WO2001067633A1 - A method and apparatus for antenna array beamforming - Google Patents

A method and apparatus for antenna array beamforming Download PDF

Info

Publication number
WO2001067633A1
WO2001067633A1 PCT/US2001/007700 US0107700W WO0167633A1 WO 2001067633 A1 WO2001067633 A1 WO 2001067633A1 US 0107700 W US0107700 W US 0107700W WO 0167633 A1 WO0167633 A1 WO 0167633A1
Authority
WO
WIPO (PCT)
Prior art keywords
weighting coefficients
subscriber unit
subscriber units
subscriber
signal
Prior art date
Application number
PCT/US2001/007700
Other languages
French (fr)
Inventor
Colin D. Frank
Original Assignee
Motorola, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/801,892 external-priority patent/US7164725B2/en
Application filed by Motorola, Inc. filed Critical Motorola, Inc.
Priority to DE60135070T priority Critical patent/DE60135070D1/en
Priority to AU2001243560A priority patent/AU2001243560A1/en
Priority to EP01916547A priority patent/EP1179229B1/en
Priority to JP2001566292A priority patent/JP4679025B2/en
Priority to KR10-2001-7014135A priority patent/KR100483868B1/en
Publication of WO2001067633A1 publication Critical patent/WO2001067633A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming

Definitions

  • the present invention relates to wireless telecommunication systems, and more particularly to the use of antenna arrays in wireless telecommunication systems.
  • An important goal in designing a wireless communication system is to maximize system capacity, that is, to maximize a number of users that may simultaneously be served by the communication system.
  • One way of increasing system capacity is to lower the transmit power allocated to each user. By lowering the allocated transmit power, interference for all users is lowered, which allows for the addition of new users to the system.
  • One way to lower the transmit power allocated to each user, or subscriber unit is to increase the efficiency of the wireless link, or communication channel, between the subscriber unit and the base station serving that user.
  • One method of increasing the efficiency of the link is to broadcast information to a target subscriber unit using a transmit antenna diversity system.
  • a transmit antenna diversity system allows the transmitted signal to be beamformed so that a narrower, more focused beam is transmitted to the user.
  • Antenna beamforming allows for a base station to lower the transmit power allocated to the signal, since the allocated power is less widely dispersed.
  • Antenna beamforming also reduces multipath fading of the transmitted signal and interference with non-targeted users since the beam is more narrowly focused.
  • Two- antenna diversity uses an antenna array consisting of two antennas, or array elements, to transmit a signal and then applies an optimization technique to improve the quality of the transmitted signal over the performance that would be afforded by the use of a single antenna.
  • One of the simplest forms of two-antenna diversity is two-antenna selection transmit diversity (STD). As its name implies, this method involves selecting one of two antennas as the antenna that will be utilized as the transmitter for a particular communication.
  • a typical method of selecting an antenna involves choosing the antenna that has the highest received power with respect to training, synchronization, or data communications exchanged with the target subscriber unit.
  • Another method of antenna beamforming involves separately weighting the signal transmitted by each element of the antenna array. If the elements of the antenna array are weighted and phased appropriately, the signals broadcast from these elements will add constructively at a receiver of the target subscriber unit.
  • two conditions must be met before an optimal weighting can be applied to the transmit array. First, the channel between each of the array elements and the subscriber of interest must be known. Secondly, it must be possible to compute the signal-to-noise ratio of the subscriber unit of interest.
  • TxAA Current methods for weighting the coefficients
  • TxAA are optimal only if the interference environment of the target subscriber unit is dominated by inter-cell interference (optimal in the sense of maximizing the signal-to-noise ratio at the subscriber unit for a given level of transmit power).
  • the target subscriber unit is close to the base station, where self-interference is the dominant source of interference. In these conditions, the existing method for optimizing the transmitter weighting coefficients can be highly non-optimal.
  • current methods for weighting the coefficients do not account for the self-interference introduced by multipath delay.
  • the current method is optimal only if one of the following two conditions hold: (i) the propagation channel has only a single path, or (ii) the ratio of intra-cell interference power to inter-cell interference power is zero. The latter condition can never be met precisely, but may be an acceptable approximation in some circumstances.
  • STD transmit diversity
  • current methods for weighting the coefficients are less than optimal for many operating environments. Therefore, an antenna array beamfoming technique is needed that optimizes performance of an antenna array in a high multipath fading environment or in environments of significant self-interference or where intra-cell interference dominates inter-cell interference.
  • FIG. 1 is a block diagram of a communication system in accordance with an embodiment of the present invention.
  • FIG. 2 is a block diagram of a transmitting communication device in accordance with an embodiment of the present invention.
  • FIG. 3 is a block diagram of multiple transmitted signal paths of a transmitting communication device in accordance with an embodiment of the present invention.
  • FIG. 4 is a logic flow diagram of antenna beamforming steps executed by a transmitting communication device in accordance with an embodiment of the present invention.
  • FIG. 5 is a table comparing the signal-to-noise ratio at the output of a matched- filter receiver for a signal transmitted by an antenna array employing the current coefficient weighting system and employing a selection transmit diversity system.
  • FIG. 6 is a table comparing the output of the matched-filter receiver for a signal received from a transmitting communication device employing the current coefficient weighting system and for a transmitting communication device employing optimized transmitting antenna array weighting determined in accordance with an embodiment of the present invention.
  • an antenna array beamforming technique employs independent transmit weighting coefficients for multiple subscriber units served by a transmitting communication device. Optimization of the weighting coefficients is a joint, rather than an independent, venture of the multiple subscriber units. Joint optimization preferably is implemented at the transmitting communication device and involves the communication device optimizing based on knowledge of the channels between itself and each of the subscriber units, as well knowledge of the inter-cell and intra-cell interference observed at each of the subscriber units.
  • FIG. 1 is a block diagram of a wireless communication system 100 in accordance with an embodiment of the present invention.
  • communication system 100 is a code division multiple access (CDMA) communication system that includes multiple ("K") orthogonal communication channels, although those who are of ordinary skill in the art realize that that the present invention may be utilized in any wireless communication system, such as a time division multiple access (TDMA) communication system or an orthogonal frequency division multiplexing (OFDM) communication system.
  • each communication channel comprises one of multiple orthogonal spreading codes, such as Pseudo-noise (PN) sequences such as Walsh codes.
  • PN Pseudo-noise
  • the use of spreading codes permits the coexistence of multiple communication channels in the same frequency bandwidth.
  • Communication system 100 includes multiple geographically-diverse base stations
  • Each base station 101-103 provides communication service to a respective service coverage area, or cell, 111-113.
  • Each base station 101-103 preferably includes at least one antenna array 120 having multiple array elements 121, 122 (two shown).
  • Communication system 100 further includes multiple subscriber units 105-107 (three shown), such as a cellular telephone, a radiotelephone, or a wireless modem.
  • Each subscriber unit 105-107 includes a matched filter Rake receiver having multiple Rake fingers. Matched filter Rake receivers are well known in the art and will not be described in greater detail herein.
  • a serving base station e.g., base station 101
  • each cell 1 1 1-113 may be subdivided into multiple sectors.
  • each base station 101-103 includes multiple antenna arrays that each includes multiple array elements. At least one antenna array of the multiple antenna arrays of each base station
  • FIG. 2 is a block diagram of a base station 101-103 in accordance with an embodiment of the present invention.
  • each base station 101-103 preferably includes at least one antenna array 120 and associated array elements 121, 122.
  • the antenna array 120 is coupled to a transmitter section 202 and a receiver section 204 that are, in turn, each coupled to a processor 206, such as a microprocessor or a digital signal processor (DSP).
  • processor 206 and an associated memory 208 allow the base station to store information, make computations, and run software programs.
  • FIG. 3 is a block diagram of multiple transmitted signal paths 300, 301 of a base station 101-103 in accordance with an embodiment of the present invention.
  • Each transmitted signal path 300, 301 corresponds to one of the multiple array elements 121, 122 of an antenna array 120 of the base station.
  • Data is sourced to the base station by a data source 210, such as an interface with an external network, such as a public switched telephone network (PSTN) or the Internet, or an application running on processor 206 of the base station.
  • PSTN public switched telephone network
  • Data source 210 is coupled to processor 206.
  • processor 206 includes an encoder 302, multiple spreaders 306, 308, and multiple symbol mappers 310, 312.
  • Encoder 302 receives data from data source 210 and encodes the data utilizing a predetermined coding scheme, such as a block coding scheme or a convolutional coding scheme. Encoder 302 then conveys the encoded data to each of multiple spreaders 306, 308.
  • processor 206 may further include an interleaver that interleaves the encoded data prior to the encoded data being conveyed to multiple spreaders 306, 308.
  • Each spreader of the multiple spreaders 306, 308 is coupled to a spreading code generator 304 and spreads the encoded data pursuant to a spreading code, preferably a pseudo-noise (PN) sequence such as a Walsh code, provided by the spreading code generator.
  • PN pseudo-noise
  • Each spreader 306, 308 then conveys the spread data to a respective symbol mapper of the multiple symbol mappers 310, 312.
  • Each symbol mapper 310, 312 maps the data to one of multiple symbols included in a constellation of symbols to produce a symbol stream corresponding to the modulated data.
  • symbol mappers 310, 312 utilize a quadrature amplitude modulation (QAM) mapping scheme for mapping the data.
  • QAM quadrature amplitude modulation
  • mapping scheme used is not critical to the present invention and those who are of ordinary skill in the art realize that a wide variety of mapping schemes, such a binary phase shift keying (BPSK) or quadrature phase shift keying (QPSK), may be used herein without departing from the spirit and scope of the present invention.
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • each symbol mapper 310, 312 groups the spread data into groups of P binary data units, such as data bits, to form multiple P-tuples.
  • the predetermined QAM constellation that includes the M possible points is defined within a multi-dimensional space, preferably a complex two-dimensional (I/Q) space. Each point within the two- dimensional space may be thought of as a vector sum of two scaled basis vectors.
  • the two scaled basis vectors respectively correspond to an in-phase (I) component and a quadrature (Q) component of the constellation point, or corresponding data symbol.
  • the respective amplitudes of the two basis vectors used to define a particular point may be thought of as two-dimensional coordinates of the point.
  • Transmitter section 202 includes multiple modulators 314, 316 that are each coupled to one of multiple amplifiers 318, 320. Transmitter section 202 further includes multiple weighters 322, 324 that are each coupled between one of the multiple amplifiers 318, 320 and one of the multiple antennas 121, 122 and are further coupled to processor 206.
  • Each modulator of the multiple modulators 314, 316 receives modulated data from a respective symbols mapper 310, 312 and modulates the modulated data onto a radio frequency (RF) carrier.
  • RF radio frequency
  • Each modulated carrier is then conveyed to an amplifier coupled to the respective modulator 314, 316 that amplifies the modulated carrier produce an amplified signal and conveys the amplified signal to a respective weighter 322, 324.
  • Each weighter 322, 324 modulates the amplified signal based on a weighting coefficient provided to the weighter by processor 206 and transmits the weighted signal via a respective antenna 121, 122.
  • each weighter 322, 324 may be interposed between a modulator 314, 316 and an amplifier 318, 320, or may precede modulators 314, 316 and be located in processor 206.
  • base station 101 In order to optimize the strength of an RF signal received by a target subscriber unit (i.e., subscriber unit 105) from the target unit's serving base station (i.e., base station 101), and to minimize the interference of the RF signal with communications between the serving base station and other active subscriber units (e.g., subscribers unit 106, 107) in the cell 1 1 1 corresponding to the serving base station, base station 101 employs an antenna array beamforming technique for the broadcast of the RF signal.
  • the antenna array beamforming technique allows base station 101 to broadcast a narrowly focused signal to target subscriber unit 105 based on weighting coefficients assigned by the base station to each element 121, 122 of the base station's antenna array 120.
  • a "joint optimization" embodiment weighting coefficients applicable to each of the multiple subscriber units 105-107 serviced by base station 101, and respectively applied to a transmission to each of the subscriber units, are jointly optimized.
  • the joint optimization of the weighting coefficients is performed by, and implemented at, serving base station 101, and is preferably preformed by processor 206 of the base station.
  • the weighting coefficients are optimized jointly at serving base station 101.
  • FIG. 4 is a logic flow diagram 400 of antenna beamforming steps executed by a transmitting communication device, such as base station 101, in accordance with an embodiment of the present invention.
  • the logic flow begins (401) when each of multiple receiving communication devices, that is, subscriber units 105-107, transmits information to, and the transmitting communication device, that is, base station 101, receives (402) from each subscriber unit, information concerning a propagation channel between the subscriber unit and each of the antenna elements 121, 122 and the autocorrelation of background interference from AWGN and from cells other than the cell serviced by serving base station 101, that is, from cells 112 and 113.
  • the background interference may include interference from sectors in cell 111 other than the sector in which the subscriber unit is located.
  • a subscriber unit 105-107 measures the propagation channel between the subscriber unit and an array element 121, 122 by correlating a signal received from the element with a known version of the signal. For example, base station 101 may transmit, via the element, a pilot code, such as a predetermined pilot Walsh code, or a sequence of pilot symbols that is known to the subscriber unit and that is assigned to the element. When the subscriber unit receives the transmitted signal, the subscriber unit correlates the received signal with the known pilot code or symbols. Based on the comparison, the subscriber unit then determines the signal distortion attributable to the channel.
  • a pilot code such as a predetermined pilot Walsh code, or a sequence of pilot symbols that is known to the subscriber unit and that is assigned to the element.
  • a subscriber unit 105-107 measures the autocorrelation of the background interference by demodulating a signal received from base station 101 (all channels) and subtracting the demodulated signal from an arriving signal.
  • the resulting signal consists only of background interference, and the autocorrelation of this signal can be readily obtained by correlating the signal against itself.
  • the subscriber unit may measure the autocorrelation by base station 101 periodically blanking its transmitted signal for short intervals of time. During the brief intervals in which the transmitted signal is turned off, the received signal consists only of background interference. Again, the interference autocorrelation can be measured by correlating the signal against itself.
  • a subscriber unit 105-107 may measure the autocorrelation of the background interference by measuring the correlation of a received signal that is transmitted by base station 101 (by correlating the signal against itself). This correlation is the sum of the signal correlation function and the interference correlation function.
  • the subscriber unit transmits both the channel propagation information and the received signal correlation function to base station 101.
  • Base station 101 computes the signal correlation for the transmitted signal, as observed at the subscriber, based on knowledge of both the propagation channel and the transmitted signal (e.g., a pilot signal).
  • the interference correlation is then obtained by subtracting the computed correlation for the transmitted signal from the correlation function of the received signal.
  • base station 101 determines (403) the signal-to-noise ratio (SNR) at each subscriber unit for any power allocation and set of base station weighting coefficients as described in greater detail below.
  • Base station 101 jointly optimizes (404) the weighting coefficients by selecting the weighting coefficients that yield a maximum value of a joint optimization SNR expression, as described in greater detail below.
  • processor 206 conveys (405) the appropriate weighting coefficients to weighters 322, 324 of base station 101.
  • Each wieghter 322, 324 uses the weighting coefficient conveyed to the weighter by processor 206 to modulate (406) the signal being transmitted over the corresponding antenna array element 121, 122, which signal is then transmitted (407) via the corresponding array element, and the logic flow ends (408).
  • base station 101 knows the loading of its corresponding cell 111 (i.e., the number of subscribers in the cell), or alternatively of the sector where target subscriber unit 105 is located. For example, assume that the data rate requirements for each of subscriber unit 105-107 are known, as are the data encoding and decoding schemes. With this information, the SNR requirements for each of subscriber units 105-107 are known. In this case, base station 101 first determines whether a feasible solution exists to the joint optimization of the optimal antenna array 120 weighting coefficients. In other words, base station 101 first determines whether any power and weighting allocation will meet the SNR requirements of all subscribers. When a feasible solution does exist, base station 101 can choose the solution that minimizes the total power transmitted by the base station.
  • base station 101 may choose the power and weighting allocations which maximizes the percentage of the loading that can be met by the base station.
  • approximations can be used to allow the weighting coefficients for the various subscribers to be optimized independently.
  • base station 101 uses approximations (409) to determine an approximation of the joint optimization SNR expression.
  • the approximations allow base station 101 to optimize (410) the weighting coefficients corresponding to each subscriber unit independent of the other subscriber units based on the approximation of the joint optimization SNR expression.
  • Such an approach has an advantage of reducing the computational burden for base station 101 (although the computational burden placed on each subscriber units 105-107 may be slightly increased).
  • Such an approach has a further advantage that independent optimization of the weighting coefficients utilized by base station 101 typically requires less uplink bandwidth for transmitting channel and interference information to the base station. If the optimal weighting coefficients are computed at the subscriber unit, only the weighting coefficients need be transmitted to the base station.
  • Base station 101 determines weighting coefficients corresponding to each subscriber unit 105-107 by optimizing weighting coefficients w / ,, and w 2 , founded respectively corresponding to multiple antenna array elements 121, 122 for the subscriber unit, wherein "z" is an index corresponding to the i- th subscriber unit for which the weighting coefficients are being optimized.
  • Processor 206 optimizes the weighting coefficients corresponding to z ' -th subscriber unit by determining the weighting coefficients vv / , , w 2 ⁇ , that maximize an SNR of an output of the matched filter Rake receiver of the subscriber unit, wherein the SNR is given by the following joint optimization expression of the SNR (wherein the index, z, is arbitrarily set to 1, corresponding to the first subscriber unit, for the purpose of illustrating the principles of the present invention),
  • the vectors f, and f 2 denote the respective propagation channels between the elements 121, 122 of antenna array 120 and the subscriber unit of interest (i.e., the z ' -th subscriber unit, or in the terminology of equation (1), the first subscriber unit).
  • K denote the number of communication channels occupied on the forward link
  • the multiple subscriber units 105-107 are indexed such that the z ' -th Walsh code is assigned to the z ' -th subscriber unit.
  • A: A, + f,
  • Each of the K communication channels, or code channels, in system 100 is assigned a complex weighting coefficient corresponding to each antenna array element 121, 122. Assuming a two element antenna array 120, a pair of complex weighting coefficients ⁇ w u , w 2jl ⁇ is assigned to each of the K ode channels. Each weighting vector is required to have unit energy, so that
  • w u , w 2 l ⁇ applied to the z ' -th code channel are chosen in such a way as to maximize the SNR at the output of the matched-filter Rake receiver for the z ' -th subscriber unit.
  • the total power transmitted by the serving base station, that is, base station 101, is given by
  • the received signal power I or at the z ' -th subscriber unit depends on the weighting coefficients.
  • the amplitude A t is adjusted during the optimization of ⁇ w l , , w 2 , ⁇ , the intra-cell interference I or will not be held constant at subscriber unit i. For this reason, a separate quantity I or is defined as
  • the above inequalities are useful in developing expressions for the optimal transmit weighting coefficients in cases in which the interference is dominated alternately by intra-cell and inter-cell interference. Since the weighting coefficients affect the level of intra-cell signal power observed by the subscriber, I or , cannot be held constant during the optimization of ⁇ w 1 ( ., w 2jl ⁇ . However, with the above inequalities, the intra-cell interference observed by the z ' -th subscriber unit can be bounded above and below, so that
  • a subscriber environment dominated by inter-cell interference I oc can be investigated by forcing I or II oc -» 0 , since this implies that I nr /I oc -» 0 .
  • a subscriber environment dominated by intra-cell interference can be investigated by forcing I or jI oc - ⁇ , since this implies that I or /l oc ⁇ ⁇ .
  • the mean and variance of the multiple Rake fingers included in a Rake receiver must be evaluated in order to compute the SNR at the output of the matched-filter Rake receiver of each subscriber unit 105-107.
  • the subscriber unit of interest have index 1, and as above, let the vectors f, and f 2 denote normalized propagation channels between elements 121 and 122, respectively, and the subscriber unit of interest. Without loss of generality, channels f, and f 2 are assumed to be zero outside of an interval of length M, so that
  • NI 0C ⁇ (m-l) is the covariance of the inter-cell interference and noise.
  • the inter-cell interference is in general non-white because all of the CDMA signals from a given base station (an essentially white source) pass through a common channel en route to the subscriber unit. As a result, the inter-cell interference may be substantially non-white if dominated by a single base station. However, in order to simplify the analysis, the inter- cell interference is be assumed to be white, so that
  • I oc denotes the power of the inter-cell interference.
  • denote the normalized covariance of the vector R, which is given by
  • the SNR for the subscriber unit of interest no longer depends on the weighting coefficients used for the other subscriber units.
  • the weighting coefficients W J J , W 2 can be optimized independently so long as values of E c /I or and l or /I oc are known, wherein E c is a power or energy of a desired signal, I or is a power or energy of the intra-cell interference, and I oc is a power or energy of the inter-cell interference
  • a value of I or /I oc can be estimated as follows. First, base station 101 is blanked for a brief interval so that I oc can be measured by the subscriber unit of interest, that is, subscriber unit 105. Subscriber unit 105 then measures the impulse response energy of signals received from each of the multiple array elements 121- 122 (using a pilot signal allocated to each antenna) and transmits these energies back to base station 101. With these values, I or can be calculated by subscriber unit 105 in one of several ways.
  • subscriber unit 105 can transmit the energy values to base station 101 and the base station computes the value of I or and transmits the computed value back to the subscriber unit.
  • base station 101 can transmit the weighting coefficients to subscriber unit 105 so that I or can be computed in the subscriber unit.
  • subscriber unit 105 can compute the weighting coefficients for base station 101.
  • subscriber unit 105 knows the weighting coefficients used by base station 101, and I or can be computed in the subscriber unit. Subscriber unit 105 then computes the ratio of I or /I oc from the separate estimates of / or and I oc .
  • the problem of jointly optimizing the weighting coefficients for all subscribers 105- 107 in a cell 111 or a sector can be translated into a set of independent optimization problems, whereby the weighting coefficients for each of subscriber unit 105-107 are independently optimized.
  • the complexity of the resulting independent optimization depends on the approximation being used.
  • the optimization problem can also be simplified by using a "low geometry" approximation, for which I or jI oc is approximately zero. However, since the low geometry approximation is infrequently applicable, the use of the other approximations yields more nearly optimal weighting coefficients.
  • the SNR expressions herein are given for a CDMA signal, transmitted from an antenna array 120, and received using a matched filter Rake receiver at a subscriber unit 105-107.
  • Each set of weighting coefficients are designed to maximize the SNR at the output of a matched- filter (Rake) receiver in a corresponding subscriber unit 105-107.
  • the SNR expressions yield the following results: (1) the SNR criteria which should be optimized in the selection of the weighting coefficients for antenna array 120 for each of subscriber units 105-107, (2) the fact that when self-interference is considered, the weighting coefficients for antenna array 120 for each of subscriber units 105-107 can be optimized jointly, (3) the set of information which must be fed back from the subscriber units 105-107 to base station 101 in order compute the jointly optimal array weighting coefficients, (4) the SNR behavior of a subscriber unit 105-107 in environments dominated by self-interference ("high geometry" environments), and (5) robust approximations to the SNR which can be optimized independently, rather than jointly.
  • This approximation is equal to ⁇ 2 when half of the output signal power of the serving base station, that is base station 101, is transmitted over each of the two elements 121, 122 of antenna array 120 and when the weighting vectors are randomly oriented so that
  • each subscriber unit's weighting coefficients can be optimized independently from the other subscriber units.
  • Equation (6) corresponding to the SNR in the absence of intra-cell interference, is an expression of SNR of a subscriber unit 105-107 that is optimized in the prior art TxAA system.
  • the optimal weighting vector ⁇ w l , , w 2 , ⁇ in this environment is equal to the eigenvector, v m ⁇ , corresponding to the largest eigenvalue, ⁇ miX , of the matrix
  • this matrix does not depend on the weighting coefficients of the other channels, there is no interaction between the weighting coefficient optimizations performed by the individual subscriber units 105-107.
  • the SNR at the output of the matched filter Rake receiver of a subscriber unit of interest is given by
  • a third special and limiting case where optimization of the weighting coefficients is somewhat simpler is the case where the power allocated to the communication channel of interest is a reasonably small fraction of the total power transmitted by the serving base station, that is base station 101. That is to say,
  • the symmetric positive semi-definite matrix ⁇ has a unique symmetric positive semi- definite square root A , such that
  • v max is the eigenvector corresponding to the largest eigenvalue, ⁇ nm , of the matrix
  • the optimal weighting unit-energy transmit weighting vector is thus given by
  • the optimal weighting vector depends on the weightings w hi°h rnay change simultaneously with the application of the newly calculated optimal weighting vector ⁇ w, , ,w 2 1 ⁇ .
  • the new vector ⁇ w, , , w 2 1 ⁇ will only be optimal if the weighting vectors of the other channels remain constant.
  • a fourth special and limiting case where optimization of the weighting coefficients is somewhat simpler is the case where a cell includes only the subscriber unit of interest, that is, a single subscriber unit environment.
  • the S ⁇ R at the, output of the matched filter Rake receiver of the subscriber unit of interest is given by
  • a simple example demonstrates the effect of intra-cell interference on communication system 100.
  • the performance of a transmitting communication device antenna array utilizing prior art transmitting antenna array weighting (TxAA) is compared to optimized transmitting antenna array weighting determined in accordance with the present invention and to selection transmit diversity (STD) weighting.
  • TxAA transmitting antenna array weighting
  • STD selection transmit diversity
  • This matrix has eigenvalues and eigenvectors given by e iS en, , es : ⁇ ⁇ f 2 e ⁇ c s : J ' jj' _"
  • selection transmit diversity In selection transmit diversity (STD), all of the transmitter power is allocated to one or the other of the antennas.
  • the selection diversity weighting chosen here will allocate all of the transmitter power to the first antenna, so that a normalized STD vector S TD of weighting coefficients is given by
  • the relative performance of TxAA and STD is given by From this expression, it is apparent that as I or ⁇ I oc — > , the performance of TxAA is 2.3 dB better than the performance of STD. Relative to STD, the largest gain achievable with the TxAA (on a static channel) is 3 dB, and such gain is achievable only if the two channels have equal energy. Thus, in this sense, the example chosen here can be considered to be a good example for demonstrating the benefits of TxAA. However, in the limit as I or /I oc — >°°, the relative performance of TxAA and STD is given by
  • FIG. 5 is a table 500 comparing the SNR at the output of the matched-filter receiver for a signal received from a transmitting communication device employing a TxAA coefficient weighting system and for a transmitting communication device employing an STD system as a function of I 0 JI or and E c /I or .
  • STD performs better than TxAA if the intra-cell energy is dominant and subscriber of interest is allocated a sufficiently large fraction of the transmitted power. Such conditions may occur in data applications for which a single high-speed subscriber is allocated the majority of the power transmitted by the base station.
  • FIG. 5 is a table 500 comparing the SNR at the output of the matched-filter receiver for a signal received from a transmitting communication device employing a TxAA coefficient weighting system and for a transmitting communication device employing an STD system as a function of I 0 JI or and E c /I or .
  • STD performs better than TxAA if the intra-cell energy is dominant and subscriber
  • FIG. 6 is a table 600 comparing the output of the matched- filter receiver for a signal received from a transmitting communication device employing a TxAA coefficient weighting system and for a transmitting communication device employing optimized transmitting antenna array weighting determined in accordance with an embodiment of the present invention.
  • the gains of the optimized weighting of the present invention can be quite large if intra-cell interference dominates inter-cell interference and i E c /I or is large.
  • a serving base station i.e., base station 101
  • a serving base station that includes a multiple element antenna array optimizes weighting coefficients that are applied to transmissions to each subscriber unit 105-107 serviced by the base station by determining the weighting coefficients that maximize an expression (equation (1)) for the exact SNR of the forward link (base station-to-subscriber unit) of the base station and the subscriber unit.
  • Joint optimization preferably is implemented at serving base station 101 and is based on the base station's knowledge of the channels between itself and each of its subscribers, as well knowledge of the ratio I or /I oc observed at each of the subscribers.
  • This information could be transmitted from each of the subscribers to the base station via a reverse link.
  • weighting coefficients Due to its complexity, joint optimization of the weighting coefficients may have limited applicability. However, optimization criteria can be defined which allow the subscribers to be optimized independently rather than jointly. For example, more nearly optimal weighting coefficients can be computed by substituting the average interference covariance matrix into the expression for the SNR. Since the average interference covariance matrix does not depend on the transmit coefficients of the subscribers, each subscriber can be optimized independently from the others. Because this method accounts for self-interference, it yields a weighting that is more nearly optimal than the current methods of transmit antenna array weighting

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radio Transmission System (AREA)

Abstract

An antenna array beamforming technique employs independent transmit weighting coefficients for multiple subscriber units (105-107) served by a transmitting communication device (101). Optimization of the weighting coefficients is a joint, rather than an independent, venture (404) of the multiple subscriber units. Joint optimization preferably is implemented at the transmitting communication device and involves the communication device optimizing based on knowledge of the channels between itself and each of the subscriber units, as well knowledge of the inter-cell and intra-cell interference observed at each of the subscriber units. Joint optimization (404) of the weighting coefficients is a complex process, and to simplify the process approximations of optimization criteria are utilized (409, 410) that allow the weighting coefficients corresponding to the subscriber units to be optimized independently (410) rather than jointly. By accounting for self-interfference, the process yields weighting coefficients that are more nearly optimal than th ecurrent weighting methods.

Description

A METHOD AND APPARATUS FOR ANTENNA ARRAY BEAMFORMING
Field of the Invention
The present invention relates to wireless telecommunication systems, and more particularly to the use of antenna arrays in wireless telecommunication systems.
Background of the Invention
An important goal in designing a wireless communication system is to maximize system capacity, that is, to maximize a number of users that may simultaneously be served by the communication system. One way of increasing system capacity is to lower the transmit power allocated to each user. By lowering the allocated transmit power, interference for all users is lowered, which allows for the addition of new users to the system.
One way to lower the transmit power allocated to each user, or subscriber unit, is to increase the efficiency of the wireless link, or communication channel, between the subscriber unit and the base station serving that user. One method of increasing the efficiency of the link is to broadcast information to a target subscriber unit using a transmit antenna diversity system. A transmit antenna diversity system allows the transmitted signal to be beamformed so that a narrower, more focused beam is transmitted to the user. Antenna beamforming allows for a base station to lower the transmit power allocated to the signal, since the allocated power is less widely dispersed. Antenna beamforming also reduces multipath fading of the transmitted signal and interference with non-targeted users since the beam is more narrowly focused.
One method of antenna beamforming involves two-antenna diversity. Two- antenna diversity uses an antenna array consisting of two antennas, or array elements, to transmit a signal and then applies an optimization technique to improve the quality of the transmitted signal over the performance that would be afforded by the use of a single antenna. One of the simplest forms of two-antenna diversity is two-antenna selection transmit diversity (STD). As its name implies, this method involves selecting one of two antennas as the antenna that will be utilized as the transmitter for a particular communication. A typical method of selecting an antenna involves choosing the antenna that has the highest received power with respect to training, synchronization, or data communications exchanged with the target subscriber unit.
Another method of antenna beamforming involves separately weighting the signal transmitted by each element of the antenna array. If the elements of the antenna array are weighted and phased appropriately, the signals broadcast from these elements will add constructively at a receiver of the target subscriber unit. However, two conditions must be met before an optimal weighting can be applied to the transmit array. First, the channel between each of the array elements and the subscriber of interest must be known. Secondly, it must be possible to compute the signal-to-noise ratio of the subscriber unit of interest.
Previous work has been performed on optimizing the weightings determined at an antenna array for each of multiple subscribers units. Current methods for weighting the coefficients (hereinafter referred to as "TxAA") are optimal only if the interference environment of the target subscriber unit is dominated by inter-cell interference (optimal in the sense of maximizing the signal-to-noise ratio at the subscriber unit for a given level of transmit power). However, in many applications, especially data applications, the target subscriber unit is close to the base station, where self-interference is the dominant source of interference. In these conditions, the existing method for optimizing the transmitter weighting coefficients can be highly non-optimal.
In addition, current methods for weighting the coefficients do not account for the self-interference introduced by multipath delay. In fact, the current method is optimal only if one of the following two conditions hold: (i) the propagation channel has only a single path, or (ii) the ratio of intra-cell interference power to inter-cell interference power is zero. The latter condition can never be met precisely, but may be an acceptable approximation in some circumstances. In the absence of conditions (i) or (ii), situations arise where the current methods for weighting the perform worse than a much simpler selection transmit diversity (STD) weighting system. As a result, current methods for weighting the coefficients are less than optimal for many operating environments. Therefore, an antenna array beamfoming technique is needed that optimizes performance of an antenna array in a high multipath fading environment or in environments of significant self-interference or where intra-cell interference dominates inter-cell interference.
Brief Description of the Drawings
FIG. 1 is a block diagram of a communication system in accordance with an embodiment of the present invention.
FIG. 2 is a block diagram of a transmitting communication device in accordance with an embodiment of the present invention.
FIG. 3 is a block diagram of multiple transmitted signal paths of a transmitting communication device in accordance with an embodiment of the present invention.
FIG. 4 is a logic flow diagram of antenna beamforming steps executed by a transmitting communication device in accordance with an embodiment of the present invention.
FIG. 5 is a table comparing the signal-to-noise ratio at the output of a matched- filter receiver for a signal transmitted by an antenna array employing the current coefficient weighting system and employing a selection transmit diversity system.
FIG. 6 is a table comparing the output of the matched-filter receiver for a signal received from a transmitting communication device employing the current coefficient weighting system and for a transmitting communication device employing optimized transmitting antenna array weighting determined in accordance with an embodiment of the present invention.
Detailed Description of the Invention In order to optimize performance of an antenna array in a high multipath fading environment or in environments of significant self-interference or where intra-cell interference dominates inter-cell interference, an antenna array beamforming technique employs independent transmit weighting coefficients for multiple subscriber units served by a transmitting communication device. Optimization of the weighting coefficients is a joint, rather than an independent, venture of the multiple subscriber units. Joint optimization preferably is implemented at the transmitting communication device and involves the communication device optimizing based on knowledge of the channels between itself and each of the subscriber units, as well knowledge of the inter-cell and intra-cell interference observed at each of the subscriber units. Joint optimization of the weighting coefficients is a complex process, and to simplify the process optimization criteria are defined that allow the weighting coefficients corresponding to the subscriber units to be optimized independently rather than jointly. Because this technique accounts for self-interference, it yields a weighting that is more nearly optimal than the current methods of transmit antenna array weighting
The present invention may be more fully described with reference to FIGS. 1-X. FIG. 1 is a block diagram of a wireless communication system 100 in accordance with an embodiment of the present invention. Preferably communication system 100 is a code division multiple access (CDMA) communication system that includes multiple ("K") orthogonal communication channels, although those who are of ordinary skill in the art realize that that the present invention may be utilized in any wireless communication system, such as a time division multiple access (TDMA) communication system or an orthogonal frequency division multiplexing (OFDM) communication system. Preferably, each communication channel comprises one of multiple orthogonal spreading codes, such as Pseudo-noise (PN) sequences such as Walsh codes. The use of spreading codes permits the coexistence of multiple communication channels in the same frequency bandwidth.
Communication system 100 includes multiple geographically-diverse base stations
101-103 (three shown). Each base station 101-103 provides communication service to a respective service coverage area, or cell, 111-113. Each base station 101-103 preferably includes at least one antenna array 120 having multiple array elements 121, 122 (two shown). Communication system 100 further includes multiple subscriber units 105-107 (three shown), such as a cellular telephone, a radiotelephone, or a wireless modem. Each subscriber unit 105-107 includes a matched filter Rake receiver having multiple Rake fingers. Matched filter Rake receivers are well known in the art and will not be described in greater detail herein. A serving base station (e.g., base station 101) manages and provides radio communication services for each subscriber unit 105-107 while the subscriber unit is located in the serving base station's cell (i.e., cell 1 1 1).
In another embodiment of the present invention, a "sectorized" embodiment, each cell 1 1 1-113 may be subdivided into multiple sectors. In the sectorized embodiment, each base station 101-103 includes multiple antenna arrays that each includes multiple array elements. At least one antenna array of the multiple antenna arrays of each base station
101-103 is dedicated to each sector of the multiple sectors of each corresponding cell.
FIG. 2 is a block diagram of a base station 101-103 in accordance with an embodiment of the present invention. As described above, each base station 101-103 preferably includes at least one antenna array 120 and associated array elements 121, 122. The antenna array 120 is coupled to a transmitter section 202 and a receiver section 204 that are, in turn, each coupled to a processor 206, such as a microprocessor or a digital signal processor (DSP). Processor 206 and an associated memory 208 allow the base station to store information, make computations, and run software programs.
FIG. 3 is a block diagram of multiple transmitted signal paths 300, 301 of a base station 101-103 in accordance with an embodiment of the present invention. Each transmitted signal path 300, 301 corresponds to one of the multiple array elements 121, 122 of an antenna array 120 of the base station. Data is sourced to the base station by a data source 210, such as an interface with an external network, such as a public switched telephone network (PSTN) or the Internet, or an application running on processor 206 of the base station.
Data source 210 is coupled to processor 206. As depicted in FIG. 3, processor 206 includes an encoder 302, multiple spreaders 306, 308, and multiple symbol mappers 310, 312. Encoder 302 receives data from data source 210 and encodes the data utilizing a predetermined coding scheme, such as a block coding scheme or a convolutional coding scheme. Encoder 302 then conveys the encoded data to each of multiple spreaders 306, 308. In another embodiment of the present invention, processor 206 may further include an interleaver that interleaves the encoded data prior to the encoded data being conveyed to multiple spreaders 306, 308.
Each spreader of the multiple spreaders 306, 308 is coupled to a spreading code generator 304 and spreads the encoded data pursuant to a spreading code, preferably a pseudo-noise (PN) sequence such as a Walsh code, provided by the spreading code generator. Each spreader 306, 308 then conveys the spread data to a respective symbol mapper of the multiple symbol mappers 310, 312. Each symbol mapper 310, 312 maps the data to one of multiple symbols included in a constellation of symbols to produce a symbol stream corresponding to the modulated data. In one embodiment of the present invention, symbol mappers 310, 312 utilize a quadrature amplitude modulation (QAM) mapping scheme for mapping the data. However, the mapping scheme used is not critical to the present invention and those who are of ordinary skill in the art realize that a wide variety of mapping schemes, such a binary phase shift keying (BPSK) or quadrature phase shift keying (QPSK), may be used herein without departing from the spirit and scope of the present invention.
In a QAM mapping scheme, each symbol mapper 310, 312 groups the spread data into groups of P binary data units, such as data bits, to form multiple P-tuples. Each symbol mapper 310, 312 then modulates each of the multiple P-tuples by mapping the P- tuple to a corresponding point out of M possible points, wherein M = 2P, in a predetermined QAM constellation. To this end, the predetermined QAM constellation that includes the M possible points is defined within a multi-dimensional space, preferably a complex two-dimensional (I/Q) space. Each point within the two- dimensional space may be thought of as a vector sum of two scaled basis vectors. The two scaled basis vectors respectively correspond to an in-phase (I) component and a quadrature (Q) component of the constellation point, or corresponding data symbol. The respective amplitudes of the two basis vectors used to define a particular point may be thought of as two-dimensional coordinates of the point. After modulation of each P-tuple by a symbol mapper 310, 312, the modulated data is conveyed by processor 206 to transmitter section 202 for transmission.
Transmitter section 202 includes multiple modulators 314, 316 that are each coupled to one of multiple amplifiers 318, 320. Transmitter section 202 further includes multiple weighters 322, 324 that are each coupled between one of the multiple amplifiers 318, 320 and one of the multiple antennas 121, 122 and are further coupled to processor 206. Each modulator of the multiple modulators 314, 316 receives modulated data from a respective symbols mapper 310, 312 and modulates the modulated data onto a radio frequency (RF) carrier. Each modulated carrier is then conveyed to an amplifier coupled to the respective modulator 314, 316 that amplifies the modulated carrier produce an amplified signal and conveys the amplified signal to a respective weighter 322, 324. Each weighter 322, 324 modulates the amplified signal based on a weighting coefficient provided to the weighter by processor 206 and transmits the weighted signal via a respective antenna 121, 122. In other embodiments of the present invention, each weighter 322, 324 may be interposed between a modulator 314, 316 and an amplifier 318, 320, or may precede modulators 314, 316 and be located in processor 206.
In order to optimize the strength of an RF signal received by a target subscriber unit (i.e., subscriber unit 105) from the target unit's serving base station (i.e., base station 101), and to minimize the interference of the RF signal with communications between the serving base station and other active subscriber units (e.g., subscribers unit 106, 107) in the cell 1 1 1 corresponding to the serving base station, base station 101 employs an antenna array beamforming technique for the broadcast of the RF signal. The antenna array beamforming technique allows base station 101 to broadcast a narrowly focused signal to target subscriber unit 105 based on weighting coefficients assigned by the base station to each element 121, 122 of the base station's antenna array 120.
In one embodiment of the present invention, a "joint optimization" embodiment, weighting coefficients applicable to each of the multiple subscriber units 105-107 serviced by base station 101, and respectively applied to a transmission to each of the subscriber units, are jointly optimized. Preferably, the joint optimization of the weighting coefficients is performed by, and implemented at, serving base station 101, and is preferably preformed by processor 206 of the base station. In the joint optimization embodiment, the weighting coefficients are optimized jointly at serving base station 101.
FIG. 4 is a logic flow diagram 400 of antenna beamforming steps executed by a transmitting communication device, such as base station 101, in accordance with an embodiment of the present invention. The logic flow begins (401) when each of multiple receiving communication devices, that is, subscriber units 105-107, transmits information to, and the transmitting communication device, that is, base station 101, receives (402) from each subscriber unit, information concerning a propagation channel between the subscriber unit and each of the antenna elements 121, 122 and the autocorrelation of background interference from AWGN and from cells other than the cell serviced by serving base station 101, that is, from cells 112 and 113. Alternatively, when each cell includes multiple sectors, the background interference may include interference from sectors in cell 111 other than the sector in which the subscriber unit is located.
A subscriber unit 105-107 measures the propagation channel between the subscriber unit and an array element 121, 122 by correlating a signal received from the element with a known version of the signal. For example, base station 101 may transmit, via the element, a pilot code, such as a predetermined pilot Walsh code, or a sequence of pilot symbols that is known to the subscriber unit and that is assigned to the element. When the subscriber unit receives the transmitted signal, the subscriber unit correlates the received signal with the known pilot code or symbols. Based on the comparison, the subscriber unit then determines the signal distortion attributable to the channel.
Measuring the autocorrelation of the background interference is somewhat more difficult. In one embodiment of the present invention, a subscriber unit 105-107 measures the autocorrelation of the background interference by demodulating a signal received from base station 101 (all channels) and subtracting the demodulated signal from an arriving signal. The resulting signal consists only of background interference, and the autocorrelation of this signal can be readily obtained by correlating the signal against itself. In another embodiment of the present invention, the subscriber unit may measure the autocorrelation by base station 101 periodically blanking its transmitted signal for short intervals of time. During the brief intervals in which the transmitted signal is turned off, the received signal consists only of background interference. Again, the interference autocorrelation can be measured by correlating the signal against itself.
In yet another embodiment of the present invention, a subscriber unit 105-107 may measure the autocorrelation of the background interference by measuring the correlation of a received signal that is transmitted by base station 101 (by correlating the signal against itself). This correlation is the sum of the signal correlation function and the interference correlation function. The subscriber unit transmits both the channel propagation information and the received signal correlation function to base station 101. Base station 101 computes the signal correlation for the transmitted signal, as observed at the subscriber, based on knowledge of both the propagation channel and the transmitted signal (e.g., a pilot signal). The interference correlation is then obtained by subtracting the computed correlation for the transmitted signal from the correlation function of the received signal.
With knowledge of the propagation channels between each of the multiple array elements 121, 122 and each of the multiple subscriber units 105-107 and the interference environment at each subscriber unit, base station 101, preferably processor 206 of the base station, determines (403) the signal-to-noise ratio (SNR) at each subscriber unit for any power allocation and set of base station weighting coefficients as described in greater detail below. Base station 101 jointly optimizes (404) the weighting coefficients by selecting the weighting coefficients that yield a maximum value of a joint optimization SNR expression, as described in greater detail below. When base station 101 then transmits a signal to a subscriber unit serviced by the base station, processor 206 conveys (405) the appropriate weighting coefficients to weighters 322, 324 of base station 101. Each wieghter 322, 324 then uses the weighting coefficient conveyed to the weighter by processor 206 to modulate (406) the signal being transmitted over the corresponding antenna array element 121, 122, which signal is then transmitted (407) via the corresponding array element, and the logic flow ends (408).
Preferably, base station 101 knows the loading of its corresponding cell 111 (i.e., the number of subscribers in the cell), or alternatively of the sector where target subscriber unit 105 is located. For example, assume that the data rate requirements for each of subscriber unit 105-107 are known, as are the data encoding and decoding schemes. With this information, the SNR requirements for each of subscriber units 105-107 are known. In this case, base station 101 first determines whether a feasible solution exists to the joint optimization of the optimal antenna array 120 weighting coefficients. In other words, base station 101 first determines whether any power and weighting allocation will meet the SNR requirements of all subscribers. When a feasible solution does exist, base station 101 can choose the solution that minimizes the total power transmitted by the base station. This will in some sense minimize the interference power generated into the adjacent cells 112, 113 or, alternatively, adjacent sectors. When, for a given loading, a feasible solution does not exist, base station 101 may choose the power and weighting allocations which maximizes the percentage of the loading that can be met by the base station.
In another embodiment of the present invention, an "independent optimization" embodiment, approximations can be used to allow the weighting coefficients for the various subscribers to be optimized independently. Instead of jointly optimizing (404) the weighting coefficients, base station 101 uses approximations (409) to determine an approximation of the joint optimization SNR expression. The approximations allow base station 101 to optimize (410) the weighting coefficients corresponding to each subscriber unit independent of the other subscriber units based on the approximation of the joint optimization SNR expression. Such an approach has an advantage of reducing the computational burden for base station 101 (although the computational burden placed on each subscriber units 105-107 may be slightly increased). Such an approach has a further advantage that independent optimization of the weighting coefficients utilized by base station 101 typically requires less uplink bandwidth for transmitting channel and interference information to the base station. If the optimal weighting coefficients are computed at the subscriber unit, only the weighting coefficients need be transmitted to the base station.
Base station 101, preferably processor 206 of base station 101, determines weighting coefficients corresponding to each subscriber unit 105-107 by optimizing weighting coefficients w/,, and w2 ,„ respectively corresponding to multiple antenna array elements 121, 122 for the subscriber unit, wherein "z" is an index corresponding to the i- th subscriber unit for which the weighting coefficients are being optimized. Processor 206 optimizes the weighting coefficients corresponding to z'-th subscriber unit by determining the weighting coefficients vv/ , , w, that maximize an SNR of an output of the matched filter Rake receiver of the subscriber unit, wherein the SNR is given by the following joint optimization expression of the SNR (wherein the index, z, is arbitrarily set to 1, corresponding to the first subscriber unit, for the purpose of illustrating the principles of the present invention),
Figure imgf000013_0001
This equation is derived as follows.
Let the vectors f, and f2 denote the respective propagation channels between the elements 121, 122 of antenna array 120 and the subscriber unit of interest (i.e., the z'-th subscriber unit, or in the terminology of equation (1), the first subscriber unit). For notational simplicity, the impulse response of the channels will be assumed to be zero other than at integer multiples of the chip time, and thus the vector f, = j/, j denotes the chip-spaced impulse response of the channel. Let K denote the number of communication channels occupied on the forward link, and let A = At ]ι=1 denote the set of amplitudes assigned to the communication, or spreading code, channels. For simplicity, the multiple subscriber units 105-107 are indexed such that the z'-th Walsh code is assigned to the z'-th subscriber unit.
Definitions related to the strength of intra-cell and inter-cell interference are simplified if the channels f, and f2 and the amplitudes A are normalized in the following manner. Let the channels f, and f2 be defined as 2 V2 f = f +
so that
Figure imgf000014_0001
The propagation channels between each of the multiple elements 121, 122 and the subscriber unit of interest are not required to have equal energy. Similarly, define the normalized set of amplitudes A = {A, }* , such that
2 λ/2
A: = A, + f,
Each of the K communication channels, or code channels, in system 100 is assigned a complex weighting coefficient corresponding to each antenna array element 121, 122. Assuming a two element antenna array 120, a pair of complex weighting coefficients {wu, w2jl } is assigned to each of the K ode channels. Each weighting vector is required to have unit energy, so that
w ',i.', + w2,,< = 1 for all z.
Ideally, the weights |wu, w2 l \ applied to the z'-th code channel are chosen in such a way as to maximize the SNR at the output of the matched-filter Rake receiver for the z'-th subscriber unit. The total power transmitted by the serving base station, that is, base station 101, is given by
Figure imgf000014_0002
and the total power received by the z'-th subscriber unit from this base station, ϊor , is given by Due to
Figure imgf000015_0001
, w2 ; }* and the channels f, and f2 , the received signal power Ior at the z'-th subscriber unit depends on the weighting coefficients. Thus, unless the amplitude At is adjusted during the optimization of \wl , , w2 , }, the intra-cell interference Ior will not be held constant at subscriber unit i. For this reason, a separate quantity Ior is defined as
Figure imgf000015_0002
Application of the Cauchy-Schwarz inequality then yields
Figure imgf000015_0003
K
= ∑AΪ =Ior ,
and thus, for the definitions used here, ϊor ≤ Ior . Also, it is apparent that
Figure imgf000015_0004
where
Figure imgf000016_0001
Note that γ > 0 so long as the channels f, and f2 are linearly independent.
The above inequalities are useful in developing expressions for the optimal transmit weighting coefficients in cases in which the interference is dominated alternately by intra-cell and inter-cell interference. Since the weighting coefficients affect the level of intra-cell signal power observed by the subscriber, Ior , cannot be held constant during the optimization of {w1 (., w2jl }. However, with the above inequalities, the intra-cell interference observed by the z'-th subscriber unit can be bounded above and below, so that
I v i or < — I or < — I or .
Thus, a subscriber environment dominated by inter-cell interference Ioc can be investigated by forcing IorIIoc -» 0 , since this implies that Inr/Ioc -» 0 . Similarly, a subscriber environment dominated by intra-cell interference can be investigated by forcing Ior jIoc - ∞ , since this implies that Ior /loc → ∞ .
The mean and variance of the multiple Rake fingers included in a Rake receiver must be evaluated in order to compute the SNR at the output of the matched-filter Rake receiver of each subscriber unit 105-107. Towards this end, again let the subscriber unit of interest have index 1, and as above, let the vectors f, and f2 denote normalized propagation channels between elements 121 and 122, respectively, and the subscriber unit of interest. Without loss of generality, channels f, and f2 are assumed to be zero outside of an interval of length M, so that
/,,,. = 0 ϋ j < 0 ox j > M.
Let the vector R denote the length-M vector of the outputs of the multiple Rake fingers of the subscriber unit. Let μ denote the mean vector of R, which has components given by
Mi = E{R, ) = NA (wu f + w f2J ) . where N is the number of chips per symbols. For random-orthogonal codes (Walsh codes with random spreading), the MxM correlation matrix T^m has elements given by
r,,m = (*,*; Λ∑ ;∑ (> /,,* + w2J wχWlJ lιβ.l+t +w2jf2m_l+ky j=\ k≠l
+ N2 A (w, ,/ + w 2l )(w m + w2 2m )'+ NIocφ(m - /)
where NI0Cφ(m-l) is the covariance of the inter-cell interference and noise. The inter-cell interference is in general non-white because all of the CDMA signals from a given base station (an essentially white source) pass through a common channel en route to the subscriber unit. As a result, the inter-cell interference may be substantially non-white if dominated by a single base station. However, in order to simplify the analysis, the inter- cell interference is be assumed to be white, so that
1 k = 0 φ(k)= 0 else
where Ioc denotes the power of the inter-cell interference. Let Ω denote the normalized covariance of the vector R, which is given by
Figure imgf000017_0001
and has components
y=l k≠l l or
=
Figure imgf000017_0002
+ 2 :1 - Rel ∑ A) w,,, w ∑ f fim.l+k j φ{m - 1)
I 7=1 k≠l I or
Figure imgf000017_0003
+ 2/;' Re ΣAJWl.JW j l,m +^φ(m-l ,
W=> J J where the matrix Ψ' J has elements l, ~ 2~l Ji-k Jj,>"-l+l< ~ 2-1 J'^ J J.m-l+k Ji.lJj.n k≠l
It is useful to partition the covariance Ω into two parts, so that
Ω = Ω, + Ω2 ,
where the first term Ω, is the contribution of the signal of the subscriber unit of interest to the covariance, and the second term Ω2 is the contribution of all of the other subscriber units' signals to the covariance. The SNR at the output of the matched filter Rake receiver of the subscriber unit of interest is given by
Figure imgf000018_0001
(i)
where the notation Ω,(w, ,w2 ,) has been used to denote the fact that Ω, is a function of the weighting coefficients {w, , , w2 , } .
The second term in middle term of the denominator of equation (1) can be approximated as
Ω2 « Ω2 = 1 ' ^ +ψy )^^ ./). (2)
With this approximation, the SNR for the subscriber unit of interest no longer depends on the weighting coefficients used for the other subscriber units. As a result, the weighting coefficients WJJ , W2 can be optimized independently so long as values of Ec/Ior and lor /Ioc are known, wherein Ec is a power or energy of a desired signal, Ior is a power or energy of the intra-cell interference, and Ioc is a power or energy of the inter-cell interference
A value of E Ior can be estimated at a subscriber unit of itnerest, such as subscriber unit 105, or the value can be transmitted from base station 101 (where it is known) to the subscriber unit. A value of Ior /Ioc can be estimated as follows. First, base station 101 is blanked for a brief interval so that Ioc can be measured by the subscriber unit of interest, that is, subscriber unit 105. Subscriber unit 105 then measures the impulse response energy of signals received from each of the multiple array elements 121- 122 (using a pilot signal allocated to each antenna) and transmits these energies back to base station 101. With these values, Ior can be calculated by subscriber unit 105 in one of several ways. For example, subscriber unit 105 can transmit the energy values to base station 101 and the base station computes the value of Ior and transmits the computed value back to the subscriber unit. By way of another example, base station 101 can transmit the weighting coefficients to subscriber unit 105 so that Ior can be computed in the subscriber unit. In yet another example, subscriber unit 105 can compute the weighting coefficients for base station 101. Thus, subscriber unit 105 knows the weighting coefficients used by base station 101, and Ior can be computed in the subscriber unit. Subscriber unit 105 then computes the ratio of Ior /Ioc from the separate estimates of / or and I oc .
In some instances, the approximation (equation (2) above)
Ω2 2 * Ω 2 - /).
Figure imgf000019_0001
can be simplified further. In one such embodiment of the present invention, for highspeed data, almost all of the power in the serving cell, or the serving sector when the cell is sectorized, may be allocated to the subscriber unit of interest (a single user, or "high allocation," embodiment) so that Ec /Ior is approximately 1. In such an embodiment, the following approximation may be used:
Figure imgf000020_0001
In another such embodiment of the present invention, where the subscriber unit of interest is located in a "high geometry" environment, that is, when Iπr/Ioc is large, the following approximation may be used:
Figure imgf000020_0002
Combinations of these two cases can be considered as well.
By using one of the above approximations, represented by equations (2), (3), and (4), the problem of jointly optimizing the weighting coefficients for all subscribers 105- 107 in a cell 111 or a sector can be translated into a set of independent optimization problems, whereby the weighting coefficients for each of subscriber unit 105-107 are independently optimized. The complexity of the resulting independent optimization depends on the approximation being used. The optimization problem can also be simplified by using a "low geometry" approximation, for which Ior jIoc is approximately zero. However, since the low geometry approximation is infrequently applicable, the use of the other approximations yields more nearly optimal weighting coefficients.
The SNR expressions herein are given for a CDMA signal, transmitted from an antenna array 120, and received using a matched filter Rake receiver at a subscriber unit 105-107. Each set of weighting coefficients are designed to maximize the SNR at the output of a matched- filter (Rake) receiver in a corresponding subscriber unit 105-107. The SNR expressions yield the following results: (1) the SNR criteria which should be optimized in the selection of the weighting coefficients for antenna array 120 for each of subscriber units 105-107, (2) the fact that when self-interference is considered, the weighting coefficients for antenna array 120 for each of subscriber units 105-107 can be optimized jointly, (3) the set of information which must be fed back from the subscriber units 105-107 to base station 101 in order compute the jointly optimal array weighting coefficients, (4) the SNR behavior of a subscriber unit 105-107 in environments dominated by self-interference ("high geometry" environments), and (5) robust approximations to the SNR which can be optimized independently, rather than jointly.
Other optimization criteria can be defined which allow the subscriber units 105-107 to be optimized independently rather than jointly. For example, the full SNR expression represented by equation (1) could be used, but with the true covariance matrix Ω2 replaced by the approximation given by equation (2)
Ω - /).
Figure imgf000021_0001
This approximation is equal to Ω2 when half of the output signal power of the serving base station, that is base station 101, is transmitted over each of the two elements 121, 122 of antenna array 120 and when the weighting vectors are randomly oriented so that
Figure imgf000021_0002
Since the expression does not depend on the transmit coefficients of the subscribers, each subscriber unit's weighting coefficients can be optimized independently from the other subscriber units.
Since optimization of weighting coefficients is difficult due to the complexity of the SNR expression represented by equation (1), some special and limiting cases exist where optimization of the weighting coefficients is somewhat simpler. One such special c case is when inter-cell interference is dominant. A propagation environment where inter- cell interference is dominant can be represented by forcing the ratio of intra-cell to inter- cell interference Ior /loc to zero, that is, by setting Inr/Ioc equal to zero. Thus, in the limit as Ior jl0c — > 0 , the SNR at the output of the matched filter Rake receiver of the subscriber unit of interest is given by
Figure imgf000021_0003
(6) Equation (6), corresponding to the SNR in the absence of intra-cell interference, is an expression of SNR of a subscriber unit 105-107 that is optimized in the prior art TxAA system. The optimal weighting vector \wl , , w2 , } in this environment is equal to the eigenvector, v , corresponding to the largest eigenvalue, λmiX , of the matrix
Figure imgf000022_0001
Because this matrix does not depend on the weighting coefficients of the other channels, there is no interaction between the weighting coefficient optimizations performed by the individual subscriber units 105-107.
With the optimal transmit weighting vector, the SNR at the output of the matched filter Rake receiver of a subscriber unit of interest is given by
Figure imgf000022_0002
A second special and limiting case where optimization of the weighting coefficients is somewhat simpler is the case where intra-cell interference is dominant.
Environments in which the ratio Ior/Ioc is large are sometimes referred to as "high geometry" environments. In high geometry environments, intra-cell interference is the dominant source of interference when the channel has significant multipath fading. As noted above, if the channels f, and f2 are linearly independent, the limiting behavior of transmit antenna array weighting as Inr/Ioc becomes large can be evaluated by forcing the ratio Ior/Ioc to infinite. Thus, in the limit as ϊor/loc -> ∞, the SNR at the output of the matched filter Rake receiver of the subscriber unit of interest is given by
Figure imgf000023_0001
Due to the dependence of the matrix Ω on { U ) 2ιl }, no direct method exists for finding the optimal transmit weighting vector, and thus, in general, a search of the space
Figure imgf000023_0002
is required to determine the optimal weighting vector.
A third special and limiting case where optimization of the weighting coefficients is somewhat simpler is the case where the power allocated to the communication channel of interest is a reasonably small fraction of the total power transmitted by the serving base station, that is base station 101. That is to say,
Figure imgf000023_0003
In this environment, it can reasonably be argued that
Ω = Ω, (w] ] , w2 l )+ Ω2 ~ Ω2
(12)
so that Ω is approximately independent of {w, , , 2 , } . With this approximation, the SΝR at the output of the matched filter Rake receiver of the subscriber unit of interest becomes
Figure imgf000023_0004
(13) where
Φ
Figure imgf000024_0001
The symmetric positive semi-definite matrix Φ has a unique symmetric positive semi- definite square root A , such that
Φ = Λ Λ.
If the positive semi-definite matrix Λ is positive definite, then Λ will have a uniquely defined inverse Λ"1. Let w denote the vector \wi , , w2 , } and define the vector y such that
y = Λw .
With these definitions, it follows that
Figure imgf000024_0002
N— tmnax | y | )
= N^λ 2 m.
(15)
The upper bound in the above expression is met only if
= ot vm m„ax
for some complex scalar a , where vmax is the eigenvector corresponding to the largest eigenvalue, λnm , of the matrix
Figure imgf000025_0001
The optimal weighting unit-energy transmit weighting vector is thus given by
cc v max Λ v max
-Iα v„ Λ"
(17)
and the resulting signal-to-noise ratio is given by
Figure imgf000025_0002
As noted above, the optimal weighting vector depends on the weightings
Figure imgf000025_0003
whi°h rnay change simultaneously with the application of the newly calculated optimal weighting vector {w, , ,w2 1 } . The new vector {w, , , w2 1 } will only be optimal if the weighting vectors of the other channels remain constant.
A fourth special and limiting case where optimization of the weighting coefficients is somewhat simpler is the case where a cell includes only the subscriber unit of interest, that is, a single subscriber unit environment. In such a case, the SΝR at the, output of the matched filter Rake receiver of the subscriber unit of interest is given by
Figure imgf000025_0004
(19)
where the matrices Ψ , Ψ " , and Ψ" " have been defined above. In a single subscriber unit environment in which intra-cell interference is dominant, so that Ior jl0c -» ∞ , the signal-to-noise ratio expression is given by
Figure imgf000026_0001
(20)
The optimal vector of weighting coefficients for the above can be shown to be equivalent to the weighting vector which maximizes the ratio
Figure imgf000026_0002
where ® has been used to denote convolution, and TR * has been used to denote the time reverse conjugate of the given vector. In general, a search will be required to determine the optimal transmitter weighting coefficients.
A simple example demonstrates the effect of intra-cell interference on communication system 100. In this example, the performance of a transmitting communication device antenna array utilizing prior art transmitting antenna array weighting (TxAA) is compared to optimized transmitting antenna array weighting determined in accordance with the present invention and to selection transmit diversity (STD) weighting. Let the channel impulse responses f, and f2 have length 2 and be given by f, - {10} f2 = {l/V2 ,l/V2"} The TxAA weighting vector is proportional to the eigenvector corresponding to the largest eigenvector of the matrix
Figure imgf000027_0001
This matrix has eigenvalues and eigenvectors given by eiSen, , es : ^ ϊ f2 e^ c s : J ' jj' _"
Thus, the normalized TxAA vector w^ of weighting coefficients is given by
Figure imgf000027_0002
In selection transmit diversity (STD), all of the transmitter power is allocated to one or the other of the antennas. The selection diversity weighting chosen here will allocate all of the transmitter power to the first antenna, so that a normalized STD vector STD of weighting coefficients is given by
Figure imgf000027_0003
Reference to equation (1) as well as to the definition of Ω indicates that the following parameters must be known in order to evaluate the performance of the vector w of weighting coefficients for a subscriber unit of interest: Ec jl0r , Io jl0r , as well as the quantities
Figure imgf000028_0001
a, = /. Y A-. , and
J=2
Figure imgf000028_0002
For the puφoses of this example, it will be assumed that half of the total power allocated for code channels 2 through K is transmitted over each of the two antennas, so that
α, = α2 = 1 .
Without loss of generality, the coefficient w, can be assumed to have zero phase. If the weighting coefficients {w>2 } are randomly oriented with respect to each other, then the mean value of α3 will be zero. Thus, for the purposes of this example, it will be assumed that a3 = 0 .
With the above assumptions, the signal-to-noise ratio of TxAA is given by
Figure imgf000028_0003
and the signal-to-noise ratio for selection transmit diversity (STD) is given by
Figure imgf000028_0004
Thus, the relative performance of TxAA and STD is given by
Figure imgf000028_0005
From this expression, it is apparent that as Ior\Ioc — > , the performance of TxAA is 2.3 dB better than the performance of STD. Relative to STD, the largest gain achievable with the TxAA (on a static channel) is 3 dB, and such gain is achievable only if the two channels have equal energy. Thus, in this sense, the example chosen here can be considered to be a good example for demonstrating the benefits of TxAA. However, in the limit as Ior/Ioc — >°°, the relative performance of TxAA and STD is given by
Figure imgf000029_0001
FIG. 5 is a table 500 comparing the SNR at the output of the matched-filter receiver for a signal received from a transmitting communication device employing a TxAA coefficient weighting system and for a transmitting communication device employing an STD system as a function of I0JIor and Ec/Ior . As can be seen in FIG. 4, for this example, STD performs better than TxAA if the intra-cell energy is dominant and subscriber of interest is allocated a sufficiently large fraction of the transmitted power. Such conditions may occur in data applications for which a single high-speed subscriber is allocated the majority of the power transmitted by the base station. FIG. 6 is a table 600 comparing the output of the matched- filter receiver for a signal received from a transmitting communication device employing a TxAA coefficient weighting system and for a transmitting communication device employing optimized transmitting antenna array weighting determined in accordance with an embodiment of the present invention. The gains of the optimized weighting of the present invention can be quite large if intra-cell interference dominates inter-cell interference and i Ec/Ior is large.
In sum, a serving base station (i.e., base station 101) that includes a multiple element antenna array optimizes weighting coefficients that are applied to transmissions to each subscriber unit 105-107 serviced by the base station by determining the weighting coefficients that maximize an expression (equation (1)) for the exact SNR of the forward link (base station-to-subscriber unit) of the base station and the subscriber unit. This expression illustrates that the interference observed by each subscriber unit 105-107 depends on both Ior\Ioc and the transmit weighting coefficients \w , w2 l )κ = applied to each of the subscriber units. Due to this dependence, one subscriber unit cannot optimize its transmit weighting coefficients for the next time interval without knowledge of the weighting coefficients of each of the other subscriber units in the future time interval. Thus, full optimization of the weighting coefficients is a joint, rather than an independent venture. Joint optimization preferably is implemented at serving base station 101 and is based on the base station's knowledge of the channels between itself and each of its subscribers, as well knowledge of the ratio Ior/Ioc observed at each of the subscribers.
This information could be transmitted from each of the subscribers to the base station via a reverse link.
Due to its complexity, joint optimization of the weighting coefficients may have limited applicability. However, optimization criteria can be defined which allow the subscribers to be optimized independently rather than jointly. For example, more nearly optimal weighting coefficients can be computed by substituting the average interference covariance matrix into the expression for the SNR. Since the average interference covariance matrix does not depend on the transmit coefficients of the subscribers, each subscriber can be optimized independently from the others. Because this method accounts for self-interference, it yields a weighting that is more nearly optimal than the current methods of transmit antenna array weighting
The exact SNR analysis was also used to demonstrate that the current methods of transmit weighting are only optimal in the limit as I0 l c 0 - In contrast, in high geometry environments for which IorIIoc large, examples can be constructed for which the the current methods of weighting perform much worse than the simpler selection transmit diversity (STD). Furthermore, the gains predicted from the current methods of transmit weighting with Ior/Ioc = 0 may be significantly be reduced when Ior/Ioc is large.
While the present invention has been particularly shown and described with reference to particular embodiments thereof, it will be understood by those skilled in the art that various changes may be made and equivalents substituted for elements thereof without departing from the spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed herein, but that the invention will include all embodiments falling within the scope of the appended claims.

Claims

What is claimed is:
1. In a communication system comprising a plurality of subscriber units and a transmitting communication device having an antenna array comprised of a plurality of array elements, a method for antenna beamforming comprising a step of jointly optimizing a plurality of weighting coefficients to produce a plurality of optimized weighting coefficients, wherein each optimized weighting coefficient of the plurality of optimized weighting coefficients is associated with an element of the plurality of elements and is further associated with a subscriber unit of the plurality of subscriber units.
2. The method of claim 1, further comprising steps of: modulating a plurality of signals to produce a plurality of modulated signals, wherein each signal of the plurality of signals is modulated based on an optimized weighting coefficient of the plurality of optimized weighting coefficients; transmitting each modulated signal of the plurality of modulated signals via an array element of the plurality of array elements.
3. The method of claim 1, wherein the step of jointly optimizing a plurality of weighting coefficients comprises a step of determining values for the plurality of weighting coefficients that jointly maximize a signal-to-noise ratio for each subscriber unit of the plurality of subscriber units.
4. In a communication system comprising a plurality of subscriber units and a transmitting communication device having an antenna array comprised of a plurality of array elements, a method for antenna beamforming comprising steps of: approximating one or more terms in a joint optimization expression of a signal-to- noise ratio (SNR) to produce an approximation of the joint optimization expression of an SNR; and independently optimizing a set of weighting coefficients of a plurality of sets of weighting coefficients based on the approximation of the joint optimization expression of an SNR to produce a set of optimized weighting coefficients, wherein each set of optimized weighting coefficients of the plurality of sets of optimized weighting coefficients corresponds to a subscriber unit of the plurality of subscriber units.
5. The method of claim 4, wherein each optimized weighting coefficient in a set of optimized weighting coefficients corresponds to an array element of the plurality of array elements and wherein the method further comprises steps of: modulating a plurality of signals to produce a plurality of modulated signals, wherein each signal of the plurality of signals is modulated based on an optimized weighting coefficient of the set of optimized weighting coefficients; transmitting each modulated signal of the plurality of modulated signals via an array element of the plurality of array elements.
6. The method of claim 4, wherein each subscriber unit of the plurality of subscriber units comprises a Rake receiver, wherein a covariance of an output of the Rake receiver of each subscriber unit comprises a contribution to the covariance by the other subscriber units of the plurality of subscriber units, wherein the step of approximating one or more terms in a joint optimization expression of an SNR comprises a step of approximating the covariance of an output of the Rake receiver of each subscriber unit with a contribution to the covariance by the other subscriber units.
7. In a communication system comprising a plurality of subscriber units, a communication device comprising: an antenna array comprising a plurality of array elements; a plurality of weighters, wherein each weighter of the plurality of weighters is coupled to an element of the plurality of elements; and a processor coupled to each weighter of the plurality of weighters, wherein the processor jointly optimizes a plurality of weighting coefficients and wherein each weighting coefficient of the plurality of weighting coefficients is associated with an element of the plurality of elements and is further associated with a subscriber unit of the plurality of subscriber units.
8. The communication device of claim 7, wherein when the communication device transmits data to a subscriber unit of the plurality of subscriber units, the processor provides to each weighter of the plurality of weighters the weighting coefficient associated with the subscriber unit and with the element coupled to the weighter, and wherein each weighter then modulates a signal based on the weighting coefficient received from the processor.
9. In a communication system comprising a plurality of subscriber units, a communication device comprising: an antenna array comprising a plurality of array elements; a plurality of weighters, wherein each weighter of the plurality of weighters is coupled to an element of the plurality of elements; and a processor coupled to each weighter of the plurality of weighters, wherein the processor approximates one or more terms in a joint optimization expression of a signal - to-noise ratio (SNR) to produce an approximation of the joint optimization expression of an SNR and independently optimizes a set of weighting coefficients of a plurality of sets of weighting coefficients based on the approximation of the joint optimization expression of an SNR to produce a set of optimized weighting coefficients, wherein each set of optimized weighting coefficients of the plurality of sets of optimized weighting coefficients corresponds to a subscriber unit of the plurality of subscriber units.
10. The communication device of claim 9, wherein each subscriber unit of the plurality of subscriber units comprises a Rake receiver, wherein a covariance of an output of the Rake receiver of each subscriber unit comprises a contribution to the covariance by the other subscriber units of the plurality of subscriber units, wherein the processor approximates one or more terms in a joint optimization expression of a signal-to-noise ratio (SNR) by approximating the covariance to be equal to the contribution to the covariance by the other subscriber units.
PCT/US2001/007700 2000-03-09 2001-03-09 A method and apparatus for antenna array beamforming WO2001067633A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE60135070T DE60135070D1 (en) 2000-03-09 2001-03-09 METHOD AND DEVICE FOR GROUP ANTENNA JET FORMING
AU2001243560A AU2001243560A1 (en) 2000-03-09 2001-03-09 A method and apparatus for antenna array beamforming
EP01916547A EP1179229B1 (en) 2000-03-09 2001-03-09 A method and apparatus for antenna array beamforming
JP2001566292A JP4679025B2 (en) 2000-03-09 2001-03-09 Antenna beam forming method and communication apparatus
KR10-2001-7014135A KR100483868B1 (en) 2000-03-09 2001-03-09 A method and apparatus for antenna array beamforming

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US18811700P 2000-03-09 2000-03-09
US60/188,117 2000-03-09
US09/801,892 US7164725B2 (en) 2000-03-10 2001-03-08 Method and apparatus for antenna array beamforming
US09/801,892 2001-03-08

Publications (1)

Publication Number Publication Date
WO2001067633A1 true WO2001067633A1 (en) 2001-09-13

Family

ID=26883741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/007700 WO2001067633A1 (en) 2000-03-09 2001-03-09 A method and apparatus for antenna array beamforming

Country Status (7)

Country Link
EP (1) EP1179229B1 (en)
JP (1) JP4679025B2 (en)
KR (1) KR100483868B1 (en)
CN (1) CN1196274C (en)
AU (1) AU2001243560A1 (en)
DE (1) DE60135070D1 (en)
WO (1) WO2001067633A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004032401A1 (en) 2002-10-07 2004-04-15 Nokia Corporation A communication system
EP1445874A1 (en) * 2001-11-13 2004-08-11 Matsushita Electric Industrial Co., Ltd. Communication method and radio communication apparatus
EP1550228A1 (en) * 2002-09-20 2005-07-06 Interdigital Technology Corporation Enhancing reception using intercellular interference cancellation
US6946993B2 (en) 2002-09-27 2005-09-20 Electronics And Telecommunications Research Institute Digital broadcasting service receiver for improving reception ability by switched beam-forming
US8693305B2 (en) 2009-08-24 2014-04-08 Qualcomm Incorporated Method and apparatus for detecting OFDM signals in the presence of frequency orthogonal OFDM interferers
CN104320777A (en) * 2014-10-30 2015-01-28 电子科技大学 Method for improving communication safety of multi-antenna system based on beam forming
KR101546380B1 (en) * 2009-01-20 2015-08-28 삼성전자주식회사 A Method for power allocation Base Stations which transmits signals with cooperative in a wireless communication system and a system thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100500661B1 (en) 2003-06-14 2005-07-12 한국전자통신연구원 Apparatus and method for selecting optimal beam for digital tv receiver
CN100428651C (en) * 2004-02-17 2008-10-22 大唐移动通信设备有限公司 Down wave beam shaping method and device of radio channel
CN100336316C (en) * 2004-05-26 2007-09-05 中兴通讯股份有限公司 Method and device for shaping wave beam form of intellectual antenna
US8085653B2 (en) * 2007-09-08 2011-12-27 Intel Corporation Beamforming with nulling techniques for wireless communications networks
KR101565608B1 (en) * 2008-09-04 2015-11-03 코닌클리케 필립스 엔.브이. Distributed spectrum sensing
CN101771449B (en) * 2008-12-26 2013-03-27 电信科学技术研究院 Indication method, system and device of beam-forming granularity
US8923924B2 (en) * 2012-12-20 2014-12-30 Raytheon Company Embedded element electronically steerable antenna for improved operating bandwidth

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5767807A (en) * 1996-06-05 1998-06-16 International Business Machines Corporation Communication system and methods utilizing a reactively controlled directive array
US6002364A (en) * 1997-07-31 1999-12-14 Cbs Corporation Apparatus and method for beam steering control system of a mobile satellite communications antenna

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5634199A (en) * 1993-04-14 1997-05-27 Stanford University Method of subspace beamforming using adaptive transmitting antennas with feedback
US5909460A (en) * 1995-12-07 1999-06-01 Ericsson, Inc. Efficient apparatus for simultaneous modulation and digital beamforming for an antenna array
US6122260A (en) * 1996-12-16 2000-09-19 Civil Telecommunications, Inc. Smart antenna CDMA wireless communication system
US6061023A (en) * 1997-11-03 2000-05-09 Motorola, Inc. Method and apparatus for producing wide null antenna patterns

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5767807A (en) * 1996-06-05 1998-06-16 International Business Machines Corporation Communication system and methods utilizing a reactively controlled directive array
US6002364A (en) * 1997-07-31 1999-12-14 Cbs Corporation Apparatus and method for beam steering control system of a mobile satellite communications antenna

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1179229A4 *

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10003443B2 (en) 2001-11-13 2018-06-19 Wi-Fi One, Llc Methods and apparatus for transmitting modulation signals
US10630443B2 (en) 2001-11-13 2020-04-21 Wi-Fi One, Llc Radio transmission apparatus and methods
US11223457B2 (en) 2001-11-13 2022-01-11 Panasonic Intellectual Property Corporation Of America Transmission and reception signal processor and method
US11115166B2 (en) 2001-11-13 2021-09-07 Wi-Fi One, Llc Radio transmission apparatus and methods for transmitting a single or a plurality of modulation signals from one or more antenna
US10924241B2 (en) 2001-11-13 2021-02-16 Wi-Fi One, Llc Methods and apparatus for transmitting modulation signals
US10651993B2 (en) 2001-11-13 2020-05-12 Wi-Fi One, Llc Methods and apparatus for transmitting modulation signals
EP1445874A4 (en) * 2001-11-13 2011-01-26 Panasonic Corp Communication method and radio communication apparatus
US7974371B2 (en) 2001-11-13 2011-07-05 Panasonic Corporation Communication method and radio communication apparatus
US8155224B2 (en) 2001-11-13 2012-04-10 Panasonic Corporation Transmission method, transmission apparatus, and reception apparatus
US8229026B2 (en) 2001-11-13 2012-07-24 Panasonic Corporation Processor and processing method for signal transmission
US8428182B2 (en) 2001-11-13 2013-04-23 Panasonic Corporation Communication method and radio communication apparatus
US8446973B2 (en) 2001-11-13 2013-05-21 Panasonic Corporation Transmission and reception apparatus and method
US8594242B2 (en) 2001-11-13 2013-11-26 Panasonic Corporation Method of receiving modulation symbols
US8982998B2 (en) 2001-11-13 2015-03-17 Panasonic Intellectual Property Corporation Of America Transmission and reception apparatus and method
US8705656B2 (en) 2001-11-13 2014-04-22 Panasonic Corporation Transmission and reception apparatus and method
US8744005B2 (en) 2001-11-13 2014-06-03 Panasonic Corporation Method and apparatus for generating modulation signals
US8891678B2 (en) 2001-11-13 2014-11-18 Wi-Fi One, Llc Receiving apparatus and receiving method
US8934578B2 (en) 2001-11-13 2015-01-13 Wi-Fi One, Llc Method of demodulating modulation signals
US11218266B2 (en) 2001-11-13 2022-01-04 Redwood Technologies, Llc Methods and apparatus for transmitting modulation signals
EP1445874A1 (en) * 2001-11-13 2004-08-11 Matsushita Electric Industrial Co., Ltd. Communication method and radio communication apparatus
US10491351B2 (en) 2001-11-13 2019-11-26 Panasonic Intellectual Property Corporation Of America Transmission and reception signal processor and method
US9160596B2 (en) 2001-11-13 2015-10-13 Panasonic Intellectual Property Corporation Of America Transmission and reception signal processor and method
US9363124B2 (en) 2001-11-13 2016-06-07 Panasonic Intellectual Property Corporation Of America Transmission and reception signal processor and method
US9628300B2 (en) 2001-11-13 2017-04-18 Wi-Fi One, Llc Method and signal generating apparatus for generating modulation signals
US9647856B2 (en) 2001-11-13 2017-05-09 Wi-Fi One, Llc Transmission apparatus and transmission method
US9735986B2 (en) 2001-11-13 2017-08-15 Panasonic Intellectual Property Corporation Of America Transmission and reception apparatus and method
US10355841B2 (en) 2001-11-13 2019-07-16 Wi-Fi One, Llc Methods and apparatus for transmitting modulation signals
US10341071B2 (en) 2001-11-13 2019-07-02 Wi-Fi One, Llc Radio transmission apparatus and methods
US10033551B2 (en) 2001-11-13 2018-07-24 Panasonic Intellectual Property Corporation Of America Transmission and reception signal processor and method
US10263749B2 (en) 2001-11-13 2019-04-16 Panasonic Intellectual Property Corporation Of America Transmission and reception signal processor and method
EP1550228A4 (en) * 2002-09-20 2005-11-23 Interdigital Tech Corp Enhancing reception using intercellular interference cancellation
EP1550228A1 (en) * 2002-09-20 2005-07-06 Interdigital Technology Corporation Enhancing reception using intercellular interference cancellation
US6946993B2 (en) 2002-09-27 2005-09-20 Electronics And Telecommunications Research Institute Digital broadcasting service receiver for improving reception ability by switched beam-forming
WO2004032401A1 (en) 2002-10-07 2004-04-15 Nokia Corporation A communication system
US7412212B2 (en) 2002-10-07 2008-08-12 Nokia Corporation Communication system
KR101546380B1 (en) * 2009-01-20 2015-08-28 삼성전자주식회사 A Method for power allocation Base Stations which transmits signals with cooperative in a wireless communication system and a system thereof
US8693305B2 (en) 2009-08-24 2014-04-08 Qualcomm Incorporated Method and apparatus for detecting OFDM signals in the presence of frequency orthogonal OFDM interferers
CN104320777B (en) * 2014-10-30 2017-10-10 电子科技大学 Method for improving communication safety of multi-antenna system based on beam forming
CN104320777A (en) * 2014-10-30 2015-01-28 电子科技大学 Method for improving communication safety of multi-antenna system based on beam forming

Also Published As

Publication number Publication date
EP1179229A1 (en) 2002-02-13
CN1364350A (en) 2002-08-14
EP1179229A4 (en) 2004-12-15
JP2003526991A (en) 2003-09-09
CN1196274C (en) 2005-04-06
JP4679025B2 (en) 2011-04-27
KR20020003876A (en) 2002-01-15
AU2001243560A1 (en) 2001-09-17
EP1179229B1 (en) 2008-07-30
KR100483868B1 (en) 2005-04-20
DE60135070D1 (en) 2008-09-11

Similar Documents

Publication Publication Date Title
US7164725B2 (en) Method and apparatus for antenna array beamforming
US10523284B2 (en) Transmission method and transmission apparatus
KR100526499B1 (en) Apparatus for transmit diversity for more than two antennas and method thereof
US7274678B2 (en) Method and system for transmitting data, with transmission antenna diversity
KR100640470B1 (en) Apparatus for transferring data using transmit antenna diversity scheme in packet service communication system and method thereof
US6690712B2 (en) Apparatus and method for transmission diversity using more than two antennas
US7627347B2 (en) Data transmission parameter optimization in MIMO communications system
RU2387082C2 (en) Method and device for transmission in multi-antenna communication system
EP1078543B1 (en) Code allocation for sectorised radiocommunication systems
RU2305898C2 (en) System and method for transmitting and receiving a signal in mobile communications system, using adaptive antenna array circuit with a set of inputs and a set of outputs
US20050037718A1 (en) Device and method for transmitting and receiving data by a transmit diversity scheme using multiple antennas in a mobile communication system
US7483493B2 (en) Combined frequency-time domain power adaptation for CDMA communication systems
KR20040007661A (en) Method and apparatus for antenna diversity in a wireless communication system
US7020445B1 (en) Wireless base station system, and wireless transmission method
EP1179229B1 (en) A method and apparatus for antenna array beamforming
US6810070B1 (en) Selective multi-carrier direct sequence spread spectrum communication systems and methods
KR101267569B1 (en) Apparatus for transmission in multiple input multiple output system
RU2233032C2 (en) Device and method for diversity transmission using more than two antennas
KR100586391B1 (en) Transmitter using interleaving delay diversity
Mottier et al. Spreading sequence assignment in the downlink of OFCDM systems using multiple transmit antennas
KR20060031188A (en) Method and device for beamforming in communication system
KR20060031193A (en) Method and apparatus for transmitting channel quality indicator of forward auxiliary pilot channel in mobile telecommunication systems

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 01800401.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2001916547

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020017014135

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2001 566292

Country of ref document: JP

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2001916547

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642