WO2001068742A1 - Process for producing polyimide - Google Patents

Process for producing polyimide Download PDF

Info

Publication number
WO2001068742A1
WO2001068742A1 PCT/JP2001/001938 JP0101938W WO0168742A1 WO 2001068742 A1 WO2001068742 A1 WO 2001068742A1 JP 0101938 W JP0101938 W JP 0101938W WO 0168742 A1 WO0168742 A1 WO 0168742A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
chemical formula
solvent
producing
represented
Prior art date
Application number
PCT/JP2001/001938
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Kuroki
Atsushi Shibuya
Shoji Tamai
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to EP01914167A priority Critical patent/EP1273611A4/en
Priority to US10/221,501 priority patent/US6916898B2/en
Priority to JP2001567231A priority patent/JP5246983B2/en
Publication of WO2001068742A1 publication Critical patent/WO2001068742A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • C08G73/1032Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous characterised by the solvent(s) used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines

Definitions

  • the present invention relates to a method for producing a polyimide. More specifically, using an equimolar composition of a specific nitrogen-containing cyclic compound and a specific phenol as a solvent, an imidation reaction between diamine and tetracarboxylic dianhydride is performed.
  • the present invention relates to a method for producing a polyimide by precipitating a polyimide and / or an oligomer to form a slurry into a reaction system.
  • the invention also relates to such an equimolar composition.
  • polyimide has been widely used in various fields as a molding material, a composite material, an electric / electronic material, etc. because of its excellent heat resistance, mechanical properties, and electrical properties.
  • biphenyltetracarboxylic acid-type polyimides have various characteristics different from pyromellitic acid-type polyimides, and are therefore highly useful, and have been studied and used in many applications.
  • the polyimide having a repeating structural unit represented by is thermoplastic, it is possible to obtain molded articles of various shapes by melt molding such as press molding, extrusion molding, injection molding, etc., and its usefulness is extremely high ( GL Wilkes et al., Macromolecules, 30, pp.1012 (1997); S. Tamai et al., Polymer, 37 (16) pp.3683 (1996); S. Tamai et al., Polymer, 39 (10) pp.1945 (1998) etc.).
  • the polyimide molded body is usually manufactured by sinter molding of non-thermoplastic polyimide powder or melt molding of thermoplastic polyimide powder. Therefore, many methods for producing polyimide powder have been developed.
  • Japanese Patent Application Laid-Open Nos. HEI 4-142332 and JP-A-2000-15545 disclose pyromellitic acid-type polyimides which can be heated and imidized in an aprotic polar solvent.
  • a manufacturing method is disclosed. Pyromellitic acid-type polyimide has low solubility in a solvent, and the produced polyimide precipitates as the reaction proceeds, so that a polyimide powder can be easily obtained.
  • biphenyltetracarboxylic acid type polyimide has high solubility in a solvent.
  • the generated biphenyltetracarboxylic acid-type polyimide does not precipitate, or precipitates in a swollen state containing a large amount of solvent, thereby solidifying the reaction system. Such a problem arises.
  • the production of biphenyltetracarboxylic acid-type polyimides that are imidized by heating in a solvent is conventionally performed by a method that involves reacting at a low or high concentration and then diluting with a poor solvent.
  • volumetric efficiency was extremely poor, and productivity was extremely low. That is, for example, when a reactor having a capacity of lm 3 is used, according to the method of GL Wilkes et al., The amount of polyimide obtained is less than 100 kg, According to the method disclosed in Japanese Patent Application Laid-Open No. 4 (1999) -1995, the amount of the obtained polyimide is less than 20 kg.
  • the precipitated polyimide contains a large amount of solvent, a great deal of effort has been paid to removing the solvent by drying or the like.
  • Japanese Patent Application Laid-Open No. 6-220194 discloses a method for directly imidizing an acid dianhydride and an aromatic diamine in an organic polar solvent, which is described in "Polyimide Solution Composition and Method for Producing the Same".
  • a method for producing a polyimide characterized by performing polycondensation in the presence of a neutral compound ”.
  • the object of the present invention is a solution of an aliphatic-containing polyimide that is soluble in an organic polar solvent, and its object is to suppress a side reaction during imidization by heating in a solvent.
  • the method for producing a polyimide according to the present invention is intended to obtain a slurry-like reaction solution by precipitating the polyimide during the imidization reaction, and to obtain the polyimide simply by filtering the reaction solution as it is.
  • the phenolic compound is used as a catalyst for suppressing side reactions, and the amount of the phenolic compound used is 0.1 to 0.5 times by weight (9 times the total solvent amount) with respect to the organic polar solvent. 333% by weight) as compared with the present invention.
  • the method for producing biphenyltetracarboxylic acid-type polyimide with high productivity, which is clarified in the present invention, and among the organic polar solvents, the nitrogen-containing cyclic compound represented by the following chemical formula (1) is strongly different from phenols.
  • 6-220194 discloses that the polyimide precursor (polyamic acid) is dissolved, the polyimide is not dissolved, and that the equimolar composition has a remarkably high boiling point.
  • the publication discloses that N-methyl-2-pyrrolidone as an example of a polar solvent and phenol (a mixture molar ratio of N-methyl-2-pyrrolidone / phenol is 65.5 / 34.5) are used as solvents. Describes that the synthesis of the polyimide contained in the above was carried out at a reaction temperature of 180, but mentions the specificity regarding the boiling point etc. of the mixed solvent consisting of N-methyl-2-pyrrolidone and phenols.
  • the mixed solvent has a high boiling point and is immiscible with water.
  • the gazette also states that the use of an equimolar composition having such specific properties as a specific amount of solvent enables the precipitation of a biphenyltetracarboxylic acid-type polyimide during the imidization reaction. No suggestion.
  • the present invention is intended to solve the problems associated with the prior art as described above, and various properties of polyimide derived from various structures (such as moldability, sliding properties, low water absorption, and electrical properties). It is an object of the present invention to provide a method for obtaining polyimide by a simple, easy and inexpensive process without impairing thermal oxidation stability, radiation resistance, etc.). Disclosure of the invention
  • the present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, when a specific composition is used as a reaction solvent, various physical properties of a biphenyltetracarboxylic acid-type polyimide (molding processability, It has been found that a polyimide can be obtained by a simple, easy and inexpensive process without impairing the sliding properties, low water absorption, electrical properties, thermal oxidation stability, radiation resistance, etc. Reached.
  • the method for producing a polyimide according to the present invention includes a method represented by the following chemical formula (1).
  • the imidation reaction of diamines and tetracarboxylic dianhydride is carried out in a solvent containing 0 to 100% by weight.
  • X represents —CH 2 — or one N (CH 3 ) —.
  • R, and R 2 may be the same or different from each other. -OH, - CH 3, -C2H7,
  • the tetracarboxylic dianhydride preferably contains biphenyltetracarboxylic dianhydride, and the tetracarboxylic dianhydride is biphenyltetracarboxylic dianhydride with respect to all tetracarboxylic dianhydrides. It is desirable to contain the acid dianhydride preferably in a proportion of 30 to 100 mol%.
  • the polyimide obtained by the imidization reaction preferably has a repeating structure represented by the following chemical formula (3).
  • Equation (3) Y is represented by at least one selected from the group consisting of Equations (e) and (h).
  • the repeating structure represented by the chemical formula (3) is contained in a proportion of 30 to 100 mol% in all the repeating structures, and the remainder different from the repeating structure represented by the chemical formula (3) is 0 to 70 mol. % Is preferably contained.
  • the remainder preferably has a repeating structure composed of component units derived from aromatic tetracarboxylic acid, which is different from the repeating structure represented by the chemical formula (3).
  • the repeating structure comprising the component units derived from the aromatic tetracarboxylic acid is preferably a repeating structure represented by the following chemical formulas (a) and Z or (b).
  • R may be the same or different from each other;
  • Ar 2 is at least selected from the group consisting of —O—, —CO—, one S ⁇ 2 —, —S—, —CH 2 — or one C (CH 3 ) 2 _ Represented by one. ).
  • the polyimide having a repeating structure represented by the general formula (3) is a polyimide having at least one repeating structure represented by any of the following general formulas (4) to (6).
  • c is a polyimide having at least one repeating structure represented by any of the following general formulas (4) to (6).
  • the compound represented by the chemical formula (1) is preferably N-methyl-2-pyrrolidone and / or 1,3′-dimethyl-2-imidazolidinone.
  • the phenols represented by the chemical formula (2) include phenol, 0-chloro phenol, m-clo phenol, p-chloro phenol, 0-cresol, m-cresolylile, P-cresol, 2,3 It is preferably at least one compound selected from the group consisting of -xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4-xylenol, and 3,5-xylenol .
  • a solvent containing an equimolar composition of the compound represented by the chemical formula (1) and the phenols represented by the chemical formula (2) in an amount of 50 to 100% by weight is the remainder of the solvent.
  • the compound represented by the chemical formula (1) or the phenols represented by the chemical formula (1) is contained in an amount of 0 to 50% by weight.
  • the reaction system can be made into a slurry by precipitating polyimide and Z or an oligomer during the imidization reaction.
  • the reaction is preferably performed in the presence of a terminal blocking agent.
  • a product can be precipitated during an imidization reaction to obtain a polyimide powder.
  • the concentration of the starting monomers composed of diamines and tetracarboxylic dianhydride in the reaction solution is 5 to 50%. Preferably it is in the range of weight%.
  • the polyimide according to the present invention is obtained by the above method.
  • the polyimide powder according to the present invention is obtained by the above method.
  • the solvent according to the present invention comprises an equimolar composition of a compound represented by the following chemical formula (1) and a phenol represented by the following chemical formula (2);
  • X represents —CH 2 — or —N (CH 3 ) —.
  • R 1, and R 2 may be the same or different from each other. , -OH, - C, -C2H7, - C 3 H 7, - C 2 3 ⁇ 4, -CsH, u - C 6 H 13, -C7H15, -C 8 Hi7, - C 9 H 19, -Cl, _0C, -0 (CeHs), -N (indicates either -k or -Br or -F).
  • Solvent may be contained.
  • FIG. A1 is a chart of the IR spectrum of N-methyl-2-pyrrolidone, m-cresol and their equimolar compositions.
  • FIG. A2 is a chart of 1 H—NMR spectrum of an equimolar composition comprising N-methyl-2-pyrrolidone and m-cresol.
  • FIG. A3 is a chart of a 13 C-NMR spectrum of an equimolar composition comprising N-methyl-2-pyrrolidone and m-cresol.
  • Figure A4 shows N-methyl-2-pyrrolidone, P-chlorophenol and their equivalents.
  • 3 is a chart of an IR spectrum of a molar composition.
  • FIG. A5 is a chart of the 1 H—NMR spectrum of an equimolar composition comprising N-methyl-2-pyrrolidone and p-chlorophenol.
  • Figure A 6 are, N- methyl-2-pyrrolidone, P - equimolar set Narubutsu consisting black port phenol '3 is a C-NM R scan Bae Chiya one bets vector.
  • FIG. B1 is a chart of the IR spectrum of 1,3-dimethyl-2-imidazolidinone, m-cresol and their equimolar compositions.
  • FIG. B2 is a chart of 1 H—NMR spectrum of an equimolar composition comprising 1,3-dimethyl-2-imidazolidinone and m-cresol.
  • FIG. B3 is a chart of 13 C—NMR spectrum of an equimolar composition comprising 1,3-dimethyl-2-imidazolidinone and m-cresol.
  • Figure B4 is a chart of the IR spectrum of 1,3-dimethyl-2-imidazolidinone, P-chlorophenol and their equimolar compositions.
  • FIG. B5 is a chart of 1 H—NMR spectrum of an equimolar composition consisting of 1,3-dimethyl-2-imidazolidinone and p-chlorophenol.
  • Figure B 6 is 1,3-dimethyl-2-imidazolidinone, P - equimolar composition comprising black port phenols' is 3 C-NM R scan Bae Chiya one bets vector.
  • the present invention relates to a method for imidizing a compound containing 50 to 100% by weight of an equimolar composition of a nitrogen-containing cyclic compound represented by the chemical formula (1) and a phenol represented by the chemical formula (2).
  • This is a method for producing polyimide.
  • it can be preferably used for producing a polyimide having a repeating structure represented by the chemical formula (3).
  • a solvent containing 5.0 to 100% by weight of an equimolar composition of a nitrogen-containing cyclic compound represented by the chemical formula (1) and a phenol represented by the chemical formula (2) diamines and tetracarboxylic acid
  • the reaction system is heated to dissolve the monomer and the monomer or the polyimide precursor (polyamic acid) in the solvent, thereby making the reaction system uniform.
  • diamines, tetracarboxylic acid By reacting and imidating the dianhydrides and the terminal capping agent, the resulting polyimide, Z or oligomer is precipitated in powder form, and the reaction system is made into a slurry. After completion of the reaction, the reaction solution is filtered to recover the powdered polyimide.
  • an equimolar composition of a nitrogen-containing cyclic compound represented by the chemical formula (1) and a phenol represented by the chemical formula (2) is used in an amount of 50 to 100 wt.
  • This is a method for producing polyimide using a solvent containing 0.1% by weight.
  • X represents —CH 2 — or _ N (CH 3 ) —.
  • RKR 2 may be the same or different from each other. OH, -CH 3 , -C2H7, — C 3 H 7 , -C2H9, -CsHiu -CeH, 3, -CiHis, -C 8 Hi7, — C 9 H I9 , -C.0H2U — OCfk — 0 (C 6 H 5 ), -NO-Cl, -Br or -F.
  • the nitrogen-containing cyclic compound represented by the chemical formula (1) used in the present invention is N-methyl-2-pyrrolidone and Z or 1,3-dimethyl-2-imidazolidinone.
  • the N-methyl-2-pyrrolidone according to the present invention can be prepared by appropriately utilizing a conventionally known method, for example, dehydrogenation of 1,4-butanediol or hydrogenation of maleic anhydride. Can be obtained by reacting ⁇ -butyrolactone obtained as described above with a monoalkylamine such as monomethylamine.
  • N-methyl-pyrrolidone may be a commercially available product (manufactured by Mitsubishi Chemical Corporation, BASF, etc.).
  • the 1,3-dimethyl-2-imidazolidinone according to the present invention can be prepared by appropriately using a conventionally known method, or a commercially available product (such as a product of Mitsui Chemicals, Inc.) can be used. .
  • the nitrogen-containing cyclic compound represented by the chemical formula (1) is known as an aprotic polar solvent, and has conventionally been used as a polymerization solvent for polyimide. But
  • these nitrogen-containing cyclic compounds have a high affinity for polyimide and easily dissolve polyimide. For this reason, in the conventional method for producing a polyimide using these nitrogen-containing cyclic compounds as a solvent, the produced polyimide does not precipitate and the reaction solution becomes viscous. Or a problem arises when the resulting polyimide precipitates in a swollen state containing a large amount of solvent and solidifies the reaction system.
  • the nitrogen-containing cyclic compound represented by the chemical formula (1) has a high affinity for water and is arbitrarily mixed with water. Therefore, in the conventional method for producing a polyimide using these nitrogen-containing cyclic compounds as a solvent, it is difficult to remove water produced as a by-product from the solvent together with the production of the polyimide, resulting in a reduction in the reaction rate and the reached molecular weight. . Therefore, in a conventional method for producing a polyimide using these nitrogen-containing cyclic compounds as a solvent, a method of removing water by-produced by performing a reaction in the presence of a solvent azeotropic with water is common. there were.
  • phenols represented by the chemical formula (2) used in the present invention specifically, for example, phenol, catechol, resorcinol, hydroquinone, 0-ethylphenol, m-ethylphenol, p-ethylphenol, octylphenol, 0-phenol Cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4-xylenol, 3,5_xylenol, guaiacol, nonylphenol , 0-chlorophenol, m-chlorophenol, p-chlorophenol, 0-bromophenol, m-bromophenol, P-bromophenol, 0-fluorophenol, m-fluorophenol, p-fluorophenol, 0 -Phenylphenol, m-phenylphenol, P-phenyl
  • Phenol, 0-cresol, m-cresol, P-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4-xylenol Phenol, 3,5-xylenol, o-chlorophenol, m-chlorophenol, P-chlorophenol, etc. are preferably used. Of these, m-cresol, P-cresol and p-chlorophenol are preferred. Particularly preferably used.
  • such phenols can be used alone or in combination of two or more.
  • Such phenols can be prepared by appropriately utilizing a conventionally known method, and a commercially available phenol can be used.
  • the phenols represented by the chemical formula (2) are known as a good solvent for polyimide, and have been used as a polymerization solvent for polyimide.
  • the produced polyimide does not precipitate and the reaction solution becomes viscous, and a large amount of poor solvent is required to recover the polyimide.
  • the resulting polyimide contains a large amount of solvent and precipitates in a swollen state, so that the reaction system is solidified.
  • the equimolar composition according to the present invention is a composition in which the nitrogen-containing cyclic compound represented by the chemical formula (1) and the phenols represented by the chemical formula (2) are mixed in an equimolar amount.
  • the equimolar composition according to the present invention comprises a carbonyl group of the nitrogen-containing cyclic compound represented by the aforementioned chemical formula (1) and a phenol represented by the aforementioned chemical formula (2), as shown in Examples described later.
  • the hydroxyl groups form strong hydrogen bonds and are tightly associated.
  • the affinity between the nitrogen-containing cyclic compound represented by the chemical formula (1) and the polyimide or between the phenols represented by the chemical formula (2) and the polyimide is relatively weakened, and as a result, It is considered that dissolution of the polyimide and swelling containing the solvent are suppressed.
  • the nitrogen-containing cyclic compound represented by the chemical formula (1) and the phenols represented by the chemical formula (2) are strongly associated with each other. It has a high boiling point and is liquid at room temperature.
  • N-methyl An equimolar composition of le-2-pyrrolidone (boiling point 204, with a freezing point of 13-23) and m-cresol (boiling point 202.2, with a freezing point of 11.5) has a boiling point of 230 , A freezing point of O: less than, and an equimolar composition of N-methyl-2-pyrrolidone and p-cresol (boiling point: 21.9, freezing point: 34.8 :) has a boiling point of 245, Freezing point is less than 0.
  • the boiling point is about 15 to 20 T: higher than the boiling point of N-methyl-2-pyrrolidone and phenols, and in the latter example, it is about 40 to 45 T, which is extremely high.
  • the boiling point is 237 :, freezing point is less than 0, and 1,3-dimethyl-2-imidazolidinone and P-chlorophenol are phenol (boiling point: about 217 :, freezing point: about 43)
  • the boiling point is less than 257 and the freezing point is less than 0.
  • the boiling point of about 1,3-dimethyl-2-imidazolidinone is about 12 and the boiling point of m-cresol is 35, and in the latter example, 1,3-dimethyl-2- The boiling point is approximately 20 t: higher than the boiling point of imidazolidinone, and 28 higher than the boiling point of p-chlorophenol.
  • the boiling point is significantly increased, for example, by 1% from the boiling point of N-methyl-2-pyrrolidone or phenols. It is possible to obtain a composition having a freezing point of 0 or more, preferably 20 or more, more preferably 25 or more, and a liquid state at room temperature (for example, a liquid of 5). Also, by mixing 1,3-dimethyl-2-imidazolidinone and phenols in equimolar amounts, a remarkable increase in the boiling point occurs. For example, the boiling point of 1,3-dimethyl-2-imidazolidinone or phenols is increased by 3%. Or more, preferably at least 10 and more preferably at least 20 and particularly preferably at least 30 and a liquid having a freezing point of liquid at room temperature (for example, liquid at 5). Obtainable.
  • the boiling point of the solvent is obtained by measuring the liquidus temperature in the boiling solution and the gaseous phase temperature of the solvent vapor, and taking the temperature when these temperatures become the same. .
  • the boiling point of a non-associative mixed solvent follows the Raoul's law, and the boiling point indicated by the Raoul's law depends on the interaction such as hydrogen bonding between the components of the mixed solvent. It is known to change.
  • the boiling point of an azeotropic composition mixture of phenol having weak acidity and aniline having weak basicity is 186.2, and the boiling point of phenol (at 181.2) and the boiling point of aniline (at 1 84.4), which is only slightly higher and does not show a remarkable increase in boiling point as in the present invention.
  • Salts composed of an acid and a base are known to have a high melting point or non-volatility.
  • salts formed from weakly acidic phenols and sodium hydroxide has a melting point of 61 to 64
  • the salt formed from N-methyl-2-pyrrolidone (a) which exhibits weak basicity, has a melting point of 80 to 88. Because of its high melting point, it cannot be used as a solvent. From the above, the properties of the equimolar composition according to the present invention are extremely specific.
  • the nitrogen-containing cyclic compound represented by the chemical formula (1) and the phenols represented by the chemical formula (2) are strongly associated by hydrogen bonding. Therefore, unlike a general azeotropic mixture, its composition does not depend on the pressure during the distillation operation and the like.
  • the compositional ratio of such an equimolar composition according to the present invention hardly changes even if evaporation and concentration are repeated. Therefore, even if the equimolar composition according to the present invention is recovered and reused by distillation or the like, a constant composition can always be maintained, and thus no composition preparation is required.
  • the equimolar composition according to the present invention separates into a nitrogen-containing cyclic compound represented by the chemical formula (1) and phenols in the presence of a base such as sodium hydroxide.
  • a base such as sodium hydroxide.
  • the nitrogen-containing cyclic compound represented by the chemical formula (1) or phenols as the raw material can be recovered.
  • the equimolar composition according to the present invention has a high polarity and is immiscible with water, as shown in the examples described later. Therefore, it is excellent in solubility of raw materials and polyimide precursor (polyamic acid) at the time of polyimide production, and easily removes generated water at the time of dehydration reaction, and is suitable as a polyimide polymerization solvent.
  • an equimolar composition of the nitrogen-containing cyclic compound represented by the chemical formula (1) and the phenols represented by the chemical formula (2) is used as a reaction solvent in a range of 50 to 10.
  • a solvent containing 0% by weight is used.
  • the solvent in the present invention is mainly composed of the above equimolar composition, and the proportion of the equimolar composition in the total solvent weight is preferably 70 to 100% by weight, more preferably 80 to 1% by weight. Desirably, the content is 100% by weight, particularly preferably 90 to 100% by weight.
  • the solvent is 0 to 50% by weight, preferably 0 to 30% by weight, more preferably 0 to 20% by weight, particularly preferably 0 to 10% by weight of the total solvent weight. May be included.
  • the coexistence of another solvent can arbitrarily change various properties such as the melting point, boiling point, polarity, dielectric constant, and solubility of the reaction solvent used in the present invention.
  • solvents that may be included include, for example, phenol solvents, nonprotonic amide solvents, ether solvents, amine solvents, and the like.
  • the above-mentioned phenols (2) can be used.
  • Examples of aprotic amide solvents include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-getylacetamide, N_methyl-12-pyrrolidone, 1 , 3-dimethyl-12-imidazolidinone, N-methylcaprolactam, hexamethylphosphorotriamide, and the like.
  • Examples of the ether solvents include 1,2-dimethoxyethane, bis (2-methoxyethoxy) ether, 1,2-bis (2-methoxyethoxy) ethane, tetrahydrofuran, and bis [2- (2-methoxy) Ethoxy) ethyl] ether and 1,4-dioxane.
  • amine-based solvent examples include pyridine, quinoline, isoquinoline, picoline, j3-picoline, apicoline, isophorone, piperidine, 2,4-lutidine, 2,6-lutidine, trimethylamine, triethylamine, Tripropylamine, tributylamine and the like.
  • the solvent which may be contained is a nitrogen-containing cyclic compound represented by the chemical formula (1) or a chemical formula (2) constituting an equimolar composition used in the practice. It is particularly preferred that the same solvent as the phenols is used.
  • the method for producing a polyimide of the present invention can be preferably applied to the production of a polyimide having a repeating structure represented by the following formula (3).
  • is represented by at least one selected from the group consisting of formulas (e) to (h).
  • R may be the same or different from each other
  • the total amount of the repeating structure represented by the chemical formula (3) is 30 to 100 mol%, and preferably 50 to 100 mol%. Particularly preferably 55 to 100 mol%, and the balance is, for example, a compound having a repeating structure containing a component unit derived from an aromatic tetracarboxylic acid which is different from the repeating structure represented by the chemical formula (3).
  • A is represented by at least one selected from the group consisting of formulas (e) and (h).
  • Rs may be the same or different from each other, and are each a single bond, -0-, —CO—, — S ⁇ 2 —, — S_, one CH 2 — or — C (CH 3 ) 2 — Indicates one of
  • Ar 2 is at least one selected from the group consisting of one O—, —CO—, —SO2-, —S—, one CH 2 — or one C (CH 3 ) 2 — It is represented by
  • the polyimide having a repeating structure represented by the general formula (3) is a polyimide having at least one repeating structure represented by any of the following general formulas (4) to (6).
  • an imide Preferably an imide
  • the repeating structure constituting the remainder does not contain a component unit derived from an aliphatic tetracarboxylic acid having an aromatic ring or a fluorine-containing tetracarboxylic acid.
  • biphenyltetracarboxylic acid type polyimide having a repeating structure represented by the chemical formula (3) has high solubility in a solvent. Therefore, polyimide containing 30 to 100 mol% of the repeating structure represented by the chemical formula (3) in all the repeating structures is prepared by a conventional method, that is, N-methyl-2-pyrrolidone or cresol. When imidized by heating in a polar solvent, the generated polyimide does not precipitate, or precipitates in a swollen state containing a large amount of solvent, so that a problem may occur when the reaction system is solidified.
  • polyimide having a repeating structure represented by the chemical formula (a) has low solubility in a solvent, and it is difficult to use a conventional method, i.e., when imidized by heating in a polar solvent such as N-methyl-2-pyrrolidone or cresol.
  • a polar solvent such as N-methyl-2-pyrrolidone or cresol.
  • polyimide having a repeating structure represented by the chemical formula (b) has extremely high solubility in a solvent, Even when the production method is used, the produced polyimide does not precipitate or precipitates in a swollen state containing a large amount of solvent, so that a problem may occur when the reaction system solidifies.
  • the molecular end of the polyimide produced by the production method of the present invention may be sealed with a terminal blocking agent such as phthalic anhydride, aniline, maleic anhydride, and phenylethynyl phthalic anhydride. Further, it may have a branch in the main chain, side chain or terminal structure, and may have a structure for crosslinking, a cyclic structure, or the like.
  • the degree of polymerization of the polyimide produced by the production method of the present invention is not limited, and can be arbitrarily selected according to the use of the polyimide.
  • the reaction solution becomes viscous, and the degree of polymerization of the produced polyimide is reduced.
  • the produced polyimide precipitates out and the reaction solution becomes a slurry, so that even when producing a high-molecular-weight polyimide, the reaction solution cannot be used. It does not become viscous enough to hinder stirring.
  • diamines having one benzene ring examples include p-phenylenediamine and m-phenylenediamine.
  • diamines having two benzene rings examples include:
  • Diamines having three benzene rings include, for example,
  • diamines having four benzene rings include:
  • Diamines having five benzene rings include, for example,
  • diamines having six benzene rings include:
  • part or all of the hydrogen atoms on the aromatic ring of the diamine having an aromatic ring may be replaced with a methyl group, a methoxy group, an ethynyl group serving as a crosslinking point, or benzocyclobutene.
  • -Diamines substituted with a substituent such as a 4'-yl group, a vinyl group, an aryl group, a cyano group, an isocyanate group, a nitrile group or an isopropyl group can also be used.
  • diamines having a group such as a vinylene group, a vinylidene group or an ethynylidene group serving as a crosslinking point in a diamine main chain skeleton can be used.
  • Such diamines can be used alone or in combination of two or more.
  • biphenyltetracarboxylic dianhydride as the tetracarboxylic dianhydride.
  • biphenyltetracarboxylic dianhydride specifically, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3 ′, 3,4′-biphenyltetracarboxylic acid Acid dianhydride; and 2,23,3, -biphenyltetracarboxylic dianhydride.
  • These biphenyltetracarboxylic dianhydrides can be used alone or in combination of two or more. Among them, as the tetracarboxylic dianhydride in the present invention, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is particularly preferable.
  • biphenyltetracarboxylic dianhydride is preferably used as tetracarboxylic dianhydride, but other conventionally known tetracarboxylic dianhydrides are used together with biphenyltetracarboxylic dianhydride. be able to.
  • another tetracarboxylic dianhydride it is preferable to use an aromatic tetracarboxylic dianhydride.
  • an aliphatic tetracarboxylic acid containing no aromatic ring and a fluorine-containing tetracarboxylic acid are used, the obtained polyimide is dissolved in the solvent used in the present invention. May not be obtained.
  • Examples of such aliphatic tetracarboxylic acids containing no aromatic ring include bicyclo (2,2,2) -oct-7-ene-2,3,5,6-tetracarboxylic dianhydride. And ethylene tetracarboxylic dianhydride, butane tetracarboxylic dianhydride, cyclopentane tetracarboxylic dianhydride and the like.
  • aromatic tetracarboxylic dianhydrides that can be used together with the biphenyltetracarboxylic dianhydride in the present invention include, for example, Pyromellitic dianhydride,
  • aromatic tetracarboxylic dianhydrides can be used alone or in combination of two or more.
  • part or all of the hydrogen atoms on the aromatic ring of the aromatic tetracarboxylic dianhydride may be replaced with a methyl group, a methoxy group, an ethynyl group serving as a crosslinking point, or benzocyclobutene- A tetracarboxylic dianhydride substituted with a substituent such as a 4'-yl group, a vinyl group, an aryl group, a cyano group, an isocyanate group, a nitrile group, or an isopropenyl group can also be used.
  • tetracarboxylic dianhydride having a group such as a vinylene group, a vinylidene group, or an ethynylidene group serving as a crosslinking point in the main chain skeleton of the tetracarboxylic dianhydride can also be used.
  • hexacarboxylic acid trianhydrides and octacarboxylic acid tetraanhydrides can be used instead of tetracarboxylic dianhydride.
  • Such tetracarboxylic dianhydrides can be used alone or in combination of two or more.
  • the amount of tetracarboxylic dianhydride used in the present invention is preferably 30 to 100 mol%, more preferably 50 to 100 mol%, of biphenyl tetracarboxylic dianhydride based on the total amount of tetracarboxylic dianhydride.
  • 100 mol%, particularly preferably 55 to 100 mol%, and other tetracarboxylic dianhydrides are preferably 0 to 70 mol%, more preferably 0 to 50 mol%, Particularly preferably, the content is 0 to 45 mol%.
  • the solubility of the obtained polyimide in the solvent is very high, and even if the production method of the present invention is used, the produced polyimide will not In some cases, it does not precipitate, or it may precipitate in a swollen state containing a large amount of solvent, causing problems when the reaction system solidifies. Further, when pyromellitic dianhydride is used as more than 70 mol% as another tetracarboxylic dianhydride, the obtained polyimide has low solubility in a solvent. do not need.
  • the amount of the tetracarboxylic dianhydride used in the present invention (the sum of the amount of the biphenyltetracarboxylic dianhydride and the amount of the other tetracarboxylic dianhydride) is not particularly limited. It is preferable to use an amount of 0.8 to 1.25 mol per mol of the diamines. By changing the molar ratio of diamines and tetracarboxylic dianhydride used, the amount of polyimide The child quantity can be controlled.
  • the polyimide molecular weight does not become a polyimide molecular weight capable of sufficiently exhibiting various properties of the polyimide. Even if it exceeds 25, the molecular weight of the polyimide may decrease.
  • the amount of tetracarboxylic dianhydride used is preferably 1.01 to 1.25 mol per 1 mol of diamines used. It is more preferably in the range of 1.05 to 1.20 mol, and particularly preferably in the range of 1.07 to 1.15 mol. In this case, if the molar ratio (tetracarboxylic dianhydride / diamines) is smaller than 1.01 or larger than 1.25, the end capping becomes insufficient, and the heat of the obtained polyimide becomes poor. Stability ⁇ May adversely affect processability.
  • the amount of the tetracarboxylic dianhydride used is preferably 0.8 to 0.99 per mole of diamines. Mole, more preferably 0.85 to 0.97 mole, and particularly preferably in the range of 0.90 to 0.95. In this case, if the molar ratio (tetracarboxylic dianhydride Z diamines) is less than 0.8 or more than 0.99, the end capping becomes insufficient and the obtained polyimide Thermal stability ⁇ May adversely affect processability.
  • the molecular weight of the polyimide can be controlled by changing the molar ratio of diamines and tetracarbonic dianhydride used in the production of the polyimide, and the purity and amount of the raw materials, the amount of impurities, the polymerization method, the type of solvent, and the polymerization.
  • the optimum charging ratio may vary depending on the temperature, polymerization time, and the like.
  • the molar ratio of diamines and tetracarboxylic dianhydrides to be used is preferably set to be approximately equimolar.
  • the viscosity of the reaction solution was remarkably increased by the conventional method in which the generated polyimide did not precipitate, and stirring was difficult.
  • the produced polyimide precipitates and the reaction system becomes a slurry, so that the reaction solution does not become viscous enough to hinder stirring.
  • a terminal blocking agent can be used as necessary.
  • the terminal blocking agent used is not particularly limited, and various types can be used. Among them, monoamines or dicarboxylic anhydrides can be preferably used.
  • Examples of the monoamine used as such a terminal blocking agent include aniline, ⁇ -toluidine, m-toluidine, p_toluidine, 2,3-xylysine, 2,4-xylysine, 2,5-xylysine, 6-xylidine, 3,4-xylidine, 3,5-xylidine, o_chloroaniline, m-chloroaniline, p-chloroaniline, o-promorenyline, m-bromoaniline, p-bromoaniline Phosphorus, o-Nitroaline, m-Nitroaline, p-Nitroaline, o-anisidine, m-anisine, p-anisine, o-phenazine, m-phenetidine, p-phenetidine O-aminophenol, m-aminophenol, p-aminophenol, o-aminobenzaldeh
  • dicarboxylic anhydride used as such a terminal capping agent examples include, for example, fluoric anhydride, 2,3-benzophenone dicarboxylic anhydride, and 3,4-benzophenone dicarboxylic anhydride.
  • These monoamines and dicarboxylic anhydrides may have a part of their structure substituted by a group having no reactivity with amine or carboxylic anhydride.
  • a part of the structure of such a monoamine or dicarboxylic anhydride is converted into an ethynyl group, a benzocyclobutene-4'-yl group, a vinyl group, an aryl group, a cyano group, an isocyanate group,
  • a monoamine or dicarboxylic anhydride substituted with a substituent such as a ditrilo group, an isopropenyl group, a vinylene group, a vinylidene group or an ethynylidene group can also be used.
  • Such terminal blocking agents can be used alone or in combination of two or more.
  • the amount of the terminal blocking agent used when using such a terminal blocking agent is not particularly limited,
  • the total amount of the monoamine component used as the terminal capping agent is [Ma] (mol), and the total amount of the dicarboxylic anhydride component (or the ring-opened product or derivative thereof) used as the terminal capping agent is [Dc] (mol). )
  • the terminal blocking agent is preferably charged together with the aromatic diamine and the aromatic tetracarboxylic dianhydride at the start of the reaction.
  • the generated polymer precipitates with the progress of the reaction, so that when the terminal blocking agent is added later, the terminal may not be sufficiently sealed.
  • a known catalyst can be used in combination with the reaction of diamines and tetracarboxylic dianhydrides.
  • a catalyst it is preferable to use a base catalyst.
  • Examples of such a base catalyst include, for example,
  • Inorganic bases such as potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, hydrogen carbonate carbonate, and sodium hydrogen carbonate.
  • the amount of the catalyst to be used is preferably 0.01 to 0.5 mol, more preferably 0.05 to 0.2 mol, per 1 mol of the diamines used.
  • the method for producing a polyimide according to the present invention comprises 50 to 100% by weight of an equimolar composition of the nitrogen-containing cyclic compound represented by the chemical formula (1) and the phenol represented by the chemical formula (2).
  • a solvent may be used, and there is no particular limitation, but the starting monomers diamines and tetracarboxylic dianhydrides are heated while dissolved or suspended in the solvent, and thermally heated. A method of performing dehydration imidization is preferable. At this time, the charging order and timing of the diamines, tetracarboxylic dianhydride and terminal blocking agent can be arbitrarily selected.
  • the concentration of the raw material monomers that can be used in the present invention is not particularly limited, and can be arbitrarily set depending on conditions such as the structure and molecular weight of the polyimide to be obtained, the reaction temperature, and the temperature at the time of filtration.
  • slurry polymerization at a higher concentration is possible as compared with a known production method by imidation with a phenol-based single solvent.
  • the concentration of the preferable raw material monomers based on the total weight of the reaction solution is 5 to 50% by weight, more preferably 10 to 45% by weight. Preferably it is 18 to 40% by weight, particularly preferably 23 to 37% by weight.
  • the concentration of the raw material monomers is less than 5% by weight, the yield per batch may be reduced and the production efficiency may be deteriorated, so that the features of the present invention may be impaired. %, It may be difficult to stir the reaction solution during the imidization reaction, and stable production may be difficult.
  • the concentration is (total weight of raw material monomers) / ⁇ (total of raw material monomers) Weight) + (weight of solvent) ⁇ X refers to the concentration indicated by 100 (%).
  • the polymerization temperature, polymerization time and polymerization pressure are not particularly limited, and known conditions can be applied. That is, the reaction temperature is preferably 80 to about 400, and more preferably 100 to about 300. The upper limit of the reaction temperature is limited by the boiling point of the solvent under the pressure during the polymerization. Although the reaction time varies depending on the solvent used and other reaction conditions, it is generally preferable to carry out the reaction in the range of 0.5 to 24 hours.
  • the solvent used for the reaction has a high boiling point, and the polymerization reaction can be efficiently performed even at a temperature exceeding, for example, 200.
  • the reaction pressure can be performed at normal pressure, and no special device is required for increasing or decreasing the pressure of the reaction system, and the process can be simplified.
  • the polymerization reaction can be performed in any of air, nitrogen, helium, neon, and argon atmospheres, and the atmosphere during the reaction is not particularly limited. However, it is preferable to use an inert gas such as nitrogen or argon.
  • the concentration of the polyimide thus obtained relative to the total weight of the reaction solution is preferably 5 to 50% by weight, more preferably 10 to 45% by weight, and still more preferably 18 to 40% by weight. %, Particularly preferably 23 to 37% by weight.
  • the concentration refers to a concentration represented by (weight of polyimide) / ⁇ (weight of polyimide) + (weight of solvent) ⁇ ⁇ 100 (%). Reaction solution state during polymerization process>
  • an equimolar composition of the nitrogen-containing cyclic compound represented by the chemical formula (1) and the phenol represented by the chemical formula (2) is used as a solvent in an amount of 50 to 100.
  • a solvent containing 5% by weight of polyimide allows the polyimide to precipitate in the solvent under the conditions of normal pressure and the above-mentioned reaction temperature range at the final stage of the imidization reaction in the polyimide production process according to the present invention. It can be in the form of a slurry.
  • a typical reaction state is, for example, that the monomer and / or polyimide precursor are dissolved in the initial stage of the reaction, and the reaction solution is once a homogeneous solution.
  • the “end stage” of the reaction means a stage at which the reaction has proceeded as described above and the polymerization and imidization of the polyimide have almost been completed.
  • reaction solution Even if such a slurry-like reaction solution is cooled to about room temperature, the reaction solution does not become a viscous state but remains in a slurry state.
  • a polyimide can be obtained by simply filtering the slurry-like reaction solution thus obtained as it is.
  • toluene, methanol, ethanol, methyl ethyl ketone, water, N-methyl-2-pyrrolidone, or the like may be added as a poor solvent if necessary.
  • the polyimide obtained by such an operation is usually in the form of a powder, so that the solvent can be easily removed and the polyimide can be easily used for various purposes.
  • the solvent in the recovered polyimide can be removed by various known methods. For example, the solvent can be removed by drying at 100 to 400 in an oven.
  • the polymerization reaction is often carried out at a somewhat lower raw material concentration (for example, about 10% by weight) in order to prevent solidification of the produced polymer, which varies depending on the structure of the produced polyimide.
  • the reaction solution solidifies even when imidation is performed with the total concentration of the polyimide raw materials being higher (for example, 20% by weight or more). Therefore, the reaction solution can be obtained in a slurry state, so that the productivity of polyimide in an industrial process can be improved.
  • the obtained polyimide has the same physical properties as polyimide obtained by conventional low-concentration polymerization (for example, a concentration of about 10% by weight), and its moldability, sliding properties, low water absorption, and electrical properties Various physical properties such as thermal oxidation stability and radiation resistance are not impaired.
  • the polyimide obtained by the polyimide production method of the present invention has the same physical properties as the polyimide obtained by the conventionally known method, The method can be applied to compression molding, sinter molding, extrusion molding, injection molding, transfer molding, and the like, and can be used for conventionally known applications. Industrial applicability
  • Polyimides obtained by the production method of the present invention include, for example, in the field of semiconductor containers, trays for IC packaging, trays for IC production processes, IC sockets, wafer carriers, etc.In the field of electric and electronic components, connectors, sockets, In addition to bobbins, hard disk carriers, LCD display carriers, jigs for manufacturing crystal oscillator manufacturing trays, etc.In the field of office equipment parts, separation claws for copiers, heat-insulated bearings for copiers, gears for copiers, etc. Thrust washers, transmission rings, piston rings, oil seal rings, etc. in the automotive parts field. Bearings, pump gears, conveyor chains, slide bushings for stretch machines, etc. in the industrial equipment parts field. Fiber etc. .
  • the equimolar composition or the solvent containing a specific amount of the equimolar composition according to the present invention has a high boiling point and a low freezing point, and has an appropriate polarity (for example, a dielectric constant of 20 (similar to acetone)).
  • ⁇ 33 similar to methanol) and has the unique property of being immiscible with water, so it can be used as an organic solvent under normal reaction conditions, It can be used conveniently.
  • various organic and inorganic reaction solvents solvents for polyimide synthesis during the production of polymers such as polyimide, solvents for extracting and purifying various chemicals, solvents for dissolving inks such as dyes and pigments, solvents for paints, cleaning agents, Refrigerant, heat medium, polymer-soluble paint • Solvents for adhesives, polymer plasticizers, etc.
  • the production of polyimide may be carried out under a high temperature condition such as a polymerization temperature of 200 or more under normal pressure, and the equimolar composition according to the present invention or the equimolar composition is characterized.
  • the solvent contained in a fixed amount is particularly useful as an organic solvent for polyimide synthesis.
  • a slurry-like reaction solution in which the polyimide is precipitated can be obtained, and the polyimide can be obtained by simply filtering the reaction solution as it is, and thus the polyimide can be obtained by an easy and inexpensive process. Obtainable.
  • the reaction solution does not solidify and is in a slurry state, so that the productivity of polyimide is improved. It does not impair the various physical properties of polyimide derived from various structures (moldability, sliding properties, low water absorption, electrical properties, thermal oxidation stability, radiation resistance, etc.).
  • the liquid composition was measured as it was using Unity Inova400 manufactured by Varian.
  • the measurement was performed by the LCR meter bridge method using a precision LCR meter HP4284A manufactured by Agilent Technologies and a measuring electrode LE-22 manufactured by Ando Electric.
  • the measurement frequency is 1 ⁇ , and the measurement conditions are 22 persons1 and Z60 ⁇ 2% RH.
  • Orifice 1 Omm (diameter) X I 0 mm (long), load 100 kgf, residence time 5 minutes unless otherwise specified, using a Shimadzu Koka type flow tester (CFT 500A).
  • the measurement was carried out in air using DTA-TG (Shimadzu DT-40 series, 40 M) at a heating rate of 10 Zmin.
  • Example A 1 The temperature was measured with a DSC (Shimadzu DT-40 series, DSC-41M) at a heating rate of 10 / min.
  • DSC Shiadzu DT-40 series, DSC-41M
  • N-methyl-2-pyrrolidone is charged into a sufficiently dried flask with a packed column, rectified under a nitrogen atmosphere at normal pressure, and has a boiling point of 204.5 and a water content of l Oppm or less.
  • -Methyl-2-pyrrolidone was prepared.
  • m-cresol special grade was rectified in the same manner to prepare purified m-cresol having a boiling point of 202.2 t and a water content of 1 Oppm or less.
  • the obtained equimolar composition was heated at normal pressure, and the temperatures of the liquid phase and the gaseous phase at the time of boiling were 230. This is 25.5 higher than the boiling point of purified N-methyl-2-piperidone (204.5) and 27.81: higher than the boiling point of purified m-cresol (at 202.2). Met. Further, the obtained equimolar composition was placed in a flask and exposed to ice water at 0 for 3 hours, but the equimolar composition did not solidify and remained in a liquid state.
  • FIGS. A2 and A3 show 1 H- and 13 C-NMR spectra of the obtained equimolar composition.
  • the proton and carbon signals of the equimolar composition are equivalent to those of known N-methyl-2-pyrrolidone and m-cresol alone, indicating that no ionic bond is formed.
  • the obtained equimolar composition had a dielectric constant of 24.0 and a dielectric loss tangent of 0.353.
  • 5 g of the obtained equimolar composition was mixed with 5 g of pure water in a sample bottle and stirred vigorously, but the equimolar composition and pure water were not mixed and remained in two layers. .
  • Example A 2
  • Example A1 40 g of the composition obtained in Example A1 was charged into a simple evaporative distillation apparatus equipped with a decompression device, a cooling pipe, an effluent receiver, and a thermometer, and into which nitrogen was introduced by a capillary. After the pressure in the system was reduced to 1.33 ⁇ 10 4 Pa, the temperature was gradually raised from room temperature in an oil bath, and about 10 g of the distilled solution was fractionated in three times from the start of distillation.
  • the calibration curve was created using the purified N-methyl-2-piperidone prepared in Example A1 and purified m-cresol.
  • Example A2 the internal pressure of the flask was 1.33 ⁇ 10 4 Pa, Distillation was carried out in the same manner as in Example A2, except that the internal pressure of Rusco was set to 1.33 ⁇ 10 3 Pa, to obtain about 10 g of each of the first distillation, the middle distillation, the last distillation, and the bottom.
  • Example A 5 N-methyl-2-pyrrolidone / m-cresol
  • Example A1 The equimolar composition of purified N-methyl-2-pyrrolidone and purified m-cresol, obtained in Example A1, and purified N-methyl-2-pyrrolidone or purified m-cresol were used in amounts shown in Table 1. Was blended. Table 1 shows the boiling points measured in the same manner as in Example A1.
  • Example A 9 The equimolar composition of purified N-methyl-2-pyrrolidone and purified m-cresol obtained in Example A1, and purified N-methyl-2-pyrrolidone or purified m-cresol are shown in Table 1. It was blended in the amounts shown. Table 1 shows the boiling points measured in the same manner as in Example A1.
  • Example A 9 The equimolar composition of purified N-methyl-2-pyrrolidone and purified m-cresol obtained in Example A1, and purified N-methyl-2-pyrrolidone or purified m-cresol are shown in Table 1. It was blended in the amounts shown. Table 1 shows the boiling points measured in the same manner as in Example A1.
  • Example A 9 The equimolar composition of purified N-methyl-2-pyrrolidone and purified m-cresol obtained in Example A1, and purified N-methyl-2-pyrrolidone or purified m-cresol are shown in Table 1. It was blended in the amounts shown. Table 1 shows the boiling points measured in
  • p-Cresol (special grade) was rectified in the same manner as in Example A1, and purified P-cresol having a boiling point of 201.9 and a water content of 1 O ppm or less was prepared.
  • the purified N-methyl-2-pyrrolidone 99.1 (1.OOmol) prepared in Example A1 was charged into a flask and stirred, and further purified P-cresol 108.1 was added. g (1.0 OOmol) was gradually added to obtain an equimolar composition (liquid) of purified N-methyl-2-pyrrolidone and purified p-cresol.
  • the obtained equimolar composition was heated at normal pressure, and the temperatures of the liquid phase and the gaseous phase at the time of boiling were measured. This is 23.5 higher than the boiling point (at 204.5) of purified N-methyl-2-piperidone and higher than the boiling point (at 201.9) of purified P-cresol. The temperature was high at 26.1. Further, the obtained equimolar composition was placed in a flask and exposed to ice water at 0 for 3 hours, but the equimolar composition did not solidify and remained in a liquid state.
  • the p-cloguchi phenol (special grade) was rectified in the same manner as in Example A1 to prepare a purified P-cloguchi phenol having a boiling point of 2 17 and a water content of 1 O ppm or less.
  • the equimolar composition obtained is heated at normal pressure and the temperature of the liquid and gaseous phases during boiling is measured. As a result, it was 245 for both the liquid phase and the gas phase. This was about 41 higher than the boiling point of purified N-methyl-2-piperidone (at 204.5) and 28 higher than the boiling point of purified p-chlorophenol (217). Further, the obtained equimolar composition was placed in a flask and exposed to ice water at 0 for 3 hours, but the equimolar composition did not solidify and remained in a liquid state.
  • FIG. A4 shows the IR spectra of the obtained equimolar composition and the reagent grade N-methyl-2-pyrrolidone and P-chlorophenol.
  • the IR spectrum of the equimolar composition shows OH stretching vibration that forms intramolecular and intermolecular hydrogen bonds.
  • C-O stretching vibration due to the formation of aggregates by hydrogen bonding is observed at 1269 cm- 1 .
  • the obtained equimolar composition had a dielectric constant of 32.8 and a dielectric loss tangent of 0.434.
  • 5 g of the obtained equimolar composition was mixed with 5 g of pure water in a sample bottle and stirred vigorously, but the equimolar composition and pure water were not mixed and remained in two layers. .
  • 1,3-Dimethyl-2-imidazolidinone was charged into a fully-dried flask with a packed column, rectified under a nitrogen atmosphere at normal pressure, and had a boiling point of 22.5.5 and a water content of 10 ppm or less. Purification of 1,3-dimethyl-2-imidazolidinone was prepared. In addition, m-cresol (special grade) was rectified in the same manner to prepare purified m-cresol having a boiling point of 202.2 t and a water content of 10 ppm or less.
  • the obtained equimolar composition was heated at normal pressure, and the temperatures of the liquid phase and the gaseous phase at the time of boiling were measured. This is about 12 higher than the boiling point of purified 1,3-dimethyl-2-imidazolidinone (25.5 V) and about 3 higher than the boiling point of purified m-cresol (at 202.2). 5 was high temperature. Further, the obtained equimolar composition was placed in a flask and exposed to ice water at 0 for 3 hours, but the equimolar composition did not solidify and remained in a liquid state.
  • Fig. B1 shows the IR spectra of the obtained equimolar composition and reagent grade 1,3-dimethyl-2-imidazolidinone and m-cresol.
  • the IR spectrum of the equimolar composition shows OH stretching vibration that forms intramolecular and intermolecular hydrogen bonds.
  • C 0 of 1,3-dimethyl-2-imidazolidinone and OH of m-cresol form a strong hydrogen bond.
  • the 1 H- and 13 C-NMR spectra of the obtained equimolar composition are shown in FIGS.
  • the proton and carbon signals of the equimolar composition are equivalent to those of known 1,3-dimethyl-2-imidazolidinone and m-cresol alone, indicating that no ionic bond has been formed.
  • the obtained equimolar composition had a dielectric constant of 24.1 and a dielectric loss tangent of 0.412.
  • 5 g of the obtained equimolar composition was mixed with 5 g of pure water in a sample bottle and stirred vigorously, but the equimolar composition and pure water were not mixed and remained in two layers. .
  • Example B 2
  • Example B1 40 g of the composition obtained in Example B1 was charged into a simple evaporative distillation apparatus equipped with a decompression device, a cooling pipe, an effluent receiver, and a thermometer and into which nitrogen was introduced by a capillary. After reducing the pressure of the system to 1. 3 3 X 1 0 4 Pa, collected and gradually heated from room temperature in an oil bath, distilled solution from about 1 0 g Dzu', three times the distillate starts min did.
  • P-cresol (special grade) was rectified in the same manner as in Example B1, and purified P-cresol having a boiling point of 201.9 and a water content of 10 ppm or less was prepared.
  • the obtained equimolar composition was heated at normal pressure, and the temperatures of the liquid phase and the gaseous phase at the time of boiling were 236. This is about 11 higher than the boiling point of purified 1,3-dimethyl-2-imidazolidinone (at 225.5) and about 34 higher than the boiling point of purified P-cresol (at 201.9). Met. Further, the obtained equimolar composition was placed in a flask and exposed to ice water at 0 for 3 hours, but the equimolar composition did not solidify and remained in a liquid state.
  • Example B 7 The phenol (special grade) was rectified in the same manner as in Example B1 to prepare a purified phenol having a boiling point of 181.2 and a water content of 10 ppm or less.
  • the obtained equimolar composition was heated at normal pressure, and the temperatures of the liquid phase and the gaseous phase at the time of boiling were measured. It is about 4 higher than the boiling point of purified 1,3-dimethyl-2-imidazolidinone (at 225.5) and about 27 higher than the boiling point of purified P-cresol (at 201.9). Temperature. The obtained equimolar composition was placed in a flask and exposed to ice water of 0 for 3 hours, but the equimolar composition did not solidify and remained in a liquid state.
  • P-cloguchi phenol (special grade) was rectified in the same manner as in Example B1 to prepare purified P-cloguchi phenol having a boiling point of 21 ° C and a water content of 10 ppm or less.
  • the obtained equimolar composition was heated at normal pressure, and the temperatures of the liquid phase and the gaseous phase during boiling were measured. This is about 32 higher than the boiling point of purified 1,3-dimethyl-2-imidazolidinone (at 25.5) and 40 higher than the boiling point of purified P-chlorophenol (at 21.7). Met. Further, the obtained equimolar composition was placed in a flask and exposed to ice water at 0 for 3 hours, but the equimolar composition did not solidify and remained in a liquid state.
  • Fig. B4 shows the obtained equimolar composition and the IR spectrum of the reagent grade 1,3-dimethyl-2-imidazolidinone and P-chloromouth phenol.
  • C ⁇ of 1,3-dimethyl-2-imidazolidinone and OH of P-chlorophenol form strong hydrogen bonds.
  • FIGS. B5 and B6 show the 1 H- and ' 3 C-NMR spectrum of the obtained equimolar composition.
  • the proton and carbon signals of the equimolar composition are equivalent to those of the well-known 1,3-dimethyl-2-imidazolidinone and P-chlorophenol alone, indicating that no ionic bond has been formed.
  • the obtained equimolar composition had a dielectric constant of 32.5 and a dielectric loss tangent of 0.495.
  • 5 g of the obtained equimolar composition was mixed with 5 g of pure water in a sample bottle and stirred vigorously, but the equimolar composition and pure water were not mixed and remained in two layers. .
  • Example B 1 An equimolar composition of purified 1,3-dimethyl-2-imidazolidinone and purified p-chlorophenol obtained in Example B 1 and purified 1,3-dimethyl-2-imidazolidinone or purified P -Black phenol was blended in the amounts shown in Table B1.
  • Table B1 shows the boiling points measured in the same manner as in Example B1.
  • Equimolar composition Equimolar composition of purified 1,3-dimethyl-2-imida V-linenone and purified P-kappa file Content: Equimolar composition amount (g) / mixing amount Total (25g) X 100 (wt%)
  • the resulting polymer was mixed with 1 liter of each solvent. Then, it was washed with 1 liter of toluene. In Comparative Example C9, the obtained polymer was washed with 2 L of toluene. The polymer thus obtained was pre-dried at 50 for 24 hours and then dried at 300 under a nitrogen stream at 12 hours.
  • Example C10 ⁇ I2, Comparative example C10, 1 1
  • Table C5 shows the state of the reaction solution during the heating process from room temperature to 200 and the reaction process at 20. However, in Table C5, each symbol indicates the following status.
  • reaction solution can be stirred (Examples C10 to C12, Comparative Example C10)
  • 17.77 g (120. Ommol) of fluoric anhydride was charged, and the mixture was further stirred at 200 for 4 hours. The reaction was performed.
  • Example C 10 to 12 the obtained polymer was washed with 1 liter of each solvent and subsequently with 1 liter of toluene.
  • Comparative Example C10 The obtained polymer was washed with 2 liters of toluene. The polymer thus obtained was pre-dried at 50: for 24 hours, and then dried under reduced pressure at 200 for 12 hours under a nitrogen stream.
  • Example C10 instead of the initial charge of phthalic anhydride and the further charge of hydrofluoric anhydride in the stirrable reaction solution, 10.66 g (72. Polyimide was obtained under the same conditions as in Example C10, except that the composition was changed to 1 Ommol) and 41.9-phenylethynylphthalic anhydride 11.92 g (48.00.0 mmol). .
  • the glass transition temperature of the obtained polyimide powder was 238. This powder was further melted in a 360 ° furnace and kept for 4 hours to obtain a bulk polyimide. The glass transition temperature of this polyimide was 246.
  • Table D2 shows the state of the reaction solution during the heating process from room temperature to 200 and the reaction process at 200. However, in Table D2, each symbol indicates the following status.
  • Example D 1 to 9 the obtained polymer was washed with 1 liter of each solvent and subsequently with 1 liter of toluene. Also, Comparative Example D 7 was not obtained. The polymer obtained was washed with 2 liters of toluene. The polymer thus obtained was pre-dried at 50 for 24 hours and then dried at 300 for 12 hours under a stream of nitrogen.
  • the isolation of the polyimide can be performed only by filtration, which is a simple process. Also, compared to polyimide obtained by a usual method, physical properties are not changed at all, and good heat resistance is maintained.
  • Table D5 shows the state of the reaction solution during the heating process from room temperature to 200 and the reaction process at 200. However, in Table D5, each symbol indicates the following status.
  • Example D 10 the obtained polymer was washed with 1 liter of each solvent and subsequently with 1 liter of toluene.
  • Comparative Example D10 The obtained polymer was washed with 2 liters of toluene. The polymer thus obtained was pre-dried for 50 to 24 hours, and then dried under a nitrogen stream at 200 ° C. for 12 hours under reduced pressure.
  • Example D10 instead of the originally charged anhydrous anhydride and further added anhydrous acid to the stirrable reaction solution, 10.66 g (7. 2.0 mmol) and 1.1-92 g (4.80 mmol) of 4-phenylethynylphthalic anhydride were obtained in the same manner as in Example D10. Was.
  • the glass transition temperature of the obtained polyimide powder was 238.
  • the powder was further melted in a furnace at 360 and kept for 4 hours to obtain a lump polyimide.
  • the glass transition temperature of this polyimide was 245.
  • Example C1 The reaction was carried out according to Example C1, except that 1031 g of the solvent having the composition shown in Table E1 was used. However, for Comparative Example E5-8, the reaction was carried out at the boiling point of the solvent (180-200 :) under the reflux of the solvent. In this case, the theoretical yield of the polymer was 275.3 g, and the polymer concentration was 21.1%.
  • Table E2 shows the state of the reaction solution during the heating process and the reaction process from room temperature to the reaction temperature. However, in Table E2, each symbol indicates the following status.
  • Comparative Example E As can be seen from 1, 2, 5 to 7, 9, 11, 11 and 12, when a monomer and / or polyimide precursor is dissolved using a solvent containing no equimolar composition and the solution becomes homogeneous. During the reaction, as the imidization proceeds, the reaction solution rapidly becomes jelly-like or solidifies due to the precipitate.
  • Equimolar composition Equimolar composition of nitrogen-containing cyclic compound and phenols Content: Equimolar composition amount (g) Total Z content (g) X 100 (wt%)
  • Example E 4-7 Comparative example E 13--15, Reference example 1
  • the reaction was carried out according to Example C10 except that 1098 g of the solvent having the composition shown in Table E4 was used. In this case, the theoretical yield of the polymer was 591.0 g, and the polymer concentration was 35.0%.
  • Table E5 shows the state of the reaction solution during the heating process and the reaction process from room temperature to the reaction temperature. However, in Table E5, each symbol indicates the following status.
  • reaction solution can be stirred (Examples E4 to E7), 17.77 g (120.0 mmol) of phthalic anhydride was charged, and the reaction was further performed at 200 for 4 hours. .
  • the reaction temperature was 200 in Example E8 and 230 in Example E9, and a polyimide was synthesized according to Example 10.
  • a portion of the reaction slurry was collected 3, 6, and 9 hours after the start of the reaction, filtered, and dried, and the logarithmic viscosity of the obtained sample was measured. The results are shown in Table E7.
  • Example E 8 ⁇ 200 ⁇
  • Example E 10-13 Comparative example E 17-26, Reference example E 2
  • Table E9 shows the state of the reaction solution during the heating process from room temperature to 200 and the reaction process at 200.
  • BAB 4,4'-bis (3-aminophenoxy) biphenyl BPDA: 3,3'.4,4'-biphenyl ditracarboxylic dianhydride
  • Equimolar composition equimolar composition of m, p "mixed cresol and N-methyl-2-pyrrolidone
  • the polyimide using pyromellitic dianhydride as the tetracarboxylic dianhydride shows that when the equimolar composition is used as the solvent, Precipitates and solidifies the reaction solution, which is not preferable.
  • cresol used as a solvent, the polyimide precipitates with the progress of imidation and becomes a good slurry state.
  • the reaction system is in a slurry state, so that isolation of the polyimide can be performed only by filtration, which is a simple process.
  • physical properties are not changed at all and good heat resistance is maintained.
  • Table E10 shows the state of the reaction solution in the temperature rising process from room temperature to 200 and in the reaction process at 20.
  • PA phthalic anhydride
  • ODPA bis (3,4-dicarboxyphthalic acid)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

A process for producing a polyimide which comprises subjecting a diamine and a tetracarboxylic dianhydride to imidization in a solvent comprising 50 to 100 wt.% composition consisting of a nitrogenous cyclic compound represented by the following chemical formula (1) and a phenol represented by the following chemical formula (2) in an equimolar proportion. (In the formula (1), X represents -CH2- or -N(CH3)-. In the formula (2), R1 and R2 may be same or different and each represents -H, -OH, -CH3, -C2H7, -C3H7, -C2H9, -C5H11, -C6H13, -C7H15, -C8H17, -C9H19, -C10H21, -OCH3, -O(C6H5), -NO2, -Cl, -Br, or -F.)

Description

明細 ポリイミドの製造方法 技術分野  Description Polyimide manufacturing method
本発明は、 ポリイミドの製造方法に関する。 さらに詳しくは、 溶媒として特 定の含窒素環状化合物と特定のフヱノール類との等モル組成物を用いて、 ジァ ミンとテトラカルボン酸二無水物とのイミド化反応を行い、 イミド化反応中に ポリイミド及び 又はオリゴマーを析出させて、 反応系をスラリー状とするポ リイミドの製造方法に関する。  The present invention relates to a method for producing a polyimide. More specifically, using an equimolar composition of a specific nitrogen-containing cyclic compound and a specific phenol as a solvent, an imidation reaction between diamine and tetracarboxylic dianhydride is performed. The present invention relates to a method for producing a polyimide by precipitating a polyimide and / or an oligomer to form a slurry into a reaction system.
また、 このような等モル組成物に関する。 背景技術  The invention also relates to such an equimolar composition. Background art
従来より、 ポリイミドは、 耐熱性、 機械特性、 電気特性などに優れることか ら、 成形材料、 複合材料、 電気 ·電子材料などとして、 様々な分野で幅広く用 いられている。 特に、 ビフエ二ルテトラカルボン酸型ポリイミドは、 ピロメリ ット酸型ポリイミドとは異なる様々な特徴を有するため、 有用性が高く、 多く の検討や利用がなされている。 なかでも、 下記化学式 (4)〜(6) ;  Hitherto, polyimide has been widely used in various fields as a molding material, a composite material, an electric / electronic material, etc. because of its excellent heat resistance, mechanical properties, and electrical properties. In particular, biphenyltetracarboxylic acid-type polyimides have various characteristics different from pyromellitic acid-type polyimides, and are therefore highly useful, and have been studied and used in many applications. Among them, the following chemical formulas (4) to (6);
Figure imgf000003_0001
Figure imgf000004_0001
Figure imgf000003_0001
Figure imgf000004_0001
で示される繰り返し構造単位を有するポリイミドは熱可塑性であるため、 プレ ス成形、 押出成形、 射出成形等の溶融成形により様々な形状の成形体を得るこ とができ、 その有用性は極めて高い (G. L. Wilkes et al., Macromolecules, 30, pp.1012 (1997) ; S. Tamai et al., Polymer, 37 (16) pp.3683 (1996) ; S. Tamai et al., Polymer, 39 (10) pp.1945 (1998) 等参照)。 Since the polyimide having a repeating structural unit represented by is thermoplastic, it is possible to obtain molded articles of various shapes by melt molding such as press molding, extrusion molding, injection molding, etc., and its usefulness is extremely high ( GL Wilkes et al., Macromolecules, 30, pp.1012 (1997); S. Tamai et al., Polymer, 37 (16) pp.3683 (1996); S. Tamai et al., Polymer, 39 (10) pp.1945 (1998) etc.).
ポリイミド成形体は通常、 非熱可塑性ポリイミド粉末の焼結成形や、 熱可塑 性ポリイミド粉末の溶融成形により製造される。 そのため、 ポリイミド粉末の 製造方法が数多く開発されている。  The polyimide molded body is usually manufactured by sinter molding of non-thermoplastic polyimide powder or melt molding of thermoplastic polyimide powder. Therefore, many methods for producing polyimide powder have been developed.
例えば、 特開平 4一 1 4 2 3 3 2号公報、 特開 2 0 0 0— 1 5 4 5号公報等 には、 非プロトン性極性溶媒中で加熱イミド化するピロメリット酸型ポリイミ ドの製造方法が開示されている。 ピロメリット酸型ポリイミドは溶剤への溶解 性が低く、 反応の進行と共に生成したポリイミドが析出するため、 ポリイミ ド 粉末を容易に得ることができる。  For example, Japanese Patent Application Laid-Open Nos. HEI 4-142332 and JP-A-2000-15545 disclose pyromellitic acid-type polyimides which can be heated and imidized in an aprotic polar solvent. A manufacturing method is disclosed. Pyromellitic acid-type polyimide has low solubility in a solvent, and the produced polyimide precipitates as the reaction proceeds, so that a polyimide powder can be easily obtained.
しかしながら、 T. Nakano, 2nd Intern. Conf. on PI等に示されるように、 ビフ ェニルテトラカルボン酸型ポリイミドは溶剤への溶解性が高いため、 上記の方 法を用いることは困難であった。 すなわち、 非プロトン性極性溶媒中で加熱ィ ミド化しても、 生成したビフエ二ルテトラカルボン酸型ポリイミドが析出しな い、 あるいは多量の溶媒を含み膨潤した状態で析出するため反応系が固化する といった問題が生じる。  However, as shown in T. Nakano, 2nd Intern. Conf. On PI, etc., it was difficult to use the above method because biphenyltetracarboxylic acid type polyimide has high solubility in a solvent. In other words, even when imidized by heating in an aprotic polar solvent, the generated biphenyltetracarboxylic acid-type polyimide does not precipitate, or precipitates in a swollen state containing a large amount of solvent, thereby solidifying the reaction system. Such a problem arises.
例えば、 G. L. Wilkes et al., Macromolecules, 30, pp.1012 ( 1997)においては、 非 プロトン性極性溶媒である N-メチル -2-ピロリドン中で加熱イミド化することに より、 前記化学式 (4)で表される繰り返し構造を有するポリイミドを得ている。 この場合、 反応の進行と共に生成したポリマーが析出してくるが、 反応時のポ リマー濃度は約 1 0重量%である。 これは、 析出するポリイミドが多量の溶媒 を含み膨潤するため、 重合時のポリマー濃度をこれ以上とした場合には、 反応 系が粘土状になり、 撹拌できなくなるためである。 For example, in GL Wilkes et al., Macromolecules, 30, pp. 1012 (1997), heat imidization in N-methyl-2-pyrrolidone, which is an aprotic polar solvent, yields the chemical formula (4) The polyimide which has a repeating structure represented by these is obtained. In this case, the produced polymer precipitates as the reaction proceeds, but the polymer concentration during the reaction is about 10% by weight. This is because the precipitated polyimide swells because it contains a large amount of solvent. This is because the system becomes clay-like and cannot be stirred.
また、 特開 2 0 0 0— 1 0 3 8 5 4号公報、 特開平 8— 1 2 1 3 8 6号公報 等では、 クレゾール中で加熱イミド化することにより、 前記化学式 (4)あるいは (6)で表される繰り返し構造を有するポリイミドを得ている。 この場合、 生成し たポリマーは溶媒に溶解しているため、 反応後に多量の貧溶媒を用いてポリマ —を析出させている。  Further, in JP-A-2000-108384, JP-A-08-213886, etc., by heating imidization in cresol, the chemical formula (4) or ( A polyimide having a repeating structure represented by 6) is obtained. In this case, since the produced polymer is dissolved in the solvent, a large amount of the poor solvent is used to precipitate the polymer after the reaction.
上記のように、 溶媒中で加熱イミド化するビフエ二ルテトラカルボン酸型ポ リイミドの製造は、 従来、 低濃度で、 あるいは高濃度で反応した後に貧溶媒で 希釈するといつた方法で製造されているため、 容積効率が極めて悪く、 生産性 が著しく低かった。 すなわち、 例えば、 容量 l m3の反応器を用いた場合、 G. L. Wilkes et al.の方法によれば、 得られるポリイミドは 1 0 0 k g未満であり、 特 開 2 0 0 0— 1 0 3 8 5 4号公報の方法によれば、 得られるポリイミドの量は 2 0 k g未満である。 As mentioned above, the production of biphenyltetracarboxylic acid-type polyimides that are imidized by heating in a solvent is conventionally performed by a method that involves reacting at a low or high concentration and then diluting with a poor solvent. As a result, volumetric efficiency was extremely poor, and productivity was extremely low. That is, for example, when a reactor having a capacity of lm 3 is used, according to the method of GL Wilkes et al., The amount of polyimide obtained is less than 100 kg, According to the method disclosed in Japanese Patent Application Laid-Open No. 4 (1999) -1995, the amount of the obtained polyimide is less than 20 kg.
さらに、 従来法では、 析出したポリイミドが多量の溶媒を含むため、 乾燥等 による溶媒除去に多大な労力が払われていた。  Furthermore, in the conventional method, since the precipitated polyimide contains a large amount of solvent, a great deal of effort has been paid to removing the solvent by drying or the like.
また、 特開平 6— 2 2 0 1 9 4号公報 「ポリイミド溶液組成物及びその製造 方法」 に 「酸二無水物と芳香族ジァミンとを有機極性溶媒中で、 直接イミド化 する方法において、 フエノール性化合物の存在下に重縮合することを特徴とす るポリイミドの製造方法」 が開示されている。  Japanese Patent Application Laid-Open No. 6-220194 discloses a method for directly imidizing an acid dianhydride and an aromatic diamine in an organic polar solvent, which is described in "Polyimide Solution Composition and Method for Producing the Same". A method for producing a polyimide characterized by performing polycondensation in the presence of a neutral compound ”.
該発明の対象は、有機極性溶媒に可溶な脂肪族含有ポリイミドの溶液であり、 その目的は、 溶媒中で加熱イミド化する際の副反応を抑制することである。  The object of the present invention is a solution of an aliphatic-containing polyimide that is soluble in an organic polar solvent, and its object is to suppress a side reaction during imidization by heating in a solvent.
一方、 本発明に係るポリイミドの製造方法は、 イミド化反応中にポリイミド を析出させ、 スラリー状の反応溶液を得るものであり、 反応溶液をそのまま濾 過するだけでポリイミドを簡便に得ることを目的としている。  On the other hand, the method for producing a polyimide according to the present invention is intended to obtain a slurry-like reaction solution by precipitating the polyimide during the imidization reaction, and to obtain the polyimide simply by filtering the reaction solution as it is. And
このため、 前記公報と本願発明とは、 発明の対象、 あるいは目的が著しく異 なっている。  Therefore, the subject of the invention or the purpose of the invention is significantly different from the above-mentioned publication.
そして、 前記公報においては、 フエノール性化合物は副反応抑制のための触 媒として用いられており、 その使用量も有機極性溶媒に対し、 0 . 1〜0 . 5 重量倍 (全溶媒量の 9〜3 3重量%) と本発明に比べ著しく少ない。 また、 本発明で明らかにする、 ビフエ二ルテトラカルボン酸型ポリイミドの 生産性の高い製造方法、 有機極性溶媒のうちで後述する化学式(1)で表される含 窒素環状化合物がフエノール類と強く会合すること、 その結果、 ポリイミド前 駆体 (ポリアミド酸) は溶解し、 ポリイミドは溶解しないこと、 等モル組成物 が著しく高い沸点を有すること等について前記特開平 6— 2 2 0 1 9 4号公報 には何ら開示されていない。 たとえば、 該公報には、 極性溶剤の一例としての N -メチル -2-ピロリドンと、 フエノール (N-メチル -2-ピロリドン /フエノールの 混合モル比は 6 5 . 5 / 3 4 . 5 ) を溶媒に含むポリイミドの合成が反応温度 1 8 0でで行われている旨の記載があるが、 N-メチル -2-ピロリドンとフエノー ル類とからなる混合溶媒が有する沸点等に関する特異性についての記載はなく、 また、 その混合溶媒が高沸点かつ水と混和しないことについての記載もない。 そして、 本公報には、 このような特異な特性を有する等モル組成物を特定量溶 媒として用いると、 イミド化反応中にビフエニルテトラカルボン酸型ポリイミ ドを析出させることができる旨の記載も示唆もない。 In the above publication, the phenolic compound is used as a catalyst for suppressing side reactions, and the amount of the phenolic compound used is 0.1 to 0.5 times by weight (9 times the total solvent amount) with respect to the organic polar solvent. 333% by weight) as compared with the present invention. In addition, the method for producing biphenyltetracarboxylic acid-type polyimide with high productivity, which is clarified in the present invention, and among the organic polar solvents, the nitrogen-containing cyclic compound represented by the following chemical formula (1) is strongly different from phenols. Japanese Patent Application Laid-Open No. 6-220194 discloses that the polyimide precursor (polyamic acid) is dissolved, the polyimide is not dissolved, and that the equimolar composition has a remarkably high boiling point. Nothing is disclosed in the gazette. For example, the publication discloses that N-methyl-2-pyrrolidone as an example of a polar solvent and phenol (a mixture molar ratio of N-methyl-2-pyrrolidone / phenol is 65.5 / 34.5) are used as solvents. Describes that the synthesis of the polyimide contained in the above was carried out at a reaction temperature of 180, but mentions the specificity regarding the boiling point etc. of the mixed solvent consisting of N-methyl-2-pyrrolidone and phenols. There is no description that the mixed solvent has a high boiling point and is immiscible with water. The gazette also states that the use of an equimolar composition having such specific properties as a specific amount of solvent enables the precipitation of a biphenyltetracarboxylic acid-type polyimide during the imidization reaction. No suggestion.
以上のことから、 ビフエニルテトラカルボン酸型ポリイミドの、 生産性の高 い製造方法が求められていた。  From the above, there has been a demand for a highly productive method for producing biphenyltetracarboxylic acid-type polyimide.
すなわち、 本発明は上記のような従来技術に伴う問題を解決しょうとするも のであって、 様々な構造に由来するポリイミドの諸物性 (成形加工性、 摺動特 性、 低吸水性、 電気特性、 熱酸化安定性、 耐放射線性等) を損なうことなく、 単純、 容易かつ安価なプロセスによりポリイミドを得る方法を提供することを 目的としている。 発明の開示  In other words, the present invention is intended to solve the problems associated with the prior art as described above, and various properties of polyimide derived from various structures (such as moldability, sliding properties, low water absorption, and electrical properties). It is an object of the present invention to provide a method for obtaining polyimide by a simple, easy and inexpensive process without impairing thermal oxidation stability, radiation resistance, etc.). Disclosure of the invention
本発明者らは、 前記の課題を解決すべく、 鋭意検討を推進した結果、 反応溶 媒として、 特定の組成物を用いると、 ビフエニルテトラカルボン酸型ポリイミ ドの諸物性 (成形加工性、 摺動特性、 低吸水性、 電気特性、 熱酸化安定性、 耐 放射線性等) を損なうことなく、 単純、 容易かつ安価なプロセスによりポリィ ミドを得ることができることを見い出し、 本発明を完成するに至った。  The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, when a specific composition is used as a reaction solvent, various physical properties of a biphenyltetracarboxylic acid-type polyimide (molding processability, It has been found that a polyimide can be obtained by a simple, easy and inexpensive process without impairing the sliding properties, low water absorption, electrical properties, thermal oxidation stability, radiation resistance, etc. Reached.
すなわち本発明に係るポリイミドの製造方法は、 下記化学式(1)で表される含 窒素環状化合物と下記化学式(2)で表されるフエノール類との等モル組成物を 5That is, the method for producing a polyimide according to the present invention includes a method represented by the following chemical formula (1). An equimolar composition of a nitrogen cyclic compound and a phenol represented by the following chemical formula (2)
0〜100重量%含む溶媒中で、 ジァミン類とテトラカルボン酸二無水物との ィミド化反応を行うものである。
Figure imgf000007_0001
The imidation reaction of diamines and tetracarboxylic dianhydride is carried out in a solvent containing 0 to 100% by weight.
Figure imgf000007_0001
(式(l)中、 Xは — CH2— または 一 N(CH3)— を示す。 式(2)中、 R,、 R2 は、 互いに同一でも異なっていてもよく、 それぞれ、 _H、 -OH, - CH3、 -C2H7,(In the formula (l), X represents —CH 2 — or one N (CH 3 ) —. In the formula (2), R, and R 2 may be the same or different from each other. -OH, - CH 3, -C2H7,
— C3I17、 — C2ll9 C5llll、 一。6Π13、 一し 7Π 一し βΗΐ7、 一 CsHl9、 一し 1θΗ2! — 0CH3 0
Figure imgf000007_0002
、 一 Νθ2
— C3I17, — C2ll9 C5llll, one. 6Π13, one 7Π one βΗΐ7, one CsHl9, one 1θΗ2! — 0CH3 0
Figure imgf000007_0002
, 1 Νθ2
_Cl、 -Brまたは- Fのいずれかを示す。)。 Indicates any of _Cl, -Br or -F. ).
前記テ卜ラカルボン酸二無水物が、 ビフエ二ルテトラカルボン酸二無水物を 含有することが好ましく、 このテトラカルボン酸二無水物は、 全テトラカルボ ン酸ニ無水物に対して、 ビフエニルテトラカルボン酸二無水物を、 好ましくは 30〜100モル%の割合で含むことが望ましい。  The tetracarboxylic dianhydride preferably contains biphenyltetracarboxylic dianhydride, and the tetracarboxylic dianhydride is biphenyltetracarboxylic dianhydride with respect to all tetracarboxylic dianhydrides. It is desirable to contain the acid dianhydride preferably in a proportion of 30 to 100 mol%.
前記イミド化反応で得られるポリイミドは、 下記化学式 (3)で表される繰り返 し構造を有することが好ましい。  The polyimide obtained by the imidization reaction preferably has a repeating structure represented by the following chemical formula (3).
Figure imgf000007_0003
Figure imgf000007_0003
(式 (3)中、 Yは式 (e) (h) からなる群より選択される少なくとも一つで 表される。)  (In Equation (3), Y is represented by at least one selected from the group consisting of Equations (e) and (h).)
(g)
Figure imgf000007_0004
(g)
Figure imgf000007_0004
(ここで、 Rは、 互いに同一でも異なっていてもよく、 それぞれ、 (Where R may be the same or different from each other,
単結合, — O— —CO— -S02-, — S— , — CH2—または Single bond, — O— —CO— -S02-, — S—, — CH 2 — or
-C (CH3) 2—のいずれかを示す。)。 前記化学式 (3)で表される繰り返し構造は、 全繰り返し構造中、 30〜1 00 モル%の割合で含まれ、前記化学式 (3)で表される繰り返し構造と異なる残部は、 0〜70モル%の割合で含まれることが好ましい。 -C (CH 3 ) 2 — ). The repeating structure represented by the chemical formula (3) is contained in a proportion of 30 to 100 mol% in all the repeating structures, and the remainder different from the repeating structure represented by the chemical formula (3) is 0 to 70 mol. % Is preferably contained.
前記残部は、 前記化学式 (3)で表される繰り返し構造と異なる、 芳香族テトラ カルボン酸に由来する成分単位からなる繰り返し構造を有することが好ましい。 前記芳香族テ卜ラカルボン酸に由来する成分単位からなる繰り返し構造は、 下記化学式 (a) 及び Z又は (b) で表される繰り返し構造であることが好ま しい。  The remainder preferably has a repeating structure composed of component units derived from aromatic tetracarboxylic acid, which is different from the repeating structure represented by the chemical formula (3). The repeating structure comprising the component units derived from the aromatic tetracarboxylic acid is preferably a repeating structure represented by the following chemical formulas (a) and Z or (b).
Figure imgf000008_0001
Figure imgf000008_0001
(前記式 (a)及び式 (b)中、 は式 (e) 〜 (h) (In the formulas (a) and (b), the formulas (e) to (h)
Figure imgf000008_0002
からなる群より選択される少なくとも一つで表され、 式 (f)、 (g)および (h>中、 Rは、 互いに同一でも異なっていてもよく、 それぞれ、 単結合、
Figure imgf000008_0002
Wherein, in the formulas (f), (g) and (h>, R may be the same or different from each other;
—〇一, 一CO—, 一 S〇2— , — S―, — CH2—または一 C (CH3) 2—のい ずれかを示す。 —〇, one CO—, one S〇 2 —, — S—, — CH 2 — or one C (CH 3 ) 2 —.
前記式(b)中、 Ar2 は— O—, — CO—, 一 S〇2— , —S— , — CH2—また は一 C (CH3) 2 _からなる群より選択される少なくとも一つで表される。)。 前記一般式 (3)で表される繰り返し構造を有するポリイミドは、下記一般式 (4) 〜(6)のいずれかで表される繰り返し構造を少なくとも 1種有するポリイミドで あることが好ましい c In the above formula (b), Ar 2 is at least selected from the group consisting of —O—, —CO—, one S〇 2 —, —S—, —CH 2 — or one C (CH 3 ) 2 _ Represented by one. ). The polyimide having a repeating structure represented by the general formula (3) is a polyimide having at least one repeating structure represented by any of the following general formulas (4) to (6). Preferably c
Figure imgf000009_0001
前記化学式(1)で表される化合物は、 N-メチル -2-ピロリドン及び/又は 1,3'- ジメチル- 2-ィミダゾリジノンであることが好ましい。
Figure imgf000009_0001
The compound represented by the chemical formula (1) is preferably N-methyl-2-pyrrolidone and / or 1,3′-dimethyl-2-imidazolidinone.
前記化学式(2)で表されるフエノール類は、 フエノール、 0-クロ口フエノール、 m-クロ口フエノール、 p-クロ口フエノーゾレ、 0-クレゾール、 m-クレゾ一リレ、 P- クレゾール、 2,3-キシレノール、 2,4-キシレノール、 2,5-キシレノール、 2,6-キシ レノール、 3,4-キシレノール、 3,5-キシレノールからなる群から選ばれる少なく とも 1種の化合物であることが好ましい。  The phenols represented by the chemical formula (2) include phenol, 0-chloro phenol, m-clo phenol, p-chloro phenol, 0-cresol, m-cresolylile, P-cresol, 2,3 It is preferably at least one compound selected from the group consisting of -xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4-xylenol, and 3,5-xylenol .
前記化学式(1)で表される化合物と前記化学式(2)で表されるフエノール類と の等モル組成物を 5 0〜1 0 0重量%の量で含む溶媒は、 その溶媒の残部とし て、 前記化学式(1)で表される化合物または前記化学式 ( で表されるフエノー ル類を 0〜5 0重量%の量で含むことが好ましい。  A solvent containing an equimolar composition of the compound represented by the chemical formula (1) and the phenols represented by the chemical formula (2) in an amount of 50 to 100% by weight is the remainder of the solvent. Preferably, the compound represented by the chemical formula (1) or the phenols represented by the chemical formula (1) is contained in an amount of 0 to 50% by weight.
前記ポリイミドの製造方法は、 イミド化反応中にポリイミド及び Z又はオリ ゴマーを析出させて、 反応系をスラリー状とすることができる。  In the method for producing polyimide, the reaction system can be made into a slurry by precipitating polyimide and Z or an oligomer during the imidization reaction.
前記ポリイミドの製造方法では、 末端封止剤の存在下に反応を行うことが好 ましい。 前記ポリイミドの製造方法により、 イミド化反応中に生成物を析出させてポ リイミド粉末を得ることができる。 In the method for producing a polyimide, the reaction is preferably performed in the presence of a terminal blocking agent. According to the method for producing a polyimide, a product can be precipitated during an imidization reaction to obtain a polyimide powder.
反応溶液中のジァミン類およびテトラカルボン酸二無水物からなる原料モノ マー類の濃度 ((原料モノマー類の合計重量) / (原料モノマー類の合計重量 + 溶媒の重量)) は、 5〜5 0重量%の範囲にあることが好ましい。  The concentration of the starting monomers composed of diamines and tetracarboxylic dianhydride in the reaction solution ((total weight of starting monomers) / (total weight of starting monomers + weight of solvent)) is 5 to 50%. Preferably it is in the range of weight%.
本発明に係るポリイミドは、 前記方法により得られることを特徴としている。 本発明に係るポリイミド粉末は、 前記方法により得られることを特徴として いる。  The polyimide according to the present invention is obtained by the above method. The polyimide powder according to the present invention is obtained by the above method.
本発明に係る溶媒は、 下記化学式(1)で表される化合物と下記化学式(2)で表 されるフエノール類との等モル組成物からなる; (2) The solvent according to the present invention comprises an equimolar composition of a compound represented by the following chemical formula (1) and a phenol represented by the following chemical formula (2); (2)
Figure imgf000010_0001
Figure imgf000010_0001
(式(1)中、 Xは — C H 2— または — N (C H 3)— を示す。 式(2)中、 R ,、 R2 は、 互いに同一でも異なっていてもよく、 それぞれ、 - H、 -OH, - C 、 -C2H7, - C3H7、 - C2¾、 -CsH,u - C6H13、 -C7H15, -C8Hi7, - C9H19、 -Cl、 _0C 、 -0 (CeHs) , - N(k -Cし - Brまたは- Fのいずれかを示す。)。 (In the formula (1), X represents —CH 2 — or —N (CH 3 ) —. In the formula (2), R 1, and R 2 may be the same or different from each other. , -OH, - C, -C2H7, - C 3 H 7, - C 2 ¾, -CsH, u - C 6 H 13, -C7H15, -C 8 Hi7, - C 9 H 19, -Cl, _0C, -0 (CeHs), -N (indicates either -k or -Br or -F).
前記溶媒は、 前記化学式(1)で表される化合物と前記化学式 (2)で表されるフ エノ一ル類との等モル組成物を 5 0〜 1 0 0重量%含んでいれば、 他の溶剤を 含んでいてもよい。 図面の簡単な説明  When the solvent contains 50 to 100% by weight of an equimolar composition of the compound represented by the chemical formula (1) and the phenols represented by the chemical formula (2), Solvent may be contained. BRIEF DESCRIPTION OF THE FIGURES
図 A 1は、 N-メチル -2-ピロリドン、 m-クレゾールおよびこれらの等モル組成 物の I Rスぺクトルのチヤ一卜である。  FIG. A1 is a chart of the IR spectrum of N-methyl-2-pyrrolidone, m-cresol and their equimolar compositions.
図 A 2は、 N-メチル -2-ピロリ ドン、 m-クレゾールからなる等モル組成物の1 H— NM Rスぺクトルのチャートである。 FIG. A2 is a chart of 1 H—NMR spectrum of an equimolar composition comprising N-methyl-2-pyrrolidone and m-cresol.
図 A 3は、 N-メチル -2-ピロリ ドン、 m-クレゾ一ルからなる等モル組成物の1 3 C—NM Rスぺクトルのチヤ一卜である。 FIG. A3 is a chart of a 13 C-NMR spectrum of an equimolar composition comprising N-methyl-2-pyrrolidone and m-cresol.
図 A 4は、 N-メチル -2-ピロリ ドン、 P -クロ口フエノールおよびこれらの等 モル組成物の I Rスぺクトルのチヤ一卜である。 Figure A4 shows N-methyl-2-pyrrolidone, P-chlorophenol and their equivalents. 3 is a chart of an IR spectrum of a molar composition.
図 A 5は、 N-メチル -2-ピロリ ドン、 p -クロロフエノ一ルからなる等モル組 成物の1 H— NM Rスぺクトルのチャートである。 FIG. A5 is a chart of the 1 H—NMR spectrum of an equimolar composition comprising N-methyl-2-pyrrolidone and p-chlorophenol.
図 A 6は、 N-メチル -2-ピロリ ドン、 P -クロ口フエノールからなる等モル組 成物の' 3 C— NM Rスぺクトルのチヤ一トである。 Figure A 6 are, N- methyl-2-pyrrolidone, P - equimolar set Narubutsu consisting black port phenol '3 is a C-NM R scan Bae Chiya one bets vector.
図 B 1は、 1,3-ジメチル -2-イミダゾリジノン、 m-クレゾールおよびこれらの 等モル組成物の I Rスぺクトルのチヤ一トである。  FIG. B1 is a chart of the IR spectrum of 1,3-dimethyl-2-imidazolidinone, m-cresol and their equimolar compositions.
図 B 2は、 1,3-ジメチル -2-イミダゾリジノン、 m-クレゾ一ルからなる等モル 組成物の1 H— NM Rスぺクトルのチャートである。 FIG. B2 is a chart of 1 H—NMR spectrum of an equimolar composition comprising 1,3-dimethyl-2-imidazolidinone and m-cresol.
図 B 3は、 1,3-ジメチル- 2-イミダゾリジノン、 m-クレゾールからなる等モル 組成物の1 3 C—NM Rスぺクトルのチャートである。 FIG. B3 is a chart of 13 C—NMR spectrum of an equimolar composition comprising 1,3-dimethyl-2-imidazolidinone and m-cresol.
図 B 4は、 1,3-ジメチル -2-イミダゾリジノン、 P -クロ口フエノールおよびこ れらの等モル組成物の I Rスぺクトルのチヤ一トである。  Figure B4 is a chart of the IR spectrum of 1,3-dimethyl-2-imidazolidinone, P-chlorophenol and their equimolar compositions.
図 B 5は、 1,3-ジメチル -2-イミダゾリジノン、 p -クロ口フエノールからなる 等モル組成物の1 H— NM Rスぺクトルのチヤ一トである。 FIG. B5 is a chart of 1 H—NMR spectrum of an equimolar composition consisting of 1,3-dimethyl-2-imidazolidinone and p-chlorophenol.
図 B 6は、 1,3-ジメチル -2-イミダゾリジノン、 P -クロ口フエノールからなる 等モル組成物の' 3 C—NM Rスぺクトルのチヤ一トである。 発明を実施するための最良の形態 Figure B 6 is 1,3-dimethyl-2-imidazolidinone, P - equimolar composition comprising black port phenols' is 3 C-NM R scan Bae Chiya one bets vector. BEST MODE FOR CARRYING OUT THE INVENTION
本発明は、 化学式(1)で表される含窒素環状化合物と化学式 (2)で表されるフ ェノール類との等モル組成物を 5 0〜1 0 0重量%含む溶媒中でイミ ド化を行 うポリイミドの製造方法である。 この場合、 化学式 (3)で表される繰り返し構造 を有するポリイミドの製造に好ましく用いることができる。  The present invention relates to a method for imidizing a compound containing 50 to 100% by weight of an equimolar composition of a nitrogen-containing cyclic compound represented by the chemical formula (1) and a phenol represented by the chemical formula (2). This is a method for producing polyimide. In this case, it can be preferably used for producing a polyimide having a repeating structure represented by the chemical formula (3).
本発明のポリイミドの製造方法の具体例を以下に示す。  Specific examples of the method for producing a polyimide of the present invention are shown below.
化学式(1)で表される含窒素環状化合物と化学式 (2)で表されるフエノール類 との等モル組成物を 5.0〜 1 0 0重量%含む溶媒中に、 ジァミン類、 テトラ力 ルボン酸二無水物類、 末端封止剤を溶解あるいは分散させた後、 この反応系を 加熱し、 モノマーおよびノ又はポリイミド前駆体 (ポリアミド酸) を溶媒に溶 解、 反応系を均一とする。 さらに加熱を続け、 ジァミン類、 テトラカルボン酸 二無水物類お、 末端封止剤を反応 ·イミド化させることで、 生成物であるポリ ィミドおよび Z又はオリゴマーを粉末状に析出させ、 反応系をスラリー状とす る。 反応終了後、 反応液を濾過することにより、 粉末状のポリイミドを回収す る。 In a solvent containing 5.0 to 100% by weight of an equimolar composition of a nitrogen-containing cyclic compound represented by the chemical formula (1) and a phenol represented by the chemical formula (2), diamines and tetracarboxylic acid After dissolving or dispersing the anhydrides and the terminal blocking agent, the reaction system is heated to dissolve the monomer and the monomer or the polyimide precursor (polyamic acid) in the solvent, thereby making the reaction system uniform. Continue heating, diamines, tetracarboxylic acid By reacting and imidating the dianhydrides and the terminal capping agent, the resulting polyimide, Z or oligomer is precipitated in powder form, and the reaction system is made into a slurry. After completion of the reaction, the reaction solution is filtered to recover the powdered polyimide.
<溶媒 >  <Solvent>
本発明は、 イミド化反応に用いる溶媒として、 化学式(1)で表される含窒素環 状化合物と化学式 (2)で表されるフエノール類との等モル組成物を 5 0 〜 1 0 0 重量%含む溶媒を用いるポリイミドの製造方法である。  In the present invention, an equimolar composition of a nitrogen-containing cyclic compound represented by the chemical formula (1) and a phenol represented by the chemical formula (2) is used in an amount of 50 to 100 wt. This is a method for producing polyimide using a solvent containing 0.1% by weight.
(1) HO- (2)(1) HO- (2)
Figure imgf000012_0001
Figure imgf000012_0001
前記式(1)中、 Xは — C H 2— または _ N ( C H 3) — を示し、 前記式(2)中、 R K R 2は、 互いに同一でも異なっていてもよく、 それぞれ、 - H、 -OH, - CH3、 -C2H7, — C3H7、 -C2H9, -CsHiu -CeH,3, -CiHis, -C8Hi7, — C9HI9、 -C.0H2U — OCfk — 0 (C6H5) 、 - NO - Cl、 -Brまたは- Fのいずれかを示す。 In the above formula (1), X represents —CH 2 — or _ N (CH 3 ) —. In the above formula (2), RKR 2 may be the same or different from each other. OH, -CH 3 , -C2H7, — C 3 H 7 , -C2H9, -CsHiu -CeH, 3, -CiHis, -C 8 Hi7, — C 9 H I9 , -C.0H2U — OCfk — 0 (C 6 H 5 ), -NO-Cl, -Br or -F.
ぐ化学式(1)で表される含窒素環状化合物 >  Nitrogen-containing cyclic compound represented by chemical formula (1)>
本発明で用いる前記化学式(1)で表される含窒素環状化合物は、 N—メチルー 2 —ピロリドンおよび Z又は 1 , 3 _ジメチルー 2 —イミダゾリジノンである。 本発明に係る N-メチル -2-ピロリドンは、 従来公知の方法を適宜利用すること により調製することができ、 たとえば、 1, 4-ブタンジオールの脱水素化あるい は無水マレイン酸の水添などによって得られたァ —ブチロラクトンとモノメチ ルァミンなどのモノアルキルアミンを反応させて得ることができる。 また、 N- メチル-ピロリドンは市販のもの (三菱化学㈱製、 BASF製など) を用いることも できる。  The nitrogen-containing cyclic compound represented by the chemical formula (1) used in the present invention is N-methyl-2-pyrrolidone and Z or 1,3-dimethyl-2-imidazolidinone. The N-methyl-2-pyrrolidone according to the present invention can be prepared by appropriately utilizing a conventionally known method, for example, dehydrogenation of 1,4-butanediol or hydrogenation of maleic anhydride. Can be obtained by reacting α-butyrolactone obtained as described above with a monoalkylamine such as monomethylamine. N-methyl-pyrrolidone may be a commercially available product (manufactured by Mitsubishi Chemical Corporation, BASF, etc.).
本発明に係る、 1, 3-ジメチル -2-イミダゾリジノンは、 従来公知の方法を適宜 利用することにより調製することができ、 あるいは市販のもの (三井化学㈱製 など) を用いることもできる。  The 1,3-dimethyl-2-imidazolidinone according to the present invention can be prepared by appropriately using a conventionally known method, or a commercially available product (such as a product of Mitsui Chemicals, Inc.) can be used. .
前記化学式 (1 ) で表される含窒素環状化合物は非プロトン性極性溶媒とし て知られ、 従来より、 ポリイミドの重合溶媒として用いられてきた。 しかしな がら、 これらの含窒素環状化合物はポリイミドとの親和性が高く、 ポリイミ ド を溶解しやすい。 このため、 これらの含窒素環状化合物を溶媒として用いた従 来のポリイミドの製造方法においては、 生成したポリイミドが析出せず、 反応 溶液が粘稠になるといった問題、 ポリイミドの回収に多量の貧溶媒を必要とす るといった問題、 あるいは、 生成したポリイミドがは多量の溶媒を含み膨潤し た状態で析出するため反応系が固化するといつた問題が生じる。 The nitrogen-containing cyclic compound represented by the chemical formula (1) is known as an aprotic polar solvent, and has conventionally been used as a polymerization solvent for polyimide. But However, these nitrogen-containing cyclic compounds have a high affinity for polyimide and easily dissolve polyimide. For this reason, in the conventional method for producing a polyimide using these nitrogen-containing cyclic compounds as a solvent, the produced polyimide does not precipitate and the reaction solution becomes viscous. Or a problem arises when the resulting polyimide precipitates in a swollen state containing a large amount of solvent and solidifies the reaction system.
また、 化学式 (1 ) で表される含窒素環状化合物は、 水との親和性が高く、 水と任意に混ざる。 そのため、 これらの含窒素環状化合物を溶媒として用いた 従来のポリイミドの製造方法においては、 ポリイミドの生成と共に副生する水 を溶媒から除去することが難しく、反応速度や到達分子量の低下を招いていた。 したがって、 これらの含窒素環状化合物を溶媒として用いた従来のポリイミド の製造方法においては、 水と共沸する溶媒の共存下に反応を行うことで、 副生 する水を除去する方法が一般的であった。  Moreover, the nitrogen-containing cyclic compound represented by the chemical formula (1) has a high affinity for water and is arbitrarily mixed with water. Therefore, in the conventional method for producing a polyimide using these nitrogen-containing cyclic compounds as a solvent, it is difficult to remove water produced as a by-product from the solvent together with the production of the polyimide, resulting in a reduction in the reaction rate and the reached molecular weight. . Therefore, in a conventional method for producing a polyimide using these nitrogen-containing cyclic compounds as a solvent, a method of removing water by-produced by performing a reaction in the presence of a solvent azeotropic with water is common. there were.
ぐ化学式(2)で表されるフエノール類 >  Phenols represented by formula (2)>
本発明で用いる前記化学式 (2 ) で表されるフエノール類としては、 具体的 には、 たとえば、 フエノール、 カテコール、 レゾルシノール、 ヒドロキノン、 0 -ェチルフエノール、 m-ェチルフエノール、 p -ェチルフエノール、 ォクチルフエ ノール、 0-クレゾール、 m -クレゾール、 p -クレゾール、 2, 3 -キシレノール、 2, 4 -キシレノール、 2, 5-キシレノール、 2, 6-キシレノール、 3, 4-キシレノール、 3, 5_キシレノール、 グアヤコール、 ノニルフエノール、 0-クロ口フエノール、 m - クロ口フエノール、 p-クロ口フエノール、 0-ブロモフエノール、 m-ブロモフエ ノール、 P-ブロモフエノール、 0 -フルオロフェノール、 m-フルオロフェノール、 p -フルオロフェノール、 0-フエニルフエノール、 m-フエニルフエノール、 P-フ ェニルフエノール、 0-ニトロフエノール、 m-ニトロフエノール、 p-ニトロフエ ノール等が挙げられる。 これらは単独でも 2種類以上混合して用いても差し支 えない。  As the phenols represented by the chemical formula (2) used in the present invention, specifically, for example, phenol, catechol, resorcinol, hydroquinone, 0-ethylphenol, m-ethylphenol, p-ethylphenol, octylphenol, 0-phenol Cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4-xylenol, 3,5_xylenol, guaiacol, nonylphenol , 0-chlorophenol, m-chlorophenol, p-chlorophenol, 0-bromophenol, m-bromophenol, P-bromophenol, 0-fluorophenol, m-fluorophenol, p-fluorophenol, 0 -Phenylphenol, m-phenylphenol, P-phenylphenol , 0-nitrophenol, m- nitrophenol, p- Nitorofue Nord, and the like. These may be used alone or in combination of two or more.
また、 本発明においては、 このようなフエノール類のうちでは、  In the present invention, among such phenols,
フエノール、 0-クレゾ一ル、 m-クレゾール、 P-クレゾ一ル、 2, 3-キシレノー ル、 2, 4-キシレノール、 2, 5-キシレノール、 2, 6 -キシレノール、 3, 4 -キシレノ —ル、 3, 5_キシレノール、 o-クロ口フエノール、 m-クロロフエノ一リレ、 P-クロ 口フエノールなどが好ましく用いられ、 このうち m-クレゾ一ル、 P-クレゾール、 p -クロロフエノ一ルが特に好ましく用いられる。 Phenol, 0-cresol, m-cresol, P-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4-xylenol Phenol, 3,5-xylenol, o-chlorophenol, m-chlorophenol, P-chlorophenol, etc. are preferably used. Of these, m-cresol, P-cresol and p-chlorophenol are preferred. Particularly preferably used.
本発明においてはこのようなフエノ一ル類を 1種または 2種以上組み合わせ て用いることができる。  In the present invention, such phenols can be used alone or in combination of two or more.
このようなフエノ一ル類は従来公知の方法を適宜利用することにより調製す ることができるとともに、 市販のものを用いることができる。  Such phenols can be prepared by appropriately utilizing a conventionally known method, and a commercially available phenol can be used.
前記化学式 (2 ) で表されるフエノール類は、 ポリイミドの良溶媒として知 られ、 従来よりポリイミドの重合溶媒として用いられてきた。 しかしながら、 これらフエノール類を溶媒として用いた従来のポリイミドの製造方法において は、 生成したポリイミドが析出せず、 反応溶液が粘稠になるといった問題、 ポ リイミドの回収に多量の貧溶媒を必要とするといつた問題、 あるいは、 生成し たポリイミドがは多量の溶媒を含み膨潤した状態で析出するため反応系が固化 するといった問題があった。  The phenols represented by the chemical formula (2) are known as a good solvent for polyimide, and have been used as a polymerization solvent for polyimide. However, in the conventional method for producing polyimide using these phenols as a solvent, the produced polyimide does not precipitate and the reaction solution becomes viscous, and a large amount of poor solvent is required to recover the polyimide. There has been a problem that the resulting polyimide contains a large amount of solvent and precipitates in a swollen state, so that the reaction system is solidified.
ぐ化学式(1)で表される含窒素環状化合物と化学式 (2)で表されるフエノール 類との等モル組成物〉  Equimolar composition of the nitrogen-containing cyclic compound represented by the chemical formula (1) and the phenols represented by the chemical formula (2)>
本発明に係る等モル組成物は、 前記化学式(1)で表される含窒素環状化合物と 前記化学式 (2)で表されるフエノール類とを、等モル量で配合した組成物である。 本発明に係る等モル組成物は、 後述する実施例においても示される通り、 前 記化学式(1)で表される含窒素環状化合物のカルボニル基と前記化学式(2)で表 されるフエノール類のヒドロキシル基が強い水素結合を形成し、 強く会合して いる。そのため、前記化学式(1)で表される含窒素環状化合物とポリイミドとの、 あるいは、 前記化学式 (2)で表されるフエノール類とポリイミドとの親和性が相 対的に弱められ、 結果として、 ポリイミドの溶解や、 溶剤を含んでの膨潤が抑 制されるものと考えられる。  The equimolar composition according to the present invention is a composition in which the nitrogen-containing cyclic compound represented by the chemical formula (1) and the phenols represented by the chemical formula (2) are mixed in an equimolar amount. The equimolar composition according to the present invention comprises a carbonyl group of the nitrogen-containing cyclic compound represented by the aforementioned chemical formula (1) and a phenol represented by the aforementioned chemical formula (2), as shown in Examples described later. The hydroxyl groups form strong hydrogen bonds and are tightly associated. Therefore, the affinity between the nitrogen-containing cyclic compound represented by the chemical formula (1) and the polyimide or between the phenols represented by the chemical formula (2) and the polyimide is relatively weakened, and as a result, It is considered that dissolution of the polyimide and swelling containing the solvent are suppressed.
本発明に係る等モル組成物は、 前記化学式(1)で表される含窒素環状化合物と 前記化学式 (2)で表されるフエノール類が強く会合しているため、 それぞれの単 体に比べ著しく高沸点であって、 しかも室温において液体である。  In the equimolar composition according to the present invention, the nitrogen-containing cyclic compound represented by the chemical formula (1) and the phenols represented by the chemical formula (2) are strongly associated with each other. It has a high boiling point and is liquid at room temperature.
具体的には、 後述する実施例においても示されるとおり、 たとえば、 N-メチ ル -2-ピロリドン (沸点 2 0 4で、 凝固点一 2 3で) と m-クレゾール (沸点 2 0 2 . 2で、 凝固点 1 1 . 5で) の等モル組成物は、 沸点 2 3 0で、 凝固点 O : 未満であり、 また、 N-メチル -2-ピロリドンと p -クレゾール(沸点 2 0 1 . 9で、 凝固点 3 4 . 8 :) の等モル組成物は、 沸点 2 4 5で、 凝固点 0 未満である。 前者の例の場合、 N-メチル -2-ピロリドンとフエノール類の沸点より約 1 5〜2 0 T:、 後者の例の場合、 約 4 0〜4 5でと、 著しく高沸点である。 また、 たと えば、 1, 3-ジメチル- 2-イミダゾリジノン (沸点約 2 2 5で、 凝固点約 8で) と m -クレゾール (沸点約 2 0 2で、 凝固点約 1 2 ) の等モル組成物の場合、 沸 点 2 3 7 :、 凝固点 0で未満であり、 また、 1, 3-ジメチル -2-イミダゾリジノン と P-クロ口フエノール (沸点約 2 1 7 :、 凝固点約 4 3 ) の等モル組成物の 場合、 沸点 2 5 7で、 凝固点 0で未満である。 前者の例の場合、 約 1, 3-ジメチ ル -2-イミダゾリジノンの沸点より約 1 2 、 m-クレゾールの沸点より 3 5で、 後者の例の場合、 1, 3-ジメチル- 2-イミダゾリジノンの沸点より約 2 0 t:、 p -ク ロロフエノールの沸点より 2 8 と、 著しく高沸点である。 Specifically, as shown in the examples described later, for example, N-methyl An equimolar composition of le-2-pyrrolidone (boiling point 204, with a freezing point of 13-23) and m-cresol (boiling point 202.2, with a freezing point of 11.5) has a boiling point of 230 , A freezing point of O: less than, and an equimolar composition of N-methyl-2-pyrrolidone and p-cresol (boiling point: 21.9, freezing point: 34.8 :) has a boiling point of 245, Freezing point is less than 0. In the former case, the boiling point is about 15 to 20 T: higher than the boiling point of N-methyl-2-pyrrolidone and phenols, and in the latter example, it is about 40 to 45 T, which is extremely high. For example, the equimolar composition of 1,3-dimethyl-2-imidazolidinone (boiling point about 225, freezing point about 8) and m-cresol (boiling point about 202, freezing point about 12) In the case of a product, the boiling point is 237 :, freezing point is less than 0, and 1,3-dimethyl-2-imidazolidinone and P-chlorophenol are phenol (boiling point: about 217 :, freezing point: about 43) In the case of the equimolar composition, the boiling point is less than 257 and the freezing point is less than 0. In the former example, the boiling point of about 1,3-dimethyl-2-imidazolidinone is about 12 and the boiling point of m-cresol is 35, and in the latter example, 1,3-dimethyl-2- The boiling point is approximately 20 t: higher than the boiling point of imidazolidinone, and 28 higher than the boiling point of p-chlorophenol.
このように本発明においては、 N-メチル -2-ピロリドンとフエノール類とを等 モルで混合することによって、 著しく沸点が上昇し、 例えば N-メチル -2-ピロリ ドンまたはフエノール類の沸点より 1 0 以上、 好ましくは 2 0で以上、 さら に好ましくは 2 5で以上高く、 しかも凝固点が室温で液体状 (たとえば 5でで も液体) であるような組成物を得ることができる。 また、 1, 3-ジメチル- 2-イミ ダゾリジノンとフエノール類とを等モルで混合することによって、 著しい沸点 上昇を伴い、 たとえば 1, 3 -ジメチル- 2-イミダゾリジノンまたはフエノール類の 沸点より 3で以上、 好ましくは 1 0で以上、 さらに好ましくは 2 0で以上、 特 に好ましくは 3 0で以上高く、 しかも凝固点が室温で液体状 (たとえば 5でで も液体) であるような組成物を得ることができる。  Thus, in the present invention, by mixing N-methyl-2-pyrrolidone and phenols in an equimolar amount, the boiling point is significantly increased, for example, by 1% from the boiling point of N-methyl-2-pyrrolidone or phenols. It is possible to obtain a composition having a freezing point of 0 or more, preferably 20 or more, more preferably 25 or more, and a liquid state at room temperature (for example, a liquid of 5). Also, by mixing 1,3-dimethyl-2-imidazolidinone and phenols in equimolar amounts, a remarkable increase in the boiling point occurs. For example, the boiling point of 1,3-dimethyl-2-imidazolidinone or phenols is increased by 3%. Or more, preferably at least 10 and more preferably at least 20 and particularly preferably at least 30 and a liquid having a freezing point of liquid at room temperature (for example, liquid at 5). Obtainable.
なお、 本発明において溶剤の沸点は、 沸騰している溶液中の液相温度と、 溶 媒蒸気の気相温度を測定し、 これらの温度が同一となった際の温度をとつたも のである。  In the present invention, the boiling point of the solvent is obtained by measuring the liquidus temperature in the boiling solution and the gaseous phase temperature of the solvent vapor, and taking the temperature when these temperatures become the same. .
ところで、 一般的に、 非会合性の混合溶媒の沸点はラウール則に従い、 また、 混合溶媒成分間の水素結合等の相互作用により、 ラウール則で示される沸点が 変化することが知られている。 しかしながら、 たとえば弱酸性を示すフエノー ルと弱塩基性を示すァニリンの共沸組成混合物の沸点は 1 8 6 . 2でであり、 フエノールの沸点 (1 8 1 . 2で) およびァニリンの沸点 (1 8 4 . 4 ) よ り、 わずかに高いにすぎず、 本発明のような著しい沸点上昇は示さない。 また、 酸と塩基とからなる塩は、高融点または不揮発性であることが知られているが、 たとえば、 弱酸性を示すフエノール類と水酸化ナトリウムとから形成される塩 (フエノールナトリウム塩 ·三水和物) の融点は、 6 1〜6 4でであり、 弱塩 基性を示す N-メチル -2-ピロリドン(a)とから形成される塩の融点は 8 0〜8 8 でであるように高融点であるため、 溶媒として使用することはできない。 以上 のことからも、 本発明に係る等モル組成物の性質は極めて特異的である。 By the way, in general, the boiling point of a non-associative mixed solvent follows the Raoul's law, and the boiling point indicated by the Raoul's law depends on the interaction such as hydrogen bonding between the components of the mixed solvent. It is known to change. However, for example, the boiling point of an azeotropic composition mixture of phenol having weak acidity and aniline having weak basicity is 186.2, and the boiling point of phenol (at 181.2) and the boiling point of aniline (at 1 84.4), which is only slightly higher and does not show a remarkable increase in boiling point as in the present invention. Salts composed of an acid and a base are known to have a high melting point or non-volatility. For example, salts formed from weakly acidic phenols and sodium hydroxide (phenol sodium salt Hydrate) has a melting point of 61 to 64, and the salt formed from N-methyl-2-pyrrolidone (a), which exhibits weak basicity, has a melting point of 80 to 88. Because of its high melting point, it cannot be used as a solvent. From the above, the properties of the equimolar composition according to the present invention are extremely specific.
本発明に係る等モル組成物は、 化学式(1)で表される含窒素環状化合物と化学 式(2)で表されるフエノール類が水素結合により強く会合している。 そのため、 一般の共沸混合物と異なり、 その組成は蒸留操作時等における圧力に依存しな い。 そして、 本発明に係るこのような等モル組成物は、 蒸発、 濃縮を繰り返し てもその組成割合の変化がほとんど生じない。 したがって、 本発明に係る等モ ル組成物を蒸留等によって回収、 再利用に供しても、 常に一定の組成を保持で きるので、 組成調製が不要である。 なお、 本発明に係る等モル組成物は、 水酸 化ナ卜リゥム等の塩基の存在下では、 化学式(1)で表される含窒素環状化合物と フエノール類に分離するので、 蒸留等によって、 原料となった化学式(1)で表さ れる含窒素環状化合物あるいはフエノール類を回収することができる。  In the equimolar composition according to the present invention, the nitrogen-containing cyclic compound represented by the chemical formula (1) and the phenols represented by the chemical formula (2) are strongly associated by hydrogen bonding. Therefore, unlike a general azeotropic mixture, its composition does not depend on the pressure during the distillation operation and the like. The compositional ratio of such an equimolar composition according to the present invention hardly changes even if evaporation and concentration are repeated. Therefore, even if the equimolar composition according to the present invention is recovered and reused by distillation or the like, a constant composition can always be maintained, and thus no composition preparation is required. The equimolar composition according to the present invention separates into a nitrogen-containing cyclic compound represented by the chemical formula (1) and phenols in the presence of a base such as sodium hydroxide. The nitrogen-containing cyclic compound represented by the chemical formula (1) or phenols as the raw material can be recovered.
本発明に係る等モル組成物は、 後述する実施例においても示されるとおり、 極性が高く、 しかも水と非混和である。 そのため、 ポリイミド製造の際の原料 やポリイミド前駆体 (ポリアミック酸) の溶解性に優れ、 しかも、 脱水反応時 の生成水の除去も容易であり、 ポリイミド重合溶媒として好適である。 ぐ等モル組成物を 5 0〜 1 0 0重量%含む溶媒 >  The equimolar composition according to the present invention has a high polarity and is immiscible with water, as shown in the examples described later. Therefore, it is excellent in solubility of raw materials and polyimide precursor (polyamic acid) at the time of polyimide production, and easily removes generated water at the time of dehydration reaction, and is suitable as a polyimide polymerization solvent. A solvent containing 50 to 100% by weight of an equimolar composition>
本発明のポリイミドの製造方法においては反応溶媒として、 前記化学式(1)で 表される含窒素環状化合物と前記化学式 (2)で表されるフエノール類との等モル 組成物を 5 0〜 1 0 0重量%含む溶媒を用いる。 本発明における溶媒は、 主として前述の等モル組成物からなるが、 該等モル 組成物の全溶媒重量中の割合は、 好ましくは 7 0〜 1 0 0重量%、 さらに好ま しくは 8 0〜 1 0 0重量%、 特に好ましくは 9 0〜 1 0 0重量%であることが 望ましい。 また、 該溶媒は、 全溶媒重量中、 0〜5 0重量%、 好ましくは 0〜 3 0重量%、 さらに好ましくは 0〜2 0重量%、 特に好ましくは 0〜 1 0重量 %の他の溶媒を含んでいてもよい。 他の溶媒を共存させることにより、 本発明 で用いる反応溶媒の融点、 沸点、 極性、 誘電率、 溶解性等の諸物性を任意に変 更することができる。 In the method for producing a polyimide of the present invention, an equimolar composition of the nitrogen-containing cyclic compound represented by the chemical formula (1) and the phenols represented by the chemical formula (2) is used as a reaction solvent in a range of 50 to 10. A solvent containing 0% by weight is used. The solvent in the present invention is mainly composed of the above equimolar composition, and the proportion of the equimolar composition in the total solvent weight is preferably 70 to 100% by weight, more preferably 80 to 1% by weight. Desirably, the content is 100% by weight, particularly preferably 90 to 100% by weight. The solvent is 0 to 50% by weight, preferably 0 to 30% by weight, more preferably 0 to 20% by weight, particularly preferably 0 to 10% by weight of the total solvent weight. May be included. The coexistence of another solvent can arbitrarily change various properties such as the melting point, boiling point, polarity, dielectric constant, and solubility of the reaction solvent used in the present invention.
含んでいてもよい他の溶媒としては、 たとえば、 フエノール系溶媒、 非プロ トン性アミド系溶媒、 エーテル系溶媒、 アミン系溶媒等が挙げられる。  Other solvents that may be included include, for example, phenol solvents, nonprotonic amide solvents, ether solvents, amine solvents, and the like.
フエノール系溶媒としては、 前記フエノール類(2)を用いることができ、 たと えば、 フエノール、 o—クロ口フエノール、 m—クロ口フエノール、 p—クロ 口フエノール、 o—クレゾール、 m—クレゾール、 p—クレゾール、 2, 3— キシレノール、 2 , 4—キシレノール、 2, 5 _キシレノール、 2 , 6—キシ レノール、 3 , 4—キシレノール、 3, 5—キシレノールなどが挙げられる。 非プロトン性アミド系溶媒としては、 たとえば、 N , N—ジメチルホルムァ ミ ド、 N , N—ジメチルァセトアミド、 N , N—ジェチルァセトアミド、 N _ メチル一 2—ピロリ ドン、 1, 3—ジメチル一 2—イミダゾリジノン、 N—メ チルカプロラクタム、 へキサメチルホスホロトリアミドなどが挙げられる。 エーテル系溶媒としては、 たとえば、 1 , 2—ジメトキシェタン、 ビス (2 —メ卜キシェチル) エーテル、 1, 2—ビス (2—メトキシェトキシ) ェタン、 テトラヒドロフラン、 ビス [ 2— ( 2—メトキシェトキシ) ェチル] エーテル、 1 , 4—ジォキサンなどが挙げられる。  As the phenolic solvent, the above-mentioned phenols (2) can be used. For example, phenol, o-chlorophenol, m-chlorophenol, p-chlorophenol, o-cresol, m-cresol, p-phenol —Cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4-xylenol, 3,5-xylenol and the like. Examples of aprotic amide solvents include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-getylacetamide, N_methyl-12-pyrrolidone, 1 , 3-dimethyl-12-imidazolidinone, N-methylcaprolactam, hexamethylphosphorotriamide, and the like. Examples of the ether solvents include 1,2-dimethoxyethane, bis (2-methoxyethoxy) ether, 1,2-bis (2-methoxyethoxy) ethane, tetrahydrofuran, and bis [2- (2-methoxy) Ethoxy) ethyl] ether and 1,4-dioxane.
アミン系溶媒としては、 たとえば、 ピリジン、 キノリン、 イソキノリン、 ひ 一ピコリン、 j3—ピコリン、 ァ一ピコリン、 イソホロン、 ピぺリジン、 2 , 4 ールチジン、 2 , 6—ルチジン、 トリメチルァミン、 卜リエチルァミン、 トリ プロピルァミン、 トリブチルァミンなどが挙げられる。  Examples of the amine-based solvent include pyridine, quinoline, isoquinoline, picoline, j3-picoline, apicoline, isophorone, piperidine, 2,4-lutidine, 2,6-lutidine, trimethylamine, triethylamine, Tripropylamine, tributylamine and the like.
また、 上記の他、 ジメチルスルホキシド、 ジメチルスルホン、 ジフエニルェ —テル、 スルホラン、 ジフエニルスルホン、 テトラメチル尿素、 ァニソ一ル、 水、 ベンゼン、 トルエン、 o—キシレン、 m—キシレン、 p—キシレン、 クロ ルベンゼン、 o—ジクロルベンゼン、 m—ジクロルベンゼン、 p—ジクロルべ ンゼン、 ブロムベンゼン、 o—ジブロモベンゼン、 m—ジブロモベンゼン、 p —ジブロモベンゼン、 o—クロルトルエン、 m—クロルトルエン、 p—クロル トルエン、 o—ブロモトルエン、 m—ブロモトルエン、 p—ブロモトルエン、 アセトン、 メチルェチルケトン、 メチルイソブチルケトン、 メタノール、 エタ ノール、 プロパノール、 イソプロパノール、 ブ夕ノール、 イソブ夕ノール、 ぺ ンタン、 へキサン、 ヘプタン、 シクロへキサン、 ジクロロメタン、 クロ口ホル ム、 四塩化炭素、 フルォロベンゼン、 酢酸メチル、 酢酸ェチル、 酢酸ブチル、 ぎ酸メチル、 ぎ酸ェチルなどを用いることができる。 In addition to the above, dimethyl sulfoxide, dimethyl sulfone, diphenyl ether, sulfolane, diphenyl sulfone, tetramethyl urea, anisol, Water, benzene, toluene, o-xylene, m-xylene, p-xylene, chlorobenzene, o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenzene, bromobenzene, o-dibromobenzene, m-dibromo Benzene, p-dibromobenzene, o-chlorotoluene, m-chlorotoluene, p-chlorotoluene, o-bromotoluene, m-bromotoluene, p-bromotoluene, acetone, methylethylketone, methylisobutylketone, methanol, Ethanol, propanol, isopropanol, butanol, isobutanol, pentane, hexane, heptane, cyclohexane, dichloromethane, chloroform, carbon tetrachloride, fluorobenzene, methyl acetate, ethyl acetate, butyl acetate, butyl acetate Methyl formate, ethyl formate It can be used.
本発明のポリイミドの製造方法において、 含んでいても良い溶媒としては、 実施に際し用いる等モル組成物を構成する化学式(1)で表される含窒素環状化合 物あるいは化学式 (2)で表されるフエノール類と同一の溶媒であることが特に好 ましい。  In the method for producing a polyimide of the present invention, the solvent which may be contained is a nitrogen-containing cyclic compound represented by the chemical formula (1) or a chemical formula (2) constituting an equimolar composition used in the practice. It is particularly preferred that the same solvent as the phenols is used.
<ポリイミド>  <Polyimide>
本発明のポリイミドの製造方法は、 下記式 (3 ) で表される繰り返し構造を 有するポリィミドの製造に好ましく適用することができる。
Figure imgf000018_0001
The method for producing a polyimide of the present invention can be preferably applied to the production of a polyimide having a repeating structure represented by the following formula (3).
Figure imgf000018_0001
前記式 (3)中、 Υは式 (e ) 〜 (h ) からなる群より選択される少なくとも- つで表される。  In the above formula (3), Υ is represented by at least one selected from the group consisting of formulas (e) to (h).
Figure imgf000018_0002
Figure imgf000018_0002
ここで、 Rは、 互いに同一でも異なっていてもよく、 それぞれ、  Here, R may be the same or different from each other,
単結合, — O—, —C O—, — S〇2—, — S—, — C H 2—または— C (C H 3) 2—のいずれかを示す。 ここで、 前記化学式 (3) で表される繰り返し構造を有するポリイミドは、 全繰り返し構造中、 前記化学式 (3) で表される繰り返し構造を 30〜1 00 モル%、 好ましくは 50〜 100モル%、 特に好ましくは 55〜 100モル% 含み、 残部としてはたとえば、 前記化学式 (3) で表される繰り返し構造と異 なる、 芳香族テ卜ラカルボン酸類に由来する成分単位を含む繰り返し構造を有 するものが好ましく、 たとえば、 下記化学式 (a) 及び Z又は (b) で表され る繰り返し構造を 0〜70モル%、 好ましくは 0~50モル%、 特に好ましく は 0〜45モル%含むことが望ましい。 Single bond, — O—, —CO—, — S〇 2 —, — S—, — CH 2 — or — C (CH 3 ) 2 —. Here, in the polyimide having a repeating structure represented by the chemical formula (3), the total amount of the repeating structure represented by the chemical formula (3) is 30 to 100 mol%, and preferably 50 to 100 mol%. Particularly preferably 55 to 100 mol%, and the balance is, for example, a compound having a repeating structure containing a component unit derived from an aromatic tetracarboxylic acid which is different from the repeating structure represented by the chemical formula (3). For example, it is desirable to contain a repeating structure represented by the following chemical formulas (a) and Z or (b) in an amount of 0 to 70 mol%, preferably 0 to 50 mol%, and particularly preferably 0 to 45 mol%.
(b)
Figure imgf000019_0001
前記式 (a)及び式 (b)中、 A は式 (e) (h) からなる群より選択される少 なくとも一つで表される。
(b)
Figure imgf000019_0001
In the above formulas (a) and (b), A is represented by at least one selected from the group consisting of formulas (e) and (h).
(g)
Figure imgf000019_0002
ここで、 Rは、 互いに同一でも異なっていてもよく、 それぞれ、 単結合、 -0-, —CO— , — S〇2— , — S_, 一 CH2—または— C (CH3) 2—のい ずれかを示す。
(g)
Figure imgf000019_0002
Here, Rs may be the same or different from each other, and are each a single bond, -0-, —CO—, — S〇 2 —, — S_, one CH 2 — or — C (CH 3 ) 2 — Indicates one of
前記式(b)中、 Ar2 は一O— , —CO— , -SO2-, — S—, 一 CH2—また は一 C (CH3) 2—からなる群より選択される少なくとも一つで表される。 In the above formula (b), Ar 2 is at least one selected from the group consisting of one O—, —CO—, —SO2-, —S—, one CH 2 — or one C (CH 3 ) 2 — It is represented by
また、 前記一般式 (3)で表される繰り返し構造を有するポリイミドは、 下記一 般式 (4)〜(6)のいずれかで表される繰り返し構造を少なくとも 1種有するポリ イミドであることが好ましい The polyimide having a repeating structure represented by the general formula (3) is a polyimide having at least one repeating structure represented by any of the following general formulas (4) to (6). Preferably an imide
Figure imgf000020_0001
なお、 前記残部を構成する繰り返し構造には、 芳香族環を有する脂肪族テト ラカルボン酸、 フッ素含有テトラカルボン酸に由来する成分単位を含まないこ とが望ましい。
Figure imgf000020_0001
It is preferable that the repeating structure constituting the remainder does not contain a component unit derived from an aliphatic tetracarboxylic acid having an aromatic ring or a fluorine-containing tetracarboxylic acid.
T. Nakano, 2nd Intern. Conf. on PI等に示されるように、 前記化学式 (3 ) で 表される繰り返し構造からなるビフエニルテトラカルボン酸型ポリイミドは溶 剤への溶解性が高い。 そのため、 全繰り返し構造中、 前記化学式 (3 ) で表さ れる繰り返し構造を 3 0〜 1 0 0モル%含むポリイミドは、 従来の方法、 すな わち、 N-メチル -2-ピロリドンあるいはクレゾールといった極性溶媒中で加熱ィ ミド化した際、 生成したポリイミドが析出しない、 あるいは多量の溶媒を含み 膨潤した状態で析出するため反応系が固化するといつた問題が生じることがあ る。 なお、 化学式 (a ) で表される繰り返し構造からなるポリイミドは溶剤へ の溶解性が低く、 従来の方法、 すなわち、 N-メチル -2-ピロリドンあるいはクレ ゾールといった極性溶媒中で加熱イミド化した際に、 生成したポリイミドが析 出するため、 本発明の製造方法を必要としない。 また、 化学式 (b ) で表され る繰り返し構造からなるポリイミドは溶剤への溶解性が非常に高く、 本発明の 製造方法を用いても、 生成したポリイミ ドが析出しない、 あるいは多量の溶媒 を含み膨潤した状態で析出するため反応系が固化するといつた問題を生じるこ とがある。 As shown in T. Nakano, 2nd Intern. Conf. On PI, etc., biphenyltetracarboxylic acid type polyimide having a repeating structure represented by the chemical formula (3) has high solubility in a solvent. Therefore, polyimide containing 30 to 100 mol% of the repeating structure represented by the chemical formula (3) in all the repeating structures is prepared by a conventional method, that is, N-methyl-2-pyrrolidone or cresol. When imidized by heating in a polar solvent, the generated polyimide does not precipitate, or precipitates in a swollen state containing a large amount of solvent, so that a problem may occur when the reaction system is solidified. In addition, polyimide having a repeating structure represented by the chemical formula (a) has low solubility in a solvent, and it is difficult to use a conventional method, i.e., when imidized by heating in a polar solvent such as N-methyl-2-pyrrolidone or cresol. In addition, since the produced polyimide is precipitated, the production method of the present invention is not required. Further, polyimide having a repeating structure represented by the chemical formula (b) has extremely high solubility in a solvent, Even when the production method is used, the produced polyimide does not precipitate or precipitates in a swollen state containing a large amount of solvent, so that a problem may occur when the reaction system solidifies.
本発明製造方法により製造されるポリイミドは、 その分子末端が、 無水フタ ル酸、 ァニリン、 無水マレイン酸、 フエニルェチニル無水フタル酸などの末端 封止剤で封止されていても良い。 また、 主鎖、 側鎖または末端の構造中に分岐 を有していてもよく、 架橋のための構造、 環状構造等を有していてもよい。 本発明の製造方法により製造されるポリイミドの重合度に制限はなく、 ポリ イミドの用途に応じ、 任意に選択できる。 従来のポリイミドの製造方法におい て、 生成したポリイミドが析出しない、 すなわち、 生成したポリイミ ドが溶媒 に溶解している場合には、 反応溶液が粘稠となるため、 製造されるポリイミド の重合度には制約があつたが、 本発明のポリイミドの製造方法においては、 生 成するポリイミ ドが析出し、 反応溶液がスラリー状となるため、 高分子量のポ リイミドを製造する際にも、 反応溶液が撹拌に支障をきたすほど粘稠となるこ とはない。  The molecular end of the polyimide produced by the production method of the present invention may be sealed with a terminal blocking agent such as phthalic anhydride, aniline, maleic anhydride, and phenylethynyl phthalic anhydride. Further, it may have a branch in the main chain, side chain or terminal structure, and may have a structure for crosslinking, a cyclic structure, or the like. The degree of polymerization of the polyimide produced by the production method of the present invention is not limited, and can be arbitrarily selected according to the use of the polyimide. In the conventional method for producing polyimide, when the produced polyimide does not precipitate, that is, when the produced polyimide is dissolved in a solvent, the reaction solution becomes viscous, and the degree of polymerization of the produced polyimide is reduced. However, in the method for producing a polyimide of the present invention, the produced polyimide precipitates out and the reaction solution becomes a slurry, so that even when producing a high-molecular-weight polyimide, the reaction solution cannot be used. It does not become viscous enough to hinder stirring.
<ジァミン類 > <Jamines>
本発明のポリイミドの製造方法においては、 従来公知の芳香族ジァミン類を 好ましく用いることができる。 なお、 脂肪族ジァミン類、 シロキサンジァミン 類、 フッ素含有ジァミン類を用いた場合には、 得られるポリイミ ドが本発明で 用いる溶媒に溶解するため、本発明が目的とする効果が得られないことがある。 より具体的には、  In the method for producing a polyimide of the present invention, conventionally known aromatic diamines can be preferably used. When aliphatic diamines, siloxane diamines, and fluorine-containing diamines are used, the obtained polyimide is dissolved in the solvent used in the present invention, and thus the desired effects of the present invention cannot be obtained. Sometimes. More specifically,
(1)ベンゼン環を 1個有するジァミン類としては、 たとえば、 p—フエ二レンジ ァミン、 m—フエ二レンジァミンなどが挙げられる。  (1) Examples of diamines having one benzene ring include p-phenylenediamine and m-phenylenediamine.
(2)ベンゼン環を 2個有するジァミン類としては、 たとえば、  (2) Examples of diamines having two benzene rings include:
3 , 3 ' —ジアミノジフエニルエーテル、 3, 3'—diaminodiphenyl ether,
3, 4 ' —ジアミノジフエ二ルェ一テル、  3, 4 '— diaminodiphenyl ether,
4, 4 ' —ジアミノジフエニルエーテル、 4, 4'-diaminodiphenyl ether,
3 , 3 ' —ジアミノジフエニルスルフイ ド、 3, 3'—diaminodiphenyl sulfide,
3 , 4 ' ージアミノジフエニルスルフイ ド、 4, 4 ' ージアミノジフエニルスルフイ ド、 3, 4 'diaminodiphenyl sulfide, 4, 4 'diaminodiphenyl sulfide,
3, 3 ' ージアミノジフエニルスルホン、  3, 3 'diaminodiphenyl sulfone,
3, 4 ' ージアミノジフエニルスルホン、  3, 4 'diaminodiphenyl sulfone,
4, 4 ' ージアミノジフエニルスルホン、 4, 4 'diaminodiphenyl sulfone,
3, 3 ' ージァミノべンゾフエノン、  3, 3 'Jamino Benzofuenonone,
4, 4 ' —ジァミノべンゾフエノン、  4, 4 '— diaminobenzofunone,
3, 4 ' ージァミノべンゾフエノン、 3, 4 'Jamino Benzofunone,
3, 3 ' ージアミノジフエニルメタン、 3, 3 'diaminodiphenylmethane,
4, 4 ' ージアミノジフエニルメタン、 4, 4 'diaminodiphenylmethane,
3, 4 ' ージアミノジフエニルメタン、 3, 4 'diaminodiphenylmethane,
2, 2—ジ (3—ァミノフエニル) プロパン、  2, 2-di (3-aminophenyl) propane,
2, 2—ジ (4ーァミノフエニル) プロパン、 2, 2-di (4-aminophenyl) propane,
2— (3—ァミノフエニル) 一 2— (4—ァミノフエ二ル) プロパン、  2- (3-aminophenyl) 1 2- (4-aminophenyl) propane,
1, 1—ジ (3—ァミノフエ二ル) 一 1—フエニルェタン、  1, 1-di (3-aminophenyl) 1 1-phenylene,
1 , 1—ジ (4—ァミノフエ二ル) 一 1 _フエニルェタン、  1, 1—di (4-aminophenyl) 1 1 _phenylenyl,
1— (3—ァミノフエニル) 一 1— (4ーァミノフエニル) 一 1—フエニルェ タン  1- (3-aminophenyl) 1 1- (4-aminophenyl) 1 1-phenylethane
などが挙げられる。 And the like.
(3)ベンゼン環を 3個有するジァミン類としては、 たとえば、  (3) Diamines having three benzene rings include, for example,
1, 3_ビス (3—アミノフエノキシ) ベンゼン、 1,3_bis (3-aminophenoxy) benzene,
1. 3—ビス (4一アミノフエノキシ) ベンゼン、  1. 3-bis (4-aminophenoxy) benzene,
1. 4—ビス (3—アミノフエノキシ) ベンゼン、  1. 4-bis (3-aminophenoxy) benzene,
1, 4_ビス (4一アミノフエノキシ) ベンゼン、 1,4_bis (4-aminophenoxy) benzene,
1, 3—ビス (3—ァミノべンゾィル) ベンゼン、 1, 3-bis (3-aminobenzoyl) benzene,
1, 3—ビス (4ーァミノべンゾィル) ベンゼン、 1, 3-bis (4-aminobenzene) benzene,
1, 4—ビス (3—ァミノべンゾィル) ベンゼン、 1, 4-bis (3-aminobenzoyl) benzene,
1, 4—ビス (4ーァミノべンゾィル) ベンゼン、 1,4-bis (4-aminobenzoyl) benzene,
1, 3—ビス (3—アミノー α, α—ジメチルベンジル) ベンゼン、  1,3-bis (3-amino-α, α-dimethylbenzyl) benzene,
1, 3—ビス (4ーァミノ一ひ, α—ジメチルベンジル) ベンゼン、 1 , 4_ビス (3—ァミノ一 a, a—ジメチルベンジル) ベンゼン、 1,3-bis (4-amino, α-dimethylbenzyl) benzene, 1, 4_bis (3-amino-a, a-dimethylbenzyl) benzene,
1, 4—ビス (4—アミノーひ, a—ジメチルベンジル) ベンゼン、  1,4-bis (4-amino-a, a-dimethylbenzyl) benzene,
2, 6 _ビス (3—アミノフエノキシ) ベンゾニトリル、  2, 6_bis (3-aminophenoxy) benzonitrile,
2, 6—ビス (3—アミノフエノキシ) ピリジン  2,6-bis (3-aminophenoxy) pyridine
などが挙げられる。 And the like.
(4)ベンゼン環を 4個有するジァミン類としては、 たとえば、  (4) Examples of diamines having four benzene rings include:
4, 4 ' —ビス (3—アミノフエノキシ) ビフエ二ル、 4, 4'-bis (3-aminophenoxy) biphenyl,
4, 4 ' —ビス (4—アミノフエノキシ) ビフエニル、  4, 4'-bis (4-aminophenoxy) biphenyl,
ビス [4— (3—アミノフエノキシ) フエニル] ケトン、 Bis [4- (3-aminophenoxy) phenyl] ketone,
ビス [4— (4一アミノフエノキシ) フエニル] ケトン、 Bis [4 -— (4-aminophenoxy) phenyl] ketone,
ビス [4— (3—アミノフエノキシ) フエニル] スルフイ ド、 Bis [4 -— (3-aminophenoxy) phenyl] sulfide,
ビス [4一 (4—アミノフエノキシ) フエニル] スルフイ ド、 Bis [4- (4-aminophenoxy) phenyl] sulfide,
ビス [4— (3—アミノフエノキシ) フエニル] スルホン、 Bis [4 -— (3-aminophenoxy) phenyl] sulfone,
ビス [4一 (4—アミノフエノキシ) フエニル] スルホン、 Bis [4- (4-aminophenoxy) phenyl] sulfone,
ビス [4— (3—アミノフエノキシ) フエニル] エーテル、 Bis [4 -— (3-aminophenoxy) phenyl] ether,
ビス [4— (4—アミノフエノキシ) フエニル] エーテル、 Bis [4 -— (4-aminophenoxy) phenyl] ether,
2, 2 _ビス [4— (3—アミノフエノキシ) フエニル] プロパン、  2,2_bis [4- (3-aminophenoxy) phenyl] propane,
2, 2—ビス [4— (4一アミノフエノキシ) フエニル] プロパン、 などが挙げられる。  2,2-bis [4- (4-aminophenyl) phenyl] propane, and the like.
(5)ベンゼン環を 5個有するジァミン類としては、 たとえば、  (5) Diamines having five benzene rings include, for example,
1 , 3—ビス [4一 (3—アミノフエノキシ) ベンゾィル] ベンゼン、 1,3-bis [4- (3-aminophenoxy) benzoyl] benzene,
1 , 3—ビス [4一 (4一アミノフエノキシ) ベンゾィル] ベンゼン、1,3-bis [4- (4-aminophenoxy) benzoyl] benzene,
1, 4一ビス [4— (3—アミノフエノキシ) ベンゾィル] ベンゼン、1,4-bis [4- (3-aminophenoxy) benzoyl] benzene,
1, 4—ビス [4— (4—アミノフエノキシ) ベンゾィル] ベンゼン、1,4-bis [4- (4-aminophenoxy) benzoyl] benzene,
1 , 3—ビス [4— (3—アミノフエノキシ) 一 a, a—ジメチルペンジル] ベンゼン、 1,3-bis [4- (3-aminophenoxy) -a, a-dimethylpenzyl] benzene,
1, 3—ビス [4— (4—アミノフエノキシ) — a, a -  1,3-bis [4- (4-aminophenoxy) — a, a-
, 4一ビス [4一 (3—アミノフエノキシ) 一 ひ, a- 4 _ビス [ 4 _ ( 4 _アミノフエノキシ) a a などが挙げられる。 , 4-bis [4-1- (3-aminophenoxy) HI, a- 4 _ bis [4 _ (4 _ aminophenoxy) aa and the like.
(6)ベンゼン環を 6個有するジァミン類としては、 たとえば、  (6) Examples of diamines having six benzene rings include:
4 , 4, 一ビス [ 4一 (4—アミノフエノキシ) ベンゾィル] ジフエ二ルェ一 テル、  4,4,1-bis [4- (4-aminophenoxy) benzoyl] diphenyl ether,
4, 4, 一ビス [ 4一 (4—アミノーひ, ひ一ジメチルベンジル) フエノキシ] ベンゾフエノン、  4,4,1-bis [4- (4-amino-, 1-dimethylbenzyl) phenoxy] benzophenone,
4, 4, 一ビス [ 4— ( 4—アミノー α , α—ジメチルベンジル) フエノキシ] ジフエニルスルホン、  4,4,1-bis [4- (4-amino-α, α-dimethylbenzyl) phenoxy] diphenylsulfone,
4, 4, 一ビス [ 4— ( 4—アミノフエノキシ) フエノキシ] ジフエニルスル ホン  4,4,1-bis [4- (4-aminophenoxy) phenoxy] diphenylsulfone
などが挙げられる。 And the like.
(7)その他芳香族置換基を有するジァミン類としては、 たとえば、  (7) Other diamines having an aromatic substituent include, for example,
3 , 3 ' —ジァミノ一 4 , 4 ' —ジフエノキシベンゾフエノン、 3, 3'-diamino-1,4'-diphenoxybenzophenone,
3, 3 ' ージァミノ一 4 , 4 ' ージビフエノキシベンゾフエノン、 3, 3 'diamino-4, 4' dibiphenoxybenzophenone,
3, 3 ' ―ジァミノ _ 4—フエノキシベンゾフエノン、 3, 3'-diamino_4-phenoxybenzophenone,
3, 3 ' ージァミノ一 4ービフエノキシベンゾフエノン  3, 3 'diamino 4-biphenoxybenzophenone
などが挙げられる。 And the like.
本発明においては、 必要に応じ、 芳香族環を有するジァミン類の芳香族環上 の水素原子の一部または全てを、 メチル基、 メトキシ基や、 架橋点となるェチ ニル基、 ベンゾシクロブテン- 4'-ィル基、 ビニル基、 ァリル基、 シァノ基、 イソ シァネート基、 二トリ口基またはイソプロぺニル基などの置換基で置換したジ アミン類も用いることができる。  In the present invention, if necessary, part or all of the hydrogen atoms on the aromatic ring of the diamine having an aromatic ring may be replaced with a methyl group, a methoxy group, an ethynyl group serving as a crosslinking point, or benzocyclobutene. -Diamines substituted with a substituent such as a 4'-yl group, a vinyl group, an aryl group, a cyano group, an isocyanate group, a nitrile group or an isopropyl group can also be used.
さらに、 必要に応じ、 架橋点となるビニレン基、 ビニリデン基またはェチニ リデン基などの基をジアミン主鎖骨格中に有するジァミン類も用いることがで さる。  Further, if necessary, diamines having a group such as a vinylene group, a vinylidene group or an ethynylidene group serving as a crosslinking point in a diamine main chain skeleton can be used.
また、 分岐を導入するため、 ジァミン類の代わりにトリアミン類、 テトラァ ミン類を用いることもできる。 Also, to introduce branching, triamines and tetraamines are used instead of diamines. Mines can also be used.
このようなジアミン類は、 1種または 2種以上を組み合わせて用いることが できる。  Such diamines can be used alone or in combination of two or more.
ぐテトラカルボン酸二無水物 > Tetracarboxylic dianhydride>
本発明のポリイミドの製造方法においては、 テトラカルボン酸二無水物とし て、 ビフエ二ルテトラカルボン酸二無水物を含むことが好ましい。 このような ビフエニルテトラカルボン酸二無水物としては、 具体的には、 3 , 3 ' , 4 , 4 ' ービフエニルテトラカルボン酸二無水物, 2, 3 ' , 3, 4 ' ービフエニルテ トラカルボン酸二無水物、 2, 2 3 , 3, —ビフエニルテトラカルボン酸二 無水物が挙げられる。 これらのビフエ二ルテトラカルボン酸二無水物は、 1種 又は 2種以上を組み合わせて用いることができる。 このうち、 本発明における テトラカルボン酸二無水物としては、 特に 3, 3 ' , 4, 4 ' —ビフエ二ルテト ラカルボン酸二無水物が好ましい。  In the method for producing a polyimide according to the present invention, it is preferable to include biphenyltetracarboxylic dianhydride as the tetracarboxylic dianhydride. As such biphenyltetracarboxylic dianhydride, specifically, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3 ′, 3,4′-biphenyltetracarboxylic acid Acid dianhydride; and 2,23,3, -biphenyltetracarboxylic dianhydride. These biphenyltetracarboxylic dianhydrides can be used alone or in combination of two or more. Among them, as the tetracarboxylic dianhydride in the present invention, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is particularly preferable.
本発明においては、 テ卜ラカルボン酸二無水物としてビフエ二ルテトラカル ポン酸ニ無水物を好ましく用いるが、 ビフエ二ルテトラ力ルボン酸二無水物と 共に他の従来公知のテトラカルボン酸二無水物を用いることができる。 このよ うな他のテトラカルボン酸二無水物としては、 芳香族テトラカルボン酸二無水 物を用いることが好ましい。 なお、 芳香族環を含まない脂肪族テ卜ラカルボン 酸、 およびフッ素含有テトラカルボン酸を用いた場合には、 得られるポリイミ ドが本発明で用いる溶媒に溶解するため、 本発明が目的とする効果が得られな いことがある。 このような芳香族環を含まない脂肪族テトラカルボン酸として は、 たとえば、 ビシクロ (2,2,2) -ォクト -7-ェン- 2,3,5,6-テトラカルボン酸二無 水物、 エチレンテトラカルボン酸二無水物、 ブタンテトラカルボン酸二無水物、 シクロペンタンテトラカルボン酸二無水物などが挙げられる。  In the present invention, biphenyltetracarboxylic dianhydride is preferably used as tetracarboxylic dianhydride, but other conventionally known tetracarboxylic dianhydrides are used together with biphenyltetracarboxylic dianhydride. be able to. As such another tetracarboxylic dianhydride, it is preferable to use an aromatic tetracarboxylic dianhydride. When an aliphatic tetracarboxylic acid containing no aromatic ring and a fluorine-containing tetracarboxylic acid are used, the obtained polyimide is dissolved in the solvent used in the present invention. May not be obtained. Examples of such aliphatic tetracarboxylic acids containing no aromatic ring include bicyclo (2,2,2) -oct-7-ene-2,3,5,6-tetracarboxylic dianhydride. And ethylene tetracarboxylic dianhydride, butane tetracarboxylic dianhydride, cyclopentane tetracarboxylic dianhydride and the like.
したがって、 本発明では、 他のテトラカルボン酸として、 芳香族環を含まな い脂肪族テトラカルボン酸、 フッ素含有テトラカルボン酸を用いないことが好 ましい。  Therefore, in the present invention, it is preferable not to use an aliphatic tetracarboxylic acid containing no aromatic ring or a fluorine-containing tetracarboxylic acid as another tetracarboxylic acid.
本発明において前記ビフエ二ルテトラカルボン酸二無水物と共に用いること のできる他の芳香族テトラカルボン酸二無水物としては、 たとえば、 ピロメリット酸ニ無水物、 Other aromatic tetracarboxylic dianhydrides that can be used together with the biphenyltetracarboxylic dianhydride in the present invention include, for example, Pyromellitic dianhydride,
ビス (3, 4—ジカルボキシフエニル) エーテル二無水物、  Bis (3,4-dicarboxyphenyl) ether dianhydride,
ビス (3, 4—ジカルボキシフエニル) スルフイ ド二無水物、  Bis (3,4-dicarboxyphenyl) sulfide dianhydride,
ビス (3, 4ージカルポキシフエニル) スルホン二無水物、 Bis (3,4-dicarboxyphenyl) sulfone dianhydride,
2, 2—ビス (3, 4—ジカルボキシフエニル) プロパン二無水物、  2,2-bis (3,4-dicarboxyphenyl) propane dianhydride,
1, 3—ビス (3, 4—ジカルボキシフエノキシ) ベンゼン二無水物、 1,3-bis (3,4-dicarboxyphenoxy) benzene dianhydride,
1, 4一ビス (3, 4—ジカルボキシフエノキシ) ベンゼン二無水物、1,4-bis (3,4-dicarboxyphenoxy) benzene dianhydride,
4, 4 ' 一ビス (3, 4—ジカルポキシフエノキシ) ビフエニルニ無水物、4,4'-bis (3,4-dicarboxyphenoxy) biphenyl dianhydride,
2, 2—ビス [(3, 4—ジカルボキシフエノキシ) フエニル] プロパン二無水 物、 2,2-bis [(3,4-dicarboxyphenoxy) phenyl] propane dianhydride,
2, 3, 6, 7—ナフ夕レンテトラカルボン酸二無水物、  2, 3, 6, 7-naphthenetetracarboxylic dianhydride,
1, 4, 5, 8—ナフ夕レンテトラカルボン酸二無水物、  1,4,5,8-naphthylenetetracarboxylic dianhydride,
2, 2 3, 3 ' —ベンゾフエノンテトラカルボン酸二無水物、  2, 2, 3, 3'-benzophenonetetracarboxylic dianhydride,
2, 3', 3, 4 ' —ベンゾフエノンテトラカルボン酸二無水物、  2, 3 ', 3, 4'-benzophenonetetracarboxylic dianhydride,
2, 2—ビス (2, 3—ジカルボキシフエニル) プロパン二無水物、 ビス (2, 3—ジカルポキシフエニル) エーテル二無水物、  2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, bis (2,3-dicarboxyphenyl) ether dianhydride,
ビス (2, 3—ジカルボキシフエニル) スルフイ ド二無水物、 Bis (2,3-dicarboxyphenyl) sulfide dianhydride,
ビス (2, 3—ジカルボキシフエニル) スルホン二無水物、 Bis (2,3-dicarboxyphenyl) sulfone dianhydride,
1, 3—ビス (2, 3—ジカルボキシフエノキシ) ベンゼン二無水物、  1,3-bis (2,3-dicarboxyphenoxy) benzene dianhydride,
1, 4—ビス (2, 3—ジカルボキシフエノキシ) ベンゼン二無水物、 および 1,4-bis (2,3-dicarboxyphenoxy) benzene dianhydride, and
1 , 2, 5, 6 _ナフ夕レンテトラカルボン酸二無水物 1,2,5,6_naphthylenetetracarboxylic dianhydride
などが挙げられる。 And the like.
これら他の芳香族テトラカルボン酸二無水物は、 1種単独でまたは 2種以上 を併用して用いることができる。  These other aromatic tetracarboxylic dianhydrides can be used alone or in combination of two or more.
本発明においては、 必要に応じ、 芳香族テトラカルボン酸二無水物の芳香環 上の水素原子の一部または全てを、 メチル基、 メトキシ基や、 架橋点となるェ チニル基、 ベンゾシクロブテン- 4'-ィル基、 ビニル基、 ァリル基、 シァノ基、 ィ ソシァネー卜基、 二トリ口基またはィソプロぺニル基などの置換基で置換した テトラカルボン酸二無水物も用いることができる。 さらに、 架橋点となるビニレン基、 ビニリデン基またはェチニリデン基など の基をテトラカルボン酸二無水物の主鎖骨格中に有するテトラカルボン酸二無 水物も用いることができる。 In the present invention, if necessary, part or all of the hydrogen atoms on the aromatic ring of the aromatic tetracarboxylic dianhydride may be replaced with a methyl group, a methoxy group, an ethynyl group serving as a crosslinking point, or benzocyclobutene- A tetracarboxylic dianhydride substituted with a substituent such as a 4'-yl group, a vinyl group, an aryl group, a cyano group, an isocyanate group, a nitrile group, or an isopropenyl group can also be used. Further, tetracarboxylic dianhydride having a group such as a vinylene group, a vinylidene group, or an ethynylidene group serving as a crosslinking point in the main chain skeleton of the tetracarboxylic dianhydride can also be used.
また、 分岐を導入するため、 テトラカルボン酸二無水物の代わりにへキサカ ルボン酸三無水物類、 ォクタカルボン酸四無水物類を用いるこきる。  In order to introduce a branch, hexacarboxylic acid trianhydrides and octacarboxylic acid tetraanhydrides can be used instead of tetracarboxylic dianhydride.
このようなテトラカルボン酸二無水物は、 1種または 2種以上を組み合わせ て用いることができる。  Such tetracarboxylic dianhydrides can be used alone or in combination of two or more.
本発明において用いるテトラカルボン酸二無水物の量は、 全テトラカルボン 酸二無水物量に対し、 ビフエニルテトラカルボン酸二無水物を好ましくは 3 0 〜 1 0 0モル%、 さらに好ましくは 5 0〜 1 0 0モル%、 特に好ましくは 5 5 〜1 0 0モル%と、 他のテ卜ラカルボン酸二無水物類を好ましくは 0〜 7 0モ ル%、 さらに好ましくは 0〜5 0モル%、 特に好ましくは 0〜4 5モル%であ ることが望ましい。  The amount of tetracarboxylic dianhydride used in the present invention is preferably 30 to 100 mol%, more preferably 50 to 100 mol%, of biphenyl tetracarboxylic dianhydride based on the total amount of tetracarboxylic dianhydride. 100 mol%, particularly preferably 55 to 100 mol%, and other tetracarboxylic dianhydrides are preferably 0 to 70 mol%, more preferably 0 to 50 mol%, Particularly preferably, the content is 0 to 45 mol%.
他のテトラカルボン酸二無水物の使用量が 7 0モル%より多い場合には、 得 られるポリイミドの溶剤への溶解性が非常に高く、 本発明の製造方法を用いて も、 生成したポリイミドが析出しない場合があったり、 あるいは多量の溶媒を 含み膨潤した状態で析出するため反応系が固化するといつた問題を生じる場合 がある。 また、 他のテトラカルボン酸二無水物として、 たとえばピロメリット 酸二無水物を 7 0モル%より多く用いる場合には、 得られるポリイミドは溶剤 への溶解性が低いため、 本発明の製造方法を必要としない。  If the amount of the other tetracarboxylic dianhydride is more than 70 mol%, the solubility of the obtained polyimide in the solvent is very high, and even if the production method of the present invention is used, the produced polyimide will not In some cases, it does not precipitate, or it may precipitate in a swollen state containing a large amount of solvent, causing problems when the reaction system solidifies. Further, when pyromellitic dianhydride is used as more than 70 mol% as another tetracarboxylic dianhydride, the obtained polyimide has low solubility in a solvent. do not need.
すなわち、 N-メチル -2-ピロリ ドンあるいはクレゾールといった極性溶媒中で 加熱イミド化する従来の方法においても、 生成したポリイミドが析出する。  That is, even in the conventional method of imidization by heating in a polar solvent such as N-methyl-2-pyrrolidone or cresol, the produced polyimide is precipitated.
<ジアミン及びテトラカルボン酸二無水物の使用量〉 <Amount of diamine and tetracarboxylic dianhydride>
本発明において用いるテトラカルボン酸二無水物類の使用量 (ビフエニルテ トラカルボン酸二無水物の使用量と他のテトラカルボン酸二無水物類の使用量 の和) は特に限定されないが、 通常、 使用するジァミン類 1モル当たり、 0 . 8〜1 . 2 5モルの量を用いることが好ましい。 使用するジァミン類とテ卜ラ カルボン酸二無水物とのモル比を変えることにより、 得られるポリイミドの分 子量を制御することができる。 The amount of the tetracarboxylic dianhydride used in the present invention (the sum of the amount of the biphenyltetracarboxylic dianhydride and the amount of the other tetracarboxylic dianhydride) is not particularly limited. It is preferable to use an amount of 0.8 to 1.25 mol per mol of the diamines. By changing the molar ratio of diamines and tetracarboxylic dianhydride used, the amount of polyimide The child quantity can be controlled.
このようなモル比 (テトラカルボン酸二無水物 ジァミン類) が、 0 . 8未 満では、 ポリイミドの諸特性を十分に発現させ得るようなポリイミド分子量と はならず、 また、 前記モル比が 1 . 2 5を越えても、 ポリイミドの分子量の低 下を招くことがある。  When the molar ratio (tetracarboxylic dianhydride diamines) is less than 0.8, the polyimide molecular weight does not become a polyimide molecular weight capable of sufficiently exhibiting various properties of the polyimide. Even if it exceeds 25, the molecular weight of the polyimide may decrease.
なお、 後述するように末端封止剤としてモノアミン類を用いる場合、 テトラ カルボン酸二無水物の使用量は、 使用するジァミン類 1モル当たり、 好ましく は 1 . 0 1〜1 . 2 5モルであり、 さらに好ましくは 1 . 0 5〜1 . 2 0モル であり、 特に好ましくは 1 . 0 7〜1 . 1 5モルの範囲であることが望ましい。 この場合、 前記モル比 (テトラカルボン酸二無水物/ジァミン類) が 1 . 0 1 より小さかったり、 あるいは、 1 . 2 5を超えると、 末端封止が不十分となり、 得られたポリイミドの熱安定性 ·加工性に悪影響を及ぼすことがある。  In addition, when a monoamine is used as a terminal blocking agent as described later, the amount of tetracarboxylic dianhydride used is preferably 1.01 to 1.25 mol per 1 mol of diamines used. It is more preferably in the range of 1.05 to 1.20 mol, and particularly preferably in the range of 1.07 to 1.15 mol. In this case, if the molar ratio (tetracarboxylic dianhydride / diamines) is smaller than 1.01 or larger than 1.25, the end capping becomes insufficient, and the heat of the obtained polyimide becomes poor. Stability · May adversely affect processability.
また、 末端封止剤として後述のジカルボン酸またはその無水物や誘導体を用 いる場合は、 テトラカルボン酸二無水物の使用量は、 ジァミン類 1モル当たり、 好ましくは 0 . 8〜0 . 9 9モルであり、 さらに好ましくは 0 . 8 5〜0 . 9 7モルであり、 特に好ましくは 0 . 9 0〜0 . 9 5の範囲であることが望まし い。 この場合、 前記モル比 (テトラカルボン酸二無水物 Zジァミン類) が 0 . 8より小さかったり、 あるいは、 0 . 9 9を超えると、 末端封止が不十分とな り、 得られたポリイミドの熱安定性 ·加工性に悪影響を及ぼすことがある。 ポリイミドの分子量は、 ポリイミド製造に使用するジァミン類とテトラカル ボン酸二無水物のモル比を変化させることにより制御することができ、 また、 原料の純度 ·不純物量、 重合方法、 溶媒の種類、 重合温度、 重合時間等により その最適の仕込み比は異なる場合がある。  When a dicarboxylic acid or an anhydride or derivative thereof described below is used as the terminal blocking agent, the amount of the tetracarboxylic dianhydride used is preferably 0.8 to 0.99 per mole of diamines. Mole, more preferably 0.85 to 0.97 mole, and particularly preferably in the range of 0.90 to 0.95. In this case, if the molar ratio (tetracarboxylic dianhydride Z diamines) is less than 0.8 or more than 0.99, the end capping becomes insufficient and the obtained polyimide Thermal stability · May adversely affect processability. The molecular weight of the polyimide can be controlled by changing the molar ratio of diamines and tetracarbonic dianhydride used in the production of the polyimide, and the purity and amount of the raw materials, the amount of impurities, the polymerization method, the type of solvent, and the polymerization. The optimum charging ratio may vary depending on the temperature, polymerization time, and the like.
なお、 十分に分子量の高いポリイミドを得るためには、 用いるジァミン類と テトラカルボン酸二無水物類のモル比をほぼ等モルとすることが好ましい。 こ の様な場合には、 生成するポリイミドが析出しない従来の方法では、 反応溶液 の粘度が著しく高くなり、 撹拌が困難となった。 しかしながら、 本発明の製造 方法によれば、 生成するポリイミドが析出し、 反応系がスラリー状となるため、 反応溶液が撹拌に支障をきたすほど粘稠となることはない。 ぐ末端封止剤 > In order to obtain a polyimide having a sufficiently high molecular weight, the molar ratio of diamines and tetracarboxylic dianhydrides to be used is preferably set to be approximately equimolar. In such a case, the viscosity of the reaction solution was remarkably increased by the conventional method in which the generated polyimide did not precipitate, and stirring was difficult. However, according to the production method of the present invention, the produced polyimide precipitates and the reaction system becomes a slurry, so that the reaction solution does not become viscous enough to hinder stirring. Terminal sealant>
本発明のポリイミ ドの製造方法においては、 必要に応じ、 末端封止剤を用い ることができる。 用いられる末端封止剤は特に限定されず、 各種のものを用い ることができる。 このうち、 モノアミン類またはジカルボン酸無水物などを好 ましく用いることができる。  In the method for producing a polyimide of the present invention, a terminal blocking agent can be used as necessary. The terminal blocking agent used is not particularly limited, and various types can be used. Among them, monoamines or dicarboxylic anhydrides can be preferably used.
このような末端封止剤として用いるモノアミンとしては、 たとえば、 ァニリン、 ο—トルイジン、 m—トルイジン、 p _卜ルイジン、 2 , 3—キシ リジン、 2 , 4ーキシリジン、 2, 5—キシリジン、 2, 6—キシリジン、 3, 4—キシリジン、 3, 5—キシリジン、 o _クロロア二リン、 m—クロロア二 リン、 p—クロロア二リン、 o—プロモア二リン、 m—ブロモア二リン、 p— ブロモア二リン、 o—二トロア二リン、 m—二卜ロア二リン、 p—二卜ロア二 リン、 o—ァニシジン、 m—ァニシンン、 p—ァニシンン、 o—フエ不ナジン、 m—フエネチジン、 p—フエネチジン、 o—ァミノフエノール、 m—アミノフ ェノール、 p—ァミノフエノール、 o—ァミノべンズアルデヒド、 m—ァミノ ベンズアルデヒド、 p—ァミノべンズアルデヒド、 o—ァミノべンゾニトリル、 m—ァミノべンゾニトリル、 p—ァミノべンゾニトリル、 2—アミノビフエ二 ル、 3 _アミノビフエニル、 4—アミノビフエニル、 2—ァミノフエ二ルフエ ニルエーテル、 3—ァミノフエニルフエニルエーテル、 4—ァミノフエ二ルフ ェニルェ一テル、 2—ァミノべンゾフエノン、 3—ァミノべンゾフエノン、 4 —ァミノべンゾフエノン、 2—ァミノフエニルフエニルスルフイ ド、 3—アミ ノフエ二ルフエニルスルフイ ド、 4—ァミノフエニルフエニルスルフイ ド、 2 ーァミノフエニルフエニルスルホン、 3—ァミノフエニルフエニルスルホン、 4—ァミノフエニルフエニルスルホン、 α—ナフチルァミン、 β —ナフチルァ ミン、 1ーァミノ一 2—ナフ卜一ル、 2—ァミノ一 1 —ナフトール、 4一アミ ノー 1 一ナフ! ^一ル、 5—ァミノ一 1—ナフ! ^一ル、 5—アミノー 2—ナフト ール、 7 —アミノー 2—ナフトール、 8—アミノー 1 —ナフ卜ール、 8—アミ ノ一 2—ナフトール、 1—アミノアントラセン、 2—ァミノアントラセン、 9 —ァミノアントラセン、 メチルァミン、 ジメチルァミン、 ェチルァミン、 ジェ チルァミン、 プロピルァミン、 ジプロピルアミン、 イソプロピルァミン、 ジィ ソプロピルアミン、 プチルァミン、 ジブチルァミン、 イソプチルァミン、 ジィ ソブチルァミン、 ペンチルァミン、 ジペンチルァミン、 ベンジルァミン、 シク 口プロピルアミン、 シクロブチルァミン、 シクロペンチルァミン、 シクロへキ シルァミンなどが挙げられる。 Examples of the monoamine used as such a terminal blocking agent include aniline, ο-toluidine, m-toluidine, p_toluidine, 2,3-xylysine, 2,4-xylysine, 2,5-xylysine, 6-xylidine, 3,4-xylidine, 3,5-xylidine, o_chloroaniline, m-chloroaniline, p-chloroaniline, o-promorenyline, m-bromoaniline, p-bromoaniline Phosphorus, o-Nitroaline, m-Nitroaline, p-Nitroaline, o-anisidine, m-anisine, p-anisine, o-phenazine, m-phenetidine, p-phenetidine O-aminophenol, m-aminophenol, p-aminophenol, o-aminobenzaldehyde, m-aminobenzaldehyde, p-aminobenzaldehyde, o-aminobenzo Nitrile, m-aminobenzonitrile, p-aminobenzonitrile, 2-aminobiphenyl, 3-aminobiphenyl, 4-aminobiphenyl, 2-aminophenylphenyl ether, 3-aminophenylphenyl ether, 4-aminophenylphenyl, 4-aminophenylphenyl ether 1 ter, 2-amino benzophenone, 3-amino benzophenone, 4-amino benzophenone, 2-amino phenyl sulfide, 3-amino phenyl sulfide, 4-amino phenyl sulfide 1, 2-aminophenylphenylsulfone, 3-aminophenylphenylsulfone, 4-aminophenylphenylsulfone, α-naphthylamine, β-naphthylamine, 1-amino-2-naphthyl, 2- Amino 1 — Naphthol, 4 Amino 1 1 Naph! One, five—Amino one—Nuff! ^, 5-amino-2-naphthol, 7-amino-2-naphthol, 8-amino-1-naphthol, 8-amino-1-naphthol, 1-aminoanthracene, 2-aminoanthracene, 9—Aminoanthracene, methylamine, dimethylamine, ethylamine, gel Cilamine, propylamine, dipropylamine, isopropylamine, disopropylamine, butylamine, dibutylamine, isoptylamine, disobutylamine, pentylamine, dipentylamine, benzylamine, cyclopropylamine, cyclobutylamine, cyclopentylamine, cyclohexyl Xylamine and the like.
また、 このような末端封止剤として用いるジカルボン酸無水物としては、 た とえば、 無水フ夕ル酸、 2,3-ベンゾフエノンジカルボン酸無水物、 3,4-ベンゾフ エノンジカルボン酸無水物、 2,3-ジカルボキシフエニルフエニルエーテル無水 物、 3,4-ジカルボキシフエニルフエニルエーテル無水物、 2,3-ビフエ二ルジカル ボン酸無水物、 3,4-ビフエニルジカルボン酸無水物、 2,3-ジカルボキシフエニル フエニルスルホン無水物、 3,4-ジカルポキシフエニルフエニルスルホン無水物、 2,3-ジカルボキシフエニルフエニルスルフィ ド無水物、 3,4-ジカルボキシフエ二 ルフエニルスルフイ ド無水物、 1,2-ナフ夕レンジカルボン酸無水物、 2,3 -ナフタ レンジカルボン酸無水物、 1,8-ナフタレンジカルボン酸無水物、 1,2-アントラセ ンジカルボン酸無水物、 2,3-アントラセンジカルボン酸無水物、 1,9-アン卜ラセ ンジカルボン酸無水物などが挙げられる。  Examples of the dicarboxylic anhydride used as such a terminal capping agent include, for example, fluoric anhydride, 2,3-benzophenone dicarboxylic anhydride, and 3,4-benzophenone dicarboxylic anhydride. , 2,3-dicarboxyphenylphenyl ether anhydride, 3,4-dicarboxyphenylphenyl ether anhydride, 2,3-biphenyldicarboxylic anhydride, 3,4-biphenyldicarboxylic anhydride 2,3-dicarboxyphenyl phenyl sulfone anhydride, 3,4-dicarboxyphenyl phenyl sulfone anhydride, 2,3-dicarboxyphenyl phenyl sulfide anhydride, 3,4-di Carboxyphenyl sulfide anhydride, 1,2-naphthalenedicarboxylic anhydride, 2,3-naphthalenedicarboxylic anhydride, 1,8-naphthalenedicarboxylic anhydride, 1,2-anthracene Dicarboxylic anhydride And 2,3-anthracene dicarboxylic anhydride, and 1,9-anthracene dicarboxylic anhydride.
これらのモノアミンおよびジカルボン酸無水物は、 その構造の一部がァミン およびカルボン酸無水物と反応性を有しない基で置換されていてもよい。  These monoamines and dicarboxylic anhydrides may have a part of their structure substituted by a group having no reactivity with amine or carboxylic anhydride.
また、 このようなモノアミンまたはジカルボン酸無水物の構造の一部を、 架 橋点となるェチニル基、 ベンゾシクロブテン- 4'-ィル基、 ビニル基、 ァリル基、 シァノ基、 イソシァネー卜基、 二卜リロ基、 イソプロぺニル基、 ビニレン基、 ビニリデン基またェチニリデン基などの置換基で置換したモノアミンまたはジ カルボン酸無水物を用いることもできる。  Further, a part of the structure of such a monoamine or dicarboxylic anhydride is converted into an ethynyl group, a benzocyclobutene-4'-yl group, a vinyl group, an aryl group, a cyano group, an isocyanate group, A monoamine or dicarboxylic anhydride substituted with a substituent such as a ditrilo group, an isopropenyl group, a vinylene group, a vinylidene group or an ethynylidene group can also be used.
このような末端封止剤は、 1種または 2種以上を組み合わせて用いることが できる。  Such terminal blocking agents can be used alone or in combination of two or more.
このような末端封止剤を用いる場合の末端封止剤の使用量は特に限定されな いが、  The amount of the terminal blocking agent used when using such a terminal blocking agent is not particularly limited,
ジァミン類成分の全量を [D a ] (mol)、  [D a] (mol),
テトラカルボン酸二無水物成分 (またはその開環物や誘導体を含む) の全量 を [Tc] (モル)、 Total amount of tetracarboxylic dianhydride component (or its ring-opened products and derivatives) To [Tc] (mol),
末端封止剤として用いられるモノアミン成分の全量を [Ma] (mol)、 末端封止剤として用いられるジカルボン酸無水物成分 (またはその開環物や 誘導体を含む) の全量を [Dc] (mol) とすると、  The total amount of the monoamine component used as the terminal capping agent is [Ma] (mol), and the total amount of the dicarboxylic anhydride component (or the ring-opened product or derivative thereof) used as the terminal capping agent is [Dc] (mol). )
100≥ ([Dc] — [Ma]) / ([Da] 一 [Tc]) ≥2  100≥ ([Dc] — [Ma]) / ([Da]-[Tc]) ≥2
の範囲内であることが好ましく、 さらに好ましくは、 It is preferably within the range of, more preferably,
20≥ ([Dc] ― [Ma]) / ([Da] 一 [Tc]) ≥3  20≥ ([Dc]-[Ma]) / ([Da]-[Tc]) ≥3
の範囲内であることが望ましい。 Is preferably within the range.
([Dc] — [Ma]) / ([D a] ― [Tc]) の値が 2より小さいと、 十分な 分子末端封止を行うことができず、 得られるポリイミドの熱安定性、 熱酸化安 定性、 成形加工性が悪化することがあり、 また、  If the value of ([Dc] — [Ma]) / ([Da]-[Tc]) is less than 2, sufficient molecular end capping cannot be achieved, and the resulting polyimide will not have thermal stability and heat. Oxidation stability and moldability may deteriorate.
([Dc] — [Ma]) / ([D a] — [Tc]) の値が 100を超えると、 得ら れるポリイミドの分子量制御や余剰末端封止剤の洗浄が難しくなることがある。 なお、 本発明の製造方法においては、 末端封止剤は、 反応開始時に芳香族ジ アミン類、 芳香族テトラカルボン酸二無水物と共に装入することが好ましい。 本発明の製造方法においては反応の進行と共に生成したポリマーが析出するた め、 後から末端封止剤を添加する場合には、 末端が十分に封止されない場合が ある。 ぐ触媒 >  When the value of ([Dc] — [Ma]) / ([Da] — [Tc]) exceeds 100, it may be difficult to control the molecular weight of the obtained polyimide and to wash the surplus end-capping agent. In the production method of the present invention, the terminal blocking agent is preferably charged together with the aromatic diamine and the aromatic tetracarboxylic dianhydride at the start of the reaction. In the production method of the present invention, the generated polymer precipitates with the progress of the reaction, so that when the terminal blocking agent is added later, the terminal may not be sufficiently sealed. Catalysts>
本発明のポリイミドの製造方法においては、 ジァミン類とテトラカルボン酸 二無水物類とを反応させるに際し、 公知の触媒を併用することができる。 触媒 を併用する場合には、 このうち、 塩基触媒を用いることが好ましい。  In the method for producing a polyimide of the present invention, a known catalyst can be used in combination with the reaction of diamines and tetracarboxylic dianhydrides. When a catalyst is used in combination, it is preferable to use a base catalyst.
このような塩基触媒としては、 たとえば、  Examples of such a base catalyst include, for example,
ピリジン、 キノリン、 イソキノリン、 ひ-ピコリン、 /3-ピコリン、 ァ-ピコリ ン、 イソホロン、 ピぺリジン、 2,4-ルチジン、 2,6-ルチジン、 卜リメチルァミン、 トリェチルァミン、 トリプロピルァミン、 卜リブチルァミンなどのアミン系化 合物、  Pyridine, quinoline, isoquinoline, hy-picoline, / 3-picoline, a-picolin, isophorone, piperidine, 2,4-lutidine, 2,6-lutidine, trimethylamine, triethylamine, tripropylamine, tributylamine Amine compounds such as
イミダゾール、 N, N—ジメチルァニリン、 N, N—ジェチルァニリンなど の有機塩基、 Imidazole, N, N-dimethylaniline, N, N-Jetylaniline, etc. Organic base,
水酸化カリウム、 水酸化ナトリウム、 炭酸カリウム、 炭酸ナトリウム、 炭酸 水素力リゥム、 炭酸水素ナトリゥムなどの無機塩基が挙げられる。  Inorganic bases such as potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, hydrogen carbonate carbonate, and sodium hydrogen carbonate.
これら触媒の使用量は、 用いるジァミン類 1モルに対して、 好ましくは 0 . 0 0 1〜 0 . 5 0モル、 さらに好ましくは 0 . 0 5〜0 . 2モルの量を用いる ことが望ましい。 ぐポリイミドの製造 >  The amount of the catalyst to be used is preferably 0.01 to 0.5 mol, more preferably 0.05 to 0.2 mol, per 1 mol of the diamines used. Production of polyimide
本発明のポリイミドの製造方法は、 前記化学式(1)で表される含窒素環状化合 物と化学式(2)で表されるフエノール類との等モル組成物を 5 0〜 1 0 0重量% 含む溶媒を用ればよく、 特に限定されるものではないが、 原料モノマーである ジァミン類およびテトラカルボン酸二無水物類を、 溶媒中に溶解または懸濁さ せた状態のまま加熱し、 熱的に脱水イミド化を行う方法が好ましい。 この際、 ジァミン類、 テトラカルボン酸二無水物、 末端封止剤の装入順序 ·タイミング は任意に選択することができる。  The method for producing a polyimide according to the present invention comprises 50 to 100% by weight of an equimolar composition of the nitrogen-containing cyclic compound represented by the chemical formula (1) and the phenol represented by the chemical formula (2). A solvent may be used, and there is no particular limitation, but the starting monomers diamines and tetracarboxylic dianhydrides are heated while dissolved or suspended in the solvent, and thermally heated. A method of performing dehydration imidization is preferable. At this time, the charging order and timing of the diamines, tetracarboxylic dianhydride and terminal blocking agent can be arbitrarily selected.
本発明において使用し得る原料モノマー類の濃度は特に限定されず、 また、 得ようとするポリイミドの構造や分子量、 さらには反応温度、 濾過の際の温度 等の条件により任意に設定できるが、 本発明に係る製造方法においては、 公知 のフエノール系単一溶媒でのイミド化による製造方法に比べ高い濃度でのスラ リー重合が可能である。  The concentration of the raw material monomers that can be used in the present invention is not particularly limited, and can be arbitrarily set depending on conditions such as the structure and molecular weight of the polyimide to be obtained, the reaction temperature, and the temperature at the time of filtration. In the production method according to the present invention, slurry polymerization at a higher concentration is possible as compared with a known production method by imidation with a phenol-based single solvent.
本発明に係るこのような特徴を活かすため、 好ましい原料モノマー類の全反 応溶液重量に対する濃度は、 5〜 5 0重量%でぁり、 さらに好ましくは 1 0〜 4 5重量%であり、 より好ましくは 1 8〜4 0重量%、 特に好ましくは 2 3〜 3 7重量%であることが望ましい。  In order to make use of such characteristics according to the present invention, the concentration of the preferable raw material monomers based on the total weight of the reaction solution is 5 to 50% by weight, more preferably 10 to 45% by weight. Preferably it is 18 to 40% by weight, particularly preferably 23 to 37% by weight.
原料モノマー類の濃度が 5重量%未満となると、 1バッチ当たりの収量が減 少し、 生産効率が悪化することがあることから、 本発明の特徴が損なわれるこ とがあり、 また、 5 0重量%を超えると、 イミド化反応過程での反応溶液の撹 拌が困難となり安定した製造が難しくなることがある。  If the concentration of the raw material monomers is less than 5% by weight, the yield per batch may be reduced and the production efficiency may be deteriorated, so that the features of the present invention may be impaired. %, It may be difficult to stir the reaction solution during the imidization reaction, and stable production may be difficult.
なお、 前記濃度は、 (原料モノマー類の合計重量) / { (原料モノマー類の合計 重量) + (溶媒の重量) } X 100 (%)で示される濃度をいう。 The concentration is (total weight of raw material monomers) / {(total of raw material monomers) Weight) + (weight of solvent)} X refers to the concentration indicated by 100 (%).
重合温度、 重合時間および重合圧力には、 特に制限はなく公知の条件が適用 ンできる。 すなわち、 反応温度は、 好ましくは 8 0で〜 4 0 0 前後であり、 さ らに好ましくは 1 0 O :〜 3 0 0 前後である。 なお反応温度の上限は、 重合 時の圧力下での溶媒の沸点により制限される。 また、 反応時間は使用する溶媒 やそれ以外の反応条件により異なるが、 通常、 0 . 5〜2 4時間の範囲で好ま しく行うことができる。  The polymerization temperature, polymerization time and polymerization pressure are not particularly limited, and known conditions can be applied. That is, the reaction temperature is preferably 80 to about 400, and more preferably 100 to about 300. The upper limit of the reaction temperature is limited by the boiling point of the solvent under the pressure during the polymerization. Although the reaction time varies depending on the solvent used and other reaction conditions, it is generally preferable to carry out the reaction in the range of 0.5 to 24 hours.
また、 本発明に係る製造方法では、 反応に用いる溶媒は高沸点であり、 たと えば 2 0 0でを超えるような温度においても重合反応を効率よく行うことがで きる。 このため、 反応圧力は常圧で行うことができ、 反応系を高圧あるいは減 圧とするための特別な装置を必要とせず、プロセスを簡略化することができる。 なお、 前記重合反応は、 空気、 窒素、 ヘリウム、 ネオン、 アルゴン雰囲気の いずれでも行うことができ、 反応時の雰囲気に特に制限はないが、 不活性気体 である窒素、 アルゴンを用いることが好ましい。  In addition, in the production method according to the present invention, the solvent used for the reaction has a high boiling point, and the polymerization reaction can be efficiently performed even at a temperature exceeding, for example, 200. For this reason, the reaction pressure can be performed at normal pressure, and no special device is required for increasing or decreasing the pressure of the reaction system, and the process can be simplified. The polymerization reaction can be performed in any of air, nitrogen, helium, neon, and argon atmospheres, and the atmosphere during the reaction is not particularly limited. However, it is preferable to use an inert gas such as nitrogen or argon.
このようにして得られるポリイミドの全反応溶液重量に対する濃度は、 好ま しくは 5〜5 0重量%であり、 さらに好ましくは 1 0〜4 5重量%であり、 よ り好ましくは 1 8〜4 0重量%であり、 特に好ましくは 2 3〜3 7重量%であ ることが望ましい。  The concentration of the polyimide thus obtained relative to the total weight of the reaction solution is preferably 5 to 50% by weight, more preferably 10 to 45% by weight, and still more preferably 18 to 40% by weight. %, Particularly preferably 23 to 37% by weight.
なお、 該濃度は、 (ポリイミドの重量) / { (ポリイミド重量) + (溶媒の重量) } X 100 (%)で示される濃度をいう。 ぐ重合過程における反応溶液状態 >  The concentration refers to a concentration represented by (weight of polyimide) / {(weight of polyimide) + (weight of solvent)} × 100 (%). Reaction solution state during polymerization process>
本発明のポリイミドの製造方法においては、 溶媒として前記化学式(1)で表さ れる含窒素環状化合物と前記化学式 (2)で表されるフエノール類との等モル組成 物を 5 0〜 1 0 0重量%含む溶媒を用いることにより、 本発明に係るポリイミ ド製造過程のイミド化反応の終期における反応溶液の状態を、 常圧、 前記反応 温度範囲の条件下においても、 溶媒中にポリイミドが析出したスラリー状とす ることができる。 代表的な反応状態としては、 たとえば、 反応の初期段階にモ ノマー及び 又はポリイミド前駆体が溶解し反応溶液が一度均質な溶液となつ た後、反応の進行とともにポリイミドが析出し、 反応溶液がスラリー状となる。 なお、 本明細書において、 反応の 「終期」 とは、 前記のように反応が進行し、 ポリイミドの重合及びイミド化がほぼ終了した段階を意味している。 In the method for producing a polyimide of the present invention, an equimolar composition of the nitrogen-containing cyclic compound represented by the chemical formula (1) and the phenol represented by the chemical formula (2) is used as a solvent in an amount of 50 to 100. The use of a solvent containing 5% by weight of polyimide allows the polyimide to precipitate in the solvent under the conditions of normal pressure and the above-mentioned reaction temperature range at the final stage of the imidization reaction in the polyimide production process according to the present invention. It can be in the form of a slurry. A typical reaction state is, for example, that the monomer and / or polyimide precursor are dissolved in the initial stage of the reaction, and the reaction solution is once a homogeneous solution. Then, as the reaction proceeds, polyimide precipitates, and the reaction solution becomes a slurry. In the present specification, the “end stage” of the reaction means a stage at which the reaction has proceeded as described above and the polymerization and imidization of the polyimide have almost been completed.
なお、 このようなスラリー状の反応溶液を室温程度にまで冷却しても、 反応 溶液は粘稠な状態になることはなく、 引き続きスラリ一状である。  Even if such a slurry-like reaction solution is cooled to about room temperature, the reaction solution does not become a viscous state but remains in a slurry state.
<ポリイミドの回収 > <Recovery of polyimide>
本発明においては、 このようにして得られるスラリー状の反応溶液を、 その まま濾過するだけでポリイミドを得ることができる。 また、 ポリイミドの析出 をより確実なものとするため、 貧溶媒としてトルエン、 メタノール、 エタノー ル、 メチルェチルケトン, 水、 N-メチル -2-ピロリドン等を必要に応じ装入する こともできる。  In the present invention, a polyimide can be obtained by simply filtering the slurry-like reaction solution thus obtained as it is. To ensure more reliable polyimide deposition, toluene, methanol, ethanol, methyl ethyl ketone, water, N-methyl-2-pyrrolidone, or the like may be added as a poor solvent if necessary.
本発明のポリイミドの製造方法において、 このような操作により得られるポ リイミドは通常粉末状であり、 溶媒の除去が容易に行えるとともに、 様々な用 途に容易に用いることができる。 なお、 回収したポリイミド中の溶媒は公知の 様々な方法により除去でき、 たとえば、 オーブン中で 100〜 400でにて乾燥さ せ、 溶媒を除去することができる。  In the method for producing a polyimide of the present invention, the polyimide obtained by such an operation is usually in the form of a powder, so that the solvent can be easily removed and the polyimide can be easily used for various purposes. The solvent in the recovered polyimide can be removed by various known methods. For example, the solvent can be removed by drying at 100 to 400 in an oven.
通常ポリイミドの製造においては、 生成するポリイミドの構造により異なる が生成するポリマーの固化等を防止するため原料濃度をある程度低濃度 (たと えば 1 0重量%程度) にして重合反応を行うことが多い。 しかしながら、 本発 明に係る高沸点混合溶媒を用いると、 ポリイミド原料の合計の濃度をより高濃 度 (たとえば 2 0重量%以上) にしてイミド化を行っても、 反応溶液が固化す ることがなく、 反応溶液をスラリー状で得ることができるので、 工業プロセス におけるポリイミドの生産性を向上させることができる。 しかも得られるポリ イミドは、 従来の低濃度重合 (たとえば濃度 1 0重量%程度) により得られる ポリイミドと同等の物性を有しており、 その成形加工性、 摺動特性、 低吸水性、 電気特性、 熱酸化安定性、 耐放射線性等の諸物性が損なわれることはない。 本発明のポリイミドの製造方法により得られるポリイミドは、 従来公知の方 法により得られるポリイミドと同等の物性を有しているため、 従来公知の成形 方法、 すなわち、 圧縮成型、 焼結成形、 押出成形、 射出成形、 卜ランスファー 成形等に供することができ、 従来公知の用途に供することができる。 産業上の利用可能性 Usually, in the production of polyimide, the polymerization reaction is often carried out at a somewhat lower raw material concentration (for example, about 10% by weight) in order to prevent solidification of the produced polymer, which varies depending on the structure of the produced polyimide. However, when the high boiling point mixed solvent according to the present invention is used, the reaction solution solidifies even when imidation is performed with the total concentration of the polyimide raw materials being higher (for example, 20% by weight or more). Therefore, the reaction solution can be obtained in a slurry state, so that the productivity of polyimide in an industrial process can be improved. Moreover, the obtained polyimide has the same physical properties as polyimide obtained by conventional low-concentration polymerization (for example, a concentration of about 10% by weight), and its moldability, sliding properties, low water absorption, and electrical properties Various physical properties such as thermal oxidation stability and radiation resistance are not impaired. The polyimide obtained by the polyimide production method of the present invention has the same physical properties as the polyimide obtained by the conventionally known method, The method can be applied to compression molding, sinter molding, extrusion molding, injection molding, transfer molding, and the like, and can be used for conventionally known applications. Industrial applicability
本発明の製造方法により得られるポリイミドは、 例えば、 半導体容器の分野 では、 I C包装用トレ一、 I C製造工程用トレー、 I Cソケット、 ウェハーキ ャリア等、 電気 ·電子部品の分野では、 コネクター、 ソケット、 ボビンなどの ほか、 ハードディスクキャリア、 液晶ディスプレイキャリア、 水晶発振器製造 用トレーなどの製造用治具等、 事務機器部品の分野では、 コピー機用分離爪、 コピー機用断熱軸受け、 コピー機用ギア等、 自動車部品の分野では、 スラスト ワッシャー、 トランスミッションリング、 ピストンリング、 オイルシールリン グ等、 産業機器部品の分野では、 ベアリングリテーナ一、 ポンプギア、 コンペ ァチェーン、 ストレッチマシン用スライドブッシュ等、 その他としてはフィル ムゃ繊維等が挙げられる。  Polyimides obtained by the production method of the present invention include, for example, in the field of semiconductor containers, trays for IC packaging, trays for IC production processes, IC sockets, wafer carriers, etc.In the field of electric and electronic components, connectors, sockets, In addition to bobbins, hard disk carriers, LCD display carriers, jigs for manufacturing crystal oscillator manufacturing trays, etc.In the field of office equipment parts, separation claws for copiers, heat-insulated bearings for copiers, gears for copiers, etc. Thrust washers, transmission rings, piston rings, oil seal rings, etc. in the automotive parts field. Bearings, pump gears, conveyor chains, slide bushings for stretch machines, etc. in the industrial equipment parts field. Fiber etc. .
また、 本発明に係る前記等モル組成物あるいは等モル組成物を特定量含有す る溶媒は、 高沸点、 低凝固点であり、 適度な極性 (たとえば、 誘電率 2 0 (ァ セトンと同程度) 〜3 3 (メタノールと同程度)) を有し、 かつ水と混じらなレ という特異な性質を有するので、 通常の反応条件における有機溶媒としての利 用とともに、 高温での反応条件下においても、 簡便に使用することができる。 たとえば、 各種有機 ·無機反応の反応溶媒、 ポリイミドなどのポリマー製造時 のポリイミド合成用溶剤、 各種化学品の抽出 ·精製用溶媒、 染料 ·顔料等の溶 解したインク ·塗料用溶剤、 洗浄剤、 冷媒 ·熱媒体、 ポリマーを溶解した塗料 •接着剤用溶媒、 ポリマーの可塑剤等が挙げられる。 このうち、 たとえば、 ポ リイミドの製造は、 重合温度が常圧下で 2 0 0 以上というような高温件下で 行われることがあり、 本発明に係る等モル組成物あるいは該等モル組成物を特 定量含有する溶媒は、 ポリイミド合成用の有機溶剤として特に有用である。 さらに、 本発明に係るこのような等モル組成物あるいは該等モル組成物を特 定量含有する溶媒は、 高い沸点を有しているので、 重合あるいは反応の溶媒と して用いる場合、 反応温度を高められるので、 反応時間の短縮が可能である。 また、 本発明に係る等モル組成物あるいは該当モル組成物を特定量含む溶媒を 精製溶剤として用いる場合、 高温で溶解し低温で析出させる晶析操作において は、 該高温と該低温の温度差を大きくすることにより、 大きな溶解度差が得ら れるため、 目的物の精製収率を向上させることができる。 発明の効果 Further, the equimolar composition or the solvent containing a specific amount of the equimolar composition according to the present invention has a high boiling point and a low freezing point, and has an appropriate polarity (for example, a dielectric constant of 20 (similar to acetone)). ~ 33 (similar to methanol)) and has the unique property of being immiscible with water, so it can be used as an organic solvent under normal reaction conditions, It can be used conveniently. For example, various organic and inorganic reaction solvents, solvents for polyimide synthesis during the production of polymers such as polyimide, solvents for extracting and purifying various chemicals, solvents for dissolving inks such as dyes and pigments, solvents for paints, cleaning agents, Refrigerant, heat medium, polymer-soluble paint • Solvents for adhesives, polymer plasticizers, etc. Of these, for example, the production of polyimide may be carried out under a high temperature condition such as a polymerization temperature of 200 or more under normal pressure, and the equimolar composition according to the present invention or the equimolar composition is characterized. The solvent contained in a fixed amount is particularly useful as an organic solvent for polyimide synthesis. Furthermore, since such an equimolar composition according to the present invention or a solvent containing a specific amount of the equimolar composition has a high boiling point, when used as a solvent for polymerization or reaction, the reaction temperature is reduced. The reaction time can be shortened. Further, when a solvent containing a specific amount of the equimolar composition or the corresponding molar composition according to the present invention is used as a purification solvent, in a crystallization operation of dissolving at a high temperature and precipitating at a low temperature, the temperature difference between the high temperature and the low temperature is determined. By increasing the value, a large difference in solubility is obtained, so that the purification yield of the target product can be improved. The invention's effect
本発明のポリイミドの製造方法によれば、 ポリイミドが析出したスラリー状 の反応溶液が得られ、 この反応溶液をそのまま濾過するだけでポリイミドを得 ることができ、 したがって容易かつ安価なプロセスによりポリイミドを得るこ とができる。 しかも、 本発明に係る製造方法によれば、 ポリイミド製造原料の 濃度を高濃度にして重合反応を行っても、 反応溶液が固化することはなくスラ リー状であるので、 ポリイミドの生産性を向上させることができ、 様々な構造 に由来するポリイミドの諸物性 (成形加工性、 摺動特性、 低吸水性、 電気特性、 熱酸化安定性、 耐放射線性等) を損なうことがない。 実施例  According to the method for producing a polyimide of the present invention, a slurry-like reaction solution in which the polyimide is precipitated can be obtained, and the polyimide can be obtained by simply filtering the reaction solution as it is, and thus the polyimide can be obtained by an easy and inexpensive process. Obtainable. Moreover, according to the production method of the present invention, even when the polymerization reaction is carried out at a high concentration of the polyimide production raw material, the reaction solution does not solidify and is in a slurry state, so that the productivity of polyimide is improved. It does not impair the various physical properties of polyimide derived from various structures (moldability, sliding properties, low water absorption, electrical properties, thermal oxidation stability, radiation resistance, etc.). Example
以下、 実施例に基づいて本発明をより詳細に説明するが、 これらの実施例に より本願発明は何ら限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by these Examples.
なお、 実施例、 比較例中に共通する各種試験の試験方法を以下に示す。  Test methods of various tests common to the examples and the comparative examples are shown below.
1) 等モル組成物の I Rスペクトル  1) IR spectrum of equimolar composition
Bio- Rad社製 FTS- 165を用い、 液膜法で測定した。  It was measured by a liquid membrane method using FTS-165 manufactured by Bio-Rad.
2) 等モル組成物の NMRスペクトル  2) NMR spectrum of equimolar composition
Varian社製 Unity Inova400を用い、 液体の組成物をそのまま測定した。  The liquid composition was measured as it was using Unity Inova400 manufactured by Varian.
3) 等モル組成物の比誘電率 (ε')、 誘電正接 (tan5)  3) Dielectric constant (ε '), dielectric loss tangent (tan5) of equimolar composition
アジレント 'テクノロジ一社製精密 LCRメーター HP4284A、 安藤電気社製測 定用電極 LE-22を用い、 LCRメーターブリッジ法により測定した。 測定周波数 は 1ΜΗζ、 測定条件は 22士 1で Z60±2%RHである。  The measurement was performed by the LCR meter bridge method using a precision LCR meter HP4284A manufactured by Agilent Technologies and a measuring electrode LE-22 manufactured by Ando Electric. The measurement frequency is 1ΜΗζ, and the measurement conditions are 22 persons1 and Z60 ± 2% RH.
4) ポリイミド粉の対数粘度  4) Logarithmic viscosity of polyimide powder
サンプル 0. 50 gを p—クロ口フエノールとフエノールの混合溶媒 (90 : 1 0重量比) 1 00m lに加熱溶解した後、 35 にて測定した。 0.50 g of the sample was added to a mixed solvent of p-chlorophenol and phenol (90 : 10 weight ratio) After heating and dissolving in 100 ml, the measurement was carried out at 35.
5 ) 溶融粘度  5) Melt viscosity
島津高化式フローテスター (CFT 500A) によりオリフィス 1. Omm (径) X I 0mm (長)、 荷重 100 k g f 、 特記のない場合は滞留時間 5分で 測定した。  Orifice 1. Omm (diameter) X I 0 mm (long), load 100 kgf, residence time 5 minutes unless otherwise specified, using a Shimadzu Koka type flow tester (CFT 500A).
6) 5%重量減少温度  6) 5% weight loss temperature
空気中にて DTA— TG (島津 DT— 40シリーズ、 40 M) を用い、 昇温 速度 10 Zm i n. で測定した。  The measurement was carried out in air using DTA-TG (Shimadzu DT-40 series, 40 M) at a heating rate of 10 Zmin.
7 ) ガラス転移温度 ·結晶融解温度 (融点)  7) Glass transition temperature · Crystal melting temperature (melting point)
DS C (島津 DT— 40シリーズ、 DS C— 41M) により昇温速度 1 0 /m i n. で測定した。 実施例 A 1  The temperature was measured with a DSC (Shimadzu DT-40 series, DSC-41M) at a heating rate of 10 / min. Example A 1
N-メチル -2-ピロリ ドンを、 十分に乾燥させた充填カラム付きフラスコに装入 し、 窒素雰囲気下、 常圧で精留し、 沸点 204. 5で、 水分量 l Oppm以下の精 製 N-メチル -2-ピロリ ドンを調製した。 また、 m-クレゾール (特級) を同様にし て精留し、 沸点 202. 2t:、 水分含量 1 Oppm以下の精製 m-クレゾールを調製 した。  N-methyl-2-pyrrolidone is charged into a sufficiently dried flask with a packed column, rectified under a nitrogen atmosphere at normal pressure, and has a boiling point of 204.5 and a water content of l Oppm or less. -Methyl-2-pyrrolidone was prepared. In addition, m-cresol (special grade) was rectified in the same manner to prepare purified m-cresol having a boiling point of 202.2 t and a water content of 1 Oppm or less.
ドライボックス中で、 上記精製 N-メチル -2-ピロリ ドン 99. 1 g (1. OOmol) をフラスコに装入し、 攪袢しながら、 さらに精製 m-クレゾール 1 08. 1 g (1. OOmol) を徐々に加え、 精製 N-メチル -2-ピロリ ドンと精製 m -クレゾールの等モ ル組成物 (液体) を得た。  In a dry box, 99.1 g (1.OOmol) of the above purified N-methyl-2-pyrrolidone was charged into a flask, and while stirring, further purified 108.1 g (1.OOmol) of m-cresol. ) Was gradually added to obtain an equimolar composition (liquid) of purified N-methyl-2-pyrrolidone and purified m-cresol.
得られた等モル組成物を、 常圧で加熱し、 沸騰時の液相と気相の温度を測定 したところ、 液相、 気相ともに 230でであった。 これは、 精製 N-メチル -2-ピ 口リ ドンの沸点 (204. 5 ) より 25. 5 高く、 精製 m-クレゾ一ルの沸 点 (20 2. 2で) より 27. 81:高い温度であった。 また、 得られた等モル 組成物をフラスコに入れ、 0での氷水中に 3時間さらしたが、 等モル組成物は 凝固せず、 液体状態のままであった。  The obtained equimolar composition was heated at normal pressure, and the temperatures of the liquid phase and the gaseous phase at the time of boiling were 230. This is 25.5 higher than the boiling point of purified N-methyl-2-piperidone (204.5) and 27.81: higher than the boiling point of purified m-cresol (at 202.2). Met. Further, the obtained equimolar composition was placed in a flask and exposed to ice water at 0 for 3 hours, but the equimolar composition did not solidify and remained in a liquid state.
得られた等モル組成物および試薬特級 N-メチル -2-ピロリドン、 m-クレゾ一ル の I Rスペクトルを図 A 1に示す。 N-メチル -2-ピロリドン、 m -クレゾール単体 のものに比べ、 等モル組成物の I Rスペクトルは、 分子内及び分子間水素結合 を形成する OH伸縮振動を示す 3000〜4000 cm— jのブロードバンド及 び C=0伸縮振動を示す 1 67 1 cm— 1のバンドが低波数シフトしている。 さ らに、 水素結合による会合体形成による C一 O伸縮振動が 1287 cm—1に観 測される。 以上の結果は、 等モル組成物において N-メチル -2-ピロリ ドンの C = Oと m-クレゾールの OHが強固な水素結合を形成していることを示す。 Obtained equimolar composition and reagent grade N-methyl-2-pyrrolidone, m-cresol Figure A1 shows the IR spectrum. Compared to those of N-methyl-2-pyrrolidone and m-cresol alone, the IR spectrum of the equimolar composition shows a broad band of 3000-4000 cm-j showing OH stretching vibration that forms intramolecular and intermolecular hydrogen bonds. And the band of 167 1 cm- 1 which shows C = 0 stretching vibration is shifted low wave number. In addition, C-O stretching vibration due to the formation of aggregates by hydrogen bonding is observed at 1287 cm- 1 . The above results indicate that C = O of N-methyl-2-pyrrolidone and OH of m-cresol form a strong hydrogen bond in the equimolar composition.
得られた等モル組成物の1 H-及び13 C- NMRスぺクトルを図 A 2, 3に示す。 等モル組成物のプロトン及びカーボンシグナルは、 公知の N-メチル -2-ピロリ ド ン、 m-クレゾール単体のものと同等であり、 イオン性の結合は形成されていな いことが判る。 FIGS. A2 and A3 show 1 H- and 13 C-NMR spectra of the obtained equimolar composition. The proton and carbon signals of the equimolar composition are equivalent to those of known N-methyl-2-pyrrolidone and m-cresol alone, indicating that no ionic bond is formed.
得られた等モル組成物の誘電率は 24. 0、 誘電正接は 0. 353であった。 また、 得られた等モル組成物 5 gに純水 5 gをサンプル瓶中に混合し、 強攪拌 したが、 等モル組成物と純水は混じり合わず、 2層に分離したままであった。 実施例 A 2  The obtained equimolar composition had a dielectric constant of 24.0 and a dielectric loss tangent of 0.353. In addition, 5 g of the obtained equimolar composition was mixed with 5 g of pure water in a sample bottle and stirred vigorously, but the equimolar composition and pure water were not mixed and remained in two layers. . Example A 2
減圧装置、 冷却管、 流出液受器、 温度計を備え、 キヤビラリ一により窒素を 導入した単蒸発蒸留装置に、 実施例 A 1で得られた組成物 40 gを装入した。 系内を 1. 33 X 104 Paに減圧した後、オイルバスで室温から徐々に昇温し、 留出した溶液約 10 gづっを、 留出開始から 3回に分けて分取した。 40 g of the composition obtained in Example A1 was charged into a simple evaporative distillation apparatus equipped with a decompression device, a cooling pipe, an effluent receiver, and a thermometer, and into which nitrogen was introduced by a capillary. After the pressure in the system was reduced to 1.33 × 10 4 Pa, the temperature was gradually raised from room temperature in an oil bath, and about 10 g of the distilled solution was fractionated in three times from the start of distillation.
得られた初留、 中留、 後留、 釜残 (各約 10 g) の組成を、 ガスクロマトグ ラフィー (カラム: UniotrHP 80/100 KG-02, 3.2ΦΧ6ιη、 カラム温度 180で) で 測定したところ、 それぞれの組成は、 いずれも、 Ν-メチル -2-ピロリ ドン Zm-ク レゾ一ル =47. 8重量% 52. 2重量% (モル比で 1 : 1) であり、 それ ぞれの組成に違いは見られなかった。 なお、 検量線は、 実施例 A 1で調製した 精製 N-メチル -2-ピ口リ ドンと精製 m-クレゾールを用いて作成した。 実施例 A 3  The composition of the obtained first distillation, middle distillation, later distillation, and bottom residue (about 10 g each) was measured by gas chromatography (column: UniotrHP 80/100 KG-02, 3.2ΦΧ6ιη, column temperature 180). Each of the compositions was 組成 -methyl-2-pyrrolidone Zm-cresole = 47.8% by weight 52.2% by weight (1: 1 by molar ratio). No difference was seen. The calibration curve was created using the purified N-methyl-2-piperidone prepared in Example A1 and purified m-cresol. Example A 3
実施例 A 2において、 フラスコの内圧が 1. 33 X 104 Paであるのを、 フ ラスコの内圧を 1. 33 X 103 Paとした以外は、 実施例 A 2と同様にして、 蒸留を行い、 初留、 中留、 後留、 釜残をそれぞれ約 10 g得た。 これらに含ま れる N-メチル -2-ピロリドンと m-クレゾールの組成を、 実施例 A 2と同様にして 測定したところ、 それぞれの組成は、 いずれも、 N-メチル -2-ピロリドン m -ク レゾール =47. 8重量%Z52. 2重量% (モル比で 1 : 1) であり、 それ ぞれの組成に違いは見られなかった。 実施例 A 4 In Example A2, the internal pressure of the flask was 1.33 × 10 4 Pa, Distillation was carried out in the same manner as in Example A2, except that the internal pressure of Rusco was set to 1.33 × 10 3 Pa, to obtain about 10 g of each of the first distillation, the middle distillation, the last distillation, and the bottom. When the compositions of N-methyl-2-pyrrolidone and m-cresol contained therein were measured in the same manner as in Example A2, each composition was N-methyl-2-pyrrolidone m-cresol. = 47.8% by weight Z52.2% by weight (1: 1 by molar ratio), and no difference was found in the respective compositions. Example A 4
N -メチル -2-ピロリドン 100. Og (1. Olmol) と m-クレゾ一ル 100.0 g (0.925mo 1) を精秤し、 冷却管、 留出液受器、 温度計を備えた単蒸留装置に装入し、 窒素 雰囲気下、 常圧で、 単蒸発蒸留を行った。 初留を約 20 g留出した後、 塔頂温 が 230でに安定した後、 受器を別の受器に切り替えて蒸留を行い、 主留約 170 gを得た。 得られた主留の組成は、 N-メチル -2-ピロリドン/ m-クレゾール =4 7. 8重量% 52. 2重量% (モル比で 1 : 1) であった。 実施例 A 5  N-Methyl-2-pyrrolidone 100. Og (1. Olmol) and m-cresol 100.0 g (0.925mol) were precisely weighed, and a simple distillation apparatus equipped with a cooling tube, distillate receiver, and thermometer And subjected to simple evaporation distillation under a nitrogen atmosphere at normal pressure. After distilling off about 20 g of the first fraction, the temperature at the top of the column was stabilized at 230, and then the receiver was switched to another one and distillation was performed to obtain about 170 g of the main fraction. The composition of the obtained main fraction was N-methyl-2-pyrrolidone / m-cresol = 47.8% by weight 52.2% by weight (1: 1 by molar ratio). Example A 5
実施例 A 4で得られた主留約 100 gを、 冷却管および留出液受器を備えた フラスコに装入し、 窒素雰囲気下、 常圧で沸騰させ、 留出液受器で全量回収し た。 回収した液をさらに同様に沸騰、 回収した。 得られた液の組成は、 N-メチ ル -2-ピロリドン Zm-クレゾール =47. 8重量% 52. 2重量% (モル比で 1 : 1) であった。 実施例 A6〜8  About 100 g of the main fraction obtained in Example A4 was charged into a flask equipped with a cooling tube and a distillate receiver, and was boiled at normal pressure under a nitrogen atmosphere. did. The recovered liquid was further boiled and recovered in the same manner. The composition of the obtained liquid was N-methyl-2-pyrrolidone Zm-cresol = 47.8% by weight 52.2% by weight (1: 1 by molar ratio). Example A6-8
実施例 A1で得られた、 精製 N-メチル -2-ピロリドンと精製 m-クレゾ一ルの等 モル組成物と、 精製 N-メチル -2-ピロリドンまたは精製 m-クレゾールを、 表 1に 示す量で配合した。 実施例 A 1と同様にして測定した沸点を表 1に示す。  The equimolar composition of purified N-methyl-2-pyrrolidone and purified m-cresol, obtained in Example A1, and purified N-methyl-2-pyrrolidone or purified m-cresol were used in amounts shown in Table 1. Was blended. Table 1 shows the boiling points measured in the same manner as in Example A1.
また、 得られた表 1の溶液をそれぞれフラスコに入れ、 0 の氷水中に 3時 間さらしたが、 溶液は凝固せず、 液体状態のままであった。 比較例 A;!〜 4 Each of the obtained solutions in Table 1 was placed in a flask and exposed to ice water of 0 for 3 hours, but the solution did not solidify and remained in a liquid state. Comparative Example A;
実施例 A 1で得られた、 精製 N-メチル -2-ピロリ ドンと精製 m-クレゾ一ルの等 モル組成物と、 精製 N-メチル -2-ピロリドンまたは精製 m-クレゾールを、 表 1に 示す量で配合した。 実施例 A 1と同様にして測定した沸点を表 1に示す。 実施例 A 9  The equimolar composition of purified N-methyl-2-pyrrolidone and purified m-cresol obtained in Example A1, and purified N-methyl-2-pyrrolidone or purified m-cresol are shown in Table 1. It was blended in the amounts shown. Table 1 shows the boiling points measured in the same manner as in Example A1. Example A 9
pークレゾール (特級) を実施例 A 1と同様にして精留し、 沸点 2 0 1 . 9で、 水分含量 1 O ppm以下の精製 P-クレゾールを調製した。  p-Cresol (special grade) was rectified in the same manner as in Example A1, and purified P-cresol having a boiling point of 201.9 and a water content of 1 O ppm or less was prepared.
ドライボックス中で、実施例 A 1で調製した精製 N-メチル- 2-ピロリドン 9 9 . 1 ( 1. OOmol) をフラスコに装入して攪拌しながら、 さらに精製 P-クレゾール 1 0 8 . 1 g ( 1. OOmol) を徐々に加え、 精製 N-メチル -2-ピロリドンと精製 p - クレゾ一ルの等モル組成物 (液体) を得た。  In a dry box, the purified N-methyl-2-pyrrolidone 99.1 (1.OOmol) prepared in Example A1 was charged into a flask and stirred, and further purified P-cresol 108.1 was added. g (1.0 OOmol) was gradually added to obtain an equimolar composition (liquid) of purified N-methyl-2-pyrrolidone and purified p-cresol.
得られた等モル組成物を、 常圧で加熱し、 沸騰時の液相と気相の温度を測定 したところ、 液相、 気相ともに 2 2 8でであった。 これは、 精製 N-メチル -2 -ピ 口リ ドンの沸点 (2 0 4 . 5で) より 2 3 . 5で高く、 精製 P-クレゾ一ルの沸 点 (2 0 1 . 9で) より 2 6 . 1で高い温度であった。 また、 得られた等モル 組成物をフラスコに入れ、 0での氷水中に 3時間さらしたが、 等モル組成物は 凝固せず、 液体状態のままであった。  The obtained equimolar composition was heated at normal pressure, and the temperatures of the liquid phase and the gaseous phase at the time of boiling were measured. This is 23.5 higher than the boiling point (at 204.5) of purified N-methyl-2-piperidone and higher than the boiling point (at 201.9) of purified P-cresol. The temperature was high at 26.1. Further, the obtained equimolar composition was placed in a flask and exposed to ice water at 0 for 3 hours, but the equimolar composition did not solidify and remained in a liquid state.
また、 得られた等モル組成物 5 gに純水 5 gをサンプル瓶中に混合し、 強攪 拌したが、 等モル組成物と純水は混じり合わず、 2層に分離したままであった。 実施例 A 1 0  In addition, 5 g of the obtained equimolar composition was mixed with 5 g of pure water in a sample bottle and stirred vigorously, but the equimolar composition and pure water were not mixed and remained in two layers. Was. Example A 10
p-クロ口フエノール (特級) を実施例 A 1と同様にして精留し、 沸点 2 1 7 で、 水分含量 1 O ppm以下の精製 P-クロ口フエノールを調製した。  The p-cloguchi phenol (special grade) was rectified in the same manner as in Example A1 to prepare a purified P-cloguchi phenol having a boiling point of 2 17 and a water content of 1 O ppm or less.
ドライボックス中で、実施例 A 1で調製した精製 N-メチル -2-ピロリドン 9 9 . 1 g ( 1. OOmol) をフラスコに装入して攪拌しながら、 さらに精製 P-クロ口フエ ノール 1 2 8 . 6 g ( 1. OOmol) を徐々に加え、 精製 N-メチル -2-ピロリ ドンと 精製 P-クロ口フエノールの等モル組成物 (液体) を得た。  In a dry box, 99.1 g (1.0 OOmol) of the purified N-methyl-2-pyrrolidone prepared in Example A1 was charged into a flask, and the mixture was further stirred and further purified. 28.6 g (1.OOmol) was gradually added to obtain an equimolar composition (liquid) of purified N-methyl-2-pyrrolidone and purified P-chlorophenol.
得られた等モル組成物を、 常圧で加熱し、 沸騰時の液相と気相の温度を測定 したところ、 液相、 気相ともに 245でであった。 これは、 精製 N-メチル -2-ピ 口リ ドンの沸点 (204. 5で) より約 41で高く、 精製 p -クロ口フエノール の沸点 (2 17 ) より 28 高い温度であった。 また、 得られた等モル組成 物をフラスコに入れ、 0での氷水中に 3時間さらしたが、 等モル組成物は凝固 せず、 液体状態のままであった。 The equimolar composition obtained is heated at normal pressure and the temperature of the liquid and gaseous phases during boiling is measured. As a result, it was 245 for both the liquid phase and the gas phase. This was about 41 higher than the boiling point of purified N-methyl-2-piperidone (at 204.5) and 28 higher than the boiling point of purified p-chlorophenol (217). Further, the obtained equimolar composition was placed in a flask and exposed to ice water at 0 for 3 hours, but the equimolar composition did not solidify and remained in a liquid state.
得られた等モル組成物および試薬特級 N-メチル -2-ピロリドン、 P-クロ口フエ ノールの I Rスペクトルを図 A 4に示す。 N-メチル -2-ピロリ ドン、 P-クロロフ ェノール単体のものに比べ、 等モル組成物の I Rスペクトルは、 分子内及び分 子間水素結合を形成する OH伸縮振動を示す 3000〜 4000 cm— 'のブロ ードバンド及び C = 0伸縮振動を示す 1671 cm— 1のバンドが低波数シフト している。 さらに、 水素結合による会合体形成による C一 O伸縮振動が 126 9 cm— 1に観測される。 以上の結果は、 等モル組成物において N-メチル -2-ピロ リ ドンの C = 0と P-クロ口フエノールの OHが強固な水素結合を形成している ことを示す。 FIG. A4 shows the IR spectra of the obtained equimolar composition and the reagent grade N-methyl-2-pyrrolidone and P-chlorophenol. Compared to those of N-methyl-2-pyrrolidone and P-chlorophenol alone, the IR spectrum of the equimolar composition shows OH stretching vibration that forms intramolecular and intermolecular hydrogen bonds. The band at 1671 cm- 1 showing the C = 0 stretching vibration has a low wavenumber shift. In addition, C-O stretching vibration due to the formation of aggregates by hydrogen bonding is observed at 1269 cm- 1 . The above results show that in the equimolar composition, C = 0 of N-methyl-2-pyrrolidone and OH of P-chlorophenol form a strong hydrogen bond.
得られた等モル組成物の1 H-及び13 C- NMRスぺクトルを図 A 5, 6に示す。 等モル組成物のプロトン及びカーボンシグナルが、 公知の N-メチル -2-ピロリ ド ン、 p-クロ口フエノール単体のものと同等であり、 イオン性の結合は形成され ていないことが判る。 1 H- and 13 C-NMR spectra of the obtained equimolar composition are shown in FIGS. The proton and carbon signals of the equimolar composition were equivalent to those of known N-methyl-2-pyrrolidone and p-chlorophenol alone, indicating that no ionic bond was formed.
得られた等モル組成物の誘電率は 32. 8、 誘電正接は 0. 434であった。 また、 得られた等モル組成物 5 gに純水 5 gをサンプル瓶中に混合し、 強攪拌 したが、 等モル組成物と純水は混じり合わず、 2層に分離したままであった。 The obtained equimolar composition had a dielectric constant of 32.8 and a dielectric loss tangent of 0.434. In addition, 5 g of the obtained equimolar composition was mixed with 5 g of pure water in a sample bottle and stirred vigorously, but the equimolar composition and pure water were not mixed and remained in two layers. .
表 A Table A
Figure imgf000042_0001
Figure imgf000042_0001
等モル組成物:精製 N-メチル -2-ピロリ ドンと精製 m-クレゾールの等モル組成物 含有量:等モル組成物量 (g) Z配合量合計(25g) X 1 00 (wt%) 実施例 B 1 Equimolar composition: equimolar composition of purified N-methyl-2-pyrrolidone and purified m-cresol Content: equimolar composition amount (g) Total Z content (25 g) X100 (wt%) Example B 1
1,3-ジメチル -2-ィミダゾリジノンを、 十分に乾燥させた充填カラム付きフラ スコ装入し、 窒素雰囲気下、 常圧で精留し、 沸点 2 2 5. 5で、 水分量 1 0 ppm 以下の精製 1,3-ジメチル -2-イミダゾリジノンを調製した。 また、 m-クレゾール (特級) を同様にして精留し、 沸点 2 0 2. 2t:、 水分含量 1 0 ppm以下の精 製 m-クレゾールを調製した。  1,3-Dimethyl-2-imidazolidinone was charged into a fully-dried flask with a packed column, rectified under a nitrogen atmosphere at normal pressure, and had a boiling point of 22.5.5 and a water content of 10 ppm or less. Purification of 1,3-dimethyl-2-imidazolidinone was prepared. In addition, m-cresol (special grade) was rectified in the same manner to prepare purified m-cresol having a boiling point of 202.2 t and a water content of 10 ppm or less.
ドライボックス中で、 上記精製 1,3-ジメチル- 2-イミダゾリジノン 1 1 4. 1 g (l.OOmol) をフラスコに装入し、 攪拌しながら、 さらに精製 m-クレゾ一ル 1 0 8. 1 g (l.OOmol)を加え、精製 1,3-ジメチル- 2-ィミダゾリジノンと精製 m- クレゾ一ルの等モル組成物 (液体) を得た。  In a dry box, the above purified 1,3-dimethyl-2-imidazolidinone 1 14.1 g (l.OOmol) is charged into a flask, and while stirring, further purified m-cresol 108 .1 g (l.OOmol) was added to obtain an equimolar composition (liquid) of purified 1,3-dimethyl-2-imidazolidinone and purified m-cresol.
得られた等モル組成物を、 常圧で加熱し、 沸騰時の液相と気相の温度を測定 したところ、 液相、 気相ともに 2 3 7 であった。 これは、 精製 1,3-ジメチル- 2- イミダゾリジノンの沸点 (2 2 5. 5V) より約 1 2で高く、 精製 m-クレゾ一 ルの沸点 (2 0 2. 2で) より約 3 5で高い温度であった。 また、 得られた等 モル組成物をフラスコに入れ、 0での氷水中に 3時間さらしたが、 等モル組成 物は凝固せず、 液体状態のままであった。  The obtained equimolar composition was heated at normal pressure, and the temperatures of the liquid phase and the gaseous phase at the time of boiling were measured. This is about 12 higher than the boiling point of purified 1,3-dimethyl-2-imidazolidinone (25.5 V) and about 3 higher than the boiling point of purified m-cresol (at 202.2). 5 was high temperature. Further, the obtained equimolar composition was placed in a flask and exposed to ice water at 0 for 3 hours, but the equimolar composition did not solidify and remained in a liquid state.
得られた等モル組成物および試薬特級 1,3-ジメチル -2-イミダゾリジノン、 m- クレゾ一ルの I Rスペクトルを図 B 1に示す。 1,3-ジメチル -2-イミダゾリジノ ン、 m-クレゾール単体のものに比べ、 等モル組成物の I Rスペクトルは、 分子 内及び分子間水素結合を形成する OH伸縮振動を示す 3 0 0 0〜 40 0 0 cm一 1のブロードバンド及び C =〇伸縮振動を示す 1 6 9 3 cm— 'のバンドが低波数 シフトしている。 以上の結果は、 等モル組成物において 1,3-ジメチル -2-イミダ ゾリジノンの C = 0と m-クレゾールの OHが強固な水素結合を形成しているこ とを示す。 Fig. B1 shows the IR spectra of the obtained equimolar composition and reagent grade 1,3-dimethyl-2-imidazolidinone and m-cresol. Compared to 1,3-dimethyl-2-imidazolidinone and m-cresol alone, the IR spectrum of the equimolar composition shows OH stretching vibration that forms intramolecular and intermolecular hydrogen bonds. 0 0 cm one first broadband and C = 〇 stretching bands of vibration of 1 6 9 3 cm- 'indicated is lower wavenumber shift. The above results show that in the equimolar composition, C = 0 of 1,3-dimethyl-2-imidazolidinone and OH of m-cresol form a strong hydrogen bond.
得られた等モル組成物の1 H-及び13 C-NMRスぺクトルを図 B 2, 3に示す。 等モル組成物のプロトン及びカーボンシグナルは、 公知の 1,3-ジメチル -2-イミ ダゾリジノン、 m-クレゾール単体のものと同等であり、 イオン性の結合は形成 されていないことが判る。 The 1 H- and 13 C-NMR spectra of the obtained equimolar composition are shown in FIGS. The proton and carbon signals of the equimolar composition are equivalent to those of known 1,3-dimethyl-2-imidazolidinone and m-cresol alone, indicating that no ionic bond has been formed.
得られた等モル組成物の誘電率は 2 4. 1、 誘電正接は 0. 4 1 2であった。 また、 得られた等モル組成物 5 gに純水 5 gをサンプル瓶中に混合し、 強攪拌 したが、 等モル組成物と純水は混じり合わず、 2層に分離したままであった。 実施例 B 2 The obtained equimolar composition had a dielectric constant of 24.1 and a dielectric loss tangent of 0.412. In addition, 5 g of the obtained equimolar composition was mixed with 5 g of pure water in a sample bottle and stirred vigorously, but the equimolar composition and pure water were not mixed and remained in two layers. . Example B 2
減圧装置、 冷却管、 流出液受器、 温度計を備え、 キヤピラリーにより窒素を 導入した単蒸発蒸留装置に、 実施例 B 1で得られた組成物 4 0 gを装入した。 系内を 1 . 3 3 X 1 0 4 Pa に減圧した後、 オイルバスで室温から徐々に昇温 し、 留出した溶液約 1 0 gづっを、 留出開始から 3回に分けて分取した。 40 g of the composition obtained in Example B1 was charged into a simple evaporative distillation apparatus equipped with a decompression device, a cooling pipe, an effluent receiver, and a thermometer and into which nitrogen was introduced by a capillary. After reducing the pressure of the system to 1. 3 3 X 1 0 4 Pa, collected and gradually heated from room temperature in an oil bath, distilled solution from about 1 0 g Dzu', three times the distillate starts min did.
得られた初留、 中留、 後留、 釜残 (各約 1 0 g ) の組成を、 ガスクロマトグ ラフィ一 (カラム: UniotrHP 80/100 KG-02, 3.2 Φ X 6m, カラム温度 180で) で測定したところ、 それぞれの組成は、 いずれも、 1,3-ジメチル- 2-イミダゾリ ジノン/ m-クレゾール = 5 1 . 3 5重量%/ 4 8 . 6 5重量% (モル比で 1 : 1 ) であり、 それぞれの組成に違いは見られなかった。 なお、 検量線は、 実施 例 B 1で調製した精製 1,3-ジメチル -2-イミダゾリジノンと精製 m-クレゾ一ルを 用いて作成した。 実施例 B 3  The composition of the obtained first fraction, middle fraction, tail fraction, and bottom residue (about 10 g each) was analyzed by gas chromatography (column: UniotrHP 80/100 KG-02, 3.2 Φ X 6 m, column temperature 180) As a result of the measurement, 1,3-dimethyl-2-imidazolidinone / m-cresol = 51.35% by weight / 48.65% by weight (1: 1 by molar ratio) ), And there was no difference between the compositions. The calibration curve was created using the purified 1,3-dimethyl-2-imidazolidinone prepared in Example B1 and purified m-cresol. Example B 3
実施例 B 2において、 フラスコの内圧が 1 . 3 3 X 1 0 4 Pa であるのを、 1 . 3 3 X 1 0 3 Pa とした以外は、 実施例 B 2と同様にして、 蒸留を行い、 初留、 中留、 後留、 釜残をそれぞれ約 1 0 g得た。 これらに含まれる 1,3-ジメ チル -2-イミダゾリジノンと m-クレゾールの組成を、 実施例 B 2と同様にして 測定したところ、 それぞれの組成は、 いずれも、 1,3-ジメチル -2-イミダゾリジ ノン Z m-クレゾール = 5 1 . 3 5重量%Z 4 8 . 6 5重量% (モル比で 1 : 1 ) であり、 それぞれの組成に違いは見られなかった。 実施例 B 4 In Example B2, distillation was performed in the same manner as in Example B2, except that the internal pressure of the flask was 1.33 × 10 4 Pa, and the pressure was set to 1.33 × 10 3 Pa. Approximately 10 g of each of the first, middle, late and kettles were obtained. The compositions of 1,3-dimethyl-2-imidazolidinone and m-cresol contained therein were measured in the same manner as in Example B2, and each of the compositions was 1,3-dimethyl- 2-imidazolidinone Zm-cresol = 51.35% by weight Z48.65% by weight (1: 1 by molar ratio), and no difference was observed between the respective compositions. Example B 4
1,3-ジメチル -2-イミダゾリジノン 100.0 g (0.876mol) と m-クレゾ一ル 100.0 g (0.925mol) を精秤し、 冷却管、 留出液受器、 温度計を備えた単蒸留装置に 装入し、 窒素雰囲気下、 常圧で、 単蒸発蒸留を行った。 初留を約 3 0 g留出し た後、 塔頂温が 237でに安定した後、 受器を別の受器に切り替えて蒸留を行い、 主留約 1 5 5 gを得た。 得られた主留の組成は、 1,3-ジメチル -2-イミダゾリジ ノン Zm-クレゾ一ル =5 1. 35重量% 48. 65重量% (モル比で 1 : 1) であった。 実施例 B 5 100.0 g (0.876 mol) of 1,3-dimethyl-2-imidazolidinone and 100.0 g (0.925 mol) of m-cresol were precisely weighed and simple distillation equipped with a cooling tube, distillate receiver, and thermometer The apparatus was charged and subjected to simple evaporation distillation under a nitrogen atmosphere at normal pressure. About 30 g of first fraction After that, the overhead temperature was stabilized at 237, and then the receiver was switched to another receiver and distillation was carried out. The composition of the obtained main fraction was 1,3-dimethyl-2-imidazolidinone Zm-cresol = 5 1.35% by weight 48.65% by weight (1: 1 by molar ratio). Example B 5
実施例 B 4で得られた主留 1 00 gを、 冷却管および留出液受器を備えたフ ラスコに装入し、 窒素雰囲気下、 常圧で沸騰させ、 留出液受器で全量回収した。 回収した液をさらに同様に沸騰、 回収した。 得られた液の組成は、 1,3-ジメチ ル—2—イミダゾリジノン Z m—クレゾール = 5 1. 35重量%ノ48. 65重量 % (モル比で 1 : 1) であった。 実施例 B 6 100 g of the main fraction obtained in Example B4 was charged into a flask equipped with a cooling pipe and a distillate receiver, and the mixture was boiled at normal pressure under a nitrogen atmosphere. Collected. The recovered liquid was further boiled and recovered in the same manner. The composition of the obtained liquid was 1,3-dimethyl-2-imidazolidinone Z m -cresol = 5.35% by weight: 48.65% by weight (1: 1 by molar ratio). Example B 6
P-クレゾール (特級) を実施例 B 1と同様にして精留し、 沸点 20 1. 9で、 水分含量 1 0 ppm以下の精製 P-クレゾールを調製した。  P-cresol (special grade) was rectified in the same manner as in Example B1, and purified P-cresol having a boiling point of 201.9 and a water content of 10 ppm or less was prepared.
ドライボックス中で、 実施例 B 1で調製した精製 1,3-ジメチル -2-イミダゾリ 製 P-クレゾ一ル 1 08. 1 (l.OOmol) を徐々に加え、 精製 1,3-ジメチル -2-ィ ジノン 1 14. 1 g (l.OOmol) をフラスコに装入して攪拌しながら、 さらに精 ミダゾリジノンと精製 P-クレゾ一ルの等モル組成物 (液体) を得た。  In a dry box, slowly add P-cresol 108.1 (l.OOmol) made from purified 1,3-dimethyl-2-imidazoli prepared in Example B 1 to obtain purified 1,3-dimethyl-2. -Didinone 11.1 g (l.OOmol) was charged into the flask and stirred to obtain an equimolar composition (liquid) of purified midazolidinone and purified P-cresol.
得られた等モル組成物を、 常圧で加熱し、 沸騰時の液相と気相の温度を測定 したところ、 液相、 気相ともに 236でであった。 これは、 精製 1,3-ジメチル -2- イミダゾリジノンの沸点 (225. 5で) より約 1 1で高く、 精製 P-クレゾ一 ルの沸点 (20 1. 9で) より約 34 高い温度であった。 また、 得られた等 モル組成物をフラスコに入れ、 0での氷水中に 3時間さらしたが、 等モル組成 物は凝固せず、 液体状態のままであった。  The obtained equimolar composition was heated at normal pressure, and the temperatures of the liquid phase and the gaseous phase at the time of boiling were 236. This is about 11 higher than the boiling point of purified 1,3-dimethyl-2-imidazolidinone (at 225.5) and about 34 higher than the boiling point of purified P-cresol (at 201.9). Met. Further, the obtained equimolar composition was placed in a flask and exposed to ice water at 0 for 3 hours, but the equimolar composition did not solidify and remained in a liquid state.
また、 得られた等モル組成物 5 gに純水 5 gをサンプル瓶中に混合し、 強攪 拌したが、 等モル組成物と純水は混じり合わず、 2層に分離したままであった。 実施例 B 7 フエノール (特級) を実施例 B 1と同様にして精留し、 沸点 1 8 1 . 2で、 水分含量 1 0 ppm以下の精製フエノールを調製した。 In addition, 5 g of the obtained equimolar composition was mixed with 5 g of pure water in a sample bottle and stirred vigorously, but the equimolar composition and pure water were not mixed and remained in two layers. Was. Example B 7 The phenol (special grade) was rectified in the same manner as in Example B1 to prepare a purified phenol having a boiling point of 181.2 and a water content of 10 ppm or less.
ドライボックス中で、 実施例 B 1で調製した精製 1,3-ジメチル -2-イミダゾリ ジノン 1 1 4 . 1 g (l.OOmol) をフラスコに装入して攪拌しながら、 さらに精 製フエノール 9 4 . 1 g (l.OOmol) を徐々に加え、 精製 1,3-ジメチル -2-イミダ ゾリジノンと精製フエノールの等モル組成物 (液体) を得た。  In a dry box, 14.1 g (l.OOmol) of the purified 1,3-dimethyl-2-imidazolidinone prepared in Example B 1 was charged into a flask, and the mixture was stirred. 4.1 g (l.OOmol) was gradually added to obtain an equimolar composition (liquid) of purified 1,3-dimethyl-2-imidazolidinone and purified phenol.
得られた等モル組成物を、 常圧で加熱し、 沸騰時の液相と気相の温度を測定 したところ、 液相、 気相ともに 2 2 9 ^であった。 これは、 精製 1,3-ジメチル- 2- イミダゾリジノンの沸点 (2 2 5 . 5で) より約 4 高く、 精製 P-クレゾール の沸点 (2 0 1 . 9で) より約 2 7で高い温度であった。 また、 得られた等モ ル組成物をフラスコに入れ、 0 の氷水中に 3時間さらしたが、 等モル組成物 は凝固せず、 液体状態のままであった。  The obtained equimolar composition was heated at normal pressure, and the temperatures of the liquid phase and the gaseous phase at the time of boiling were measured. It is about 4 higher than the boiling point of purified 1,3-dimethyl-2-imidazolidinone (at 225.5) and about 27 higher than the boiling point of purified P-cresol (at 201.9). Temperature. The obtained equimolar composition was placed in a flask and exposed to ice water of 0 for 3 hours, but the equimolar composition did not solidify and remained in a liquid state.
また、 得られた等モル組成物 5 gに純水 5 gをサンプル瓶中に混合し、 強攪 拌したが、 等モル組成物と純水は混じり合わず、 2層に分離したままであった。 実施例 B 8  In addition, 5 g of the obtained equimolar composition was mixed with 5 g of pure water in a sample bottle and stirred vigorously, but the equimolar composition and pure water were not mixed and remained in two layers. Was. Example B 8
P-クロ口フエノール (特級) を実施例 B 1と同様にして精留し、 沸点 2 1 7 °C、 水分含量 1 0 ppm以下の精製 P-クロ口フエノールを調製した。  P-cloguchi phenol (special grade) was rectified in the same manner as in Example B1 to prepare purified P-cloguchi phenol having a boiling point of 21 ° C and a water content of 10 ppm or less.
ドライボックス中で、 実施例 B 1で調製した精製 1,3-ジメチル -2-イミダゾリ ジノン 1 1 4 . 1 g (l.OOmol) をフラスコに装入して攪拌しながら、 さらに精 製 P-クロ口フエノール 1 2 8 . 6 g (l.OOmol) を徐々に加え、 精製 1,3-ジメチ ル- 2-イミダゾリジノンと精製 P-クロ口フエノールの等モル組成物 (液体) を得 た。  In a dry box, 14.1 g (l.OOmol) of the purified 1,3-dimethyl-2-imidazolidinone prepared in Example B 1 was charged into a flask, and while stirring, the purified P- 18.6 g (l.OOmol) of Cloguchi phenol was gradually added to obtain an equimolar composition (liquid) of purified 1,3-dimethyl-2-imidazolidinone and purified P-cloguchiphenol. .
得られた等モル組成物を、 常圧で加熱し、 沸騰時の液相と気相の温度を測定 したところ、 液相、 気相ともに 2 5 7でであった。 これは、 精製 1,3-ジメチル -2- イミダゾリジノンの沸点 (2 2 5 . 5で) より約 3 2で高く、 精製 P-クロロフ ェノールの沸点 (2 1 7で) より 4 0 高い温度であった。 また、 得られた等 モル組成物をフラスコに入れ、 0での氷水中に 3時間さらしたが、 等モル組成 物は凝固せず、 液体状態のままであった。 得られた等モル組成物および試薬特級 1,3-ジメチル -2-イミダゾリジノン、 P- クロ口フエノールの I Rスぺクトルを図 B 4に示す。 1,3-ジメチル -2-イミダゾ リジノン、 P-クロ口フエノール単体のものに比べ、 等モル組成物の I Rスぺク トルは、 分子内及び分子間水素結合を形成する〇H伸縮振動を示す 3 0 0 0〜 4 0 0 0 c m— 1のブロードバンド及び C = 0伸縮振動を示す 1 6 9 3 c m—1の バンドが低波数シフトしている。 以上の結果は、 等モル組成物において 1,3-ジ メチル -2-ィミダゾリジノンの C =〇と P-クロロフエノ一ルの O Hが強固な水素 結合を形成していることを示す。 The obtained equimolar composition was heated at normal pressure, and the temperatures of the liquid phase and the gaseous phase during boiling were measured. This is about 32 higher than the boiling point of purified 1,3-dimethyl-2-imidazolidinone (at 25.5) and 40 higher than the boiling point of purified P-chlorophenol (at 21.7). Met. Further, the obtained equimolar composition was placed in a flask and exposed to ice water at 0 for 3 hours, but the equimolar composition did not solidify and remained in a liquid state. Fig. B4 shows the obtained equimolar composition and the IR spectrum of the reagent grade 1,3-dimethyl-2-imidazolidinone and P-chloromouth phenol. Compared to 1,3-dimethyl-2-imidazolidinone and P-chlorophenol alone, the IR spectrum of the equimolar composition shows ΔH stretching vibration that forms intramolecular and intermolecular hydrogen bonds. 3 0 0 0~ 4 0 0 0 cm- 1 6 9 3 cm- 1 band indicating 1 of broadband and C = 0 stretching vibration is low wavenumber shift. The above results show that in the equimolar composition, C = の of 1,3-dimethyl-2-imidazolidinone and OH of P-chlorophenol form strong hydrogen bonds.
得られた等モル組成物の1 H-及び' 3 C- NM Rスぺクトルを図 B 5 , 6に示す。 等モル組成物のプロトン及びカーボンシグナルは、 公知の 1,3-ジメチル- 2-イミ ダゾリジノン、 P-クロ口フエノール単体のものと同等であり、 イオン性の結合 は形成されていないことが判る。 FIGS. B5 and B6 show the 1 H- and ' 3 C-NMR spectrum of the obtained equimolar composition. The proton and carbon signals of the equimolar composition are equivalent to those of the well-known 1,3-dimethyl-2-imidazolidinone and P-chlorophenol alone, indicating that no ionic bond has been formed.
得られた等モル組成物の誘電率は 3 2 . 5、 誘電正接は 0 . 4 9 5であった。 また、 得られた等モル組成物 5 gに純水 5 gをサンプル瓶中に混合し、 強攪拌 したが、 等モル組成物と純水は混じり合わず、 2層に分離したままであった。 実施例 B 9〜 1 1  The obtained equimolar composition had a dielectric constant of 32.5 and a dielectric loss tangent of 0.495. In addition, 5 g of the obtained equimolar composition was mixed with 5 g of pure water in a sample bottle and stirred vigorously, but the equimolar composition and pure water were not mixed and remained in two layers. . Example B 9 to 11
実施例 B 1で得られた、 精製 1,3-ジメチル -2-イミダゾリジノンと精製!)-クロ 口フエノールの等モル組成物と、 精製 1,3-ジメチル -2-イミダゾリジノンまたは 精製 P-クロ口フエノールを、 表 B 1に示す量で配合した。 実施例 B 1と同様に して測定した沸点を表 B 1に示す。  Equimolar composition of purified 1,3-dimethyl-2-imidazolidinone and purified 1,3-dimethyl-2-imidazolidinone obtained in Example B 1 and purified 1,3-dimethyl-2-imidazolidinone or purified P-cloth phenol was blended in the amounts shown in Table B1. Table B1 shows the boiling points measured in the same manner as in Example B1.
また、 得られた表 B 1の溶液をそれぞれフラスコに入れ、 0での氷水中に 3 時間さらしたが、 溶液は凝固せず、 液体状態のままであった。 比較例 B 1、 2  Each of the obtained solutions in Table B1 was placed in a flask and exposed to ice water at 0 for 3 hours, but the solution did not solidify and remained in a liquid state. Comparative Example B 1, 2
実施例 B 1で得られた、 精製 1,3-ジメチル -2-イミダゾリジノンと精製 p -クロ 口フエノールの等モル組成物と、 精製 1,3-ジメチル -2-イミダゾリジノンまたは 精製 P-クロ口フエノールを、 表 B 1に示す量で配合した。 実施例 B 1と同様に して測定した沸点を表 B 1に示す。 表 B An equimolar composition of purified 1,3-dimethyl-2-imidazolidinone and purified p-chlorophenol obtained in Example B 1 and purified 1,3-dimethyl-2-imidazolidinone or purified P -Black phenol was blended in the amounts shown in Table B1. Table B1 shows the boiling points measured in the same manner as in Example B1. Table B
Figure imgf000048_0001
Figure imgf000048_0001
等モル組成物:精製 1, 3-シ'メチル- 2-イミダ Vリ -ン'ノンと精製 P-ク叩フ -ルの等モル組成物 含有量:等モル組成物量 (g) /配合量合計(25g) X 1 00 (wt%) Equimolar composition: Equimolar composition of purified 1,3-dimethyl-2-imida V-linenone and purified P-kappa file Content: Equimolar composition amount (g) / mixing amount Total (25g) X 100 (wt%)
実施例 C 1〜 9、 比較例 C 1〜 9 Example C 1-9, Comparative Example C 1-9
攪袢機、 還流冷却器、 水分離器、 および窒素導入管を備えた容器に、 表 C 1 に示す組成の溶媒 799 g (比較例 C 9についてのみ溶媒量は 2570 g) と、 ポリイミドの原料モノマー、  In a container equipped with a stirrer, reflux condenser, water separator, and nitrogen inlet tube, 799 g of the solvent having the composition shown in Table C1 (the amount of solvent was 2570 g only for Comparative Example C9) and the raw material of polyimide Monomer,
(1) 1, 3—ビス (4一アミノフエノキシ) ベンゼン、  (1) 1,3-bis (4-aminophenoxy) benzene,
146. 17 g (0. 500 mol)、  146.17 g (0.500 mol),
(2) 3, 3 ', 4, 4 ' —ビフエ二ルテ卜ラカルボン酸二無水物、  (2) 3, 3 ', 4, 4'—biphenyltetracarboxylic dianhydride,
143. 43 g (0. 4875 mol)  143.43 g (0.4875 mol)
(3)無水フ夕ル酸、  (3) anhydride,
3. 703 g (25. 00m mol)  3.703 g (25.00 mmol)
を装入し、 この混合物を窒素雰囲気下、 攪拌しながら 2時間 30分かけて室温 から 200 まで加熱昇温し、 200でで 12時間反応を行った。 なお、 この 場合のポリマーの理論収量は 275. 3 g、 ポリマー濃度は 25. 6 % (比較 例 C 9についてのみ 9. 7%) である。 , And the mixture was heated from room temperature to 200 over 2 hours and 30 minutes with stirring under a nitrogen atmosphere, and reacted at 200 for 12 hours. In this case, the theoretical yield of the polymer was 275.3 g, and the polymer concentration was 25.6% (9.7% only for Comparative Example C9).
室温から 200でにおける昇温過程および 20 Ot:での反応過程での反応溶 液の状態を表 C 2に示す。 ただし、 表 C 2中、 各記号は下記の状態を示す。  The state of the reaction solution during the heating process from room temperature to 200 and the reaction process at 20 Ot: is shown in Table C2. However, in Table C2, each symbol indicates the following status.
「SL」 ……スラリー状態  "SL" ...... Slurry state
「BJ ……ポリイミドが溶解  "BJ ... Polyimide dissolved
「C」 ……ポリイミドがわずかに析出またはわずかに溶け残る  "C": Polyimide is slightly precipitated or slightly dissolved
「D」 ……ポリイミドが一部固化し壁面 ·攪拌ばね等に付着 さらに、 反応溶液が攪拌可能なもの (実施例 C l〜9、 比較例 C 9) につい て、 無水フ夕ル酸 3. 703 g (25. 00m mol) が各々の溶媒 70 gに溶 解した溶液を滴下し、 200ででさらに 6時間反応を行った。  "D": Polyimide partially solidifies and adheres to walls, agitating springs, etc. In addition, for those in which the reaction solution can be agitated (Examples C1 to C9 and Comparative Example C9), fluoric anhydride 3. A solution of 703 g (25.00 mmol) dissolved in 70 g of each solvent was added dropwise, and the reaction was further carried out at 200 for 6 hours.
その後 30 まで反応系内を冷却し、 実施例 C 1〜9については、 得られた 析出物を濾別した。 比較例 C 9についてはこの段階では析出物は得られず、 得 られた粘稠なポリマー溶液を強撹拌下のトルエン 10リツトル中に排出し、 析 出したポリマーを濾別した。  Thereafter, the inside of the reaction system was cooled to 30. For Examples C 1 to 9, the obtained precipitate was separated by filtration. In Comparative Example C9, no precipitate was obtained at this stage, and the obtained viscous polymer solution was discharged into 10 liters of toluene with vigorous stirring, and the precipitated polymer was separated by filtration.
さらに、 実施例 C 1〜9については、 得られたポリマーを各溶媒 1リットル で、 続いてトルエン 1リットルで洗浄した。 また、 比較例 C 9については得ら れたポリマーをトルエン 2リットルで洗浄した。 このようにして得られたポリ マーを、 50で、 24時間の予備乾燥の後、 窒素気流下、 300でで 1 2時間 乾燥した。 Further, for Examples C 1-9, the resulting polymer was mixed with 1 liter of each solvent. Then, it was washed with 1 liter of toluene. In Comparative Example C9, the obtained polymer was washed with 2 L of toluene. The polymer thus obtained was pre-dried at 50 for 24 hours and then dried at 300 under a nitrogen stream at 12 hours.
実施例 C l〜9、 比較例 C 9について、 得られたポリイミド粉の対数粘度、 ガラス転移温度、 5%重量減少温度、 溶融粘度 (430で 5分) を前記の方 法により計測した。 得られた結果を表 C 3に示す。  For Examples C1 to C9 and Comparative Example C9, the logarithmic viscosity, glass transition temperature, 5% weight loss temperature, and melt viscosity (430 minutes for 5 minutes) of the obtained polyimide powder were measured by the methods described above. The results obtained are shown in Table C3.
なお、 実施例 C 1〜9からわかるとおり、 本発明に係る溶媒を用いると、 比 較例 C (比較例 C 2, 4, 6または 8) で示すような通常の溶媒系では実現不 可能な高濃度 (約 2 5w t %) においても充分にポリイミドの合成が可能であ り、 本発明の方法で得られたポリイミドは通常の溶媒系での低濃度重合 (比較 例 C 9 ;約 1 Owt %)により得られるポリイミドと同等の物性を有している。 また、 本発明に係る製造方法によれば、 反応系がスラリー状態となるため、 ポリイミドの単離は濾過するだけですみ、 簡便なプロセスとなる。 また、 通常 の方法により得られるポリイミドと比較し、 物性は何ら変わらず、 良好な耐熱 性を保っている。 As can be seen from Examples C 1 to 9, when the solvent according to the present invention is used, it is not feasible with a normal solvent system as shown in Comparative Example C (Comparative Example C 2, 4, 6, or 8). The polyimide can be sufficiently synthesized even at a high concentration (about 25 wt%), and the polyimide obtained by the method of the present invention can be polymerized at a low concentration in an ordinary solvent system (Comparative Example C9; about 1 wt%). %) Has the same physical properties as the polyimide obtained by Further, according to the production method of the present invention, since the reaction system is in a slurry state, the isolation of the polyimide can be performed only by filtration, which is a simple process. Also, compared to polyimide obtained by a usual method, physical properties are not changed at all, and good heat resistance is maintained.
表 C I Table C I
Figure imgf000051_0001
表 C 2
Figure imgf000051_0001
Table C 2
/s曰not. ^/皿 50°C 100°C 150°C 200°C / s says not. ^ / Dish 50 ° C 100 ° C 150 ° C 200 ° C
時間 0時間 3時間 6時間 9時間 12時間 \c 1 SL SL B C SL SL SL SL SL Time 0 hours 3 hours 6 hours 9 hours 12 hours \ c 1 SL SL B C SL SL SL SL SL
H»JC 2 SL SL B C SL SL SL SL SLH »JC 2 SL SL B C SL SL SL SL SL
H»JC 3 SL SL B SL SL SL SL SL SL t瞧 C 1 SL SL SL D D ίΙΤ丰 Hitとなる。 H »JC 3 SL SL B SL SL SL SL SL SL t 瞧 C 1 SL SL SL D D ίΙΤ 丰 Hit.
Jt^,JC 2 SL SL SL B 攪拌困難となり、 ¾Λ涸ィ匕 Jt ^, JC 2 SL SL SL B Stirring became difficult.
\c 4 SL SL B C SL SL SL SL SL \ c 4 SL SL B C SL SL SL SL SL
H»JC 5 SL SL B C SL SL SL SL SL i±»JC 3 SL SL B B 180°C付近で急激に析出固ィ匕 jt^yc 4 SL SL B B 190°C付近で急 J¾に析出固ィ匕 m ^\c 6 SL SL B C SL SL SL SL SL ic 7 SL SL B C SL SL SL SL SLH »JC 5 SL SL BC SL SL SL SL SL i ±» JC 3 SL SL BB Rapidly precipitates at around 180 ° C jt ^ yc 4 SL SL BB Rapidly precipitates at around 190 ° C m ^ \ c 6 SL SL BC SL SL SL SL SL ic 7 SL SL BC SL SL SL SL SL
J:瞧 C 5 SL SL SL D D D ίΙίίΗϋとなる。 i:瞧 C 6 SL SL SL B 攪拌困難となり、 mi , J: 瞧 C 5 SL SL SL D D D ίΙίίΗϋ i: 瞧 C 6 SL SL SL B Stirring became difficult, mi,
H»JC 8 SL SL B C SL SL SL SL SL H »JC 8 SL SL B C SL SL SL SL SL
H»JC 9 SL SL B C SL SL SL SL SLH »JC 9 SL SL B C SL SL SL SL SL
J:議 C 7 SL SL B B 190。C付近て急激に析出固 J: congress C 7 SL SL B B 190. Precipitated solid rapidly around C
8 SL SL B B 200°Ci寸近で "Si敫に析出固ィ匕 i:國 C 9 SL SL SL B B B Β Β Β 8 SL SL BB Near 200 ° Ci, "precipitate on Si 敫" i: Kuni C 9 SL SL SL BBB Β Β Β
表 D3 Table D3
Figure imgf000053_0001
Figure imgf000053_0001
実施例 C 10〜: I 2、 比較例 C 10、 1 1 Example C10 ~: I2, Comparative example C10, 1 1
攪拌機, 還流冷却器、 水分離器、 および窒素導入管を備えた容器に、 表 C4 に示す組成の溶媒 2437 gと、 ポリイミドの原料モノマー、  In a vessel equipped with a stirrer, reflux condenser, water separator, and nitrogen inlet tube, 2437 g of a solvent having the composition shown in Table C4,
(1) 4, 4 ' —ビス (3—アミノフエノキシ) ビフエ二ル、  (1) 4, 4'-bis (3-aminophenoxy) biphenyl,
368. 43 g (1. 000 mol)、  368.43 g (1.000 mol),
(2)ピロメリット酸ニ無水物、  (2) pyromellitic dianhydride,
102. 52 g (0. 470 mol)、  102.52 g (0.470 mol),
(3) 3, 3 ', 4, 4' —ビフエニルテトラカルボン酸二無水物、  (3) 3, 3 ', 4, 4'—biphenyltetracarboxylic dianhydride,
138. 28 g (0. 470 mol)、  138.28 g (0.470 mol),
(4)無水フタル酸、  (4) phthalic anhydride,
17. 77 g (120. 0 mmol)  17.77 g (120.0 mmol)
を装入し、 この混合物を窒素雰囲気下、 攪拌しながら 2時間 30分かけて室温 から 200でまで加熱昇温し、 200でで 4時間反応を行った。 なお、 この場 合のポリマーの理論収量は 591. 0 g、 ポリマー濃度は 19. 5%である。 室温から 200でにおける昇温過程および 20 での反応過程での反応溶 液の状態を表 C 5に示す。 ただし、 表 C 5中、 各記号は下記の状態を示す。 , And the mixture was heated from room temperature to 200 over 2 hours and 30 minutes with stirring under a nitrogen atmosphere, and reacted at 200 for 4 hours. In this case, the theoretical yield of the polymer was 591.0 g, and the polymer concentration was 19.5%. Table C5 shows the state of the reaction solution during the heating process from room temperature to 200 and the reaction process at 20. However, in Table C5, each symbol indicates the following status.
「SL」 ……ポリイミドが析出し反応溶液はスラリー状態  "SL" ... Polyimide precipitates and the reaction solution is in a slurry state
「B」 ……ポリイミドが溶解  “B” …… Polyimide dissolves
「C」 ……ポリイミドがわずかに析出またはわずかに溶け残る  "C": Polyimide is slightly precipitated or slightly dissolved
「D」 ……ポリイミドが一部固化し壁面 ·攪拌ばね等に付着  “D” …… Polyimide is partially solidified and adheres to wall surfaces, stirring springs, etc.
さらに、 反応溶液が攪拌可能なもの (実施例 C 10〜12、 比較例 C 10) に ついて、 無水フ夕ル酸 17. 77 g (120. Om mol) を装入し、 200 でさらに 4時間反応を行った。 Further, for those in which the reaction solution can be stirred (Examples C10 to C12, Comparative Example C10), 17.77 g (120. Ommol) of fluoric anhydride was charged, and the mixture was further stirred at 200 for 4 hours. The reaction was performed.
その後 30でまで冷却し、 実施例 C 10〜 12については、 得られた析出物 を濾別した。 比較例 C 10についてはこの段階では析出物は得られず、 得られ た粘稠なポリマー溶液を強撹拌下のトルエン 10リツトル中に排出し、 析出し たポリマーを濾別した。  Thereafter, the mixture was cooled to 30 and the resulting precipitates of Examples C 10 to 12 were separated by filtration. In Comparative Example C10, no precipitate was obtained at this stage, and the resulting viscous polymer solution was discharged into 10 liters of toluene with vigorous stirring, and the precipitated polymer was separated by filtration.
さらに、 実施例 C 10〜 12については、 得られたポリマーを各溶媒 1リツ トルで、 続いてトルエン 1リットルで洗浄した。 また、 比較例 C 10について は得られたポリマーをトルエン 2リットルで洗浄した。 このようにして得られ たポリマ一を、 50 :、 24時間の予備乾燥の後、 窒素気流下、 200でで 1 2時間減圧乾燥した。 Further, for Examples C 10 to 12, the obtained polymer was washed with 1 liter of each solvent and subsequently with 1 liter of toluene. For Comparative Example C10 The obtained polymer was washed with 2 liters of toluene. The polymer thus obtained was pre-dried at 50: for 24 hours, and then dried under reduced pressure at 200 for 12 hours under a nitrogen stream.
実施例 C 10〜12、 比較例 C 10について、 得られたポリイミド粉の対数 粘度、 ガラス転移温度、 5%重量減少温度を前記の方法により計測した。 得ら れた結果を表 C 6に示す。 For Examples C10 to C12 and Comparative Example C10, the logarithmic viscosity, glass transition temperature, and 5% weight loss temperature of the obtained polyimide powder were measured by the methods described above. The results obtained are shown in Table C6.
表 C4
Figure imgf000056_0002
Table C4
Figure imgf000056_0002
Figure imgf000056_0003
Figure imgf000056_0003
表 C6 Table C6
Figure imgf000056_0001
これらの実施例 C 1〜1 2の結果から、 本発明に係る製造方法によれば、 反 応系がスラリー状態となるため、 ポリイミドの単離は濾過するだけですみ、 簡 便なプロセスとなる。 また、 通常の方法により得られるポリイミドと比較し、 物性は何ら変わらず、 良好な耐熱性を保っている。 実施例 C 1 3
Figure imgf000056_0001
From the results of Examples C1 to C12, according to the production method of the present invention, since the reaction system is in a slurry state, isolation of the polyimide can be performed only by filtration, which is a simple process. . In addition, compared to polyimide obtained by a usual method, physical properties are not changed at all and good heat resistance is maintained. Example C 1 3
実施例 C 1 0において、 当初装入の無水フタル酸および撹拌可能な反応溶液 にさらに装入する無水フ夕ル酸の代わりに、 それぞれ無水フ夕ル酸 1 0 . 6 6 g ( 7 2 . 0 O m mol) および 4一フエ二ルェチニルフタル酸無水物 1 1 . 9 2 g ( 4 8 . 0 0 m mol) に変更した以外は、 実施例 C 1 0と同様の条件でポ リイミドを得た。得られたポリイミド粉のガラス転移温度は 2 3 8でであった。 さらにこの粉を 3 6 0 の炉の中で融解させ、 4時間保持して塊状のポリイ ミドを得た。 このポリイミドのガラス転移温度は 2 4 6でであった。 In Example C10, instead of the initial charge of phthalic anhydride and the further charge of hydrofluoric anhydride in the stirrable reaction solution, 10.66 g (72. Polyimide was obtained under the same conditions as in Example C10, except that the composition was changed to 1 Ommol) and 41.9-phenylethynylphthalic anhydride 11.92 g (48.00.0 mmol). . The glass transition temperature of the obtained polyimide powder was 238. This powder was further melted in a 360 ° furnace and kept for 4 hours to obtain a bulk polyimide. The glass transition temperature of this polyimide was 246.
実施例 D 1〜 9、 比較例 D 1〜 9 Example D 1-9, Comparative Example D 1-9
攪拌機、 還流冷却器、 水分離器、 および窒素導入管を備えた容器に、 表 D 1 に示す組成の溶媒 799 g (比較例 D 9についてのみ溶媒量は 2570 g) と、 ポリイミドの原料モノマーとして、  In a vessel equipped with a stirrer, reflux condenser, water separator, and nitrogen inlet tube, 799 g of the solvent having the composition shown in Table D1 (the amount of solvent was 2570 g for Comparative Example D9 only) ,
(1) 1, 3—ビス (4一アミノフエノキシ) ベンゼン、  (1) 1,3-bis (4-aminophenoxy) benzene,
146. 1 7 g (0. 500 mol)、  146.17 g (0.500 mol),
(2) 3, 3 ', 4, 4, —ビフエニルテトラカルボン酸二無水物、  (2) 3,3 ', 4,4, -biphenyltetracarboxylic dianhydride,
143. 43 g (0. 4875 mol)  143.43 g (0.4875 mol)
(3)無水フ夕ル酸、  (3) anhydride,
3. 703 g (25. 00m mol)  3.703 g (25.00 mmol)
を装入し、 この混合物を窒素雰囲気下、 攪拌しながら 2時間 30分かけて室温 から 200でまで加熱昇温し、 200でで 1 2時間反応を行った。 なお、 この 場合のポリマーの理論収量は 275. 3 g、 ポリマー濃度は 25. 6 % (比較 例 D 9についてのみ 9. 7%) である。 The mixture was heated from room temperature to 200 over 2 hours and 30 minutes with stirring under a nitrogen atmosphere, and reacted at 200 for 12 hours. In this case, the theoretical yield of the polymer was 275.3 g, and the polymer concentration was 25.6% (9.7% only for Comparative Example D9).
室温から 200でにおける昇温過程および 200ででの反応過程での反応溶 液の状態を表 D 2に示す。 ただし、 表 D 2中、 各記号は下記の状態を示す。  Table D2 shows the state of the reaction solution during the heating process from room temperature to 200 and the reaction process at 200. However, in Table D2, each symbol indicates the following status.
「SL」 ……スラリー状態  "SL" ...... Slurry state
「B」 ……ポリイミドが溶解  “B” …… Polyimide dissolves
「C」 ……ポリイミドがわずかに析出またはわずかに溶け残る  "C": Polyimide is slightly precipitated or slightly dissolved
「D」 ……ポリイミドが一部固化し壁面 ·攪拌ばね等に付着  “D” …… Polyimide is partially solidified and adheres to wall surfaces, stirring springs, etc.
さらに、 反応溶液が攪拌可能なもの (実施例 D l〜9、 比較例 D 9) につい て、 無水フ夕ル酸 3. 7 03 g (25. 0 Om mol) が各々の溶媒 70 gに溶 解した溶液を滴下し、 200ででさらに 6時間反応を行った。  Furthermore, for those in which the reaction solution can be stirred (Examples D1-9 and Comparative Example D9), 3.703 g (25.0 Ommol) of hydrofluoric anhydride was dissolved in 70 g of each solvent. The dissolved solution was added dropwise, and the reaction was further performed at 200 at 6 hours.
その後 3 Otまで反応系内を冷却し、 実施例 D 1〜9については、 得られた 析出物を濾別した。 比較例 D 9についてはこの段階では析出物は得られず、 得 られた粘稠なポリマー溶液を強撹拌下のトルエン 1 0リットル中に排出し、 析 出したポリマーを濾別した。  Thereafter, the inside of the reaction system was cooled to 3 Ot, and for Examples D 1 to 9, the obtained precipitates were separated by filtration. In Comparative Example D9, no precipitate was obtained at this stage, and the obtained viscous polymer solution was discharged into 10 liters of toluene with vigorous stirring, and the precipitated polymer was separated by filtration.
さらに、 実施例 D 1〜9については、 得られたポリマーを各溶媒 1リットル で、 続いてトルエン 1リットルで洗浄した。 また、 比較例 D 7については得ら れたポリマーをトルエン 2リットルで洗浄した。 このようにして得られたポリ マーを、 50で、 24時間の予備乾燥の後、 窒素気流下、 300 で 1 2時間 乾燥した。 Further, for Examples D 1 to 9, the obtained polymer was washed with 1 liter of each solvent and subsequently with 1 liter of toluene. Also, Comparative Example D 7 was not obtained. The polymer obtained was washed with 2 liters of toluene. The polymer thus obtained was pre-dried at 50 for 24 hours and then dried at 300 for 12 hours under a stream of nitrogen.
実施例 D l〜9、 比較例 D 9について、 得られたポリイミド粉の対数粘度、 ガラス転移温度、 5%重量減少温度、 溶融粘度 (430t:Z5分) を前記の方 法により計測した。 得られた結果を表 D 4に示す。  For Examples D1 to D9 and Comparative Example D9, the logarithmic viscosity, glass transition temperature, 5% weight loss temperature, and melt viscosity (430 t: Z5 minutes) of the obtained polyimide powder were measured by the methods described above. The results obtained are shown in Table D4.
なお、 実施例 D 1〜 9からわかるとおり、 本発明に係る溶媒を用いると、 比 較例 D (比較例 D 2, 4, 6または 8) で示すような通常の溶媒系では実現不 可能な高濃度(25wt %) においても充分にポリイミドの合成が可能であり、 本発明の方法で得られたポリイミドは通常の溶媒系での低濃度重合 (比較例 D 9 ; 1 Ow t %) により得られるポリイミドと同等の物性を有している。  As can be seen from Examples D 1 to 9, when the solvent according to the present invention was used, it was not feasible with a normal solvent system as shown in Comparative Example D (Comparative Example D 2, 4, 6, or 8). Polyimide can be sufficiently synthesized even at a high concentration (25 wt%), and the polyimide obtained by the method of the present invention can be obtained by low-concentration polymerization in a normal solvent system (Comparative Example D 9; 1% by weight). It has the same physical properties as the polyimide obtained.
また、 本発明に係る製造方法によれば、 反応系がスラリー状態となるため、 ポリイミドの単離は濾過するだけですみ、 簡便なプロセスとなる。 また、 通常 の方法により得られるポリイミドと比較し、 物性は何ら変わらず、 良好な耐熱 性を保っている。 Further, according to the production method of the present invention, since the reaction system is in a slurry state, the isolation of the polyimide can be performed only by filtration, which is a simple process. Also, compared to polyimide obtained by a usual method, physical properties are not changed at all, and good heat resistance is maintained.
表 D1 Table D1
Figure imgf000060_0001
表 D2
Figure imgf000060_0001
Table D2
Figure imgf000061_0001
Figure imgf000061_0001
表 D3 Table D3
Figure imgf000062_0001
Figure imgf000062_0001
実施例 D 10〜; 12、 比較例 D 10, 1 1 Example D 10-; 12, Comparative Example D 10, 1 1
攪拌機、 還流冷却器、 水分離器、 および窒素導入管を備えた容器に、 表 D4 に示す組成の溶媒 2437 gを装入し、 さらに、 ポリイミドの原料として、 A vessel equipped with a stirrer, reflux condenser, water separator, and nitrogen inlet tube was charged with 2437 g of a solvent having the composition shown in Table D4.
(1) 4, 4 ' 一ビス (3—アミノフエノキシ) ビフエニル、 (1) 4,4'-bis (3-aminophenoxy) biphenyl,
368. 43 g (1. 000 mol)、  368.43 g (1.000 mol),
(2)ピロメリット酸ニ無水物、  (2) pyromellitic dianhydride,
102. 52 g (0. 470 mol)、  102.52 g (0.470 mol),
(3) 3, 3', 4, 4, —ビフエニルテトラカルボン酸二無水物、  (3) 3,3 ', 4,4, -biphenyltetracarboxylic dianhydride,
138. 28 g (0. 470 mol)、  138.28 g (0.470 mol),
(4)無水フタル酸、  (4) phthalic anhydride,
1 7. 77 g (120. 0 mmol)  17.77 g (120.0 mmol)
を装入し、 この混合物を窒素雰囲気下、 攪拌しながら 2時間 30分かけて室温 から 200でまで加熱昇温し、 200でで 4時間反応を行った。 なお、 この場 合のポリマ一の理論収量は 591. 0 g、 ポリマー濃度は 19. 5%である。 室温から 200でにおける昇温過程および 200ででの反応過程での反応溶 液の状態を表 D 5に示す。 ただし、 表 D 5中、 各記号は下記の状態を示す。 , And the mixture was heated from room temperature to 200 over 2 hours and 30 minutes with stirring under a nitrogen atmosphere, and reacted at 200 for 4 hours. In this case, the theoretical yield of the polymer was 591.0 g, and the polymer concentration was 19.5%. Table D5 shows the state of the reaction solution during the heating process from room temperature to 200 and the reaction process at 200. However, in Table D5, each symbol indicates the following status.
rSLj ……ポリイミドが析出し反応溶液はスラリー状態  rSLj ...... Polyimide precipitates and the reaction solution is in a slurry state
「B」 ……ポリイミドが溶解  “B” …… Polyimide dissolves
「C」 ……ポリイミドがわずかに析出またはわずかに溶け残る  "C": Polyimide is slightly precipitated or slightly dissolved
「D」 ……ポリイミドが一部固化し壁面 ·攪拌ばね等に付着  “D” …… Polyimide is partially solidified and adheres to wall surfaces, stirring springs, etc.
さらに、 反応溶液が 拌可能なもの (実施例 D 10〜12、 比較例 D 10) について、 無水フタル酸 17. 77 g (120. Om mol) を装入し、 200 ででさらに 4時間反応を行った。  Further, for those in which the reaction solution can be stirred (Examples D 10 to 12 and Comparative Example D 10), 17.77 g (120. Ommol) of phthalic anhydride was charged, and the reaction was further carried out at 200 for 4 hours. went.
その後 30 まで反応系内を冷却し、 実施例 D 10〜 12については、 得ら れた析出物を濾別した。 比較例 D 10についてはこの段階では析出物は得られ ず、 得られた粘稠なポリマー溶液を強撹拌下のトルエン 10リツトル中に排出 し、 析出したポリマーを濾別した。  Thereafter, the inside of the reaction system was cooled to 30. For Examples D 10 to 12, the obtained precipitate was separated by filtration. In Comparative Example D10, no precipitate was obtained at this stage, and the obtained viscous polymer solution was discharged into 10 liters of toluene with vigorous stirring, and the precipitated polymer was separated by filtration.
さらに、 実施例 D 10〜 12については、 得られたポリマーを各溶媒 1リツ トルで、 続いてトルエン 1リットルで洗浄した。 また、 比較例 D 10について は得られたポリマーをトルエン 2リットルで洗浄した。 このようにして得られ たポリマーを、 50 、 24時間の予備乾燥の後、 窒素気流下、 200°Cで 1 2時間減圧乾燥した。 Further, for Examples D 10 to 12, the obtained polymer was washed with 1 liter of each solvent and subsequently with 1 liter of toluene. For Comparative Example D10 The obtained polymer was washed with 2 liters of toluene. The polymer thus obtained was pre-dried for 50 to 24 hours, and then dried under a nitrogen stream at 200 ° C. for 12 hours under reduced pressure.
実施例 D 10〜1 2、 比較例 D 10について、 得られたポリイミド粉の対数 粘度、 ガラス転移温度、 5%重量減少温度を前記の方法により計測した。 得ら れた結果を表 D 6に示す。 For Examples D 10 to 12 and Comparative Example D 10, the logarithmic viscosity, glass transition temperature, and 5% weight loss temperature of the obtained polyimide powder were measured by the methods described above. The results obtained are shown in Table D6.
表 D4 Table D4
Figure imgf000065_0002
Figure imgf000065_0002
Figure imgf000065_0001
Figure imgf000065_0001
表 D6 Table D6
Figure imgf000066_0001
Figure imgf000066_0001
これらの結果から、 本発明に係る製造方法によれば、 反応系がスラリー状態 となるため、 ポリイミドの単離は濾過するだけですみ、簡便なプロセスとなる。 また、 通常の方法により得られるポリイミドと比較し、 物性は何ら変わらず、 良好な耐熱性を保っている。 実施例 D 1 3 From these results, according to the production method of the present invention, since the reaction system is in a slurry state, isolation of the polyimide can be performed only by filtration, which is a simple process. In addition, compared to polyimide obtained by a usual method, physical properties are not changed at all and good heat resistance is maintained. Example D 1 3
実施例 D 1 0において、 当初装入の無水フ夕ル酸および撹拌可能な反応溶液 にさらに装入する無水フ夕ル酸の代わりに、 それぞれ無水フ夕ル酸 1 0 . 6 6 g ( 7 2 . 0 O m mol) および 4一フエ二ルェチニルフタル酸無水物 1 1 . 9 2 g ( 4 8 . 0 0 m mol) を用いた以外は、 実施例 D 1 0と同様にしてポリイ ミドを得た。 得られたポリイミド粉のガラス転移温度は 2 3 8でであった。 さ らにこの粉を 3 6 0での炉の中で融解させ、 4時間保持して塊状のポリイミド を得た。 このポリイミドのガラス転移温度は 2 4 5 であった。 In Example D10, instead of the originally charged anhydrous anhydride and further added anhydrous acid to the stirrable reaction solution, 10.66 g (7. 2.0 mmol) and 1.1-92 g (4.80 mmol) of 4-phenylethynylphthalic anhydride were obtained in the same manner as in Example D10. Was. The glass transition temperature of the obtained polyimide powder was 238. The powder was further melted in a furnace at 360 and kept for 4 hours to obtain a lump polyimide. The glass transition temperature of this polyimide was 245.
実施例 E 1, 2, 比較例 E 1— 12 Example E 1, 2, Comparative example E 1— 12
表 E 1に示す組成の溶媒 1 031 gを用いた他は実施例 C 1に従い反応を行 つた。 ただし、 比較例 E 5— 8については、 溶媒の還流下、 溶媒の沸点温度 (1 80〜200 :) で反応を行った。 なお、 この場合のポリマーの理論収量は 2 75. 3 g、 ポリマー濃度は 21. 1 %である。  The reaction was carried out according to Example C1, except that 1031 g of the solvent having the composition shown in Table E1 was used. However, for Comparative Example E5-8, the reaction was carried out at the boiling point of the solvent (180-200 :) under the reflux of the solvent. In this case, the theoretical yield of the polymer was 275.3 g, and the polymer concentration was 21.1%.
室温から反応温度までにおける昇温過程および反応過程での反応溶液の状態 を表 E 2に示す。 ただし、 表 E 2中、 各記号は下記の状態を示す。  Table E2 shows the state of the reaction solution during the heating process and the reaction process from room temperature to the reaction temperature. However, in Table E2, each symbol indicates the following status.
「SL」 ……スラリー状態  "SL" ...... Slurry state
「B」 ……ポリイミドが溶解  “B” …… Polyimide dissolves
「C」 ……ポリイミドがわずかに析出またはわずかに溶け残る  "C": Polyimide is slightly precipitated or slightly dissolved
「DJ ……ポリイミドが一部固化し壁面 ·攪拌ばね等に付着  "DJ ...... Polyimide is partially solidified and adheres to wall surfaces, stirring springs, etc.
さらに、 反応溶液が攪拌可能なもの (実施例 E l, 2、 比較例 E 3, 4, 8, 10) について、 無水フ夕ル酸 3. 703 g (25. O Om mol) が各々の溶 媒 70 gに溶解した溶液を滴下し、 200°Cでさらに 6時間反応を行った。 その後 3 Ot:まで反応系内を冷却し、 析出物を濾別、 各溶媒 1リットルで、 続いてトルエン 1リットルで洗浄した。 このようにして得られたポリマーを、 50で、 24時間の予備乾燥の後、 窒素気流下、 300でで 12時間乾燥した。 得られたポリイミド粉の対数粘度、 ガラス転移温度、 5%重量減少温度、 溶 融粘度 (430Τ:Ζ5分) を前記の方法により計測した。 得られた結果を表 Ε 4に示す。  Furthermore, for those in which the reaction solution can be stirred (Examples El and 2, Comparative Examples E 3, 4, 8, and 10), 3.703 g (25.O Ommol) of fluoric anhydride was dissolved in each solution. A solution dissolved in 70 g of the medium was added dropwise, and the reaction was further performed at 200 ° C for 6 hours. Thereafter, the reaction system was cooled to 3 Ot :, and the precipitate was separated by filtration and washed with 1 liter of each solvent and subsequently with 1 liter of toluene. The polymer thus obtained was pre-dried at 50 for 24 hours and then dried at 300 under nitrogen for 12 hours. The logarithmic viscosity, glass transition temperature, 5% weight loss temperature, and melt viscosity (430 °: 5 minutes) of the obtained polyimide powder were measured by the methods described above. Table 4 shows the obtained results.
比較例 E 1, 2, 5〜7, 9, 1 1, 1 2からわかるとおり、 等モル組成物 を含有しない溶媒を用い、 モノマー及び またはポリイミド前駆体が溶解し、 溶液が均一状態になる場合には、 イミド化の進行と共に析出物により反応溶液 が急激にゼリー状あるいは固化する。 また、 比較例 Ε 3, 4, 8, 10からわ かるとおり、 等モル組成物を含有しない溶媒を用い、 モノマー及び またはポ リイミド前駆体が溶解せず、 スラリー状態のまま反応が進行する場合には、 得 られるポリイミドの重合度 (対数粘度) は異常に高く、 熱安定性 (重量減少温 度) 及び溶融流動性 (溶融粘度) は著しく悪い。 表 El Comparative Example E As can be seen from 1, 2, 5 to 7, 9, 11, 11 and 12, when a monomer and / or polyimide precursor is dissolved using a solvent containing no equimolar composition and the solution becomes homogeneous. During the reaction, as the imidization proceeds, the reaction solution rapidly becomes jelly-like or solidifies due to the precipitate. In addition, as can be seen from Comparative Examples 3, 4, 8, and 10, when a solvent containing no equimolar composition was used and the monomer and / or the polyimide precursor did not dissolve and the reaction proceeded in a slurry state, The polymerization degree (logarithmic viscosity) of the obtained polyimide is abnormally high, and the thermal stability (weight loss temperature) and the melt fluidity (melt viscosity) are extremely poor. Table El
Figure imgf000069_0001
Figure imgf000069_0001
等モル組成物:含窒素環状化合物とフ Iノール類の等モル組成物 含有量:等モル組成物量 (g) Z配合量合計 (g) X 1 00 (wt%) Equimolar composition: Equimolar composition of nitrogen-containing cyclic compound and phenols Content: Equimolar composition amount (g) Total Z content (g) X 100 (wt%)
表 E2 Table E2
Figure imgf000070_0001
Figure imgf000070_0001
*: J g^jE5〜8は 200~180°C *: 200 ~ 180 ° C for J g ^ jE5 ~ 8
表 E3 Table E3
曰 対数粘度 ガラス転移 5 %重量減少 粘度 [Pa · sec. ]  Says logarithmic viscosity glass transition 5% weight loss viscosity [Pa · sec.]
[dl/g] /mux. [°C] /jmJ¾t [°C] (430。C 5分) [dl / g] / mux. [° C] / jmJ¾t [° C] (430. C for 5 minutes)
0. 93 1 92 562 680 0.93 1 92 562 680
H»JE 2 0. 92 1 92 562 650 t瞧 E 3 1. 1 0 1 96 547 3240  H »JE 2 0.92 1 92 562 650 t 瞧 E 3 1.10 1 96 547 3240
J:國 E 4 1. 65 1 98 524 1 5600 t瞧 E 8 1. 58 1 96 550  J: Country E 4 1.65 1 98 524 1 5600 t 瞧 E 8 1.58 1 96 550
1:瞧 E 10 1. 85 1 95 544 i§ i¾rtiず 1: 瞧 E 10 1.85 1 95 544 i§ i¾rti
実施例 E 4- 7, 比較例 E 1 3— 1 5、 参考例 1 Example E 4-7, Comparative example E 13--15, Reference example 1
表 E 4に示す組成の溶媒 1 098 gを用いた他は実施例 C 1 0に従い反応を 行った。 なお、 この場合のポリマーの理論収量は 59 1. 0 g、 ポリマー濃度 は 35. 0 %である。  The reaction was carried out according to Example C10 except that 1098 g of the solvent having the composition shown in Table E4 was used. In this case, the theoretical yield of the polymer was 591.0 g, and the polymer concentration was 35.0%.
室温から反応温度までにおける昇温過程および反応過程での反応溶液の状態 を表 E 5に示す。 ただし、 表 E 5中、 各記号は下記の状態を示す。  Table E5 shows the state of the reaction solution during the heating process and the reaction process from room temperature to the reaction temperature. However, in Table E5, each symbol indicates the following status.
「SL」 ……スラリー状態  "SL" ...... Slurry state
「B」 ……ポリイミドが溶解  “B” …… Polyimide dissolves
「C」 ……ポリイミドがわずかに析出またはわずかに溶け残る  "C": Polyimide is slightly precipitated or slightly dissolved
「D」 ……ポリイミドが一部固化し壁面 ·攪拌ばね等に付着  “D” …… Polyimide is partially solidified and adheres to wall surfaces, stirring springs, etc.
さらに、 反応溶液が攪拌可能なもの (実施例 E4〜7) について、 無水フタ ル酸 1 7. 7 7 g (1 20. 0 mmol) を装入し、 200 でさらに 4時間反 応を行った。  Further, for those in which the reaction solution can be stirred (Examples E4 to E7), 17.77 g (120.0 mmol) of phthalic anhydride was charged, and the reaction was further performed at 200 for 4 hours. .
その後 30でまで反応系内を冷却し、 析出物を濾別、 各溶媒 1リットルで、 続いてトルエン 1リットルで洗浄した。 このようにして得られたポリマーを、 50^、 24時間の予備乾燥の後、 窒素気流下、 200°Cで 1 2時間乾燥した。 得られたポリイミド粉の対数粘度、 ガラス転移温度、 5%重量減少温度、 溶 融粘度 (420で/ 5分) を前記の方法により計測した。 得られた結果を表 E 4に示す。  Thereafter, the inside of the reaction system was cooled to 30 and the precipitate was separated by filtration and washed with 1 liter of each solvent and subsequently with 1 liter of toluene. The polymer thus obtained was pre-dried for 50 hours and 24 hours, and then dried at 200 ° C. for 12 hours under a nitrogen stream. The logarithmic viscosity, glass transition temperature, 5% weight loss temperature, and melt viscosity (420/5 min) of the obtained polyimide powder were measured by the methods described above. The results obtained are shown in Table E4.
実施例 E 4〜 7からわかるとおり、 用いる溶媒中の等モル組成物含有量が高 い場合には、 ポリマー濃度約 35w t %といった極めて高濃度の条件下におい ても十分にポリイミドの合成が可能であり、 しかも、 得られたポリイミドは良 好な物性を有している。 表 E4 As can be seen from Examples E 4 to 7, when the content of the equimolar composition in the solvent used is high, the polyimide can be sufficiently synthesized even under extremely high concentration conditions such as a polymer concentration of about 35 wt%. Moreover, the obtained polyimide has good physical properties. Table E4
Figure imgf000073_0002
Figure imgf000073_0002
等モル組成物:含窒素環状化合物とフエノール類の等モル組成物 含有量:等モル組成物量 (g)Z配合量合計 (g) X 1 00 (wt%) 表 E5  Equimolar composition: equimolar composition of nitrogen-containing cyclic compound and phenols Content: equimolar composition amount (g) Total Z content (g) X 100 (wt%) Table E5
Figure imgf000073_0001
表 E6
Figure imgf000073_0001
Table E6
Figure imgf000074_0001
Figure imgf000074_0001
実施例 E 8 9 Example E 8 9
反応温度を、 実施例 E 8は 200で、 実施例 E 9は 230でとし、 実施例 1 0に従い、 ポリイミ ドを合成した。 反応開始後、 3, 6, 9時間で反応スラ リー液の一部を採取し、 濾過、 乾燥を行ったのち、 得られたサンプルの対数粘 度を測定した。 結果を表 E 7に示す。  The reaction temperature was 200 in Example E8 and 230 in Example E9, and a polyimide was synthesized according to Example 10. A portion of the reaction slurry was collected 3, 6, and 9 hours after the start of the reaction, filtered, and dried, and the logarithmic viscosity of the obtained sample was measured. The results are shown in Table E7.
結果より分かるように、 反応温度を 200でより高くすることにより、 反応 時間を短縮することが可能である。  As can be seen from the results, it is possible to shorten the reaction time by increasing the reaction temperature to 200.
実施例 E 8 Μ200Ϊ 実施例 E 9 5^12301 反応時間(hrs) 3 6 9 3 6 9 対数粘度 (dl/g) 0.37 0.39 0.40 0.40 0.40 0.40 Example E 8 {200} Example E 9 5 ^ 12 301 Reaction time (hrs) 3 6 9 3 6 9 Logarithmic viscosity (dl / g) 0.37 0.39 0.40 0.40 0.40 0.40
実施例 E 10— 13、 比較例 E 17— 26、 参考例 E 2 Example E 10-13, Comparative example E 17-26, Reference example E 2
攪拌機、 還流冷却器、 水分離器、 および窒素導入管を備えた容器に、 表 E 8 に示す溶媒とポリイミドの原料を装入し、 この混合物を窒素雰囲気下、 攪拌し ながら 2時間 30分かけて室温から 200 まで加熱昇温、 200でで 4時間 反応を行った。 なお、 この重合時のポリマー濃度は 25. 0%である。  In a vessel equipped with a stirrer, reflux condenser, water separator, and nitrogen inlet tube, the solvent and the raw materials for polyimide shown in Table E8 are charged, and the mixture is stirred for 2 hours and 30 minutes under a nitrogen atmosphere. Then, the temperature was raised from room temperature to 200, and the reaction was performed at 200 for 4 hours. The polymer concentration during this polymerization was 25.0%.
室温から 200 における昇温過程および 200ででの反応過程での反応溶 液の状態を表 E 9に示す。  Table E9 shows the state of the reaction solution during the heating process from room temperature to 200 and the reaction process at 200.
さらに、 無水フ夕ル酸 17. 77 g (120. 0m mol) を装入し、 200 ででさらに 4時間反応を行った。  Further, 17.77 g (12.0 mmol) of fluoric anhydride was charged, and the reaction was further carried out at 200 at 4 hours.
その後 30 まで反応系内を冷却し、 析出物を濾別、 溶媒 1リットルおよび トルエン 1リットルで洗浄した。 なお、 比較例 E 19, 21, 23, 25につ いてはこの段階では析出物は得られなかったため、 粘稠なポリマー溶液を強撹 拌下のトルエン 10リットル中に排出し、 析出したポリマーを濾別、 トルエン 2リットルで洗浄した。 このようにして得られたポリマーを、 50で、 24時 間の予備乾燥の後、 窒素気流下、 200でで 12時間減圧乾燥した。  Thereafter, the reaction system was cooled to 30 and the precipitate was separated by filtration and washed with 1 liter of solvent and 1 liter of toluene. In Comparative Examples E 19, 21, 23, and 25, no precipitate was obtained at this stage, and the viscous polymer solution was discharged into 10 liters of toluene with vigorous stirring, and the precipitated polymer was collected. The mixture was separated by filtration and washed with 2 liters of toluene. The polymer thus obtained was pre-dried at 50 for 24 hours and then dried under reduced pressure at 200 at 12 hours under a nitrogen stream.
実施例 E 10〜 1 3、 比較例 E 17 , 19, 21, 23, 25については、 得られたポリイミド粉の対数粘度、 ガラス転移温度を前記の方法により計測し た。 得られた結果を表 E 9に示す。 For Examples E 10 to 13 and Comparative Examples E 17, 19, 21, 23, and 25, the logarithmic viscosity and glass transition temperature of the obtained polyimide powder were measured by the above-described methods. The results obtained are shown in Table E9.
驟 ¾QA:> 驟 QA:>
Figure imgf000076_0001
Figure imgf000076_0001
*8E 表 E9 * 8E Table E9
Figure imgf000077_0001
Figure imgf000077_0001
BAB: 4,4' -ビス(3—アミノフエノキシ)ビフエニル BPDA: 3,3'.4,4'-ビフエニル亍トラカルボン酸二無水物 BAB: 4,4'-bis (3-aminophenoxy) biphenyl BPDA: 3,3'.4,4'-biphenyl ditracarboxylic dianhydride
PMDA:ピロメリット酸二無水物 PA:無水フタル酸 PMDA: pyromellitic dianhydride PA: phthalic anhydride
等モル組成物: m,p"混合クレゾ一ルと N-メチル- 2-ピロリドンの等モル組成物 Equimolar composition: equimolar composition of m, p "mixed cresol and N-methyl-2-pyrrolidone
比較例 E l 7、 参考例 E 2の結果より、 テトラカルボン酸二無水物としてピ ロメリット酸二無水物を用いたポリイミドは、 溶媒として等モル組成物を用い た場合、 イミド化の進行と共にポリイミドが析出し、 反応液が固化するため好 ましくない。 また、 このポリイミドは、 溶媒としてクレゾールを用いた場合に、 イミド化の進行と共にポリイミドが析出し良好なスラリー状態となる。 Based on the results of Comparative Example El7 and Reference Example E2, the polyimide using pyromellitic dianhydride as the tetracarboxylic dianhydride shows that when the equimolar composition is used as the solvent, Precipitates and solidifies the reaction solution, which is not preferable. In addition, when cresol is used as a solvent, the polyimide precipitates with the progress of imidation and becomes a good slurry state.
一方、 テトラカルボン酸二無水物としてビフエ二ルテトラカルボン酸二無水 物を 3 0モル%以上含むポリイミドは、 溶媒としてクレゾールを用いた場合に はイミド化が進行しても、 ポリイミドが析出してこないためポリマーの回収に 多量の貧溶媒を必要とするが、 溶媒として等モル組成物を用いた場合には、 ィ ミド化の進行と共にポリイミドが析出し良好なスラリー状態となる。  On the other hand, a polyimide containing 30 mol% or more of biphenyltetracarboxylic dianhydride as a tetracarboxylic dianhydride, when cresol is used as a solvent, the polyimide is precipitated even if imidization proceeds. For this reason, a large amount of a poor solvent is required to recover the polymer. However, when an equimolar composition is used as the solvent, polyimide is precipitated as the imidization proceeds and a good slurry state is obtained.
これらの結果から、 本発明に係るピフエ二ルテ卜ラカルボン酸型ポリイミド の製造方法によれば、 反応系がスラリー状態となるため、 ポリイミドの単離は 濾過するだけですみ、 簡便なプロセスとなる。 また、 通常の方法により得られ るポリイミドと比較し、 物性は何ら変わらず、 良好な耐熱性を保っている。 実施例 E 1 4— E 1 5、 比較例 E 2 7— E 3 9、 参考例 3 , 4 , 5  From these results, according to the method for producing a pyridine dicarboxylic acid type polyimide according to the present invention, the reaction system is in a slurry state, so that isolation of the polyimide can be performed only by filtration, which is a simple process. In addition, compared to polyimide obtained by a usual method, physical properties are not changed at all and good heat resistance is maintained. Example E 14—E 15; Comparative example E 27—E 39; Reference examples 3, 4, and 5
攪拌機、 還流冷却器、 水分離器、 および窒素導入管を備えた容器に、 表 E 1 0に示す溶媒とポリイミドの原料を装入し、 この混合物を窒素雰囲気下、 攪拌 しながら 2時間かけて室温から 2 0 0 まで加熱昇温、 2 0 O :で 4時間反応 を行った。 なお、 この重合時のポリマ一濃度は 2 5 . 0 %である。  In a vessel equipped with a stirrer, a reflux condenser, a water separator, and a nitrogen inlet tube, the solvent and the raw material for polyimide shown in Table E10 were charged, and the mixture was stirred under a nitrogen atmosphere over 2 hours. The reaction was heated from room temperature to 200 ° C. and heated at 20 O: for 4 hours. The concentration of the polymer at the time of the polymerization was 25.0%.
室温から 2 0 0 における昇温過程および 2 0 での反応過程での反応溶 液の状態を表 E 1 0に示す。  Table E10 shows the state of the reaction solution in the temperature rising process from room temperature to 200 and in the reaction process at 20.
これらの結果から、 テトラカルボン酸二無水物としてビス(3,4-ジカルボキシ フエノキシ)ェ一テルニ無水物や脂肪族テトラ力ルポン酸ニ無水物であるビシク 口 (2,2,2) -才ク卜- 7-ェン -2,3,5,6-テトラカルボン酸二無水物を用いた場合には得 られるポリイミドの溶剤溶解性が高すぎるため、 溶媒として等モル組成物を用 いた場合においても、 得られるポリイミドは析出してこない。
Figure imgf000079_0001
Based on these results, bis (3,4-dicarboxyphenoxy) ether anhydride and tetratetracarboxylic dianhydride are used as tetracarboxylic dianhydrides. When using 7-ene-2,3,5,6-tetracarboxylic dianhydride, the solvent solubility of the resulting polyimide is too high, and the equimolar composition is used as the solvent. Also, the obtained polyimide does not precipitate.
Figure imgf000079_0001
PA:無水フタル酸 ODPA :ビス (3,4-ジカルボキシフ: C キシ)エ ル二無水物 PA: phthalic anhydride ODPA: bis (3,4-dicarboxyphthalic acid)
8じ0:ビシクロ(212,2)-ォク卜7-ェ "2,3,5,6"テト ルボン酸ニ無水物 8 Ji 0: bicyclo (2 1 2,2) - O click Bok 7 E "2,3,5,6" Tet carboxylic dianhydride
等モル組成物: m,p -混合クレゾ一ルと N "メチ 2-ピロリドンの等モル組成物 Equimolar composition: equimolar composition of m, p-mixed cresol and N "methyl 2-pyrrolidone

Claims

請求の範囲 The scope of the claims
1 . 下記化学式(1)で表される含窒素環状化合物と下記化学式 (2)で表される フエノール類との等モル組成物を 5 0〜 1 0 0重量%含む溶媒中で、 ジァミン 類とテトラカルボン酸ニ無水物とのイミド化反応を行うポリイミドの製造方法 1. In a solvent containing 50 to 100% by weight of an equimolar composition of a nitrogen-containing cyclic compound represented by the following chemical formula (1) and a phenol represented by the following chemical formula (2): Method for producing polyimide by imidation reaction with tetracarboxylic dianhydride
H3C -
Figure imgf000080_0001
H 3 C-
Figure imgf000080_0001
(式(l)中、 Xは — C H 2— または — N (C H 3) _ を示す。 式(2)中、 R ,、 R2 は、 互いに同一でも異なっていてもよく、 それぞれ、 - H、 -0H、 - C 、 -C2H7, -CHHT, -C2H9, -CsHiu -CeH.s, - 5、 -CsHn, -C9H.9, -C10H2,, — 0C 、 -0 (CeHs) , - N(k - Cl、 - Brまたは- Fのいずれかを示す。)。 (In the formula (l), X represents —CH 2 — or —N (CH 3 ) _. In the formula (2), R 1, and R 2 may be the same or different from each other. , -0H, - C, -C2H7, -CHHT, -C2H9, -CsHiu -CeH.s, - 5, -CsHn, -C9H.9, -C10H2 ,, - 0C, -0 (CeHs), - N ( k-Cl, -Br or -F.)
2 . 前記テトラカルボン酸二無水物が、 ピフエ二ルテ卜ラカルボン酸二無水 物を含有することを特徴とする請求項 1に記載のポリイミドの製造方法。 2. The method for producing a polyimide according to claim 1, wherein the tetracarboxylic dianhydride contains pyridine dicarboxylic acid.
3 . 前記テトラカルボン酸二無水物が、 全チトラカルボン酸二無水物に対し て、 ビフエ二ルテ卜ラカルボン酸二無水物を 3 0〜 1 0 0モル%の割合で含む ことを特徴とする請求項 1または 2に記載のポリイミドの製造方法。 3. The tetracarboxylic dianhydride contains 30 to 100% by mole of biphenyltetracarboxylic dianhydride with respect to all the titracarboxylic dianhydrides. Item 3. The method for producing a polyimide according to Item 1 or 2.
4 . 前記イミド化反応で得られるポリイミドが、 下記化学式 (3)で表される繰 り返し構造を有することを特徴とする請求項 1〜 3のいずれかに記載のポリィ ミドの製造方法: 4. The method for producing a polyimide according to any one of claims 1 to 3, wherein the polyimide obtained by the imidation reaction has a repeating structure represented by the following chemical formula (3):
Figure imgf000080_0002
Figure imgf000080_0002
(式 (3)中、 Yは式 (e ) 〜 (h ) からなる群より選択される少なくとも一つで 表される。)
Figure imgf000081_0001
(In Formula (3), Y is represented by at least one selected from the group consisting of Formulas (e) to (h).)
Figure imgf000081_0001
(ここで、 Rは、 互いに同一でも異なっていてもよく、 それぞれ、 (Where R may be the same or different from each other,
単結合, 一 O—, —CO— , -SO2-, —S—, 一 CH2—または Single bond, one O—, —CO—, -SO2-, —S—, one CH 2 — or
一 C (CH3) 2—のいずれかを示す。)。 One of C (CH 3 ) 2 —. ).
5. 前記化学式 (3)で表される繰り返し構造が、 全繰り返し構造中、 30〜1 00モル%の割合で含まれ、 前記化学式 (3)で表される繰り返し構造と異なる残 部が 0〜 70モル%の割合で含まれることを特徵とする請求項 1〜 4のいずれ かに記載のポリイミドの製造方法。 5. The repeating structure represented by the chemical formula (3) is contained in a proportion of 30 to 100 mol% in all the repeating structures, and the residue different from the repeating structure represented by the chemical formula (3) is 0 to 100 mol%. The method for producing a polyimide according to any one of claims 1 to 4, wherein the polyimide is contained at a ratio of 70 mol%.
6. 前記残部が、 前記化学式 (3)で表される繰り返し構造と異なる繰り返し構 造であって、 芳香族テトラカルボン酸に由来する成分単位からなる繰り返し構 造を有することを特徴とする請求項 5に記載のポリイミドの製造方法。 6. The remnant has a repeating structure different from the repeating structure represented by the chemical formula (3), and has a repeating structure comprising a component unit derived from an aromatic tetracarboxylic acid. 6. The method for producing a polyimide according to 5.
7. 前記芳香族テ卜ラカルボン酸に由来する成分単位からなる繰り返し構造 が、 下記化学式 (a) 及び Z又は (b) で表される繰り返し構造であることを 特徴とする請求項 6に記載のポリイミドの製造方法; 7. The repeating structure comprising a component unit derived from an aromatic tetracarboxylic acid is a repeating structure represented by the following chemical formulas (a) and Z or (b). A method for producing a polyimide;
(b)
Figure imgf000081_0002
(b)
Figure imgf000081_0002
(前記式 (a)及び式 (b)中、 は式 ( e ) 〜 ( h )
Figure imgf000081_0003
(g) からなる群より選択される少なくとも一つで表され、 式 (f)、 (g)および (h)中、 Rは、 互いに同一でも異なっていてもよく、 それぞれ、 単結合、
(In the formulas (a) and (b), the formulas (e) to (h)
Figure imgf000081_0003
(g) In formulas (f), (g) and (h), Rs may be the same or different from each other, and are each a single bond,
一〇一, -CO-, _S02—, 一 S— , — CH2—または一 C (CH3) 2—のい ずれかを示す。 One hundred and one, -CO-, _S0 2 -, one S-, - CH 2 - or a C (CH 3) 2 - shows a noise Zureka.
前記式(b)中、 Ar2 は—〇一, —CO―, — S〇2— , — S— , — CH2—また は— C (CH3) 2_からなる群より選択される少なくとも一つで表される。)。 In the above formula (b), Ar 2 is at least selected from the group consisting of —〇, —CO—, — S〇 2 —, — S—, — CH 2 — or — C (CH 3 ) 2 _ Represented by one. ).
8. 前記一般式 (3)で表される繰り返し構造を有するポリイミドが、 下記一般 式(4)〜(6)のいずれかで表される繰り返し構造を少なくとも 1種有するポリイ ミドであることを特徴とする請求項 1〜7のいずれかに記載のポリイミドの製 造方法: 8. The polyimide having a repeating structure represented by the general formula (3) is a polyimide having at least one kind of a repeating structure represented by any of the following general formulas (4) to (6). The method for producing a polyimide according to any one of claims 1 to 7, wherein:
Figure imgf000082_0001
Figure imgf000082_0001
9. 前記化学式(1)で表される化合物が、 N-メチル -2-ピロリドン及びノ又は 1,3'-ジメチル -2-ィミダゾリジノンであることを特徴とする請求項 1〜 8のいず れかに記載のポリイミドの製造方法。 9. The compound according to any one of claims 1 to 8, wherein the compound represented by the chemical formula (1) is N-methyl-2-pyrrolidone and no or 1,3'-dimethyl-2-imidazolidinone. Or a method for producing a polyimide.
0. 前記化学式(2)で表されるフエノール類が、 フエノール、 0-クロ口フエ ノール、 m-クロ口フエノール、 p-クロ口フエノール、 0-クレゾール、 m-クレゾ —ル、 P-クレゾール、 2,3-キシレノール、 2,4-キシレノール、 2,5-キシレノール、 2,6- キシレノール、 3,4-キシレノール、 3,5-キシレノールからなる群から選ばれる少 なくとも 1種の化合物であることを特徴とする請求項 1〜9のいずれかに記載 のポリイミド製造方法。 0. The phenols represented by the chemical formula (2) are phenol, Phenol, m-chlorophenol, p-chlorophenol, 0-cresol, m-cresol, P-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6- The method for producing a polyimide according to any one of claims 1 to 9, wherein the polyimide is at least one compound selected from the group consisting of xylenol, 3,4-xylenol, and 3,5-xylenol.
1 1 . 前記化学式(1)で表される化合物と前記化学式(2)で表されるフエノー ル類との等モル組成物を 5 0〜1 0 0重量%の量で含む溶媒が、 その溶媒の残 部として、 前記化学式(1)で表される化合物または前記化学式 (2)で表されるフ エノール類を 0〜 5 0重量%の量で含むことを特徴とする請求項 1〜 1 0のい ずれかに記載のポリイミドの製造方法。 11. A solvent containing an equimolar composition of the compound represented by the chemical formula (1) and the phenols represented by the chemical formula (2) in an amount of 50 to 100% by weight, 10. The composition according to claim 1, further comprising a compound represented by the chemical formula (1) or a phenol represented by the chemical formula (2) in an amount of 0 to 50% by weight. The method for producing a polyimide according to any one of the above.
1 2 . 前記ポリイミドの製造方法が、 イミド化反応中にポリイミド及び 又 はオリゴマーを析出させて、 反応系をスラリー状とすることを特徴とする請求 項 1〜1 1のいずれかに記載のポリイミドの製造方法。 12. The polyimide according to any one of claims 1 to 11, wherein the method for producing a polyimide comprises precipitating the polyimide and / or the oligomer during the imidization reaction to make the reaction system a slurry. Manufacturing method.
1 3 . 末端封止剤の存在下に反応を行うことを特徴とする、 請求項 1〜1 2 のいずれかに記載のポリイミドの製造方法。 13. The method for producing a polyimide according to any one of claims 1 to 12, wherein the reaction is performed in the presence of a terminal blocking agent.
1 4 . 請求項 1〜1 3に記載のポリイミドの製造方法により、 イミ ド化反応 中に生成物を析出させてポリイミド粉末を得ることを特徴とするポリイミドの 製造方法。 14. A method for producing a polyimide according to the method for producing a polyimide according to any one of claims 1 to 13, wherein a product is precipitated during the imidization reaction to obtain a polyimide powder.
1 5 . 反応溶液中のジァミン類およびテトラカルボン酸二無水物からなる原 料モノマー類の濃度 ((原料モノマー類の合計重量) / (原料モノマー類の合計 重量 +溶媒の重量)) が、 5〜5 0重量%の範囲にあることを特徴とする請求項15 5. The concentration of the raw monomer composed of diamines and tetracarboxylic dianhydride in the reaction solution ((total weight of raw monomers) / (total weight of raw monomers + weight of solvent)) is 5 Claims: in the range of up to 50% by weight.
;!〜 1 4のいずれかに記載のポリイミドの製造方法。 ;! 15. The method for producing a polyimide according to any one of items 14 to 14.
1 6 . 請求項 1〜1 5のいずれかに記載の方法により得られるポリイミド。 16. A polyimide obtained by the method according to any one of claims 1 to 15.
1 7. 請求項 1〜1 5のいずれかに記載の方法により得られるポリイミ ド粉 末。 H 1 7. A polyimide powder obtained by the method according to any one of claims 1 to 15. H
1 8. 下記化学式(1)で表される化合物と下記化学式(2)で表されるフエノー ル類との等モル組成物からなる溶媒:
Figure imgf000084_0001
1 8. A solvent comprising an equimolar composition of a compound represented by the following chemical formula (1) and a phenol represented by the following chemical formula (2):
Figure imgf000084_0001
(式 U)中、 Xは — CH2— または 一 N(CH3) _ を示す。 式(2)中、 R,、 R2 は、 互いに同一でも異なっていてもよく、 それぞれ、 - H、 -OH, - CH3、 - H7、 - 、 - C2 、 - 、 - - C?H 、 - C -CsH.9, -C.oH2u - OCIk - 0 (C6H5)、 - NO -Cl、 - Brまたは _Fのいずれかを示す。)。 In Formula (U), X represents —CH 2 — or one N (CH 3 ) _. Wherein (2), R ,, R2, which may be the same or different from each other, respectively, - H, -OH, - CH 3, - H 7 ,, - C 2 ,, - -? C H , - C -CsH.9, -C.oH 2 u - OCIk - 0 (C 6 H 5), - NO -Cl, - indicate either Br or _F. ).
1 9. 前記化学式(1)で表される化合物と前記化学式(2)で表されるフエノー ル類との等モル組成物を 50〜 100重量%含んでなる請求項 1 8に記載の溶 媒。 19. The solvent according to claim 18, comprising 50 to 100% by weight of an equimolar composition of the compound represented by the chemical formula (1) and the phenols represented by the chemical formula (2). .
PCT/JP2001/001938 2000-03-13 2001-03-13 Process for producing polyimide WO2001068742A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP01914167A EP1273611A4 (en) 2000-03-13 2001-03-13 Process for producing polyimide
US10/221,501 US6916898B2 (en) 2000-03-13 2001-03-13 Process for producing polyimide
JP2001567231A JP5246983B2 (en) 2000-03-13 2001-03-13 Method for producing polyimide

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2000-73971 2000-03-13
JP2000073974 2000-03-13
JP2000-73973 2000-03-13
JP2000-73974 2000-03-13
JP2000-73972 2000-03-13
JP2000073971 2000-03-13
JP2000073972 2000-03-13
JP2000073973 2000-03-13

Publications (1)

Publication Number Publication Date
WO2001068742A1 true WO2001068742A1 (en) 2001-09-20

Family

ID=27481125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/001938 WO2001068742A1 (en) 2000-03-13 2001-03-13 Process for producing polyimide

Country Status (6)

Country Link
US (1) US6916898B2 (en)
EP (1) EP1273611A4 (en)
JP (1) JP5246983B2 (en)
KR (1) KR100503225B1 (en)
CN (1) CN1164652C (en)
WO (1) WO2001068742A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016167038A1 (en) * 2015-04-15 2016-10-20 東レ株式会社 Heat-resistant resin composition, method for manufacturing heat-resistant resin film, method for manufacturing interlayer insulation film or surface protective film, and method for manufacturing electronic component or semiconductor component

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060063908A1 (en) * 2002-12-27 2006-03-23 Koji Moriuchi Polyimide precursor liquid composition and polyimide coating film
US8536298B2 (en) * 2005-05-25 2013-09-17 Sabic Innovative Platics Ip B.V. Precipitative process to prepare polyimides
JP5041271B2 (en) * 2005-05-31 2012-10-03 宇部興産株式会社 Heat curable solution composition and uncured resin composite
US8633284B2 (en) 2006-05-12 2014-01-21 General Electric Company Tailorable polyimide prepolymer blends, crosslinked polymides and articles formed therefrom
US10938663B2 (en) 2018-05-07 2021-03-02 Servicenow, Inc. Discovery and management of devices
US10819586B2 (en) 2018-10-17 2020-10-27 Servicenow, Inc. Functional discovery and mapping of serverless resources
US11126597B2 (en) 2019-01-17 2021-09-21 Servicenow, Inc. Efficient database table rotation and upgrade
CN109880094B (en) * 2019-03-12 2021-08-24 黄山金石木塑料科技有限公司 Antistatic/conductive polyimide resin and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0511813A2 (en) * 1991-04-30 1992-11-04 MITSUI TOATSU CHEMICALS, Inc. Heat-resistant adhesive and method of adhesion by using adhesive
JPH06220194A (en) * 1993-01-25 1994-08-09 P I Zairyo Kenkyusho:Kk Polyimide solution composition and its production
JP2000191781A (en) * 1998-12-24 2000-07-11 Jsr Corp Liquid crystal orienting agent and production of liquid crystal orienting film

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60197759A (en) 1984-03-21 1985-10-07 Ube Ind Ltd Polyimide resin composition
DE3650656T2 (en) * 1985-08-27 1998-04-30 Mitsui Toatsu Chemicals POLYIMIDES AND THESE HEAT-RESISTANT ADHESIVES
DE3783477T2 (en) * 1986-02-25 1993-06-17 Mitsui Toatsu Chemicals HIGH TEMPERATURE POLYIMIDE ADHESIVE.
JP2622678B2 (en) * 1987-01-12 1997-06-18 チッソ株式会社 Melt-moldable crystalline polyimide polymer
DE69027595T2 (en) * 1989-12-22 1997-01-23 Mitsui Toatsu Chemicals POLYIMID GIESSLING
JPH04142332A (en) 1990-10-03 1992-05-15 Kanegafuchi Chem Ind Co Ltd Production of polyimide resin powder
JP3591979B2 (en) 1996-05-16 2004-11-24 三井化学株式会社 Method for producing polyimide powder
JPH11240947A (en) * 1997-12-25 1999-09-07 Mitsui Chem Inc Production of polysuccinimide
MY126446A (en) * 1998-05-13 2006-10-31 Mitsui Chemicals Incorporated Crystalline polyimide for melt molding having good thermal stability
JP3684105B2 (en) 1998-05-13 2005-08-17 三井化学株式会社 Crystalline polyimide for melt molding with good thermal stability
JPH11322925A (en) * 1998-05-22 1999-11-26 Ube Ind Ltd Soluble polyimide and its production
JP2000001545A (en) 1998-06-18 2000-01-07 Unitika Ltd Production of polyimide powder
JP2000044684A (en) * 1998-07-30 2000-02-15 Mitsui Chemicals Inc Linear polyamic acid, linear polyimide and thermosetting polyimide
US6451955B1 (en) * 2000-09-28 2002-09-17 Sumitomo Bakelite Company Limited Method of making a polyimide in a low-boiling solvent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0511813A2 (en) * 1991-04-30 1992-11-04 MITSUI TOATSU CHEMICALS, Inc. Heat-resistant adhesive and method of adhesion by using adhesive
JPH06220194A (en) * 1993-01-25 1994-08-09 P I Zairyo Kenkyusho:Kk Polyimide solution composition and its production
JP2000191781A (en) * 1998-12-24 2000-07-11 Jsr Corp Liquid crystal orienting agent and production of liquid crystal orienting film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1273611A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016167038A1 (en) * 2015-04-15 2016-10-20 東レ株式会社 Heat-resistant resin composition, method for manufacturing heat-resistant resin film, method for manufacturing interlayer insulation film or surface protective film, and method for manufacturing electronic component or semiconductor component

Also Published As

Publication number Publication date
US6916898B2 (en) 2005-07-12
EP1273611A4 (en) 2004-05-12
US20030158370A1 (en) 2003-08-21
CN1164652C (en) 2004-09-01
KR20020081434A (en) 2002-10-26
EP1273611A1 (en) 2003-01-08
CN1418234A (en) 2003-05-14
KR100503225B1 (en) 2005-07-22
JP5246983B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
CN106279689B (en) Material used in polyimide precursor, polyimides and its preparation
Yang et al. Organosoluble and optically transparent fluorine-containing polyimides based on 4, 4′-bis (4-amino-2-trifluoromethylphenoxy)-3, 3′, 5, 5′-tetramethylbiphenyl
KR20170016384A (en) Method for producing polyimide film
WO2020162411A1 (en) Polyamide acid, polyimide, optical film, display device and production methods of those
KR101540827B1 (en) Method for producing polyamic acid solution and polyamic acid solution
TWI387623B (en) Reactive monomer and resin composition including them
US5470943A (en) Polyimide
JP6635506B2 (en) Diamine having fluorene skeleton, polyamic acid, and polyimide
JP5047896B2 (en) Novel bistrimellitic anhydride esters and polyesterimide precursors obtained from it and diamines
WO2001068742A1 (en) Process for producing polyimide
WO1994025505A1 (en) Perfluorocyclobutane ring-containing polyimides
KR100374224B1 (en) Thermoplastic polyimide having good thermal stability, method for producing the same and its molded article, and 1,3-bis(4-aminophenoxy)benzene and method for producing the same
Shang et al. Synthesis and characterization of novel fluorinated polyimides derived from 4-phenyl-2, 6-bis [4-(4′-amino-2′-trifluoromethyl-phenoxy) phenyl] pyridine and dianhydrides
EP0572196B1 (en) Polyimide, and preparation process of same
US5231160A (en) Aromatic diamine compound, preparation process of same and polyimide prepared from same
JP3687178B2 (en) Aromatic polyesterimide, process for producing the same and varnish containing the same
JP3177286B2 (en) Polyimide and method for producing the same
WO2022030447A1 (en) Fluorinated diamine or salt thereof, method for producing fluorinated diamine or salt thereof, polyamide, method for producing polyamide, polyamide solution, cyclized polyamide, method for producing cyclized polyamide, insulating material for high-frequency electronic component, method for producing insulating material for high-frequency electronic component, high-frequency electronic component, high-frequency appliance, and insulating material for producing high-frequency electronic component
CN114222778A (en) Composition for resin raw material
JP2947691B2 (en) Aromatic diamine and polyimide, and methods for producing them
EP0430430B1 (en) Polyimide
JP3176344B2 (en) Aromatic diamine and polyimide, and methods for producing them
WO2023182038A1 (en) Method for producing polymer, varnish, and method for producing varnish
JP5363845B2 (en) Novel bistrimellitic anhydride esters and polyesterimide precursors derived therefrom
JP2960255B2 (en) Novel diamine compound, novel polyimide using the same and method for producing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 567231

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020027011953

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10221501

Country of ref document: US

Ref document number: 018065783

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2001914167

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027011953

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001914167

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020027011953

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 2001914167

Country of ref document: EP