Connect public, paid and private patent data with Google Patents Public Datasets

Methods and apparatuses for maintaining a trajectory in sterotaxi for tracking a target inside a body

Info

Publication number
WO2001062173A2
WO2001062173A2 PCT/US2001/005785 US0105785W WO2001062173A2 WO 2001062173 A2 WO2001062173 A2 WO 2001062173A2 US 0105785 W US0105785 W US 0105785W WO 2001062173 A2 WO2001062173 A2 WO 2001062173A2
Authority
WO
Grant status
Application
Patent type
Prior art keywords
target
instrument
point
image
patient
Prior art date
Application number
PCT/US2001/005785
Other languages
French (fr)
Other versions
WO2001062173A3 (en )
Inventor
Ramin Shahidi
Original Assignee
The Board Of Trustees Of The Leland Stanford Junior University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/10Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/107Visualisation of planned trajectories or target regions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2065Tracking using image or pattern recognition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2068Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis using pointers, e.g. pointers having reference marks for determining coordinates of body points
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2072Reference field transducer attached to an instrument or patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • A61B2090/065Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension for measuring contact or contact pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • A61B2090/0818Redundant systems, e.g. using two independent measuring systems and comparing the signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/364Correlation of different images or relation of image positions in respect to the body
    • A61B2090/365Correlation of different images or relation of image positions in respect to the body augmented reality, i.e. correlating a live optical image with another image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras

Abstract

An apparatus and method for adjusting the orientation of a surgical viewing instrument, which may be used to view a patient target site and any intervening tissue from outside the body, as the position of the instrument is changed by a user. The instrument is attached to a robotic arm assembly and is movable by both the user and the robot. As the user moves the instrument to a different position, the robot automatically corrects the orientation of the instrument to maintain a viewing trajectory defined by the axis of the instrument and a target coordinate in the patient target site. In another aspect there is an apparatus and method for using a surgical robot and attached ultrasound probe to track a moving target in a patient's body. The ultrasound probe has a pressure sensor in its tip, which is maintained in contact with a tissue surface at a specific location at a constant pressure. Subject to this constraint, the robot is directed to adjust the orientation of the probe, as the target point moves, to maintain the axis of the probe in line with the target point.

Description

METHODS AND APPARATUSES FOR MAINTAINING A TRAJECTORY IN STEROTAXI FOR TRACKING A TARGET INSIDE A BODY

Field of the Invention The present invention generally relates to lmage- guided, robotic-assisted surgical techniques. More specifically, the invention relates to an apparatus and method for orienting the axis of an instrument on a processor-controlled robotic arm toward a target point in the patient's body to enable a user to find an optimal approach to the target point, as the robotic arm is freely moved in space. The invention also relates to an apparatus and method for tracking a moving indicator inside the body using a processor-controlled robotic arm with a distal-end probe whose tip is held m constant contact with a body surface while the axis of the probe is aligned with the moving indicator. The invention also relates to a processor-readable medium embodying a program of instructions (i.e., software) for implementing each of the methods .

Background of the Invention

In the past several years, the field of image-guided surgery has experienced rapid progress. Recent developments in computation technology allow surgeons to visualize real-time three-dimensional images of a patient target site during surgery. These techniques also allow the surgeon to decide where to position the surgical instrument (s) . Such guidance information has the potential to enable surgeons to achieve more successful clinical outcomes with the added benefits of reduced complications, pain and trauma to the patient.

In one form, image-guided surgery generally involves: (1) acquiring 2-D images of internal anatomical structures of interest, i.e., of a patient target site; (2) reformatting a 2-D image or reconstructing a 3-D image based on the acquired 2-D images; (3) manipulating the images; (4) registering the patient's physical anatomy to the images; (5) targeting a site of interest in the patient; and (6) navigating to that site.

Typically, the acquired 2-D images are reformatted to generate two additional sets of 2-D images. One of the sets of images is parallel to a first plane defined by two of the three axes in a 3-D coordinate system, say, the xy- plane; a second set is parallel to, say, the xz-plane; and a third set is parallel to, say, the yz-plane.

The registration process is the point-for-pomt mapping of one space (e.g., the physical space in which the patient resides) to another space (e.g., the image space in which the patient is viewed) . Registration between the patient and the image provides a basis by which a medical instrument can be tracked in the images as it is moved within the operating field during surgery. A 3-D localizer is used to track the medical instrument relative to the internal structures of the patient as it is navigated in and around the patient target site during surgery. Images of the target site are displayed on a computer monitor to assist the user (e.g., a surgeon) in navigating to the target site. Tracking may be based on, for example, the known mathematics of "triangulation."

Further details regarding techniques involved in image-guided surgery are disclosed in international application, publication no.: WO 99/00052, publication date: January 7, 1999. The contents of this application are incorporated herein by reference. For certain surgical tasks, it may not be possible to accurately achieve the preoperative objectives using only image-based navigational guidance. For such tasks, it may be appropriate to incorporate a robotic or computer- controlled mechanical arm into the image-based navigational system to assist in certain surgical procedures where precision and steadiness is important. For example, robots have been used in orthopedic surgery to precisely position and operate a high-speed pneumatic cutter to remove bone within a patient's femoral canal. However, one useful technique that conventional image-guided, robotic-assisted surgery does not provide is a technique for determining an optimal point of entry of a surgical tool to be used by a surgeon in accessing a target site within the patient's body, by enabling the surgeon to move a viewing instrument in space while a robot to which the instrument is attached enforces the instrument's orientation in the direction of a target point, thereby enabling the surgeon to view the target site and any intervening tissue along the axis of the instrument, as it is moved.

Another useful technique that conventional lmage- guided, robotic-assisted surgery does not provide is a technique for tracking a moving target m the patient's body using a robot -held probe whose orientation is enforced m the direction of the target while the probe tip is held at a constant pressure against a surface of the body.

Summary of the Invention

The present invention overcomes these problems by providing apparatuses and methods for accomplishing these techniques . In one aspect, the invention involves a device for determining the optimal point of entry of a surgical tool adapted for use by a surgeon in accessing a target site within a patient's body. The device includes an articulated mechanical arm, such as multi-segmented robotic arm, having or accommodating a distal-end pointer, and a tracking controller that tracks the position and orientation of the pointer with respect to a predetermined target coordinate. An imaging device in communication with the tracking controller generates an image of the target site and intervening tissue as seen from a selected point outside of the body, along a line between that point and the target point coordinate. An actuator, in communication with the tracking controller, adjusts the position of the mechanical arm so as to orient the axis of the pointer in the direction of the target point coordinate, as the pointer is moved m space to a selected position outside the body, such that the user can approach the target site, or view the target site and intervening tissue, along a trajectory from the selected position to the target point coordinate.

Preferably, the imaging device constructs an image of the target site using previously obtained scan data, and the predetermined target coordinate is assigned using the constructed image .

Once the optimal point of entry is determined, the pointer can be replaced with a surgical tool to enter the patient's target site along the established trajectory. In another aspect, the invention involves a method for maintaining a trajectory toward a target site and for viewing any intervening tissue along the trajectory, as defined by the axis of a viewing instrument and a target coordinate in the target site, while the instrument is moved m space. The method comprises acquiring scans of the patient; using the acquired scans to construct an image of the patient target site; assigning the target coordinate on the constructed image; correlating an image coordinate system with an instrument coordinate system; and controlling the orientation of the instrument to maintain the defined trajectory, as the instrument is moved in space outside the body.

This method may be implemented using a program of instructions (e.g., software) that is embodied on a processor-readable medium and that is executed by a processor .

In a further aspect, the invention involves a device for maintaining a trajectory between a tip of an instrument and a moving target m a patient's body. The device includes an articulated mechanical arm having or accommodating a distal-end instrument having a tip that has or accommodates a force contact sensor, and a tracking mechanism for tracking the position and orientation of the instrument with respect to coordinates of the moving target. A processor in communication with the tracking mechanism calculates and updates the coordinates of the moving target. An actuator, in communication with the tracking mechanism, adjusts the orientation of the mechanical arm, while maintaining a constant pressure between the instrument tip and a surface of the body, so as to maintain the trajectory between the tip of the instrument in the direction of the moving target.

In still another aspect, the invention involves a method for maintaining a trajectory between a tip of an instrument and a moving target m a patient's body using a robot-held instrument. The method comprises acquiring scans of the patient; using the acquired scans to construct an image of the patient target site; assigning the target coordinate on the constructed image; and controlling the orientation of the instrument to maintain a trajectory defined by the axis of the probe and a point on the moving target, while maintaining the tip of the instrument at a fixed location against a tissue surface at a constant pressure, as the instrument is moved in space outside the body.

This method may also be implemented using a program of instructions (e.g., software) that is embodied on a processor-readable medium and that is executed by a processor .

Brief Description of the Figures Fig. 1 is a partially perspective, partially schematic view of an image-guided, robotic-assisted surgery system constructed in accordance with embodiments of the invention.

Fig. 2 is a flow chart illustrating a general mode of operation n accordance with embodiments of the present invention .

Fig. 3 is a schematic view of the robotic assembly and target point, showing the robot in different positions with the pointer's orientation directed at the target point, in accordance with a first embodiment of the invention .

Fig. 4 is a flow chart illustrating the tracking process, according to a first embodiment of the invention. Fig. 5 is a schematic view of the robotic assembly, target point and tissue surface, showing the robot in different positions with the probe's orientation directed at the target point while the tip of the probe is maintained at a constant pressure against the tissue surface .

Fig. 6 is a flow chart illustrating the tracking process, according to a second embodiment of the invention.

Figs . 7A and 7B are perspective illustrations of medical or surgical instruments that may be used in the different embodiments of the invention.

Detailed Description of the Invention

Fig. 1 illustrates an image-guided, robotic-assisted surgery system, which may be used to implement embodiments of the present invention. The system includes a surgical or medical instrument 12 having an elongate axis 14 and a tip 16. In one embodiment, the instrument may be a viewing instrument, such as an endoscope or surgical microscope, equipped with a lens for viewing an internal target site 18 and any intervening tissue 19 of a patient 20. In another embodiment, the instrument is preferably a probe, such as an ultrasound probe for tracking a moving target inside the patient's body. The instrument may also include a pointer or a tool, such as a drill.

In accordance with embodiments of the invention, instrument 12 is releasably attached to the distal-end of an end arm segment 22 of a processor-controlled, motor- driven, multi-arm assembly 24. The assembly is preferably a robotic-arm assembly with one or more fine control motors for precisely controlling movement of the individual arm segments, which are interconnected by universal joints 26 or the like. Typically, there will be one less universal joint than arm segments. The first arm segment of the robotic-arm assembly is attached to a base 28. The robotic-arm assembly may be an articulated arm, a haptic device, or a cobotic device. Descriptions of cobotic devices may be found, for example, m U.S. patent no. 5,952,796.

Before the tracking procedures of the present invention are implemented, the patient's target site is registered to images of the site. This may be accomplished in a variety of ways. In one embodiment, a plurality of fiducial markers 30 placed on the patient near the target site are used to register corresponding points on preoperative or intraoperative 2-D image scans of patient target site 18. Corresponding points are those points that represent the same anatomical features in the two spaces .

In general, there are two types of registration image-to-image and image-to-physical . The algorithms employed to accomplish registration are mathematically and algonthmically identical in each case. They use as input the 3-D positions of three or more fiducials in both spaces, and they output the point-for-point mapping from one space to another. The mapping addresses the physical differences in position of the two spaces, which consists of a shift, a rotation, a scale or a combination thereof.

The correct mapping, or registration, is the particular rotation, shift or scale that will map all the localized fiducial positions in one 3-D space, for example, the physical space around the patient in the operating room, to the corresponding localized positions in the second space, for example, a CT image. If these fiducial positions are properly mapped then, unless there is distortion in the images, all non-fiducial points in the first space will be mapped to corresponding points in the second space as well. These non-fiducial points are the anatomical points of interest to the surgeon. Because of inevitable small errors in the localization of the fiducial points, it is rarely possible to find a rotation, a shift or a scale that will map all fiducial points exactly from one space to the other. Therefore, an algorithm is used that finds the rotation, shift or scale that will produce the smallest fiducial mapping error (in the standard least-squares sense) . This mapping error provides a measure of the success of the registration. It is computed by first calculating, for each fiducial, the distance between its localized position in the second space and the localized position in the first space as mapped into the second space. The mapping error is then computed by calculating the square root of the average of the squares of these distances. In one embodiment, a computer system is used to render and display the 2-D preoperative images and render 3-D volumetric perspective images of target site 18 on a display device. Registration is then accomplished by successively pointing or touching the tip of the instrument to each of the fiducial markers on the patient, moving the computer cursor onto the corresponding image fiducial, and activating an appropriate input device (e.g., clicking a mouse or foot pedal) to map the physical fiducial to the image fiducial. This may be done before or after the instrument is attached to the robot.

If done before instrument attachment, instrument 12 will have associated with it a mechanism for tracking the instrument. For example, the instrument can be equipped with a plurality of tracking elements 32 on its shaft 14 which emit signals to sensors 34 positioned in view of the instrument. Both the instrument and the sensors will be in communication with a tracking controller, which is in communication with the computer system that processes the signals received by sensors 34 in carrying out the registration process.

Alternatively, registration may be done with the instrument attached to the robot, since the robot is in two-way communication with the tracking controller. As previously noted, the registration procedure described above is merely one way of carrying out the registration process. Other ways known n the art may also be employed. During the surgical procedure, with the instrument attached to the robot, the instrument's position and orientation is known with respect to the robot's coordinate system. Thus, by processing the signals received from the robot through the tracking controller, the computer system is able to track the movement of instrument 12. The instrument may also be tracked using tracking elements 32.

The tracking controller may be a separate element or it may be physically integrated with the computer system and may even be embodied in an option card which is inserted into an available card slot in the computer.

Various aspects of the image-guided, robotic-assisted surgery procedure, including tracking, control of the robotic-arm assembly to enforce a desired orientation of the instrument, and image rendering, may be implemented by a program of instructions (e.g., software) based on initial user input which may be supplied by various input devices such as a keyboard and mouse. Software implementing one or more of the various aspects of the present invention may be written to run with existing software used for image-guided surgery.

The software for such tasks may be fetched by a processor, such as a central processing unit (CPU), from random-access memory (RAM) for execution. Other processors may also be used m conjunction with the CPU such as a graphics chip for rendering images. The software may be stored in read-only memory (ROM) on the computer system and transferred to RAM when m use.

Alternatively, the software may be transferred to RAM, or transferred directly to the appropriate processor for execution, from ROM, or through a storage medium such as a disk drive, or through a communications device such as a modem or network interface. More broadly, the software may be conveyed by any medium that is readable by the processor. Such media may include, for example, various magnetic media such as disks or tapes, various optical media such as compact disks, as well as various communication paths throughout the electromagnetic spectrum including infrared signals, signals transmitted through a network or the internet, and carrier waves encoded to transmit the software.

As an alternative to software implementation, the above-described aspects of the invention may be implemented with functionally equivalent hardware using discrete components, application specific integrated circuits (ASICs), digital signal processing circuits, or the like. Such hardware may be physically integrated with the computer processor (s) or may be a separate device which may be embodied on a computer card that can be inserted into an available card slot in the computer.

Thus, the above-mentioned aspects of the invention can be implemented using software, hardware, or combination thereof. The disclosure provides the functional information one skilled in the art would require to implement a system to perform the functions required, with software, functionally equivalent hardware, or a combination thereof.

Fig. 2 is a flow chart illustrating the process of setting up the robotic tracking in accordance with embodiments of the invention. First, the preoperative or intraoperative scan data representing internal scans of the patient target site are acquired and used to construct various 2-D images taken in different planes and a 3-D image of the patient target site. These images are displayed on the display device for viewing by the user.

The user then assigns an "image" target point 40 on the 2- D images by, for example, pointing the computer cursor at the desired location on the images and inputting information to the computer (e.g., by clicking a mouse or foot pedal) to establish that point as the image target point. The computer establishes a correspondence between assigned target point 40 and a target point 42 in the patient's body by, for example, using point-to-point mapping as is done in the registration procedure. Point- to-point mapping essentially involves determining a transformation matrix that maps the coordinates of point 42 to another set of coordinates representing point 40. The computer stores the target point coordinate data in a storage media, such RAM, ROM or disk. Next, the robot is tracked, as the predetermined task is carried out by the robot .

In the first embodiment, the task of the robot is to make the necessary adjustments to keep the viewing instrument directed toward the target point, as the surgeon moves the instrument in space to determine the optimal point of entry to the target site within the patient's body. For example, as the surgeon grasps the end segment 22 and applies a force (F) to it to move the tip of the instrument from point xi to point x2, as shown in Fig. 3, the computer determines the appropriate correction to be applied, and the tracking controller sends signals to the robot to activate its internal motors to move one or more of the arm segments to reorient the axis of the instrument toward the direction of target point 42. This correction, while not instantaneous, is made as the surgeon moves the end arm segment to quasi- contmuously maintain colmearity between the axis of the instrument and target point 42.

The instrument is a medical instrument, such as a viewing instrument (e.g., an endoscope) adapted to generate image signals indicative of the view along the axis of the instrument and to transmit such signals to the tracking controller which, in turn, sends the signals to the computer system which processes the signals and renders on the display an image of the patient's target site and any intervening tissue, as viewed along the axis of the instrument . An exemplary endoscope is illustrated in Fig. 7A.

The endoscope 112 has an elongate axis 114 and a base 115 that fits into an appropriately sized bore m the distal end of end arm segment 22. The base contains circuitry to transmit images captured by the endoscope through its lens 117. A fiber optic cable 121 and a video cable 123 interface with the endoscope through an adapter 125 to transmit signals to the tracking controller and on to the computer system, as is known in the art.

Fig. 4 is a flow chart showing the interactive robot correction process according to the first embodiment of the invention. With the instrument in a present state with its axis aligned with the target point, a user applies a force either to the instrument itself or to the end arm segment of the robot to move the tip of the instrument from one point to another. The computer determines if the applied force has moved the axis of the instrument off-trajectory with respect to the target point and also determines the appropriate correction required by analyzing the signals received from the robot indicative of the position and orientation of the instrument and comparing this data with the target point coordinate data stored in memory. The tracking controller, who is in continuous two-way communication with the computer, then sends signals to the robot to activate its motors to carry out the correction.

In accordance with a second embodiment, the medical instrument is a surgical tool that has a pressure sensor/transducer or the like in the tip of the tool. The tool is preferably an ultrasonic probe, for example, as shown in Fig. 7B. The ultrasound probe has an elongate portion 224, one end of which fits in a bore in the distal end of end arm segment 22. The other end of the probe terminates in a head 227 that has pressure or force contact sensors 250 positioned therein. The sensors are positioned so that the contact surface of the transdu are approximately flush with the contact surface of the probe head. As schematically shown in Fig. 7B, the sensors are m communication with the processor circuitry that controls robotic assembly 24 to provide a feedback signal indicative of the pressure or contact between the probe and a tissue surface. The probe further includes an image array 260 that tracks a moving target in its field of view. Appropriate communication paths may be provided so that the images obtained by the image array may be processed by the computer system and displayed. This second embodiment is similar to the first embodiment in that the probe' s orientation is enforced along the axis of the probe toward the target point. Here, however, the surgeon does not move the probe; instead, the robot applies the only driving force on the probe to track a moving target, such as the tip of a biopsy needle, inside the body, while the tip of the probe is maintained at a substantially constant pressure against a tissue surface. The tip of the probe is fixed, and the robot is actuated to move the proximal end of the end arm segment to maintain colmearity between the axis of the probe and the target point, as the target moves. Simultaneously, the pressure sensor (s) in the probe tip provide feedback signals to the robot in order to maintain the substantially constant pressure between the probe and tissue surface. During the entire targeting and scanning procedure, the position and the pressure of the probe tip remains constant, as illustrated in Fig. 5. As is the case with the correction in the previous embodiment, this correction, while not instantaneous, is made on a realtime basis.

The target can be tracked via a 3-D localizer or through image processing, .e., viewing the target on an image . Fig. 6 is a flow chart illustrating the tracking process according to the second embodiment of the invention. With the probe in an initial state with its axis aligned with the target point and its tip held against a tissue surface at a constant, predetermined pressure, the target point moves within the patient's body. As this occurs, the computer updates the coordinates of the target point, determines if the axis of the probe is off-trajectory with respect to the "new" target point coordinates, and determines the appropriate correction required by comparing the "present" position and orientation of the instrument data with the updated target point coordinate data. The tracking controller, who is in continuous communication with the computer, then sends signals to the robot to carry out the correction. While this correction is being carried out, the pressure transducer in the probe tip is also sending feedback signals to the robot to maintain the predetermined pressure between the tissue surface and the probe tip. This embodiment has various applications. For example, the ultrasonic probe may be used to track a point (e.g., the tip) of a moving biopsy, as it is approaching a targeted lesion inside the body. While embodiments of the invention have been described, it will be apparent to those skilled in the art m light of the foregoing description that many further alternatives, modifications and variations are possible. The invention described herein is intended to embrace all such alternatives, modifications and variations as may fall within the spirit and scope of the appended claims.

Claims

WHAT IS CLAIMED:
1. A device for determining the optimal point of entry of a surgical tool adapted for use by a surgeon in accessing a target site within a patient's body, comprising:
(a) an articulated mechanical arm having or accommodating a distal-end pointer;
(b) a tracking controller for tracking the position and orientation of the pointer with respect to a predetermined target coordinate;
(c) an imaging device in communication with the tracking controller for generating an image of the target site and intervening tissue as seen from a selected point outside of the body, along a line between that point and the target point coordinate; and
(d) an actuator, m communication with the tracking controller, for adjusting the position of the mechanical arm so as to orient the axis of the pointer in the direction of the target point coordinate, as the pointer is moved m space to a selected position outside the body; wherein the user can approach the target site, or view the target site and intervening tissue, along a trajectory from the selected position to the target point coordinate .
2. The device of claim 1, wherein the imaging device constructs an image of the target site using previously obtained scan data, and wherein the predetermined target coordinate is assigned using the constructed image.
3. The device of claim 1, wherein the mechanical arm is a multi-segmented arm.
4. The device of claim 1, wherein, once the optimal point of entry is determined, the pointer can be replaced with a surgical tool to enter the patient's target site along the established trajectory.
5. A method for maintaining a trajectory toward a target site and for viewing any intervening tissue along the trajectory, as defined by the axis of a viewing instrument and a target coordinate in the target site, while the instrument is moved in space, comprising:
(a) acquiring scans of the patient;
(b) using the acquired scans to construct an image of the patient target site;
(c) assigning the target coordinate on the constructed image;
(d) correlating an image coordinate system with an instrument coordinate system; and
(e) controlling the orientation of the instrument to maintain the defined trajectory, as the instrument is moved in space outside the body.
6. A processor-readable medium embodying a program of instructions for execution by a processor to perform a method of maintaining a trajectory toward a target site, as defined by the axis of a viewing instrument and a target coordinate in the target site, while the instrument is moved in space, the program of instructions comprising instructions for:
(a) acquiring scans of the patient; (b) using the acquired scans to construct an image of the patient target site;
(c) assigning the target coordinate on the constructed image; (d) correlating an image coordinate system with an instrument coordinate system; and
(e) controlling the orientation of the instrument to maintain the defined trajectory, as the instrument is moved m space outside the body.
7. A device for maintaining a trajectory between a tip of an instrument and a moving target in a patient's body, comprising : (a) an articulated mechanical arm having or accommodating a distal-end instrument having a tip that has or accommodates a force contact sensor;
(b) a tracking mechanism for tracking the position and orientation of the instrument with respect to coordinates of the moving target;
(c) a processor in communication with the tracking mechanism for calculating and updating the coordinates of the moving target; and
(d) an actuator, in communication with the tracking mechanism, for adjusting the orientation of the mechanical arm, while maintaining a constant pressure between the instrument tip and a surface of the body, so as to maintain the trajectory between the tip of the instrument in the direction of the moving target.
8. A method for maintaining a trajectory between a tip of an instrument and a moving target in a patient's body using a robot-held instrument, comprising:
(a) acquiring scans of the patient; (b) using the acquired scans to construct an image of the patient target site;
(c) assigning the target coordinate on the constructed image; and (d) controlling the orientation of the instrument to maintain a trajectory defined by the axis of the probe and a point on the moving target, while maintaining the tip of the instrument at a fixed location against a tissue surface at a constant pressure, as the instrument is moved n space outside the body.
9. A processor-readable medium embodying a program of instructions for execution by a processor to perform a method of maintaining a trajectory between a tip of an instrument and a moving target in a patient' s body using a robot-held instrument, the program of instructions comprising instructions for:
(a) acquiring scans of the patient; (b) using the acquired scans to construct an image of the patient target site;
(c) assigning the target coordinate on the constructed image; and
(d) controlling the orientation of the instrument to maintain a trajectory defined by the axis of the probe and a point on the moving target, while maintaining the tip of the instrument at a fixed location against a tissue surface at a constant pressure, as the instrument is moved in space outside the body.
PCT/US2001/005785 2000-02-25 2001-02-23 Methods and apparatuses for maintaining a trajectory in sterotaxi for tracking a target inside a body WO2001062173A3 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18503600 true 2000-02-25 2000-02-25
US60/185,036 2000-02-25

Publications (2)

Publication Number Publication Date
WO2001062173A2 true true WO2001062173A2 (en) 2001-08-30
WO2001062173A3 true WO2001062173A3 (en) 2002-04-11

Family

ID=22679291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/005785 WO2001062173A3 (en) 2000-02-25 2001-02-23 Methods and apparatuses for maintaining a trajectory in sterotaxi for tracking a target inside a body

Country Status (2)

Country Link
US (3) US20010025183A1 (en)
WO (1) WO2001062173A3 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2830743A1 (en) * 2001-10-11 2003-04-18 Surgiview Sa Feeler and transmitter pen for surgery, comprises cylindrical pen case with internal guide bearings for spring loaded rod, the rod having a contact sphere at one end and marker transmitters at other
EP1450683A2 (en) * 2001-11-08 2004-09-01 The Johns Hopkins University School Of Medicine System and method for robot targeting under flouroscopy based on image servoing
WO2009037576A3 (en) * 2007-04-16 2010-02-04 Neuroarm Surgical Ltd. Methods, devices, and systems for non-mechanically restricting and/or programming movement of a tool of a manipulator along a single axis
WO2009034477A3 (en) * 2007-04-16 2010-02-04 Neuroarm Surgical Ltd. Frame mapping and force feedback methods, devices and systems
EP2070487A3 (en) * 2002-08-13 2010-05-12 Microbotics Corporation Microsurgical robot system
US8560118B2 (en) 2007-04-16 2013-10-15 Neuroarm Surgical Ltd. Methods, devices, and systems for non-mechanically restricting and/or programming movement of a tool of a manipulator along a single axis
CN104083219A (en) * 2014-07-11 2014-10-08 山东大学 Force-sensor-based coupling method for extracranial and intracranial coordinate systems in brain stereotactic surgery of neurosurgery
CN104105455A (en) * 2011-12-03 2014-10-15 皇家飞利浦有限公司 Robotic guidance of ultrasound probe in endoscopic surgery
WO2014186715A1 (en) 2013-05-16 2014-11-20 Intuitive Surgical Operations, Inc. Systems and methods for robotic medical system integration with external imaging
WO2016096366A1 (en) * 2014-12-17 2016-06-23 Kuka Roboter Gmbh System for robot-assisted medical treatment

Families Citing this family (241)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7635390B1 (en) 2000-01-14 2009-12-22 Marctec, Llc Joint replacement component having a modular articulating surface
US6263989B1 (en) 1998-03-27 2001-07-24 Irobot Corporation Robotic platform
US7708741B1 (en) 2001-08-28 2010-05-04 Marctec, Llc Method of preparing bones for knee replacement surgery
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9128486B2 (en) 2002-01-24 2015-09-08 Irobot Corporation Navigational control system for a robotic device
US20010025183A1 (en) * 2000-02-25 2001-09-27 Ramin Shahidi Methods and apparatuses for maintaining a trajectory in sterotaxi for tracking a target inside a body
US6845297B2 (en) * 2000-05-01 2005-01-18 Irobot Corporation Method and system for remote control of mobile robot
US6690134B1 (en) 2001-01-24 2004-02-10 Irobot Corporation Method and system for robot localization and confinement
US7663333B2 (en) 2001-06-12 2010-02-16 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
DE50113703D1 (en) * 2001-10-10 2008-04-17 Brainlab Ag Medical instrument with touch-sensitive tip
US7571511B2 (en) 2002-01-03 2009-08-11 Irobot Corporation Autonomous floor-cleaning robot
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8010180B2 (en) 2002-03-06 2011-08-30 Mako Surgical Corp. Haptic guidance system and method
US7747311B2 (en) * 2002-03-06 2010-06-29 Mako Surgical Corp. System and method for interactive haptic positioning of a medical device
US6892090B2 (en) * 2002-08-19 2005-05-10 Surgical Navigation Technologies, Inc. Method and apparatus for virtual endoscopy
JP4731908B2 (en) * 2002-09-26 2011-07-27 デピュイ・プロダクツ・インコーポレイテッド Method and apparatus for controlling a surgical bar during orthopedic procedures
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US20050004580A1 (en) * 2003-07-01 2005-01-06 Tommi Jokiniemi System for pointing a lesion in an X-rayed object
WO2005117710A3 (en) * 2004-05-07 2007-07-05 Emad Moussa Boctor Image guided interventions with interstitial or transmission ultrasound
US20050261591A1 (en) * 2003-07-21 2005-11-24 The Johns Hopkins University Image guided interventions with interstitial or transmission ultrasound
EP2316328B1 (en) * 2003-09-15 2012-05-09 Super Dimension Ltd. Wrap-around holding device for use with bronchoscopes
KR101086092B1 (en) 2004-01-21 2011-11-25 아이로보트 코퍼레이션 Method of docking an autonomous robot
US6956348B2 (en) 2004-01-28 2005-10-18 Irobot Corporation Debris sensor for cleaning apparatus
WO2005098476A1 (en) 2004-03-29 2005-10-20 Evolution Robotics, Inc. Method and apparatus for position estimation using reflected light sources
WO2006002385A1 (en) 2004-06-24 2006-01-05 Irobot Corporation Programming and diagnostic tool for a mobile robot
US7706917B1 (en) 2004-07-07 2010-04-27 Irobot Corporation Celestial navigation system for an autonomous robot
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US8392021B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US7620476B2 (en) 2005-02-18 2009-11-17 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
EP2289384B1 (en) 2005-02-18 2013-07-03 iRobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8398541B2 (en) 2006-06-06 2013-03-19 Intuitive Surgical Operations, Inc. Interactive user interfaces for robotic minimally invasive surgical systems
EP2289452A3 (en) * 2005-06-06 2015-12-30 Intuitive Surgical Operations, Inc. Laparoscopic ultrasound robotic surgical system
US7653263B2 (en) * 2005-06-30 2010-01-26 General Electric Company Method and system for volumetric comparative image analysis and diagnosis
US20130334284A1 (en) 2005-08-31 2013-12-19 Ethicon Endo-Surgery, Inc. Fastener cartridge assembly comprising a fixed anvil and different staple heights
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US20070194082A1 (en) 2005-08-31 2007-08-23 Morgan Jerome R Surgical stapling device with anvil having staple forming pockets of varying depths
KR101099808B1 (en) 2005-12-02 2011-12-27 아이로보트 코퍼레이션 Robot System
EP2816434A3 (en) 2005-12-02 2015-01-28 iRobot Corporation Autonomous coverage robot
US9144360B2 (en) 2005-12-02 2015-09-29 Irobot Corporation Autonomous coverage robot navigation system
EP1969438B1 (en) 2005-12-02 2009-09-09 iRobot Corporation Modular robot
US7441298B2 (en) 2005-12-02 2008-10-28 Irobot Corporation Coverage robot mobility
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US8161977B2 (en) 2006-01-31 2012-04-24 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US8394115B2 (en) 2006-03-22 2013-03-12 Ethicon Endo-Surgery, Inc. Composite end effector for an ultrasonic surgical instrument
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US20070225562A1 (en) 2006-03-23 2007-09-27 Ethicon Endo-Surgery, Inc. Articulating endoscopic accessory channel
US9675375B2 (en) * 2006-03-29 2017-06-13 Ethicon Llc Ultrasonic surgical system and method
DE202006007164U1 (en) * 2006-05-03 2007-09-20 Mann+Hummel Gmbh Device for receiving and transporting contaminated with chip cooling lubricants
US8108092B2 (en) 2006-07-14 2012-01-31 Irobot Corporation Autonomous behaviors for a remote vehicle
WO2007137234A3 (en) 2006-05-19 2008-04-17 Irobot Corp Removing debris from cleaning robots
US9724165B2 (en) * 2006-05-19 2017-08-08 Mako Surgical Corp. System and method for verifying calibration of a surgical device
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
WO2008063249A3 (en) * 2006-07-11 2008-10-02 Edward D Light Real-time 3-d ultrasound guidance of surgical robotics
US8326469B2 (en) * 2006-07-14 2012-12-04 Irobot Corporation Autonomous behaviors for a remote vehicle
US20080082109A1 (en) * 2006-09-08 2008-04-03 Hansen Medical, Inc. Robotic surgical system with forward-oriented field of view guide instrument navigation
US7665647B2 (en) 2006-09-29 2010-02-23 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling device with closure apparatus for limiting maximum tissue compression force
US8255092B2 (en) * 2007-05-14 2012-08-28 Irobot Corporation Autonomous behaviors for a remote vehicle
US8843244B2 (en) * 2006-10-06 2014-09-23 Irobot Corporation Autonomous behaviors for a remove vehicle
US8401620B2 (en) 2006-10-16 2013-03-19 Perfint Healthcare Private Limited Needle positioning apparatus and method
DE502006002276D1 (en) * 2006-10-26 2009-01-15 Brainlab Ag Integrated medical tracking system
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8459520B2 (en) 2007-01-10 2013-06-11 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US20080169332A1 (en) 2007-01-11 2008-07-17 Shelton Frederick E Surgical stapling device with a curved cutting member
US8226675B2 (en) 2007-03-22 2012-07-24 Ethicon Endo-Surgery, Inc. Surgical instruments
US8142461B2 (en) 2007-03-22 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical instruments
US20080234709A1 (en) 2007-03-22 2008-09-25 Houser Kevin L Ultrasonic surgical instrument and cartilage and bone shaping blades therefor
KR101393196B1 (en) 2007-05-09 2014-05-08 아이로보트 코퍼레이션 Small autonomous coverage robot
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US8408439B2 (en) 2007-06-22 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US8590762B2 (en) 2007-06-29 2013-11-26 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configurations
US8882791B2 (en) 2007-07-27 2014-11-11 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8523889B2 (en) 2007-07-27 2013-09-03 Ethicon Endo-Surgery, Inc. Ultrasonic end effectors with increased active length
US8808319B2 (en) 2007-07-27 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical instruments
US8430898B2 (en) 2007-07-31 2013-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8512365B2 (en) 2007-07-31 2013-08-20 Ethicon Endo-Surgery, Inc. Surgical instruments
EP2217157A2 (en) 2007-10-05 2010-08-18 Ethicon Endo-Surgery, Inc. Ergonomic surgical instruments
US8057498B2 (en) 2007-11-30 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US8752749B2 (en) 2008-02-14 2014-06-17 Ethicon Endo-Surgery, Inc. Robotically-controlled disposable motor-driven loading unit
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US20130153636A1 (en) 2008-02-15 2013-06-20 Ethicon Endo-Surgery, Inc. Implantable arrangements for surgical staple cartridges
US9770245B2 (en) 2008-02-15 2017-09-26 Ethicon Llc Layer arrangements for surgical staple cartridges
US8317744B2 (en) 2008-03-27 2012-11-27 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter manipulator assembly
US9241768B2 (en) 2008-03-27 2016-01-26 St. Jude Medical, Atrial Fibrillation Division, Inc. Intelligent input device controller for a robotic catheter system
US8641664B2 (en) 2008-03-27 2014-02-04 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter system with dynamic response
US9161817B2 (en) 2008-03-27 2015-10-20 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter system
US8684962B2 (en) 2008-03-27 2014-04-01 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter device cartridge
WO2009120992A8 (en) 2008-03-27 2010-02-18 St. Jude Medical, Atrial Fibrillation Division Inc. Robotic castheter system input device
US8343096B2 (en) 2008-03-27 2013-01-01 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter system
US9002076B2 (en) * 2008-04-15 2015-04-07 Medtronic, Inc. Method and apparatus for optimal trajectory planning
WO2009144623A1 (en) * 2008-05-26 2009-12-03 Koninklijke Philips Electronics N.V. Control of measurement and/or treatment means of a probe
DE102008030244A1 (en) * 2008-06-25 2009-12-31 Siemens Aktiengesellschaft Method of supporting percutaneous interventions
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US8058771B2 (en) 2008-08-06 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic device for cutting and coagulating with stepped output
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US9439736B2 (en) 2009-07-22 2016-09-13 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for controlling a remote medical device guidance system in three-dimensions using gestures
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US20100125284A1 (en) * 2008-11-20 2010-05-20 Hansen Medical, Inc. Registered instrument movement integration
US8453907B2 (en) 2009-02-06 2013-06-04 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with cutting member reversing mechanism
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US8319400B2 (en) 2009-06-24 2012-11-27 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8461744B2 (en) 2009-07-15 2013-06-11 Ethicon Endo-Surgery, Inc. Rotating transducer mount for ultrasonic surgical instruments
US8663220B2 (en) 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US9017326B2 (en) 2009-07-15 2015-04-28 Ethicon Endo-Surgery, Inc. Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments
US9168054B2 (en) 2009-10-09 2015-10-27 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US8951248B2 (en) 2009-10-09 2015-02-10 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US8961547B2 (en) 2010-02-11 2015-02-24 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with moving cutting implement
US8531064B2 (en) 2010-02-11 2013-09-10 Ethicon Endo-Surgery, Inc. Ultrasonically powered surgical instruments with rotating cutting implement
US8951272B2 (en) 2010-02-11 2015-02-10 Ethicon Endo-Surgery, Inc. Seal arrangements for ultrasonically powered surgical instruments
US8579928B2 (en) 2010-02-11 2013-11-12 Ethicon Endo-Surgery, Inc. Outer sheath and blade arrangements for ultrasonic surgical instruments
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
US8486096B2 (en) 2010-02-11 2013-07-16 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
KR20140134337A (en) 2010-02-16 2014-11-21 아이로보트 코퍼레이션 Vacuum brush
EP2549943B1 (en) * 2010-03-22 2018-01-31 Brainlab AG Controlling a surgical microscope
US20130172906A1 (en) * 2010-03-31 2013-07-04 Eric S. Olson Intuitive user interface control for remote catheter navigation and 3D mapping and visualization systems
GB201008510D0 (en) 2010-05-21 2010-07-07 Ethicon Endo Surgery Inc Medical device
US20120078244A1 (en) 2010-09-24 2012-03-29 Worrell Barry C Control features for articulating surgical device
US9414838B2 (en) 2012-03-28 2016-08-16 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprised of a plurality of materials
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US20120080498A1 (en) 2010-09-30 2012-04-05 Ethicon Endo-Surgery, Inc. Curved end effector for a stapling instrument
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
RU2014143342A (en) 2012-03-28 2016-05-20 Этикон Эндо-Серджери, Инк. Node limitation, tissue thickness compensator comprising
RU2604397C2 (en) 2011-04-29 2016-12-10 Этикон Эндо-Серджери, Инк. Tissue thickness compensator for surgical suturing instrument comprising adjustable support
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US9204880B2 (en) 2012-03-28 2015-12-08 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising capsules defining a low pressure environment
US9433419B2 (en) 2010-09-30 2016-09-06 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of layers
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US9615826B2 (en) 2010-09-30 2017-04-11 Ethicon Endo-Surgery, Llc Multiple thickness implantable layers for surgical stapling devices
RU2013119928A (en) 2010-09-30 2014-11-10 Этикон Эндо-Серджери, Инк. Crosslinking system comprising a retaining matrix and an alignment matrix
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US20120080340A1 (en) 2010-09-30 2012-04-05 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a variable thickness compressible portion
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
RU2606493C2 (en) 2011-04-29 2017-01-10 Этикон Эндо-Серджери, Инк. Staple cartridge, containing staples, located inside its compressible part
US9211120B2 (en) 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
US9788834B2 (en) 2010-09-30 2017-10-17 Ethicon Llc Layer comprising deployable attachment members
US20120190970A1 (en) 2010-11-10 2012-07-26 Gnanasekar Velusamy Apparatus and method for stabilizing a needle
US8632462B2 (en) 2011-03-14 2014-01-21 Ethicon Endo-Surgery, Inc. Trans-rectum universal ports
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US9330497B2 (en) 2011-08-12 2016-05-03 St. Jude Medical, Atrial Fibrillation Division, Inc. User interface devices for electrophysiology lab diagnostic and therapeutic equipment
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
US8961535B2 (en) 2011-10-25 2015-02-24 Medtronic Navigation, Inc. Method and apparatus for securing a guide tube
WO2013080070A1 (en) * 2011-12-03 2013-06-06 Koninklijke Philips Electronics N.V. Surgical port localization.
US9277968B2 (en) * 2011-12-09 2016-03-08 Samsung Electronics Co., Ltd. Medical robot system and method for controlling the same
US8996169B2 (en) 2011-12-29 2015-03-31 Mako Surgical Corp. Neural monitor-based dynamic haptics
WO2013119545A1 (en) 2012-02-10 2013-08-15 Ethicon-Endo Surgery, Inc. Robotically controlled surgical instrument
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
RU2639857C2 (en) 2012-03-28 2017-12-22 Этикон Эндо-Серджери, Инк. Tissue thickness compensator containing capsule for medium with low pressure
US9226766B2 (en) 2012-04-09 2016-01-05 Ethicon Endo-Surgery, Inc. Serial communication protocol for medical device
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US9241731B2 (en) 2012-04-09 2016-01-26 Ethicon Endo-Surgery, Inc. Rotatable electrical connection for ultrasonic surgical instruments
US9724118B2 (en) 2012-04-09 2017-08-08 Ethicon Endo-Surgery, Llc Techniques for cutting and coagulating tissue for ultrasonic surgical instruments
US9237921B2 (en) 2012-04-09 2016-01-19 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
EP2666428B1 (en) 2012-05-21 2015-10-28 Universität Bern System and method for estimating the spatial position of a tool within an object
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
US20140001234A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Coupling arrangements for attaching surgical end effectors to drive systems therefor
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
US9364230B2 (en) 2012-06-28 2016-06-14 Ethicon Endo-Surgery, Llc Surgical stapling instruments with rotary joint assemblies
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9283045B2 (en) 2012-06-29 2016-03-15 Ethicon Endo-Surgery, Llc Surgical instruments with fluid management system
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9220570B2 (en) * 2012-06-29 2015-12-29 Children's National Medical Center Automated surgical and interventional procedures
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
CN104736092B (en) 2012-08-03 2017-07-21 史赛克公司 A system and method for robotic surgical
US9226796B2 (en) 2012-08-03 2016-01-05 Stryker Corporation Method for detecting a disturbance as an energy applicator of a surgical instrument traverses a cutting path
US9119655B2 (en) 2012-08-03 2015-09-01 Stryker Corporation Surgical manipulator capable of controlling a surgical instrument in multiple modes
US9820818B2 (en) 2012-08-03 2017-11-21 Stryker Corporation System and method for controlling a surgical manipulator based on implant parameters
US9683813B2 (en) 2012-09-13 2017-06-20 Christopher V. Beckman Targeting adjustments to control the impact of breathing, tremor, heartbeat and other accuracy-reducing factors
US9008757B2 (en) 2012-09-26 2015-04-14 Stryker Corporation Navigation system including optical and non-optical sensors
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US9307986B2 (en) 2013-03-01 2016-04-12 Ethicon Endo-Surgery, Llc Surgical instrument soft stop
US9603665B2 (en) 2013-03-13 2017-03-28 Stryker Corporation Systems and methods for establishing virtual constraint boundaries
CN105025835A (en) 2013-03-13 2015-11-04 史赛克公司 System for arranging objects in an operating room in preparation for surgical procedures
US20140263552A1 (en) 2013-03-13 2014-09-18 Ethicon Endo-Surgery, Inc. Staple cartridge tissue thickness sensor system
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9687230B2 (en) 2013-03-14 2017-06-27 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US9629623B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgery, Llc Drive system lockout arrangements for modular surgical instruments
US9351726B2 (en) 2013-03-14 2016-05-31 Ethicon Endo-Surgery, Llc Articulation control system for articulatable surgical instruments
US9351727B2 (en) 2013-03-14 2016-05-31 Ethicon Endo-Surgery, Llc Drive train control arrangements for modular surgical instruments
US9808244B2 (en) 2013-03-14 2017-11-07 Ethicon Llc Sensor arrangements for absolute positioning system for surgical instruments
US9241728B2 (en) 2013-03-15 2016-01-26 Ethicon Endo-Surgery, Inc. Surgical instrument with multiple clamping mechanisms
US9668768B2 (en) 2013-03-15 2017-06-06 Synaptive Medical (Barbados) Inc. Intelligent positioning system and methods therefore
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9801626B2 (en) 2013-04-16 2017-10-31 Ethicon Llc Modular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts
US9649110B2 (en) 2013-04-16 2017-05-16 Ethicon Llc Surgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
US9844368B2 (en) 2013-04-16 2017-12-19 Ethicon Llc Surgical system comprising first and second drive systems
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
US20150053746A1 (en) 2013-08-23 2015-02-26 Ethicon Endo-Surgery, Inc. Torque optimization for surgical instruments
US20140166724A1 (en) 2014-02-24 2014-06-19 Ethicon Endo-Surgery, Inc. Staple cartridge including a barbed staple
US9750499B2 (en) 2014-03-26 2017-09-05 Ethicon Llc Surgical stapling instrument system
US9733663B2 (en) 2014-03-26 2017-08-15 Ethicon Llc Power management through segmented circuit and variable voltage protection
US20150272572A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Interface systems for use with surgical instruments
JP2017513567A (en) 2014-03-26 2017-06-01 エシコン・エンド−サージェリィ・エルエルシーEthicon Endo−Surgery, LLC Power management with segmentation circuit and variable voltage protection
US20150297234A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. End effector comprising an anvil including projections extending therefrom
US9731392B2 (en) * 2014-08-05 2017-08-15 Ati Industrial Automation, Inc. Robotic tool changer alignment modules
US9788836B2 (en) 2014-09-05 2017-10-17 Ethicon Llc Multiple motor control for powered medical device
US20160066915A1 (en) 2014-09-05 2016-03-10 Ethicon Endo-Surgery, Inc. Polarity of hall magnet to detect misloaded cartridge
US9757128B2 (en) 2014-09-05 2017-09-12 Ethicon Llc Multiple sensors with one sensor affecting a second sensor's output or interpretation
US9737301B2 (en) 2014-09-05 2017-08-22 Ethicon Llc Monitoring device degradation based on component evaluation
US20160089143A1 (en) 2014-09-26 2016-03-31 Ethicon Endo-Surgery, Inc. Surgical stapling buttresses and adjunct materials
US9801627B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Fastener cartridge for creating a flexible staple line
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US9622831B2 (en) * 2015-05-20 2017-04-18 Siemens Healthcare Gmbh Method and apparatus to provide updated patient images during robotic surgery
US20170000572A1 (en) * 2015-07-01 2017-01-05 Mako Surgical Corp. Robotic Systems And Methods For Controlling A Tool Removing Material From A Workpiece

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999000052A1 (en) 1997-06-27 1999-01-07 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for volumetric image navigation
US5952796A (en) 1996-02-23 1999-09-14 Colgate; James E. Cobots

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5078140A (en) * 1986-05-08 1992-01-07 Kwoh Yik S Imaging device - aided robotic stereotaxis system
US4791934A (en) * 1986-08-07 1988-12-20 Picker International, Inc. Computer tomography assisted stereotactic surgery system and method
FR2652928B1 (en) * 1989-10-05 1994-07-29 Diadix Sa interactive system for local intervention inside a region of a non-homogeneous structure.
DE69026196T2 (en) * 1989-11-08 1996-09-05 George S Allen Mechanical arm for an interactive, image-controlled surgery system
US5086401A (en) * 1990-05-11 1992-02-04 International Business Machines Corporation Image-directed robotic system for precise robotic surgery including redundant consistency checking
FR2709656B1 (en) * 1993-09-07 1995-12-01 Deemed Int Sa Installation for microsurgical operation desktop and processes involved Óoeuvre by said installation.
US5647373A (en) * 1993-11-07 1997-07-15 Ultra-Guide Ltd. Articulated needle guide for ultrasound imaging and method of using same
US5695501A (en) * 1994-09-30 1997-12-09 Ohio Medical Instrument Company, Inc. Apparatus for neurosurgical stereotactic procedures
US5765561A (en) * 1994-10-07 1998-06-16 Medical Media Systems Video-based surgical targeting system
US6143003A (en) * 1995-01-31 2000-11-07 Cosman; Eric R. Repositioner for head, neck, and body
WO1997003609A1 (en) * 1995-07-16 1997-02-06 Ultra-Guide Ltd. Free-hand aiming of a needle guide
US5638819A (en) * 1995-08-29 1997-06-17 Manwaring; Kim H. Method and apparatus for guiding an instrument to a target
EP0847253B1 (en) * 1996-05-29 2003-03-26 Northern Digital Inc. Image-guided surgery system
US6167296A (en) * 1996-06-28 2000-12-26 The Board Of Trustees Of The Leland Stanford Junior University Method for volumetric image navigation
US6058323A (en) * 1996-11-05 2000-05-02 Lemelson; Jerome System and method for treating select tissue in a living being
CA2271651C (en) * 1996-11-29 2003-11-25 Life Imaging Systems Inc. System, employing three-dimensional ultrasonographic imaging, for assisting in guiding and placing medical instruments
DE69830719D1 (en) * 1997-02-28 2005-08-04 Koninkl Philips Electronics Nv The surgical system with image-guidance
US6157853A (en) * 1997-11-12 2000-12-05 Stereotaxis, Inc. Method and apparatus using shaped field of repositionable magnet to guide implant
US6052611A (en) * 1997-11-28 2000-04-18 Picker International, Inc. Frameless stereotactic tomographic scanner for image guided interventional procedures
US6064904A (en) * 1997-11-28 2000-05-16 Picker International, Inc. Frameless stereotactic CT scanner with virtual needle display for planning image guided interventional procedures
WO1998037827A3 (en) * 1998-02-16 1998-12-03 Koninkl Philips Electronics Nv Image-guided surgery system
FR2779339B1 (en) * 1998-06-09 2000-10-13 Integrated Surgical Systems Sa Method and mapping apparatus for robotic surgery, and mapping device comprising applying
US6425865B1 (en) * 1998-06-12 2002-07-30 The University Of British Columbia Robotically assisted medical ultrasound
DE19842239A1 (en) * 1998-09-15 2000-03-16 Siemens Ag Medical technical arrangement for diagnosis and treatment
JP3749400B2 (en) * 1998-10-27 2006-02-22 株式会社島津製作所 Tomography apparatus
US6144875A (en) * 1999-03-16 2000-11-07 Accuray Incorporated Apparatus and method for compensating for respiratory and patient motion during treatment
DE19914455B4 (en) * 1999-03-30 2005-07-14 Siemens Ag A method for determining the movement of an organ or treatment area of ​​a patient as well as suitable for this system
US6187018B1 (en) * 1999-10-27 2001-02-13 Z-Kat, Inc. Auto positioner
US6245028B1 (en) * 1999-11-24 2001-06-12 Marconi Medical Systems, Inc. Needle biopsy system
US20010025183A1 (en) * 2000-02-25 2001-09-27 Ramin Shahidi Methods and apparatuses for maintaining a trajectory in sterotaxi for tracking a target inside a body
US6535756B1 (en) * 2000-04-07 2003-03-18 Surgical Navigation Technologies, Inc. Trajectory storage apparatus and method for surgical navigation system
US6599247B1 (en) * 2000-07-07 2003-07-29 University Of Pittsburgh System and method for location-merging of real-time tomographic slice images with human vision
US6728599B2 (en) * 2001-09-07 2004-04-27 Computer Motion, Inc. Modularity system for computer assisted surgery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5952796A (en) 1996-02-23 1999-09-14 Colgate; James E. Cobots
WO1999000052A1 (en) 1997-06-27 1999-01-07 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for volumetric image navigation

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2830743A1 (en) * 2001-10-11 2003-04-18 Surgiview Sa Feeler and transmitter pen for surgery, comprises cylindrical pen case with internal guide bearings for spring loaded rod, the rod having a contact sphere at one end and marker transmitters at other
EP1450683A2 (en) * 2001-11-08 2004-09-01 The Johns Hopkins University School Of Medicine System and method for robot targeting under flouroscopy based on image servoing
EP1450683A4 (en) * 2001-11-08 2009-11-11 Univ Johns Hopkins Med System and method for robot targeting under flouroscopy based on image servoing
EP2070487A3 (en) * 2002-08-13 2010-05-12 Microbotics Corporation Microsurgical robot system
US9044257B2 (en) 2007-04-16 2015-06-02 Tim Fielding Frame mapping and force feedback methods, devices and systems
WO2009037576A3 (en) * 2007-04-16 2010-02-04 Neuroarm Surgical Ltd. Methods, devices, and systems for non-mechanically restricting and/or programming movement of a tool of a manipulator along a single axis
WO2009034477A3 (en) * 2007-04-16 2010-02-04 Neuroarm Surgical Ltd. Frame mapping and force feedback methods, devices and systems
US8554368B2 (en) 2007-04-16 2013-10-08 Tim Fielding Frame mapping and force feedback methods, devices and systems
US8560118B2 (en) 2007-04-16 2013-10-15 Neuroarm Surgical Ltd. Methods, devices, and systems for non-mechanically restricting and/or programming movement of a tool of a manipulator along a single axis
US9131986B2 (en) 2007-04-16 2015-09-15 Neuroarm Surgical Ltd. Methods, devices, and systems for non-mechanically restricting and/or programming movement of a tool of a manipulator along a single axis
CN104105455A (en) * 2011-12-03 2014-10-15 皇家飞利浦有限公司 Robotic guidance of ultrasound probe in endoscopic surgery
EP2996622A4 (en) * 2013-05-16 2017-05-03 Intuitive Surgical Operations Systems and methods for robotic medical system integration with external imaging
WO2014186715A1 (en) 2013-05-16 2014-11-20 Intuitive Surgical Operations, Inc. Systems and methods for robotic medical system integration with external imaging
CN105208960A (en) * 2013-05-16 2015-12-30 直观外科手术操作公司 Systems and methods for robotic medical system integration with external imaging
EP2996622A1 (en) * 2013-05-16 2016-03-23 Intuitive Surgical Operations, Inc. Systems and methods for robotic medical system integration with external imaging
CN104083219A (en) * 2014-07-11 2014-10-08 山东大学 Force-sensor-based coupling method for extracranial and intracranial coordinate systems in brain stereotactic surgery of neurosurgery
WO2016096366A1 (en) * 2014-12-17 2016-06-23 Kuka Roboter Gmbh System for robot-assisted medical treatment

Also Published As

Publication number Publication date Type
US20010037064A1 (en) 2001-11-01 application
US20040010190A1 (en) 2004-01-15 application
WO2001062173A3 (en) 2002-04-11 application
US20010025183A1 (en) 2001-09-27 application

Similar Documents

Publication Publication Date Title
US6676669B2 (en) Surgical manipulator
US6675032B2 (en) Video-based surgical targeting system
US8108072B2 (en) Methods and systems for robotic instrument tool tracking with adaptive fusion of kinematics information and image information
US6033415A (en) System and method for performing image directed robotic orthopaedic procedures without a fiducial reference system
US7237556B2 (en) Image-guided fracture reduction
US6996430B1 (en) Method and system for displaying cross-sectional images of a body
US8073528B2 (en) Tool tracking systems, methods and computer products for image guided surgery
US6216029B1 (en) Free-hand aiming of a needle guide
US6282437B1 (en) Body-mounted sensing system for stereotactic surgery
US7008430B2 (en) Adjustable reamer with tip tracker linkage
Leven et al. DaVinci canvas: a telerobotic surgical system with integrated, robot-assisted, laparoscopic ultrasound capability
US20080071142A1 (en) Visual navigation system for endoscopic surgery
US20100268067A1 (en) Systems, methods, apparatuses, and computer-readable media for image guided surgery
US20070038059A1 (en) Implant and instrument morphing
US20050203384A1 (en) Computer assisted system and method for minimal invasive hip, uni knee and total knee replacement
US20080118115A1 (en) Medical navigation system with tool and/or implant integration into fluoroscopic image projections and method of use
US8248414B2 (en) Multi-dimensional navigation of endoscopic video
Trobaugh et al. Frameless stereotactic ultrasonography: method and applications
US20050027186A1 (en) Video-based surgical targeting system
US6434416B1 (en) Surgical microscope
US7144367B2 (en) Anatomical visualization system
US6612980B2 (en) Anatomical visualization system
US20080123910A1 (en) Method and system for providing accuracy evaluation of image guided surgery
US20050054900A1 (en) Ophthalmic orbital surgery apparatus and method and image-guided navigation system
US7209776B2 (en) Method of determining the position of the articular point of a joint

Legal Events

Date Code Title Description
AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase in:

Ref country code: JP