WO2001060478A1 - Fluid inlet device - Google Patents

Fluid inlet device Download PDF

Info

Publication number
WO2001060478A1
WO2001060478A1 PCT/EP2001/001813 EP0101813W WO0160478A1 WO 2001060478 A1 WO2001060478 A1 WO 2001060478A1 EP 0101813 W EP0101813 W EP 0101813W WO 0160478 A1 WO0160478 A1 WO 0160478A1
Authority
WO
WIPO (PCT)
Prior art keywords
inlet
column
gas
inlet device
liquid
Prior art date
Application number
PCT/EP2001/001813
Other languages
French (fr)
Inventor
Malcolm William Mcewan
Original Assignee
Shell Internationale Research Maatschappij B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij B.V. filed Critical Shell Internationale Research Maatschappij B.V.
Priority to AT01911657T priority Critical patent/ATE433790T1/en
Priority to EP01911657A priority patent/EP1255597B1/en
Priority to DE60138998T priority patent/DE60138998D1/en
Priority to JP2001559569A priority patent/JP2004500237A/en
Priority to AU40631/01A priority patent/AU4063101A/en
Publication of WO2001060478A1 publication Critical patent/WO2001060478A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/008Liquid distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/006Baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00103Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor in a heat exchanger separate from the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00159Controlling the temperature controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • B01J2219/00768Baffles attached to the reactor wall vertical

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)
  • Vending Machines For Individual Products (AREA)
  • Feeding Of Articles To Conveyors (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

A fluid inlet device (10) for introducing a mixture of liquid and gas into a column provided with an inlet nozzle (5) and with a horizontal gas/liquid contact tray (20) arranged in the column below the inlet nozzle (5) provided with a number of elongated downcomers (21-26) between which bubbling areas (29) are located, which inlet device (10) comprises an inlet end (31) that is in fluid communication with the inlet nozzle (5) and a number of vertical vanes (35-38) placed one behind the other, wherein each vane (35-38) comprises two interconnected parts, an intercepting part (35'-38') and an outwardly directed deflecting part (35''-38''), wherein the intercepting part (35'-38') extends to the inlet end (31) of the inlet device (10), and wherein an outlet channel defined by the deflecting parts of two adjacent vanes opens above a bubbling area (29) of the contact tray (20).

Description

FLUID INLET DEVICE
The present invention relates to a fluid inlet device for introducing a mixture of liquid and gas into a column. Such a column is any column m which gas and liquid are counter-currently contacted to exchange heat or matter. An example of such a column is a fractionation column and a further example is a vacuum distillation column. In such a column liquid flows, during normal operation, downwards from top to bottom, whereas gas flows upwards from bottom to top. In the specification and in the claims the word 'gas' is used to refer to gas and to vapour.
British patent specification No. 1 119 699 discloses a fluid inlet device for introducing a mixture of liquid and gas into a column provided with an inlet nozzle and a gas/liquid contacting tray arranged below the inlet nozzle .
The known fluid inlet device comprises an inlet device having an inlet end that is in fluid communication with the inlet nozzle of the column, and which inlet device comprises a number of evenly spaced vertical vanes placed one behind the other m the column between a top plate and a bottom plate, wherein each vane comprises an outwardly directed deflecting part.
During normal operation a mixture of gas and liquid is supplied to the inlet nozzle of the column. This mixture then flows through the inlet end into the inlet device. The vanes, arranged on either side of a flow path from the inlet end, deflect the mixture outwardly. The change in the direction of flow causes a first gas-liquid separation. The gas flows upwards in the column, where further contacting with liquid supplied to the top of the column takes place, and the separated liquid falls downwards on the gas/liquid contact tray below the inlet device. On the gas/liquid contact tray, the liquid is contacted with gas flowing upwards from the bottom of the column through the perforations in the tray in order to exchange heat and matter with the gas. This contacting takes place on the bubbling area of the gas/liquid contact tray, which is the area of the tray provided with perforations . In the known inlet device, the vanes are placed at regular intervals. As a result of this arrangement a uniform distribution of liquid over the gas/liquid contact tray under the inlet device is obtained.
For this reason the known inlet device can be used successfully with a conventional gas/liquid contact tray, such as a counter-current tray without a downcomer or a cross-flow tray having a single downcomer at one side of the tray. In a counter-current tray without a downcomer the bubbling area or active area extends over the entire area of the tray, and in a cross-flow tray the bubbling area extends up to the downcomer.
In stead of a single-downcomer tray, a gas/liquid contact tray with more than one downcomer are also used. Such a multi-downcomer tray is provided with elongated downcomers arranged parallel to each other, wherein the bubbling area is defined between adjacent elongated downcomers .
When the known inlet device is used in combination with such a multi-downcomer tray, not all liquid will fall on the bubbling area. And thus the efficiency of the gas/liquid contact tray is reduced.
It is an object of the present invention to provide a fluid inlet device that can be used in combination with a multi-downcomer tray. To this end the fluid inlet device for introducing a mixture of liquid and gas into a column provided with an inlet nozzle and with a horizontal gas/liquid contact tray arranged in the column below the inlet nozzle provided with a number of elongated downcomers between which bubbling areas are located, according to the present invention comprises an inlet end that is m fluid communication with the inlet nozzle of the column, a number of vertical vanes placed one behind the other in the column between a top plate and a bottom plate, wherein each vane comprises two interconnected parts, an intercepting part and an outwardly directed deflecting part, wherein the intercepting part extends to the inlet end of the inlet device, and wherein an outlet channel defined by the deflecting parts of two adjacent vanes opens above a bubbling area of the contact tray.
The invention will now be described in more detail by way of example with reference to the accompanying drawings, wherein Figure 1 shows a horizontal section of a column provided with the fluid inlet device according to the present invention; and
Figure 2 shows a sectional view of Figure 1 m the direction II-II, drawn to a different scale. In Figure 1 the wall of the column is referred to with reference numeral 1, the inlet nozzle of the column is referred to with reference numeral 5, and the fluid inlet device according to the present invention with reference numeral 10. The column 1 is provided with a multi-downcomer gas/liquid contacting tray 20 located below the inlet nozzle 5. The contacting tray 20 comprises a perforated plate provided with six parallel elongated downcomers 21, 22, 23, 24, 25 and 26 between which bubbling areas 29 are located. For the sake of clarity only patches of the bubbling areas 29 are hatched.
The fluid inlet device according to the present invention 10 comprises a top plate (not shown) and a bottom plate 30. The device 10 has a square inlet end 31. The device 10 is supported at its inlet end and at the opposite end by means of supports that are secured to the wall 1 of the column. The support at the opposite end of the device 10 is referred to with reference numeral 32. The device 10 further comprises a number of vertical vanes 35, 36, 37, 38, 39 and 40 placed one behind the other m the column between the top plate and the bottom plate 30. Each vane 35, 36, 37, 38, 39 and 40 comprises two interconnected parts, an intercepting part 35', 36', 37', 38', 39' and 40' and an outwardly directed deflecting part 35'', 36'', 37'', 38'', 39'' and 40''. The intercepting parts 35', 36', 37', 38', 39' and 40' extend to the inlet end 31 of the inlet device 10. In the embodiment shown in Figure 1 the upstream end of the intercepting part 40' coincides with the intercepting part 37' .
Furthermore, the outwardly directed deflecting parts 35'', 36'', 37", 38'', 39'' and 40" are so positioned that an outlet channel defined by the deflecting parts of two adjacent vanes opens above the bubbling area 29 of the contact tray 20 between two adjacent downcomers 21, 22 and 22, 23 and 24, 25 and 25, 26.
During normal operation a mixture of gas and liquid is supplied to the inlet nozzle 5 of the column. This mixture then flows through the inlet end 31 into the inlet device 10. The vanes 35, 36, 37, 38, 39 and 40, arranged on either side of a flow path from the inlet end 31, deflect the mixture outwardly. The change in the direction of flow causes a first gas-liquid separation. The gas flows upwards m the column, where further contacting takes place, and the separated liquid falls downwards on the gas/liquid contact tray 20 arranged below the device 10. On the bubbling area 29 of the gas/liquid contact tray 20, the liquid is contacted with gas flowing upwards from the bottom of the column in order to exchange heat and matter with the gas . After the contacting, the liquid flows through the downcomers 21, 22, 23, 24, 25 and 26 to a tray arranged below gas/liquid contacting tray 20. Because the outwardly directed deflecting parts 35",
36", 37", 38", 39" and 40" are so positioned that outlet channels defined by the deflecting parts of adjacent vanes open above the bubbling area 29 of the contact tray 20 between two adjacent downcomers 21, 22 and 22, 23 and 24, 25 and 25, 26, the liquid falls on the bubbling area and not in the downcomers.
Furthermore, the intercepting parts 35', 36', 37', 38', 39' and 40' extend to the inlet end 31 of the inlet device 10. This feature allows distributing the amount of fluid that is supplied to the vanes 35 and 38 and through the channels defined by the adjacent vanes 35 and 36, 36 and 37, 38 and 39, and 39 and 40, by selecting the horizontal spacing between the intercepting parts 35', 36', 37', 38' and 39' at the inlet end 31 of the device 10. In Figure 2 the horizontal spacing between the intercepting parts 36' and 37' is indicated with the letter s. An advantage is that now the amount of liquid that is delivered can be controlled.
In order to restrict the outlet channel defined by the deflecting parts of two adjacent vanes, the upstream part of an outlet channel is suitably closed by a vertical baffle 45. The use of a baffle 45 allows a uniform spacing of the vanes.
The dead zone downstream of the vane 37 can be closed by a cover 46, which cover 46 further serves to strengthen the opposite end of the fluid inlet device 10
The device discussed with reference to Figure 1 the downcomers at either side of the inlet device are staggered with respect to each other. In an alternative embodiment the downcomers at either side of the inlet device are in line with each other, or each downcomer extends under the inlet device .
Suitably the number of vanes is in the range of from 4 to 20.

Claims

C L I M S
1. A fluid inlet device for introducing a mixture of liquid and gas into a column provided with an inlet nozzle and with a horizontal gas/liquid contact tray arranged m the column below the inlet nozzle provided with a number of elongated downcomers between which bubbling areas are located, which inlet device comprises an inlet end that is in fluid communication with the inlet nozzle of the column and a number of vertical vanes placed one behind the other m the column between a top plate and a bottom plate, wherein each vane comprises two interconnected parts, an intercepting part and an outwardly directed deflecting part, wherein the intercepting part extends to the inlet end of the inlet device, and wherein an outlet channel defined by the deflecting parts of two adjacent vanes opens above a bubbling area of the contact tray.
2. Fluid inlet device according to claim 1, wherein the upstream part of an outlet channel is closed by a vertical baffle.
PCT/EP2001/001813 2000-02-16 2001-02-16 Fluid inlet device WO2001060478A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT01911657T ATE433790T1 (en) 2000-02-16 2001-02-16 COLUMN COMPRISING A FEED DEVICE
EP01911657A EP1255597B1 (en) 2000-02-16 2001-02-16 Column comprising a fluid inlet device
DE60138998T DE60138998D1 (en) 2000-02-16 2001-02-16 COLONEL INCLUDING A SUPPLY DEVICE
JP2001559569A JP2004500237A (en) 2000-02-16 2001-02-16 Fluid inlet device
AU40631/01A AU4063101A (en) 2000-02-16 2001-02-16 Fluid inlet device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP00200518.9 2000-02-16
EP00200518 2000-02-16

Publications (1)

Publication Number Publication Date
WO2001060478A1 true WO2001060478A1 (en) 2001-08-23

Family

ID=8171022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/001813 WO2001060478A1 (en) 2000-02-16 2001-02-16 Fluid inlet device

Country Status (8)

Country Link
US (1) US6386520B2 (en)
EP (1) EP1255597B1 (en)
JP (1) JP2004500237A (en)
AT (1) ATE433790T1 (en)
AU (1) AU4063101A (en)
DE (1) DE60138998D1 (en)
ES (1) ES2328667T3 (en)
WO (1) WO2001060478A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003070348A1 (en) * 2002-02-21 2003-08-28 Shell Internationale Research Maatschappij B.V. Apparatus and method for treating a fluid
FR2853563A1 (en) * 2003-04-09 2004-10-15 Tissmetal Gas flow diffuser designed to remove droplets or particles has series of spaced plates in line with axis of flow and having circular holes of reducing area
US7594942B2 (en) * 2003-09-09 2009-09-29 Shell Oil Company Gas/liquid separator
WO2011131830A1 (en) * 2010-04-23 2011-10-27 Neste Oil Oyj Section of a separation column, separation column and a method of operation
WO2017132245A1 (en) * 2016-01-27 2017-08-03 Koch-Glitsch, Lp Inlet vane device with inner beam for rigidity and vessel containing same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2827791B1 (en) * 2001-07-26 2003-10-31 Total Raffinage Distribution METHOD AND DEVICE FOR INTRODUCING A LIQUID-VAPOR MIXTURE INTO A RADIALLY SUPPLIED CYLINDRICAL DISTILLATION COLUMN
US7473405B2 (en) * 2004-10-13 2009-01-06 Chevron U.S.A. Inc. Fluid distribution apparatus for downflow multibed poly-phase catalytic reactor
US7513271B2 (en) * 2006-05-12 2009-04-07 Sulzer Chemtech Ag Fluid inlet device for an apparatus
DE502007003698D1 (en) * 2006-07-27 2010-06-24 Sulzer Chemtech Ag Inlet device for a fluid fed tangentially into an apparatus
CN102089411A (en) * 2008-07-10 2011-06-08 国际壳牌研究有限公司 Process for removing a gaseous contaminant from a contaminated gas stream
CA2735919A1 (en) * 2008-09-23 2010-04-01 Shell Internationale Research Maatschappij B.V. Process for removing gaseous contaminants from a feed gas stream comprising methane and gaseous contaminants
US20100107687A1 (en) * 2008-11-06 2010-05-06 Diki Andrian Process for removing gaseous contaminants from a feed gas stream comprising methane and gaseous contaminants
US9789429B2 (en) 2009-09-11 2017-10-17 Sulzer Chemtech Ag Pre-separating vane diffuser and method for introducing a flow-mixture in a separator
US8627848B2 (en) * 2010-10-01 2014-01-14 The Chem-Pro Group Llc Vane inlet device
EP2939723A1 (en) 2014-04-30 2015-11-04 Linde Aktiengesellschaft Device for introducing a fluid medium into a container
US9643105B1 (en) * 2016-12-01 2017-05-09 Worthington Industries, Inc. Inlet diverter
CN108325475B (en) * 2018-04-24 2020-04-14 天津市天屹化工技术开发有限公司 Multistage slot type liquid distributor
CN111375354B (en) * 2018-12-31 2022-06-07 中国石油化工股份有限公司 Gas-liquid mass transfer equipment
US11274539B2 (en) 2019-04-29 2022-03-15 Westerman, Inc. Heated separation assembly
US11274540B2 (en) 2019-04-29 2022-03-15 Westerman, Inc. Heated separation assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1519711A1 (en) * 1965-06-08 1970-07-02 Shell Int Research Inlet and distributor for a liquid-vapor mixture
EP0231841A1 (en) * 1986-02-07 1987-08-12 GebràœDer Sulzer Aktiengesellschaft Apparatus for the uniform distribution of a liquid containing solid particles on a cross area

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2150498A (en) * 1935-02-15 1939-03-14 Standard Oil Co Bubble tower construction
US2651512A (en) * 1948-08-04 1953-09-08 Air Liquide Gas and liquid contact apparatus
US2737377A (en) * 1951-10-24 1956-03-06 Koch Eng Co Inc Gas-liquid contact apparatus
US3039750A (en) * 1952-03-07 1962-06-19 Kittel Walter Contact plate structure for use in a rectifying or contacting column
US2787453A (en) * 1953-11-30 1957-04-02 Exxon Research Engineering Co Fractionating tower utilizing directional upflow means in conjunction with slanted trays
US3062517A (en) * 1956-09-07 1962-11-06 Shell Oil Co Gas-liquid contacting apparatus
BE579015A (en) * 1958-05-31
US3233879A (en) * 1962-03-21 1966-02-08 Socony Mobil Oil Co Inc Fixed centrifugal gas and liquid contacting device
NL302093A (en) * 1962-12-29
US3892825A (en) * 1969-09-19 1975-07-01 Don Barkley Nazzer Unitary stacked pressure tower
US3729179A (en) * 1970-09-23 1973-04-24 Fractionation Res Inc Apparatus for liquid and vapor or gas mass transfer
BE794705A (en) * 1972-02-07 1973-07-30 Shell Int Research COLUMN FITTED WITH LIQUID-VAPOR CONTACT DISHES
US3937769A (en) * 1973-12-27 1976-02-10 Norton Company Liquid distributor
US3985623A (en) * 1974-03-07 1976-10-12 Chevron Research Company Column material balance control responsive to differential pressure over a column withdrawal tray
US4159291A (en) * 1977-08-16 1979-06-26 Union Carbide Corporation Outlet means for vapor-liquid contacting tray
JPS606687B2 (en) * 1977-10-26 1985-02-20 株式会社日本触媒 Gas mixing method and gas mixing device
GB2053720A (en) * 1979-06-08 1981-02-11 Davy Int Oil & Chemi Distillation tray
GB2053721B (en) * 1979-07-09 1983-03-09 Krasnodar Politekhn I Gas-liquid contact tray
CA1211364A (en) * 1982-04-15 1986-09-16 Jeremy B. Bentham Apparatus for contacting a liquid with a gas
US4556522A (en) * 1984-05-09 1985-12-03 Air Products And Chemicals, Inc. Sieve type distillation tray with curved baffles
US4661130A (en) * 1986-04-07 1987-04-28 Ebeling Harold O Absorber for dehydrating gas using desiccants
US5244604A (en) * 1992-04-02 1993-09-14 Uop Packing-enhanced baffled downcomer fractionation tray

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1519711A1 (en) * 1965-06-08 1970-07-02 Shell Int Research Inlet and distributor for a liquid-vapor mixture
EP0231841A1 (en) * 1986-02-07 1987-08-12 GebràœDer Sulzer Aktiengesellschaft Apparatus for the uniform distribution of a liquid containing solid particles on a cross area

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003070348A1 (en) * 2002-02-21 2003-08-28 Shell Internationale Research Maatschappij B.V. Apparatus and method for treating a fluid
US6942720B2 (en) 2002-02-21 2005-09-13 Shell Oil Company Apparatus and method for treating a fluid
CN1306977C (en) * 2002-02-21 2007-03-28 国际壳牌研究有限公司 Apparatus and method for treating a fluid
FR2853563A1 (en) * 2003-04-09 2004-10-15 Tissmetal Gas flow diffuser designed to remove droplets or particles has series of spaced plates in line with axis of flow and having circular holes of reducing area
EP1468716A1 (en) * 2003-04-09 2004-10-20 Tissmetal, S.A. Flow diffusor and boiler-type element equipped therefrom
US7594942B2 (en) * 2003-09-09 2009-09-29 Shell Oil Company Gas/liquid separator
WO2011131830A1 (en) * 2010-04-23 2011-10-27 Neste Oil Oyj Section of a separation column, separation column and a method of operation
CN102770192A (en) * 2010-04-23 2012-11-07 液化石油公司 Section of a separation column, separation column and a method of operation
AU2011244198B2 (en) * 2010-04-23 2014-01-30 Neste Oyj Section of a separation column, separation column and a method of operation
US8888076B2 (en) 2010-04-23 2014-11-18 Neste Oil Oyj Section of a separation column, separation column and a method of operation
CN102770192B (en) * 2010-04-23 2015-01-28 液化石油公司 Section of a separation column, separation column and a method of operation
WO2017132245A1 (en) * 2016-01-27 2017-08-03 Koch-Glitsch, Lp Inlet vane device with inner beam for rigidity and vessel containing same
CN108495696A (en) * 2016-01-27 2018-09-04 科氏-格利奇有限合伙公司 Inlet louver device with the inner beam for rigidity and the container for accommodating the device
AU2017212405B2 (en) * 2016-01-27 2021-11-11 Koch-Glitsch, Lp Inlet vane device with inner beam for rigidity and vessel containing same
US11484822B2 (en) 2016-01-27 2022-11-01 Koch-Giltsch, LP Inlet vane device and vessel containing same

Also Published As

Publication number Publication date
ES2328667T3 (en) 2009-11-17
US6386520B2 (en) 2002-05-14
EP1255597B1 (en) 2009-06-17
JP2004500237A (en) 2004-01-08
US20010038156A1 (en) 2001-11-08
EP1255597A1 (en) 2002-11-13
ATE433790T1 (en) 2009-07-15
DE60138998D1 (en) 2009-07-30
AU4063101A (en) 2001-08-27

Similar Documents

Publication Publication Date Title
EP1255597B1 (en) Column comprising a fluid inlet device
KR100547523B1 (en) Improved efficiency fractional distillation trays and processes
US5192465A (en) Method of and apparatus for liquid distribution
US5547617A (en) Apparatus for increasing effective active area
US9410750B1 (en) Gas distributor for heat exchange and/or mass transfer column
US6736378B2 (en) Contact tray having tray supported downcomers
WO1999011347A1 (en) Downcomers for vapor-liquid contact trays
EP0782877B1 (en) Improved liquid distributor for packed columns
KR100492827B1 (en) Chemical process tower deentrainment assembly
JPH0228361B2 (en)
EP0734747A2 (en) Multi-downcomer high performance tray assembly
KR20010012453A (en) Vapor-liquid contact tray with two-stage downcomer
EP2414090B1 (en) Improved fluid distribution to parallel flow vapor-liquid contacting trays
US8052126B2 (en) Liquid distribution in co-current contacting apparatuses
KR970006990B1 (en) Active liquid distributor containing packed column
EP0328786A1 (en) Splash plate liquid distributor
RU2741428C1 (en) Contact plate, having partition for liquid concentration at low flow rate, and method of its action
US20040036186A1 (en) Gas-liquid contacting apparatus
JP2009508684A (en) Apparatus and method for dispensing two liquids that are immiscible with each other
JPH09217984A (en) Heat-exchanger and two-stage distilling column
GB2299521A (en) Fractionating column
EP3856382B1 (en) A perforated-tray column and a method of revamping the same
AU717982B2 (en) Apparatus for increasing effective active area

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001911657

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 559569

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 2001911657

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

Ref country code: DE

Ref legal event code: 8642

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)