WO2001060383A1 - METHODS FOR SYNTHESIZING 2-CHLORO-9-(2-DEOXY-2-FLUORO-β-D-ARABINOFURANOSYL)-9H-PURIN-6-AMINE - Google Patents
METHODS FOR SYNTHESIZING 2-CHLORO-9-(2-DEOXY-2-FLUORO-β-D-ARABINOFURANOSYL)-9H-PURIN-6-AMINE Download PDFInfo
- Publication number
- WO2001060383A1 WO2001060383A1 PCT/US2001/005320 US0105320W WO0160383A1 WO 2001060383 A1 WO2001060383 A1 WO 2001060383A1 US 0105320 W US0105320 W US 0105320W WO 0160383 A1 WO0160383 A1 WO 0160383A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluoro
- deoxy
- chloro
- arabinofuranosyl
- group
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H19/00—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
- C07H19/02—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
- C07H19/04—Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
- C07H19/16—Purine radicals
- C07H19/173—Purine radicals with 2-deoxyribosyl as the saccharide radical
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H19/00—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
- C07H19/02—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
- C07H19/04—Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
- C07H19/16—Purine radicals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
Definitions
- This invention relates generally to methods for synthesizing a chemotherapeutic agent that is useful in the treatment of various malignancies. More particularly, this invention relates to improved methods for synthesizing 2-chloro-9-(2-deoxy-2-fluoro- ⁇ - D-arabinofuranosyl)-°H-purin-6-amine wherein the anionic form of a 2-chloro-6- substituted-purine is reacted with a protected and activated 2-deoxy-2-fluoro-D- arabinofuranose followed by reacting with an appropriate base such as ammonia to provide 2-chloro-9-(2-deoxy-2-fluoro- ⁇ -D-arabinofuranosyl)-°H-purin-6-amine.
- the present invention also relates to novel intermediates used in synthesizing the 2-chloro-9- (2-deoxy-2-fluoro- ⁇ -D-arabmofuranosyl)-°H-purin-6-amine such as 2-chloro-9-(2-deoxy- 2-fluoro- ⁇ -D-arabinofuranosyl)-6-alkoxy-.°H-purines and certain 2-chloro-6-substituted- 9-(2-deoxy-2-fluoro-3,5-diprotected- ⁇ -D-arabinofuranosyl)-9H-purines.
- Clofarabine [2-chloro-9-(2-deoxy-2-fluoro- ⁇ -D-arabinofuranosyl)-9 ⁇ -purin-6- amine] has exhibited cytotoxicity in mice inoculated with P388 leukemia.
- clofarabine provided a good increase in life span of mice inoculated with P388 leukemia.
- the 2-chloro-9-(2-deoxy-2-fluoro- ⁇ -D-arabinofuranosyl)-°H-purin-6-amine was the most effective compound in the tested system. In addition, this compound exhibited reduced cleavage in vivo of the glycosidic bond as compared to Fludarabine.
- the reported method for synthesizing 2-chloro-9-(2-deoxy-2-fluoro- ⁇ -D- arabinofuranosyl)-°H-purin-6-amine comprises a procedure using 3-O-acetyl-5-O- benzoyl-2-deoxy-2-fluoro-D-arabinofuranosyl bromide for the coupling with 2,6- dichloropurine, followed by an amination/deprotection sequence.fSee Montgomery, et al., 9-(2-Deoxy-2-fluoro- ⁇ -D-arabinofuranosyl)guanine: A Metabolically Stable Cytotoxic Analogue of 2'-Deoxyguanosine, Journal of Medicinal Chemistry, 1986, 29, pp.
- One aspect of the present invention is to provide a relatively high-yield method of synthesizing 2-chloro-9-(2-deoxy-2-fluoro- ⁇ -D-arabinofuranosyl)-9H-purin-6-amine that comprises reacting the anionic form of a 2-chloro-6 substituted purine with a protected and activated 2-deoxy-2-fluoro-D-arabinofufanose to provide a 2,6-dichloro-9-substituted purine nucleoside. That product is then reacted with an alkoxide to provide a 2-chloro-6- alkoxy purine nucleoside.
- Another aspect of the present invention relates to a method for synthesizing 2- chloro-9-(2-deoxy-2-fluoro- ⁇ -D-arabinofuranosyl)-°H-purin-6-amine by reacting the anionic form of a 2-chloro-6-substituted-purine with a protected and activated 2-fluoro-2- deoxy-D-arabinofuranose to provide a reaction product comprising a purine nucleoside, followed by reacting the purine nucleoside with an appropriate base such as ammonia to provide 2-chloro-9-(2-deoxy-2-fluoro- ⁇ -D-arabinofuranosyl)-°H-purin-6-amine.
- the present invention also relates to novel intermediates used in synthesizing the 2-chloro-9-(2-deoxy-2-fluoro- ⁇ -D-arabinofuranosyl)-PH-purin-6-amine.
- These intermediates include 2-chloro-9-(2-deoxy-2-fluoro- ⁇ -D-arabinofuranosyl)-6-alkoxy-°H- purines and 2-chloro-6-substituted-9-(2-deoxy-2-fluoro-3,5-diprotected- ⁇ -D- arabinofuranosyl)-PH-purines wherein the 6-substituent is selected from the group selected from amino, protected amino groups, azido and alkoxy.
- Fig. 1 is a schematic diagram of one embodiment of a reaction comprising a synthesis method of the present invention.
- Fig. 2 is a schematic diagram of an alternative embodiment of another synthesis method according to the present invention.
- Fig. 3 is a schematic diagram of an alternative embodiment of a further synthesis method according to the present invention.
- FIG. 1 illustrates one of the synthesis methods according to the present invention.
- This chemical reaction as illustrated in Figure 1 provides a convenient process for preparing 2-chloro-9-(2-deoxy-2-fluoro- ⁇ -D-arabinofuranosyl)-9H-purin-6- amine(5)in three steps and has resulted in overall yields of about 44%.
- a protected and activated 2-deoxy-2-fluoro-D-arabinofuranose 2 is reacted with a 2-chloro-6-substituted purine 1 to provide a reaction product comprising a 9-substituted purine nucleoside 3.
- the preferred group in the 6 position is a halogen.
- the preferred 2-chloro-6-substituted purine in the anionic form employed in this reaction scheme is 2,6-dichloropurine.
- suitable anionic forms include alkali metal salts, and organic amine salts.
- Alkali metal salts include sodium, potassium, and lithium salts.
- the metal salts can be obtained from metal hydrides such as Na ⁇ , K ⁇ and Li ⁇ or alkoxides such as NaOC ⁇ 3 and KOCH 3 .
- Organic bases for forming amine salts include hindered strong amine bases such as DBU(l,8-diazabicyclo [5.4.0] undec-7-ene);DBN (1,5-diazabicyclo [4.3.0]non-5-ene); Dabco (1,4-diazabicyclo [2.2.2] octane); and N,N-diisopropylethylamine.
- a preferred anionic form is the sodium salt. The anionic form is needed to achieve the desired coupling reaction.
- the 2-deoxy-2-fluoro-D-arabinofuranose contains protecting groups on the 3- and 5- hydroxyl groups and an activating group in the C-l position.
- Suitable protecting groups for the hydroxyl groups include ester forming groups, carbonates, alkyl ethers, aryl ethers, silyl ethers and carbonates.
- esters are formyl, acetyl, substituted acetyl, propionyl, butynyl, pivaloyl, 2- chloroacetyl, benzoyl, substituted benzoyl, phenoxycarbonyl, methoxyacetyl and toluoyl.
- Examples of carbonate derivates are phenoxycarbonyl, ethoxycarbonyl, butoxycarbonyl, vinyloxycarbonyl, 2,2,2-trichloroethoxycarbonyl and benzy loxycarbony 1.
- Examples of alkyl ether and aryl ether forming groups are benzyl, p-chlorobenzyl, diphenylmethyl, triphenylmethyl, t-butyl, methoxymethyl, tetrahydropyranyl, allyl, tetrahydrothienyl, 2-methoxyethoxymethyl.
- silyl ether forming groups are trialkysilyl, trimethylsilyl, isopropyldialkylsilyl, alkyldiisopropylsilyl, triisopropylsilyl, t-butyldialkylsilyl and 1,1,3,3-tetraisopropyldisiloxanyl.
- carbamates are N-phenylcarbamate and N-imidazoylcarbamate. Mixtures of protecting groups can be employed if desired.
- the 2- deoxy-2-fluoro-D-arabinofuranose 2 may have either two acyl groups, two ether groups, or combinations of acyl and ether groups.
- activating groups for the C-l of the carbohydrate include halogen such as Cl, Br and F; alkylsulfonyloxy, substituted alkylsulfonyloxy; arylsulfonyloxy, and substituted arylsulfonyloxy.
- Suitable alkyl substituents contain 1- 8 carbon atoms and mofe typically 1-4 carbon atoms such as methyl, ethyl and propyl.
- a suitable aryl group includes phenyl.
- alkyl- and substituted alkyl-sulfonyloxy groups are methanesulfonyloxy and 2-chloroethanesulfonyloxy.
- aryl- and substituted aryl-sulfonyloxy groups are benzenesulfonyloxy, toluenesulfonyloxy, p-nitrobenzenesulfonyloxy and p- bromobenzenesulfonyloxy; while most preferred is methanesulfonyloxy.
- a preferred protecting group is benzoyl and a preferred activating group is bromine.
- a specific compound that may be used as sugar compound 2 is 2-deoxy-2- fluoro-3,5-di-O-benzoyl- ⁇ -D-arabinofuranosyl bromide as prepared by CH. Tann, et al, J. Org. Chem., 1985, 50, 3644-3647; the disclosure of which is hereby incorporated by reference.
- the purine and activated carbohydrate derivative are typically employed in approximately equivalent amounts or with an excess of the purine and more typically about 1 : 1 to about 3:1 ; preferably about 1 : 1 to about 1.5:1 and more preferably about 1 : 1 to about 1.2:1 of purine to activated carbohydrate derivative.
- This step of the process is typically carried out at temperatures of about 0° to about 100°C, more typically about 20°C to about 70°C and preferably about 20 °C to about 40°C; and at normal atmospheric pressures. However, higher or lower pressures can be employed if desired. This step of the process typically takes about 3 to about 24 hours for completion.
- the reaction of the above-described purine compound 1 with the arabinofuranose sugar 2 preferably takes place in the presence of a solvent.
- a solvent may be a dipolar, aprotic solvent such as acetone, acetonitrile, dimethylformamide, dimethyl sulfoxide, sulfolane, dimethylacetamide and'ethers such as tetrahydrofuran, dioxane, and dimethoxyethane.
- the reaction mixture may be filtered and the solvent may be evaporated until a foam is obtained.
- the foam may be purified on flash silica using isopropyl acetate/hexane or any other suitable solution as the eluent.
- the fractions containing the desired 9- ⁇ isomer may be combined and evaporated to a residue that may then be crystallized from ethanol to give the desired 9-substituted purine nucleoside 3.
- the 9-substitued purine-nucleoside 3 is reacted with an alkoxide to provide the corresponding 2-chloro-6-alkoxy purine nucleoside 4.
- the alkoxide is preferably an alkali metal alkoxide and most preferably sodium methoxide.
- This step of the process is typically carried out at temperatures of about 0°C to about 100°C, more typically about 20°C to about 40°C, and at normal atmospheric pressures. Higher or lower pressures can be employed, if desired. This step of the process typically takes about 3 to about 24 hours for completion.
- this step of the process preferably takes place in the presence of a solvent, with a preferred solvent being an alcohol which corresponds to the alkoxide used in the reaction.
- a solvent with a preferred solvent being an alcohol which corresponds to the alkoxide used in the reaction.
- the reaction mixture may be treated with an ion exchange resin, filtered and evaporated to a residue.
- ion exchange resin that has proved useful for this purpose is Dowex 50WX8-400 ion- exchange resin.
- the desired 6-alkoxypurine nucleoside 4 may be derived from the residue obtained in this step by triturating the residue with hexane several times, followed by decantation of the supernatant liquor. The residue thus obtained may then be either recrystallized, or slurried in cold isopropyl alcohol in lieu of recrystallization, to give 6- alkoxypurine nucleoside 4.
- 2-chloro-9-(2-deoxy-2-fluoro- ⁇ -D-arabinofuranosyl)-PH-purin-6-amine (5) may be obtained by reacting the 6-alkoxypurine nucleoside 4 and ammonia.
- This step of the process is typically carried out at temperatures of about 20°C to about 120°C and more typically about 70°C to about 100°C; and typically at pressures generated in a sealed vessel at the above temperatures. This step of the process typically takes about 12 hours to about 24 hours for completion.
- This step of the process can be carried out in the presence of an alcoholic solvent such as methanol or ethanol or in the absence of a solvent.
- the ammonia is typically present as an alcoholic solution such as in methanol or ethanol (typically saturated at 5°C).
- this reaction takes place in a stainless steel bomb at 80°C (65 psi).
- the solvent may be removed and the residue dissolved in refluxing methanol, and preferably hot- filtered.
- the crude product 2-chloro-9-(2-deoxy-2-fluoro- ⁇ -D- arabinofuranosyl)-°H-purin-6-amine (5) may be isolated by filtration.
- the product may be recrystallized from methanol to give high-quality -2-chloro-9-(2-deoxy-2-fluoro- ⁇ -D- arabinofuranosyl)-°H-purin-6-amine (5). Further recrystallizations of evaporated filtrates from methanol are optional to obtain additional 2-chloro-9-(2-deoxy-2-fluoro- ⁇ -D- arabinofuranosyl)-9H-purin-6-amine (5).
- Reference to Figure 2 illustrates another reaction scheme according to the present invention for synthesizing 2-chloro-9-(2-deoxy-2-fluoro- ⁇ -D-arabinofuranosyl)-°H- purin-6-amine (5).
- a protected and activated 2-deoxy-2-fluoro-D-arabinofuranose 2 is reacted with the anionic form of a 2-chloro-6-substituted purine 1 to provide a reaction product comprising a 9-substituted purine nucleoside 3.
- suitable substituents in the 6 position include groups such as amino, protected amino groups, azido and alkoxy, with amino being preferred. Suitable alkoxy groups are methoxy and ethoxy.
- Suitable amino protecting groups are acyl, imino, and carbamates.
- Suitable acyl groups are acetyl-, benzoyl-, p-methoxybenzoyl, 2-methylbutryl- and pivaloyl.
- a suitable imino group is dimethylaminomethylene.
- Suitable carbamates are iso ' butyl-, t-butyl-, benzyl-, p-methoxybenzyl-, carbamates.
- the preferred purine is the anionic form of 2-chIoro-6-aminopurine.
- suitable anionic forms include alkali metal salts and organic amine salts as discussed above in the first embodiment of the present invention.
- Preferred anionic forms are the sodium salt and amine salts such as DBU.
- the 2-deoxy-2-fluoro-D-arabinofuranosyl moiety contains protecting groups on the 3- and 5- hydroxyl groups and an activating group in the C-l position.
- protecting groups and activating groups are those discussed above for the first embodiment according to the present invention.
- a preferred protecting group is benzoyl and a preferred activating group is bromine.
- a specific compound that may be used as the sugar reactant 2 is 2-deoxy-2-fluoro- 3,5-di-0-benzoyl-2- ⁇ -D-arabinofuranosyl bromide.
- the purine and the activated carbohydrate derivative are typically employed in approximately equivalent amounts or with an excess of the purine and more typically about 1:1 to about 3:1, preferably about 1:1 to about 1.5:1 and more preferably about 1:1 to about 1.2:1 of purine to the activated carbohydrate derivative.
- This step of the process is typically carried out at temperatures of about 0°C to about 100°C, more typically about 20°C to about 70°C and preferably about 20°C to about 40°C; and at normal atmospheric pressures. However, higher or lower pressures can be employed if desired.
- This step of the process typically takes about 3 to about 96 hours for completion.
- the reaction of the above-described purine compound 1 with the arabinofuranose sugar 2 preferably takes place in the presence of a solvent.
- a solvent may be a dipolar, aprotic solvent such as acetone, acetonitrile, dimethylformamide, dimethyl sulfoxide, sulfolane, dimethylacetamide, and ethers such as tetrahydrofuran, dioxane and dimethoxyethane.
- the reaction mixture may be filtered and the solvent may be evaporated until a foam is obtained.
- the foam may be purified on flash silica using isopropyl acetate/hexane or any other suitable solution of the eluent.
- the fractions containing the desired 9- ⁇ isomer may be combined and evaporated to a residue that may then be recrystallized from ethanol to give the desired 9-substituted purine nucleoside 3.
- the desired 2-chloro-9-(2-deoxy-2-fluoro- ⁇ -D-arabinofuranosyl)-PH-purin-6-amine (5) may be obtained by reacting the purine nucleoside 3 and a base such as ammonia and/or an alkali metal alkoxide such as sodium methoxide, an alkali metal carbonate such as sodium carbonate, and a alkali metal hydroxide such as lithium hydroxide.
- This step of the process with these groups is typically carried out at temperatures of about -20°C to about 80°C and more typically about 0°C to about 50°C; and typically at pressures generated in a sealed vessel at the above temperatures. This step of the process typically takes about 1 hour to about 24 hours for completion.
- the desired 2-chloro-9-(2-deoxy-2- fluoro- ⁇ -D-arabinofuranosyl)-9H-purin-6-amine(5) may be obtained by reacting the purine nucleoside 3A with a reducing agent such as a hydrogenating agent to reduce the azido group to an amino group and then reacting with a base as discussed above(see figure 3).
- the reducing step can be carried out, for instance, by reacting with hydrogen in the presence of a hydrogenation catalyst such as platinum or palladium. This step of the process is typically carried out at about normal room temperatures and a pressure of about 1 atm to about 3 atm.
- the desired 2-chloro-9-(2-deoxy-2-fluoro- ⁇ - D-arabinofuranosyl)-PH-purin-6-amine(5) may also be obtained by reacting the purine nucleoside 3 with a base as discussed above and then reacting with a reducing agent to reduce the azido group to an amino group.
- the desired 2-chloro-9-(2-deoxy-2- fluoro- ⁇ -D-arabinofuranosyl)- H-purin-6-amine (5) may be obtained by reacting the purine nucleoside 3 with ammonia.
- This step of the process is typically carried out at about normal room temperatures to about 120°C and more typically about 70°C to about 100°C; and typically at pressures generated in a sealed vessel at the above temperatures. This step of the process typically takes about 12 hours to about 24 hours for completion.
- This step of the process is preferably carried out in the presence of an alcoholic solvent, such as methanol or ethanol or in the absence of a solvent.
- an alcoholic solvent such as methanol or ethanol
- Preferred embodiments for converting 3 to 5 include using ammonia or sodium methoxide.
- the group (R in 3 in Fig. 2) is amino, protected amino such as acylamino, imino, and carbamate
- one preferred embodiment is to use sodium methoxide at about 0°C to normal room temperatures.
- ammonia can be used.
- the ammonia when used, is typically present as an alcoholic solution such as in methanol or ethanol (typically saturated at 5°C). In a preferred embodiment, this reaction takes place in a stainless steel bomb at room temperature. When the reaction is completed, the solvent may be removed and the residue dissolved in refluxing methanol, and preferably hot-filtered. Upon cooling, the crude product 2-chloro-9-(2-deoxy-2- fluoro- ⁇ -D-arabinofuranosyl)-°H-purin-6-amine (5) may be isolated by filtration.
- the product may be recrystallized from methanol to give high-quality 2-chloro-9-(2-deoxy-2- fluoro- ⁇ -D-arabinofuranosyl)-9H-purin-6-amine (5). Further recrystallizations of the evaporated filtrates from methanol are optional to obtain additional 2-chloro-9-(2-deoxy- 2-fluoro- ⁇ -D-arabinofuranosyl)-°H-purin-6-amine (5).
- One of ordinary skill in the art will readily see that some modification may be made to the preferred embodiments of the present invention set forth above. Further illustration of the present invention is set forth in the following examples, which are not to be construed as limiting the invention in any manner. The examples illustrate the individual steps of the above-described invention process.
- Example 1 illustrate the individual steps of the above-described invention process.
- Example 2 (6.2g, 19.5 mmol) prepared as in Example 2 was placed in a stainless steel pressure bomb with 300 ml ethanol saturated (0 °C) with anhydrous ammonia. The sealed vessel was heated at 80 °C for 16 hours. More ethanolic ammonia (30 ml) was added to the incomplete reaction, and heating was continued for 4 hours. The reaction solution containing a trace of starting material was evaporated to a white foam that crystallized from hot methanol (75 ml), 5.1 g. This relatively pure material was dissolved in refluxing methanol (110 ml), filtered, allowed to cool to room temperature, then chilled. Pure title compound was obtained in two crops, total 4.6 g (78%), mp 231 °C ( ⁇ PLC, 99%).
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Hematology (AREA)
- Oncology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Saccharide Compounds (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
Claims
Priority Applications (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2001238516A AU2001238516B2 (en) | 2000-02-18 | 2001-02-16 | Methods for synthesizing 2-chloro-9-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-9H- purin-6-amine |
MXPA02008075A MXPA02008075A (en) | 2000-02-18 | 2001-02-16 | METHODS FOR SYNTHESIZING 2 CHLORO 9 (2 DEOXY 2 FLUORO bgr; D ARABINOFU RANOSYL) 9H. |
JP2001559479A JP4555536B2 (en) | 2000-02-18 | 2001-02-16 | Method for the synthesis of 2-chloro-9- (2-deoxy-2-fluoro-β-D-arabinofuranosyl) -9H-purin-6-amine |
DE60121425T DE60121425T2 (en) | 2000-02-18 | 2001-02-16 | Process for the preparation of 2-chloro-9- (2-deoxy-2-fluoro-β-D-arabinofuranosyl) -9H-purin-6-amine |
EP01910961A EP1261350B1 (en) | 2000-02-18 | 2001-02-16 | Methods for synthesizing 2-chloro-9-(2-deoxy-2-fluoro-beta-d-arabinofuranosyl)-9h-purin-6-amine |
KR1020027010781A KR100695717B1 (en) | 2000-02-18 | 2001-02-16 | Methods for synthesizing 2-chloro-9-2-deoxy-2-fluoro-beta- d-arabinofuranosyl-9h-purin-6-amine |
AU3851601A AU3851601A (en) | 2000-02-18 | 2001-02-16 | Methods for synthesizing 2-chloro-9-(2-deoxy-2-fluoro-beta-d-arabinofuranosyl)-9h- purin-6-amine |
US09/889,287 US6949640B2 (en) | 2000-02-18 | 2001-02-16 | Method for synthesizing 2-chloro-9-(2-fluoro-β-D-arabinofuranosyl)-9H-purin-6-amine |
SI200130629T SI1261350T1 (en) | 2000-02-18 | 2001-02-16 | Methods for synthesizing 2-chloro-9-(2-deoxy-2-fluoro-beta-d-arabinofuranosyl)-9h-purin-6-amine |
NZ520852A NZ520852A (en) | 2000-02-18 | 2001-02-16 | Intermediates and methods for synthesizing 2-chloro-9- (2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-9H-purin-6-amine |
CA002400470A CA2400470C (en) | 2000-02-18 | 2001-02-16 | Methods for synthesizing 2-chloro-9-(2-deoxy-2-fluoro-.beta.-d-arabinofuranosyl)-9h-purin-6-amine |
US11/204,176 US7470784B2 (en) | 2000-02-18 | 2005-08-16 | Methods for synthesizing 2-chloro-9-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)-9H-purin-6-amine |
AU2005234681A AU2005234681B2 (en) | 2000-02-18 | 2005-11-16 | Methods for Synthesizing 2-Chloro-9-(2-Deoxy-2-Fluoro-Beta-D-Arabinofuranosyl)-9H-Purin-6-Amine |
CY20061101407T CY1105636T1 (en) | 2000-02-18 | 2006-09-28 | METHODS FOR THE SYNTHESIS OF 2-CHLORO-9-(DEOXY-2-FLUORO-BETA -D-ARABINOFURANOSYL)-6H-PURINE-6-AMINE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18342200P | 2000-02-18 | 2000-02-18 | |
US60/183,422 | 2000-02-18 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/889,287 A-371-Of-International US6949640B2 (en) | 2000-02-18 | 2001-02-16 | Method for synthesizing 2-chloro-9-(2-fluoro-β-D-arabinofuranosyl)-9H-purin-6-amine |
US11/204,176 Continuation US7470784B2 (en) | 2000-02-18 | 2005-08-16 | Methods for synthesizing 2-chloro-9-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)-9H-purin-6-amine |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001060383A1 true WO2001060383A1 (en) | 2001-08-23 |
Family
ID=22672724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2001/005320 WO2001060383A1 (en) | 2000-02-18 | 2001-02-16 | METHODS FOR SYNTHESIZING 2-CHLORO-9-(2-DEOXY-2-FLUORO-β-D-ARABINOFURANOSYL)-9H-PURIN-6-AMINE |
Country Status (15)
Country | Link |
---|---|
US (2) | US6949640B2 (en) |
EP (1) | EP1261350B1 (en) |
JP (2) | JP4555536B2 (en) |
KR (1) | KR100695717B1 (en) |
AT (1) | ATE332910T1 (en) |
AU (2) | AU2001238516B2 (en) |
CA (1) | CA2400470C (en) |
CY (1) | CY1105636T1 (en) |
DE (1) | DE60121425T2 (en) |
DK (1) | DK1261350T3 (en) |
ES (1) | ES2267725T3 (en) |
MX (1) | MXPA02008075A (en) |
NZ (1) | NZ520852A (en) |
PT (1) | PT1261350E (en) |
WO (1) | WO2001060383A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6680382B2 (en) | 2001-08-02 | 2004-01-20 | Ilex Products, Inc. | Process for preparing purine nucleosides |
JP2006500375A (en) * | 2002-08-21 | 2006-01-05 | アシュ スチーブンス,インコーポレイテッド | Process for the preparation of 9-β-anomeric nucleoside analogues |
EP2070938A1 (en) | 2007-12-13 | 2009-06-17 | Heidelberg Pharma AG | Clofarabine dietherphospholipid derivatives |
US7947824B2 (en) | 2001-08-02 | 2011-05-24 | Genzyme Corporation | Process for preparing purine nucleosides |
CN102311472A (en) * | 2010-07-09 | 2012-01-11 | 神隆(昆山)生化科技有限公司 | Preparation of 2-chloro-9-(2'-deoxy-2'-fluoro-beta-D-arabinofuranosyl)-adenine |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2001238516B2 (en) * | 2000-02-18 | 2005-08-04 | Southern Research Institute | Methods for synthesizing 2-chloro-9-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-9H- purin-6-amine |
AU2006259431B2 (en) * | 2005-06-14 | 2011-09-29 | Brigham Young University | Methods for selective N-9 glycosylation of purines |
CN101497640B (en) * | 2008-01-30 | 2011-09-14 | 江苏正大天晴药业股份有限公司 | Novel crystal form of clofarabine |
CN102060899B (en) * | 2010-12-27 | 2012-07-25 | 江苏奥赛康药业股份有限公司 | Nelarabine N-9 site alpha isomer, and preparation method and application thereof |
WO2015118558A2 (en) * | 2014-02-04 | 2015-08-13 | Msn Laboratories Private Limited | Process for the preparation of clofarabine |
EP2937420A1 (en) | 2014-04-23 | 2015-10-28 | Synbias Pharma AG | Method for the synthesis of clofarabine |
WO2018085307A1 (en) * | 2016-11-03 | 2018-05-11 | Wu Laurence I | Prodrugs of clofarabine |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0314011A2 (en) * | 1987-10-30 | 1989-05-03 | F. Hoffmann-La Roche Ag | Purine derivatives |
WO1989008658A1 (en) * | 1988-03-16 | 1989-09-21 | Scripps Clinic And Research Foundation | Substituted adenine derivatives useful as therapeutic agents |
US5310732A (en) * | 1986-02-03 | 1994-05-10 | The Scripps Research Institute | 2-halo-2'-deoxyadenosines in the treatment of rheumatoid arthritis |
US5384310A (en) * | 1989-05-23 | 1995-01-24 | Southern Research Institute | 2'-fluoro-2-haloarabinoadinosines and their pharmaceutical compositions |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3903073A (en) * | 1973-12-26 | 1975-09-02 | Abbott Lab | 2-Substituted adenosine-5{40 {0 carboxylates |
US4625020A (en) * | 1983-11-18 | 1986-11-25 | Bristol-Myers Company | Nucleoside process |
US4751221A (en) * | 1985-10-18 | 1988-06-14 | Sloan-Kettering Institute For Cancer Research | 2-fluoro-arabinofuranosyl purine nucleosides |
EP0267878A1 (en) * | 1986-11-14 | 1988-05-18 | Ciba-Geigy Ag | N9-cyclopentyl-substituted adenine derivatives |
GB8712745D0 (en) * | 1987-05-30 | 1987-07-01 | Wellcome Found | Antiviral compounds |
JPH0217199A (en) * | 1988-07-05 | 1990-01-22 | Japan Tobacco Inc | Production of 2'-deoxy-beta-adenosine |
HU906976D0 (en) * | 1989-11-13 | 1991-05-28 | Bristol Myers Squibb Co | Process for producing 2', 3'-didesoxy-2'-fluoarabinonucleoside analogues |
US5110919A (en) * | 1989-12-04 | 1992-05-05 | Ash Stevens, Inc. | Process for the preparation of 2-amino-9-(2,3,5-tri-o-benzyl-beta-d-arabinofuranosyl) adenine and novel intermediates |
CS276072B6 (en) * | 1990-08-06 | 1992-03-18 | Ustav Organicke Chemie A Bioch | (2R)-2-/DI(2-PROPYL)PHOSPHONYLMETHOXY/-3-p-TOLUENESULFONYLOXY -1- TRIMETHYLACETOXYPROPANE AND PROCESS FOR PREPARING THEREOF |
US5180824A (en) * | 1990-11-29 | 1993-01-19 | Berlex Biosciences Inc. | 6-azido-2-fluoropurine, useful in the synthesis of nucleosides |
US5332814A (en) * | 1991-11-12 | 1994-07-26 | Ciba-Geigy Corporation | Process for the preparation of carbacyclic nucleosides, and intermediates |
UA41261C2 (en) | 1992-06-22 | 2001-09-17 | Елі Ліллі Енд Компані | METHOD OF OBTAINING BETA-ANOMER-ENRICHED NUCLEOSIDES |
US5821357A (en) * | 1992-06-22 | 1998-10-13 | Eli Lilly And Company | Stereoselective glycosylation process for preparing 2'-deoxy-2',2'-difluoropurine and triazole nucleosides |
US5401838A (en) | 1992-06-22 | 1995-03-28 | Eli Lilly And Company | Stereoselective fusion glycosylation process for preparing 2'-deoxy-2',2'-difluoronucleosides and 2'-deoxy-2'-fluoronucleosides |
FI932871A (en) * | 1992-06-22 | 1993-12-23 | Lilly Co Eli | STEREOSELECTIVE ANJONGLYKOSYLATIONSPROCESS |
US5753789A (en) * | 1996-07-26 | 1998-05-19 | Yale University | Oligonucleotides containing L-nucleosides |
AU2001238516B2 (en) * | 2000-02-18 | 2005-08-04 | Southern Research Institute | Methods for synthesizing 2-chloro-9-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-9H- purin-6-amine |
-
2001
- 2001-02-16 AU AU2001238516A patent/AU2001238516B2/en not_active Expired
- 2001-02-16 DK DK01910961T patent/DK1261350T3/en active
- 2001-02-16 DE DE60121425T patent/DE60121425T2/en not_active Expired - Lifetime
- 2001-02-16 PT PT01910961T patent/PT1261350E/en unknown
- 2001-02-16 ES ES01910961T patent/ES2267725T3/en not_active Expired - Lifetime
- 2001-02-16 EP EP01910961A patent/EP1261350B1/en not_active Expired - Lifetime
- 2001-02-16 MX MXPA02008075A patent/MXPA02008075A/en active IP Right Grant
- 2001-02-16 NZ NZ520852A patent/NZ520852A/en not_active IP Right Cessation
- 2001-02-16 KR KR1020027010781A patent/KR100695717B1/en not_active IP Right Cessation
- 2001-02-16 AT AT01910961T patent/ATE332910T1/en active
- 2001-02-16 JP JP2001559479A patent/JP4555536B2/en not_active Expired - Fee Related
- 2001-02-16 US US09/889,287 patent/US6949640B2/en not_active Expired - Lifetime
- 2001-02-16 WO PCT/US2001/005320 patent/WO2001060383A1/en active IP Right Grant
- 2001-02-16 CA CA002400470A patent/CA2400470C/en not_active Expired - Lifetime
- 2001-02-16 AU AU3851601A patent/AU3851601A/en active Pending
-
2005
- 2005-08-16 US US11/204,176 patent/US7470784B2/en not_active Expired - Lifetime
-
2006
- 2006-09-28 CY CY20061101407T patent/CY1105636T1/en unknown
-
2009
- 2009-12-21 JP JP2009289620A patent/JP2010070560A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5310732A (en) * | 1986-02-03 | 1994-05-10 | The Scripps Research Institute | 2-halo-2'-deoxyadenosines in the treatment of rheumatoid arthritis |
EP0314011A2 (en) * | 1987-10-30 | 1989-05-03 | F. Hoffmann-La Roche Ag | Purine derivatives |
WO1989008658A1 (en) * | 1988-03-16 | 1989-09-21 | Scripps Clinic And Research Foundation | Substituted adenine derivatives useful as therapeutic agents |
US5384310A (en) * | 1989-05-23 | 1995-01-24 | Southern Research Institute | 2'-fluoro-2-haloarabinoadinosines and their pharmaceutical compositions |
Non-Patent Citations (2)
Title |
---|
DATABASE CAPLUS [online] (COLUMBUS, OHIO, USA); EVANGELISTO ET AL.: "Preparative high-performance liquid chromatographic separation of fluorodeoxy sugars", XP002939915, accession no. STN Database accession no. 1995:448973 * |
JOURNAL OF CHROMATOGRAPHY, vol. 695, no. 1, 1995, pages 128 - 131 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6680382B2 (en) | 2001-08-02 | 2004-01-20 | Ilex Products, Inc. | Process for preparing purine nucleosides |
US7947824B2 (en) | 2001-08-02 | 2011-05-24 | Genzyme Corporation | Process for preparing purine nucleosides |
JP2006500375A (en) * | 2002-08-21 | 2006-01-05 | アシュ スチーブンス,インコーポレイテッド | Process for the preparation of 9-β-anomeric nucleoside analogues |
EP2070938A1 (en) | 2007-12-13 | 2009-06-17 | Heidelberg Pharma AG | Clofarabine dietherphospholipid derivatives |
CN102311472A (en) * | 2010-07-09 | 2012-01-11 | 神隆(昆山)生化科技有限公司 | Preparation of 2-chloro-9-(2'-deoxy-2'-fluoro-beta-D-arabinofuranosyl)-adenine |
CN102311472B (en) * | 2010-07-09 | 2014-09-03 | 神隆(昆山)生化科技有限公司 | Preparation of 2-chloro-9-(2'-deoxy-2'-fluoro-beta-D-arabinofuranosyl)-adenine |
Also Published As
Publication number | Publication date |
---|---|
EP1261350A4 (en) | 2003-04-16 |
DE60121425D1 (en) | 2006-08-24 |
US7470784B2 (en) | 2008-12-30 |
EP1261350B1 (en) | 2006-07-12 |
CA2400470C (en) | 2008-11-18 |
JP2003522798A (en) | 2003-07-29 |
DK1261350T3 (en) | 2006-11-13 |
JP4555536B2 (en) | 2010-10-06 |
DE60121425T2 (en) | 2007-02-01 |
ES2267725T3 (en) | 2007-03-16 |
KR100695717B1 (en) | 2007-03-15 |
NZ520852A (en) | 2004-03-26 |
US20030023078A1 (en) | 2003-01-30 |
EP1261350A1 (en) | 2002-12-04 |
AU3851601A (en) | 2001-08-27 |
MXPA02008075A (en) | 2005-06-06 |
CA2400470A1 (en) | 2001-08-23 |
AU2001238516B2 (en) | 2005-08-04 |
JP2010070560A (en) | 2010-04-02 |
KR20030032920A (en) | 2003-04-26 |
US6949640B2 (en) | 2005-09-27 |
PT1261350E (en) | 2006-11-30 |
CY1105636T1 (en) | 2010-12-22 |
ATE332910T1 (en) | 2006-08-15 |
US20050288500A1 (en) | 2005-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7470784B2 (en) | Methods for synthesizing 2-chloro-9-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)-9H-purin-6-amine | |
Reist et al. | Potential anticancer agents. 1 LXXVI. Synthesis of purine nucleosides of β-D-arabinofuranose | |
AU2001238516A1 (en) | Methods for synthesizing 2-chloro-9-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-9H- purin-6-amine | |
EP0547910B1 (en) | A process for preparing 2-chloro-2'-deoxyadenosine | |
DK147858B (en) | METHOD OF ANALOGUE FOR THE PREPARATION OF 5'-DEOXY-5-FLUORCYTIDINE OR 5'-DEOXY-5-FLUORURIDINE OR PHYSIOLOGICALLY TOLERABLE ACID ADDITION SALTS. | |
HU208149B (en) | Process for producing deoxyfluoronucleoside derivatives | |
CA2149117A1 (en) | Process for the preparation of fludarabine phosphate from guanosine | |
Ashwell et al. | The synthesis of some branched-chain-sugar nucleoside analogues | |
US3928319A (en) | 4 -Fluoro nucleosides, novel intermediates and methods of preparing same | |
EP0097376B1 (en) | Nucleoside 5'-alkyl- or alkenylphosphate | |
AU2005234681B2 (en) | Methods for Synthesizing 2-Chloro-9-(2-Deoxy-2-Fluoro-Beta-D-Arabinofuranosyl)-9H-Purin-6-Amine | |
US3558595A (en) | 2'-cyclic esters and 5'-cyclic esters of 3'-deoxy - 3' - dihydroxyphosphinylmethyl - beta - d - ribofuranosylnucleoside derivatives and intermediates therefor | |
CA2798163A1 (en) | Inosine derivatives and production methods therefor | |
WO2004065398A2 (en) | Synthesis and use of 2'-substituted-n6-modified nucleosides | |
Katagiri et al. | Synthesis and biological evaluation of 9-(f-2, c-3-bishydroxymethyl-r-cyclopropylmethyl)-9H-adenine (a lower methylene homolog of carbocyclic oxetanocin) and related compounds | |
EP0456817A4 (en) | Process for the preparation of 2-amino-9-(2,3,5-tri-0-benzyl-beta-d-arabinofuranosyl)adenine and novel intermediates | |
Thomas et al. | Synthesis and biologic activity of purine 2′-deoxy-2′-fluoro-ribonucleosides | |
US5206351A (en) | Process for the preparation of 2-amino (2,3,5-tri-o-benzyl-beta-d-arabinofuranosyl)adenine | |
Hřebabecký et al. | Synthesis of 3'-azido-2', 3'-dideoxy-6-methyluridine, 2', 3'-dideoxy-6-methyluridine and 2', 3'-dideoxy-2', 3'-didehydro-6-methyluridine | |
EP0578208B1 (en) | Process for the preparation of 2-fluoro-9-(2,3,5-tri-O-benzyl-beta-arabinofuranozyl)adenine | |
Antonov et al. | New Approach to the Synthesis of 2′, 3′-dideoxyadenosine and 2′, 3′-Dideoxyinosine | |
JP2002293792A (en) | Method for producing nucleoside or fluorinated sugar derivative | |
JPH01224390A (en) | Production of nucleoside derivative | |
JPH0692396B2 (en) | Method for producing dideoxynucleosides |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 09889287 Country of ref document: US |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2400470 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2001 559479 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2002/008075 Country of ref document: MX Ref document number: 520852 Country of ref document: NZ Ref document number: 1020027010781 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001238516 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001910961 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2001910961 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWP | Wipo information: published in national office |
Ref document number: 1020027010781 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 520852 Country of ref document: NZ |
|
WWG | Wipo information: grant in national office |
Ref document number: 520852 Country of ref document: NZ |
|
WWG | Wipo information: grant in national office |
Ref document number: 2001238516 Country of ref document: AU |
|
WWG | Wipo information: grant in national office |
Ref document number: 2001910961 Country of ref document: EP |