.
  • the compound 9-p-chlorobenzyl-8-methylsulfinyl-2,3,4,9- tetrahydro-lH-carbazol-1-yl-acetic acid (1), as a diastereomeric mixture, is specificially disclosed therein.
  • the present invention provides 2-[(lR)-9-(4-chlorobenzyl)-8- methylsulfinyl-2,3 ,4,9-tetrahydro- lH-carbazol- 1 -yl] acetic acid, pharmaceutical compositions thereof, and methods for their use in the treatment of allergic conditions.
  • the present invention provides substantially pure 2-[(lR)-9-(4-chloro- benzyl)-8-methylsulfinyl-2,3,4,9-tetrahydro-lH-carbazol-l-yl]acetic acid (I) consisting essentially of 2-[(lR)-9-(4-chlorobenzyl)-8-((S)-methylsulfinyl)-2,3,4,9- tetrahydro-lH-carbazol-1-yl] acetic acid and 2-[(lR)-9-(4-chlorobenzyl)-8-((R)- methylsulfinyl)-2,3,4,9-tetrahydro-lH-carbazol-l-yl]acetic acid of formula 1(a) and 1(b), respectively, and pharmaceutically acceptable salts thereof.
  • the present invention provides substantially pure 2-[(lR)-9-(4-chlorobenzyl)-8-((S)-methylsulfinyl)-2,3,4,9-tetrahydro-lH-carbazol-l- yl] acetic acid 1(a) and pharmaceutically acceptable salts thereof.
  • the present invention provides substantially pure 2-[(lR)-9-(4-chlorobenzyl)-8-((R)-methylsulfinyl)-2,3,4,9-tetrahydro-lH- carbazol-l-yl]acetic acid 1(b) and pharmaceutically acceptable salts thereof.
  • the present invention provides a pharmaceutical composition which comprises a compound of formula I, and a pharmaceutically acceptable carrier.
  • formula I is intended to include diastereomeric I, as well as the individual diastereomers 1(a) and 1(b).
  • the present invention provides a method for the treatment of allergic conditions which comprises administering to a mammal an effective amount of a compound of formula I.
  • the present invention provides a method for preventing the action of prostaglandin D2 in a mammal which comprises administering to said mammal an effective amount of a compound of formula I.
  • a method for preventing the action of prostaglandin D2 in a mammal which comprises administering to said mammal an effective amount of a compound of formula I.
  • substantially pure means the the indicated stereoisomer is present in at least 95% by weight.
  • treatment includes alleviating, ameliorating, relieving or otherwise reducing, as well as preventing onset of symptoms commonly associated with allergic conditions and other prostaglandin D2 mediated diseases and disorders.
  • composition means that amount of the therapeutically active compound which provides a therapeutic benefit in the treatment, management, or prevention of allergic conditions or other prostaglandin D2 mediated diseases and disorders.
  • composition as in pharmaceutical composition, is intended to encompass a product comprising the active ingredient(s), and the inert ingredient(s) (pharmaceutically acceptable excipients) that make up the carrier, as well as any product which results, directly or indirectly, from combination, complexation or aggregation of any two or more of the ingredients, or from dissociation of one or more of the ingredients, or from other types of reactions or interactions of one or more of the ingredients.
  • compositions of the present invention encompass any composition made by admixing a compound of formula I and pharmaceutically acceptable excipients. While the diastereomeric mixture containing compounds 1(a) and 1(b) and their respective enantiomers is disclosed in US Patent 4,808,608, Applicants have now discovered that compounds 1(a) and 1(b), the IR isomers, have much higher affinity for the prostaglandin D2 receptor than the other two diastereomers, which have limited affinity for the same receptor.
  • compositions of formula I have an acidic group as well as a basic nitrogen; and may form pharmaceutically acceptable salts with acids or bases.
  • pharmaceutically acceptable salts refers to salts prepared from pharmaceutically acceptable non-toxic bases or acids including inorganic or organic bases and inorganic or organic acids. Salts derived from inorganic bases include aluminum, ammonium, calcium, copper, ferric, ferrous, lithium, magnesium, manganic salts, manganous, potassium, sodium, zinc, and the like. Particularly preferred are the ammonium, calcium, magnesium, potassium, and sodium salts.
  • Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines, and basic ion exchange resins, such as arginine, betaine, caffeine, choline, N,N'-dibenzylethylenediamine, diethylamine, 2- diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N- ethyl-morpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine, tripropylamine, tromethamine, and the like.
  • basic ion exchange resins such
  • Salts may also be prepared from pharmaceutically acceptable non-toxic acids, including inorganic and organic acids.
  • Such acids include acetic, benzenesulfonic, benzoic, camphorsulfonic, citric, ethanesulfonic, fumaric, gluconic, glutamic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phosphoric, succinic, sulfuric, tartaric, p-toluenesulfonic acid, and the like.
  • Particularly preferred are citric, hydrobromic, hydrochloric, maleic, phosphoric, sulfuric, and tartaric acids.
  • Compounds of formula I are potent and selective antagonists of the prostaglandin D2 receptor.
  • the ability of these to antagonize the actions of prostaglandin D2 makes them useful for preventing, treating or reversing the symptoms, disorders or diseases induced by the binding of prostaglandin D2 to its receptors.
  • another aspect of the present invention provides a method for the treatment (including prevention, alleviation, amelioration or suppression) of diseases or disorders or symptoms mediated by prostaglandin D2, which comprises administering to a mammal an effective amount of a compound of formula I.
  • diseases, disorders, conditions or symptoms are for example: (1) allergic rhinitis (seasonal or perennial), (2) asthma, (3) allergic conjunctivitis, (4) urticaria or atopic dermatitis, and (5) nasal congestion.
  • prophylactic or therapeutic dose of a compound of formula I will, of course, vary with the nature of the severity of the condition to be treated and with the particular compound of formula I and its route of administration. It will also vary according to the age, weight and response of the individual patient. In general, the daily dose range lies within the range of from about 0.001 mg to about 100 mg per kg body weight of a mammal, preferably 0.01 mg to about 50 mg per kg, and most preferably 0.1 to 10 mg per kg, in single or divided doses. On the other hand, it may be necessary to use dosages outside these limits in some cases.
  • a suitable dosage range is from about 0.001 mg to about 25 mg (preferably from 0.01 mg to about 1 mg) of a compound of formula I per kg of body weight per day and for cytoprotective use from about 0.1 mg to about 100 mg (preferably from about 1 mg to about 100 mg and more preferably from about 1 mg to about 10 mg) of a compound of formula I per kg of body weight per day.
  • a suitable dosage range is, e.g. from about 0.01 mg to about 100 mg of a compound of formula I per kg of body weight per day, preferably from about 0.1 mg to about 10 mg per kg of body weight per day.
  • ophthalmic preparations for ocular administration comprising 0.001-1% by weight solutions or suspensions of the compounds of formula I in an acceptable ophthalmic formulation may be used.
  • compositions which comprises a compound of formula I and a pharmaceutically acceptable carrier.
  • Any suitable route of administration may be employed for providing a mammal, especially a human with an effective dosage of a compound of the present invention.
  • oral, rectal, topical, parenteral, ocular, pulmonary, nasal, and the like may be employed.
  • Dosage forms include tablets, troches, dispersions, suspensions, solutions, capsules, creams, ointments, aerosols, and the like.
  • the pharmaceutical compositions of the present invention comprise a compound of formula I as an active ingredient or a pharmaceutically acceptable salt thereof, and may also contain a pharmaceutically acceptable carrier and optionally other therapeutic ingredients.
  • pharmaceutically acceptable salts refers to salts prepared from pharmaceutically acceptable non-toxic bases or acids including inorganic bases or acids and organic bases or acids.
  • the compounds of the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or nebulisers.
  • the compounds may also be delivered as powders which may be formulated and the powder composition may be inhaled with the aid of an insufflation powder inhaler device.
  • the preferred delivery systems for inhalation are metered dose inhalation (MDI) aerosol, which may be formulated as a suspension or solution of a compound of formula I in suitable propellants, such as fluorocarbons or hydrocarbons and dry powder inhalation (DPI) aerosol, which may be formulated as a dry powder of a compound of formula I with or without additional excipients.
  • MDI metered dose inhalation
  • DPI dry powder inhalation
  • Suitable topical formulations of a compound of formula I include transdermal devices, aerosols, creams, ointments, lotions, dusting powders, and the like.
  • the compounds of formula I can be combined as the active ingredient in intimate admixture with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques.
  • the carrier may take a wide variety of forms depending on the form of preparation desired for administration, e.g., oral or parenteral (including intravenous).
  • any of the usual pharmaceutical media may be employed, such as, for example, water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents and the like in the case of oral liquid preparations, such as, for example, suspensions, elixirs and solutions; or carriers such as starches, sugars, microcrystalline cellulose, diluents, granulating agents, lubricants, binders, disintegrating agents and the like in the case of oral solid preparations such as, for example, powders, capsules and tablets, with the solid oral preparations being preferred over the liquid preparations. Because of their ease of administration, tablets and capsules represent the most advantageous oral dosage unit form, in which case solid pharmaceutical carriers are employed.
  • tablets may be coated by standard aqueous or nonaqueous techniques.
  • the compounds of formula I may also be administered by controlled release means and/or delivery devices such as those described in U.S. Patent Nos. 3,845,770; 3,916,899; 3,536,809; 3,598,123; 3,630,200 and 4,008,719.
  • compositions of the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient, as a powder or granules or as a solution or a suspension in an aqueous liquid, a non-aqueous liquid, an oil-in-water emulsion or a water-in-oil liquid emulsion.
  • Such compositions may be prepared by any of the methods of pharmacy but all methods include the step of bringing into association the active ingredient with the carrier which constitutes one or more necessary ingredients.
  • the compositions are prepared by uniformly and intimately admixing the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product into the desired presentation.
  • a tablet may be prepared by compression or molding, optionally with one or more accessory ingredients.
  • Compressed tablets may be prepared by compressing in a suitable machine, the active ingredient in a free- flowing form such as powder or granules, optionally mixed with a binder, lubricant, inert diluent, surface active or dispersing agent.
  • Molded tablets may be made by molding in a suitable machine, a mixture of the powdered compound moistened with an inert liquid diluent.
  • each tablet contains from about 1 mg to about 500 mg of the active ingredient and each cachet or capsule contains from about 1 to about 500 mg of the active ingredient.
  • Compounds of formula I may be used in combination with other drugs that are used in the treatment/prevention/suppression or amelioration of the diseases or conditions for which compounds of formula I are useful. Such other drugs may be administered, by a route and in an amount commonly used therefor, contemporaneously or sequentially with a compound of formula I.
  • a pharmaceutical composition containing such other drugs in addition to the compound of formula I is preferred.
  • the pharmaceutical compositions of the present invention include those that also contain one or more other active ingredients, in addition to a compound of formula I. Examples of other active ingredients that may be combined with a compound of formula I, either administered separately or in the same pharmaceutical compositions, include, but are not limited to:
  • VLA-4 antagonists such as those described in US 5,510,332, WO97/03094, WO97/02289, WO96/40781, WO96/22966, WO96/20216, WO96/01644, WO96/06108, WO95/15973 and WO96/31206;
  • steroids such as beclomethasone, methylprednisolone, betamethasone, prednisone, dexamethasone, and hydrocortisone;
  • immunosuppressants such as cyclosporin, tacrolimus, rapamycin and other FK-506 type immunosuppressants;
  • antihistamines antihistamines (Hl-histamine antagonists) such as bromopheniramine, chlorpheniramine, dexchlorphenira ine, triprolidine, clemastine, diphenhydramine, diphenylpyraline, tripelennamine, hydroxyzine, methdilazine, promethaz
  • the weight ratio of the compound of the formula I to the second active ingredient may be varied and will depend upon the effective dose of each ingredient. Generally, an effective dose of each will be used. Thus, for example, when a compound of the formula I is combined with an antihistamine the weight ratio of the compound of the formula I to the antihistamine will generally range from about 1000:1 to about 1:1000, preferably about 200:1 to about 1:200. Combinations of a compound of the formula I and other active ingredients will generally also be within the aforementioned range, but in each case, an effective dose of each active ingredient should be used.
  • Scheme 1 depicts two synthetic routes for the preparation of 2-[9-(4- chlorobenzyl)-8-methylsulfanyl)-2,3,4,9-tetrahydro-lH-carbazol-l-yl] acetic acid, as a racemic mixture, from l-[2-(methylsulfanyl)phenyl]hydrazine.
  • the tetrahydrocarbazoleacetic acid is treated with a base such as sodium hydride, followed by 4-chlorobenzyl chloride to provide the desired 2-[9-(4-chlorobenzyl)-8-methylsulfanyl)-2,3,4,9-tetrahydro-lH- carbazol-1-yl] acetic acid.
  • l-[2-(methylsulfanyl)phenyl]hydrazine is treated with benzophenone imine to provide the corresponding hydrazone adduct.
  • the p-chloro- benzyl moiety is introduced by treating the hydrazone with a base such as lithium diisopropylamide followed by 4-chlorobenzyl bromide to provide diphenylmethanone N-(4-chlorobenzyl)-N-[2-(methylsulfanyl)phenyl]hydrazone.
  • the desired tetrahydrocarbazoleacetic acid product is obtained by treating the hydrazone with ethyl 2- oxocyclohexaneacetate, followed by saponification.
  • chiral oxidation reagents such as (3'S, 2R) ⁇ -phenyl- sulfonyl 3,3-dichlorocamphoryl oxaziridine, give mixtures enriched in one or the other epimer at the sulfur stereogenic center.
  • the two diastereomers are separately treated with a base to generate their corresponding acids.
  • prostaglandin D2 antagonistic activity is mostly attributable to the IR isomers (formula I), it may not be necessary to separate the two diastereomers resulting from the oxidation, and the mixture of diastereomers may be directly hydrolyzed to provide the corresponding mixture of acids.
  • 2-(Methylthio)aniline (30g, 215mmol) was dissolved in 2N HCl (215ml) and cooled to 0°C and a solution of NaNO2 (16.3g, 237mmol) in 50ml water was added dropwise (maintaining the temperature below 5°C). After 10 min the solution was added portionwise to a solution of Na2 ⁇ 2 ⁇ 4 (220g 85% pure, 1075 mmol) in a biphasic mixture of 1200ml of ether and 1200 mL of water dropwise (maintaining the temperature below 5°C). After stirring for one hour at 0°C the mixture was warmed to room temperature and the pH set to 10 with 2N NaOH.
  • Step b ethyl 2-[8-(methylsulfanyl)-2,3,4,9-tetrahydro-lH-carbazol-l-yl]acetate
  • Method A l-[2-(methylsulfanyl)phenyl]hydrazine (15.7g, 102mmol) and ethyl 2-cyclohexanoneacetate (18.7g, 102mmol) were dissolved in 300ml isopropanol containing leq ⁇ C1. The mixture was refluxed overnight under nitrogen then cooled to room temperature. The solvent was stripped and the residue partitioned between 300ml of water and 300 mL of dichloromethane.
  • the water layer was washed with dichloromethane, and the organic layers were combined, dried with sodium sulfate and the solvent removed.
  • the mixture was purified on silica with 5% ethyl acetate/toluene to provide 14.2g (46%) of the title compound.
  • Method B l-[2-(methylsulfanyl)phenyl]hydrazine hydrochloride (50g, 262mmol) and ethyl 2-cyclohexanoneacetate (48.3g, 262mmol) were dissolved in 1300ml isopropanol. The mixture was refluxed overnight under nitrogen then cooled to room temperature. The solvent was stripped and the residue partitioned between 1300ml water and ethyl acetate. The water layer was washed with ethyl acetate, and the organic layers were combined, dried with sodium sulfate and the solvent removed. The mixture was purified on silica with 2.5% ethyl acetate/toluene to provide 42g crude title compound.
  • step b Crude product of step b (42g) was dissolved in 400ml of tetrahydrofuran and methanol 1 : 1 and 207ml of 2N LiO ⁇ was added thereto. The mixture was refluxed for 30 min and cooled to room temperature. The organic solvents were removed and 800ml of IN ⁇ C1 and 800 mL of ethyl acetate added. The layers were separated and the aqueous layer washed with ethyl acetate. The combined organic layers were dried with sodium sulfate and the solvent removed. The resulting solid was triturated with 200ml 5% ether/hexane to provide 30.4g of the title compound.
  • step c in 100ml dimethylformamide (30.4g, llOmmol) was added to a suspension of a 60% Na ⁇ dispersion in mineral oil (llg, 276mmol) in 500ml dimethylformamide at -78°C under N2- The mixture was warmed to room temperature, stirred for 30 min and then cooled to -78°C. A solution of 220 mmol of 4-chlorobenzyl chloride in 100ml of dimethylformamide was added thereto, and the mixture warmed to room temperature and stirred for 4 hours. 500ml of IN ⁇ C1 and 500 mL of isopropyl acetate were added. The layers were separated and the organic layer washed 2 times with water.
  • step d The racemic acid of step d (35 g, 91.3 mmol) was dissolved in dry ethanol (900 mL) and heated to reflux.
  • (R)-(+)-l-(l-naphthyl)ethylamine (15.64 g, 91.3 mmol, 1 eq) was added and the reaction mixture was stirred at 80°C for 30 min, then allowed to cool slowly to room temperature. The resulting suspension was stirred for 16 hours, and then the salt was filtered and air dried for 2 hours to yield
  • step e The acid of step e (8.0 g, 20.0 mmol) was dissolved in acetone (250 mL) and treated with diazomethane (approximately 2M solution in diethyl ether) until yellow color remained. Excess CH2N2 was quenched with acetic acid, and the reaction mixture was concentrated to dryness to afford a yellow oil (8.3 g). (100%).
  • 1H NMR (acetone rt ⁇ ) ⁇ 7.37 (d, 1H), 7.26 (d, 2H), 7.15 (d, 1H), 7.03 (t, 1H), 6.78 (d,
  • Step g. methyl 2-[(lR)-9-(4-chlorobenzyl)-8-((S)-methylsulfinyl)-2,3,4,9-tetrahydro- lH-carbazol-l-yl]acetate Me-(Ib) and methyl 2-[(lR)-9-(4-chlorobenzyl)-8-((R)- methylsulfinyl)-2,3 ,4,9-tetrahydro- lH-carbazol- 1 -yl] acetate Me-(Ia)
  • step f The sulfide of step f (8.3 g, 20.0 mmol) was dissolved in dichloromethane (300 mL) and m-chloroperbenzoic acid (4.0 g @ 85%, 20.0 mmol, 1 eq) was added. The mixture was stirred at room temperature for 30 min, washed with saturated NaHCO3 (2x25 mL), dried with sodium sulfate, and concentrated to dryness to give 8.6 g of yellow foam.
  • the product was a mixture of two diastereomers which was separated by HPLC on Zorbax Pro 10 process column, eluting with 25% 2-propanol in hexane to provide 3.46 g of the less polar diastereomer Me-(Ib) and 2.72 g of the more polar diastereomer were recovered Me-(Ia).
  • step g The less polar ester of step g (2.36 g, 5.5 mmol) was dissolved in 25 mL of tetrahydrofurammethanol (3:1 mixture) and 2N LiOH (7.1 mmol, 1.3 eq) was added. The reaction mixture was stirred at room temperature for 2 hours and a white suspension was obtained. When acidified to pH 2 with IN HCl the reaction mixture became clear. After stirring at room temperature for 1 hr, the acid product precipitated. The solid was filtered and washed with small volume of ethyl acetate to afford 2.1 g (92%) of the title compound.
  • 1H NMR (DMSO d6) ⁇ 7.7 (d, IH), 7.65 (d, IH), 7.35 (d, 2H), 7.27 (t, IH), 6.72 (d,
  • Step h(2) 2-[(lR)-9-(4-chlorobenzyl)-8-((S)-methylsulfinyl)-2,3,4,9-tetrahydro-lH- carbazol-1-yl] acetic acid (formula 1(a))
  • step g The more polar ester of step g (1.6 g, 3.7 mmol) was dissolved in 15 mL of tetrahydrofurammethanol (3:1 mixture) and 2N LiOH (4.8 mmol, 1.3 eq) was added. The reaction mixture was stirred at room temperature for 2 hours and a white suspension was obtained. When acidified to pH 2 with IN HCl the reaction mixture became clear. After stirring at room temperature for 1 hr, acid product precipitated.
  • step d The compound of Example 1, step d may also be prepared as follows: Step a. diphenylmethanone N-[2-(methylsulfanyl)phenyl]hydrazone l-[2-(Methylsulfanyl)phenyl]hydrazine hydrochloride (30g, 148mmol) was dissolved in 300ml dimethylformamide and benzophenone imine (26.7g, 148mmol) was added dropwise over 5 min. The mixture was stirred for 1 hour and 300ml ether and 300 mL of water were added. The layers were separated and the organic layer washed twice with brine. The organic layer was dried with sodium sulfate and the solvent removed.
  • Diisopropylamine (29ml, 206mmol) was dissolved in 50 ml tetrahydrofuran and cooled to 0°C. 76ml n-BuLi (2M in c-Hexane) was added dropwise and the solution was stirred for 30 min. This solution was then cannulated into a solution of 61.6g of the product of step a (containing 18% benzophenone) in 150ml tetrahydrofuran at 0°C. The mixture was stirred at room temperature for 30min, cooled to 0°C and 4-bromobenzyl bromide (39. lg, 190.3mmol) in 50 ml tetrahydrofuran was added.
  • Step c 2-[9-(4-chlorobenzyl)-8-(methylsulfanyl)-2,3,4,9-tetrahydro-lH-carbazol-l- yl] acetic acid
  • step b The product of step b (84.6g, 191mmol) and ethyl 2-cyclohexanoneacetate (35.2g, 191mmol) were dissolved in 850ml ethanol and p-toluenesulfonic acid (72.8g, 381mmol) was added. The mixture was refluxed for 3 hours, cooled to room temperature and the solvent stripped. 1000ml ether and 1000 mL of water were added. The layers were separated and the organic layer washed with brine, dried with sodium sulfate and the solvent removed. The residue was purified on silica with 3% ethyl acetate/ ⁇ ex.
  • the crude product (43.6g) contained 12 % benzophenone and 22% of ethyl 2-[9-(4-chlorobenzyl)-2,3,4,9-tetrahydro-lH-carbazol-l-yl]acetate.
  • 43.4g of the crude mixture was dissolved in 500ml of tetrahydrofuran and MeO ⁇ and 152ml of 2N LiO ⁇ was added. The mixture was refluxed for 30 min and cooled to room temperature. The organic solvents were removed and 800ml of IN ⁇ C1 and ethyl acetate added. The layers were separated and the aqueous layer washed with ethyl acetate. The combined organic layers were dried with sodium sufate and the solvent removed.
  • Radioligand binding assays are conducted essentially as previously described (Abramovitz et al., Biochem. Biophys. Acta 1483- 2, 285-293, 2000).
  • HEK293(EBNA) cells expressing DP are grown in supplemented DMEM complete medium at 37°C in a humidified atmosphere of 6 % CO2 in air, and then harvested.
  • Membranes are prepared by differential centrifugation (1000 x g for 10 min, then 160,000 x g for 30 min, all at 4°C).
  • the 160,000 x g pellets are resuspended in 10 mM HEPES/KOH (pH 7.4) containing 1 mM EDTA at approximately 5-10 mg/mL protein by Dounce homogenization (Dounce A; 10 strokes), frozen in liquid nitrogen and stored at -80°C.
  • DP receptor binding assays are performed in a final incubation volume of 0.2 mL in 10 mM HEPES/KOH (pH 7.4), containing 1 mM EDTA, 10 mM MnCl2, 0.7 nM [ ⁇ ]PGD2 (115-200 Ci/mmol). The reaction was initiated by addition of 30-60 ⁇ g membrane protein from the 160,000 x g fraction.
  • Test compounds are added in dimethylsulfoxide (Me2SO) at 1 % (v/v) in all incubations.
  • Non-specific binding was determined in the presence of 1-10 ⁇ M of non-radioactive PGD2- Incubations are conducted for 60 min. at room temperature. Incubations are terminated by rapid filtration at 4°C. Radioactivity bound to the individual filters is determined by scintillation counting. Maximum specific binding is defined as the total binding minus the non-specific binding. Specific binding is determined at each concentration of test compound and is expressed as a percentage of the maximum specific binding.
  • Sigmoidal equilibrium competition curves were constructed by expressing percentage maximum specific binding as a function of ligand concentration and analyzed by a validated custom designed software employing a simplex driven non-linear least- squares curve fitting routine based on a four parameter equation to determine the inflection point concentration (InPt).
  • Ki affinities of compounds la, lb and their respective enantiomers for the prostaglandin D receptor are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pulmonology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Immunology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

Certain tetrahydrocarbazole-1-acetic acid derivatives are potent and selective antagonists of the prostaglandin D2 receptor, and are therefore useful in the treatment of allergic conditions such as allergic rhinitis.

Description

PROSTAGLANDIN D2 RECEPTOR ANTAGONISTS
BACKGROUND OF THE INVENTION Histamine, cysteinyl leukotrienes (CysLTs), prostaglandin D2 (PGD2) and thromboxane A2 (TxA2) are considered to be key mediators in allergic conditions such as allergic rhinitis, allergic asthma and allergic conjunctivitis (Chan et al., 1989; Narita et al., 1996; Yamasaki et al., 1997; Yasui et al., 1997; Fujita et al, 1997). Released by activated mast cells they have been shown to increase microvascular permeability, blood flow, intranasal pressure and mucus secretion. These mediators assert their physiological effects primarily through interaction with their respective receptors; accordingly, treatments for allergic conditions have included agents that can block or otherwise interrupt such interactions. For example, anti-histamines and leukotriene D4 receptor antagonists have been shown previously to be effective in a guinea pig model of allergic rhinitis and conjunctivitis. (Chan et al., 1989).
Leukotriene antagonists are now part of the arsenal for the treatment of asthma, and antihistamines have long been used to treat symptoms of allergic rhinitis. Because allergic conditions are attributed to multiple mediators, blocking the interaction of one mediator with its receptor may not be sufficient to alleviate the symptoms often associated with allergic conditions.
While antihistamines have been shown efficacious for preventing and relieving sneezing, itching, rhinorrhea and other symptoms of the early allergic response, they have not been found to be very effective for relief of the nasal blockage which is characteristic of the later stages of an allergic reaction. Prostaglandin D2 (PGD2) is also thought to be involved in human allergic rhinitis, a frequent allergic disease that is characterized by itch, sneezing, rhinorrhea and nasal congestion (Baraniuk, 1998; Doyle et al, 1990; Raphael et al, 1991; Ramis et al, 1991). Nasal provocation with PGD2 provoked a dose-dependent increase in nasal congestion, the most manifest symptom of allergic rhinitis (Doyle et al., 1990). In addition, elevated levels of PGD2 were noted in the nasal wash fluid of allergic patients that underwent a nasal antigen challenge.
US Patent 4,808,608 discloses tetrahydrocarbazole-1-alkanoic acids as prostaglandin antagonists. The compound 9-p-chlorobenzyl-8-methylsulfinyl-2,3,4,9- tetrahydro-lH-carbazol-1-yl-acetic acid (1), as a diastereomeric mixture, is specificially disclosed therein.
Figure imgf000003_0001
ω
Applicants have now discovered that the stereoconfiguration at position 1 of the tetrahydrocarbazole ring is determinative of the compound's affinity for the prostaglandin D2 receptor. The IR isomers have much higher affinity for the receptor than the IS isomers.
SUMMARY OF INVENTION The present invention provides 2-[(lR)-9-(4-chlorobenzyl)-8- methylsulfinyl-2,3 ,4,9-tetrahydro- lH-carbazol- 1 -yl] acetic acid, pharmaceutical compositions thereof, and methods for their use in the treatment of allergic conditions.
DETAH E DESCRIPTION OF THE INVENTION The present invention provides substantially pure 2-[(lR)-9-(4-chloro- benzyl)-8-methylsulfinyl-2,3,4,9-tetrahydro-lH-carbazol-l-yl]acetic acid (I) consisting essentially of 2-[(lR)-9-(4-chlorobenzyl)-8-((S)-methylsulfinyl)-2,3,4,9- tetrahydro-lH-carbazol-1-yl] acetic acid and 2-[(lR)-9-(4-chlorobenzyl)-8-((R)- methylsulfinyl)-2,3,4,9-tetrahydro-lH-carbazol-l-yl]acetic acid of formula 1(a) and 1(b), respectively, and pharmaceutically acceptable salts thereof.
Figure imgf000003_0002
(i)
Figure imgf000004_0001
1(a) 1(b)
In one embodiment, the present invention provides substantially pure 2-[(lR)-9-(4-chlorobenzyl)-8-((S)-methylsulfinyl)-2,3,4,9-tetrahydro-lH-carbazol-l- yl] acetic acid 1(a) and pharmaceutically acceptable salts thereof.
In another embodiment, the present invention provides substantially pure 2-[(lR)-9-(4-chlorobenzyl)-8-((R)-methylsulfinyl)-2,3,4,9-tetrahydro-lH- carbazol-l-yl]acetic acid 1(b) and pharmaceutically acceptable salts thereof. In another aspect, the present invention provides a pharmaceutical composition which comprises a compound of formula I, and a pharmaceutically acceptable carrier. As used hereinafter "formula I" is intended to include diastereomeric I, as well as the individual diastereomers 1(a) and 1(b).
In yet another aspect, the present invention provides a method for the treatment of allergic conditions which comprises administering to a mammal an effective amount of a compound of formula I.
In yet another aspect, the present invention provides a method for preventing the action of prostaglandin D2 in a mammal which comprises administering to said mammal an effective amount of a compound of formula I. As used herein, the following terms have the indicated meanings:
The term "substantially pure" means the the indicated stereoisomer is present in at least 95% by weight.
The term "treatment" includes alleviating, ameliorating, relieving or otherwise reducing, as well as preventing onset of symptoms commonly associated with allergic conditions and other prostaglandin D2 mediated diseases and disorders.
The term "effective amount" means that amount of the therapeutically active compound which provides a therapeutic benefit in the treatment, management, or prevention of allergic conditions or other prostaglandin D2 mediated diseases and disorders. The term "composition", as in pharmaceutical composition, is intended to encompass a product comprising the active ingredient(s), and the inert ingredient(s) (pharmaceutically acceptable excipients) that make up the carrier, as well as any product which results, directly or indirectly, from combination, complexation or aggregation of any two or more of the ingredients, or from dissociation of one or more of the ingredients, or from other types of reactions or interactions of one or more of the ingredients. Accordingly, the pharmaceutical compositions of the present invention encompass any composition made by admixing a compound of formula I and pharmaceutically acceptable excipients. While the diastereomeric mixture containing compounds 1(a) and 1(b) and their respective enantiomers is disclosed in US Patent 4,808,608, Applicants have now discovered that compounds 1(a) and 1(b), the IR isomers, have much higher affinity for the prostaglandin D2 receptor than the other two diastereomers, which have limited affinity for the same receptor.
Salts
Compounds of formula I have an acidic group as well as a basic nitrogen; and may form pharmaceutically acceptable salts with acids or bases. The term "pharmaceutically acceptable salts" refers to salts prepared from pharmaceutically acceptable non-toxic bases or acids including inorganic or organic bases and inorganic or organic acids. Salts derived from inorganic bases include aluminum, ammonium, calcium, copper, ferric, ferrous, lithium, magnesium, manganic salts, manganous, potassium, sodium, zinc, and the like. Particularly preferred are the ammonium, calcium, magnesium, potassium, and sodium salts. Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines, and basic ion exchange resins, such as arginine, betaine, caffeine, choline, N,N'-dibenzylethylenediamine, diethylamine, 2- diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N- ethyl-morpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine, tripropylamine, tromethamine, and the like.
Salts may also be prepared from pharmaceutically acceptable non-toxic acids, including inorganic and organic acids. Such acids include acetic, benzenesulfonic, benzoic, camphorsulfonic, citric, ethanesulfonic, fumaric, gluconic, glutamic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phosphoric, succinic, sulfuric, tartaric, p-toluenesulfonic acid, and the like. Particularly preferred are citric, hydrobromic, hydrochloric, maleic, phosphoric, sulfuric, and tartaric acids.
It will be understood that, as used herein, references to the compounds of formula I are meant to also include the pharmaceutically acceptable salts.
Utilities Compounds of formula I are potent and selective antagonists of the prostaglandin D2 receptor. The ability of these to antagonize the actions of prostaglandin D2 makes them useful for preventing, treating or reversing the symptoms, disorders or diseases induced by the binding of prostaglandin D2 to its receptors. Accordingly, another aspect of the present invention provides a method for the treatment (including prevention, alleviation, amelioration or suppression) of diseases or disorders or symptoms mediated by prostaglandin D2, which comprises administering to a mammal an effective amount of a compound of formula I. Such diseases, disorders, conditions or symptoms are for example: (1) allergic rhinitis (seasonal or perennial), (2) asthma, (3) allergic conjunctivitis, (4) urticaria or atopic dermatitis, and (5) nasal congestion.
Dose Ranges
The magnitude of prophylactic or therapeutic dose of a compound of formula I will, of course, vary with the nature of the severity of the condition to be treated and with the particular compound of formula I and its route of administration. It will also vary according to the age, weight and response of the individual patient. In general, the daily dose range lies within the range of from about 0.001 mg to about 100 mg per kg body weight of a mammal, preferably 0.01 mg to about 50 mg per kg, and most preferably 0.1 to 10 mg per kg, in single or divided doses. On the other hand, it may be necessary to use dosages outside these limits in some cases. For use where a composition for intravenous administration is employed, a suitable dosage range is from about 0.001 mg to about 25 mg (preferably from 0.01 mg to about 1 mg) of a compound of formula I per kg of body weight per day and for cytoprotective use from about 0.1 mg to about 100 mg (preferably from about 1 mg to about 100 mg and more preferably from about 1 mg to about 10 mg) of a compound of formula I per kg of body weight per day.
In the case where an oral composition is employed, a suitable dosage range is, e.g. from about 0.01 mg to about 100 mg of a compound of formula I per kg of body weight per day, preferably from about 0.1 mg to about 10 mg per kg of body weight per day.
For the treatment of diseases of the eye, ophthalmic preparations for ocular administration comprising 0.001-1% by weight solutions or suspensions of the compounds of formula I in an acceptable ophthalmic formulation may be used.
Pharmaceutical Compositions
Another aspect of the present invention provides pharmaceutical compositions which comprises a compound of formula I and a pharmaceutically acceptable carrier. Any suitable route of administration may be employed for providing a mammal, especially a human with an effective dosage of a compound of the present invention. For example, oral, rectal, topical, parenteral, ocular, pulmonary, nasal, and the like may be employed. Dosage forms include tablets, troches, dispersions, suspensions, solutions, capsules, creams, ointments, aerosols, and the like. The pharmaceutical compositions of the present invention comprise a compound of formula I as an active ingredient or a pharmaceutically acceptable salt thereof, and may also contain a pharmaceutically acceptable carrier and optionally other therapeutic ingredients. The term "pharmaceutically acceptable salts" refers to salts prepared from pharmaceutically acceptable non-toxic bases or acids including inorganic bases or acids and organic bases or acids.
The compositions include compositions suitable for oral, rectal, topical, parenteral (including subcutaneous, intramuscular, and intravenous), ocular (ophthalmic), pulmonary (aerosol inhalation), or nasal administration, although the most suitable route in any given case will depend on the nature and severity of the conditions being treated and on the nature of the active ingredient. They may be conveniently presented in unit dosage form and prepared by any of the methods well- known in the art of pharmacy.
For administration by inhalation, the compounds of the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or nebulisers. The compounds may also be delivered as powders which may be formulated and the powder composition may be inhaled with the aid of an insufflation powder inhaler device. The preferred delivery systems for inhalation are metered dose inhalation (MDI) aerosol, which may be formulated as a suspension or solution of a compound of formula I in suitable propellants, such as fluorocarbons or hydrocarbons and dry powder inhalation (DPI) aerosol, which may be formulated as a dry powder of a compound of formula I with or without additional excipients.
Suitable topical formulations of a compound of formula I include transdermal devices, aerosols, creams, ointments, lotions, dusting powders, and the like. In practical use, the compounds of formula I can be combined as the active ingredient in intimate admixture with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques. The carrier may take a wide variety of forms depending on the form of preparation desired for administration, e.g., oral or parenteral (including intravenous). In preparing the compositions for oral dosage form, any of the usual pharmaceutical media may be employed, such as, for example, water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents and the like in the case of oral liquid preparations, such as, for example, suspensions, elixirs and solutions; or carriers such as starches, sugars, microcrystalline cellulose, diluents, granulating agents, lubricants, binders, disintegrating agents and the like in the case of oral solid preparations such as, for example, powders, capsules and tablets, with the solid oral preparations being preferred over the liquid preparations. Because of their ease of administration, tablets and capsules represent the most advantageous oral dosage unit form, in which case solid pharmaceutical carriers are employed. If desired, tablets may be coated by standard aqueous or nonaqueous techniques. In addition to the common dosage forms set out above, the compounds of formula I may also be administered by controlled release means and/or delivery devices such as those described in U.S. Patent Nos. 3,845,770; 3,916,899; 3,536,809; 3,598,123; 3,630,200 and 4,008,719.
Pharmaceutical compositions of the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient, as a powder or granules or as a solution or a suspension in an aqueous liquid, a non-aqueous liquid, an oil-in-water emulsion or a water-in-oil liquid emulsion. Such compositions may be prepared by any of the methods of pharmacy but all methods include the step of bringing into association the active ingredient with the carrier which constitutes one or more necessary ingredients. In general, the compositions are prepared by uniformly and intimately admixing the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product into the desired presentation. For example, a tablet may be prepared by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing in a suitable machine, the active ingredient in a free- flowing form such as powder or granules, optionally mixed with a binder, lubricant, inert diluent, surface active or dispersing agent. Molded tablets may be made by molding in a suitable machine, a mixture of the powdered compound moistened with an inert liquid diluent. Desirably, each tablet contains from about 1 mg to about 500 mg of the active ingredient and each cachet or capsule contains from about 1 to about 500 mg of the active ingredient.
The following are examples of representative pharmaceutical dosage forms for the compounds of formula I:
Injectable Suspension (I.M.) mg/mL
Compound of formula I 10
Methylcellulose 5.0
Tween 80 0.5
Benzyl alcohol 9.0
Benzalkonium chloride 1.0
Water for injection to a total volume of 1 mL
Tablet me/tablet Compound of formula I 25
Microcrystalline Cellulose 415
Povidone 14.0
Pregelatinized Starch 43.5
Magnesium Stearate 2.5 500 Capsule mg/capsule
Compound of formula I 25
Lactose Powder 573.5
Magnesium Stearate 1.5 600
Aerosol Per canister
Compound of formula I 24 mg
Lecithin, NF Liq. Cone. 1.2 mg Trichlorofluoromethane, NF 4.025 g Dichlorodifluoromethane, NF12.15 g
Combination Therapy
Compounds of formula I may be used in combination with other drugs that are used in the treatment/prevention/suppression or amelioration of the diseases or conditions for which compounds of formula I are useful. Such other drugs may be administered, by a route and in an amount commonly used therefor, contemporaneously or sequentially with a compound of formula I. When a compound of formula I is used contemporaneously with one or more other drugs, a pharmaceutical composition containing such other drugs in addition to the compound of formula I is preferred. Accordingly, the pharmaceutical compositions of the present invention include those that also contain one or more other active ingredients, in addition to a compound of formula I. Examples of other active ingredients that may be combined with a compound of formula I, either administered separately or in the same pharmaceutical compositions, include, but are not limited to:
(a) VLA-4 antagonists such as those described in US 5,510,332, WO97/03094, WO97/02289, WO96/40781, WO96/22966, WO96/20216, WO96/01644, WO96/06108, WO95/15973 and WO96/31206; (b) steroids such as beclomethasone, methylprednisolone, betamethasone, prednisone, dexamethasone, and hydrocortisone; (c) immunosuppressants such as cyclosporin, tacrolimus, rapamycin and other FK-506 type immunosuppressants; (d) antihistamines (Hl-histamine antagonists) such as bromopheniramine, chlorpheniramine, dexchlorphenira ine, triprolidine, clemastine, diphenhydramine, diphenylpyraline, tripelennamine, hydroxyzine, methdilazine, promethazine, trimeprazine, azatadine, cyproheptadine, antazoline, pheniramine pyrilamine, astemizole, terfenadine, loratadine, cetirizine, fexofenadine, descarboethoxyloratadine, and the like; (e) non-steroidal anti-asthmatics such as β2- agonists (terbutaline, metaproterenol, fenoterol, isoetharine, albuterol, bitolterol, salmeterol and pirbuterol), theophylline, cromolyn sodium, atropine, ipratropium bromide, leukotriene antagonists (zafirlukast, montelukast, pranlukast, iralukast, pobilukast, SKB- 106,203), leukotriene biosynthesis inhibitors (zileuton, BAY-1005); (f) non-steroidal antiinflammatory agents (NSAIDs) such as propionic acid derivatives (alminoprofen, benoxaprofen, bucloxic acid, carprofen, fenbufen, fenoprofen, fluprofen, flurbiprofen, ibuprofen, indoprofen, ketoprofen, miroprofen, naproxen, oxaprozin, pirprofen, pranoprofen, suprofen, tiaprofenic acid, and tioxaprofen), acetic acid derivatives (indomethacin, acemetacin, alclofenac, clidanac, diclofenac, fenclofenac, fenclozic acid, fentiazac, furofenac, ibufenac, isoxepac, oxpinac, sulindac, tiopinac, tolmetin, zidometacin, and zomepirac), fenamic acid derivatives (flufenamic acid, meclofenamic acid, mefenamic acid, niflumic acid and tolfenamic acid), biphenylcarboxylic acid derivatives (diflunisal and flufenisal), oxicams (isoxicam, piroxicam, sudoxicam and tenoxican), salicylates (acetyl salicylic acid, sulfasalazine) and the pyrazolones (apazone, bezpiperylon, feprazone, mofebutazone, oxyphenbutazone, phenylbutazone); (g) cyclooxygenase-2 (COX-2) inhibitors such as celecoxib; (h) inhibitors of phosphodiesterase type IV (PDE-FV); (i) antagonists of the chemokine receptors, especially CCR-1, CCR-2, and CCR-3; (j) cholesterol lowering agents such as HMG-CoA reductase inhibitors (lovastatin, simvastatin and pravastatin, fluvastatin, atorvastatin, and other statins), sequestrants (cholestyramine and colestipol), nicotinic acid, fenofibric acid derivatives (gemfibrozil, clofibrat, fenofibrate and benzafibrate), and probucol; (k) anti-diabetic agents such as insulin, sulfonylureas, biguanides (metformin), a-glucosidase inhibitors (acarbose) and glitazones (troglitazone, pioglitazone, englitazone, MCC-555, BRL49653 and the like); (1) preparations of interferon beta (interferon beta-la, interferon beta- lb); (m) anticholinergic agents such as muscarinic antagonists (ipratropium bromide); (n) other compounds such as 5-aminosalicylic acid and prodrugs thereof, antimetabolites such as azathioprine and 6-mercaptopurine, and cytotoxic cancer chemotherapeutic agents.
The weight ratio of the compound of the formula I to the second active ingredient may be varied and will depend upon the effective dose of each ingredient. Generally, an effective dose of each will be used. Thus, for example, when a compound of the formula I is combined with an antihistamine the weight ratio of the compound of the formula I to the antihistamine will generally range from about 1000:1 to about 1:1000, preferably about 200:1 to about 1:200. Combinations of a compound of the formula I and other active ingredients will generally also be within the aforementioned range, but in each case, an effective dose of each active ingredient should be used.
Compounds of the present invention may be prepared according to the reaction steps shown in Schemes 1 and 2.
Scheme 1
Figure imgf000013_0001
Scheme 2
Figure imgf000014_0001
1. oxidation
2. separation
2N LiOH 2N LiOH
Figure imgf000014_0002
Scheme 1 depicts two synthetic routes for the preparation of 2-[9-(4- chlorobenzyl)-8-methylsulfanyl)-2,3,4,9-tetrahydro-lH-carbazol-l-yl] acetic acid, as a racemic mixture, from l-[2-(methylsulfanyl)phenyl]hydrazine. In the first l-[2- (methylsulfanyl)phenyl]hydrazine is reacted with ethyl 2-oxocyclohexaneacetate in isopropyl alcohol and in the presence of HCl to provide ethyl 2-[8-(methylsulfanyl)- 2,3,4,9-tetrahydro-lH-carbazol-l-yl]acetate, which upon saponification provides the corresponding tetrahydrocarbazoleacetic acid. The tetrahydrocarbazoleacetic acid is treated with a base such as sodium hydride, followed by 4-chlorobenzyl chloride to provide the desired 2-[9-(4-chlorobenzyl)-8-methylsulfanyl)-2,3,4,9-tetrahydro-lH- carbazol-1-yl] acetic acid.
Alternatively, l-[2-(methylsulfanyl)phenyl]hydrazine is treated with benzophenone imine to provide the corresponding hydrazone adduct. The p-chloro- benzyl moiety is introduced by treating the hydrazone with a base such as lithium diisopropylamide followed by 4-chlorobenzyl bromide to provide diphenylmethanone N-(4-chlorobenzyl)-N-[2-(methylsulfanyl)phenyl]hydrazone. The desired tetrahydrocarbazoleacetic acid product is obtained by treating the hydrazone with ethyl 2- oxocyclohexaneacetate, followed by saponification. h Scheme 2, the racemic mixture of 2-[9-(4-chlorobenzyl)-8-methyI- sulfanyl)-2,3,4,9-tetrahydro-lH-carbazol-l-yl]acetic acid is resolved using (R)-(+)-l- (l-naphthyl)ethylamine to provide the desired enantiomer, which is then converted to its methyl ester using diazomethane. Oxidation using, for example, m-chloroper- benzoic acid gives the corresponding sulfoxide as a mixture of two diastereomers, which are separated using conventional technique, such as high pressure liquid chromatography. Alternatively, chiral oxidation reagents such as (3'S, 2R) Ν-phenyl- sulfonyl 3,3-dichlorocamphoryl oxaziridine, give mixtures enriched in one or the other epimer at the sulfur stereogenic center. The two diastereomers are separately treated with a base to generate their corresponding acids.
As prostaglandin D2 antagonistic activity is mostly attributable to the IR isomers (formula I), it may not be necessary to separate the two diastereomers resulting from the oxidation, and the mixture of diastereomers may be directly hydrolyzed to provide the corresponding mixture of acids.
The following examples are provided to illustrate the invention, and are not to be construed as limiting the scope thereof in any manner. EXAMPLE 1
Preparation of 2-[( lR)-9-(4-chlorobenzyl)-8-((R)-methylsulfinyl)-2,3 ,4,9-tetrahydro- lH-carbazol-l-yl]acetic acid (lb) and 2-[(lR)-9-(4-chlorobenzyl)-8-((S)-methyl- sulfinyl)-2,3,4,9-tetrahydro-lH-carbazol-l-yl]acetic acid (la) Step a(l). l-[2-(methylsulfanyl)phenyl]hydrazine
2-(Methylthio)aniline (30g, 215mmol) was dissolved in 2N HCl (215ml) and cooled to 0°C and a solution of NaNO2 (16.3g, 237mmol) in 50ml water was added dropwise (maintaining the temperature below 5°C). After 10 min the solution was added portionwise to a solution of Na2≤2θ4 (220g 85% pure, 1075 mmol) in a biphasic mixture of 1200ml of ether and 1200 mL of water dropwise (maintaining the temperature below 5°C). After stirring for one hour at 0°C the mixture was warmed to room temperature and the pH set to 10 with 2N NaOH. The ether layer was separated and the aqueous layer washed once with ether. The combined organic layers were dried with sodium sulfate, the solvent removed and the product purified on silica with 25% ethyl acetate/hexane to provide 15.7g of the title compound (47%). lH NMR (400 MHz), DMSO, 6: 2.30 (s, 3H); 4.10 (s, 2H); 6.20 (s, 1H); 6.60 (t, 1H); 7.10 (m, 2H); 7.20 (d, 2H).
Step a(2). l-[2-(methylsulfanyl)phenyl]hydrazine hydrochloride
Bromothioanisole (414g, 2041mmol) was added dropwise to a suspension of Mg (54.6g, 2245mmol) in 1000ml tetrahydrofuran under N2
(maintaining a gentle reflux). The mixture was refluxed for 2 hours and cooled to -78°C. Solid di-tert-butyl azodicarboxylate (470g, 2041mmol) was added portionwise maintaining the temperature below -50°C. The mixture was stirred for 10 min, warmed to -30°C and quenched with 1 eq of acetic acid, 1000ml of water and 1000 mL of ether. After agitation the ether layer was collected and dried with sodium sulfate. The solvent was removed and the crude di(tert-butyl) l-[2-(methylsulfanyl)- phenyl]-l,2-hydrazinedicarboxylate used as is in the next step.
Crude di(tert-butyl) l-[2-(methylsulfanyl)phenyl]-l,2-hydrazine- dicarboxylate was dissolved in 8000ml of 1M HCl in ether. HCl gas was bubbled through the mixture for approximately 10 min every 2 hours, over a period of 6 hours. The mixture was stirred overnight and a precipitate formed. The solid was collected by filtration and washed with ether to provide 262g of the title compound (69% from bromothioanisole). 1H NMR (400 MHz), DMSO, δ: 2.40 (s, 3H); 7.00 (m, 2H); 7.20 (t, 1H); 7.35 (d, 1H); 7.70 (s, 1H); 10.15 (s, 3H).
Step b. ethyl 2-[8-(methylsulfanyl)-2,3,4,9-tetrahydro-lH-carbazol-l-yl]acetate Method A. l-[2-(methylsulfanyl)phenyl]hydrazine (15.7g, 102mmol) and ethyl 2-cyclohexanoneacetate (18.7g, 102mmol) were dissolved in 300ml isopropanol containing leq ΗC1. The mixture was refluxed overnight under nitrogen then cooled to room temperature. The solvent was stripped and the residue partitioned between 300ml of water and 300 mL of dichloromethane. The water layer was washed with dichloromethane, and the organic layers were combined, dried with sodium sulfate and the solvent removed. The mixture was purified on silica with 5% ethyl acetate/toluene to provide 14.2g (46%) of the title compound.
Method B. l-[2-(methylsulfanyl)phenyl]hydrazine hydrochloride (50g, 262mmol) and ethyl 2-cyclohexanoneacetate (48.3g, 262mmol) were dissolved in 1300ml isopropanol. The mixture was refluxed overnight under nitrogen then cooled to room temperature. The solvent was stripped and the residue partitioned between 1300ml water and ethyl acetate. The water layer was washed with ethyl acetate, and the organic layers were combined, dried with sodium sulfate and the solvent removed. The mixture was purified on silica with 2.5% ethyl acetate/toluene to provide 42g crude title compound.
1H NMR (400 MHz), DMSO, 6: 1.20 (t, 3H); 1.60 (m, 1H); 1.70 (m, 1H); 1.80 (m, 1H); 1.95 (m, 1H); 2.30-2.45 (m, 1H); 2.45 (s, 3H);2.55 (t, 2H); 3.20 (dd, 1H); 3.30 (m, 1H); 4.10 (q, 2H); 6.90 (t, 1H); 7.00 (d, 1H); 7.25 (d, 1H); 10.60 (s, 1H).
Step c. 2-[8-(methylsulfanyl)-2,3,4,9-tetrahydro-lH-carbazol-l-yl]acetic acid (5)
Crude product of step b (42g) was dissolved in 400ml of tetrahydrofuran and methanol 1 : 1 and 207ml of 2N LiOΗ was added thereto. The mixture was refluxed for 30 min and cooled to room temperature. The organic solvents were removed and 800ml of IN ΗC1 and 800 mL of ethyl acetate added. The layers were separated and the aqueous layer washed with ethyl acetate. The combined organic layers were dried with sodium sulfate and the solvent removed. The resulting solid was triturated with 200ml 5% ether/hexane to provide 30.4g of the title compound. 1H NMR (400 MHz), DMSO, δ: 1.60 (m, 1H); 1.70 (m, 1H); 1.80 (m, 1H); 1.95 (m, 1H); 2.30 (q, 1H); 2.45 (s, 3H); 2.55 (s (broad), 2H); 3.10 (dd, 1H); 3.25 (m, 1H); 6.90 (t, 1H); 7.00 (d, 1H); 7.25 (d, 1H); 10.55 (s, 1H); 12.25 (s, 1H).
Step d. 2-[9-(4-chlorobenzyl)-8-(methylsulfanyl)-2,3,4,9-tetrahydro-lH-carbazol-l- yl] acetic acid
The product of step c in 100ml dimethylformamide (30.4g, llOmmol) was added to a suspension of a 60% NaΗ dispersion in mineral oil (llg, 276mmol) in 500ml dimethylformamide at -78°C under N2- The mixture was warmed to room temperature, stirred for 30 min and then cooled to -78°C. A solution of 220 mmol of 4-chlorobenzyl chloride in 100ml of dimethylformamide was added thereto, and the mixture warmed to room temperature and stirred for 4 hours. 500ml of IN ΗC1 and 500 mL of isopropyl acetate were added. The layers were separated and the organic layer washed 2 times with water. The organic layer was dried with sodium sulfate and the solvent removed. The resulting residue was purified on a plug of silica to provide 35g of the title compound. 1H NMR (400 MHz), DMSO, δ: 1.60-1.90 (m, 4H); 2.30 (s, 3H); 2.35-2.40 (m, 2H); 2.60 (m, 1H); 2.85 (m, 1H); 3.20 (d, 1H); 5.50 (d, 1H); 6.00 (d, 1H); 6.70 (d, 2H); 7.05 (m, 2H); 7.30 (m, 3H); 12.30 (s, 1H).
Step e. 2-[(lR)-9-(4-chlorobenzyl)-8-(methylsulfanyl)-2,3,4,9-tetrahydro-lH- carbazol-1-yl] acetic acid
The racemic acid of step d (35 g, 91.3 mmol) was dissolved in dry ethanol (900 mL) and heated to reflux. (R)-(+)-l-(l-naphthyl)ethylamine (15.64 g, 91.3 mmol, 1 eq) was added and the reaction mixture was stirred at 80°C for 30 min, then allowed to cool slowly to room temperature. The resulting suspension was stirred for 16 hours, and then the salt was filtered and air dried for 2 hours to yield
15.2 g of white solid. The solid was recrystallized in ethanol (700 mL) to afford 13.4 g of salt. It was suspended in methanol (200 mL) and acidified with 3N HCl (11.5 mL), and the resulting solution was concentrated to dryness and the residue was partitioned in 1:1 ethyl acetate/H2θ. Organic fraction was dried with Na2SO4, and concentrated to give 9.4 g of solid.
The acid was analyzed by HPLC on chiralpak AD (250 x 4.6 mm). Elution was performed with a mixture of 5% 2-propanol in hexane and 0.2% acetic acid. A retention time of 8.4 min. was observed and the acid was obtained in 99.7% ee. Step f. methyl 2-[(lR)-9-(4-chlorobenzyl)-8-(methylsulfanyl)-2,3,4,9-tetrahydro-lH- carbazol- 1 -yl] acetate
The acid of step e (8.0 g, 20.0 mmol) was dissolved in acetone (250 mL) and treated with diazomethane (approximately 2M solution in diethyl ether) until yellow color remained. Excess CH2N2 was quenched with acetic acid, and the reaction mixture was concentrated to dryness to afford a yellow oil (8.3 g). (100%). 1H NMR (acetone rtø) δ 7.37 (d, 1H), 7.26 (d, 2H), 7.15 (d, 1H), 7.03 (t, 1H), 6.78 (d,
2H), 6.2 (d, 1H), 5.65 (d, 1H), 3.65 (s, 3H), 3.4-3.3 (m, 1H), 2.81-2.75 (m, 1H), 2.66- 2.5 (m, 3H), 2.3 (s, 3H), 1.93-1.75 (m, 4H).
Step g. methyl 2-[(lR)-9-(4-chlorobenzyl)-8-((S)-methylsulfinyl)-2,3,4,9-tetrahydro- lH-carbazol-l-yl]acetate Me-(Ib) and methyl 2-[(lR)-9-(4-chlorobenzyl)-8-((R)- methylsulfinyl)-2,3 ,4,9-tetrahydro- lH-carbazol- 1 -yl] acetate Me-(Ia)
The sulfide of step f (8.3 g, 20.0 mmol) was dissolved in dichloromethane (300 mL) and m-chloroperbenzoic acid (4.0 g @ 85%, 20.0 mmol, 1 eq) was added. The mixture was stirred at room temperature for 30 min, washed with saturated NaHCO3 (2x25 mL), dried with sodium sulfate, and concentrated to dryness to give 8.6 g of yellow foam.
The product was a mixture of two diastereomers which was separated by HPLC on Zorbax Pro 10 process column, eluting with 25% 2-propanol in hexane to provide 3.46 g of the less polar diastereomer Me-(Ib) and 2.72 g of the more polar diastereomer were recovered Me-(Ia).
1H NMR (acetone d6)
Less polar compound: δ 7.8 (d, 1H), 7.66 (d, 1H), 7.35-7.25 (m, 3H), 6.8 (d, 2H), 5.78 (d, 1H), 5.41 (d, 1H), 3.6 (s, 3H), 3.43-3.35 (m, 1H), 2.9-2.6 (m, 2H), 2.52 (d, 2H),
2.3 (s, 3H), 2.0 - 1.85 (m, 4H).
More polar compound: δ 7.77 (d, 1H), 7.65 (d, 1H), 7.35-7.25 (m, 3H), 6.75 (d, 2H),
5.58 (d, 1H), 5.42 (d, 1H), 3.65 (s, 3H), 3.4 - 3.3 (m, 1H), 2.9 - 2.56 (m, 4H), 2.54 (s,
3H), 2.0-1.85 (m, 4H).
Step h(l). 2-[(lR)-9-(4-chlorobenzyl)-8-((R)-methylsulfinyl)-2,3,4,9-tetrahydro-lH- carbazol-1-yl] acetic acid (formula 1(b))
The less polar ester of step g (2.36 g, 5.5 mmol) was dissolved in 25 mL of tetrahydrofurammethanol (3:1 mixture) and 2N LiOH (7.1 mmol, 1.3 eq) was added. The reaction mixture was stirred at room temperature for 2 hours and a white suspension was obtained. When acidified to pH 2 with IN HCl the reaction mixture became clear. After stirring at room temperature for 1 hr, the acid product precipitated. The solid was filtered and washed with small volume of ethyl acetate to afford 2.1 g (92%) of the title compound. 1H NMR (DMSO d6): δ 7.7 (d, IH), 7.65 (d, IH), 7.35 (d, 2H), 7.27 (t, IH), 6.72 (d,
2H), 5.62 (d, IH), 5.38 (d, IH), 2.8 (d, IH), 2.65-2.5 (m, IH), 2.38-2.28 (m, 2H), 2.35
(s, 3H), 1.92-1.75 (m, 4H).
Optical rotation: +121.3° (c=0.39 in methanol).
Step h(2) 2-[(lR)-9-(4-chlorobenzyl)-8-((S)-methylsulfinyl)-2,3,4,9-tetrahydro-lH- carbazol-1-yl] acetic acid (formula 1(a))
The more polar ester of step g (1.6 g, 3.7 mmol) was dissolved in 15 mL of tetrahydrofurammethanol (3:1 mixture) and 2N LiOH (4.8 mmol, 1.3 eq) was added. The reaction mixture was stirred at room temperature for 2 hours and a white suspension was obtained. When acidified to pH 2 with IN HCl the reaction mixture became clear. After stirring at room temperature for 1 hr, acid product precipitated.
The solid was filtered and washed with small volume of ethyl acetate to afford 1.37 g
(89%) of the title compound.
1H NMR (DMSO d6): δ 7.66 (d, IH), 7.63 (d, IH), 7.34 (d, 2H), 7.28 (t, IH), 6.69 (d,
2H), 5.42 (d, IH), 5.24 (d, IH), 3.2 (d, IH), 2.8 (d, IH), 2.68-2.54 (m, 2H), 2.58 (s, 3H), 2.47 - 2.39 (m, IH), 1.9 - 1.75 (m, 4H).
Optical rotation: -231.9 (c=0.31 in methanol).
EXAMPLE 2 The compound of Example 1, step d may also be prepared as follows: Step a. diphenylmethanone N-[2-(methylsulfanyl)phenyl]hydrazone l-[2-(Methylsulfanyl)phenyl]hydrazine hydrochloride (30g, 148mmol) was dissolved in 300ml dimethylformamide and benzophenone imine (26.7g, 148mmol) was added dropwise over 5 min. The mixture was stirred for 1 hour and 300ml ether and 300 mL of water were added. The layers were separated and the organic layer washed twice with brine. The organic layer was dried with sodium sulfate and the solvent removed. The residue with triturated with hexane to obtain 38.5g of title compound (containing 18 % benzophenone). 1H ΝMR (400 MHz), DMSO, δ: 2.60 (s, 3H); 6.80 (t, IH); 7.30-7.45 (m, 7H); 7.55 (d, 2H); 7.60 (t, 2H); 7.65 (s, 2H); 8.40 (s, IH). Step b. diphenylmethanone N-(4-chlorobenzyl)-N-[2-(methylsulfanyl)phenyl]- hydrazone
Diisopropylamine (29ml, 206mmol) was dissolved in 50 ml tetrahydrofuran and cooled to 0°C. 76ml n-BuLi (2M in c-Hexane) was added dropwise and the solution was stirred for 30 min. This solution was then cannulated into a solution of 61.6g of the product of step a (containing 18% benzophenone) in 150ml tetrahydrofuran at 0°C. The mixture was stirred at room temperature for 30min, cooled to 0°C and 4-bromobenzyl bromide (39. lg, 190.3mmol) in 50 ml tetrahydrofuran was added. The mixture was stirred for 30 min and 200ml of ΝH4CI (sat) and ether were added. The layers were separated and the aqueous layer washed with ether. The combined organic layers were dried with sodium sulfate and the solvent removed. The residue was triturated with hexane to obtain 67g of the title compound. 1H NMR (400 MHz), DMSO, δ: 2.35 (s, 3H); 4.40 (s, 2H); 6.80-7.00 (m, 6H); 7.10 (t, 3H); 7.30 (m, 5H); 7.40 (d, 2H); 7.50 (d, 2H).
Step c. 2-[9-(4-chlorobenzyl)-8-(methylsulfanyl)-2,3,4,9-tetrahydro-lH-carbazol-l- yl] acetic acid
The product of step b (84.6g, 191mmol) and ethyl 2-cyclohexanoneacetate (35.2g, 191mmol) were dissolved in 850ml ethanol and p-toluenesulfonic acid (72.8g, 381mmol) was added. The mixture was refluxed for 3 hours, cooled to room temperature and the solvent stripped. 1000ml ether and 1000 mL of water were added. The layers were separated and the organic layer washed with brine, dried with sodium sulfate and the solvent removed. The residue was purified on silica with 3% ethyl acetate/Ηex. The crude product (43.6g) contained 12 % benzophenone and 22% of ethyl 2-[9-(4-chlorobenzyl)-2,3,4,9-tetrahydro-lH-carbazol-l-yl]acetate. 43.4g of the crude mixture was dissolved in 500ml of tetrahydrofuran and MeOΗ and 152ml of 2N LiOΗ was added. The mixture was refluxed for 30 min and cooled to room temperature. The organic solvents were removed and 800ml of IN ΗC1 and ethyl acetate added. The layers were separated and the aqueous layer washed with ethyl acetate. The combined organic layers were dried with sodium sufate and the solvent removed. The resulting solid was purified on a short silica column with 25% ethyl acetate/toluene/ 1% acetic acid to provide 32g of the title compound, contaminated with ethyl 2-[9-(4-chlorobenzyl)-2,3,4,9-tetrahydro-lH-carbazol-l-yl]acetate. !Η NMR (400 MHz), DMSO, δ: 1.60-1.90 (m, 4H); 2.30 (s, 3H); 2.35-2.40 (m, 2H); 2.60 (m, IH); 2.85 (m, IH); 3.20 (d, IH); 5.50 (d, IH); 6.00 (d, IH); 6.70 (d, 2H); 7.05 (m, 2H); 7.30 (m, 3H); 12.30 (s, IH).
EXAMPLE 3 Alternate oxidation of methyl 2-[(lR)-9-(4-chlorobenzyl)-8-(methylsulfanyl)-2,3,4,9- tetrahydro-lH-carbazol-l-yl]acetate (product of step f, Example 1) to provide methyl 2-[(lR)-9-(4-chlorobenzyl)-8-((S)-methylsulfinyl)-2,3,4,9-tetrahydro-lH-carbazol-l- yl] acetate (Me-Ia) and methyl 2-[(lR)-9-(4-chlorobenzyl)-8-((R)-methylsulfinyl)- 2,3,4,9-tetrahydro-lH-carbazol-l-yl]acetate (Me-Ib) To a CCI4 solution (5.0 mL) of methyl 2-[(lR)-9-(4-chlorobenzyl)-8-
(methyIsulfanyl)-2,3,4,9-tetrahydro-lH-carbazol-l-yl]acetate (40.0 mg, 0.1 mmol) at room temperature was added (-) (3'S, 2R) N-phenylsulfonyl 3,3-dichlorocamphoryl oxaziridine (27.5 mg, 0.08 mmol) and this was allowed to stir at room temperature overnight. At this time, the reaction was concentrated and the residue was purified by flash chromatography eluting with 70% EtOAc/hexane to provide 26.7 mg (86%) of the title sulfoxides in an 12:1 mixture of diastereomers as a clear colourless oil. The major diastereoisomer obtained by this procedure was separated by column chromatography as in example 2, and was identical to the previously isolated compound la.
EXAMPLE 4 Radioligand binding assays using membranes from cells that express recombinant prostanoid DP receptor (DP).
Radioligand binding assays are conducted essentially as previously described (Abramovitz et al., Biochem. Biophys. Acta 1483- 2, 285-293, 2000).
HEK293(EBNA) cells expressing DP are grown in supplemented DMEM complete medium at 37°C in a humidified atmosphere of 6 % CO2 in air, and then harvested.
Cells are disrupted by nitrogen cavitation at 800 psi for 30 min. on ice in the presence of protease inhibitors (2 mM phenylmethylsulfonylfluoride, 10 μM E-64, 100 μM leupeptin and 0.05 mg/mL pepstatin). Membranes are prepared by differential centrifugation (1000 x g for 10 min, then 160,000 x g for 30 min, all at 4°C). The 160,000 x g pellets are resuspended in 10 mM HEPES/KOH (pH 7.4) containing 1 mM EDTA at approximately 5-10 mg/mL protein by Dounce homogenization (Dounce A; 10 strokes), frozen in liquid nitrogen and stored at -80°C. DP receptor binding assays are performed in a final incubation volume of 0.2 mL in 10 mM HEPES/KOH (pH 7.4), containing 1 mM EDTA, 10 mM MnCl2, 0.7 nM [Η]PGD2 (115-200 Ci/mmol). The reaction was initiated by addition of 30-60 μg membrane protein from the 160,000 x g fraction. Test compounds are added in dimethylsulfoxide (Me2SO) at 1 % (v/v) in all incubations. Non-specific binding was determined in the presence of 1-10 μM of non-radioactive PGD2- Incubations are conducted for 60 min. at room temperature. Incubations are terminated by rapid filtration at 4°C. Radioactivity bound to the individual filters is determined by scintillation counting. Maximum specific binding is defined as the total binding minus the non-specific binding. Specific binding is determined at each concentration of test compound and is expressed as a percentage of the maximum specific binding. Sigmoidal equilibrium competition curves were constructed by expressing percentage maximum specific binding as a function of ligand concentration and analyzed by a validated custom designed software employing a simplex driven non-linear least- squares curve fitting routine based on a four parameter equation to determine the inflection point concentration (InPt). The corresponding Kivalues were derived from the equation Ki = InPt/l+([radioligand]/KD)- The affinities of compounds la, lb and their respective enantiomers for the prostaglandin D receptor are shown in Table 1.
Table 1. Affinity (Ki) for the prostaglandin D receptor of la, lb and their enantiomers
Figure imgf000023_0001

Claims

WHAT IS CLAIMED IS:
1. Substantially pure 2-[(lR)-9-(4-chIorobenzyl)-8-((R)-methyl- sulfinyl)-2,3,4,9-tetrahydro-lH-carbazol-l-yl]acetic acid or a pharmaceutically acceptable salt thereof.
2. Substantially pure 2-[(lR)-9-(4-chIorobenzyI)-8-((S)-methyl- sulfinyl)-2,3,4,9-tetrahydro-lH-carbazol-l-yl]acetic acid or a pharmaceutically acceptable salt thereof.
3. A pharmaceutical composition comprising the compound of Claim 1 and a pharmaceutically acceptable carrier.
4. A pharmaceutical composition comprising the compound of Claim 2 and a pharmaceutically acceptable carrier.
5. A method for the treatment of allergic conditions in a mammal comprising administering to said mammal an effective amount of the compound of Claim 1.
6. A method for the treatment of allergic conditions in a mammal comprising administering to said mammal an effective amount of the compound of Claim 2.
7. Substantially pure 2-[(lR)-9-(4-chlorobenzyl)-8-methyl- sulfinyl-2,3,4,9-tetrahydro-lH-carbazol-l-yl]acetic acid consisting essentially of 2- [(lR)-9-(4-chlorobenzyl)-8-((S)-methylsulfinyl)-2,3,4,9-tetrahydro-lH-carbazol-l- yl]acetic acid and 2-[(lR)-9-(4-chlorobenzyl)-8-((R)-methylsulfinyl)-2,3,4,9- tetrahydro-lH-carbazol-1-yl] acetic acid, and pharmaceutically acceptable salts thereof.
8. A pharmaceutical composition comprising the compound of
Claim 7 and a pharmaceutically acceptable carrier.
9. A method for the treatment of allergic conditions in a mammal comprising administering to said mammal an effective amount of the compound of Claim 7.
10. A method for the treatment of allergic rhinitis in a human comprising administering to said human an effective amount of the compound of Claim 1.
11. A method for the treatment of allergic rhinitis in a human comprising administering to said human an effective amount of the compound of
Claim 2.
12. A method for the treatment of allergic rhinitis in a human comprising administering to said human an effective amount of the compound of Claim 7.
13. A method for the treatment of allergic rhinitis and the relief of nasal congestion in a human comprising administering to said human an effective amount of the compound of Claim 1.
14. A method for the treatment of allergic rhinitis and the relief of nasal congestion in a human comprising administering to said human an effective amount of the compound of Claim 2.
15. A method for the treatment of allergic rhinitis and the relief of nasal congestion in a human comprising administering to said human an effective amount of the compound of Claim 7.
16. A method for the treatment of diseases mediated by prostaglandin D2 in a human comprising administering to said human an effective amount of the compound of Claim 1.
17. A method for the treatment of diseases mediated by prostaglandin D2 in a human comprising administering to said human an effective amount of the compound of Claim 2.
18. A method for the treatment of diseases mediated by prostaglandin D2 in a Jiuman comprising administering to said human an effective amount of the compound of Claim 7.
19. Use of the acid of Claim 1, 2 or 7, or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for treatment of allergic conditions in a mammal.
20. Use of the acid of Claim 1 , 2 or 7, or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for treatment of allergic rhinitis in a human.
21. Use of the acid of Claim 1 , 2 or 7, or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for treatment of allergic rhinitis and relief of nasal congestion in a human.
22. Use of the acid of Claim 1, 2 or 7, or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for treatment of diseases mediated by prostaglandin D2 in a human.
23. The acid of Claim 1 , 2 or 7, or a pharmaceutically acceptable salt thereof, for use in treatment of allergic rhinitis, allergic rhinitis and relief of nasal congestion, or diseases mediated by prostaglandin D2.
24. A pharmaceutical for treatment of diseases mediated by prostaglandin D2 comprising an effective amount of the acid of Claim 1, 2 or 7, or a pharmaceutically acceptable salt thereof, in association with a pharmaceutically acceptable carrier.
PCT/CA2001/000490 2000-04-12 2001-04-09 Prostaglandin d2 receptor antagonists WO2001079169A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA002405248A CA2405248A1 (en) 2000-04-12 2001-04-09 Prostaglandin d2 receptor antagonists
AU2001250205A AU2001250205A1 (en) 2000-04-12 2001-04-09 Prostaglandin d2 receptor antagonists

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US19631600P 2000-04-12 2000-04-12
US60/196,316 2000-04-12

Publications (2)

Publication Number Publication Date
WO2001079169A2 true WO2001079169A2 (en) 2001-10-25
WO2001079169A3 WO2001079169A3 (en) 2002-04-04

Family

ID=22724886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2001/000490 WO2001079169A2 (en) 2000-04-12 2001-04-09 Prostaglandin d2 receptor antagonists

Country Status (4)

Country Link
US (1) US20010047027A1 (en)
AU (1) AU2001250205A1 (en)
CA (1) CA2405248A1 (en)
WO (1) WO2001079169A2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004103370A1 (en) * 2003-05-15 2004-12-02 Merck & Co., Inc. Method of treating atherosclerosis, dyslipidemias and related conditions and pharmaceutical compositions
WO2006052798A2 (en) * 2004-11-08 2006-05-18 Merck & Co., Inc. Method of treating pathological blushing
US7241792B2 (en) 2004-12-23 2007-07-10 Arena Pharmaceuticals, Inc. Fused pyrazole derivatives and methods of treatment of metabolic-related disorders thereof
JP2007186521A (en) * 2002-01-24 2007-07-26 Merck Frosst Canada Ltd Fluorosubstituted cycloalkanoindole and use thereof as prostaglandin d2 receptor antagonist
US7321001B2 (en) 2002-12-20 2008-01-22 Amgen Inc. Asthma and allergic inflammation modulators
US7534897B2 (en) 2002-05-16 2009-05-19 Shionogi & Co., Ltd. Indole arylsulfonaimide compounds exhibiting PGD 2 receptor antagonism
US7714132B2 (en) 2004-03-11 2010-05-11 Actelion Pharmaceuticals, Ltd. Tetrahydropyridoindole derivatives
US7842692B2 (en) 2005-07-22 2010-11-30 Shionogi & Co., Ltd. Azaindole derivative having PGD2 receptor antagonistic activity
EP2316824A1 (en) 2006-08-07 2011-05-04 Actelion Pharmaceuticals Ltd. (3-Amino-1,2,3,4-tetrahydro-9H-carbazoI-9-yl)-acetic acid derivates
US7956082B2 (en) 2005-07-22 2011-06-07 Shionogi & Co., Ltd Indole derivative having PGD2 receptor antagonist activity
WO2011117798A1 (en) 2010-03-22 2011-09-29 Actelion Pharmaceuticals Ltd 3-(heteroaryl-amino)-1,2,3,4-tetrahydro-9h-carbazole derivatives and their use as prostaglandin d2 receptor modulators
US8039474B2 (en) 2004-12-27 2011-10-18 Actelion Pharmaceutical Ltd. 2,3,4,9-tetrahydro-1H-carbazole derivatives as CRTH2 receptor antagonists
US8143285B2 (en) 2005-09-06 2012-03-27 Shionogi & Co., Ltd. Indolecarboxylic acid derivative having PGD2 receptor antagonistic activity
US8183293B2 (en) 2007-12-19 2012-05-22 Amgen Inc. Phenyl acetic acid derivatives
US8507473B2 (en) 2008-09-11 2013-08-13 Arena Pharmaceuticals, Inc. 3H-imidazo[4,5-b]pyridin-5-ol derivatives useful in the treatment of GPR81 receptor disorders
US8637555B2 (en) 2003-10-31 2014-01-28 Arena Pharmaceuticals, Inc. Tetrazole derivatives and methods of treatment of metabolic-related disorders thereof
US9096595B2 (en) 2011-04-14 2015-08-04 Actelion Pharmaceuticals Ltd 7-(heteroaryl-amino)-6,7,8,9-tetrahydropyrido[1,2-a]indol acetic acid derivatives and their use as prostaglandin D2 receptor modulators
WO2016128565A1 (en) * 2015-02-13 2016-08-18 Institut National De La Sante Et De La Recherche Medicale (Inserm) Ptgdr-1 and/or ptgdr-2 antagonists for preventing and/or treating systemic lupus erythematosus
US9850241B2 (en) 2014-03-18 2017-12-26 Idorsia Pharmaceuticals Ltd Azaindole acetic acid derivatives and their use as prostaglandin D2 receptor modulators
US9879006B2 (en) 2014-03-17 2018-01-30 Idorsia Pharmaceuticals Ltd Azaindole acetic acid derivatives and their use as prostaglandin D2 receptor modulators
US10351560B2 (en) 2015-09-15 2019-07-16 Idorsia Pharmaceuticals Ltd Crystalline forms

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7019022B2 (en) * 2003-12-15 2006-03-28 Merck Frosst Canada & Co. Substituted tetrahydrocarbazole and cyclopentanoindole derivatives
CN101952244B (en) 2008-02-01 2014-11-05 潘米拉制药公司 N,N-disubstituted aminoalkylbiphenyl antagonists of prostaglandin D2 receptors
WO2009099901A1 (en) * 2008-02-01 2009-08-13 Amira Pharmaceuticals, Inc. N,n-disubstituted aminoalkylbiphenyl antagonists of prostaglandin d2 receptors
US8242145B2 (en) * 2008-02-14 2012-08-14 Panmira Pharmaceuticals, Llc Cyclic diaryl ether compounds as antagonists of prostaglandin D2 receptors
US8497381B2 (en) * 2008-02-25 2013-07-30 Panmira Pharmaceuticals, Llc Antagonists of prostaglandin D2 receptors
EP2268611A2 (en) * 2008-04-02 2011-01-05 Amira Pharmaceuticals, Inc. Aminoalkylphenyl antagonists of prostaglandin d2 receptors
WO2010003120A2 (en) 2008-07-03 2010-01-07 Amira Pharmaceuticals, Inc. Antagonists of prostaglandin d2 receptors
GB2463788B (en) * 2008-09-29 2010-12-15 Amira Pharmaceuticals Inc Heteroaryl antagonists of prostaglandin D2 receptors
US8524748B2 (en) 2008-10-08 2013-09-03 Panmira Pharmaceuticals, Llc Heteroalkyl biphenyl antagonists of prostaglandin D2 receptors
WO2010057118A2 (en) * 2008-11-17 2010-05-20 Amira Pharmaceuticals, Inc. Heterocyclic antagonists of prostaglandin d2 receptors
US20100173313A1 (en) * 2009-01-08 2010-07-08 Amira Pharmaceuticals, Inc. Biomarkers of inflammation
WO2011014587A2 (en) 2009-07-31 2011-02-03 Amira Pharmaceuticals, Inc. Ophthalmic pharmaceutical compositions of dp2 receptor antagonists
US8815917B2 (en) * 2009-08-05 2014-08-26 Panmira Pharmaceuticals, Llc DP2 antagonist and uses thereof
SG182398A1 (en) 2010-01-06 2012-08-30 Panmira Pharmaceuticals Llc Dp2 antagonist and uses thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808608A (en) * 1986-01-23 1989-02-28 Merck & Co., Inc. Tetrahydrocarbazole 1-alkanoic acids, pharmaceutical compositions and use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808608A (en) * 1986-01-23 1989-02-28 Merck & Co., Inc. Tetrahydrocarbazole 1-alkanoic acids, pharmaceutical compositions and use

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2295409A1 (en) 2002-01-24 2011-03-16 Merck Frosst Canada Limited Fluoro substituted cycloalkanoindoles and their use as prostaglandin D2 receptor antagonists
US7618994B2 (en) 2002-01-24 2009-11-17 Merck Frosst Canada Ltd. Fluoro substituted cycloalkanoindoles, compositions containing such compounds and methods of treatment
JP2007186521A (en) * 2002-01-24 2007-07-26 Merck Frosst Canada Ltd Fluorosubstituted cycloalkanoindole and use thereof as prostaglandin d2 receptor antagonist
US7534897B2 (en) 2002-05-16 2009-05-19 Shionogi & Co., Ltd. Indole arylsulfonaimide compounds exhibiting PGD 2 receptor antagonism
EP2423190A1 (en) 2002-05-16 2012-02-29 Shionogi&Co., Ltd. Compounds Exhibiting PGD 2 Receptor Antagonism
US7541383B2 (en) 2002-12-20 2009-06-02 Amgen Inc. Asthma and allergic inflammation modulators
US7321001B2 (en) 2002-12-20 2008-01-22 Amgen Inc. Asthma and allergic inflammation modulators
AU2011200986B2 (en) * 2003-05-15 2012-11-08 Merck Frosst Canada Ltd Method of Treating Atherosclerosis, Dyslipidemias And Related Conditions And Pharmaceutical Compositions
AU2004240597B2 (en) * 2003-05-15 2011-01-06 Merck Canada Inc. Method of treating atherosclerosis, dyslipidemias and related conditions and pharmaceutical compositions
EA009744B1 (en) * 2003-05-15 2008-04-28 Мерк Энд Ко., Инк. Method of treating atherosclerosis, dyslipidemias and related conditions and pharmaceutical compositions
CN102526735A (en) * 2003-05-15 2012-07-04 默沙东公司 Pharmaceutical compositions and method of treating atherosclerosis, dyslipidemias and related conditions
EA011895B1 (en) * 2003-05-15 2009-06-30 Мерк Энд Ко., Инк. Method of treating atherosclerosis, dyslipidemias and related conditions and pharmaceutical compositions
WO2004103370A1 (en) * 2003-05-15 2004-12-02 Merck & Co., Inc. Method of treating atherosclerosis, dyslipidemias and related conditions and pharmaceutical compositions
JP2006526030A (en) * 2003-05-15 2006-11-16 メルク エンド カムパニー インコーポレーテッド Methods for treating atherosclerosis, lipemia and related conditions, and pharmaceutical compositions
JP2010077151A (en) * 2003-05-15 2010-04-08 Merck & Co Inc Method of treating atherosclerosis, lipemia and related condition and pharmaceutical composition
EP2286816A1 (en) 2003-05-15 2011-02-23 Merck Sharp & Dohme (I.A.) Corp. Method of treating atherosclerosis, dyslipidemias and related conditions
CN100441184C (en) * 2003-05-15 2008-12-10 默克公司 Method of treating atherosclerosis, dyslipidemias and related conditions and medical composition
US8637555B2 (en) 2003-10-31 2014-01-28 Arena Pharmaceuticals, Inc. Tetrazole derivatives and methods of treatment of metabolic-related disorders thereof
US7714132B2 (en) 2004-03-11 2010-05-11 Actelion Pharmaceuticals, Ltd. Tetrahydropyridoindole derivatives
WO2006052798A3 (en) * 2004-11-08 2007-01-11 Merck & Co Inc Method of treating pathological blushing
WO2006052798A2 (en) * 2004-11-08 2006-05-18 Merck & Co., Inc. Method of treating pathological blushing
US7612106B2 (en) 2004-12-23 2009-11-03 Arena Pharmaceuticals, Inc. Fused pyrazole derivatives and methods of treatment of metabolic-related disorders thereof
US7241792B2 (en) 2004-12-23 2007-07-10 Arena Pharmaceuticals, Inc. Fused pyrazole derivatives and methods of treatment of metabolic-related disorders thereof
US8039474B2 (en) 2004-12-27 2011-10-18 Actelion Pharmaceutical Ltd. 2,3,4,9-tetrahydro-1H-carbazole derivatives as CRTH2 receptor antagonists
EP2397476A2 (en) 2005-07-22 2011-12-21 Shionogi & Co., Ltd. Indole derivative having PGD2 receptor antagonist activity
US7842692B2 (en) 2005-07-22 2010-11-30 Shionogi & Co., Ltd. Azaindole derivative having PGD2 receptor antagonistic activity
US7956082B2 (en) 2005-07-22 2011-06-07 Shionogi & Co., Ltd Indole derivative having PGD2 receptor antagonist activity
US8143285B2 (en) 2005-09-06 2012-03-27 Shionogi & Co., Ltd. Indolecarboxylic acid derivative having PGD2 receptor antagonistic activity
US8623903B2 (en) 2005-09-06 2014-01-07 Shionogi & Co., Ltd. Indolecarboxylic acid derivative having PGD2 receptor antagonistic activity
US8143304B2 (en) 2006-08-07 2012-03-27 Actelion Pharmaceutical Ltd. (3-amino-1,2,3,4-tetrahydro-9 H-carbazol-9-yl)-acetic acid derivatives
EP2316824A1 (en) 2006-08-07 2011-05-04 Actelion Pharmaceuticals Ltd. (3-Amino-1,2,3,4-tetrahydro-9H-carbazoI-9-yl)-acetic acid derivates
US8183293B2 (en) 2007-12-19 2012-05-22 Amgen Inc. Phenyl acetic acid derivatives
US8507473B2 (en) 2008-09-11 2013-08-13 Arena Pharmaceuticals, Inc. 3H-imidazo[4,5-b]pyridin-5-ol derivatives useful in the treatment of GPR81 receptor disorders
WO2011117798A1 (en) 2010-03-22 2011-09-29 Actelion Pharmaceuticals Ltd 3-(heteroaryl-amino)-1,2,3,4-tetrahydro-9h-carbazole derivatives and their use as prostaglandin d2 receptor modulators
US8697869B2 (en) 2010-03-22 2014-04-15 Actelion Pharmaceuticals Ltd. 3-(heteroaryl-amino)-1,2,3,4-tetrahydro-9H-carbazole derivatives and their use as prostaglandin D2 receptor modulators
US9096595B2 (en) 2011-04-14 2015-08-04 Actelion Pharmaceuticals Ltd 7-(heteroaryl-amino)-6,7,8,9-tetrahydropyrido[1,2-a]indol acetic acid derivatives and their use as prostaglandin D2 receptor modulators
US9879006B2 (en) 2014-03-17 2018-01-30 Idorsia Pharmaceuticals Ltd Azaindole acetic acid derivatives and their use as prostaglandin D2 receptor modulators
US10301309B2 (en) 2014-03-17 2019-05-28 Idorsia Pharmaceuticals Ltd Azaindole acetic acid derivatives and their use as prostaglandin D2 receptor modulators
US9850241B2 (en) 2014-03-18 2017-12-26 Idorsia Pharmaceuticals Ltd Azaindole acetic acid derivatives and their use as prostaglandin D2 receptor modulators
WO2016128565A1 (en) * 2015-02-13 2016-08-18 Institut National De La Sante Et De La Recherche Medicale (Inserm) Ptgdr-1 and/or ptgdr-2 antagonists for preventing and/or treating systemic lupus erythematosus
EP4420734A2 (en) 2015-02-13 2024-08-28 Institut National de la Santé et de la Recherche Médicale Ptgdr-1 and/or ptgdr-2 antagonists for preventing and/or treating systemic lupus erythematosus
US10351560B2 (en) 2015-09-15 2019-07-16 Idorsia Pharmaceuticals Ltd Crystalline forms

Also Published As

Publication number Publication date
WO2001079169A3 (en) 2002-04-04
US20010047027A1 (en) 2001-11-29
CA2405248A1 (en) 2001-10-25
AU2001250205A1 (en) 2001-10-30

Similar Documents

Publication Publication Date Title
WO2001079169A2 (en) Prostaglandin d2 receptor antagonists
US8394819B2 (en) Indole derivatives as CRTH2 receptor antagonists
US8637671B2 (en) Indole derivatives as CRTH2 receptor antagonists
US8546422B2 (en) Azaindole derivatives as CRTH2 receptor antagonists
CA2471952C (en) Fluoro substituted cycloalkanoindoles and their use as prostaglandin d2 receptor antagonists
US7019022B2 (en) Substituted tetrahydrocarbazole and cyclopentanoindole derivatives
CA2737460C (en) Indole derivatives as crth2 receptor antagonists
EP1082120A1 (en) PYRROLO[2,3d]PYRIMIDINE COMPOSITIONS AND THEIR USE
NO325011B1 (en) Cyclopentanoindoles, preparations containing such compounds and their use in the manufacture of medicaments
NO330835B1 (en) Aminindazole derivatives, process for their preparation, intermediate and pharmaceutical preparation containing such a derivative
EP1274457A2 (en) Method and compositions for the treatment of allergic conditions using pgd2 receptor antagonists
TW201103930A (en) Azetidinyl diamides as monoacylglycerol lipase inhibitors
AU2003202343A1 (en) Fluoro substituted cycloalkanoindoles and their use as prostaglandin D2 receptor antagonists
NO341962B1 (en) New heterocyclidene acetamide derivative
DK168007B1 (en) 1,9-DISUBSTITUTED 1,2,3,4-TETRAHYDROCARBAZOLES AND PHARMACEUTICAL PREPARATIONS CONTAINING SUCH COMPOUNDS
CN109153672A (en) TRPV4 antagonist
WO2001032176A1 (en) Beta-carboline derivatives for use as analgesics
AU2007203428B2 (en) Fluoro substituted cycloalkanoindoles and their use as prostaglandin D2 receptor antagonists

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2405248

Country of ref document: CA

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP