22 Human Secreted Proteins
Field ofthe Invention
This invention relates to newly identified polynucleotides, polypeptides encoded by these polynucleotides, antibodies that bind these polypeptides, uses of such polynucleotides, polypeptides, and antibodies, and their production.
Background ofthe Invention
Unlike bacterium, which exist as a single compartment sunounded by a membrane, human cells and other eucaryotes are subdivided by membranes into many functionally distinct compartments. Each membrane-bounded compartment, or organelle, contains different proteins essential for the function of the organelle. The cell uses "sorting signals," which are amino acid motifs located within the protein, to target proteins to particular cellular organelles. One type of sorting signal, called a signal sequence, a signal peptide, or a leader sequence, directs a class of proteins to an organelle called the endoplasmic reticulum (ER). The ER separates the membrane-bounded proteins from all other types of proteins. Once localized to the ER, both groups of proteins can be further directed to another organelle called the Golgi apparatus. Here, the Golgi distributes the proteins to vesicles, including secretory vesicles, the cell membrane, lysosomes, and the other organelles.
Proteins targeted to the ER by a signal sequence can be released into the extracellular space as a secreted protein. For example, vesicles containing secreted proteins can fuse with the cell membrane and release their contents into the extracellular space - a process called exocytosis. Exocytosis can occur constitutively or after receipt of a triggering signal. In the latter case, the proteins are stored in secretory vesicles (or secretory granules) until exocytosis is triggered. Similarly, proteins residing on the cell membrane can also be secreted into the extracellular space by proteolytic cleavage of a "linker" holding the protein to the' membrane. Despite the great progress made in recent years, only a small number of genes encoding human secreted proteins have been identified. These secreted proteins
include the commercially valuable human insulin, interferon, Factor VIII, human growth hormone, tissue plasminogen activator, and erythropoeitin. Thus, in light of the pervasive role of secreted proteins in human physiology, a need exists for identifying and characterizing novel human secreted proteins and the genes that encode them. This knowledge will allow one to detect, to treat, and to prevent medical diseases, disorders, and/or conditions by using secreted proteins or the genes that encode them.
Summary ofthe Invention The present invention relates to novel polynucleotides and the encoded polypeptides. Moreover, the present invention relates to vectors, host cells, antibodies, and recombinant and synthetic methods for producing the polypeptides and polynucleotides. Also provided are diagnostic methods for detecting diseases, disorders, and/or conditions related to the polypeptides and polynucleotides, and therapeutic methods for treating such diseases, disorders, and/or conditions. The invention further relates to screening methods for identifying binding partners ofthe polypeptides.
Detailed Description Definitions
The following definitions are provided to facilitate understanding of certain terms used throughout this specification.
In the present invention, "isolated" refers to material removed from its original environment (e.g., the natural environment if it is naturally occurring), and thus is altered "by the hand of man" from its natural state. For example, an isolated polynucleotide could be part of a vector or a composition of matter, or could be contained within a cell, and still be "isolated" because that vector, composition of matter, or particular cell is not the original environment ofthe polynucleotide. The term "isolated" does not refer to genomic or cDNA libraries, whole cell total or mRNA preparations, genomic DNA preparations (including those separated by electrophoresis and transfened onto blots), sheared whole cell genomic DNA
preparations or other compositions where the art demonstrates no distinguishing features ofthe polynucleotide/sequences ofthe present invention.
In the present invention, a "secreted" protein refers to those proteins capable of being directed to the ER, secretory vesicles, or the extracellular space as a result of a signal sequence, as well as those proteins released into the extracellular space without necessarily containing a signal sequence. If the secreted protein is released into the extracellular space, the secreted protein can undergo extracellular processing to produce a "mature" protein. Release into the extracellular space can occur by many mechanisms, including exocytosis and proteolytic cleavage. In specific embodiments, the polynucleotides ofthe invention are at least 15, at least 30, at least 50, at least 100, at least 125, at least 500, or at least 1000 continuous nucleotides but are less than or equal to 300 kb, 200 kb, 100 kb, 50 kb, 15 kb, 10 kb, 7.5 kb, 5 kb, 2.5 kb, 2.0 kb, or 1 kb, in length. In a further embodiment, polynucleotides ofthe invention comprise a portion ofthe coding sequences, as disclosed herein, but do not comprise all or a portion of any intron. In another embodiment, the polynucleotides comprising coding sequences do not contain coding sequences of a genomic flanking gene (i.e., 5' or 3' to the gene of interest in the genome). In other embodiments, the polynucleotides ofthe invention do not contain the coding sequence of more than 1000, 500, 250, 100, 50, 25, 20, 15, 10, 5, 4, 3, 2, or 1 genomic flanking gene(s).
As used herein, a "polynucleotide" refers to a molecule having a nucleic acid sequence contained in SEQ ID NO:X or the cDNA contained within the clone deposited with the ATCC. For example, the polynucleotide can contain the nucleotide sequence ofthe full length cDNA sequence, including the 5' and 3' untranslated sequences, the coding region, with or without the signal sequence, the secreted protein coding region, as well as fragments, epitopes, domains, and variants ofthe nucleic acid sequence. Moreover, as used herein, a "polypeptide" refers to a molecule having the translated amino acid sequence generated from the polynucleotide as broadly defined. In the present invention, the full length sequence identified as SEQ ID NO:X was often generated by overlapping sequences contained in multiple clones (contig analysis). A representative clone containing all or most ofthe sequence for SEQ ID
NO:X was deposited with the American Type Culture Collection ("ATCC"). As shown in Table 1, each clone is identified by a cDNA Clone ID (Identifier) and the ATCC Deposit Number. The ATCC is located at 10801 University Boulevard, Manassas, Virginia 20110-2209, USA. The ATCC deposit was made pursuant to the terms of the Budapest Treaty on the international recognition of the deposit of microorganisms for purposes of patent procedure.
A "polynucleotide" ofthe present invention also includes those polynucleotides capable of hybridizing, under stringent hybridization conditions, to sequences contained in SEQ ID NO:X, the complement thereof, or the cDNA within the clone deposited with the ATCC. "Stringent hybridization conditions" refers to an overnight incubation at 42 degree C in a solution comprising 50% formamide, 5x SSC (750 mM NaCl, 75 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 μg/ml denatured, sheared salmon sperm DNA, followed by washing the filters in O.lx SSC at about 65 degree C. Also contemplated are nucleic acid molecules that hybridize to the polynucleotides ofthe present invention at lower stringency hybridization conditions. Changes in the stringency of hybridization and signal detection are primarily accomplished through the manipulation of formamide concentration (lower percentages of formamide result in lowered stringency); salt conditions, or temperature. For example, lower stringency conditions include an overnight incubation at 37 degree C in a solution comprising 6X SSPE (20X SSPE = 3M NaCl; 0.2M NaH2PO4; 0.02M EDTA, pH 7.4), 0.5% SDS, 30% formamide, 100 ug/ml salmon sperm blocking DNA; followed by washes at 50 degree C with 1XSSPE, 0.1% SDS. In addition, to achieve even lower stringency, washes performed following stringent hybridization can be done at higher salt concentrations (e.g. 5X SSC).
Note that variations in the above conditions may be accomplished through the inclusion and/or substitution of alternate blocking reagents used to suppress background in hybridization experiments. Typical blocking reagents include Denhardt's reagent, BLOTTO, heparin, denatured salmon sperm DNA, and commercially available proprietary formulations. The inclusion of specific blocking
reagents may require modification ofthe hybridization conditions described above, due to problems with compatibility.
Of course, a polynucleotide which hybridizes only to polyA+ sequences (such as any 3' terminal polyA+ tract of a cDNA shown in the sequence listing), or to a complementary stretch of T (or U) residues, would not be included in the definition of "polynucleotide," since such a polynucleotide would hybridize to any nucleic acid molecule containing a poly (A) stretch or the complement thereof (e.g., practically any double-stranded cDNA clone generated using oligo dT as a primer).
The polynucleotide of the present invention can be composed of any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. For example, polynucleotides can be composed of single- and double-stranded DNA, DNA that is a mixture of single- and double- stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions. In addition, the polynucleotide can be composed of triple-stranded regions comprising RNA or DNA or both RNA and DNA. A polynucleotide may also contain one or more modified bases or DNA or RNA backbones modified for stability or for other reasons. "Modified" bases include, for example, tritylated bases and unusual bases such as inosine. A variety of modifications can be made to DNA and RNA; thus, "polynucleotide" embraces chemically, enzymatically, or metabolically modified forms.
The polypeptide ofthe present invention can be composed of amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres, and may contain amino acids other than the 20 gene-encoded amino acids. The polypeptides may be modified by either natural processes, such as posttranslational processing, or by chemical modification techniques which are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. It will be appreciated that the same type of modification may be present in the same or varying degrees at several sites in
a given polypeptide. Also, a given polypeptide may contain many types of modifications. Polypeptides may be branched , for example, as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched, and branched cyclic polypeptides may result from posttranslation natural processes or may be made by synthetic methods. Modifications include acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine, formation of pyro glutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, pegylation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination. (See, for instance, PROTEINS - STRUCTURE AND MOLECULAR PROPERTIES, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993); POSTTRANSLATIONAL COVALENT MODIFICATION OF PROTEINS, B. C. Johnson, Ed., Academic Press, New York, pgs. 1-12 (1983); Seifter et al., Meth Enzymol 182:626-646 (1990); Rattan et al., Ann NY Acad Sci 663:48-62 (1992).) "SEQ ID NO:X" refers to a polynucleotide sequence while "SEQ ID NON" refers to a polypeptide sequence, both sequences identified by an integer specified in Table 1.
"A polypeptide having biological activity" refers to polypeptides exhibiting activity similar, but not necessarily identical to, an activity of a polypeptide ofthe present invention, including mature forms, as measured in a particular biological assay, with or without dose dependency. In the case where dose dependency does exist, it need not be identical to that ofthe polypeptide, but rather substantially similar to the dose-dependence in a given activity as compared to the polypeptide ofthe present invention (i.e., the candidate polypeptide will exhibit greater activity or not more than about 25-fold less and, preferably, not more than about tenfold less activity, and most preferably, not more than about three-fold less activity relative to the polypeptide ofthe present invention.)
Many proteins (and translated DNA sequences) contain regions where the amino acid composition is highly biased toward a small subset ofthe available residues. For example, membrane spanning domains and signal peptides (which are also membrane spanning) typically contain long stretches where Leucine (L), Valine (V), Alanine (A), and Isoleucine (I) predominate. Poly-Adenosine tracts (poly A) at the end of cDNAs appear in forward translations as poly-Lysine (poly-K) and poly- Phenylalanine (poly-F) when the reverse complement is translated. These regions are often refened to as "low complexity" regions.
Such regions can cause database similarity search programs such as BLAST to find high-scoring sequence matches that do not imply true homology. The problem is exacerbated by the fact that most weight matrices (used to score the alignments generated by BLAST) give a match between any of a group of hydrophobic amino acids (LN and I) that are commonly found in certain low complexity regions almost as high a score as for exact matches. In order to compensate for this, BLASTX.2 (version 2.0a5MP-WashU) employs two filters ("seg" and "xnu") which "mask" the low complexity regions in a particular sequence. These filters parse the sequence for such regions, and create a new sequence in which the amino acids in the low complexity region have been replaced with the character "X". This is then used as the input sequence (sometimes refened to herein as "Query" and/or "Q") to the BLASTX program. While this regime helps to ensure that high-scoring matches represent true homology, there is a negative consequence in that the BLASTX program uses the query sequence that has been masked by the filters to draw alignments.
Thus, a stretch of "X"s in an alignment shown in the following application does not necessarily indicate that either the underlying DΝA sequence or the translated protein sequence is unknown or uncertain. Nor is the presence of such stretches meant to indicate that the sequence is identical or not identical to the sequence disclosed in the alignment ofthe present invention. Such stretches may simply indicate that the BLASTX program masked amino acids in that region due to the detection of a low complexity region, as defined above. In all cases, the reference sequence(s) (sometimes refened to herein as "Subject", "Sbjct", and/or "S") indicated in the specification, sequence table (Table 1), and/or the deposited clone is (are) the
definitive embodiment(s) ofthe present invention, and should not be construed as limiting the present invention to the partial sequence shown in an alignment, unless specifically noted otherwise herein.
Polynucleotides and Polypeptides of the Invention
FEATURES OF PROTEIN ENCODED BY GENE NO: 1
In a specific embodiment, polypeptides comprising the amino acid sequence ofthe open reading frame upstream ofthe predicted signal peptide are contemplated by the present invention. Specifically, polypeptides ofthe invention comprise, or alternatively consists of, the following amino acid sequence:
GTSLSCGSVSTLCATMAVTACQGLGFVVSLIGIAGIIAATCMDQWSTQDLYN NPVTAVFNYQGLWRSCVRESSGFTECRGYFTLLGLPAMLQAVRALMIVGIVL GAIGLLVSITALKCI-RIGSMEDSAKANMTLTSGIMFIVSGLCAIAGVSVFANML VTNFWMSTANMYTGMGGMVQTVQTRYTFGAALFVGWVAGGLTLIGGVM MCIACRGLAPEETNYKAVSYHASGHSVAYKPGGF -ASTGFGSNTK-NKI RYD GGARTEDEVQSYPSKHDYV (SEQ ID NO: 123). Polynucleotides encoding said polypeptides are also encompassed by the invention. Moreover, fragments and variants of these polypeptides (such as, for example, fragments as described herein, polypeptides at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to these polypeptides and polypeptides encoded by the polynucleotide which hybridizes, under stringent conditions, to the polynucleotide encoding these polypeptides, or the complement there of are encompassed by the invention. Antibodies that bind polypeptides of the invention are also encompassed by the invention. Polynucleotides encoding these polypeptides are also encompassed by the invention.
Translation products conesponding to this gene share sequence homology with human Claudin-18 protein (See Genbank Accession AAF26448), a member of the claudin family of proteins which are a family of major integral membrane proteins localized to tight junctions between cells. Based on the sequence similarity, the translation product of this clone is expected to share at least some biological activities with claudin proteins. Such activities are known in the art, some of which are described elsewhere herein.
The polypeptide of this gene has been determined to have potential transmembrane domains at about amino acid position 82-98, 123-139, and 180-196 of the amino acid sequence referenced in Table 1 for this gene. Based upon these characteristics, it is believed that the protein product ofthis gene shares structural features to type Ilia membrane proteins.
11/15/00
>gb|AAF26 8.l|AF221069_l (AF221069) Clau in-18 [Homo sapiens] :>sp|AAF26448|AAF26448 Claudin-18. Length = 261
Plus Strand HSPs •
Score = 12S7 (442.5 bits). Expect = 3.0e-127, P = 3.0e-127 Identities = 2*39/261 (91%), Positives = 251/261 (96%), Frame = +1
Query: 46 MAVTACQGLGFWSLIGIAGIIAATCMDQWSTQDLYNNPVTAVFNYQGLWRSCVRESSGF 225
M+ T CQ + F++S++G+AG IAAT MD WSTQDLY+NPVT+VF Y+GLWRSCVR+SSGF Sbjct: 1 MSTTTCQWAFLLSILGLAGCIAATGMDMWSTQDLYDNPVTSVFQYEGLWRSCVRQSSGF 60
Query: 226 TECRGYFTLLGLPAMLQAVRALMIVGIVLGAIGLLVSIFALKCIRIGSMEDSAKA MTLT 405
TECR YFT+LGLPAMLQAVRALMIVGIVLGAIGLLVSIFALKCIRIGSMEDSAKANMTL.T Sbjct: 61 TECRPYFTILGLPAMLQAVRALMIVGIVLGAIGLLVSIFALKCIRIGSMEDSAKANMTLT 120 Query: 406 SGIMFIVSGLCAIAGVSVFANMLVTNFWMSTANMYTGMGGMVQTVQTRYTFGAALFVG V 585 SGIMFIVSGLCAIAGVSVFANMLV NFW STANMY GMGG VQTVQTRY FGAALFVG V Sbjct: 121 SGIMFIVSGLCAIAGVSVFA MLV NF MSTANMYTG GGMVQTVQTRYTFGAALFVG V 180
Query: 586 AGGLTLIGGVMMCIACRGLAPEETNYKAVSYHASGHSVAYKPGGFKASTGFGSNTK KKR 765 AGGLTLIGGVMMCIACRGIAPEETNYKAVSYHASGHSVAYKPGGFKASTGFGSNTKNKK
Sbjct: 181 AGGLTLIGGVMMCIACRGLAPEETNY AVSYHASGHSVAYKPGGFKASTGFGΞNTKNKKI 240
Query: 766 YDGGARTEDEVQΞYPSKHDYV 828 YDGGARTEDEVQSYPSKHDYV Sbjct: 241 YDGGARTEDEVQSYPSKHDYV 261
This gene is expressed primarily in adult and fetal lung tissue and to a lesser extent in pancreatic and testicular tumors. Polynucleotides and polypeptides ofthe invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: diseases and disorders ofthe lung, pancreas and testes. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification ofthe tissue(s) or cell type(s). For a number of disorders ofthe above tissues or cells, particularly ofthe respiratory system, expression ofthis gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another
tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Prefened polypeptides ofthe present invention comprise, or alternatively consist of, one or more immunogenic epitopes shown in SEQ ID NO: 68 as residues: Asp-28 to Asn-37, Cys-53 to Gly-59, Pro-201 to Tyr-206, Phe-231 to Val-261. Polynucleotides encoding said polypeptides are also encompassed by the invention.
This gene's homology to Claudin proteins indicates that polynucleotides and polypeptides conesponding to this gene may have a role in cell adhesion or in cell- cell communication. Thus, the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) are useful for the detection, diagnosis, and treatment of diseases, especially ofthe lung, testes, or pancreas, associated with abenant cell-cell adhesion (especially in tight junctions) or cell-cell communication. In particular, expression ofthis gene in lung indicates that the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) are useful in the diagnosis and treatment of diseases and disorder ofthe lung or lung function including for example, lung cancer, pulmonary edema, respiratory distress syndrome, asthma, bronchitis, and infections that affect the lung such as influenza and pneumonia.
Expression ofthis gene in tissue derived from pancreas suggests that the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) are useful in the detection, diagnosis, and treatment of diseases and disorders ofthe pancreas including but not limited to: pancreatic cancer, pancreatitis, and diabetes. Additionally the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) may have clinical utility in the detection, diagnosis and treatment of gallstones, and cystic fibrosis.
Additionally, expression ofthis gene in tissue derived from testes indicates that the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) are useful for the treatment and diagnosis of conditions concerning proper testicular function (e.g. endocrine
function, sperm maturation), as well as cancer. Therefore, this gene product is useful in the treatment of male infertility and/or impotence. This gene product is also useful in assays designed to identify binding agents, as such agents (antagonists) are useful as male contraceptive agents. Similarly, the protein is believed to be useful in the treatment and/or diagnosis of testicular cancer. The testes are also a site of active gene expression of transcripts that may be expressed, particularly at low levels, in other tissues ofthe body. Therefore, this gene product may be expressed in other specific tissues or organs where it may play related functional roles in other processes, such as hematopoiesis, inflammation, bone formation, and kidney function, to name a few possible target indications.
Furthermore, the protein may also be used to determine unknown biological activities, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a mmor marker and/or immunotherapy targets for the above listed tissues.
Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ED NO: 11 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope ofthe present invention. To list every related sequence would be cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1617 of SEQ ID NO:l 1, b is an integer of 15 to 1631 , where both a and b conespond to the positions of nucleotide residues shown in SEQ ED NO: 11 , and where b is greater than or equal to a + 14.
FEATURES OF PROTEIN ENCODED BY GENE NO: 2 This gene can be mapped to human chromosome I by comparison with known mapped DNA sequences; in this case, with the KIAA0090 protein (Genbank Accession Number CAB72324), a protein of unknown function. This sequence
(KIAA0090) was mapped to chromosome I by Gene Map98, the Whitehead map, and by STS mapping. Accordingly, polynucleotides related to this invention have uses, such as, for example, as a marker in linkage analysis for chromosome 1.
In specific embodiments, polypeptides ofthe invention comprise, or alternatively consist of, the following amino acid sequence:
MRGIYTAPSGLESTCLVVAYGLDIYQTRVYPSKQFDVLKDDYDYVLISSVLFG LVFATMITKRLAQVKLLNRAWR (SEQ ID NO: 124). Polynucleotides encoding said polypeptides are also encompassed by the invention. Moreover, fragments and variants of these polypeptides (such as, for example, fragments as described herein, polypeptides at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to these polypeptides and polypeptides encoded by the polynucleotide which hybridizes, under stringent conditions, to the polynucleotide encoding these polypeptides, or the complement there of are encompassed by the invention. Antibodies that bind polypeptides ofthe invention are also encompassed by the invention. Polynucleotides encoding these polypeptides are also encompassed by the invention.
This gene is expressed primarily in germ cells, pregnant uterus, placenta, fetal heart, fetal liver and fetal spleen, infant brain, HeLa cells, parathyroid tumor, activated T-cells and to a lesser extent in a variety of normal and transformed cell types. Polynucleotides and polypeptides ofthe invention are useful as reagents for differential identification ofthe tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: cancer and other proliferative disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification ofthe tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly ofthe parathyroid and the reproductive system, expression ofthis gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Prefened polypeptides ofthe
present invention comprise, or alternatively consist of, one or more immunogenic epitopes shown in SEQ ID NO: 69 as residues: Glu-18 to Ser-23. Polynucleotides encoding said polypeptides are also encompassed by the invention.
The tissue distribution in rapidly proliferating and differentiating fetal, uterine, and placental tissues indicates that polynucleotides and polypeptides conesponding to this gene are useful for diagnosis and treatment of cancer and other proliferative disorders.
The expression of this gene fetal liver/spleen tissue and in T cells suggests that the protein product ofthis clone is useful for the diagnosis and/or treatment of disorders ofthe immune system. Elevated levels of expression ofthis gene product in T cell lineages suggests that it may play an active role in normal T cell function and in the regulation of the immune response. For example, this gene product may be involved in T cell activation, in the activation or control of differentiation of other hematopoietic cell lineages, in antigen recognition, or in T cell proliferation. Similarly, expression ofthis gene product in active sites of hematopoiesis, such as fetal liver and spleen likewise suggest a role in the control of proliferation, differentiation, and survival of hematopoietic cell lineages, including the hematopoietic stem cell. Therefore, the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) may have climcal utility in the control of hematopoietic cell lineages; in stem cell self renewal; in stem cell expansion and mobilization; in the treatment of immune dysfunction; in the conection of autoimmunity; in immune modulation; and in the control of inflammation.
Furthermore, the protein may also be used to determine unknown biological activities, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues. Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO: 12 and may have been publicly available prior to conception of
the present invention. Preferably, such related polynucleotides are specifically excluded from the scope ofthe present invention. To list every related sequence would be cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1685 of SEQ ID NO: 12, b is an integer of 15 to 1699, where both a and b conespond to the positions of nucleotide residues shown in SEQ ID NO: 12, and where b is greater than or equal to a + 14.
FEATURES OF PROTEIN ENCODED BY GENE NO: 3
In a specific embodiment, polypeptides comprising the amino acid sequence ofthe open reading frame upstream ofthe predicted signal peptide are contemplated by the present invention. Specifically, polypeptides ofthe invention comprise, or alternatively consist ofthe following amino acid sequence: GVNHESWRDSGQTDGLTFGHLKMVLLWASVLFP APED WAELQGAVYRLLV VLLCCLATRKLPHFLHPQRNLLQGSGLDLGAIYQRVEGFASQPEAALRIHATH LGRSPPPRIGSGLKALLQLPASDPTYWATAYFDVLLDKFQVFNIQDKDRISAM QSIFQXTRTLGGEES (SEQ ID NO: 125). Polynucleotides encoding said polypeptides are also encompassed by the invention. Moreover, fragments and variants of these polypeptides (such as, for example, fragments as described herein, polypeptides at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to these polypeptides and polypeptides encoded by the polynucleotide which hybridizes, under stringent conditions, to the polynucleotide encoding these polypeptides, or the complement there of are encompassed by the invention. Antibodies that bind polypeptides ofthe invention are also encompassed by the invention. Polynucleotides encoding these polypeptides are also encompassed by the invention.
The polypeptide ofthis gene has been determined to have a potential transmembrane domains at about amino acid position 19-35 ofthe amino acid sequence referenced in Table 1 for this gene. Moreover, a cytoplasmic tail encompassing amino acids 36 ii the C terminus ofthis protein has also been determined. Based upon these characteristics, it is believed that the protein product of this gene shares structural features to type lb membrane proteins.
This gene is expressed primarily in kidney (NCI CGAP Kidl 1 and NCI CGAP Kid3 libraries) and to a lesser extent in tissues derived from primary breast cancer, healing groin wound (both 6.5 and 7.5 hours post incision), normal palate, ovary tumor, fetal liver spleen, and brain (NCI CGAP Brl8). Polynucleotides and polypeptides of the invention are useful as reagents for differential identification ofthe tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: cancer and other proliferative disorders. Similarly, polypeptides and antibodies - directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly the kidney and breast, expression ofthis gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Prefened polypeptides ofthe present invention comprise, or alternatively consist of, one or more immunogenic epitopes shown in SEQ ED NO: 70 as residues: His-81 to Ile-90. Polynucleotides encoding said polypeptides are also encompassed by the invention.
The tissue distribution ofthe expression ofthis gene indicates that polynucleotides and polypeptides conesponding to this gene are useful for diagnosis and treatment of cancer and other proliferative disorders, particularly ofthe kidney and breast. Additionally, expression ofthis gene in tissue derived from kidney indicates that the polynucleotides and or polypeptides corresponding to this gene, (and/or antibodies raised against those polypeptides) are useful in the treatment and/or detection of kidney diseases including renal failure, nephritis, renal tubular acidosis, proteinuria, pyuria, edema, pyelonephritis, hydronephritis, nephrotic syndrome, crush syndrome, glomerulonephritis, hematuria, renal colic and kidney stones, in addition to Wilms' Tumor Disease, and congenital kidney abnormalities such as horseshoe kidney, polycystic kidney, and Falconi's syndrome.
Further, expression in the breast tissue suggests that the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) are useful for the detection, diagnosis, or treatment of breast neoplasia and breast cancers, such as fibroadenoma, papillary carcinoma, ductal carcinoma, Paget's disease, medullary carcinoma, mucinous carcinoma, tubular carcinoma, secretory carcinoma and apocrine carcinoma, as well as juvenile hypertrophy and gynecomastia, mastitis and abscess, duct ectasia, fat necrosis and fibrocystic diseases.
Furthermore, the protein may also be used to determine unknown biological activities, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues. Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ED NO: 13 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope ofthe present invention. To list every related sequence would be cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 936 of SEQ ED NO: 13, b is an integer of 15 to 950, where both a and b conespond to the positions of nucleotide residues shown in SEQ ED NO: 13, and where b is greater than or equal to a + 14.
FEATURES OF PROTEIN ENCODED BY GENE NO: 4
Translation products corresponding to this gene share sequence homology with human ether-a-go-go-potassium channel (See, for example, Genbank Accession AAD40578). Based on the sequence similarity, the translation product ofthis clone is expected to share at least some biological activities with potassium channel proteins. Such activities are known in the art, some of which are described elsewhere herein.
The polypeptide ofthis gene has been determined to have a potential transmembrane domains at about amino acid position 2-18 and 84-100 ofthe amino acid sequence referenced in Table 1 for this gene. Based upon these characteristics, it is believed that the protein product of this gene shares structural features to type Ilia membrane proteins.
This gene is expressed primarily in immune and hematopoietic cells and tissues.
Polynucleotides and polypeptides ofthe invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: disorders ofthe immune and hematopoietic systems. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification ofthe tissue(s) or cell type(s). For a number of disorders ofthe above tissues or cells, particularly ofthe immune and hematopoietic systems, expression ofthis gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Prefened polypeptides ofthe present invention comprise, or alternatively consist of, one or more immunogenic epitopes shown in SEQ ED NO: 71 as residues: Arg-25 to Glu-34, Glu-75 to Thr-82, Arg-104 to Ser-112, Cys-179 to Met-185, Tyr-197 to Asp-203, Pro-216 to Phe-222, Leu-235 to Gly-241, Pro-366 to Pro-374, Lys-418 to Gly-424, Ser-511 to Leu-517, Pro-539 to Ser-547. Polynucleotides encoding said polypeptides are also encompassed by the invention.
The tissue distribution indicates that polynucleotides and polypeptides conesponding to this gene are useful for treatment and diagnosis of disorders ofthe immune and hematopoietic systems. Expression ofthis gene product in cells and tissues of the immune system (e.g., neutrophils) also suggests that it may play a role in mediating responses to infection and controlling immunological responses, such as those that occur during immune surveillance. Thus, the polypeptides or
polynucleotides conesponding to this gene, (and/or antibodies raised against those polypeptides) are useful for treatment, prophylaxis, and diagnosis of immune and autoimmune diseases, such as lupus, transplant rejection, allergic reactions, arthritis, asthma, immunodeficiency diseases, leukemia, and AIDS. The polypeptides or polynucleotides ofthe present invention are also useful in the treatment, prophylaxis, and detection of thymus disorders, such as Graves Disease, lymphocytic thyroiditis, hyperthyroidism, and hypothyroidism. The expression observed predominantly in neutrophils cells also indicates that the polynucleotides or polypeptides are important in preventing, diagnosing, or treating inflammation. Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ED NO: 14 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope ofthe present invention. To list every related sequence would be cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 2610 of SEQ ED NO: 14, b is an integer of 15 to 2624, where both a and b conespond to the positions of nucleotide residues shown in SEQ ED NO: 14, and where b is greater than or equal to a + 14.
FEATURES OF PROTEIN ENCODED BY GENE NO: 5
Translation products conesponding to this gene share sequence homology with the Drosophila homolog ofthe trifunctional enzyme methylenetetrahydrofolate dehydrogenase (MTHFD) (See Genbank Accession AAD29853), an enzyme involved in purine biosynthesis. Based on the sequence similarity, the translation product of this clone may share at least some biological activities with MTHFD proteins. Such activities are known in the art, some of which are described elsewhere herein.
This gene is expressed primarily in neural tissues, hematopoietic tissues and developing, tissues and to a lesser extent in several other cells and tissues.
Polynucleotides and polypeptides ofthe invention are useful as reagents for differential identification ofthe tissue(s) or cell type(s) present in a biological sample
and for diagnosis of diseases and conditions which include but are not limited to: disorders ofthe hematopoietic, neural and developing systems. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification ofthe tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoietic , neural and developing systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Prefened polypeptides ofthe present invention comprise, or alternatively consist of, one or more immunogenic epitopes shown in SEQ ED NO: 72 as residues: Gln-3 to Pro-14, Arg-19 to Ser-26, Pro-38 to Ala-43, His-96 to Trp-101, His-110 to Trp-115, His-217 to Trp-222, His-224 to Trp-229, His-231 to Gln-237.
Polynucleotides encoding said polypeptides are also encompassed by the invention.
The tissue distribution ofthe expression ofthis gene indicates that polynucleotides and polypeptides conesponding to this gene are useful for treatment and diagnosis of disorders ofthe hemapoietic, neural and developing systems. Additionally, the expression ofthis gene in the developing and adult nervous system ofthe human indicates that the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) are useful in the diagnosis treatment useful for the diagnosis and treatment of neurological conditions such as manic depression, Alzheimer's, Huntington's, and Parkinson's disease, Tourette's syndrome and other neurodegenerative diseases including but not limited to, demyelinating diseases, epilepsy, headache, migraine, CNS infections, neurological trauma and neural re-growth following trauma, CNS neoplasms, stroke and reperfusion injury following stroke. It may also be useful for the treatment and diagnosis of learning and cognitive diseases, depression, dementia, psychosis, mania, bipolar syndromes, schizophrenia and other psychiatric conditions. Potentially, this gene product is involved in synapse formation, neurotransmission, learning, cognition, homeostasis, or neuronal differentiation or survival.
Expression ofthis gene in cells ofthe immune system, particularly in fetal liver/spleen and in germinal center B cells indicates that the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) are useful to treat infectious diseases and disorders. Expression of this gene in germinal center B cells which are known to be activated B cells undergoing an immune response, isotype switching and somatically hypermutating. Thus, the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) may have clinical utility as an agent to bolster immune responses, by for example, inducing isotype switching or the production of higher affinity antibodies. As such the polynucleotides and/or polypeptides conesponding to this gene (and/or antibodies raised against those polypeptides), could also be used to detect, diagnose or treat patients with immune system disorders such as immunodeficiencies (e.g., CVED, SCED and X linked agammaglobulinemia) autoimmune diseases (e.g. lupus, Rheumatoid arthritis, Sjorgen's syndrome), allergies, and asthma. As evidenced by their expression in Fetal liver and fetal spleen, the polypeptides or polynucleotides are also useful to enhance or protect proliferation, differentiation, and functional activation of hematopoietic progenitor cells, useful in treating cancer patients undergoing chemotherapy or patients undergoing bone manow transplantation. Furthermore, the protein may also be used to determine unknown biological activities, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.
Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO: 15 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope ofthe present invention. To list every related sequence would be cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the
general formula of a-b, where a is any integer between 1 to 1945 of SEQ ID NO: 15, b is an integer of 15 to 1959, where both a and b conespond to the positions of nucleotide residues shown in SEQ ID NO: 15, and where b is greater than or equal to a + 14.
FEATURES OF PROTEIN ENCODED BY GENE NO: 6
In specific embodiments, polypeptides ofthe invention comprise, or alternatively consist of, an amino acid sequence selected from the group consisting of: MQELLGRGAWAPGCGRRPSGWGQLACPDPLLPPHNPKSPQPGPSTSGVWGE EQGLRTLSSEHPWQGLQPLISSLKPCGHTARRDLPLAPASFQPRVLIQGPRTVP PVLLCPQHKARLHSQKCSQALEGDPASSPTAPHPTHPSAAPLLFPRDLSYTGQ EAAERVSPPPSKRSCSLCQNRVWAGGRALGARPLPLPAGFSWSLCWK (SEQ ID NO: 126) MFHTFTLQGRGEGSCSPSHTALLSNITAPVTTTLSRALEGEGSMPEPLAAGGP WRS AGPWWTRQEICTP WAVP AHTWGSREDGARASLHIYASSRTQGAGPGAG PGRPGGAGGPGAAPQPPCLAGPESSHTGAVCLCWSGAS (SEQ ED NO: 127) MGREATGQKAPGGHDLLAK-RFQQSAKVPSSAPGLPCLGPSPKDASLCGWGV PAGLGGSSVLSCKSVCVRVAGTGGPTDQRAAVGRAFQCIARGKELTLTVPSV SLVGVGGFSLRGCFTHSHCRGGARGAALPLTQLYCQTSRHQSPQPCHVH (SEQ ID NO: 128). In another specific embodiment, polypeptides comprising the amino acid sequence ofthe open reading frame upstream ofthe predicted signal peptide are contemplated by the present invention. Specifically, polypeptides ofthe invention comprise, or alternatively consist ofthe following amino acid sequence:
PRVRSEAALSSQRDLFSSFFLNSSSRERLVVTGRAGWMGMGRGAGRSALGF WPTLAFLLCSFPAATSPCKILKCNSEFWSATSGSHAPASDDTPEFCAALRSYA LCTRRTARTCRGDLAYHSAVHGIEDLMSQHNCSKDGPTSQPRLRTLPPAGDS QERSDSPEICHYEKSFHKHSATPNYTHCGLFGDPHLRTFTDRFQTCKVQGAW PLIDNNYLNVQVTNTPVLPGSAATATSKLTIEF -NFQECVDQKVYQAEMDELP AAFVDGSKNGGDKHGANSLKITEKVSGQHVEIQAKYIGTTIVVRQVGRYLTF AVRMPEEVVNAVEDWDSQGLYLCLRGCPLNQQΓDFQAFHTNAEGTGARRLA AASPAPTAPETFPYETAVAKCKEKLPVEDLYYQACVFDLLTTGDVNFTLAAY YALEDVKMLHSNKDKLHLYERTRDLPGRAAAGLPLAPRPLLGALVPLLALLP
VFC (SEQ D NO: 129). Polynucleotides encoding said polypeptides are also encompassed by the invention. Moreover, fragments and variants of these polypeptides (such as, for example, fragments as described herein, polypeptides at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to these polypeptides and polypeptides encoded by the polynucleotide which hybridizes, under stringent conditions, to the polynucleotide encoding these polypeptides, or the complement there of are encompassed by the invention. Antibodies that bind polypeptides ofthe invention are also encompassed by the invention. Polynucleotides encoding these polypeptides are also encompassed by the invention. The polypeptide ofthis gene has been determined to have a potential transmembrane domain at about amino acid position 418-434 ofthe amino acid sequence referenced in Table 1 for this gene. Based upon these characteristics, it is believed that the protein product ofthis gene shares structural features to type Ia membrane proteins.
This gene is expressed primarily in neural tissue (e.g., adult and infant brain), developing tissues and cancer, especially ovarian cancer, and to a lesser extent in several other tissues and cells.
Polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: cancers and neural disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders ofthe above tissues or cells, particularly ofthe neural and developing systems, expression ofthis gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Prefened polypeptides ofthe present invention comprise, or alternatively consist of, one or more immunogenic epitopes shown in SEQ ED NO: 73 as residues: Arg-72 to Gly-79, His-97 to Thr-112, Ala-116 to Ser- 125, Ala-140 to Thr-145, Arg-156 to Gln-163, Gly-230 to Asn-241, Asp-290 to Gly-
295, Thr-316 to Ala-323, Arg-400 to Pro-405. Polynucleotides encoding said polypeptides are also encompassed by the invention.
The tissue distribution indicates that polynucleotides and polypeptides conesponding to this gene are useful for treatment and diagnosis of disorders ofthe neural and developing systems as well as a variety of cancers, especially ovarian cancer.
Additionally, the expression ofthis gene in the adult and infant nervous system ofthe human indicates that the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) are useful in the diagnosis treatment useful for the diagnosis and treatment of neurological conditions such as manic depression, Alzheimer's, Huntington's, and Parkinson's disease, Tourette's syndrome and other neurodegenerative diseases including but not limited to, demyelinating diseases, epilepsy, headache, migraine, CNS infections, neurological trauma and neural re-growth following trauma, CNS neoplasms, stroke and reperfiision injury following stroke. It may also be useful for the treatment and diagnosis of learning and cognitive diseases, depression, dementia, psychosis, mania, bipolar syndromes, schizophrenia and other psychiatric conditions. Potentially, this gene product is involved in synapse formation, neurotransmission, learning, cognition, homeostasis, or neuronal differentiation or survival. Furthermore, the protein may also be used to determine unknown biological activities, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.
Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO: 16 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope ofthe present invention. To list every related sequence would be cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the
general formula of a-b, where a is any integer between 1 to 3010 of SEQ ED NO:16, b is an integer of 15 to 3024, where both a and b conespond to the positions of nucleotide residues shown in SEQ ED NO: 16, and where b is greater than or equal to a + 14.
FEATURES OF PROTEIN ENCODED BY GENE NO: 7
En specific embodiments, polypeptides ofthe invention comprise, or alternatively consist ofthe following amino acid sequence: of: MRHHTWLILYIYFLYFQEGVLPCCPGWSAVARSWLTATSAFRVQAVLCLSLP SS WD YRCPPPHP ANFCVCVCVFLVEMGFHHLGQAGLELLTLDPPVS ASQSDG ITGVSHCAQPNFVYLVEMGFLHVGQAGLKLPNLGDPPASASQSAGITDHEVR SSRLAWPT (SEQ ED NO: 130). Polynucleotides encoding said polypeptides are also encompassed by the invention. Moreover, fragments and variants of these polypeptides (such as, for example, fragments as described herein, polypeptides at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to these polypeptides and polypeptides encoded by the polynucleotide which hybridizes, under stringent conditions, to the polynucleotide encoding these polypeptides, or the complement there of are encompassed by the invention. Antibodies that bind polypeptides ofthe invention are also encompassed by the invention. Polynucleotides encoding these polypeptides are also encompassed by the invention.
This gene is expressed primarily in Prostate BPH and Human Testes Tumor. Polynucleotides and polypeptides ofthe invention are useful as reagents for differential identification ofthe tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: diseases and disorders ofthe male reproductive system, and more specifically ofthe testes, including testicular tumor. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification ofthe tissue(s) or cell type(s). For a number of disorders ofthe above tissues or cells, particularly ofthe testes, expression ofthis gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having
such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Prefened polypeptides of the present invention comprise, or alternatively consist of, one or more immunogenic epitopes shown in SEQ ID NO: 74 as residues: Thr-30 to Arg-36. Polynucleotides encoding said polypeptides are also encompassed by the invention.
The tissue distribution indicates that polynucleotides and polypeptides conesponding to this gene are useful for detection, diagnosis and treatment of diseases and disorders ofthe male reproductive system (e.g., testicular tumor). Expression ofthis gene in tissue derived from testes indicates that the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) are useful for the treatment and diagnosis of conditions concerning proper testicular function (e.g. endocrine function, sperm maturation), as well as cancer. Therefore, this gene product is useful in the treatment of male infertility and/or impotence. This gene product is also useful in assays designed to identify binding agents, as such agents (antagonists) are useful as male contraceptive agents. Similarly, the protein is believed to be useful in the treatment and/or diagnosis of testicular cancer. The testes are also a site of active gene expression of transcripts that may be expressed, particularly at low levels, in other tissues ofthe body. Therefore, this gene product may be expressed in other specific tissues or organs where it may play related functional roles in other processes, such as hematopoiesis, inflammation, bone formation, and kidney function, to name a few possible target indications.
Furthermore, the protein may also be used to determine unknown biological activities, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues. Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ED NO: 17 and may have been publicly available prior to conception of
the present invention. Preferably, such related polynucleotides are specifically excluded from the scope ofthe present invention. To list every related sequence would be cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1137 of SEQ ID NO: 17, b is an integer of 15 to 1151, where both a and b conespond to the positions of nucleotide residues shown in SEQ ED NO: 17, and where b is greater than or equal to a + 14.
FEATURES OF PROTEIN ENCODED BY GENE NO : 8
This gene is expressed in hypothalamus.
Polynucleotides and polypeptides ofthe invention are useful as reagents for differential identification ofthe tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: diseases and disorders ofthe nervous and/or endocrine systems as well as cancer and other proliferative disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification ofthe tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly ofthe nervous and endocrine systems, expression ofthis gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., hypothalamus, cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Prefened polypeptides ofthe present invention comprise, or alternatively consist of, one or more immunogenic epitopes shown in SEQ ID NO: 75 as residues: Pro-56 to Gly-62, Cys-88 to Cys-93. Polynucleotides encoding said polypeptides are also encompassed by the invention.
The tissue distribution ofthe expression ofthis gene indicates that polynucleotides and polypeptides conesponding to this gene are useful for diagnosis and treatment of cancer and other proliferative disorders, particularly ofthe hypothalamus.
Further, the expression ofthis gene in the hypothalamus indicates that the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) are useful for the diagnosis, detection, and treatment of edema, sleep disorders, eating disorders, endocrine diseases and disorders, particularly Addison's disease, Cushing's Syndrome, Thyrotoxicosis, and disorders and/or cancers ofthe pancreas (e.g. diabetes mellitus), adrenal cortex, ovaries, pituitary (e.g., hyper-, hypopituitarism), thyroid (e.g. hyper-, hypothyroidism), parathyroid (e.g. hyper- and hypoparathyroidism), hypothalamus, and testes. Furthermore, the protein may also be used to determine unknown biological activities, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.
Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ED NO: 18 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope ofthe present invention. To list every related sequence would be cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 947 of SEQ ED NO: 18, b is an integer of 15 to 961, where both a and b conespond to the positions of nucleotide residues shown in SEQ ED NO: 18, and where b is greater than or equal to a + 14.
FEATURES OF PROTEIN ENCODED BY GENE NO: 9
In a specific embodiment, polypeptides comprising the amino acid sequence ofthe open reading frame upstream ofthe predicted signal peptide are contemplated by the present invention. Specifically, polypeptides of the invention comprise, or alternatively consist ofthe following amino acid sequence:
RTRGGRVWTSVLLFAFATGVRSNGLVSVGFLMHSQCQGFFSSLTMLNPLRQL FKLMASLFLSVFTLGLPFALFQYYAYTQFCLPGSARPIPEPLVQLAVDKGYRI AEGNEPPWCFWDVPLIYSYXXDVYWNVGFLKYYELKQVPNFLLAAPVAILV AWATWTYVTTHPWLCLTLGLQRSKNNKTLEKPDLGFLSPQVFVYWHAAVL LLFGGLCMHVQVLTRFLGSSTPIMYWFPAHLLQDQEPLLRSLKTVPWKPLAE DSPPGQKVPRNPE GLLYHWKTCSPVTRYILGYFLTYWLLGLLLHCNFLPWT (SEQ ID NO: 131). Polynucleotides encoding said polypeptides are also encompassed by the invention. Moreover, fragments and variants of these polypeptides (such as, for example, fragments as described herein, polypeptides at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to these polypeptides and polypeptides encoded by the polynucleotide which hybridizes, under stringent conditions, to the polynucleotide encoding these polypeptides, or the complement there of are encompassed by the invention. Antibodies that bind polypeptides of the invention are also encompassed by the invention. Polynucleotides encoding these polypeptides are also encompassed by the invention.
The polypeptide ofthis gene has been determined to have potential transmembrane domains at about amino acid position 26-42, 112 - 128, 166-182, and 258-274 ofthe amino acid sequence referenced in Table 1 for this gene. Based upon these characteristics, it is believed that the protein product ofthis gene shares structural features to type Ilia membrane proteins.
This gene has been mapped to chromosome 1 by comparison with gnl|UG|Hs#S571760 (zx56a06.rl Homo sapiens cDNA, 5' end /clone=EMAGE:446482 /clone_end=5' /gb=AA203365 /gi=1799134 /ug=Hs.26994 /len*=847 Length = 847) from the NCBI Unigene database. The mapping of the Unigene sequence is supported by Gene Map 98, the Whitehead map and dbSTS. Accordingly, polynucleotides related to this invention have uses, such as, for example, as a marker in linkage analysis for chromosome 1.
This gene is expressed primarily in Kidney (NCI CGAP Kidl 1 library), colon (NCI CGAP Co 16, Co3, and Co 12 libraries), human B Cell lymphoma, Germinal center B cells (NCI CGAP GCBl), and prostate (NCI CGAP Pr28 libraries), fetal lung, and pooled human melanocyte, fetal heart and pregnant uterus and to a lesser extent in a variety of normal and transformed tissues and cells.
Polynucleotides and polypeptides ofthe invention are useful as reagents for differential identification ofthe tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: cancer and other proliferative disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification ofthe tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly ofthe excretory and digestive systems (e.g., kidney and colon) and/or the immune system (e.g., B-cells), expression ofthis gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Prefened polypeptides ofthe present invention comprise, or alternatively consist of, one or more immunogenic epitopes shown in SEQ ED NO: 76 as residues: Glu-76 to Pro-81. Polynucleotides encoding said polypeptides are also encompassed by the invention.
The tissue distribution ofthe expression ofthis gene indicates that polynucleotides and polypeptides conesponding to this gene are useful for diagnosis and treatment of cancer and other proliferative disorders, particularly of the kidney, colon and B-cells.
Expression ofthis gene in tissue derived from kidney indicates that the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) are useful in the treatment and/or detection of kidney diseases including renal failure, nephritis, renal tubular acidosis, proteinuria, pyuria, edema, pyelonephritis, hydronephritis, nephrotic syndrome, crush syndrome, glomerulonephritis, hematuria, renal colic and kidney stones, in addition to Wilms' Tumor Disease, and congenital kidney abnormalities such as horseshoe kidney, polycystic kidney, and Falconi's syndrome. Expression ofthis gene in cells ofthe immune system, particularly in B cell lymphomas and in germinal center B cells indicates that the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those
polypeptides) are useful to treat infectious diseases and disorders. Expression ofthis gene in germinal center B cells which are known to be activated B cells undergoing an immune response, isotype switching and somatically hypermutating. Thus, the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) may have clinical utility as an agent to bolster immune responses, by for example, inducing isotype switching or the production of higher affinity antibodies. As such the polynucleotides and/or polypeptides conesponding to this gene (and/or antibodies raised against those polypeptides), could also be used to detect, diagnose or treat patients with immune system disorders such as immunodeficiencies (e.g., CVID, SCID and X linked agammaglobulinemia) autoimmune diseases (e.g. lupus, Rheumatoid arthritis, Sjorgen's syndrome), allergies, and asthma.
Furthermore, the protein may also be used to determine unknown biological activities, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.
Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ED NO: 19 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope ofthe present invention. To list every related sequence would be cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1595 of SEQ ID NO: 19, b is an integer of 15 to 1609, where both a and b conespond to the positions of nucleotide residues shown in SEQ D NO: 19, and where b is greater than or equal to a + 14.
FEATURES OF PROTEIN ENCODED BY GENE NO: 10
In a specific embodiment, polypeptides comprising the amino acid sequence of the open reading frame upstream ofthe predicted signal peptide are contemplated by the present invention. Specifically, polypeptides ofthe invention comprise, or alternatively consist ofthe following amino acid sequence: RHTHQGMFALAWKVIFSVMLQNPERYPSVLGIKSSLLSSLVLVMVWGNEKSG PCPTPKSRKGRRSCPAQVGRGEXGSYWDPEFRLSRKSNQGLRRDYLSLYHFN LHFRDTF (SEQ ID NO: 132). In other specific embodiments, polypeptides ofthe invention comprise, or alternatively consist of, the following amino acid sequence: MQEFHLLHPVPLIQQETFAPQVLAVQGSPNSASVRLECVSKMQVEVIQAQVEP PQPLVGFPAQSEF WVPIGPLFSPPHLCWT APSSLPGLWCGAGPTLFISPNHHQH KTTEQGGLYTKD (SEQ ED NO: 133). Polynucleotides encoding said polypeptides are also encompassed by the invention. Moreover, fragments and variants of these polypeptides (such as, for example, fragments as described herein, polypeptides at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to these polypeptides and polypeptides encoded by the polynucleotide which hybridizes, under stringent conditions, to the polynucleotide encoding these polypeptides, or the complement there of are encompassed by the invention. Antibodies that bind polypeptides ofthe invention are also encompassed by the invention. Polynucleotides encoding these polypeptides are also encompassed by the invention. This gene is expressed primarily in pancreas islet tumor.
Polynucleotides and polypeptides ofthe invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: pancreatic tumor. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification ofthe tissue(s) or cell type(s). For a number of disorders ofthe above tissues or cells, particularly ofthe pancreas islet cell, expression ofthis gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the
disorder. Prefened polypeptides ofthe present invention comprise, or alternatively consist of, one or more immunogenic epitopes shown in SEQ ID NO: 77 as residues: Gly-41 to Ser-59, Gly-65 to Pro-75, Phe-77 to Asp-90, His-100 to Phe-105. Polynucleotides encoding said polypeptides are also encompassed by the invention. The tissue distribution indicates that polynucleotides and polypeptides conesponding to this gene are useful for treatment and diagnosis of pancreatic tumor.
Expression ofthis gene in tissue derived from pancreas suggests that the polynucleotides and or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) are useful in the detection, diagnosis, and treatment of diseases and disorders ofthe pancreas including but not limited to: pancreatic cancer, pancreatitis, and diabetes. Additionally the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) may have clinical utility in the detection, diagnosis and treatment of gallstones, and cystic fibrosis. Furthermore, the protein may also be used to determine unknown biological activities, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.
Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ED NO:20 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope ofthe present invention. To list every related sequence would be cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1074 of SEQ ED NO:20, b is an integer of 15 to 1088, where both a and b conespond to the positions of nucleotide residues shown in SEQ ID NO:20, and where b is greater than or equal to a + 14.
FEATURES OF PROTEIN ENCODED BY GENE NO: 11
In a specific embodiment, polypeptides comprising the amino acid sequence ofthe open reading frame upstream ofthe predicted signal peptide are contemplated by the present invention. Specifically, polypeptides of the invention comprise, or alternatively consist ofthe following amino acid sequence:
EYASSNTTHYRESWYACRYRSGIPGLLEFPGPGTGMTSLLEGRMVLCVSCLLL PLLLLLKHF^GLMTPYLA-H TVYCPffiYISFFPFHEK-NIEYISEWFEFDSFKFIYSR LLCISQIYVLYRAYTLPH (SEQ ID NO: 135). Polynucleotides encoding said polypeptides are also encompassed by the invention. Moreover, fragments and variants of these polypeptides (such as, for example, fragments as described herein, polypeptides at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to these polypeptides and polypeptides encoded by the polynucleotide which hybridizes, under stringent conditions, to the polynucleotide encoding these polypeptides, or the complement there of are encompassed by the invention. Antibodies that bind polypeptides ofthe invention are also encompassed by the invention. Polynucleotides encoding these polypeptides are also encompassed by the invention.
In specific embodiments, polypeptides of the invention comprise, or alternatively consists of, an amino acid sequence selected from the group: MTSHARVRKXGSSRAAALFFFFFFFFFFLKRPESCSVPQPGVQWCNLGSLQLP PPPJ^KRFSCLSLPGSWDYRCTPPRLANFLEFSRDRVSPCWPGWSRTPDLK (SEQ ED NO: 134), and/or
EYASSNTTHYRESWYACRYRSGEPGLLEFPGPGTGMTSLLEGRMVLCVSCLLL PLLLLLKHFNGLMTPYLAHNVYCPIEYISFFPFHEKNIEYISIWFEFDSFKFIYSR LLCISQIYVLYRAYTLPH (SEQ ID NO: 135). Moreover, fragments and variants of - these polypeptides (such as, for example, fragments as described herein, polypeptides at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to these polypeptides and polypeptides encoded by the polynucleotide which hybridizes, under stringent conditions, to the polynucleotide encoding these polypeptides ) are encompassed by the invention. Antibodies that bind polypeptides ofthe invention are also encompassed by the invention. Polynucleotides encoding these polypeptides are also encompassed by the invention.
This gene is expressed primarily in GM-CSF treated TF-1 cells. The TF-1 cell line was established by T. Kitamura, et al. in October 1987 from a heparinized bone manow aspiration sample from a 35 year old Japanese male with severe pancytopenia. Polynucleotides and polypeptides ofthe invention are useful as reagents for differential identification ofthe tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: diseases and disorders associated with hematopoiesis, or cells of hematopoietic origin, (e.g., erythroleukemia). Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification ofthe tissue(s) or cell type(s). For a number of disorders ofthe above tissues or cells, particularly ofthe bone manow, erythroblast, expression ofthis gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.
The tissue distribution indicates that polynucleotides and polypeptides conesponding to this gene are useful for treatment and diagnosis of disorders in bone manow and erythroblast such as erythroleukemia, and pancytopenia. Further, as evidenced by the expression of this gene in the TF-1 cell line (a cell line derived from a human with pronounced reduction in the number of erythrocytes, all types of white blood cells, and the blood platelets in the circulating blood) this gene may play a role in the survival, proliferation, and/or differentiation of hematopoietic cells in general, and may be of use in augmentation of the numbers of stem cells and committed progenitors. Thus, the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) may have clinical utility in, for example, restoring cells of hematopoietic origin following radiation or ^ chemotherapy. Additionally, the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) may also be useful in the treatment of diseases and disorders ofthe blood or blood cells such as anemia
(e.g., aplastic anemia, Iron-deficiency anemia, hemolytic anemia, megaloblastic anemia, ) polycythemia, and bleeding disorders such as hemophilia.
Furthermore, the protein may also be used to determine unknown biological activities, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.
Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:21 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope ofthe present invention. To list every related sequence would be cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 852 of SEQ ID NO:21, b is an integer of 15 to 866, where both a and b conespond to the positions of nucleotide residues shown in SEQ ID NO:21, and where b is greater than or equal to a + 14.
FEATURES OF PROTEIN ENCODED BY GENE NO: 12
Translation products conesponding to this gene share sequence homology with a cysteine rich repeat containing protein (See Genbank Accession AAF34409). Based on the sequence similarity, the translation product ofthis clone is expected to share at least some biological activities with cysteine rich repeat containing proteins. Such activities are known in the art, some of which are described elsewhere herein. In a specific embodiment, polypeptides comprising the amino acid sequence ofthe open reading frame upstream ofthe predicted signal peptide are contemplated by the present invention. Specifically, polypeptides ofthe invention comprise, or alternatively consist ofthe following amino acid sequence:
NSARGGAGPAVARDSLQVTMLWFSGVGALAERYCRRSPGITCCVLLLLNCS GVPMSLASSFLTGSVAKCENEGEVLQIPFITDNPCIMCVCLNKEVTCKREKCP
VLSRDCALAIKQRGACCEQCKGCTYΈGNTYNSSFKWQSPAEPCVLRQCQEG VVTESGVRCVXHCKNPLEHLGMCCPTCPGCVFEGVQYQEGEEFQPEGSKCT KCSCTGGRTQCVREVCPILSCPQHLSHEPPGQCCPKCLGQRKVFDLPFGSCLFR SDVYDNGSSFLYDNCTACTCRDSTVVCKRKCSHPGGCDQGQEGCCEXCLLR XPPEDIKVCKFGNKIFQDGEMWSSINCTICACVKGRTECXNKQCEPISSCPQGK ILNRKGCCPICTEKPGVCTVFGDPHYNTFDGRTFNFQGTCQYVLTKDCSSPAS PFQVLVKNDARRTRSFSWTKSVELVLGETGSACSSTSPCAGTAXAS (SEQ ED
NO: 136). Polynucleotides encoding said polypeptides are also encompassed by the invention. Moreover, fragments and variants of these polypeptides (such as, for example, fragments as described herein, polypeptides at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to these polypeptides and polypeptides encoded by the polynucleotide which hybridizes, under stringent conditions, to the polynucleotide encoding these polypeptides, or the complement there of are encompassed by the invention. Antibodies that bind polypeptides ofthe invention are also encompassed by the invention. Polynucleotides encoding these polypeptides are also encompassed by the invention.
The polypeptide ofthis gene has been determined to have a potential transmembrane domain at about amino acid position 23-39 of the amino acid sequence referenced in Table 1 for this gene. Moreover, a cytoplasmic tail encompassing amino acids 1-22 ofthis protein has also been determined. Based upon these characteristics, it is believed that the protein product ofthis gene shares structural features to type II membrane proteins.
This gene is expressed primarily in musculoskeletal, digestive, mixed fetal tissues and to a lesser extent in brain. Polynucleotides and polypeptides ofthe invention are useful as reagents for differential identification ofthe tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: musculoskeletal disorders (e.g., Ewing's sarcoma, osteoporosis), digestive system disorders and developmental disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification ofthe tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly ofthe musculoskeletal and digestive systems as
well as mixed fetal tissues, expression ofthis gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Prefened polypeptides ofthe present invention comprise, or alternatively consist of, one or more immunogenic epitopes shown in SEQ ID NO: 79 as residues: Arg-13 to Gly-20, Gin- 104 to Ala- 125. Polynucleotides encoding said polypeptides are also encompassed by the invention.
The tissue distribution ofthe expression ofthis gene indicates that polynucleotides and polypeptides conesponding to this gene are useful for treatment and diagnosis of disorders in musculoskeletal, digestive and developmental systems. Expression ofthis gene in osteoblasts indicates that the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) are useful in the detection, diagnosis and treatment of diseases and disorders ofthe bone including but not limited to: Ewing's sarcoma, osteoporosis, osteoarthritis, achondroplasia, osteogenesis imperfecta, rickets, osteomalacia, gigantism, bone cysts, bone cancer, Paget's disease, and rheumatoid arthritis. Expression ofthis gene in stomach tissue indicates that the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) are useful in the detection, diagnosis and treatment of diseases and disorders ofthe digestive system, especially the stomach, including but not limited to: stomach cancer, indigestion, peptic ulcers, pernicious anemia, eating disorders (e.g., anorexia and bulemia) and obesity.
Furthermore, the protein may also be used to determine unknown biological activities, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.
Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ED NO:22 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope ofthe present invention. To list every related sequence would be cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1381 of SEQ ED NO:22, b is an integer of 15 to 1395, where both a and b conespond to the positions of nucleotide residues shown in SEQ ED NO:22, and where b is greater than or equal to a + 14.
FEATURES OF PROTEIN ENCODED BY GENE NO: 13
In specific embodiments, polypeptides ofthe invention comprise, or alternatively consist of, an amino acid sequence selected from the group consisting of: MLFFCGDLLSRSQiFYYSTGMTVGIVASLLIIIFILSKFMPKKSPINVILVGGWSF SLYLIQLVFKΝLQEIWRCYWQYLLSYVLTVGFMSFAVCYKYGPLEΝERSIΝL LTWTLQLMGLCFMYSGIQIPHEALAIIIIALCTKΝLEHPIQWLYITCRKVCKGAE KPVPPRLLTEEEYRIQGEVETRKALEELREFCΝSPDCSAWKTVSRIQSPKRFAD FVEGSSHLTPΝEVSVHEQEYGLGSIIAQDEIYEEASSEEEDSYSRCPAITQΝΝFL T (SEQ ED NO: 137) and/or
FDPKLFLVFLLGLMLFFCGDLLSRSQEFYYSTGMTVGIVASLLIIEFILSKFMPK KSPEYVILVGGWSFSLYLIQLVFKNLQEIWRCYWQYLLSYVLTVGFMSFAVC YKYGPLENERSINLLTWTLQLMGLCFMYSGIQIPHIALAiπiALCTKNLEHPIQ WLYITCRKVCKGAEKPVPPRLLTEEEYRIQGEVETRKALEELREFCNSPDCSA WKTVSRIQSPKRFADFVEGSSHLTPNEVSVHEQEYGLGSIIAQDEIYEEASSEE EDSYSRCPAITQNNFLT (SEQ ED NO: 138). Polynucleotides encoding said polypeptides are also encompassed by the invention. Moreover, fragments and variants of these polypeptides (such as, for example, fragments as described herein, polypeptides at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to these polypeptides and polypeptides encoded by the polynucleotide which hybridizes, under stringent conditions, to the polynucleotide encoding these polypeptides, or the
complement there of are encompassed by the invention. Antibodies that bind polypeptides ofthe invention are also encompassed by the invention. Polynucleotides encoding these polypeptides are also encompassed by the invention.
This gene is expressed primarily in human testes tumor, germ cell tumors (NCI CGAP GC6 library), and fetal liver spleen and to a lesser extent in a variety of normal and transformed tissues and cell types.
Polynucleotides and polypeptides ofthe invention are useful as reagents for differential identification ofthe tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: cancer and other proliferative tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification ofthe tissue(s) or cell type(s). For a number of disorders ofthe above tissues or cells, particularly ofthe reproductive system (e.g., testes and germ cells) expression ofthis gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Prefened polypeptides ofthe present invention comprise, or alternatively consist of, one or more immunogenic epitopes shown in SEQ ED NO: 80 as residues: Lys-96 to Ser-105, Lys-157 to Ala- 162, Leu-170 to Glu-175, Ser-222 to Asn-228, Glu-251 to Arg-262. Polynucleotides encoding said polypeptides are also encompassed by the invention.
The tissue distribution indicates that polynucleotides and polypeptides conesponding to this gene are useful for diagnosis and treatment of cancer and other proliferative disorders, especially ofthe testes.
Expression ofthis gene in tissue derived from testes indicates that the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) are useful for the treatment and diagnosis of conditions concerning proper testicular function (e.g. endocrine function, sperm maturation), as well as cancer. Therefore, this gene product is useful in the treatment of male infertility and/or impotence. This gene product is also useful in assays
designed to identify binding agents, as such agents (antagonists) are useful as male contraceptive agents. Similarly, the protein is believed to be useful in the treatment and/or diagnosis of testicular cancer. The testes are also a site of active gene expression of transcripts that may be expressed, particularly at low levels, in other tissues ofthe body. Therefore, this gene product may be expressed in other specific tissues or organs where it may play related functional roles in other processes, such as hematopoiesis, inflammation, bone formation, and kidney function, to name a few possible target indications.
The expression ofthis gene fetal liver/spleen tissue and in T cells suggests that the protein product ofthis clone is useful for the diagnosis and/or treatment of disorders ofthe immune system. Elevated levels of expression of this gene product in immune cell lineages suggests that it may play an active role in normal immune cell function and in the regulation of the immune response. For example, this gene product may be involved in immune cell activation, in the activation or control of differentiation of hematopoietic cell lineages, in antigen recognition, or in immune cell proliferation. Similarly, expression ofthis gene product in active sites of hematopoiesis, such as fetal liver and spleen likewise suggest a role in the control of proliferation, differentiation, and survival of hematopoietic cell lineages, including the hematopoietic stem cell. Therefore, the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) may have clinical utility in the control of hematopoietic cell lineages; in stem cell self renewal; in stem cell expansion and mobilization; in the treatment of immune dysfunction; in the correction of autoimmunity; in immune modulation; and in the control of inflammation. Furthermore, the protein may also be used to determine unknown biological activities, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.
Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are
related to SEQ ED NO:23 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope ofthe present invention. To list every related sequence would be cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 3126 of SEQ ED NO:23, b is an integer of 15 to 3140, where both a and b conespond to the positions of nucleotide residues shown in SEQ ID NO:23, and where b is greater than or equal to a + 14.
FEATURES OF PROTEIN ENCODED BY GENE NO: 14
Translation products corresponding to this gene share sequence homology with human centaurin beta-2 protein (See, for example, Genbank Accession CAB41450), a putative ADP ribosylation factor - GTPase activating protein (arf- GAP). Based on the sequence similarity, the translation product ofthis clone is expected to share at least some biological activities with arf-GAP proteins. Such activities are known in the art, some of which are described elsewhere herein.
In specific embodiments, polypeptides ofthe invention comprise, or alternatively consists of, an amino acid sequence selected from the group: LRTRGSLTSWXLCCVWWRPXLPISAGHEELSRLSQYRKELGAQLHQLVLNSA REKRDMEQRHVLLKQKELGGEEPEPSLREGPGGLVMEGHLFKRASNAFKTW SRRWFTIQSNQLVYQKKYKDPVTVVVDDLRLCTVKLCPDSERRFCFEVVSTS KSCLLQADSERLLQLWVSAVQSSIASAFSQARLDDSPRGPGQGSGHLAIGSAA TLGSGGMA-RGREPGGVGHVVAQVQSVDGNAQCCDCREPAPEWASENLGVT LCIQCSGIHRSLGVHFSKVRSLTLDSWEPELVKLMCELGNVIINQIYEARVEA MAVK-KPGPSCSRQEKEAWMAKYVEKKFLTKLPEERGRRGGRGRPRGQPPVP PKPSERPRPGSLRSKPEPPSEDLGSLHPGALLFRASGHPPSLPTMADALAHGAD VNWVNGGQDNATPLIQATAANSLLACEFLLQNGANVNQADSAGRGPLHHA TILGHTGLACLFLKRGADLGARDSEGRDPLTIAMETANADΓVTLLRLAKMRE AEAAQGQAGDETYLDIFRDFSLMASDDPEKLSRRSHDLHTL (SEQ ID NO: 139), and/or GLRGFREARRDFWRGAJ5SLEAALTITNAEVPRRRAQEAEEAGAALRTARAGY
RGR-ALDYALQINVffiDK-RKFDIMEFVLRLVEAQXTHFSR (SEQ ED NO: 140). Polynucleotides encoding said polypeptides are also encompassed by the invention. Moreover, fragments and variants of these polypeptides (such as, for example, fragments as described herein, polypeptides at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to these polypeptides and polypeptides encoded by the polynucleotide which hybridizes, under stringent conditions, to the polynucleotide encoding these polypeptides, or the complement there of are encompassed by the invention. Antibodies that bind polypeptides ofthe invention are also encompassed by the invention. Polynucleotides encoding these polypeptides are also encompassed by the invention.
This gene is expressed primarily in immune/hematopoietic tissues and in kidney tumors and to a lesser extent musculoskeletal and digestive tissues.
Polynucleotides and polypeptides ofthe invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: blood disorders, autoimmune diseases, myeloproliferative disorders, immune deficiencies, and diseases and disorders ofthe kidney. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification ofthe tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly ofthe immune/hematopoietic system, or kidney, expression ofthis gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Prefened polypeptides ofthe present invention comprise, or alternatively consist of, one or more immunogenic epitopes shown in SEQ ID NO: 81 as residues: Glu-16 to Arg-23, Phe-43 to Trp-50, Val-59 to Asp-66, Pro-84 to Phe-90, Ala-129 to Ser-142, Arg-160 to Gly-166, Val- 177 to Gln-182, Cys-184 to Pro-191, Lys-259 to Glu-270, Ile-289 to Asp-328, Asn- 365 to Ala-371, Arg-432 to Asp-438, Gln-469 to Thr-474, Asp-488 to Ser-497. Polynucleotides encoding said polypeptides are also encompassed by the invention.
The tissue distribution of the expression ofthis gene indicates that polynucleotides and polypeptides conesponding to this gene are useful for treatment and diagnosis of disorders in immune/hematopoietic systems.
Expression ofthis gene product in cells and tissues ofthe immune system (e.g., lymph node tissue, T cells, B cells, dendritic cells) also suggests that it may play a role in mediating responses to infection and controlling immunological responses, such as those that occur during immune surveillance. Thus, the polypeptides or polynucleotides conesponding to this gene, (and/or antibodies raised against those polypeptides) are useful for treatment, prophylaxis, and diagnosis of immune and autoimmune diseases, such as lupus, transplant rejection, allergic reactions, arthritis, asthma, immunodeficiency diseases, leukemia, and AEDS. The polypeptides or polynucleotides ofthe present invention are also useful in the treatment, prophylaxis, and detection of thymus disorders, such as Graves Disease, lymphocytic thyroiditis, hyperthyroidism, and hypothyroidism. The expression observed in dendritic cells also indicates that the polynucleotides or polypeptides are important in treating and/or detecting graft versus host reaction, graft versus host disease, transplant rejection, myelogenous leukemia, bone manow fibrosis, and myeloproliferative disease. The polypeptides or polynucleotides are also useful to enhance or protect proliferation, differentiation, and functional activation of hematopoietic progenitor cells (e.g., bone manow cells and developing T cells), useful in treating cancer patients undergoing chemotherapy or patients undergoing bone manow transplantation. The polypeptides or polynucleotides are also useful to increase the proliferation of peripheral blood leukocytes, which can be used in the combat of a range of hematopoietic disorders, including immunodeficiency diseases, leukemia, and septicemia. Expression ofthis gene in tissue derived from kidney indicates that the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) are useful in the treatment and/or detection of kidney diseases including renal failure, nephritis, renal tubular acidosis, proteinuria, pyuria, edema, pyelonephritis, hydronephritis, nephrotic syndrome, crush syndrome, glomerulonephritis, hematuria, renal colic and kidney stones, in addition to Wilms' Tumor Disease, and congenital kidney abnormalities such as horseshoe kidney, polycystic kidney, and Falconi's syndrome.
Furthermore, the protein may also be used to determine unknown biological activities, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.
Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:24 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope ofthe present invention. To list every related sequence would be cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 2302 of SEQ ID NO:24, b is an integer of 15 to 2316, where both a and b conespond to the positions of nucleotide residues shown in SEQ ID NO:24, and where b is greater than or equal to a + 14.
FEATURES OF PROTEIN ENCODED BY GENE NO: 15 This gene is expressed primarily in fetal liver and fetal spleen, smooth muscle, and brain frontal cortex.
Polynucleotides and polypeptides ofthe invention are useful as reagents for differential identification ofthe tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: cancer and other proliferative disorders, diseases and disorders ofthe nervous system, diseases and disorders of the immune system, musculoskeletal system, and/or infectious diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification ofthe tissue(s) or cell type(s). For a number of disorders ofthe above tissues or cells, particularly ofthe brain, liver and spleen, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma,
urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Prefened polypeptides ofthe present invention comprise, or alternatively consist of, one or more immunogenic epitopes shown in SEQ ID NO: 82 as residues: Cys-13 to Pro-23. Polynucleotides encoding said polypeptides are also encompassed by the invention.
The tissue distribution indicates that polynucleotides and polypeptides corresponding to this gene are useful for diagnosis and treatment of cancer and other proliferative disorders.
The expression of this gene fetal liver/spleen tissue and in T cells suggests that the protein product of this clone is useful for the diagnosis and/or treatment of disorders ofthe immune system. Elevated levels of expression ofthis gene product in T cell lineages suggests that it may play an active role in normal T cell function and in the regulation ofthe immune response. For example, this gene product may be involved in T cell activation, in the activation or control of differentiation of other hematopoietic cell lineages, in antigen recognition, or in T cell proliferation. Similarly, expression ofthis gene product in active sites of hematopoiesis, such as fetal liver and spleen likewise suggest a role in the control of proliferation, differentiation, and survival of hematopoietic cell lineages, including the hematopoietic stem cell. Therefore, the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) may have clinical utility in the control of hematopoietic cell lineages; in stem cell self renewal; in stem cell expansion and mobilization; in the treatment of immune dysfunction; in the conection of auto immunity; in immune modulation; and in the control of inflammation.
Expression of this gene in the human frontal cortex indicates that the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) are useful in the diagnosis treatment useful for the diagnosis and treatment of neurological conditions such as manic depression,
Alzheimer's, Huntington's, and Parkinson's disease, Tourette's syndrome and other neurodegenerative diseases including but not limited to, demyelinating diseases,
epilepsy, headache, migraine, CNS infections, neurological trauma and neural re- growth following trauma, CNS neoplasms, stroke and reperfiision injury following stroke. It may also be useful for the treatment and diagnosis of learning and cognitive diseases, depression, dementia, psychosis, mania, bipolar syndromes, schizophrenia and other psychiatric conditions. Potentially, this gene product is involved in synapse formation, neurotransmission, learning, cognition, homeostasis, or neuronal differentiation or survival.
Additionally, expression ofthis gene in the smooth muscle indicates that the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) are useful in the prevention, diagnosis, and/or treatment of diseases and disorders of muscle tissues (especially smooth muscle). Alternatively, the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) may be useful for inhibiting or stimulating contraction of smooth muscles, such as, for example, peristaltic contractions, uterine contractions, vasoconstriction or vasodilation.
Furthermore, the protein may also be used to determine unknown biological activities, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.
Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:25 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope ofthe present invention. To list every related sequence would be cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 2290 of SEQ ID NO:25, b is an integer of 15 to 2304, where both a and b conespond to the positions of nucleotide residues shown in SEQ ID NO:25, and where b is greater than or equal to a + 14.
FEATURES OF PROTEIN ENCODED BY GENE NO: 16
In a specific embodiment, polypeptides comprising the amino acid sequence ofthe open reading frame upstream ofthe predicted signal peptide are contemplated 5 by the present invention. Specifically, polypeptides ofthe invention comprise, or alternatively consists of the following amino acid sequence:
PTRPPTRPVRVSVGGLVGEVACACRDCIPETMAEGDNRSTNLLAAETASLEE QLQGWGEVMLMADKVLRWERAWFPPAEMGVVSLVFLIIYYLDPSVLSGVSC FVMFLCLADYLVPILAPREFGSNKWTTEQQQRFHEICSNLVKTRRRAVGW K l o RLFTLKEEKPKMYFMTMΓVSLAAVAWVGQQVHNLLLTYLIVTSLLLLPGLNQ
HGΠLKYIGMAKREENKLLKQKEKKNE (SEQ ED NO: 141). Polynucleotides encoding said polypeptides are also encompassed by the invention. Moreover, fragments and variants of these polypeptides (such as, for example, fragments as described herein, polypeptides at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or
15 99% identical to these polypeptides and polypeptides encoded by the polynucleotide which hybridizes, under stringent conditions, to the polynucleotide encoding these polypeptides, or the complement thereof are encompassed by the invention. Antibodies that bind polypeptides ofthe invention are also encompassed by the invention. Polynucleotides encoding these polypeptides are also encompassed by the 0 invention. This gene has been mapped to chromosome 16 by match to a sequence in the Unigene database. This sequence has been mapped to chromosome 16 by three sources. Gene map 98 maps it to interval D 16S405-D 16S410; the Whitehead map to YAC contig WC 16.1, and by STS mapping with dbSTS entry G 11276. Accordingly, polynucleotides related to this invention have uses, such as, for example, as a marker 5 in linkage analysis for chromosome 16.
The polypeptide ofthis gene has been determined to have potential transmembrane spanning domains at about amino acid position 24-40, 88-104, and 110-126 ofthe amino acid sequence referenced in Table 1 for this gene.
This gene is expressed primarily in human 8 week whole embryo, primary 0 dendritic cells, infant brain, human endometrial tumor, ovary cancer, uterine cancer, stomach cancer, Osteoblasts, parathyroid tumor, pancreatic cancer, and Keratinocytes, and to a lesser extent in a variety of normal and diseased tissues and cell types.
Polynucleotides and polypeptides ofthe invention are useful as reagents for differential identification ofthe tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: cancer and other proliferative disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification ofthe tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly ofthe immune system, brain, female reproductive system, bone, parathyroid and skin, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Prefened polypeptides ofthe present invention comprise, or alternatively consist of, one or more immunogenic epitopes shown in SEQ ID NO: 83 as residues: Asn-47 to His-58, Leu-147 to Glu-155. Polynucleotides encoding said polypeptides are also encompassed by the invention.
The expression ofthis gene in tissues that are proliferating rapidly or differentiating indicates that polynucleotides and polypeptides conesponding to this gene are useful for diagnosis and treatment of cancer and other proliferative diseases. Expression ofthis gene product in primary dendritic cells also suggests that it may play a role in mediating responses to infection and controlling immunological responses, such as those that occur during immune surveillance. Thus, the polypeptides or polynucleotides conesponding to this gene, (and/or antibodies raised against those polypeptides) are useful for treatment, prophylaxis, and diagnosis of immune and autoimmune diseases, such as lupus, transplant rejection, allergic reactions, arthritis, asthma, immunodeficiency diseases, leukemia, and AEDS. The polypeptides or polynucleotides ofthe present invention are also useful in the treatment, prophylaxis, and detection of thymus disorders, such as Graves Disease, lymphocytic thyroiditis, hyperthyroidism, and hypothyroidism. The expression observed predominantly in dendritic cells also indicates that the polynucleotides or polypeptides are important in treating and/or detecting graft versus host reaction, graft
versus host disease, transplant rejection, myelogenous leukemia, bone manow fibrosis, and myeloproliferative disease. The polypeptides or polynucleotides are also useful to enhance or protect proliferation, differentiation, and functional activation of hematopoietic progenitor cells (e.g., bone manow cells and developing T cells), useful in treating cancer patients undergoing chemotherapy or patients undergoing bone manow transplantation. The polypeptides or polynucleotides are also useful to increase the proliferation of peripheral blood leukocytes, which can be used in the combat of a range of hematopoietic disorders, including immunodeficiency diseases, leukemia, and septicemia. The expression in ovarian and uterine tissue indicates that the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) are useful in the detection, diagnosis, and treatment of diseases and disorders ofthe female reproductive system (e.g., endometriosis, female infertility, oophoritis, polycystic ovary syndrome, ovarian cancer, and menstrual disorders).
Expression ofthis gene in the developing nervous system ofthe human indicates that the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) are useful in the diagnosis treatment useful for the diagnosis and treatment of neurological conditions such as manic depression, Alzheimer's, Huntington's, and Parkinson's disease, Tourette's syndrome and other neurodegenerative diseases including but not limited to, demyelinating diseases, epilepsy, headache, migraine, CNS infections, neurological trauma and neural re-growth following trauma, CNS neoplasms, stroke and reperfiision injury following stroke. It may also be useful for the treatment and diagnosis of learning and cognitive diseases, depression, dementia, psychosis, mania, bipolar syndromes, schizophrenia and other psychiatric conditions. Potentially, this gene product is involved in synapse formation, neurotransmission, learning, cognition, homeostasis, or neuronal differentiation or survival. Furthermore, the protein may also be used to determine unknown biological activities, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement.
Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.
Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ED NO:26 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope ofthe present invention. To list every related sequence would be cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 2332 of SEQ ID NO:26, b is an integer of 15 to 2346, where both a and b conespond to the positions of nucleotide residues shown in SEQ ED NO:26, and where b is greater than or equal to a + 14.
FEATURES OF PROTEIN ENCODED BY GENE NO : 17
The polypeptide ofthis gene has been determined to have a potential transmembrane domain at about amino acid position 36 - 52 ofthe amino acid sequence referenced in Table 1 for this gene. Moreover, a cytoplasmic tail encompassing amino acids 1 - 35 ofthis protein has also been determined. Based upon these characteristics, it is believed that the protein product ofthis gene shares structural features to type II membrane proteins.
This gene is expressed primarily in epididymis and Merkel cell lines. Polynucleotides and polypeptides ofthe invention are useful as reagents for differential identification ofthe tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to, diseases and disorders ofthe male reproductive system (e.g., disorders of or relating to the epididymis) or the epithelium. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification ofthe tissue(s) or cell type(s). For a number of disorders ofthe above tissues or cells, particularly of the male reproductive system, especially the epididymis, or of epithelial cells expression ofthis gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous
and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Prefened polypeptides ofthe present invention comprise, or alternatively consist of, one or more immunogenic epitopes shown in SEQ ID NO: 84 as residues: Lys-13 to Thr-19, Pro-72 to Ser-85. Polynucleotides encoding said polypeptides are also encompassed by the invention.
The tissue distribution indicates that polynucleotides and polypeptides conesponding to this gene (as well as antibodies raised against those polypeptides) are useful for treatment and diagnosis of disorders in male reproductive system, especially ofthe epididymis. As such, the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) are, useful for treating male infertility and impotence. Expression ofthis gene in epithelial cells (e.g., Merkel cells) indicates that that polynucleotides and polypeptides conesponding to this gene (as well as antibodies raised against those polypeptides) would be useful for the treatment, diagnosis, and/or prevention of various skin disorders. Briefly, the protein would be useful in detecting, treating, and/or preventing congenital disorders (i.e. nevi, moles, freckles, Mongolian spots, hemangiomas, port-wine syndrome), integumentary tumors (i.e. keratoses, Bowen's disease, basal cell carcinoma, squamous cell carcinoma, malignant melanoma, Paget's disease, mycosis fungoides, and Kaposi's sarcoma), injuries and inflammation ofthe skin (i.e. wounds, rashes, prickly heat disorder, psoriasis, dermatitis), atherosclerosis, uticaria, eczema, photosensitivity, autoimmune disorders (i.e. lupus erythematosus, vitiligo, dermatomyositis, morphea, scleroderma, pemphigoid, and pemphigus), keloids, striae, erythema, petechiae, purpura, and xanthelasma. In addition, such disorders may predispose an individual to viral and bacterial infections ofthe skin (i.e. cold sores, warts, chickenpox, moUuscum contagiosum, heφes zoster, boils, cellulitis, erysipelas, impetigo, tinea, athlete's foot, and ringworm). Moreover, polynucleotides and polypeptides conesponding to this gene may also be useful for the treatment or diagnosis of various connective tissue disorders (i.e., arthritis, trauma, tendonitis, chrondomalacia
and inflammation, etc.), autoimmune disorders (i.e., rheumatoid arthritis, lupus, scleroderma, dermatomyositis, etc.), dwarfism, spinal deformation, joint abnormalities, and chondrodysplasias (i.e. spondyloepiphyseal dysplasia congenita, familial osteoarthritis, Atelosteogenesis type II, metaphyseal chondrodysplasia type Schmid).
Furthermore, the protein may also be used to determine unknown biological activities, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.
Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:27 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope ofthe present invention. To list every related sequence would be cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1658 of SEQ ID NO:27, b is an integer of 15 to 1672, where both a and b conespond to the positions of nucleotide residues shown in SEQ ID NO:27, and where b is greater than or equal to a + 14.
FEATURES OF PROTEIN ENCODED BY GENE NO: 18 The translation product of this gene shares sequence homology with both human and murine X-linked PEST-containing transporter (XPCT) (See GenBank Accession Numbers AAB60375 and AAC40078), a gene encoding a transporter protein. XPCT is found near the X-inactivation center (XlC/Xic) and may be related to X chromosome inactivation. Based on the sequence similarity, the translation product of this clone is expected to share at least some biological activities with XPCT proteins. Such activities are known in the art, some of which are described elsewhere herein.
The polypeptide product of this gene has been determined to have potential transmembrane domains at about amino acid position 3-19 and 78-94 ofthe amino acid sequence referenced in Table 1 for this gene.
This gene is expressed primarily in Soares placenta 8to9 weeks (2NbHP8to9W), fetal brain, and Soares parathyroid mmor NbHPA and to a lesser extent in Colon (NCI CGAP Co 10 and Co 16 libraries), ovarian cancer, thymus, Kidney (NCI CGAP Kid5 and Kidl 1 libraries), fetal liver spleen, alveolar tumor, and NCI CGAP GC6 - a germ cell library.
Polynucleotides and polypeptides ofthe invention are useful as reagents for differential identification ofthe tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: Cancer and other proliferative disorders, and diseases related to improper X- inactivation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification ofthe tissue(s) or cell type(s). For a number of disorders ofthe above tissues or cells, particularly ofthe placenta, brain, ovary, colon, and kidney, expression ofthis gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Prefened polypeptides ofthe present invention comprise, or alternatively consist of, one or more immunogenic epitopes shown in SEQ ED NO: 85 as residues: Ser-99 to Ser-106, Thr-108 to Glu-115, Met-131 to Ser-136. Polynucleotides encoding said polypeptides are also encompassed by the invention.
The tissue distribution and homology to a monocarboxylic acid transporter linked to the X-inactivation center indicates that polynucleotides and polypeptides conesponding to this gene are useful for diagnosis and treatment of diseases relating to improper X-inactivation, and cancer and other proliferative disorders. Expression ofthis gene in human placenta indicates that the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) are useful for the diagnosis and/or treatment of disorders ofthe
placenta. Specific expression within the placenta suggests that this gene product may play a role in the proper establishment and maintenance of placental function. Alternately, this gene product may be produced by the placenta and then transported to the embryo, where it may play a crucial role in the development and/or survival of the developing embryo or fetus. Expression ofthis gene product in a vascular-rich tissue such as the placenta also suggests that this gene product may be produced more generally in endothelial cells or within the circulation. In such instances, it may play more generalized roles in vascular function, such as in angiogenesis. It may also be produced in the vasculature and have effects on other cells within the circulation, such as hematopoietic cells. It may serve to promote the proliferation, survival, activation, and/or differentiation of hematopoietic cells, as well as other cells throughout the body.
Additionally, the expression ofthis gene in the developing nervous system of the human indicates that the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) are useful in the diagnosis treatment useful for the diagnosis and treatment of neurological conditions such as manic depression, Alzheimer's, Huntington's, and Parkinson's disease, Tourette's syndrome and other neurodegenerative diseases including but not limited to, demyelinating diseases, epilepsy, headache, migraine, CNS infections, neurological trauma and neural re-growth following trauma, CNS neoplasms, stroke and reperfiision injury following stroke. It may also be useful for the treatment and diagnosis of learning and cognitive diseases, depression, dementia, psychosis, mania, bipolar syndromes, schizophrenia and other psychiatric conditions. Potentially, this gene product is involved in synapse formation, neurotransmission, learning, cognition, homeostasis, or neuronal differentiation or survival.
Furthermore, the protein may also be used to determine unknown biological activities, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.
Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ED NO:28 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope ofthe present invention. To list every related sequence would be cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1525 of SEQ ED NO:28, b is an integer of 15 to 1539, where both a and b conespond to the positions of nucleotide residues shown in SEQ ID NO:28, and where b is greater than or equal to a + 14.
FEATURES OF PROTEIN ENCODED BY GENE NO: 19
In specific embodiments, polypeptides of the invention comprise, or alternatively consist of, an amino acid sequence selected from the group consisting of: MGSCYiYQPQYLGAALSRTNGLPIGDAITGSVLGGGVLRGDGHLAGSASPGN SSHPQSLTQGPRSCRLWARAARA (SEQ ID NO: 142) and/or MPALALSPRPLLPGISCPSPRCTCPSPANPLCLHFTRLQGVHISSSDQGSEGRGC VSCISLGPLRGRDCFPRVGALEVMRLFPPNHQEWTENCIG (SEQ ID NO: 143). Polynucleotides encoding said polypeptides are also encompassed by the mvention. Moreover, fragments and variants of these polypeptides (such as, for example, fragments as described herein, polypeptides at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to these polypeptides and polypeptides encoded by the polynucleotide which hybridizes, under stringent conditions, to the polynucleotide encoding these polypeptides, or the complement there of are encompassed by the invention. Antibodies that bind polypeptides ofthe invention are also encompassed by the invention. Polynucleotides encoding these polypeptides are also encompassed by the invention.
This gene is expressed primarily in neutrophils. Polynucleotides and polypeptides ofthe invention are useful as reagents for differential identification ofthe tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to:
immune system disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification ofthe tissue(s) or cell type(s). For a number of disorders ofthe above tissues or cells, particularly of the immune and hemapoietic systems, expression of this gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.
The tissue distribution ofthe expression ofthis gene indicates that polynucleotides and polypeptides corresponding to this gene are useful for treatment and diagnosis of diseases ofthe immune and hemapoietic systems.
Expression ofthis gene product in cells and tissues ofthe immune system (e.g., neutrophils) also suggests that it may play a role in mediating responses to infection and controlling immunological responses, such as those that occur during immune surveillance. Thus, the polypeptides or polynucleotides conesponding to this gene, (and/or antibodies raised against those polypeptides) are useful for treatment, prophylaxis, and diagnosis of immune and autoimmune diseases, such as lupus, transplant rejection, allergic reactions, arthritis, asthma, immunodeficiency diseases, leukemia, and AEDS. The polypeptides or polynucleotides ofthe present invention are also useful in the treatment, prophylaxis, and detection of thymus disorders, such as Graves Disease, lymphocytic thyroiditis, hyperthyroidism, and hypothyroidism. The expression observed predominantly in neutrophils cells also indicates that the polynucleotides or polypeptides are important in preventing, diagnosing, or treating inflammation.
Furthermore, the protein may also be used to determine unknown biological activities, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.
Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:29 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence would be cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1063 of SEQ ID NO:29, b is an integer of 15 to 1077, where both a and b conespond to the positions of nucleotide residues shown in SEQ ED NO:29, and where b is greater than or equal to a + 14.
FEATURES OF PROTEIN ENCODED BY GENE NO: 20
In specific embodiments, polypeptides ofthe invention comprise, or alternatively consist of, an amino acid sequence selected from the group consisting of: MATTTCVPMKTARLPGQCSMLTTVPLALPASTAAPHPVSPTPAAMPSSTPIAG ALPLTMALSPHPLALLPQLALTQPASCPTRTMRSSTPEPSLGQLGTPPTDWATP RPHPLAWSGPHMRRMTPLASTPQPLDSPTPPSTRTTASDSSSACRLTCRGQSL AGASLRGRGEGFHSCSLEFRGLAHCSLLGPAFFLPPWQVGSRSPRNTPSRGWC SVHAPASWACPSLFFGRMCLF (SEQ ED NO: 144) and/or
MDRVTVGGWCTSSSMEVSLPLGMASFMLRQVKTRPMSRSVGLISSWLTVVS LFPSFSNSVLATAPSCCVPSRNQMMVAAGFALKARHVRLWGVPACSRITGPP SILVSSGGMSTVSLARRERRAASVAWHS (SEQ ED NO: 145). Polynucleotides encoding said polypeptides are also encompassed by the invention. Moreover, fragments and variants of these polypeptides (such as, for example, fragments as described herein, polypeptides at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99%ι identical to these polypeptides and polypeptides encoded by the polynucleotide which hybridizes, under stringent conditions, to the polynucleotide encoding these polypeptides, or the complement there of are encompassed by the invention. Antibodies that bind polypeptides ofthe invention are also encompassed by the invention. Polynucleotides encoding these polypeptides are also encompassed by the invention. The polypeptide of this gene has been determined to have a potential
transmembrane domain at about amino acid position 458-474 ofthe amino acid sequence referenced in Table 1 for this gene. Moreover, a cytoplasmic tail encompassing amino acids 475 to the C terminus ofthis protein has also been determined. Based upon these characteristics, it is believed that the protein product of this gene shares structural features to type lb membrane proteins.
This gene is expressed primarily in reproductive and fetal tissues and to a lesser extent in several other tissues and cell types.
Polynucleotides and polypeptides ofthe invention are useful as reagents for differential identification ofthe tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: fetal development disorders and diseases and disorders ofthe reproductive system. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification ofthe tissue(s) or cell type(s). For a number of disorders ofthe above tissues or cells, particularly of the fetal tissues and ofthe reproductive system, expression ofthis gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.
Prefened polypeptides ofthe present invention comprise, or alternatively consist of, one or more immunogenic epitopes shown in SEQ ED NO: 87 as residues: Glu-30 to Ser-36, Pro-59 to Asp-65, Arg-97 to Gin- 102, Lys-113 to Thr-120, Pro-147 to Thr- 152, Gin- 171 to Glu- 177, Ala-206 to Asp-216, Thr-281 to Pro-296, Thr-423 to Ala- 429, Arg-477 to Val-486, Ser-507 to Asp-512, Ser-529 to Leu-536, Ile-545 to Glu- 550, Met-553 to Tyr-560, Glu-567 to Ser-572, Ala-586 to Gly-601, Thr-607 to Pro- 623, Thr-631 to Leu-637, Glu-640 to Asn-646, Ser-669 to Tyr-679, Ser-692 to Gln- 709. Polynucleotides encoding said polypeptides are also encompassed by the invention. The tissue distribution indicates that polynucleotides and polypeptides conesponding to this gene (as well as antibodies raised against those polypeptides) are useful for treatment and diagnosis of disorders ofthe reproductive and fetal
system. The expression within fetal tissue and other cellular sources marked by proliferating cells indicates this protein may play a role in the regulation of cellular division, and are useful for the diagnosis, treatment, and/or prevention of developmental diseases and disorders, including cancer, and other proliferative conditions. For example, developmental tissues rely on decisions involving cell differentiation and/or apoptosis in pattern formation. Dysregulation of apoptosis can result in inappropriate suppression of cell death, as occurs in the development of some cancers, or in failure to control the extent of cell death, as is believed to occur in acquired immunodeficiency and certain degenerative disorders, such as spinal muscular atrophy (SMA). Alternatively, this gene product may be involved in the pattern of cellular proliferation that accompanies early embryogenesis. Thus, abenant expression ofthis gene product in tissues - particularly adult tissues - may conelate with patterns of abnormal cellular proliferation, such as found in various cancers. Because of potential roles in proliferation and differentiation, this gene product may have applications in the adult for tissue regeneration and the treatment of cancers. It may also act as a moφhogen to control cell and tissue type specification. Therefore, the polynucleotides and polypeptides ofthe present invention are useful in treating, detecting, and/or preventing said disorders and conditions, in addition to other types of degenerative conditions. Thus this protein may modulate apoptosis or tissue differentiation and would be useful in the detection, treatment, and/or prevention of degenerative or proliferative conditions and diseases. The protein would be useful in modulating the immune response to abenant polypeptides, as may exist in proliferating and cancerous cells and tissues.
Expression ofthis gene in the reproductive system indicates that the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) are useful for the treatment and diagnosis of conditions concerning proper reproductive system function (e.g. endocrine function, sperm maturation, ova maturation), as well as cancers of the reproductive system (e.g., prostate cancer and ovarian cancer). Therefore, this gene product is useful in the treatment of infertility, impotence, prostatitis, oophoritis, polycystic ovary syndrome, ovarian cancer, endometriosis, and menstrual disorders.
Furthermore, the protein may also be used to determine unknown biological activities, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.
Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:30 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope ofthe present invention. To list every related sequence would be cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 2888 of SEQ ED NO:30, b is an integer of 15 to 2902, where both a and b conespond to the positions of nucleotide residues shown in SEQ ED NO: 30, and where b is greater than or equal to a + 14.
FEATURES OF PROTEIN ENCODED BY GENE NO: 21 In a specific embodiment, polypeptides comprising the amino acid sequence ofthe open reading frame upstream ofthe predicted signal peptide are contemplated by the present invention. Specifically, polypeptides ofthe invention comprise, or alternatively consists ofthe following amino acid sequence: HEQRALTTMQIQVAGLLQFAVPLFSTAEEDLLAIQLLLNSSESSLHQLTAMVD CRGLHKDYLDALAGICYDGLQGLLYLGLFSFLAALAFSTMICAGPRAWKHFT TRNRDYDDIDDDDPFNPQAWRMAAHSPPRGQLHSFCSYSSGLGSQTSLQPPA QTISNAPVSEYMNQAMLFGRNPRYENVPLIGRASPPPTYSPSMRATYLSVADE HLRHYGNQFPA (SEQ ID NO: 146). Polynucleotides encoding said polypeptides are also encompassed by the invention. Moreover, fragments and variants of these polypeptides (such as, for example, fragments as described herein, polypeptides at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to these polypeptides and polypeptides encoded by the polynucleotide which hybridizes, under stringent
conditions, to the polynucleotide encoding these polypeptides, or the complement there of are encompassed by the invention. Antibodies that bind polypeptides ofthe invention are also encompassed by the invention. Polynucleotides encoding these polypeptides are also encompassed by the invention. The polypeptide of this gene has been determined to have potential transmembrane domains at about amino acid position 71-87 ofthe amino acid sequence referenced in Table 1 for this gene. Moreover, a potential cytoplasmic tail encompassing amino acids 88-213 of this protein has also been determined. Based upon these characteristics, it is believed that the protein product ofthis gene shares structural features to type Ia membrane proteins.
This gene is expressed primarily in human rhabdomyosarcoma and in human whole brain, human substantia nigra, and human cerebellum.
Polynucleotides and polypeptides ofthe invention are useful as reagents for differential identification ofthe tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: cancer and other proliferative disorders, diseases and disorders ofthe musculoskeletal system, and diseases and disorders ofthe nervous system Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification ofthe tissue(s) or cell type(s). For a number of disorders ofthe above tissues or cells, particularly ofthe musculoskeletal and/or nervous systems, expression ofthis gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Prefened polypeptides ofthe present invention comprise, or alternatively consist of, one or more immunogenic epitopes shown in SEQ ED NO: 88 as residues: Gly-48 to Tyr-53, His-95 to Trp- 117, Ser-123 to Gln-128, Arg-169 to Glu-174, Ser-183 to Ser-191. Polynucleotides encoding said polypeptides are also encompassed by the invention.
The tissue distribution ofthe expression ofthis gene indicates that polynucleotides and polypeptides conesponding to this gene are useful for diagnosis
and treatment of cancer and other proliferative disorders, particularly ofthe brain or of muscle.
Expression ofthis gene in tissue derived from muscle tissue indicates that the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) are useful for the detection, diagnosis and treatment of diseases ofthe musculature including rhabdomyosarcomas, muscular dystrophies, muscular astheniopias (particularly ofthe eye) and autoimmune disorders (e.g., myasthenia gravis, systemic lupus erythematosus, rheumatoid arthritis, scleroderma, sarcoidosis, dermatomyositis). Expression ofthis gene in the human brain indicates that the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) are useful in the diagnosis treatment useful for the diagnosis and treatment of neurological conditions such as manic depression, Alzheimer's, Huntington's, and Parkinson's disease, Tourette's syndrome and other neurodegenerative diseases including but not limited to, demyelinating diseases, epilepsy, headache, migraine, CNS infections, neurological trauma and neural re- growth following trauma, CNS neoplasms, stroke and reperfusion injury following stroke. It may also be useful for the treatment and diagnosis of learning and cognitive diseases, depression, dementia, psychosis, mania, bipolar syndromes, schizophrenia and other psychiatric conditions. Potentially, this gene product is involved in synapse formation, neurotransmission, learning, cognition, homeostasis, or neuronal differentiation or survival.
Furthermore, the protein may also be used to determine unknown biological activities, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.
Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:31 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically
excluded from the scope ofthe present invention. To list every related sequence would be cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 2494 of SEQ ED NO:31, b is an integer of 15 to 2508, where both a and b conespond to the positions of nucleotide residues shown in SEQ ID NO:31, and where b is greater than or equal to a + 14.
FEATURES OF PROTEIN ENCODED BY GENE NO: 22
Translation products conesponding to this gene share sequence homology with a subunit ofthe human SUMO-1 activating enzyme (See Genbank Accession
AAD24433 and alignment below), which is a protein that conjugates itself to SUMO-
1 such that the SUMO-1 conjugating enzyme can recognize the SUMO-1 and transfer it to other proteins in the cell. SUMO-1 modified proteins display altered subcellular localization and/or stability. Based on the sequence similarity, the translation product ofthis clone is expected to share at least some biological activities with the SUMO-1 activating proteins. Such activities are known in the art, some of which are described elsewhere herein.
11/16/00
>gb|AAD24433.1 | AF110956_1 (AF110956) SUMO-1 activating enzyme subunit 1 [Homo sapiens] >gb| AAD23902.2 | AF046025_1 (AF046025) activation of
Sentrin/SUMO protein AOS1 [Homo sapiens] >sp| AAD23902 | AAD23902 Activation of Sentrin/SUMO protein AOS1. >sp| AAD24433 | AAD24433
SUMO-1 activating enzyme subunit 1.
Length = 346
Plus Strand HSPs:
Score = 1702 (599.1 bits), Expect = 2.1e-174, P = 2.1e-174 Identities = 329/329 (100%) , Positives = 329/329 (100%) , Frame = +3
Query: 126 QYDRQIRLWGLEAQKRLRASRVLLVGLKGLGAEIAKNLII-AGVKGLTMLDHEQVTPEDPG 305 QYDRQIRLWGLEAQKRLRASRVLLVGLKGLGAEIAKNLILAGVKGLTML.DHEQVTPEDPG
Sbjct: 18 QYDRQIRL GLEAQKRLRASRVLLVGLKGLGAEIAKNLILAGVKGLTMLDHEQVTPEDPG 77
Query: 306 AQFLIRTGSVGR RAEASLERAQNL PMVDVKVDTEDIEKKPEΞFFTQFDAVCLTCCSRD 485 AQFLIRTGSVGRNRAEASLERAQNLNPMVDVKVDTEDIEKKPESFFTQFDAVCLTCCSRD Sbjct: 78 AQFLIRTGSVGRNRAEAΞLERAQNLNPMVDVKVDTEDIEKKPEΞFFTQFDAVCLTCCSRD 137
Query: 486 VIVKVDQICHKNSIKFFTGDVFGYHGYTFANLGEHEFVEEKTKVAKVSQGVEDGPDTKRA 665
VIVKVDQICHKNSIKFFTGDVFGYHGYTFANLGEHEFVEEKTKVAKVSQGVEDGPDTKRA
Sbjct: ' 138 VIVKVDQICHK SIKFFTGDVFGYHGYTFANLGEHEFVEEKTKVA VΞQGVEDGPDTKRA 197
Query: 666 KLDSΞETTMVKKKWFCPVKEALEVDWSSEKAKAALKRTTSDYFLLQVLLKFRTDKGRDP 845
KLDSSETTMVKKKWFCPVKEALEVDWSSEKAKAALKRTTSDYFLLQVLLKFRTDKGRDP Sbjct: 198 II-DSSETTN!VKKKVVFCPVKEALEVD SSEKAKAALKRTTSDYFLLQVLLKFRTDKGRDP 257
Query: 846 SSDTYEEDSELLLQIRNDVLDSLGISPDLLPEDFVRYCFSEMAPVCAWGGILAQEIVKA 1025
SSDTYEEDSELLLQIRNDVLDSLGISPDLLPEDFVRYCFSEMAPVCAWGGILAQEIVKA Sbjct: 258 SSDTYEEDSELLLQIRNDVLDSLGISPDLLPEDFVRYCFSEMAPVCAWGGILAQEIVKA 317
Query: 1026 LSQRDPPHNNFFFFDGMKGNGIVECLGPK 1112
LSQRDPPHN FFFFDGMKGNGIVECLGPK Sb3Ct. 318 LSQRDPPHNNFFFFDGMKGNGIVECLGPK 346
This gene is expressed primarily in reproductive (e.g. testes), immune/hematopoietic (e.g. T cells) and digestive tissues (e.g., colon), and to a lesser extent in cardiovascular (e.g. endothelial cells) and musculoskeletal tissues.
Polynucleotides and polypeptides ofthe invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include but are not limited to: male reproductive disorders, immune/hematopoietic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification ofthe tissue(s) or cell type(s). For a number of disorders ofthe above tissues or cells, particularly of the reproductive, immune/hematopoietic, digestive, cardiovascular, and musculoskeletal systems, expression ofthis gene at significantly higher or lower levels may be routinely detected in certain tissues or cell types (e.g., cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid and spinal fluid) or another tissue or sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Prefened polypeptides ofthe present invention comprise, or alternatively consist of, one or more immunogenic epitopes shown in SEQ ED NO: 89 as residues: Glu-69 to Gly-77, Val-87 to Ala-92, Glu-97 to Leu-102, Glu-113 to Phe-122, Glu-189 to Glu-203, Arg-250 to Ser-266, Ser-319 to His-325. Polynucleotides encoding said polypeptides are also encompassed by the invention.
The tissue distribution ofthe expression ofthis gene indicates that polynucleotides and polypeptides conesponding to this gene are useful for treatment and diagnosis of disorders in reproductive, immune/hematopoietic e.g., immunodeficiencies and autoimmunity), digestive (e.g. colon cancer, irritable bowel syndrome), cardiovascular, musculoskeletal systems.
Expression of this gene product at elevated levels in both endothelial cells and hematopoietic cells is consistent with the common ancestry of these two lineages, and suggests that the polynucleotides and or polypeptides conesponding to this gene, (and or antibodies raised against those polypeptides) may have use in regulating a variety of processes, including vasculogenesis; angiogenesis; blood pressure; survival, differentiation, and proliferation of blood cell lineages; and normal immune function and immune surveillance. In particular, expression ofthis gene product in T cell lymphoma suggests that it may play a role in the proliferation of the lymphoid cell lineages, and may be involved in normal antigen recognition and activation of T cells during the immune process. As such, the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) are useful in also useful in the treatment of infectious diseases.
Additionally, expression ofthis gene in tissue derived from testes indicates that the polynucleotides and/or polypeptides conesponding to this gene, (and/or antibodies raised against those polypeptides) are useful for the treatment and diagnosis of conditions concerning proper testicular function (e.g. endocrine function, sperm maturation), as well as cancer. Therefore, this gene product is useful in the treatment of male infertility and/or impotence. This gene product is also useful in assays designed to identify binding agents, as such agents (antagonists) are useful as male contraceptive agents. Similarly, the protein is believed to be useful in the treatment and/or diagnosis of testicular cancer. The testes are also a site of active gene expression of transcripts that may be expressed, particularly at low levels, in other tissues ofthe body. Therefore, this gene product may be expressed in other specific tissues or organs where it may play related functional roles in other processes, such as hematopoiesis, inflammation, bone formation, and kidney function, to name a few possible target indications.
Furthermore, the protein may also be used to determine unknown biological activities, to raise antibodies, as tissue markers, to isolate cognate ligands or receptors, to identify agents that modulate their interactions, in addition to its use as a nutritional supplement. Protein, as well as, antibodies directed against the protein may show utility as a tumor marker and/or immunotherapy targets for the above listed tissues.
Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases. Some of these sequences are related to SEQ ID NO:32 and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope ofthe present invention. To list every related sequence would be cumbersome. Accordingly, preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 2100 of SEQ ID NO:32, b is an integer of 15 to 2114, where both a and b conespond to the positions of nucleotide residues shown in SEQ ID NO:32, and where b is greater than or equal to a + 14.
Table 1 summarizes the information corresponding to each "Gene No." described above. The nucleotide sequence identified as "NT SEQ ID NO:X" was assembled from partially homologous ("overlapping") sequences obtained from the "cDNA clone ID" identified in Table 1 and, in some cases, from additional related DNA clones. The overlapping sequences were assembled into a single contiguous sequence of high redundancy (usually three to five overlapping sequences at each nucleotide position), resulting in a final sequence identified as SEQ ID NO:X.
The cDNA Clone ID was deposited on the date and given the corresponding deposit number listed in "ATCC Deposit No:Z and Date." Some of the deposits contain multiple different clones corresponding to the same gene. "Vector" refers to the type of vector contained in the cDNA Clone ID.
"Total NT Seq." refers to the total number of nucleotides in the contig identified by "Gene No." The deposited clone may contain all or most of these sequences, reflected by the nucleotide position indicated as "5' NT of Clone Seq." and the "3 ' NT of Clone Seq." of SEQ ID NO:X. The nucleotide position of SEQ ID NO:X ofthe putative start codon (methionine) is identified as "5' NT of Start Codon." Similarly , the nucleotide position of SEQ ID NO:X ofthe predicted signal sequence is identified as "5' NT of First AA of Signal Pep." '
The translated amino acid sequence, beginning with the methionine, is identified as "AA SEQ ID NO:Y," although other reading frames can also be easily translated using known molecular biology techniques. The polypeptides produced by these alternative open reading frames are specifically contemplated by the present invention.
The first and last amino acid position of SEQ ID NON of the predicted signal peptide is identified as "First AA of Sig Pep" and "Last AA of Sig Pep." The predicted first amino acid position of SEQ ID ΝON ofthe secreted portion is identified as "Predicted First AA of Secreted Portion." Finally, the amino acid position of SEQ ID ΝON ofthe last amino acid in the open reading frame is identified as "Last AA of ORF." SEQ ID ΝO:X (where X may be any ofthe polynucleotide sequences disclosed in the sequence listing) and the translated SEQ ID NON (where Y may be any ofthe polypeptide sequences disclosed in the sequence listing) are sufficiently
accurate and otherwise suitable for a variety of uses well known in the art and described further below. For instance, SEQ ID NO:X is useful for designing nucleic acid hybridization probes that will detect nucleic acid sequences contained in SEQ ID NO:X or the cDNA contained in the deposited clone. These probes will also hybridize to nucleic acid molecules in biological samples, thereby enabling a variety of forensic and diagnostic methods ofthe invention. Similarly, polypeptides identified from SEQ ID NO:Y may be used, for example, to generate antibodies which bind specifically to proteins containing the polypeptides and the secreted proteins encoded by the cDNA clones identified in Table 1. Nevertheless, DNA sequences generated by sequencing reactions can contain sequencing errors. The errors exist as misidentified nucleotides, or as insertions or deletions of nucleotides in the generated DNA sequence. The erroneously inserted or deleted nucleotides cause frame shifts in the reading frames ofthe predicted amino acid sequence. In these cases, the predicted amino acid sequence diverges from the actual amino acid sequence, even though the generated DNA sequence may be greater than 99.9% identical to the actual DNA sequence (for example, one base insertion or deletion in an open reading frame of over 1000 bases).
Accordingly, for those applications requiring precision in the nucleotide sequence or the amino acid sequence, the present invention provides not only the generated nucleotide sequence identified as SEQ ID NO:X and the predicted translated amino acid sequence identified as SEQ ID NO:Y, but also a sample of plasmid DNA containing a human cDNA ofthe invention deposited with the ATCC, as set forth in Table 1. The nucleotide sequence of each deposited clone can readily be determined by sequencing the deposited clone in accordance with known methods. The predicted amino acid sequence can then be verified from such deposits.
Moreover, the amino acid sequence ofthe protein encoded by a particular clone can also be directly determined by peptide sequencing or by expressing the protein in a suitable host cell containing the deposited human cDNA, collecting the protein, and determining its sequence. The present invention also relates to the genes corresponding to SEQ ED
NO:X, SEQ ID NON, or the deposited clone. The corresponding gene can be isolated in accordance with known methods using the sequence information disclosed
herein. Such methods include preparing probes or primers from the disclosed sequence and identifying or amplifying the corresponding gene from appropriate sources of genomic material.
Also provided in the present invention are allelic variants, orthologs, and/or species homologs. Procedures known in the art can be used to obtain full-length genes, allelic variants, splice variants, full-length coding portions, orthologs, and/or species homologs of genes corresponding to SEQ ID NO:X, SEQ ID NO:Y, or a deposited clone, using information from the sequences disclosed herein or the clones deposited with the ATCC. For example, allelic variants and/or species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source for allelic variants and/or the desired homologue.
Table 2 provides predicted epitopes contained in certain embodiments of the invention and polynucleotide sequences that may be disclaimed according to certain embodiments ofthe invention. The first column refers to each "Gene #" described above in Table 1. The second column provides the sequence identifier, "NT SEQ ED NO:X", for polynucleotide sequences disclosed in Table 1. The third column provides the sequence identifier, "AA SEQ ED NO:Y", for polypeptide sequences disclosed in Table 1. The fourth column provides a unique integer "ntA" where "ntA" is any integer between 1 and the final nucleotide minus 15 of SEQ ED NO:X, and the fifth column provides a unique integer "ntB" where "ntB" is any integer between 15 and the final nucleotide of SEQ ED NO:X, where both ntA and ntB correspond to the positions of nucleotide residues shown in SEQ ED NO:X, and where ntB is greater than or equal to a + 14. For each ofthe polynucleotides shown as SEQ ED NO:X, the uniquely defined integers can be substituted into the general formula of a-b, and used to describe polynucleotides which may be preferably excluded from the invention. Column 6 lists residues comprising predicted epitopes contained in the polypeptides encoded by each ofthe preferred ORFs (SEQ ED NO:Y). Identification of potential immunogenic regions was performed according to the method of Jameson and Wolf ((1988) CABIOS, 4; 181-186); specifically, the Genetics Computer Group (GCG) implementation ofthis algorithm, embodied in the program PEPTEDESTRUCTURE (Wisconsin Package vlθ.0, Genetics Computer Group (GCG), Madison, Wise). This
method returns a measure ofthe probability that a given residue is found on the surface ofthe protein. Regions where the antigenic index score is greater than 0.9 over at least 6 amino acids are indicated in Table 2 as "Predicted epitopes". Polypeptides ofthe invention may possess one, two, three, four, five or more antigenic epitopes comprising residues described in Table 2. It will be appreciated that depending on the analytical criteria used to predict antigenic determinants, the exact address ofthe determinant may vary slightly.
Table 3 summarizes the expression profile of polynucleotides corresponding to the clones disclosed in Table 1. The first column provides a unique clone identifier, "Clone ID", for a cDNA clone related to each contig sequence disclosed in Table 1. Column 2, "Library Code(s)" shows the expression profile of tissue and/or cell line libraries which express the polynucleotides ofthe invention. Each Library Code in column 2 represents a tissue/cell source identifier code corresponding to the Library Code and Library description provided in Table 5. Expression of these polynucleotides was not observed in the other tissues and/or cell libraries tested. One of skill in the art could routinely use this information to identify tissues which show a predominant expression pattern of the corresponding polynucleotide ofthe invention or to identify polynucleotides which show predominant and/or specific tissue expression. Table 4 provides a key to the Library Code disclosed in Table 3. Column 1 provides the Library Code disclosed in Table 3, column 2. Column 2 provides a description ofthe tissue or cell source from which the corresponding library was derived. Library codes corresponding to diseased Tissues are indicated in column 3 with the word "disease".
Table 2
Table 3
H0445 H0478 H0494 H0497 H0519 H0520 H0521 H0529 H0530 H0538 H0542 H0543 H0546 H0547 H0549 H0550 H0551 H0556 H0560 H0587 H0591 H0592 H0596 H0597 H0616 H0617 H0618 H0622 H0623 H0624 H0627 H0642 H0653 H0665 H0673 H0690 H0696 H0701 H0706 H0711 L1290 S0006 S0010 S0126 S0152 S0192 S0210 S0222 S0328 S0346 S0356 S0358 S0366 S0374 S0402 S0418 S0420 S0444 T0082 T0114 T0115
Table 4
The polypeptides ofthe invention can be prepared in any suitable manner. Such polypeptides include isolated naturally occurring polypeptides, recombinantly produced polypeptides, synthetically produced polypeptides, or polypeptides produced by a combination of these methods. Means for preparing such polypeptides are well understood in the art.
The polypeptides may be in the form ofthe secreted protein, including the mature form, or may be a part of a larger protein, such as a fusion protein (see below). It is often advantageous to include an additional amino acid sequence which contains secretory or leader sequences, pro-sequences, sequences which aid in purification , such as multiple histidine residues, or an additional sequence for stability during recombinant production.
The polypeptides ofthe present invention are preferably provided in an isolated form, and preferably are substantially purified. A recombinantly produced version of a polypeptide, including the secreted polypeptide, can be substantially purified using techniques described herein or otherwise known in the art, such as, for example, by the one-step method described in Smith and Johnson, Gene 67:31-40 (1988). Polypeptides ofthe invention also can be purified from natural, synthetic or recombinant sources using techniques described herein or otherwise known in the art, such as, for example, antibodies ofthe invention raised against the secreted protein. The present invention provides a polynucleotide comprising, or alternatively consisting of, the nucleic acid sequence of SEQ ID NO:X, and/or a cDNA contained in ATCC deposit Z. The present invention also provides a polypeptide comprising, or alternatively, consisting of, the polypeptide sequence of SEQ ID NON and/or a polypeptide encoded by the cDΝA contained in ATCC deposit Z. Polynucleotides encoding a polypeptide comprising, or alternatively consisting ofthe polypeptide sequence of SEQ ID ΝON and/or a polypeptide sequence encoded by the cDΝA contained in ATCC deposit Z are also encompassed by the invention.
Signal Sequences The present invention also encompasses mature forms ofthe polypeptide having the polypeptide sequence of SEQ ID ΝON and/or the polypeptide sequence encoded by the cDΝA in a deposited clone. Polynucleotides encoding the mature
forms (such as, for example, the polynucleotide sequence in SEQ ID NO:X and/or the polynucleotide sequence contained in the cDNA of a deposited clone) are also encompassed by the invention. According to the signal hypothesis, proteins secreted by mammalian cells have a signal or secretary leader sequence which is cleaved from the mature protein once export ofthe growing protein chain across the rough endoplasmic reticulum has been initiated. Most mammalian cells and even insect cells cleave secreted proteins with the same specificity. However, in some cases, cleavage of a secreted protein is not entirely uniform, which results in two or more mature species ofthe protein. Further, it has long been known that cleavage specificity of a secreted protein is ultimately determined by the primary structure of the complete protein, that is, it is inherent in the amino acid sequence ofthe polypeptide.
Methods for predicting whether a protein has a signal sequence, as well as the cleavage point for that sequence, are available. For instance, the method of McGeoch, Virus Res. 3:271-286 (1985), uses the information from a short N-terminal charged region and a subsequent uncharged region ofthe complete (unc leaved) protein. The method of von Heinje, Nucleic Acids Res. 14:4683-4690 (1986) uses the information from the residues surrounding the cleavage site, typically residues -13 to +2, where +1 indicates the amino terminus ofthe secreted protein. The accuracy of predicting the cleavage points of known mammalian secretory proteins for each of these methods is in the range of 75-80%. (von Heinje, supra.) However, the two methods do not always produce the same predicted cleavage point(s) for a given protein.
In the present case, the deduced amino acid sequence of the secreted polypeptide was analyzed by a computer program called SignalP (Henrik Nielsen et al., Protein Engineering 10:1-6 (1997)), which predicts the cellular location of a protein based on the amino acid sequence. As part ofthis computational prediction of localization, the methods of McGeoch and von Heinje are incorporated. The analysis ofthe amino acid sequences ofthe secreted proteins described herein by this program provided the results shown in Table 1.
As one of ordinary skill would appreciate, however, cleavage sites sometimes vary from organism to organism and cannot be predicted with absolute certainty.
Accordingly, the present invention provides secreted polypeptides having a sequence shown in SEQ ID NON which have an Ν-terminus beginning within 5 residues (i.e., + or - 5 residues) ofthe predicted cleavage point. Similarly, it is also recognized that in some cases, cleavage ofthe signal sequence from a secreted protein is not entirely uniform, resulting in more than one secreted species. These polypeptides, and the polynucleotides encoding such polypeptides, are contemplated by the present invention.
Moreover, the signal sequence identified by the above analysis may not necessarily predict the naturally occurring signal sequence. For example, the naturally occurring signal sequence may be further upstream from the predicted signal sequence. However, it is likely that the predicted signal sequence will be capable of directing the secreted protein to the ER. Nonetheless, the present invention provides the mature protein produced by expression ofthe polynucleotide sequence of SEQ ID NO:X and/or the polynucleotide sequence contained in the cDNA of a deposited clone, in a mammalian cell (e.g., COS cells, as desribed below). These polypeptides, and the polynucleotides encoding such polypeptides, are contemplated by the present invention.
Polynucleotide and Polypeptide Variants The present invention is directed to variants ofthe polynucleotide sequence disclosed in SEQ ID NO:X, the complementary strand thereto, and/or the cDNA sequence contained in a deposited clone.
The present invention also encompasses variants ofthe polypeptide sequence disclosed in SEQ ID NO:Y and/or encoded by a deposited clone. "Variant" refers to a polynucleotide or polypeptide differing from the polynucleotide or polypeptide ofthe present invention, but retaining essential properties thereof. Generally, variants are overall closely similar, and, in many regions, identical to the polynucleotide or polypeptide ofthe present invention. The present invention is also directed to nucleic acid molecules which comprise, or alternatively consist of, a nucleotide sequence which is at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to, for example, the nucleotide coding sequence in SEQ ID NO:X or the complementary strand thereto, the
nucleotide coding sequence contained in a deposited cDNA clone or the complementary strand thereto, a nucleotide sequence encoding the polypeptide of SEQ ID NO:Y, a nucleotide sequence encoding the polypeptide encoded by the cDNA contained in a deposited clone, and/or polynucleotide fragments of any of these nucleic acid molecules (e.g., those fragments described herein).
Polynucleotides which hybridize to these nucleic acid molecules under stringent hybridization conditions or lower stringency conditions are also encompassed by the invention, as are polypeptides encoded by these polynucleotides.
The present invention is also directed to polypeptides which comprise, or alternatively consist of, an amino acid sequence which is at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% identical to, for example, the polypeptide sequence shown in SEQ ID NO:Y, the polypeptide sequence encoded by the cDNA contained in a deposited clone, and/or polypeptide fragments of any of these polypeptides (e.g., those fragments described herein). By a nucleic acid having a nucleotide sequence at least, for example, 95%
"identical" to a reference nucleotide sequence ofthe present invention, it is intended that the nucleotide sequence ofthe nucleic acid is identical to the reference sequence except that the nucleotide sequence may include up to five point mutations per each 100 nucleotides ofthe reference nucleotide sequence encoding the polypeptide. In other words, to obtain a nucleic acid having a nucleotide sequence at least 95% identical to a reference nucleotide sequence, up to 5% ofthe nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence. The query sequence may be an entire sequence shown inTable 1, the ORF (open reading frame), or any fragment specified as described herein.
As a practical matter, whether any particular nucleic acid molecule or' polypeptide is at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to a nucleotide sequence ofthe presence invention can be determined conventionally using known computer programs. A preferred method for determining the best overall match between a query sequence (a sequence ofthe present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined
using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. 6:237-245(1990)). In a sequence alignment the query and subject sequences are both DNA sequences. An RNA sequence can be compared by converting U's to T's. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB alignment of DNA sequences to calculate percent identiy are: Matrix=Unitary, k-tuple=4, Mismatch Penalty=l, Joining Penalty=30, Randomization Group Length=0, Cutoff Score=l, Gap Penalty=5, Gap Size Penalty 0.05, Window Size=500 or the lenght ofthe subject nucleotide sequence, whichever is shorter. If the subject sequence is shorter than the query sequence because of 5 ' or 3 ' deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for 5' and 3' truncations ofthe subject sequence when calculating,percent identity. For subject sequences truncated at the 5' or 3' ends, relative to the query sequence, the percent identity is corrected by calculating the number of bases ofthe query sequence that are 5' and 3' ofthe subject sequence, which are not matched/aligned, as a percent ofthe total bases ofthe query sequence. Whether a nucleotide is matched/aligned is determined by results ofthe FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This corrected score is what is used for the purposes of the present invention. Only bases outside the 5' and 3' bases ofthe subject sequence, as displayed by the FASTDB alignment, which are not matched/aligned with the query sequence, are calculated for the purposes of manually adjusting the percent identity score. For example, a 90 base subject sequence is aligned to a 100 base query sequence to determine percent identity. The deletions occur at the 5' end ofthe subject sequence and therefore, the FASTDB alignment does not show a matched/alignment ofthe first 10 bases at 5' end. The 10 unpaired bases represent 10%) ofthe sequence (number of bases at the 5' and 3' ends not matched/total number of bases in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 bases were perfectly matched the final percent identity would be 90%. In another example, a 90 base
subject sequence is compared with a 100 base query sequence. This time the deletions are internal deletions so that there are no bases on the 5' or 3' ofthe subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only bases 5' and 3' ofthe subject sequence which are not matched/aligned with the query sequence are manually corrected for. No other manual corrections are to made for the purposes ofthe present invention.
By a polypeptide having an amino acid sequence at least, for example, 95% "identical" to a query amino acid sequence of the present invention, it is intended that the amino acid sequence ofthe subject polypeptide is identical to the query sequence except that the subject polypeptide sequence may include up to five amino acid alterations per each 100 amino acids ofthe query amino acid sequence. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a query amino acid sequence, up to 5% ofthe amino acid residues in the subject sequence may be inserted, deleted, (indels) or substituted with another amino acid. These alterations ofthe reference sequence may occur at the amino or carboxy terminal positions ofthe reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence. As a practical matter, whether any particular polypeptide is at least 80%, 85%,
90%, 95%>, 96%), 97%, 98% or 99% identical to, for instance, an amino acid sequences shown in Table 1 (SEQ ID NO:Y) or to the amino acid sequence encoded by cDNA contained in a deposited clone can be determined conventionally using known computer programs. A preferred method for determing the best overall match between a query sequence (a sequence ofthe present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. 6:237-245(1990)). In a sequence alignment the query and subject sequences are either both nucleotide sequences or both amino acid sequences. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB amino acid alignment are: Matrix*=PAM 0, k-tuple=2, Mismatch Penalty=l, Joining Penalty=20, Randomization Group Length=0, Cutoff Score=l,
Window Size=sequence length, Gap Penalty=5, Gap Size Penalty=0.05, Window Size=500 or the length ofthe subject amino acid sequence, whichever is shorter. If the subject sequence is shorter than the query sequence due to N- or C- terminal deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for N- and C-terminal truncations of the subject sequence when calculating global percent identity. For subject sequences truncated at the N- and C-termini, relative to the query sequence, the percent identity is corrected by calculating the number of residues of the query sequence that are N- and C-terminal ofthe subject sequence, which are not matched/aligned with a corresponding subject residue, as a percent ofthe total bases ofthe query sequence. Whether a residue is matched/aligned is determined by results ofthe FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This final percent identity score is what is used for the purposes ofthe present invention. Only residues to the N- and C-termini ofthe subject sequence, which are not matched/aligned with the query sequence, are considered for the purposes of manually adjusting the percent identity score. That is, only query residue positions outside the farthest N- and C-terminal residues ofthe subject sequence. For example, a 90 amino acid residue subject sequence is aligned with a 100 residue query sequence to determine percent identity. The deletion occurs at the N- terminus of the subject sequence and therefore, the FASTDB alignment does not show a matching/alignment ofthe first 10 residues at the N-terminus. The 10 unpaired residues represent 10% ofthe sequence (number of residues at the N- and C- termini not matched/total number of residues in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 residues were perfectly matched the final percent identity would be 90%. In another example, a 90 residue subject sequence is compared with a 100 residue query sequence. This time the deletions are internal deletions so there are no residues at the N- or C-termini ofthe subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only residue positions outside the N- and C-terminal
ends ofthe subject sequence, as displayed in the FASTDB alignment, which are not matched/aligned with the query sequnce are manually corrected for. No other manual corrections are to made for the purposes ofthe present invention.
The variants may contain alterations in the coding regions, non-coding regions, or both. Especially preferred are polynucleotide variants containing alterations which produce silent substitutions, additions, or deletions, but do not alter the properties or activities ofthe encoded polypeptide. Nucleotide variants produced by silent substitutions due to the degeneracy ofthe genetic code are preferred. Moreover, variants in which 5-10, 1-5, or 1-2 amino acids are substituted, deleted, or added in any combination are also preferred. Polynucleotide variants can be produced for a variety of reasons, e.g., to optimize codon expression for a particular host (change codons in the human mRNA to those preferred by a bacterial host such as E. coli).
Naturally occurring variants are called "allelic variants," and refer to one of several alternate forms of a gene occupying a given locus on a chromosome of an organism. (Genes II, Lewin, B., ed., John Wiley & Sons, New York (1985).) These allelic variants can vary at either the polynucleotide and/or polypeptide level and are included in the present invention. Alternatively, non-naturally occurring variants may be produced by mutagenesis techniques or by direct synthesis. Using known methods of protein engineering and recombinant DNA technology, variants may be generated to improve or alter the characteristics ofthe polypeptides ofthe present invention. For instance, one or more amino acids can be deleted from the N-terminus or C-terminus ofthe secreted protein without substantial loss of biological function. The authors of Ron et al., J. Biol. Chem. 268: 2984-2988 (1993), reported variant KGF proteins having heparin binding activity even after deleting 3, 8, or 27 amino-terminal amino acid residues. Similarly, Interferon gamma exhibited up to ten times higher activity after deleting 8-10 amino acid residues from the carboxy terminus of this protein. (Dobeli et al., J. Biotechnology 7:199-216 (1988).) Moreover, ample evidence demonstrates that variants often retain a biological activity similar to that ofthe naturally occurring protein. For example, Gayle and coworkers (J. Biol. Chem 268:22105-22111 (1993)) conducted extensive mutational
analysis of human cytokine IL-la. They used random mutagenesis to generate over 3,500 individual IL-la mutants that averaged 2.5 amino acid changes per variant over the entire length ofthe molecule. Multiple mutations were examined at every possible amino acid position. The investigators found that "[m]ost of the molecule could be altered with little effect on either [binding or biological activity]." (See, Abstract.) In fact, only 23 unique amino acid sequences, out of more than 3,500 nucleotide sequences examined, produced a protein that significantly differed in activity from wild-type.
Furthermore, even if deleting one or more amino acids from the N-terminus or C-terminus of a polypeptide results in modification or loss of one or more biological functions, other biological activities may still be retained. For example, the ability of a deletion variant to induce and/or to bind antibodies which recognize the secreted form will likely be retained when less than the majority ofthe residues ofthe secreted form are removed from the N-terminus or C-terminus. Whether a particular polypeptide lacking N- or C-terminal residues of a protein retains such immunogenic activities can readily be determined by routine methods described herein and otherwise known in the art.
Thus, the invention further includes polypeptide variants which show substantial biological activity. Such variants include deletions, insertions, inversions, repeats, and substitutions selected according to general rules known in the art so as have little effect on activity. For example, guidance concerning how to make phenotypically silent amino acid substitutions is provided in Bowie et al., Science 247:1306-1310 (1990), wherein the authors indicate that there are two main strategies for studying the tolerance of an amino acid sequence to change. The first strategy exploits the tolerance of amino acid substitutions by natural selection during the process of evolution. By comparing amino acid sequences in different species, conserved amino acids can be identified. These conserved amino acids are likely important for protein function. In contrast, the amino acid positions where substitutions have been tolerated by natural selection indicates that these positions are not critical for protein function. Thus, positions tolerating amino acid substitution could be modified while still maintaining biological activity ofthe protein.
The second strategy uses genetic engineering to introduce amino acid changes at specific positions of a cloned gene to identify regions critical for protein function. For example, site directed mutagenesis or alanine-scanning mutagenesis (introduction of single alanine mutations at every residue in the molecule) can be used. (Cunningham and Wells, Science 244:1081-1085 (1989).) The resulting mutant molecules can then be tested for biological activity.
As the authors state, these two strategies have revealed that proteins are surprisingly tolerant of amino acid substitutions. The authors further indicate which amino acid changes are likely to be permissive at certain amino acid positions in the protein. For example, most buried (within the tertiary structure ofthe protein) amino acid residues require nonpolar side chains, whereas few features of surface side chains are generally conserved. Moreover, tolerated conservative amino acid substitutions involve replacement ofthe aliphatic or hydrophobic amino acids Ala, Nal, Leu and He; replacement ofthe hydroxyl residues Ser and Thr; replacement ofthe acidic residues Asp and Glu; replacement ofthe amide residues Asn and Gin, replacement of the basic residues Lys, Arg, and His; replacement of the aromatic residues Phe, Tyr, and Trp, and replacement ofthe small-sized amino acids Ala, Ser, Thr, Met, and Gly. Besides conservative amino acid substitution, variants of the present invention include (i) substitutions with one or more ofthe non-conserved amino acid residues, where the substituted amino acid residues may or may not be one encoded by the genetic code, or (ii) substitution with one or more of amino acid residues having a substituent group, or (iii) fusion ofthe mature polypeptide with another compound, such as a compound to increase the stability and/or solubility ofthe polypeptide (for example, polyethylene glycol), or (iv) fusion ofthe polypeptide with additional amino acids, such as, for example, an IgG Fc fusion region peptide, or leader or secretory sequence, or a sequence facilitating purification or (v) fusion of the polypeptide with another compound, such as albumin (including, but not limited to, recombinant albumin (see, e.g., U.S. Patent No. 5,876,969, issued March 2, 1999, EP Patent 0 413 622, and U.S. Patent No. 5,766,883, issued June 16, 1998, herein incoφorated by reference in their entirety)). Such variant polypeptides are deemed to be within the scope of those skilled in the art from the teachings herein.
For example, polypeptide variants containing amino acid substitutions of charged amino acids with other charged or neutral amino acids may produce proteins with improved characteristics, such as less aggregation. Aggregation of pharmaceutical formulations both reduces activity and increases clearance due to the aggregate's immunogenic activity. (Pinckard et al., Clin. Exp. Immunol. 2:331-340 (1967); Robbins et al., Diabetes 36: 838-845 (1987); Cleland et al., Crit. Rev. Therapeutic Drug Carrier Systems 10:307-377 (1993).)
A further embodiment ofthe invention relates to a polypeptide which comprises the amino acid sequence ofthe present invention having an amino acid sequence which contains at least one amino acid substitution, but not more than 50 amino acid substitutions, even more preferably, not more than 40 amino acid substitutions, still more preferably, not more than 30 amino acid substitutions, and still even more preferably, not more than 20 amino acid substitutions. Of course, in order of ever-increasing preference, it is highly preferable for a peptide or polypeptide to have an amino acid sequence which comprises the amino acid sequence ofthe present invention, which contains at least one, but not more than 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 amino acid substitutions. In specific embodiments, the number of additions, substitutions, and/or deletions in the amino acid sequence ofthe present invention or fragments thereof (e.g., the mature form and/or other fragments described herein), is 1-5, 5-10, 5-25, 5-50, 10-50 or 50-150, conservative amino acid substitutions are preferable.
Polynucleotide and Polypeptide Fragments
The present invention is also directed to polynucleotide fragments ofthe polynucleotides ofthe invention.
In the present invention, a "polynucleotide fragment" refers to a short polynucleotide having a nucleic acid sequence which: is a portion of that contained in a deposited clone, or encoding the polypeptide encoded by the cDNA in a deposited clone; is a portion of that shown in SEQ ID NO:X or the complementary strand thereto, or is a portion of a polynucleotide sequence encoding the polypeptide of SEQ ID NO:Y. The nucleotide fragments ofthe invention are preferably at least about 15 nt, and more preferably at least about 20 nt, still more preferably at least about 30 nt,
and even more preferably, at least about 40 nt, at least about 50 nt, at least about 75 nt, or at least about 150 nt in length. A fragment "at least 20 nt in length," for example, is intended to include 20 or more contiguous bases from the cDNA , sequence contained in a deposited clone or the nucleotide sequence shown in SEQ ID NO:X. In this context "about" includes the particularly recited value, a value larger or smaller by several (5, 4, 3, 2, or 1) nucleotides, at either terminus or at both termini. These nucleotide fragments have uses that include, but are not limited to, as diagnostic probes and primers as discussed herein. Of course, larger fragments (e.g., 50, 150, 500, 600, 2000 nucleotides) are preferred. Moreover, representative examples of polynucleotide fragments of the invention, include, for example, fragments comprising, or alternatively consisting of, a sequence from about nucleotide number 1-50, 51-100, 101-150, 151-200, 201-250, 251-300, 301-350, 351-400, 401-450, 451-500, 501-550, 551-600, 651-700, 701-750, 751-800, 800-850, 851-900, 901-950, 951-1000, 1001-1050, 1051-1100, 1101-1150, 1151-1200, 1201-1250, 1251-1300, 1301-1350, 1351-1400, 1401-1450, 1451-1500, 1501-1550, 1551-1600, 1601-1650, 1651-1700, 1701-1750, 1751-1800, 1801-1850, 1851-1900, 1901-1950, 1951-2000, or 2001 to the end of SEQ ID NO:X, or the complementary strand thereto, or the cDNA contained in a deposited clone. In this context "about" includes the particularly recited ranges, and ranges larger or smaller by several (5, 4, 3, 2, or 1) nucleotides, at either terminus or at both termini.
Preferably, these fragments encode a polypeptide which has biological activity. More preferably, these polynucleotides can be used as probes or primers as discussed herein. Polynucleotides which hybridize to these nucleic acid molecules under stringent hybridization conditions or lower stringency conditions are also encompassed by the invention, as are polypeptides encoded by these polynucleotides. In the present invention, a "polypeptide fragment" refers to an amino acid sequence which is a portion of that contained in SEQ ID NON or encoded by the cDΝA contained in a deposited clone. Protein (polypeptide) fragments may be "freestanding," or comprised within a larger polypeptide of which the fragment forms a part or region, most preferably as a single continuous region. Representative examples of polypeptide fragments of the invention, include, for example, fragments comprising, or alternatively consisting of, from about amino acid number 1-20, 21-40,
41-60, 61-80, 81-100, 102-120, 121-140, 141-160, or 161 to the end ofthe coding region. Moreover, polypeptide fragments can be about 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, or 150 amino acids in length. In this context "about" includes the particularly recited ranges or values, and ranges or values larger or smaller by several (5, 4, 3, 2, or 1) amino acids, at either extreme or at both extremes. Polynucleotides encoding these polypeptides are also encompassed by the invention.
Preferred polypeptide fragments include the secreted protein as well as the mature form. Further preferred polypeptide fragments include the secreted protein or the mature form having a continuous series of deleted residues from the amino or the carboxy terminus, or both. For example, any number of amino acids, ranging from 1- 60, can be deleted from the amino terminus of either the secreted polypeptide or the mature form. Similarly, any number of amino acids, ranging from 1-30, can be deleted from the carboxy terminus of the secreted protein or mature form. Furthermore, any combination ofthe above amino and carboxy terminus deletions are preferred. Similarly, polynucleotides encoding these polypeptide fragments are also preferred.
Also preferred are polypeptide and polynucleotide fragments characterized by structural or functional domains, such as fragments that comprise alpha-helix and alpha-helix forming regions, beta-sheet and beta-sheet-forming regions, turn and turn- forming regions, coil and coil-forming regions, hydrophilic regions, hydrophobic regions, alpha amphipathic regions, beta amphipathic regions, flexible regions, surface-forming regions, substrate binding region, and high antigenic index regions. Polypeptide fragments of SEQ ID NON falling within conserved domains are specifically contemplated by the present invention. Moreover, polynucleotides encoding these domains are also contemplated.
Other preferred polypeptide fragments are biologically active fragments. Biologically active fragments are those exhibiting activity similar, but not necessarily identical, to an activity of the polypeptide ofthe present invention. The biological activity ofthe fragments may include an improved desired activity, or a decreased undesirable activity. Polynucleotides encoding these polypeptide fragments are also encompassed by the invention.
Preferably, the polynucleotide fragments ofthe invention encode a polypeptide which demonstrates a functional activity. By a polypeptide demonstrating a "functional activity" is meant, a polypeptide capable of displaying one or more known functional activities associated with a full-length (complete) polypeptide of invention protein. Such functional activities include, but are not limited to, biological activity, antigenicity [ability to bind (or compete with a polypeptide ofthe invention for binding) to an antibody to the polypeptide ofthe invention], immunogenicity (ability to generate antibody which binds to a polypeptide ofthe invention), ability to form multimers with polypeptides of the invention, and ability to bind to a receptor or ligand for a polypeptide ofthe invention.
The functional activity of polypeptides ofthe invention, and fragments, variants derivatives, and analogs thereof, can be assayed by various methods.
For example, in one embodiment where one is assaying for the ability to bind or compete with full-length polypeptide ofthe invention for binding to an antibody of the polypeptide ofthe invention, various immunoassays known in the art can be used, including but not limited to, competitive and non-competitive assay systems using techniques such as radioimmunoassays, ELISA (enzyme linked immunosorbent assay), "sandwich" immunoassays, immunoradiometric assays, gel diffusion precipitation reactions, immunodiffusion assays, in situ immunoassays (using colloidal gold, enzyme or radioisotope labels, for example), western blots, precipitation reactions, agglutination assays (e.g., gel agglutination assays, hemagglutination assays), complement fixation assays, immunofluorescence assays, protein A assays, and immunoelectrophoresis assays, etc. In one embodiment, antibody binding is detected by detecting a label on the primary antibody. In another embodiment, the primary antibody is detected by detecting binding of a secondary antibody or reagent to the primary antibody. In a further embodiment, the secondary antibody is labeled. Many means are known in the art for detecting binding in an immunoassay and are within the scope ofthe present invention.
In another embodiment, where a ligand for a polypeptide ofthe invention identified, or the ability of a polypeptide fragment, variant or derivative ofthe invention to multimerize is being evaluated, binding can be assayed, e.g., by means well-known in the art, such as, for example, reducing and non-reducing gel
chromatography, protein affinity chromatography, and affinity blotting. See generally, Phizicky, E., et al., 1995, Microbiol. Rev. 59:94-123. In another embodiment, physiological correlates of binding of a polypeptide of the invention to its substrates (signal transduction) can be assayed. In addition, assays described herein (see Examples) and otherwise known in the art may routinely be applied to measure the ability of polypeptides ofthe invention and fragments, variants derivatives and analogs thereof to elicit related biological activity related to that ofthe polypeptide ofthe invention (either in vitro or in vivo). Other methods will be known to the skilled artisan and are within the scope of the invention.
Epitopes and Antibodies
The present invention encompasses polypeptides comprising, or alternatively consisting of, an epitope ofthe polypeptide having an amino acid sequence of SEQ ID NON, or an epitope ofthe polypeptide sequence encoded by a polynucleotide sequence contained in ATCC deposit No. Z or encoded by a polynucleotide that hybridizes to the complement ofthe sequence of SEQ ID NO:X or contained in ATCC deposit No. Z under stringent hybridization conditions or lower stringency hybridization conditions as defined supra. The present invention further encompasses polynucleotide sequences encoding an epitope of a polypeptide sequence ofthe invention (such as, for example, the sequence disclosed in SEQ ID NO:X), polynucleotide sequences ofthe complementary strand of a polynucleotide sequence encoding an epitope ofthe invention, and polynucleotide sequences which hybridize to the complementary strand under stringent hybridization conditions or lower stringency hybridization conditions defined supra.
The term "epitopes," as used herein, refers to portions of a polypeptide having antigenic or immunogenic activity in an animal, preferably a mammal, and most preferably in a human. In a preferred embodiment, the present invention encompasses a polypeptide comprising an epitope, as well as the polynucleotide encoding this polypeptide. An "immunogenic epitope," as used herein, is defined as a portion of a protein that elicits an antibody response in an animal, as determined by any method known in the art, for example, by the methods for generating antibodies
described infra. (See, for example, Geysen et al., Proc. Natl. Acad. Sci. USA 81 :3998- 4002 (1983)). The term "antigenic epitope," as used herein, is defined as a portion of a protein to which an antibody can immunospecifically bind its antigen as determined by any method well known in the art, for example, by the immunoassays described herein. Immunospecific binding excludes non-specific binding but does not necessarily exclude cross- reactivity with other antigens. Antigenic epitopes need not necessarily be immunogenic.
Fragments which function as epitopes may be produced by any conventional means. (See, e.g., Houghten, Proc. Natl. Acad. Sci. USA 82:5131-5135 (1985), further described in U.S. Patent No. 4,631,211).
In the present invention, antigenic epitopes preferably contain a sequence of at least 4, at least 5, at least 6, at least 7, more preferably at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 20, at least 25, at least 30, at least 40, at least 50, and, most preferably, between about 15 to about 30 amino acids. Preferred polypeptides comprising immunogenic or antigenic epitopes are at least 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 amino acid residues in length. Additional non-exclusive preferred antigenic epitopes include the antigenic epitopes disclosed herein, as well as portions thereof. Antigenic epitopes are useful, for example, to raise antibodies, including monoclonal antibodies, that specifically bind the epitope. Preferred antigenic epitopes include the antigenic epitopes disclosed herein, as well as any combination of two, three, four, five or more of these antigenic epitopes. Antigenic epitopes can be used as the target molecules in immunoassays. (See, for instance, Wilson et al., Cell 37:767-778 (1984); Sutcliffe et al., Science 219:660-666 (1983)). Similarly, immunogenic epitopes can be used, for example, to induce antibodies according to methods well known in the art. (See, for instance, Sutcliffe et al., supra; Wilson et al., supra; Chow et al., Proc. Natl. Acad. Sci. USA 82:910- 914; and Bittle et al., J. Gen. Virol. 66:2347-2354 (1985). Preferred immunogenic epitopes include the immunogenic epitopes disclosed herein, as well as any combination of two, three, four, five or more of these immunogenic epitopes. The polypeptides comprising one or more immunogenic epitopes may be presented for eliciting an antibody response together with a carrier protein, such as an albumin, to
an animal system (such as rabbit or mouse), or, if the polypeptide is of sufficient length (at least about 25 amino acids), the polypeptide may be presented without a carrier. However, immunogenic epitopes comprising as few as 8 to 10 amino acids have been shown to be sufficient to raise antibodies capable of binding to, at the very least, linear epitopes in a denatured polypeptide (e.g., in Western blotting).
Epitope-bearing polypeptides ofthe present invention may be used to induce antibodies according to methods well known in the art including, but not limited to, in vivo immunization, in vitro immunization, and phage display methods. See, e.g., Sutcliffe et al., supra; Wilson et al., supra, and Bittle et al., J. Gen. Virol., 66:2347- 2354 (1985). If in vivo immunization is used, animals may be immunized with free peptide; however, anti-peptide antibody titer may be boosted by coupling the peptide to a macromolecular carrier, such as keyhole limpet hemacyanin (KLH) or tetanus toxoid. For instance, peptides containing cysteine residues may be coupled to a carrier using a linker such as maleimidobenzoyl- N-hydroxysuccinimide ester (MBS), while other peptides may be coupled to carriers using a more general linking agent such as glutaraldehyde. Animals such as rabbits, rats and mice are immunized with either free or carrier- coupled peptides, for instance, by intraperitoneal and/or intradermal injection of emulsions containing about 100 μg of peptide or carrier protein and Freund's adjuvant or any other adjuvant known for stimulating an immune response. Several booster injections may be needed, for instance, at intervals of about two weeks, to provide a useful titer of anti-peptide antibody which can be detected, for example, by ELISA assay using free peptide adsorbed to a solid surface. The titer of anti-peptide antibodies in serum from an immunized animal may be increased by selection of anti-peptide antibodies, for instance, by adsoφtion to the peptide on a solid support and elution ofthe selected antibodies according to methods well known in the art.
As one of skill in the art will appreciate, and as discussed above, the polypeptides ofthe present invention (e.g., those comprising an immunogenic or antigenic epitope) can be fused to heterologous polypeptide sequences. For example, polypeptides ofthe present invention (including fragments or variants thereof), may be fused with the constant domain of immunoglobulins (IgA, IgE, IgG, IgM), or portions thereof (CHI, CH2, CH3, or any combination thereof and portions thereof,
resulting in chimeric polypeptides. By way of another non-limiting example, polypeptides and/or antibodies ofthe present invention (including fragments or variants thereof) may be fused with albumin (including but not limited to recombinant human serum albumin or fragments or variants thereof (see, e.g., U.S. Patent No. 5,876,969, issued March 2, 1999, EP Patent 0 413 622, and U.S. Patent No.
5,766,883, issued June 16, 1998, herein incoφorated by reference in their entirety)). In a preferred embodiment, polypeptides and/or antibodies ofthe present invention (including fragments or variants thereof) are fused with the mature form of human serum albumin (i.e., amino acids 1 - 585 of human serum albumin as shown in Figures 1 and 2 of EP Patent 0 322 094) which is herein incoφorated by reference in its entirety. In another preferred embodiment, polypeptides and/or antibodies ofthe present invention (including fragments or variants thereof) are fused with polypeptide fragments comprising, or alternatively consisting of, amino acid residues 1-z of human serum albumin, where z is an integer from 369 to 419, as described in U.S. Patent 5,766,883 herein incoφorated by reference in its entirety. Polypeptides and/or antibodies ofthe present invention (including fragments or variants thereof) may be fused to either the N- or C-terminal end ofthe heterologous protein (e.g., immunoglobulin Fc polypeptide or human serum albumin polypeptide). Polynucleotides encoding fusion proteins ofthe invention are also encompassed by the invention.
Such fusion proteins may facilitate purification and may increase half-life in vivo. This has been shown for chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains ofthe constant regions ofthe heavy or light chains of mammalian immunoglobulins. See, e.g., EP 394,827; Traunecker et al., Nature, 331 :84-86 (1988). Enhanced delivery of an antigen across the epithelial barrier to the immune system has been demonstrated for antigens (e.g., insulin) conjugated to an FcRn binding partner such as IgG or Fc fragments (see, e.g., PCT Publications WO 96/22024 and WO 99/04813). IgG Fusion proteins that have a disulfide-linked dimeric structure due to the IgG portion desulfide bonds have also been found to be more efficient in binding and neutralizing other molecules than monomeric polypeptides or fragments thereof alone. See, e.g., Fountoulakis et al., J. Biochem., 270:3958-3964 (1995). Nucleic acids encoding the above epitopes can
also be recombined with a gene of interest as an epitope tag (e.g., the hemagglutinin ("HA") tag or flag tag) to aid in detection and purification ofthe expressed polypeptide. For example, a system described by Janknecht et al. allows for the ready purification of non-denatured fusion proteins expressed in human cell lines (Janknecht et al., 1991, Proc. Natl. Acad. Sci. USA 88:8972- 897). In this system, the gene of interest is subcloned into a vaccinia recombination plasmid such that the open reading frame ofthe gene is translationally fused to an amino-terminal tag consisting of six histidine residues. The tag serves as a matrix binding domain for the fusion protein. Extracts from cells infected with the recombinant vaccinia virus are loaded onto Ni2+ nitriloacetic acid-agarose column and histidine-tagged proteins can be selectively eluted with imidazole-containing buffers.
Additional fusion proteins ofthe invention may be generated through the techniques of gene-shuffling, motif-shuffling, exon-shuffling, and/or codon-shuffling (collectively referred to as "DNA shuffling"). DNA shuffling may be employed to modulate the activities of polypeptides ofthe invention, such methods can be used to generate polypeptides with altered activity, as well as agonists and antagonists ofthe polypeptides. See, generally, U.S. Patent Nos. 5,605,793; 5,811,238; 5,830,721 ; 5,834,252; and 5,837,458, and Patten et al., Curr. Opinion Biotechnol. 8:724-33 (1997); Harayama, Trends Biotechnol. 16(2):76-82 (1998); Hansson, et al., J. Mol. Biol. 287:265-76 (1999); and Lorenzo and Blasco, Biotechniques 24(2):308- 13
(1998) (each of these patents and publications are hereby incoφorated by reference in its entirety). In one embodiment, alteration of polynucleotides corresponding to SEQ ID NO:X and the polypeptides encoded by these polynucleotides may be achieved by DNA shuffling. DNA shuffling involves the assembly of two or more DNA segments by homologous or site-specific recombination to generate variation in the polynucleotide sequence. In another embodiment, polynucleotides ofthe invention, or the encoded polypeptides, may be altered by being subjected to random mutagenesis by error-prone PCR, random nucleotide insertion or other methods prior to recombination. In another embodiment, one or more components, motifs, sections, parts, domains, fragments, etc., of a polynucleotide encoding a polypeptide ofthe invention may be recombined with one or more components, motifs, sections, parts, domains, fragments, etc. of one or more heterologous molecules.
Antibodies
Further polypeptides of the invention relate to antibodies and T-cell antigen receptors (TCR) which immunospecifically bind a polypeptide, polypeptide fragment, or variant of SEQ ID NON, and/or an epitope, ofthe present invention (as determined by immunoassays well known in the art for assaying specific antibody- antigen binding). Antibodies ofthe invention include, but are not limited to, polyclonal, monoclonal, multispecific, human, humanized or chimeric antibodies, single chain antibodies, Fab fragments, F(ab') fragments, fragments produced by a Fab expression library, anti-idiotypic (anti-Id) antibodies (including, e.g., anti-Id antibodies to antibodies ofthe invention), and epitope-binding fragments of any of the above. The term "antibody," as used herein, refers to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that contain an antigen binding site that immunospecifically binds an antigen. The immunoglobulin molecules ofthe invention can be of any type (e.g., IgG, IgE, IgM, IgD, IgA and IgY), class (e.g., IgGl, IgG2, IgG3, IgG4, IgAl and IgA2) or subclass of immunoglobulin molecule. In preferred embodiments, the immunoglobulin molecules ofthe invention are IgGl. In other preferred embodiments, the immunoglobulin molecules ofthe invention are IgG4. Most preferably the antibodies are human antigen-binding antibody fragments ofthe present invention and include, but are not limited to, Fab, Fab' and F(ab')2, Fd, single-chain Fvs (scFv), single-chain antibodies, disulfide-linked Fvs (sdFv) and fragments comprising either a VL or VH domain. Antigen-binding antibody fragments, including single-chain antibodies, may comprise the variable region(s) alone or in combination with the entirety or a portion ofthe following: hinge region, CHI, CH2, and CH3 domains. Also included in the invention are antigen-binding fragments also comprising any combination of variable region(s) with a hinge region, CHI, CH2, and CH3 domains. The antibodies ofthe invention may be from any animal origin including birds and mammals. Preferably, the antibodies are human, murine (e.g., mouse and rat), donkey, ship rabbit, goat, guinea pig, camel, horse, or chicken. As used herein, "human" antibodies include antibodies having the amino acid sequence of a human immunoglobulin and include antibodies isolated from
human immunoglobulin libraries or from animals transgenic for one or more human immunoglobulin and that do not express endogenous immunoglobulins, as described infra and, for example in, U.S. Patent No. 5,939,598 by Kucherlapati et al.
The antibodies ofthe present invention may be monospecific, bispecific, trispecific or of greater multispecificity. Multispecific antibodies may be specific for different epitopes of a polypeptide ofthe present invention or may be specific for both a polypeptide of the present invention as well as for a heterologous epitope, such as a heterologous polypeptide or solid support material. See, e.g., PCT publications WO 93/17715; WO 92/08802; WO 91/00360; WO 92/05793; Tutt, et al., J. Immunol. 147:60-69 (1991); U.S. Patent Nos. 4,474,893; 4,714,681; 4,925,648; 5,573,920; 5,601,819; Kostelny et al., J. Immunol. 148:1547-1553 (1992).
Antibodies ofthe present invention may be described or specified in terms of the epitope(s) or portion(s) of a polypeptide ofthe present invention which they recognize or specifically bind. The epitope(s) or polypeptide portion(s) may be specified as described herein, e.g., by N-terminal and C-terminal positions, by size in contiguous amino acid residues, or listed in the Tables and Figures. Antibodies which specifically bind any epitope or polypeptide ofthe present invention may also be excluded. Therefore, the present invention includes antibodies that specifically bind polypeptides ofthe present invention, and allows for the exclusion ofthe same. Antibodies ofthe present invention may also be described or specified in terms of their cross-reactivity. Antibodies that do not bind any other analog, ortholog, or homolog of a polypeptide of the present invention are included. Antibodies that bind polypeptides with at least 95%, at least 90%, at least 85%, at least 80%), at least 75%, at least 70%, at least 65%, at least 60%, at least 55%, and at least 50%> identity (as calculated using methods known in the art and described herein) to a polypeptide of the present invention are also included in the present invention. In specific embodiments, antibodies ofthe present invention cross-react with murine, rat and/or rabbit homologs of human proteins and the corresponding epitopes thereof. Antibodies that do not bind polypeptides with less than 95%, less than 90%, less than 85%, less than 80%, less than 75%, less than 70%, less than 65%, less than 60%, less than 55%, and less than 50% identity (as calculated using methods known in the art and described herein) to a polypeptide of the present
invention are also included in the present invention. In a specific embodiment, the above-described cross-reactivity is with respect to any single specific antigenic or immunogenic polypeptide, or combination(s) of 2, 3, 4, 5, or more ofthe specific antigenic and/or immunogenic polypeptides disclosed herein. Further included in the present invention are antibodies which bind polypeptides encoded by polynucleotides which hybridize to a polynucleotide ofthe present invention under stringent hybridization conditions (as described herein). Antibodies ofthe present invention may also be described or specified in terms of their binding affinity to a polypeptide ofthe invention. Preferred binding affinities include those with a dissociation constant or Kd less than 5 X 10"2 M, 10'2 M, 5 X 10"3 M, 10"3 M, 5 X 10"4 M, 10"4 M, 5 X 10"5 M, 10'5 M, 5 X 10"6 M, 10-6M, 5 X 10"7 M, 107 M, 5 X 10"8 M, 10"8 M, 5 X 10"9 M, lO-9 M, 5 X lO-10 M, 10"10 M, 5 X 10"11 M, 10"u M, 5 X 10"12 M, 10"12 M, 5 X 10"13 M, 10'13 M, 5 X 10"14 M, 10"14 M, 5 X 10"15 M, or 10"15 M.
The invention also provides antibodies that competitively inhibit binding of an antibody to an epitope ofthe invention as determined by any method known in the art for determining competitive binding, for example, the immunoassays described herein. In preferred embodiments, the antibody competitively inhibits binding to the epitope by at least 95%, at least 90%, at least 85 %, at least 80%, at least 75%, at least 70%, at least 60%, or at least 50%. Antibodies ofthe present invention may act as agonists or antagonists ofthe polypeptides ofthe present invention. For example, the present invention includes antibodies which disrupt the receptor/ligand interactions with the polypeptides ofthe invention either partially or fully. Preferrably, antibodies ofthe present invention bind an antigenic epitope disclosed herein, or a portion thereof. The invention features both receptor-specific antibodies and ligand-specific antibodies. The invention also features receptor-specific antibodies which do not prevent ligand binding but prevent receptor activation. Receptor activation (i.e., signaling) may be determined by techniques described herein or otherwise known in the art. For example, receptor activation can be determined by detecting the phosphorylation (e.g., tyrosine or serine/threonine) of the receptor or its substrate by immunoprecipitation followed by western blot analysis (for example, as described supra). In specific embodiments, antibodies are provided that inhibit ligand activity
or receptor activity by at least 95%, at least 90%, at least 85%, at least 80%, at least 75%, at least 70%, at least 60%, or at least 50% ofthe activity in absence ofthe antibody.
The invention also features receptor-specific antibodies which both prevent ligand binding and receptor activation as well as antibodies that recognize the receptor-ligand complex, and, preferably, do not specifically recognize the unbound receptor or the unbound ligand. Likewise, included in the invention are neutralizing antibodies which bind the ligand and prevent binding ofthe ligand to the receptor, as well as antibodies which bind the ligand, thereby preventing receptor activation, but do not prevent the ligand from binding the receptor. Further included in the invention are antibodies which activate the receptor. These antibodies may act as receptor agonists, i.e., potentiate or activate either all or a subset ofthe biological activities of the ligand-mediated receptor activation, for example, by inducing dimerization of the receptor. The antibodies may be specified as agonists, antagonists or inverse agonists for biological activities comprising the specific biological activities ofthe peptides of the invention disclosed herein. The above antibody agonists can be made using methods known in the art. See, e.g., PCT publication WO 96/40281 ; U.S. Patent No. 5,811,097; Deng et al., Blood 92(6):1981-1988 (1998); Chen et al., Cancer Res. 58(16):3668-3678 (1998); Harrop et al., J. Immunol. 161(4):1786-1794 (1998); Zhu et al., Cancer Res. 58(15):3209-3214 (1998); Yoon et al., J. Immunol. 160(7):3170- 3179 (1998); Prat et al., J. Cell. Sci. 11 l(Pt2):237-247 (1998); Pitard et al., J. Immunol. Methods 205(2):177-190 (1997); Liautard et al., Cytokine 9(4):233-241 (1997); Carlson et al., J. Biol. Chem. 272(17):11295-11301 (1997); Taryman et al., Neuron 14(4):755-762 (1995); Muller et al., Structure 6(9): 1153-1167 (1998); Bartunek et al., Cytokine 8(1): 14-20 (1996) (which are all incoφorated by reference herein in their entireties).
Antibodies ofthe present invention may be used, for example, but not limited to, to purify, detect, and target the polypeptides ofthe present invention, including both in vitro and in vivo diagnostic and therapeutic methods. For example, the antibodies have use in immunoassays for qualitatively and quantitatively measuring levels ofthe polypeptides of the present invention in biological samples. See, e.g.,
Harlow et al., Antibodies: A Laboratory Manual, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988) (incoφorated by reference herein in its entirety).
As discussed in more detail below, the antibodies ofthe present invention may be used either alone or in combination with other compositions. The antibodies may further be recombinantly fused to a heterologous polypeptide at the N- or C-terminus or chemically conjugated (including covalently and non-covalently conjugations) to polypeptides or other compositions. For example, antibodies ofthe present invention may be recombinantly fused or conjugated to molecules useful as labels in detection assays and effector molecules such as heterologous polypeptides, drugs, radionuclides, or toxins. See, e.g., PCT publications WO 92/08495; WO 91/14438; WO 89/12624; U.S. Patent No. 5,314,995; and EP 396,387.
The antibodies ofthe invention include derivatives that are modified, i.e, by the covalent attachment of any type of molecule to the antibody such that covalent attachment does not prevent the antibody from generating an anti-idiotypic response. For example, but not by way of limitation, the antibody derivatives include antibodies that have been modified, e.g., by glycosylation, acetylation, pegylation, phosphylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to a cellular ligand or other protein, etc. Any of numerous chemical modifications may be carried out by known techniques, including, but not limited to specific chemical cleavage, acetylation, formylation, metabolic synthesis of tunicamycin, etc. Additionally, the derivative may contain one or more non-classical amino acids.
The antibodies of the present invention may be generated by any suitable method known in the art. Polyclonal antibodies to an antigen-of- interest can be produced by various procedures well known in the art. For example, a polypeptide of the invention can be administered to various host animals including, but not limited to, rabbits, mice, rats, etc. to induce the production of sera containing polyclonal antibodies specific for the antigen. Various adjuvants may be used to increase the immunological response, depending on the host species, and include but are not limited to, Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanins, dinitrophenol, and
potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and corynebacterium parvum. Such adjuvants are also well known in the art.
Monoclonal antibodies can be prepared using a wide variety of techniques known in the art including the use of hybridoma, recombinant, and phage display technologies, or a combination thereof. For example, monoclonal antibodies can be produced using hybridoma techniques including those known in the art and taught, for example, in Harlow et al., Antibodies: A Laboratory Manual, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988); Hammerling, et al., in: Monoclonal Antibodies and T-Cell Hybridomas 563-681 (Elsevier, N.Y., 1981) (said references incoφorated by reference in their entireties). The term "monoclonal antibody" as used herein is not limited to antibodies produced through hybridoma technology. The term "monoclonal antibody" refers to an antibody that is derived from a single clone, including any eukaryotic, prokaryotic, or phage clone, and not the method by which it is produced. Methods for producing and screening for specific antibodies using hybridoma technology are routine and well known in the art and are discussed in detail in the Examples (e.g., Example 16). In a non-limiting example, mice can be immunized with a polypeptide ofthe invention or a cell expressing such peptide. Once an immune response is detected, e.g., antibodies specific for the antigen are detected in the mouse serum, the mouse spleen is harvested and splenocytes isolated. The splenocytes are then fused by well known techniques to any suitable myeloma cells, for example cells from cell line SP20 available from the ATCC. Hybridomas are selected and cloned by limited dilution. The hybridoma clones are then assayed by methods known in the art for cells that secrete antibodies capable of binding a polypeptide ofthe invention. Ascites fluid, which generally contains high levels of antibodies, can be generated by immunizing mice with positive hybridoma clones.
Accordingly, the present invention provides methods of generating monoclonal antibodies as well as antibodies produced by the method comprising culturing a hybridoma cell secreting an antibody ofthe invention wherein, preferably, the hybridoma is generated by fusing splenocytes isolated from a mouse immunized with an antigen ofthe invention with myeloma cells and then screening the
hybridomas resulting from the fusion for hybridoma clones that secrete an antibody able to bind a polypeptide ofthe invention.
Antibody fragments which recognize specific epitopes may be generated by known techniques. For example, Fab and F(ab')2 fragments of the invention may be produced by proteolytic cleavage of immunoglobulin molecules, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab')2 fragments). F(ab')2 fragments contain the variable region, the light chain constant region and the CHI domain ofthe heavy chain.
For example, the antibodies ofthe present invention can also be generated using various phage display methods known in the art. In phage display methods, functional antibody domains are displayed on the surface of phage particles which carry the polynucleotide sequences encoding them. In a particular embodiment, such phage can be utilized to display antigen binding domains expressed from a repertoire or combinatorial antibody library (e.g., human or murine). Phage expressing an antigen binding domain that binds the antigen of interest can be selected or identified with antigen, e.g., using labeled antigen or antigen bound or captured to a solid surface or bead. Phage used in these methods are typically filamentous phage including fd and Ml 3 binding domains expressed from phage with Fab, Fv or disulfide stabilized Fv antibody domains recombinantly fused to either the phage gene III or gene VIII protein. Examples of phage display methods that can be used to make the antibodies ofthe present invention include those disclosed in Brinkman et al., J. Immunol. Methods 182:41-50 (1995); Ames et al., J. Immunol. Methods 184:177-186 (1995); Kettleborough et al., Eur. J. Immunol. 24:952-958 (1994); Persic et al., Gene 187 9-18 (1997); Burton et al., Advances in Immunology 57:191-280 (1994); PCT application No. PCT/GB91/01134; PCT publications WO 90/02809; WO 91/10737; WO 92/01047; WO 92/18619; WO 93/11236; WO 95/15982; WO 95/20401; and U.S. Patent Nos. 5,698,426; 5,223,409; 5,403,484; 5,580,717; 5,427,908; 5,750,753; 5,821,047; 5,571,698; 5,427,908; 5,516,637; 5,780,225; 5,658,727; 5,733,743 and 5,969,108; each of which is incoφorated herein by reference in its entirety.
As described in the above references, after phage selection, the antibody coding regions from the phage can be isolated and used to generate whole antibodies,
including human antibodies, or any other desired antigen binding fragment, and expressed in any desired host, including mammalian cells, insect cells, plant cells, yeast, and bacteria, e.g., as described in detail below. For example, techniques to recombinantly produce Fab, Fab' and F(ab')2 fragments can also be employed using methods known in the art such as those disclosed in PCT publication WO 92/22324; Mullinax et al., BioTechniques 12(6):864-869 (1992); and Sawai et al., AJRI 34:26- 34 (1995); and Better et al., Science 240:1041-1043 (1988) (said references incoφorated by reference in their entireties).
Examples of techniques which can be used to produce single-chain Fvs and antibodies include those described in U.S. Patents 4,946,778 and 5,258,498; Huston et al., Methods in Enzymology 203:46-88 (1991); Shu et al., PNAS 90:7995-7999 (1993); and Skerra et al., Science 240:1038-1040 (1988). For some uses, including in vivo use of antibodies in humans and in vitro detection assays, it may be preferable to use chimeric, humanized, or human antibodies. A chimeric antibody is a molecule in which different portions ofthe antibody are derived from different animal species, such as antibodies having a variable region derived from a murine monoclonal antibody and a human immunoglobulin constant region. Methods for producing chimeric antibodies are known in the art. See e.g., Morrison, Science 229:1202 (1985); Oi et al., BioTechniques 4:214 (1986); Gillies et al., (1989) J. Immunol. Methods 125:191-202; U.S. Patent Nos. 5,807,715; 4,816,567; and 4,816397, which are incoφorated herein by reference in their entirety. Humanized antibodies are antibody molecules from non-human species antibody that binds the desired antigen having one or more complementarity determining regions (CDRs) from the non- human species and a framework regions from a human immunoglobulin molecule. Often, framework residues in the human framework regions will be substituted with the corresponding residue from the CDR donor antibody to alter, preferably improve, antigen binding. These framework substitutions are identified by methods well known in the art, e.g., by modeling of the interactions of the CDR and framework residues to identify framework residues important for antigen binding and sequence comparison to identify unusual framework residues at particular positions. (See, e.g., Queen et al., U.S. Patent No. 5,585,089; Riechmann et al., Nature 332:323 (1988), which are incoφorated herein by reference in their entireties.) Antibodies can be
humanized using a variety of techniques known in the art including, for example, CDR-grafting (EP 239,400; PCT publication WO 91/09967; U.S. Patent Nos. 5,225,539; 5,530,101 ; and 5,585,089), veneering or resurfacing (EP 592,106; EP 519,596; Padlan, Molecular Immunology 28(4/5):489-498 (1991); Studnicka et al., Protein Engineering 7(6):805-814 (1994); Roguska. et al., PNAS 91 :969-973 (1994)), and chain shuffling (U.S. Patent No. 5,565,332).
Completely human antibodies are particularly desirable for therapeutic treatment of human patients. Human antibodies can be made by a variety of methods known in the art including phage display methods described above using antibody libraries derived from human immunoglobulin sequences. See also, U.S. Patent Nos. 4,444,887 and 4,716,111; and PCT publications WO 98/46645, WO 98/50433, WO 98/24893, WO 98/16654, WO 96/34096, WO 96/33735, and WO 91/10741; each of which is incoφorated herein by reference in its entirety.
Human antibodies can also be produced using transgenic mice which are incapable of expressing functional endogenous immunoglobulins, but which can express human immunoglobulin genes. For example, the human heavy and light chain immunoglobulin gene complexes may be introduced randomly or by homologous recombination into mouse embryonic stem cells. Alternatively, the human variable region, constant region, and diversity region may be introduced into mouse embryonic stem cells in addition to the human heavy and light chain genes. The mouse heavy and light chain immunoglobulin genes may be rendered nonfunctional separately or simultaneously with the introduction of human immunoglobulin loci by homologous recombination. In particular, homozygous deletion ofthe JH region prevents endogenous antibody production. The modified embryonic stem cells are expanded and microinjected into blastocysts to produce chimeric mice. The chimeric mice are then bred to produce homozygous offspring which express human antibodies. The transgenic mice are immunized in the normal fashion with a selected antigen, e.g., all or a portion of a polypeptide ofthe invention. Monoclonal antibodies directed against the antigen can be obtained from the immunized, transgenic mice using conventional hybridoma technology. The human immunoglobulin transgenes harbored by the transgenic mice rearrange during B cell differentiation, and subsequently undergo class switching and somatic mutation.
Thus, using such a technique, it is possible to produce therapeutically useful IgG, IgA, IgM and IgE antibodies. For an overview ofthis technology for producing human antibodies, see Lonberg and Huszar, Int. Rev. Immunol. 13:65-93 (1995). For a detailed discussion ofthis technology for producing human antibodies and human monoclonal antibodies and protocols for producing such antibodies, see, e.g., PCT publications WO 98/24893; WO 92/01047; WO 96/34096; WO 96/33735; European Patent No. 0 598 877; U.S. Patent Nos. 5,413,923; 5,625,126; 5,633,425; 5,569,825; 5,661,016; 5,545,806; 5,814,318; 5,885,793; 5,916,771; and 5,939,598, which are incoφorated by reference herein in their entirety. In addition, companies such as Abgenix, Inc. (Freemont, CA) and Genpharm (San Jose, CA) can be engaged to provide human antibodies directed against a selected antigen using technology similar to that described above.
Completely human antibodies which recognize a selected epitope can be generated using a technique referred to as "guided selection." In this approach a selected non-human monoclonal antibody, e.g., a mouse antibody, is used to guide the selection of a completely human antibody recognizing the same epitope. (Jespers et al., Bio/technology 12:899-903 (1988)).
Further, antibodies to the polypeptides ofthe invention can, in turn, be utilized to generate anti-idiotype antibodies that "mimic" polypeptides ofthe invention using techniques well known to those skilled in the art. (See, e.g., Greenspan & Bona, FASEB J. 7(5):437-444; (1989) and Nissinoff, J. Immunol. 147(8):2429-2438 (1991)). For example, antibodies which bind to and competitively inhibit polypeptide multimerization and/or binding of a polypeptide of the invention to a ligand can be used to generate anti-idiotypes that "mimic" the polypeptide multimerization and/or binding domain and, as a consequence, bind to and neutralize polypeptide and/or its ligand. Such neutralizing anti-idiotypes or Fab fragments of such anti-idiotypes can be used in therapeutic regimens to neutralize polypeptide ligand. For example, such anti-idiotypic antibodies can be used to bind a polypeptide of the invention and/or to bind its ligands/receptors, and thereby block its biological activity.
Polynucleotides Encoding Antibodies
The invention further provides polynucleotides comprising a nucleotide sequence encoding an antibody of the invention and fragments thereof. The invention also encompasses polynucleotides that hybridize under stringent or lower stringency hybridization conditions, e.g., as defined supra, to polynucleotides that encode an antibody, preferably, that specifically binds to a polypeptide ofthe invention, preferably, an antibody that binds to a polypeptide having the amino acid sequence of SEQ ID NON.
The polynucleotides may be obtained, and the nucleotide sequence of the polynucleotides determined, by any method known in the art. For example, if the nucleotide sequence ofthe antibody is known, a polynucleotide encoding the antibody may be assembled from chemically synthesized oligonucleotides (e.g., as described in Kutmeier et al., BioTechniques 17:242 (1994)), which, briefly, involves the synthesis of overlapping oligonucleotides containing portions ofthe sequence encoding the antibody, annealing and ligating of those oligonucleotides, and then amplification of the ligated oligonucleotides by PCR.
Alternatively, a polynucleotide encoding an antibody may be generated from nucleic acid from a suitable source. If a clone containing a nucleic acid encoding a particular antibody is not available, but the sequence ofthe antibody molecule is known, a nucleic acid encoding the immunoglobulin may be chemically synthesized or obtained from a suitable source (e.g., an antibody cDΝA library, or a cDΝA library generated from, or nucleic acid, preferably poly A+ RΝA, isolated from, any tissue or cells expressing the antibody, such as hybridoma cells selected to express an antibody ofthe invention) by PCR amplification using synthetic primers hybridizable to the 3' and 5' ends ofthe sequence or by cloning using an oligonucleotide probe specific for the particular gene sequence to identify, e.g., a cDΝA clone from a cDΝA library that encodes the antibody. Amplified nucleic acids generated by PCR may then be cloned into replicable cloning vectors using any method well known in the art.
Once the nucleotide sequence and corresponding amino acid sequence ofthe antibody is determined, the nucleotide sequence of the antibody may be manipulated using methods well known in the art for the manipulation of nucleotide sequences, e.g., recombinant DΝA techniques, site directed mutagenesis, PCR, etc. (see, for
example, the techniques described in Sambrook et al., 1990, Molecular Cloning, A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY and Ausubel et al., eds., 1998, Current Protocols in Molecular Biology, John Wiley & Sons, NY, which are both incoφorated by reference herein in their entireties ), to generate antibodies having a different amino acid sequence, for example to create amino acid substitutions, deletions, and/or insertions.
In a specific embodiment, the amino acid sequence ofthe heavy and/or light chain variable domains may be inspected to identify the sequences ofthe complementarity determining regions (CDRs) by methods that are well know in the art, e.g., by comparison to known amino acid sequences of other heavy and light chain variable regions to determine the regions of sequence hypervariability. Using routine recombinant DNA techniques, one or more of the CDRs may be inserted within framework regions, e.g., into human framework regions to humanize a non- human antibody, as described supra. The framework regions may be naturally occurring or consensus framework regions, and preferably human framework regions (see, e.g., Chothia et al., J. Mol. Biol. 278: 457-479 (1998) for a listing of human framework regions). Preferably, the polynucleotide generated by the combination of the framework regions and CDRs encodes an antibody that specifically binds a polypeptide ofthe invention. Preferably, as discussed supra, one or more amino acid substitutions may be made within the framework regions, and, preferably, the amino acid substitutions improve binding ofthe antibody to its antigen. Additionally, such methods may be used to make amino acid substitutions or deletions of one or more variable region cysteine residues participating in an intrachain disulfide bond to generate antibody molecules lacking one or more intrachain disulfide bonds. Other alterations to the polynucleotide are encompassed by the present invention and within the skill ofthe art.
In addition, techniques developed for the production of "chimeric antibodies" (Morrison et al., Proc. Natl. Acad. Sci. 81 :851-855 (1984); Neuberger et al., Nature 312:604-608 (1984); Takeda et al., Nature 314:452-454 (1985)) by splicing genes from a mouse antibody molecule of appropriate antigen specificity together with genes from a human antibody molecule of appropriate biological activity can be used. As described supra, a chimeric antibody is a molecule in which different portions are
derived from different animal species, such as those having a variable region derived from a murine mAb and a human immunoglobulin constant region, e.g., humanized antibodies.
Alternatively, techniques described for the production of single chain antibodies (U.S. Patent No. 4,946,778; Bird, Science 242:423- 42 (1988); Huston et al., Proc. Natl. Acad. Sci. USA 85:5879-5883 (1988); and Ward et al., Nature 334:544-54 (1989)) can be adapted to produce single chain antibodies. Single chain antibodies are formed by linking the heavy and light chain fragments ofthe Fv region via an amino acid bridge, resulting in a single chain polypeptide. Techniques for the assembly of functional Fv fragments in E. coli may also be used (Skerra et al., Science 242: 1038- 1041 (1988)).
Methods of Producing Antibodies
The antibodies of the invention can be produced by any method known in the art for the synthesis of antibodies, in particular, by chemical synthesis or preferably, by recombinant expression techniques.
Recombinant expression of an antibody ofthe invention, or fragment, derivative or analog thereof, (e.g., a heavy or light chain of an antibody ofthe invention or a single chain antibody ofthe invention), requires construction of an expression vector containing a polynucleotide that encodes the antibody. Once a polynucleotide encoding an antibody molecule or a heavy or light chain of an antibody, or portion thereof (preferably containing the heavy or light chain variable domain), ofthe invention has been obtained, the vector for the production ofthe antibody molecule may be produced by recombinant DNA technology using techniques well known in the art. Thus, methods for preparing a protein by expressing a polynucleotide containing an antibody encoding nucleotide sequence are described herein. Methods which are well known to those skilled in the art can be used to construct expression vectors containing antibody coding sequences and appropriate transcriptional and translational control signals. These methods include, for example, in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. The invention, thus, provides replicable vectors comprising a nucleotide sequence encoding an antibody molecule ofthe invention, or a heavy or
light chain thereof, or a heavy or light chain variable domain, operably linked to a promoter. Such vectors may include the nucleotide sequence encoding the constant region of the antibody molecule (see, e.g., PCT Publication WO 86/05807; PCT Publication WO 89/01036; and U.S. Patent No. 5,122,464) and the variable domain of the antibody may be cloned into such a vector for expression of the entire heavy or light chain.
The expression vector is transferred to a host cell by conventional techniques and the transfected cells are then cultured by conventional techniques to produce an antibody of the invention. Thus, the invention includes host cells containing a polynucleotide encoding an antibody ofthe invention, or a heavy or light chain thereof, or a single chain antibody ofthe invention, operably linked to a heterologous promoter. In preferred embodiments for the expression of double-chained antibodies, vectors encoding both the heavy and light chains may be co-expressed in the host cell for expression ofthe entire immunoglobulin molecule, as detailed below. A variety of host-expression vector systems may be utilized to express the antibody molecules ofthe invention. Such host-expression systems represent vehicles by which the coding sequences of interest may be produced and subsequently purified, but also represent cells which may, when transformed or transfected with the appropriate nucleotide coding sequences, express an antibody molecule ofthe invention in situ. These include but are not limited to microorganisms such as bacteria (e.g., E. coli, B. subtilis) transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing antibody coding sequences; yeast (e.g., Saccharomyces, Pichia) transformed with recombinant yeast expression vectors containing antibody coding sequences; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing antibody coding sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing antibody coding sequences; or mammalian cell systems (e.g., COS, CHO, BHK, 293, 3T3 cells) harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the
vaccinia virus 7.5K promoter). Preferably, bacterial cells such as Escherichia coli, and more preferably, eukaryotic cells, especially for the expression of whole recombinant antibody molecule, are used for the expression of a recombinant antibody molecule. For example, mammalian cells such as Chinese hamster ovary cells (CHO), in conjunction with a vector such as the major intermediate early gene promoter element from human cytomegalovirus is an effective expression system for antibodies (Foecking et al., Gene 45:101 (1986); Cockett et al., Bio/Technology 8:2 (1990)).
In bacterial systems, a number of expression vectors may be advantageously selected depending upon the use intended for the antibody molecule being expressed. For example, when a large quantity of such a protein is to be produced, for the generation of pharmaceutical compositions of an antibody molecule, vectors which direct the expression of high levels of fusion protein products that are readily purified may be desirable. Such vectors include, but are not limited, to the E. coli expression vector pUR278 (Ruther et al., EMBO J. 2:1791 (1983)), in which the antibody coding sequence may be ligated individually into the vector in frame with the lac Z coding region so that a fusion protein is produced; pIN vectors (Inouye & Inouye, Nucleic Acids Res. 13:3101-3109 (1985); Van Heeke & Schuster, J. Biol. Chem. 24:5503- 5509 (1989)); and the like. pGEX vectors may also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsoφtion and binding to matrix glutathione-agarose beads followed by elution in the presence of free glutathione. The pGEX vectors are designed to include thrombin or factor Xa protease cleavage sites so that the cloned target gene product can be released from the GST moiety.
In an insect system, Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes. The virus grows in Spodoptera frugiperda cells. The antibody coding sequence may be cloned individually into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter).
In mammalian host cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, the antibody coding sequence of interest may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene may then be inserted in the adenovirus genome by in vitro or in vivo recombination. Insertion in a non- essential region ofthe viral genome (e.g., region El or E3) will result in a recombinant virus that is viable and capable of expressing the antibody molecule in infected hosts, (e.g., see Logan & Shenk, Proc. Natl. Acad. Sci. USA 81 :355-359 (1984)). Specific initiation signals may also be required for efficient translation of inserted antibody coding sequences. These signals include the ATG initiation codon and adjacent sequences. Furthermore, the initiation codon must be in phase with the reading frame ofthe desired coding sequence to ensure translation ofthe entire insert. These exogenous translational control signals and initiation codons can be of a variety of origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements, transcription terminators, etc. (see Bittner et al., Methods in Enzymol. 153:51-544 (1987)).
In addition, a host cell strain may be chosen which modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products may be important for the function of the protein. Different host cells have characteristic and specific mechanisms for the post- translational processing and modification of proteins and gene products. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing ofthe foreign protein expressed. To this end, eukaryotic host cells which possess the cellular machinery for proper processing ofthe primary transcript, glycosylation, and phosphorylation ofthe gene product may be used. Such mammalian host cells include but are not limited to CHO, VERY, BHK, Hela, COS, MDCK, 293, 3T3, WI38, and in particular, breast cancer cell lines such as, for example, BT483, Hs578T, HTB2, BT20 and T47D, and normal mammary gland cell line such as, for example, CRL7030 and Hs578Bst.
For long-term, high- yield production of recombinant proteins, stable expression is preferred. For example, cell lines which stably express the antibody molecule may be engineered. Rather than using expression vectors which contain viral origins of replication, host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction ofthe foreign DNA, engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines. This method may advantageously be used to engineer cell lines which express the antibody molecule. Such engineered cell lines may be particularly useful in screening and evaluation of compounds that interact directly or indirectly with the antibody molecule. A number of selection systems may be used, including but not limited to the heφes simplex virus thymidine kinase (Wigler et al., Cell 11 :223 (1977)), hypoxanthine-guanine phosphoribosyltransferase (Szybalska & Szybalski, Proc. Natl. Acad. Sci. USA 48:202 (1992)), and adenine phosphoribosyltransferase (Lowy et al., Cell 22:817 (1980)) genes can be employed in tk-, hgprt- or aprt- cells, respectively. Also, antimetabohte resistance can be used as the basis of selection for the following genes: dhfr, which confers resistance to methotrexate (Wigler et al., Natl. Acad. Sci. USA 77:357 (1980); O'Hare et al., Proc. Natl. Acad. Sci. USA 78:1527 (1981)); gpt, which confers resistance to mycophenolic acid (Mulligan & Berg, Proc. Natl. Acad. Sci. USA 78:2072 (1981)); neo, which confers resistance to the amino glycoside G- 418 Clinical Pharmacy 12:488-505; Wu and Wu, Biotherapy 3:87-95 (1991);
Tolstoshev, Ann. Rev. Pharmacol. Toxicol. 32:573-596 (1993); Mulligan, Science 260:926-932 (1993); and Morgan and Anderson, Ann. Rev. Biochem. 62:191-217 (1993); May, 1993, TIB TECH 11(5):155-215); and hygro, which confers resistance to hygromycin (Santerre et al., Gene 30:147 (1984)). Methods commonly known in the art of recombinant DNA technology may be routinely applied to select the desired recombinant clone, and such methods are described, for example, in Ausubel et al. (eds.), Current Protocols in Molecular Biology, John Wiley & Sons, NY (1993);
Kriegler, Gene Transfer and Expression, A Laboratory Manual, Stockton Press, NY (1990); and in Chapters 12 and 13, Dracopoli et al. (eds), Current Protocols in Human Genetics, John Wiley & Sons, NY (1994); Colberre-Garapin et al., J. Mol. Biol. 150:1 (1981), which are incoφorated by reference herein in their entireties. The expression levels of an antibody molecule can be increased by vector amplification (for a review, see Bebbington and Hentschel, The use of vectors based on gene amplification for the expression of cloned genes in mammalian cells in DNA cloning, Vol.3. (Academic Press, New York, 1987)). When a marker in the vector system expressing antibody is amplifiable, increase in the level of inhibitor present in culture of host cell will increase the number of copies ofthe marker gene. Since the amplified region is associated with the antibody gene, production ofthe antibody will also increase (Crouse et al., Mol. Cell. Biol. 3:257 (1983)).
The host cell may be co-transfected with two expression vectors ofthe invention, the first vector encoding a heavy chain derived polypeptide and the second vector encoding a light chain derived polypeptide. The two vectors may contain identical selectable markers which enable equal expression of heavy and light chain polypeptides. Alternatively, a single vector may be used which encodes, and is capable of expressing, both heavy and light chain polypeptides. In such situations, the light chain should be placed before the heavy chain to avoid an excess of toxic free heavy chain (Proudfoot, Nature 322:52 (1986); Kohler, Proc. Natl. Acad. Sci. USA 77:2197 (1980)). The coding sequences for the heavy and light chains may comprise cDNA or genomic DNA.
Once an antibody molecule ofthe invention has been produced by an animal, chemically synthesized, or recombinantly expressed, it may be purified by any method known in the art for purification of an immunoglobulin molecule, for example, by chromatography (e.g., ion exchange, affinity, particularly by affinity for the specific antigen after Protein A, and sizing column chromatography), centrifugation, differential solubility, or by any other standard technique for the purification of proteins. In addition, the antibodies ofthe present invention or fragments thereof can be fused to heterologous polypeptide sequences described herein or otherwise known in the art, to facilitate purification.
The present invention encompasses antibodies recombinantly fused or chemically conjugated (including both covalently and non-covalently conjugations) to a polypeptide (or portion thereof, preferably at least 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 amino acids ofthe polypeptide) ofthe present invention to generate fusion proteins. The fusion does not necessarily need to be direct, but may occur through linker sequences. The antibodies may be specific for antigens other than polypeptides (or portion thereof, preferably at least 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 amino acids ofthe polypeptide) ofthe present invention. For example, antibodies may be used to target the polypeptides ofthe present invention to particular cell types, either in vitro or in vivo, by fusing or conjugating the polypeptides of the present invention to antibodies specific for particular cell surface receptors. Antibodies fused or conjugated to the polypeptides ofthe present invention may also be used in in vitro immunoassays and purification methods using methods known in the art. See e.g., Harbor et al., supra, and PCT publication WO 93/21232; EP 439,095; Naramura et al., Immunol. Lett. 39:91-99 (1994); U.S. Patent 5,474,981; Gillies et al., PNAS 89:1428-1432 (1992); Fell et al., J. Immunol. 146:2446-2452(1991), which are incoφorated by reference in their entireties.
The present invention further includes compositions comprising the polypeptides ofthe present invention fused or conjugated to antibody domains other than the variable regions. For example, the polypeptides ofthe present invention may be fused or conjugated to an antibody Fc region, or portion thereof. The antibody portion fused to a polypeptide of the present invention may comprise the constant region, hinge region, CHI domain, CH2 domain, and CH3 domain or any combination of whole domains or portions thereof. The polypeptides may also be fused or conjugated to the above antibody portions to form multimers. For example, Fc portions fused to the polypeptides ofthe present invention can form dimers through disulfide bonding between the Fc portions. Higher multimeric forms can be made by fusing the polypeptides to portions of IgA and IgM. Methods for fusing or conjugating the polypeptides ofthe present invention to antibody portions are known in the art. See, e.g., U.S. Patent Nos. 5,336,603; 5,622,929; 5,359,046; 5,349,053;
5,447,851 ; 5,112,946; EP 307,434; EP 367,166; PCT publications WO 96/04388; WO 91/06570; Ashkenazi et al., Proc. Natl. Acad. Sci. USA 88: 10535-10539 (1991);
Zheng et al., J. Immunol. 154:5590-5600 (1995); and Vil et al., Proc. Natl. Acad. Sci. USA 89:11337- 11341(1992) (said references incoφorated by reference in their entireties).
As discussed, supra, the polypeptides corresponding to a polypeptide, polypeptide fragment, or a variant of SEQ ID NO: Y may be fused or conjugated to the above antibody portions to increase the in vivo half life ofthe polypeptides or for use in immunoassays using methods known in the art. Further, the polypeptides corresponding to SEQ ID NO:Y may be fused or conjugated to the above antibody portions to facilitate purification. One reported example describes chimeric proteins consisting ofthe first two domains ofthe human CD4-polypeptide and various domains ofthe constant regions ofthe heavy or light chains of mammalian immunoglobulins. (EP 394,827; Traunecker et al., Nature 331 :84-86 (1988). The polypeptides of the present invention fused or conjugated to an antibody having disulfide- linked dimeric structures (due to the IgG) may also be more efficient in binding and neutralizing other molecules, than the monomeric secreted protein or protein fragment alone. (Fountoulakis et al., J. Biochem. 270:3958-3964 (1995)). In many cases, the Fc part in a fusion protein is beneficial in therapy and diagnosis, and thus can result in, for example, improved pharmacokinetic properties. (EP A 232,262). Alternatively, deleting the Fc part after the fusion protein has been expressed, detected, and purified, would be desired. For example, the Fc portion may hinder therapy and diagnosis if the fusion protein is used as an antigen for immunizations. In drug discovery, for example, human proteins, such as hIL-5, have been fused with Fc portions for the puφose of high-throughput screening assays to identify antagonists of hIL-5. (See, Bennett et al., J. Molecular Recognition 8:52-58 (1995); Johanson et al., J. Biol. Chem. 270:9459-9471 (1995).
Moreover, the antibodies or fragments thereof of the present invention can be fused to marker sequences, such as a peptide to facilitate purification. In preferred embodiments, the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311), among others, many of which are commercially available. As described in Gentz et al., Proc. Natl. Acad. Sci. USA 86:821-824 (1989), for instance, hexa- histidine provides for convenient purification ofthe fusion protein. Other peptide tags
useful for purification include, but are not limited to, the "HA" tag, which corresponds to an epitope derived from the influenza hemagglutinin protein (Wilson et al., Cell 37:767 (1984)) and the "flag" tag.
The present invention further encompasses antibodies or fragments thereof conjugated to a diagnostic or therapeutic agent. The antibodies can be used diagnostically to, for example, monitor the development or progression of a tumor as part of a clinical testing procedure to, e.g., determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, radioactive materials, positron emitting metals using various positron emission tomographies, and nonradioactive paramagnetic metal ions. The detectable substance may be coupled or conjugated either directly to the antibody (or fragment thereof) or indirectly, through an intermediate (such as, for example, a linker known in the art) using techniques known in the art. See, for example, U.S. Patent No.
4,741,900 for metal ions which can be conjugated to antibodies for use as diagnostics according to the present invention. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin; and examples of suitable radioactive material include 1251, 1311, 11 Hn or 99Tc.
Further, an antibody or fragment thereof may be conjugated to a therapeutic moiety such as a cytotoxin, e.g., a cytostatic or cytocidal agent, a therapeutic agent or a radioactive metal ion, e.g., alpha-emitters such as, for example, 213Bi. A cytotoxin or cytotoxic agent includes any agent that is detrimental to cells. Examples include paclitaxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1 -
dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof. Therapeutic agents include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, melphalan, carmustine (BSNU) and lomustine (CCNU), cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis- dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g., vincristine and vinblastine).
The conjugates ofthe invention can be used for modifying a given biological response, the therapeutic agent or drug moiety is not to be construed as limited to classical chemical therapeutic agents. For example, the drug moiety may be a protein or polypeptide possessing a desired biological activity. Such proteins may include, for example, a toxin such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a protein such as tumor necrosis factor, a-interferon, β-interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator, an apoptotic agent, e.g., TNF-alpha, TNF-beta, AIM I (See, International Publication No. WO 97/33899), AIM II (See, International Publication No. WO 97/34911), Fas Ligand (Takahashi et al, Int. Immunol, 6:1567-1574 (1994)), VEGI (See, International
Publication No. WO 99/23105), a thrombotic agent or an anti- angiogenic agent, e.g., angiostatin or endostatin; or, biological response modifiers such as, for example, lymphokines, interleukin-1 ("IL-1"), interleukin-2 ("IL-2"), interleukin-6 ("IL-6"), granulocyte macrophage colony stimulating factor ("GM-CSF"), granulocyte colony stimulating factor ("G-CSF"), or other growth factors.
Antibodies may also be attached to solid supports, which are particularly useful for immunoassays or purification ofthe target antigen. Such solid supports include, but are not limited to, glass, cellulose, polyacrylamide, nylon, polystyrene, polyvinyl chloride or polypropylene. Techniques for conjugating such therapeutic moiety to antibodies are well known, see, e.g., Amon et al., "Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy", in Monoclonal Antibodies And Cancer Therapy, Reisfeld
et al. (eds.), pp. 243-56 (Alan R. Liss, Inc. 1985); Hellstrom et al., "Antibodies For Drug Delivery", in Controlled Drug Delivery (2nd Ed.), Robinson et al. (eds.), pp. 623-53 (Marcel Dekker, Inc. 1987); Thoφe, "Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review", in Monoclonal Antibodies '84: Biological And Clinical Applications, Pinchera et al. (eds.), pp. 475-506 (1985); "Analysis, Results, And Future Prospective Of The Therapeutic Use Of Radiolabeled Antibody In Cancer Therapy", in Monoclonal Antibodies For Cancer Detection And Therapy, ^ Baldwin et al. (eds.), pp. 303-16 (Academic Press 1985), and Thoφe et al., "The Preparation And Cytotoxic Properties Of Antibody-Toxin Conjugates", Immunol. Rev. 62:119-58 (1982).
Alternatively, an antibody can be conjugated to a second antibody to form an antibody heteroconjugate as described by Segal in U.S. Patent No. 4,676,980, which is incoφorated herein by reference in its entirety.
An antibody, with or without a therapeutic moiety conjugated to it, administered alone or in combination with cytotoxic factor(s) and/or cytokine(s) can be used as a therapeutic.
Immunophenotyping
The antibodies ofthe invention may be utilized for immunophenotyping of cell lines and biological samples. The translation product of the gene of the present invention may be useful as a cell specific marker, or more specifically as a cellular marker that is differentially expressed at various stages of differentiation and/or maturation of particular cell types. Monoclonal antibodies directed against a specific epitope, or combination of epitopes, will allow for the screening of cellular populations expressing the marker. Various techniques can be utilized using monoclonal antibodies to screen for cellular populations expressing the marker(s), and include magnetic separation using antibody-coated magnetic beads, "panning" with antibody attached to a solid matrix (i.e., plate), and flow cytometry (See, e.g., U.S. Patent 5,985,660; and Morrison et al., Cell, 96:737-49 (1999)). These techniques allow for the screening of particular populations of cells, such as might be found with hematological malignancies (i.e. minimal residual disease (MRD) in acute leukemic patients) and "non-self cells in transplantations to
prevent Graft-versus-Host Disease (GVHD). Alternatively, these techniques allow for the screening of hematopoietic stem and progenitor cells capable of undergoing proliferation and/or differentiation, as might be found in human umbilical cord blood.
Assays For Antibody Binding
The antibodies ofthe invention may be assayed for immunospecific binding - by any method known in the art. The immunoassays which can be used include but are not limited to competitive and non-competitive assay systems using techniques such as western blots, radioimmunoassays, ELISA (enzyme linked immunosorbent assay), "sandwich" immunoassays, immunoprecipitation assays, precipitin reactions, gel diffusion precipitin reactions, immunodiffusion assays, agglutination assays, complement-fixation assays, immunoradiometric assays, fluorescent immunoassays, protein A immunoassays, to name but a few. Such assays are routine and well known in the art (see, e.g., Ausubel et al, eds, 1994, Current Protocols in Molecular Biology, Vol. 1, John Wiley & Sons, Inc., New York, which is incoφorated by reference herein in its entirety). Exemplary immunoassays are described briefly below (but are not intended by way of limitation).
Immunoprecipitation protocols generally comprise lysing a population of cells in a lysis buffer such as RIP A buffer (1% NP-40 or Triton X- 100, 1% sodium deoxycholate, 0.1 % SDS, 0.15 M NaCl, 0.01 M sodium phosphate at pH 7.2, 1 % Trasylol) supplemented with protein phosphatase and/or protease inhibitors (e.g., EDTA, PMSF, aprotinin, sodium vanadate), adding the antibody of interest to the cell lysate, incubating for a period of time (e.g., 1-4 hours) at 4° C, adding protein A and/or protein G sepharose beads to the cell lysate, incubating for about an hour or more at 4° C, washing the beads in lysis buffer and resuspending the beads in
SDS/sample buffer. The ability ofthe antibody of interest to immunoprecipitate a particular antigen can be assessed by, e.g., western blot analysis. One of skill in the art would be knowledgeable as to the parameters that can be modified to increase the binding of the antibody to an antigen and decrease the background (e.g., pre-clearing the cell lysate with sepharose beads). For further discussion regarding immunoprecipitation protocols see, e.g., Ausubel et al, eds, 1994, Current Protocols in Molecular Biology, Vol. 1, John Wiley & Sons, Inc., New York at 10.16.1.
Western blot analysis generally comprises preparing protein samples, elecfrophoresis ofthe protein samples in a polyacrylamide gel (e.g., 8%- 20% SDS- PAGE depending on the molecular weight ofthe antigen), transferring the protein sample from the polyacrylamide gel to a membrane such as nitrocellulose, PVDF or nylon, blocking the membrane in blocking solution (e.g., PBS with 3% BSA or nonfat milk), washing the membrane in washing buffer (e.g., PBS-Tween 20), blocking the membrane with primary antibody (the antibody of interest) diluted in blocking buffer, washing the membrane in washing buffer, blocking the membrane with a secondary antibody (which recognizes the primary antibody, e.g., an anti-human antibody) conjugated to an enzymatic substrate (e.g., horseradish peroxidase or alkaline phosphatase) or radioactive molecule (e.g., 32P or 1251) diluted in blocking buffer, washing the membrane in wash buffer, and detecting the presence ofthe antigen. One of skill in the art would be knowledgeable as to the parameters that can be modified to increase the signal detected and to reduce the background noise. For further discussion regarding western blot protocols see, e.g., Ausubel et al, eds, 1994, Current Protocols in Molecular Biology, Vol. 1, John Wiley & Sons, Inc., New York at 10.8.1.
ELISAs comprise preparing antigen, coating the well of a 96 well microtiter plate with the antigen, adding the antibody of interest conjugated to a detectable compound such as an enzymatic substrate (e.g., horseradish peroxidase or alkaline phosphatase) to the well and incubating for a period of time, and detecting the presence ofthe antigen. In ELISAs the antibody of interest does not have to be conjugated to a detectable compound; instead, a second antibody (which recognizes the antibody of interest) conjugated to a detectable compound may be added to the well. Further, instead of coating the well with the antigen, the antibody may be coated to the well. In this case, a second antibody conjugated to a detectable compound may be added following the addition ofthe antigen of interest to the coated well. One of skill in the art would be knowledgeable as to the parameters that can be modified to increase the signal detected as well as other variations of ELISAs known in the art. For further discussion regarding ELISAs see, e.g., Ausubel et al, eds, 1994, Current Protocols in Molecular Biology, Vol. 1, John Wiley & Sons, Inc., New York at 11.2.1.
The binding affinity of an antibody to an antigen and the off-rate of an antibody-antigen interaction can be determined by competitive binding assays. One example of a competitive binding assay is a radioimmunoassay comprising the incubation of labeled antigen (e.g., 3H or 1251) with the antibody of interest in the presence of increasing amounts of unlabeled antigen, and the detection ofthe antibody bound to the labeled antigen. The affinity ofthe antibody of interest for a particular antigen and the binding off-rates can be determined from the data by scatchard plot analysis. Competition with a second antibody can also be determined using radioimmunoassays. In this case, the antigen is incubated with antibody of interest conjugated to a labeled compound (e.g., 3H or 1251) in the presence of increasing amounts of an unlabeled second antibody.
Therapeutic Uses
The present invention is further directed to antibody-based therapies which involve administering antibodies ofthe invention to an animal, preferably a mammal, and most preferably a human, patient for treating one or more ofthe disclosed diseases, disorders, or conditions. Therapeutic compounds of the invention include, but are not limited to, antibodies ofthe invention (including fragments, analogs and derivatives thereof as described herein) and nucleic acids encoding antibodies ofthe invention (including fragments, analogs and derivatives thereof and anti-idiotypic antibodies as described herein). The antibodies ofthe invention can be used to treat, inhibit or prevent diseases, disorders or conditions associated with aberrant expression and/or activity of a polypeptide ofthe invention, including, but not limited to, any one or more ofthe diseases, disorders, or conditions described herein. The treatment and/or prevention of diseases, disorders, or conditions associated with aberrant expression and/or activity of a polypeptide ofthe invention includes, but is not limited to, alleviating symptoms associated with those diseases, disorders or conditions. Antibodies of the invention may be provided in pharmaceutically acceptable compositions as known in the art or as described herein. A summary ofthe ways in which the antibodies ofthe present invention may be used therapeutically includes binding polynucleotides or polypeptides ofthe present invention locally or systemically in the body or by direct cytotoxicity ofthe
antibody, e.g. as mediated by complement (CDC) or by effector cells (ADCC). Some of these approaches are described in more detail below. Armed with the teachings provided herein, one of ordinary skill in the art will know how to use the antibodies of the present invention for diagnostic, monitoring or therapeutic puφoses without undue experimentation.
The antibodies ofthis invention may be advantageously utilized in combination with other monoclonal or chimeric antibodies, or with lymphokines or hematopoietic growth factors (such as, e.g., IL-2, IL-3 and IL-7), for example, which serve to increase the number or activity of effector cells which interact with the antibodies.
The antibodies ofthe invention may be administered alone or in combination with other types of treatments (e.g., radiation therapy, chemotherapy, hormonal therapy, immunotherapy and anti-tumor agents). Generally, administration of products of a species origin or species reactivity (in the case of antibodies) that is the same species as that ofthe patient is preferred. Thus, in a preferred embodiment, human antibodies, fragments derivatives, analogs, or nucleic acids, are administered to a human patient for therapy or prophylaxis.
It is preferred to use high affinity and/or potent in vivo inhibiting and/or neutralizing antibodies against polypeptides or polynucleotides of the present invention, fragments or regions thereof, for both immunoassays directed to and therapy of disorders related to polynucleotides or polypeptides, including fragments thereof, ofthe present invention. Such antibodies, fragments, or regions, will preferably have an affinity for polynucleotides or polypeptides of the invention, including fragments thereof. Preferred binding affinities include those with a dissociation constant or Kd less than 5 X 10"2 M, 10"2 M, 5 X 10"3 M, 10"3 M, 5 X 10" 4 M, 10"4 M, 5 X 10"5 M, 10"5 M, 5 X 10"6 M, 10"6 M, 5 X 10"7 M, 10"7 M, 5 X 10"8 M, 10"8 M, 5 X 10"9 M, lO-9 M, 5 X 10"10 M, 10"10 M, 5 X 10"11 M, 10"" M, 5 X 10"12 M, 10"12 M, 5 X 10"13 M, 10" 13 M, 5 X 10'14 M, 10"14 M, 5 X 10"15 M, and 10"15 M.
Gene Therapy
In a specific embodiment, nucleic acids comprising sequences encoding antibodies or functional derivatives thereof, are administered to treat, inhibit or
prevent a disease or disorder associated with aberrant expression and/or activity of a polypeptide ofthe invention, by way of gene therapy. Gene therapy refers to therapy performed by the administration to a subject of an expressed or expressible nucleic acid. In this embodiment ofthe invention, the nucleic acids produce their encoded protein that mediates a therapeutic effect.
Any ofthe methods for gene therapy available in the art can be used according to the present invention. Exemplary methods are described below.
For general reviews ofthe methods of gene therapy, see Goldspiel et al., Clinical Pharmacy 12:488-505 (1993); Wu and Wu, Biotherapy 3:87-95 (1991); Tolstoshev, Ann. Rev. Pharmacol. Toxicol. 32:573-596 (1993); Mulligan, Science 260:926-932 (1993); and Morgan and Anderson, Ann. Rev. Biochem. 62:191-217 (1993); May, TTBTECH 11(5):155-215 (1993). Methods commonly known in the art of recombinant DNA technology which can be used are described in Ausubel et al. (eds.), Current Protocols in Molecular Biology, John Wiley & Sons, NY (1993); and Kriegler, Gene Transfer and Expression, A Laboratory Manual, Stockton Press, NY (1990).
In a preferred aspect, the compound comprises nucleic acid sequences encoding an antibody, said nucleic acid sequences being part of expression vectors that express the antibody or fragments or chimeric proteins or heavy or light chains thereof in a suitable host. In particular, such nucleic acid sequences have promoters operably linked to the antibody coding region, said promoter being inducible or constitutive, and, optionally, tissue- specific. In another particular embodiment, nucleic acid molecules are used in which the antibody coding sequences and any other desired sequences are flanked by regions that promote homologous recombination at a desired site in the genome, thus providing for intrachromosomal expression ofthe antibody encoding nucleic acids (Koller and Smithies, Proc. Natl. Acad. Sci. USA 86:8932-8935 (1989); Zijlstra et al., Nature 342:435-438 (1989). In specific embodiments, the expressed antibody molecule is a single chain antibody; alternatively, the nucleic acid sequences include sequences encoding both the heavy and light chains, or fragments thereof, ofthe antibody.
Delivery ofthe nucleic acids into a patient may be either direct, in which case the patient is directly exposed to the nucleic acid or nucleic acid- carrying vectors, or
indirect, in which case, cells are first transformed with the nucleic acids in vitro, then transplanted into the patient. These two approaches are known, respectively, as in vivo or ex vivo gene therapy.
In a specific embodiment, the nucleic acid sequences are directly administered in vivo, where it is expressed to produce the encoded product. This can be accomplished by any of numerous methods known in the art, e.g., by constructing them as part of an appropriate nucleic acid expression vector and administering it so that they become intracellular, e.g., by infection using defective or attenuated retrovirals or other viral vectors (see U.S. Patent No. 4,980,286), or by direct injection of naked DNA, or by use of microparticle bombardment (e.g., a gene gun; Biolistic, Dupont), or coating with lipids or cell-surface receptors or transfecting agents, encapsulation in liposomes, microparticles, or microcapsules, or by administering them in linkage to a peptide which is known to enter the nucleus, by administering it in linkage to a ligand subject to receptor-mediated endocytosis (see, e.g., Wu and Wu, J. Biol. Chem. 262:4429-4432 (1987)) (which can be used to target cell types specifically expressing the receptors), etc. In another embodiment, nucleic acid-ligand complexes can be formed in which the ligand comprises a fusogenic viral peptide to disrupt endosomes, allowing the nucleic acid to avoid lysosomal degradation. In yet another embodiment, the nucleic acid can be targeted in vivo for cell specific uptake and expression, by targeting a specific receptor (see, e.g., PCT Publications WO 92/06180; WO 92/22635; WO92/20316; WO93/14188, WO 93/20221). Alternatively, the nucleic acid can be introduced intracellularly and incoφorated within host cell DNA for expression, by homologous recombination (Koller and Smithies, Proc. Natl. Acad. Sci. USA 86:8932-8935 (1989); Zijlstra et al., Nature 342:435-438 (1989)).
In a specific embodiment, viral vectors that contains nucleic acid sequences encoding an antibody ofthe invention are used. For example, a retroviral vector can be used (see Miller et al., Meth. Enzymol. 217:581-599 (1993)). These retroviral vectors contain the components necessary for the correct packaging ofthe viral genome and integration into the host cell DNA. The nucleic acid sequences encoding the antibody to be used in gene therapy are cloned into one or more vectors, which facilitates delivery ofthe gene into a patient. More detail about retroviral vectors can
be found in Boesen et al., Biotherapy 6:291-302 (1994), which describes the use of a retroviral vector to deliver the mdrl gene to hematopoietic stem cells in order to make the stem cells more resistant to chemotherapy. Other references illustrating the use of retroviral vectors in gene therapy are: Clowes et al., J. Clin. Invest. 93:644- 651 (1994); Kiem et al., Blood 83:1467-1473 (1994); Salmons and Gunzberg, Human Gene Therapy 4:129-141 (1993); and Grossman and Wilson, Curr. Opin. in Genetics and Devel. 3:110-114 (1993).
Adenoviruses are other viral vectors that can be used in gene therapy. Adenoviruses are especially attractive vehicles for delivering genes to respiratory epithelia. Adenoviruses naturally infect respiratory epithelia where they cause a mild disease. Other targets for adenovirus-based delivery systems are liver, the central nervous system, endothelial cells, and muscle. Adenoviruses have the advantage of being capable of infecting non-dividing cells. Kozarsky and Wilson, Current Opinion in Genetics and Development 3:499-503 (1993) present a review of adenovirus-based gene therapy. Bout et al., Human Gene Therapy 5:3-10 (1994) demonstrated the use of adenovirus vectors to transfer genes to the respiratory epithelia of rhesus monkeys. Other instances ofthe use of adenoviruses in gene therapy can be found in Rosenfeld et al., Science 252:431-434 (1991); Rosenfeld et al., Cell 68:143- 155 (1992); Mastrangeli et al., J. Clin. Invest. 91 :225-234 (1993); PCT Publication WO94/12649; and Wang, et al., Gene Therapy 2:775-783 (1995). In a preferred embodiment, adenovirus vectors are used.
Adeno-associated virus (AAV) has also been proposed for use in gene therapy (Walsh et al., Proc. Soc. Exp. Biol. Med. 204:289-300 (1993); U.S. Patent No. 5,436,146). Another approach to gene therapy involves transferring a gene to cells in tissue culture by such methods as electroporation, lipofection, calcium phosphate mediated transfection, or viral infection. Usually, the method of transfer includes the transfer of a selectable marker to the cells. The cells are then placed under selection to isolate those cells that have taken up and are expressing the transferred gene. Those cells are then delivered to a patient.
In this embodiment, the nucleic acid is introduced into a cell prior to administration in vivo ofthe resulting recombinant cell. Such introduction can be
carried out by any method known in the art, including but not limited to transfection, electroporation, microinjection, infection with a viral or bacteriophage vector containing the nucleic acid sequences, cell fusion, chromosome-mediated gene transfer, microcell-mediated gene transfer, spheroplast fusion, etc. Numerous techniques are known in the art for the introduction of foreign genes into cells (see, e.g., Loeffler and Behr, Meth. Enzymol. 217:599-618 (1993); Cohen et al., Meth. Enzymol. 217:618-644 (1993); Cline, Pharmac. Ther. 29:69-92m (1985) and may be used in accordance with the present invention, provided that the necessary developmental and physiological functions of the recipient cells are not disrupted. The technique should provide for the stable transfer ofthe nucleic acid to the cell, so that the nucleic acid is expressible by the cell and preferably heritable and expressible by its cell progeny.
The resulting recombinant cells can be delivered to a patient by various methods known in the art. Recombinant blood cells (e.g., hematopoietic stem or progenitor cells) are preferably administered intravenously. The amount of cells envisioned for use depends on the desired effect, patient state, etc., and can be determined by one skilled in the art.
Cells into which a nucleic acid can be introduced for puφoses of gene therapy encompass any desired, available cell type, and include but are not limited to epithelial cells, endothelial cells, keratinocytes, fibroblasts, muscle cells, hepatocytes; blood cells such as Tlymphocytes, Blymphocytes, monocytes, macrophages, neutrophils, eosinophils, megakaryocytes, granulocytes; various stem or progenitor cells, in particular hematopoietic stem or progenitor cells, e.g., as obtained from bone marrow, umbilical cord blood, peripheral blood, fetal liver, etc. In a preferred embodiment, the cell used for gene therapy is autologous to the patient.
In an embodiment in which recombinant cells are used in gene therapy, nucleic acid sequences encoding an antibody are introduced into the cells such that they are expressible by the cells or their progeny, and the recombinant cells are then administered in vivo for therapeutic effect. In a specific embodiment, stem or progenitor cells are used. Any stem and/or progenitor cells which can be isolated and maintained in vitro can potentially be used in accordance with this embodiment of
the present invention (see e.g. PCT Publication WO 94/08598; Stemple and Anderson, Cell 71 :973-985 (1992); Rheinwald, Meth. Cell Bio. 21A:229 (1980); and Pittelkow and Scott, Mayo Clinic Proc. 61:771 (1986)).
In a specific embodiment, the nucleic acid to be introduced for puφoses of gene therapy comprises an inducible promoter operably linked to the coding region, such that expression ofthe nucleic acid is controllable by controlling the presence or absence ofthe appropriate inducer of transcription.
Demonstration of Therapeutic or Prophylactic Activity The compounds or pharmaceutical compositions ofthe invention are preferably tested in vitro, and then in vivo for the desired therapeutic or prophylactic activity, prior to use in humans. For example, in vitro assays to demonstrate the therapeutic or prophylactic utility of a compound or pharmaceutical composition include, the effect of a compound on a cell line or a patient tissue sample. The effect ofthe compound or composition on the cell line and/or tissue sample can be determined utilizing techniques known to those of skill in the art including, but not limited to, rosette formation assays and cell lysis assays. In accordance with the invention, in vitro assays which can be used to determine whether administration of a specific compound is indicated, include in vitro cell culture assays in which a patient tissue sample is grown in culture, and exposed to or otherwise administered a compound, and the effect of such compound upon the tissue sample is observed.
Therapeutic/Prophylactic Administration and Composition
The invention provides methods of treatment, inhibition and prophylaxis by administration to a subject of an effective amount of a compound or pharmaceutical composition ofthe invention, preferably an antibody ofthe invention. In a preferred aspect, the compound is substantially purified (e.g., substantially free from substances that limit its effect or produce undesired side-effects). The subject is preferably an animal, including but not limited to animals such as cows, pigs, horses, chickens, cats, dogs, etc., and is preferably a mammal, and most preferably human. Formulations and methods of administration that can be employed when the compound comprises a nucleic acid or an immunoglobulin are described above;
additional appropriate formulations and routes of administration can be selected from among those described herein below.
Various delivery systems are known and can be used to administer a compound ofthe invention, e.g., encapsulation in liposomes, microparticles, microcapsules, recombinant cells capable of expressing the compound, receptor- mediated endocytosis (see, e.g., Wu and Wu, J. Biol. Chem. 262:4429-4432 (1987)), construction of a nucleic acid as part of a retroviral or other vector, etc. Methods of introduction include but are not limited to intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, and oral routes. The compounds or compositions may be administered by any convenient route, for example by infusion or bolus injection, by absoφtion through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents. Administration can be systemic or local. In addition, it may be desirable to introduce the pharmaceutical compounds or compositions ofthe invention into the central nervous system by any suitable route, including intraventricular and intrathecal injection; intraventricular injection may be facilitated by an intraventricular catheter, for example, attached to a reservoir, such as an Ommaya reservoir. Pulmonary administration can also be employed, e.g., by use of an inhaler or nebulizer, and formulation with an aerosolizing agent. In a specific embodiment, it may be desirable to administer the pharmaceutical compounds or compositions ofthe invention locally to the area in need of treatment; this may be achieved by, for example, and not by way of limitation, local infusion during surgery, topical application, e.g., in conjunction with a wound dressing after surgery, by injection, by means of a catheter, by means of a suppository, or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers. Preferably, when administering a protein, including an antibody, ofthe invention, care must be taken to use materials to which the protein does not absorb.
In another embodiment, the compound or composition can be delivered in a vesicle, in particular a liposome (see Langer, Science 249:1527-1533 (1990); Treat et al., in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez-Berestein
and Fidler (eds.), Liss, New York, pp. 353- 365 (1989); Lopez-Berestein, ibid., pp. 317-327; see generally ibid.)
In yet another embodiment, the compound or composition can be delivered in a controlled release system. In one embodiment, a pump may be used (see Langer, supra; Sefton, CRC Crit. Ref. Biomed. Eng. 14:201 (1987); Buchwald et al., Surgery 88:507 (1980); Saudek et al., N. Engl. J. Med. 321 :574 (1989)). In another embodiment, polymeric materials can be used (see Medical Applications of Controlled Release, Langer and Wise (eds.), CRC Pres., Boca Raton, Florida (1974); Controlled Drug Bioavailability, Drug Product Design and Performance, Smolen and Ball (eds.), Wiley, New York, (1984); Ranger and Peppas, J., Macromol. Sci. Rev. Macromol. Chem. 23:61 (1983); see also Levy et al., Science 228:190 (1985); During et al., Ann. Neurol. 25:351 (1989); Howard et al., J.Neurosurg. 71 :105 (1989)). In yet another embodiment, a controlled release system can be placed in proximity of the therapeutic target, i.e., the brain, thus requiring only a fraction ofthe systemic dose (see, e.g., Goodson, in Medical Applications of Controlled Release, supra, vol. 2, pp. 115-138 (1984)).
Other controlled release systems are discussed in the review by Langer (Science 249:1527-1533 (1990)).
In a specific embodiment where the compound ofthe invention is a nucleic acid encoding a protein, the nucleic acid can be administered in vivo to promote expression of its encoded protein, by constructing it as part of an appropriate nucleic acid expression vector and administering it so that it becomes intracellular, e.g., by use of a retroviral vector (see U.S. Patent No. 4,980,286), or by direct injection, or by use of microparticle bombardment (e.g., a gene gun; Biolistic, Dupont), or coating with lipids or cell-surface receptors or transfecting agents, or by administering it in linkage to a homeobox- like peptide which is known to enter the nucleus (see e.g., Joliot et al., Proc. Natl. Acad. Sci. USA 88:1864-1868 (1991)), etc. Alternatively, a nucleic acid can be introduced intracellularly and incoφorated within host cell DNA for expression, by homologous recombination. The present invention also provides pharmaceutical compositions. Such compositions comprise a therapeutically effective amount of a compound, and a pharmaceutically acceptable carrier. In a specific embodiment, the term
"pharmaceutically acceptable" means approved by a regulatory agency ofthe Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans. The term "carrier" refers to a diluent, adjuvant, excipient, or vehicle with which the therapeutic is administered. Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Water is a preferred carrier when the pharmaceutical composition is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions. Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like. The composition, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents. These compositions can take the form of solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained-release formulations and the like. The composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides. Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, etc. Examples of suitable pharmaceutical carriers are described in "Remington's Pharmaceutical Sciences" by E.W. Martin. Such compositions will contain a therapeutically effective amount of the compound, preferably in purified form, together with a suitable amount of carrier so as to provide the form for proper administration to the patient. The formulation should suit the mode of administration.
In a preferred embodiment, the composition is formulated in accordance with routine procedures as a pharmaceutical composition adapted for intravenous administration to human beings. Typically, compositions for intravenous administration are solutions in sterile isotonic aqueous buffer. Where necessary, the composition may also include a solubilizing agent and a local anesthetic such as lignocaine to ease pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry
lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the composition is administered by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.
The compounds ofthe invention can be formulated as neutral or salt forms. Pharmaceutically acceptable salts include those formed with anions- such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with cations such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc.
The amount ofthe compound ofthe invention which will be effective in the treatment, inhibition and prevention of a disease or disorder associated with aberrant expression and/or activity of a polypeptide of the invention can be determined by standard clinical techniques. In addition, in vitro assays may optionally be employed to help identify optimal dosage ranges. The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness ofthe disease or disorder, and should be decided according to the judgment ofthe practitioner and each patient's circumstances. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems.
For antibodies, the dosage administered to a patient is typically 0.1 mg/kg to 100 mg/kg ofthe patient's body weight. Preferably, the dosage administered to a patient is between 0.1 mg/kg and 20 mg/kg of the patient's body weight, more preferably 1 mg/kg to 10 mg/kg ofthe patient's body weight. Generally, human antibodies have a longer half-life within the human body than antibodies from other species due to the immune response to the foreign polypeptides. Thus, lower dosages of human antibodies and less frequent administration is often possible. Further, the dosage and frequency of administration of antibodies of the invention may be reduced by enhancing uptake and tissue penetration (e.g., into the brain) ofthe antibodies by modifications such as, for example, lipidation.
The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more ofthe ingredients ofthe pharmaceutical compositions of the invention. Optionally associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.
Diagnosis and Imaging
Labeled antibodies, and derivatives and analogs thereof, which specifically bind to a polypeptide of interest can be used for diagnostic puφoses to detect, diagnose, or monitor diseases, disorders, and/or conditions associated with the aberrant expression and/or activity of a polypeptide ofthe invention. The invention provides for the detection of aberrant expression of a polypeptide of interest, comprising (a) assaying the expression ofthe polypeptide of interest in cells or body fluid of an individual using one or more antibodies specific to the polypeptide interest and (b) comparing the level of gene expression with a standard gene expression level, whereby an increase or decrease in the assayed polypeptide gene expression level compared to the standard expression level is indicative of aberrant expression. The invention provides a diagnostic assay for diagnosing a disorder, comprising (a) assaying the expression ofthe polypeptide of interest in cells or body fluid of an individual using one or more antibodies specific to the polypeptide interest and (b) comparing the level of gene expression with a standard gene expression level, whereby an increase or decrease in the assayed polypeptide gene expression level compared to the standard expression level is indicative of a particular disorder. With respect to cancer, the presence of a relatively high amount of transcript in biopsied tissue from an individual may indicate a predisposition for the development ofthe disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis ofthis type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression ofthe cancer.
Antibodies of the invention can be used to assay protein levels in a biological sample using classical immunohistological methods known to those of skill in the art
(e.g., see Jalkanen, et al., J. Cell. Biol. 101 :976-985 (1985); Jalkanen, et al., J. Cell . Biol. 105:3087-3096 (1987)). Other antibody-based methods useful for detecting protein gene expression include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA). Suitable antibody assay labels are known in the art and include enzyme labels, such as, glucose oxidase; radioisotopes, such as iodine (1251, 1211), carbon (14C), sulfur (35S), tritium (3H), indium (112In), and technetium (99Tc); luminescent labels, such as luminol; and fluorescent labels, such as fluorescein and rhodamine, and biotin.
One aspect of the invention is the detection and diagnosis of a disease or disorder associated with aberrant expression of a polypeptide of interest in an animal, preferably a mammal and most preferably a human. In one embodiment, diagnosis comprises: a) administering (for example, parenterally, subcutaneously, or intraperitoneally) to a subject an effective amount of a labeled molecule which specifically binds to the polypeptide of interest; b) waiting for a time interval following the administering for permitting the labeled molecule to preferentially concentrate at sites in the subject where the polypeptide is expressed (and for unbound labeled molecule to be cleared to background level); c) determining background level; and d) detecting the labeled molecule in the subject, such that detection of labeled molecule above the background level indicates that the subject has a particular disease or disorder associated with aberrant expression ofthe polypeptide of interest. Background level can be determined by various methods including, comparing the amount of labeled molecule detected to a standard value previously determined for a particular system.
It will be understood in the art that the size ofthe subject and the imaging system used will determine the quantity of imaging moiety needed to produce diagnostic images. In the case of a radioisotope moiety, for a human subject, the quantity of radioactivity injected will normally range from about 5 to 20 milhcuries of 99mTc. The labeled antibody or antibody fragment will then preferentially accumulate at the location of cells which contain the specific protein. In vivo tumor imaging is described in S.W. Burchiel et al., "Immunopharmacokinetics of
Radiolabeled Antibodies and Their Fragments." (Chapter 13 in Tumor Imaging:
The Radiochemical Detection of Cancer, S.W. Burchiel and B. A. Rhodes, eds.,
Masson Publishing Inc. (1982).
Depending on several variables, including the type of label used and the mode of administration, the time interval following the administration for permitting the labeled molecule to preferentially concentrate at sites in the subject and for unbound labeled molecule to be cleared to background level is 6 to 48 hours or 6 to 24 hours or
6 to 12 hours. In another embodiment the time interval following administration is 5 to 20 days or 5 to 10 days.
In an embodiment, monitoring ofthe disease or disorder is carried out by repeating the method for diagnosing the disease or disease, for example, one month after initial diagnosis, six months after initial diagnosis, one year after initial diagnosis, etc.
Presence of the labeled molecule can be detected in the patient using methods known in the art for in vivo scanning. These methods depend upon the type of label used. Skilled artisans will be able to determine the appropriate method for detecting a particular label. Methods and devices that may be used in the diagnostic methods of the invention include, but are not limited to, computed tomography (CT), whole body scan such as position emission tomography (PET), magnetic resonance imaging
(MRI), and sonography. In a specific embodiment, the molecule is labeled with a radioisotope and is detected in the patient using a radiation responsive surgical instrument (Thurston et al., U.S. Patent No. 5,441,050). In another embodiment, the molecule is labeled with a fluorescent compound and is detected in the patient using a fluorescence responsive scanning instrument. In another embodiment, the molecule is labeled with a positron emitting metal and is detected in the patent using positron emission-tomography. In yet another embodiment, the molecule is labeled with a paramagnetic label and is detected in a patient using magnetic resonance imaging (MRI).
Kits The present invention provides kits that can be used in the above methods. In one embodiment, a kit comprises an antibody ofthe invention, preferably a purified antibody, in one or more containers. In a specific embodiment, the kits ofthe present
invention contain a substantially isolated polypeptide comprising an epitope which is specifically immunoreactive with an antibody included in the kit. Preferably, the kits ofthe present invention further comprise a control antibody which does not react with the polypeptide of interest. In another specific embodiment, the kits ofthe present invention contain a means for detecting the binding of an antibody to a polypeptide of interest (e.g., the antibody may be conjugated to a detectable substrate such as a fluorescent compound, an enzymatic substrate, a radioactive compound or a luminescent compound, or a second antibody which recognizes the first antibody may be conjugated to a detectable substrate). In another specific embodiment ofthe present invention, the kit is a diagnostic kit for use in screening serum containing antibodies specific against proliferative „ and/or cancerous polynucleotides and polypeptides. Such a kit may include a control antibody that does not react with the polypeptide of interest. Such a kit may include a substantially isolated polypeptide antigen comprising an epitope which is specifically immunoreactive with at least one anti-polypeptide antigen antibody. Further, such a kit includes means for detecting the binding of said antibody to the antigen (e.g., the antibody may be conjugated to a fluorescent compound such as fluorescein or rhodamine which can be detected by flow cytometry). In specific embodiments, the kit may include a recombinantly produced or chemically synthesized polypeptide antigen. The polypeptide antigen ofthe kit may also be attached to a solid support.
In a more specific embodiment the detecting means ofthe above-described kit includes a solid support to which said polypeptide antigen is attached. Such a kit may also include a non-attached reporter-labeled anti-human antibody. In this embodiment, binding ofthe antibody to the polypeptide antigen can be detected by binding ofthe said reporter-labeled antibody.
In an additional embodiment, the invention includes a diagnostic kit for use in screening serum containing antigens ofthe polypeptide of the invention. The diagnostic kit includes a substantially isolated antibody specifically immunoreactive with polypeptide or polynucleotide antigens, and means for detecting the binding of the polynucleotide or polypeptide antigen to the antibody. In one embodiment, the antibody is attached to a solid support. In a specific embodiment, the antibody may be a monoclonal antibody. The detecting means ofthe kit may include a second, labeled
monoclonal antibody. Alternatively, or in addition, the detecting means may include a labeled, competing antigen.
In one diagnostic configuration, test serum is reacted with a solid phase reagent having a surface-bound antigen obtained by the methods ofthe present invention. After binding with specific antigen antibody to the reagent and removing unbound serum components by washing, the reagent is reacted with reporter-labeled anti-human antibody to bind reporter to the reagent in proportion to the amount of bound anti-antigen antibody on the solid support. The reagent is again washed to remove unbound labeled antibody, and the amount of reporter associated with the reagent is determined. Typically, the reporter is an enzyme which is detected by incubating the solid phase in the presence of a suitable fluorometric, luminescent or colorimetric substrate (Sigma, St. Louis, MO).
The solid surface reagent in the above assay is prepared by known techniques for attaching protein material to solid support material, such as polymeric beads, dip sticks, 96-well plate or filter material. These attachment methods generally include non-specific adsoφtion ofthe protein to the support or covalent attachment ofthe protein, typically through a free amine group, to a chemically reactive group on the solid support, such as an activated carboxyl, hydroxyl, or aldehyde group. Alternatively, sfreptavidin coated plates can be used in conjunction with biotinylated antigen(s).
Thus, the invention provides an assay system or kit for carrying out this diagnostic method. The kit generally includes a support with surface- bound recombinant antigens, and a reporter-labeled anti-human antibody for detecting surface-bound anti-antigen antibody.
Fusion Proteins
Any polypeptide ofthe present invention can be used to generate fusion proteins. For example, the polypeptide ofthe present invention, when fused to a second protein, can be used as an antigenic tag. Antibodies raised against the polypeptide ofthe present invention can be used to indirectly detect the second protein by binding to the polypeptide. Moreover, because secreted proteins target
cellular locations based on trafficking signals, the polypeptides ofthe present invention can be used as targeting molecules once fused to other proteins.
Examples of domains that can be fused to polypeptides ofthe present invention include not only heterologous signal sequences, but also other heterologous functional regions. The fusion does not necessarily need to be direct, but may occur through linker sequences.
Moreover, fusion proteins may also be engineered to improve characteristics ofthe polypeptide ofthe present invention. For instance, a region of additional amino acids, particularly charged amino acids, may be added to the N-terminus ofthe polypeptide to improve stability and persistence during purification from the host cell or subsequent handling and storage. Also, peptide moieties may be added to the polypeptide to facilitate purification. Such regions may be removed prior to final preparation ofthe polypeptide. The addition of peptide moieties to facilitate handling of polypeptides are familiar and routine techniques in the art. Moreover, polypeptides of the present invention, including fragments, and specifically epitopes, can be combined with parts ofthe constant domain of immunoglobulins (IgA, IgE, IgG, IgM) or portions thereof (CHI, CH2, CH3, and any combination thereof, including both entire domains and portions thereof), resulting in chimeric polypeptides. These fusion proteins facilitate purification and show an increased half-life in vivo. One reported example describes chimeric proteins consisting ofthe first two domains ofthe human GD4-polypeptide and various domains ofthe constant regions of the heavy or light chains of mammalian immunoglobulins. (EP A 394,827; Traunecker et al., Nature 331 :84-86 (1988).) Fusion proteins having disulfide-linked dimeric structures (due to the IgG) can also be more efficient in binding and neutralizing other molecules, than the monomeric secreted protein or protein fragment alone. (Fountoulakis et al., J. Biochem. 270:3958-3964 (1995).) Polynucleotides comprising or alternatively consisting of nucleic acids which encode these fusion proteins are also encompassed by the invention. Similarly, EP-A-O 464 533 (Canadian counteφart 2045869) discloses fusion proteins comprising various portions of constant region of immunoglobulin molecules together with another human protein or part thereof. In many cases, the Fc part in a
fusion protein is beneficial in therapy and diagnosis, and thus can result in, for example, improved pharmacokinetic properties. (EP-A 0232 262.) Alternatively, deleting the Fc part after the fusion protein has been expressed, detected, and purified, would be desired. For example, the Fc portion may hinder therapy and diagnosis if the fusion protein is used as an antigen for immunizations. In drug discovery, for example, human proteins, such as hIL-5, have been fused with Fc portions for the puφose of high- throughput screening assays to identify antagonists of hIL-5. (See, D. Bennett et al., J. Molecular Recognition 8:52-58 (1995); K. Johanson et al., J. Biol. Chem. 270:9459-9471 (1995).) Moreover, the polypeptides ofthe present invention can be fused to marker sequences, such as a peptide which facilitates purification ofthe fused polypeptide. In preferred embodiments, the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311), among others, many of which are commercially available. As described in Gentz et al., Proc. Natl. Acad. Sci. USA 86:821-824 (1989), for instance, hexa-histidine provides for convenient purification ofthe fusion protein. Another peptide tag useful for purification, the "HA" tag, corresponds to an epitope derived from the influenza hemagglutinin protein. (Wilson et al., Cell 37:767 (1984).) Thus, any of these above fusions can be engineered using the polynucleotides or the polypeptides ofthe present invention.
Vectors, Host Cells, and Protein Production
The present invention also relates to vectors containing the polynucleotide of the present invention, host cells, and the production of polypeptides by recombinant techniques. The vector may be, for example, a phage, plasmid, viral, or retroviral vector. Retroviral vectors may be replication competent or replication defective. In the latter case, viral propagation generally will occur only in complementing host cells. The polynucleotides may be joined to a vector containing a selectable marker for propagation in a host. Generally, a plasmid vector is introduced in a precipitate, such as a calcium phosphate precipitate, or in a complex with a charged lipid. If the
vector is a virus, it may be packaged in vitro using an appropriate packaging cell line and then transduced into host cells.
The polynucleotide insert should be operatively linked to an appropriate promoter, such as the phage lambda PL promoter, the E. coli lac, tφ, phoA and tac promoters, the SV40 early and late promoters and promoters of retroviral LTRs, to name a few. Other suitable promoters will be known to the skilled artisan. The expression constructs will further contain sites for transcription initiation, termination, and, in the transcribed region, a ribosome binding site for translation. The coding portion ofthe transcripts expressed by the constructs will preferably include a translation initiating codon at the beginning and a termination codon (UAA, UGA or UAG) appropriately positioned at the end ofthe polypeptide to be translated.
As indicated, the expression vectors will preferably include at least one selectable marker. Such markers include dihydrofolate reductase, G418 or neomycin resistance for eukaryotic cell culture and tetracycline, kanamycin or ampicillin resistance genes for culturing in E. coli and other bacteria. Representative examples of appropriate hosts include, but are not limited to, bacterial cells, such as E. coli, Streptomyces and Salmonella typhimurium cells; fungal cells, such as yeast cells (e.g., Saccharomyces cerevisiae or Pichia pastoris (ATCC Accession No. 201178)); insect cells such as Drosophila S2 and Spodoptera Sf9 cells; animal cells such as CHO, COS, 293, and Bowes melanoma cells; and plant cells. Appropriate culture mediums and conditions for the above-described host cells are known in the art.
Among vectors preferred for use in bacteria include pQE70, pQE60 and pQE- 9, available from QIAGEN, Inc.; pBluescript vectors, Phagescript vectors, pNH8A, pNH16a, pNH18A, pNH46A, available from Stratagene Cloning Systems, Inc.; and ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 available from Pharmacia Biotech, Inc. Among preferred eukaryotic vectors are pWLNEO, pSV2CAT, pOG44, pXTl and pSG available from Stratagene; and pSVK3, pBPV, pMSG and pSVL available from Pharmacia. Preferred expression vectors for use in yeast systems include, but are not limited to pYES2, pYDl, pTEFl/Zeo, pYES2/GS, pPICZ.pGAPZ, pGAPZalph, pPIC9, PPIC3.5, pHIL-D2, pHIL-Sl, pPIC3.5K, pPIC9K, and PAO815 (all available from Invitrogen, Carlbad, CA). Other suitable vectors will be readily apparent to the skilled artisan.
Introduction ofthe construct into the host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, or other methods. Such methods are described in many standard laboratory manuals, such as Davis et al., Basic Methods In Molecular Biology (1986). It is specifically contemplated that the polypeptides ofthe present invention may in fact be expressed by a host cell lacking a recombinant vector.
A polypeptide of this invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography ("HPLC") is employed for purification. Polypeptides ofthe present invention, and preferably the secreted form, can also be recovered from: products purified from natural sources, including bodily fluids, tissues and cells, whether directly isolated or cultured; products of chemical synthetic procedures; and products produced by recombinant techniques from a prokaryotic or eukaryotic host, including, for example, bacterial, yeast, higher plant, insect, and mammalian cells. Depending upon the host employed in a recombinant production procedure, the polypeptides ofthe present invention may be glycosylated or may be non-glycosylated. In addition, polypeptides ofthe invention may also include an initial modified methionine residue, in some cases as a result of host- mediated processes. Thus, it is well known in the art that the N-terminal methionine encoded by the translation initiation codon generally is removed with high efficiency from any protein after translation in all eukaryotic cells. While the N-terminal methionine on most proteins also is efficiently removed in most prokaryotes, for some proteins, this prokaryotic removal process is inefficient, depending on the nature of the amino acid to which the N-terminal methionine is covalently linked. In one embodiment, the yeast Pichia pastoris is used to express the polypeptide ofthe present invention in a eukaryotic system. Pichia pastoris is a methylotrophic yeast which can metabolize methanol as its sole carbon source. A
main step in the methanol metabolization pathway is the oxidation of methanol to formaldehyde using O . This reaction is catalyzed by the enzyme alcohol oxidase. In order to metabolize methanol as its sole carbon source, Pichia pastoris must generate high levels of alcohol oxidase due, in part, to the relatively low affinity of alcohol oxidase for O2. Consequently, in a growth medium depending on methanol as a main carbon source, the promoter region of one ofthe two alcohol oxidase genes (AOXl) is highly active. In the presence of methanol, alcohol oxidase produced from the AOXl gene comprises up to approximately 30% ofthe total soluble protein in Pichia pastoris. See, Ellis, S.B., et al., Mol. Cell. Biol. 5:1111-21 (1985); Koutz, P.J, et al, Yeast 5:167-77 (1989); Tschopp, J.F., et al., Nucl. Acids Res. 15:3859-76 (1987). Thus, a heterologous coding sequence, such as, for example, a polynucleotide ofthe present invention, under the transcriptional regulation of all or part ofthe AOXl regulatory sequence is expressed at exceptionally high levels in Pichia yeast grown in the presence of methanol. In one example, the plasmid vector pPIC9K is used to express DNA encoding a polypeptide ofthe invention, as set forth herein, in a Pichea yeast system essentially as described in "Pichia Protocols: Methods in Molecular Biology," D.R. Higgins and J. Cregg, eds. The Humana Press, Totowa, NJ, 1998. This expression vector allows expression and secretion of a protein ofthe invention by virtue of the strong AOXl promoter linked to the Pichia pastoris alkaline phosphatase (PHO) secretory signal peptide (i.e., leader) located upstream of a multiple cloning site.
Many other yeast vectors could be used in place of pPIC9K, such as, pYES2, pYDl, pTEFl/Zeo, pYES2/GS, pPICZ, pGAPZ, pGAPZalpha, pPIC9, pPIC3.5, pHIL-D2, pHIL-Sl, pPIC3.5K, and PAO815, as one skilled in the art would readily appreciate, as long as the proposed expression construct provides appropriately located signals for transcription, translation, secretion (if desired), and the like, including an in-frame AUG as required.
In another embodiment, high-level expression of a heterologous coding sequence, such as, for example, a polynucleotide ofthe present invention, may be achieved by cloning the heterologous polynucleotide ofthe invention into an
expression vector such as, for example, pGAPZ or pGAPZalpha, and growing the yeast culture in the absence of methanol.
In addition to encompassing host cells containing the vector constructs discussed herein, the invention also encompasses primary, secondary, and immortalized host cells of vertebrate origin, particularly mammalian origin, that have been engineered to delete or replace endogenous genetic material (e.g., coding sequence), and/or to include genetic material (e.g., heterologous polynucleotide sequences) that is operably associated with the polynucleotides of the invention, and which activates, alters, and/or amplifies endogenous polynucleotides. For example, techniques known in the art may be used to operably associate heterologous control regions (e.g., promoter and/or enhancer) and endogenous polynucleotide sequences via homologous recombination, resulting in the formation of a new transcription unit (see, e.g., U.S. Patent No. 5,641,670, issued June 24, 1997; U.S. Patent No. 5,733,761, issued March 31, 1998; International Publication No. WO 96/29411, published September 26, 1996; International Publication No. WO 94/12650, published August 4, 1994; Koller et al., Proc. Natl. Acad. Sci. USA 86:8932-8935 (1989); and Zijlstra et al., Nature 342:435-438 (1989), the disclosures of each of which are incoφorated by reference in their entireties).
In addition, polypeptides ofthe invention can be chemically synthesized using techniques known in the art (e.g., see Creighton, 1983, Proteins: Structures and Molecular Principles, W.H. Freeman & Co., N.Y., and Hunkapiller et al., Nature, 310:105-111 (1984)). For example, a polypeptide corresponding to a fragment of a polypeptide sequence ofthe mvention can be synthesized by use of a peptide synthesizer. Furthermore, if desired, nonclassical amino acids or chemical amino acid analogs can be introduced as a substitution or addition into the polypeptide sequence. Non-classical amino acids include, but are not limited to, to the D-isomers ofthe common amino acids, 2,4-diaminobutyric acid, a-amino isobutyric acid, 4- aminobutyric acid, Abu, 2-amino butyric acid, g-Abu, e-Ahx, 6-amino hexanoic acid, Aib, 2-amino isobutyric acid, 3-amino propionic acid, omithine, norleucine, norvaline, hydroxyproline, sarcosine, citrulline, homocitrulline, cysteic acid, t- butylglycine, t-butylalanine, phenylglycine, cyclohexyialanine, b-alanine, fluoro- amino acids, designer amino acids such as b-methyl amino acids, Ca-methyl amino
acids, Na-methyl amino acids, and amino acid analogs in general. Furthermore, the amino acid can be D (dextrorotary) or L (levorotary).
The invention encompasses polypeptides which are differentially modified during or after translation, e.g., by glycosylation, acetylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to an antibody molecule or other cellular ligand, etc. Any of numerous chemical modifications may be carried out by known techniques, including but not limited, to specific chemical cleavage by cyanogen bromide, trypsin, chymotrypsin, papain, N8 protease, ΝaBH ; acetylation, formylation, oxidation, reduction; metabolic synthesis in the presence of tunicamycin; etc.
Additional post-translational modifications encompassed by the invention include, for example, e.g., N-linked or O-linked carbohydrate chains, processing of N-terminal or C-terminal ends), attachment of chemical moieties to the amino acid backbone, chemical modifications of N-linked or O-linked carbohydrate chains, and addition or deletion of an N-terminal methionine residue as a result of procaryotic host cell expression. The polypeptides may also be modified with a detectable label, such as an enzymatic, fluorescent, isotopic or affinity label to allow for detection and isolation ofthe protein.
Also provided by the invention are chemically modified derivatives ofthe polypeptides ofthe invention which may provide additional advantages such as increased solubility, stability and circulating time ofthe polypeptide, or decreased immunogenicity (see U.S. Patent NO: 4,179,337). The chemical moieties for derivitization may be selected from water soluble polymers such as polyethylene glycol, ethylene glycol propylene glycol copolymers, carboxymethylcellulose, dextran, polyvinyl alcohol and the like. The polypeptides may be modified at random positions within the molecule, or at predetermined positions within the molecule and may include one, two, three or more attached chemical moieties.
The polymer may be of any molecular weight, and may be branched or unbranched. For polyethylene glycol, the preferred molecular weight is between about 1 kDa and about 100 kDa (the term "about" indicating that in preparations of polyethylene glycol, some molecules will weigh more, some less, than the stated molecular weight) for ease in handling and manufacturing. Other sizes may be used,
depending on the desired therapeutic profile (e.g., the duration of sustained release desired, the effects, if any on biological activity, the ease in handling, the degree or lack of antigenicity and other known effects ofthe polyethylene glycol to a therapeutic protein or analog). For example, the polyethylene glycol may have an average molecular weight of about 200, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500, 10,000, 10,500, 11,000, 11,500, 12,000, 12,500, 13,000, 13,500, 14,000, 14,500, 15,000, 15,500, 16,000, 16,500, 17,000, 17,500, 18,000, 18,500, 19,000, 19,500, 20,000, 25,000, 30,000, 35,000, 40,000, 50,000, 55,000, 60,000, 65,000, 70,000, 75,000, 80,000, 85,000, 90,000, 95,000, or 100,000 kDa.
As noted above, the polyethylene glycol may have a branched structure. Branched polyethylene glycols are described, for example, in U.S. Patent No. 5,643,575; Moφurgo et al, Appl Biochem. Biotechnol. 56:59-72 (1996); Vorobjev et al, Nucleosides Nucleotides 75:2745-2750 (1999); and Caliceti et al, Bioconjug. Chem. 70:638-646 (1999), the disclosures of each of which are incoφorated herein by reference.
The polyethylene glycol molecules (or other chemical moieties) should be attached to the protein with consideration of effects on functional or antigenic domains ofthe protein. There are a number of attachment methods available to those skilled in the art, e.g., EP 0 401 384, herein incoφorated by reference (coupling PEG to G-CSF), see also Malik et al., Exp. Hematol. 20:1028-1035 (1992) (reporting pegylation of GM-CSF using tresyl chloride). For example, polyethylene glycol may be covalently bound through amino acid residues via a reactive group, such as, a free amino or carboxyl group. Reactive groups are those to which an activated polyethylene glycol molecule may be bound. The amino acid residues having a free amino group may include lysine residues and the N-terminal amino acid residues; those having a free carboxyl group may include aspartic acid residues glutamic acid residues and the C-terminal amino acid residue. Sulfhydryl groups may also be used as a reactive group for attaching the polyethylene glycol molecules. Preferred for therapeutic puφoses is attachment at an amino group, such as attachment at the N-terminus or lysine group.
As suggested above, polyethylene glycol may be attached to proteins via linkage to any of a number of amino acid residues. For example, polyethylene glycol can be linked to a proteins via covalent bonds to lysine, histidine, aspartic acid, glutamic acid, or cysteine residues. One or more reaction chemistries may be employed to attach polyethylene glycol to specific amino acid residues (e.g., lysine, histidine, aspartic acid, glutamic acid, or cysteine) ofthe protein or to more than one type of amino acid residue (e.g., lysine, histidine, aspartic acid, glutamic acid, cysteine and combinations thereof) ofthe protein.
One may specifically desire proteins chemically modified at the N-terminus. Using polyethylene glycol as an illustration of the present composition, one may select from a variety of polyethylene glycol molecules (by molecular weight, branching, etc.), the proportion of polyethylene glycol molecules to protein (polypeptide) molecules in the reaction mix, the type of pegylation reaction to be performed, and the method of obtaining the selected N-terminally pegylated protein. The method of obtaining the N-terminally pegylated preparation (i.e., separating this moiety from other monopegylated moieties if necessary) may be by purification ofthe N-terminally pegylated material from a population of pegylated protein molecules. Selective proteins chemically modified at the N-terminus modification may be accomplished by reductive alkylation which exploits differential reactivity of different types of primary amino groups (lysine versus the N-terminal) available for derivatization in a particular protein. Under the appropriate reaction conditions, substantially selective derivatization ofthe protein at the N-terminus with a carbonyl group containing polymer is achieved.
As indicated above, pegylation ofthe proteins ofthe invention may be accomplished by any number of means. For example, polyethylene glycol may be attached to the protein either directly or by an intervening linker. Linkerless systems for attaching polyethylene glycol to proteins are described in Delgado et al, Crit. Rev. Thera. Drug Carrier Sys. 9:249-304 (1992); Francis et al, Intern. J. of Hematol. <5<°:1-18 (1998); U.S. Patent No. 4,002,531 ; U.S. Patent No. 5,349,052; WO 95/06058; and WO 98/32466, the disclosures of each of which are incoφorated herein by reference.
One system for attaching polyethylene glycol directly to amino acid residues of proteins without an intervening linker employs tresylated MPEG, which is produced by the modification of monmethoxy polyethylene glycol (MPEG) using tresylchloride (ClSO2CH2CF3). Upon reaction of protein with tresylated MPEG, polyethylene glycol is directly attached to amine groups ofthe protein. Thus, the invention includes protein-polyethylene glycol conjugates produced by reacting proteins ofthe invention with a polyethylene glycol molecule having a 2,2,2-trifluoreothane sulphonyl group.
Polyethylene glycol can also be attached to proteins using a number of different intervening linkers. For example, U.S. Patent No. 5,612,460, the entire disclosure of which is incoφorated herein by reference, discloses urethane linkers for connecting polyethylene glycol to proteins. Protein-polyethylene glycol conjugates wherein the polyethylene glycol is attached to the protein by a linker can also be produced by reaction of proteins with compounds such as MPEG- succinimidylsuccinate, MPEG activated with 1 , 1 '-carbonyldiimidazole, MPEG- 2,4,5-trichloropenylcarbonate, MPEG-p-nitrophenolcarbonate, and various MPEG- succinate derivatives. A number additional polyethylene glycol derivatives and reaction chemistries for attaching polyethylene glycol to proteins are described in WO 98/32466, the entire disclosure of which is incoφorated herein by reference. Pegylated protein products produced using the reaction chemistries set out herein are included within the scope ofthe invention.
The number of polyethylene glycol moieties attached to each protein ofthe invention (i.e., the degree of substitution) may also vary. For example, the pegylated proteins ofthe invention may be linked, on average, to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 17, 20, or more polyethylene glycol molecules. Similarly, the average degree of substitution within ranges such as 1-3, 2-4, 3-5, 4-6, 5-7, 6-8, 7-9, 8-10, 9-11, 10-12, 11-13, 12-14, 13-15, 14-16, 15-17, 16-18, 17-19, or 18-20 polyethylene glycol moieties per protein molecule. Methods for determining the degree of substitution are discussed, for example, in Delgado et al, Crit. Rev. Thera. Drug Carrier Sys. 9:249- 304 (1992).
The polypeptides ofthe invention may be in monomers or multimers (i.e., dimers, trimers, tetramers and higher multimers). Accordingly, the present invention
relates to monomers and multimers ofthe polypeptides of the invention, their preparation, and compositions (preferably, Therapeutics) containing them. In specific embodiments, the polypeptides ofthe invention are monomers, dimers, trimers or tetramers. In additional embodiments, the multimers of the invention are at least dimers, at least trimers, or at least tetramers.
Multimers encompassed by the invention may be homomers or heteromers. As used herein, the term homomer, refers to a multimer containing only polypeptides corresponding to the amino acid sequence of SEQ ID NON or encoded by the cDΝA contained in a deposited clone (including fragments, variants, splice variants, and fusion proteins, corresponding to these polypeptides as described herein). These homomers may contain polypeptides having identical or different amino acid sequences. In a specific embodiment, a homomer of the invention is a multimer containing only polypeptides having an identical amino acid sequence. In another specific embodiment, a homomer ofthe invention is a multimer containing polypeptides having different amino acid sequences. In specific embodiments, the multimer ofthe invention is a homodimer (e.g., containing polypeptides having identical or different amino acid sequences) or a homotrimer (e.g. , containing polypeptides having identical and/or different amino acid sequences). In additional embodiments, the homomeric multimer ofthe invention is at least a homodimer, at least a homotrimer, or at least a homotetramer.
As used herein, the term heteromer refers to a multimer containing one or more heterologous polypeptides (i.e., polypeptides of different proteins) in addition to the polypeptides of the invention. In a specific embodiment, the multimer ofthe invention is a heterodimer, a heterotrimer, or a heterotetramer. In additional embodiments, the heteromeric multimer ofthe invention is at least a heterodimer, at least a heterotrimer, or at least a heterotetramer.
Multimers ofthe invention may be the result of hydrophobic, hydrophilic, ionic and/or covalent associations and/or may be indirectly linked, by for example, liposome formation. Thus, in one embodiment, multimers ofthe invention, such as, for example, homodimers or homotrimers, are formed when polypeptides ofthe invention contact one another in solution. In another embodiment, heteromultimers of the invention, such as, for example, heterotrimers or heterotetramers, are formed
when polypeptides of the invention contact antibodies to the polypeptides of the invention (including antibodies to the heterologous polypeptide sequence in a fusion protein ofthe invention) in solution. In other embodiments, multimers ofthe invention are formed by covalent associations with and/or between the polypeptides of the invention. Such covalent associations may involve one or more amino acid residues contained in the polypeptide sequence ( e.g., that recited in the sequence listing, or contained in the polypeptide encoded by a deposited clone). In one instance, the covalent associations are cross-linking between cysteine residues located within the polypeptide sequences which interact in the native (i.e., naturally occurring) polypeptide. In another instance, the covalent associations are the consequence of chemical or recombinant manipulation. Alternatively, such covalent associations may involve one or more amino acid residues contained in the heterologous polypeptide sequence in a fusion protein ofthe invention.
In one example, covalent associations are between the heterologous sequence contained in a fusion protein ofthe invention (see, e.g., US Patent Number 5,478,925). In a specific example, the covalent associations are between the heterologous sequence contained in an Fc fusion protein ofthe invention (as described herein). In another specific example, covalent associations of fusion proteins ofthe invention are between heterologous polypeptide sequence from another protein that is capable of forming covalently associated multimers, such as for example, oseteoprotegerin (see, e.g., International Publication NO: WO 98/49305, the contents of which are herein incoφorated by reference in its entirety). In another embodiment, two or more polypeptides of the invention are joined through peptide linkers. Examples include those peptide linkers described in U.S. Pat. No. 5,073,627 (hereby incoφorated by reference). Proteins comprising multiple polypeptides ofthe invention separated by peptide linkers may be produced using conventional recombinant DNA technology.
Another method for preparing multimer polypeptides of the invention involves use of polypeptides of the invention fused to a leucine zipper or isoleucine zipper polypeptide sequence. Leucine zipper and isoleucine zipper domains are polypeptides that promote multimerization ofthe proteins in which they are found. Leucine zippers were originally identified in several DNA-binding proteins (Landschulz et al.,
Science 240:1759, (1988)), and have since been found in a variety of different proteins. Among the known leucine zippers are naturally occurring peptides and derivatives thereof that dimerize or trimerize. Examples of leucine zipper domains suitable for producing soluble multimeric proteins ofthe invention are those described in PCT application WO 94/10308, hereby incoφorated by reference. Recombinant fusion proteins comprising a polypeptide ofthe invention fused to a polypeptide sequence that dimerizes or trimerizes in solution are expressed in suitable host cells, and the resulting soluble multimeric fusion protein is recovered from the culture supernatant using techniques known in the art. Trimeric polypeptides of the invention may offer the advantage of enhanced biological activity. Preferred leucine zipper moieties and isoleucine moieties are those that preferentially form trimers. One example is a leucine zipper derived from lung surfactant protein D (SPD), as described in Hoppe et al. (FEBS Letters 344:191, (1994)) and in U.S. patent application Ser. No. 08/446,922, hereby incoφorated by "reference. Other peptides derived from naturally occurring trimeric proteins may be employed in preparing trimeric polypeptides ofthe invention.
In another example, proteins ofthe invention are associated by interactions between Flag® polypeptide sequence contained in fusion proteins ofthe invention containing Flag® polypeptide seuqence. In a further embodiment, associations proteins ofthe invention are associated by interactions between heterologous polypeptide sequence contained in Flag® fusion proteins of the invention and anti- Flag® antibody.
The multimers ofthe invention may be generated using chemical techniques known in the art. For example, polypeptides desired to be contained in the multimers ofthe invention may be chemically cross-linked using linker molecules and linker molecule length optimization techniques known in the art (see, e.g., US Patent Number 5,478,925, which is herein incoφorated by reference in its entirety). Additionally, multimers ofthe invention may be generated using techniques known in the art to form one or more inter-molecule cross-links between the cysteine residues located within the sequence of the polypeptides desired to be contained in the multimer (see, e.g., US Patent Number 5,478,925, which is herein incoφorated by reference in its entirety). Further, polypeptides ofthe invention may be routinely
modified by the addition of cysteine or biotin to the C terminus or N-terminus ofthe polypeptide and techniques known in the art may be applied to generate multimers containing one or more of these modified polypeptides (see, e.g., US Patent Number 5,478,925, which is herein incoφorated by reference in its entirety). Additionally, techniques known in the art may be applied to generate liposomes containing the polypeptide components desired to be contained in the multimer ofthe invention (see, e.g., US Patent Number 5,478,925, which is herein incoφorated by reference in its entirety).
Alternatively, multimers of the invention may be generated using genetic engineering techniques known in the art. In one embodiment, polypeptides contained in multimers ofthe invention are produced recombinantly using fusion protein technology described herein or otherwise known in the art (see, e.g., US Patent Number 5,478,925, which is herein incoφorated by reference in its entirety). In a specific embodiment, polynucleotides coding for a homodimer ofthe invention are generated by ligating a polynucleotide sequence encoding a polypeptide ofthe invention to a sequence encoding a linker polypeptide and then further to a synthetic polynucleotide encoding the translated product ofthe polypeptide in the reverse orientation from the original C-terminus to the N-terminus (lacking the leader sequence) (see, e.g., US Patent Number 5,478,925, which is herein incoφorated by reference in its entirety). In another embodiment, recombinant techniques described herein or otherwise known in the art are applied to generate recombinant polypeptides ofthe invention which contain a transmembrane domain (or hyrophobic or signal peptide) and which can be incoφorated by membrane reconstitution techniques into liposomes (see, e.g., US Patent Number 5,478,925, which is herein incoφorated by reference in its entirety).
Uses of the Polynucleotides
Each ofthe polynucleotides identified herein can be used in numerous ways as reagents. The following description should be considered exemplary and utilizes known techniques.
The polynucleotides ofthe present invention are useful for chromosome identification. There exists an ongoing need to identify new chromosome markers,
since few chromosome marking reagents, based on actual sequence data (repeat polymoφhisms), are presently available. Each polynucleotide ofthe present invention can be used as a chromosome marker.
Briefly, sequences can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp) from the sequences shown in SEQ ID NO:X. Primers can be selected using computer analysis so that primers do not span more than one predicted exon in the genomic DNA. These primers are then used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the SEQ ID NO:X will yield an amplified fragment.
Similarly, somatic hybrids provide a rapid method of PCR mapping the polynucleotides to particular chromosomes. Three or more clones can be assigned per day using a single thermal cycler. Moreover, sublocalization ofthe polynucleotides can be achieved with panels of specific chromosome fragments. Other gene mapping strategies that can be used include in situ hybridization, prescreening with labeled flow-sorted chromosomes, preselection by hybridization to construct chromosome specific-cDNA libraries and computer mapping techniques (See, e.g., Shuler, Trends Biotechnol 16:456-459 (1998) which is hereby incoφorated by reference in its entirety).. Precise chromosomal location ofthe polynucleotides can also be achieved using fluorescence in situ hybridization (FISH) of a metaphase chromosomal spread. This technique uses polynucleotides as short as 500 or 600 bases; however, polynucleotides 2,000-4,000 bp are preferred. For a review ofthis technique, see Verma et al., "Human Chromosomes: a Manual of Basic Techniques," Pergamon Press, New York (1988).
For chromosome mapping, the polynucleotides can be used individually (to mark a single chromosome or a single site on that chromosome) or in panels (for marking multiple sites and/or multiple chromosomes).
The polynucleotides of the present invention would likewise be useful for radiation hybrid mapping, HAPPY mapping, and long range restriction mapping. For a review of these techniques and others known in the art, see, e.g., Dear, "Genome Mapping: A Practical Approach," IRL Press at Oxford University Press, London
(1997); Aydin, J. Mol. Med. 77:691-694 (1999); Hacia et al., Mol. Psychiatry 3:483- 492 (1998); Herrick et al., Chromosome Res. 7:409-423 (1999); Hamilton et al., Methods Cell Biol. 62:265-280 (2000); and or Ott, J. Hered. 90:68-70 (1999) each of which is hereby incoφorated by reference in its entirety. Once a polynucleotide has been mapped to a precise chromosomal location, the physical position ofthe polynucleotide can be used in linkage analysis. Linkage analysis establishes coinheritance between a chromosomal location and presentation of a particular disease. (Disease mapping data are found, for example, in V. McKusick, Mendelian Inheritance in Man (available on line through Johns Hopkins University Welch Medical Library) .) Assuming 1 megabase mapping resolution and one gene per 20 kb, a cDNA precisely localized to a chromosomal region associated with the disease could be one of 50-500 potential causative genes.
Thus, once coinheritance is established, differences in the polynucleotide and the corresponding gene between affected and unaffected individuals can be examined. First, visible structural alterations in the chromosomes, such as deletions or translocations, are examined in chromosome spreads or by PCR. If no structural alterations exist, the presence of point mutations are ascertained. Mutations observed in some or all affected individuals, but not in normal individuals, indicates that the mutation may cause the disease. However, complete sequencing ofthe polypeptide and the corresponding gene from several normal individuals is required to distinguish the mutation from a polymoφhism. If a new polymoφhism is identified, this polymoφhic polypeptide can be used for further linkage analysis.
Furthermore, increased or decreased expression ofthe gene in affected individuals as compared to unaffected individuals can be assessed using polynucleotides ofthe present invention. Any of these alterations (altered expression, chromosomal rearrangement, or mutation) can be used as a diagnostic or prognostic marker.
Thus, the invention also provides a diagnostic method useful during diagnosis of a disorder, involving measuring the expression level of polynucleotides ofthe present invention in cells or body fluid from an individual and comparing the measured gene expression level with a standard level of polynucleotide expression
level, whereby an increase or decrease in the gene expression level compared to the standard is indicative of a disorder.
In still another embodiment, the invention includes a kit for analyzing samples for the presence of proliferative and/or cancerous polynucleotides derived from a test subject. In a general embodiment, the kit includes at least one polynucleotide probe containing a nucleotide sequence that will specifically hybridize with a polynucleotide ofthe present invention and a suitable container. In a specific embodiment, the kit includes two polynucleotide probes defining an internal region of the polynucleotide ofthe present invention, where each probe has one strand containing a 31 'mer-end internal to the region. In a further embodiment, the probes may be useful as primers for polymerase chain reaction amplification.
Where a diagnosis of a disorder, has already been made according to conventional methods, the present invention is useful as a prognostic indicator, whereby patients exhibiting enhanced or depressed polynucleotide ofthe present invention expression will experience a worse clinical outcome relative to patients expressing the gene at a level nearer the standard level.
By "measuring the expression level of polynucleotide ofthe present invention" is intended qualitatively or quantitatively measuring or estimating the level ofthe polypeptide ofthe present invention or the level ofthe mRNA encoding the polypeptide in a first biological sample either directly (e.g., by determining or estimating absolute protein level or mRNA level) or relatively (e.g., by comparing to the polypeptide level or mRNA level in a second biological sample). Preferably, the polypeptide level or mRNA level in the first biological sample is measured or estimated and compared to a standard polypeptide level or mRNA level, the standard being taken from a second biological sample obtained from an individual not having the disorder or being determined by averaging levels from a population of individuals not having a disorder. As will be appreciated in the art, once a standard polypeptide level or mRNA level is known, it can be used repeatedly as a standard for comparison. By "biological sample" is intended any biological sample obtained from an individual, body fluid, cell line, tissue culture, or other source which contains the polypeptide ofthe present invention or mRNA. As indicated, biological samples
include body fluids (such as semen, lymph, sera, plasma, urine, synovial fluid and spinal fluid) which contain the polypeptide ofthe present invention, and other tissue sources found to express the polypeptide ofthe present invention. Methods for obtaining tissue biopsies and body fluids from mammals are well known in the art. Where the biological sample is to include mRNA, a tissue biopsy is the preferred source.
The method(s) provided above may preferrably be applied in a diagnostic method and/or kits in which polynucleotides and/or polypeptides are attached to a solid support. In one exemplary method, the support may be a "gene chip" or a "biological chip" as described in US Patents 5,837,832, 5,874,219, and 5,856,174. Further, such a gene chip with polynucleotides ofthe present invention attached may be used to identify polymoφhisms between the polynucleotide sequences, with polynucleotides isolated from a test subject. The knowledge of such polymoφhisms (i.e. their location, as well as, their existence) would be beneficial in identifying disease loci for many disorders, including cancerous diseases and conditions. Such a method is described in US Patents 5,858,659 and 5,856,104. The US Patents referenced supra are hereby incoφorated by reference in their entirety herein.
The present invention encompasses polynucleotides ofthe present invention that are chemically synthesized, or reproduced as peptide nucleic acids (PNA), or according to other methods known in the art. The use of PNAs would serve as the preferred form if the polynucleotides are incoφorated onto a solid support, or gene chip. For the puφoses ofthe present invention, a peptide nucleic acid (PNA) is a polyamide type of DNA analog and the monomeric units for adenine, guanine, thymine and cytosine are available commercially (Perceptive Biosystems). Certain components of DNA, such as phosphorus, phosphorus oxides, or deoxyribose derivatives, are not present in PNAs. As disclosed by P. E. Nielsen, M. Egholm, R. H. Berg and O. Buchardt, Science 254, 1497 (1991); and M. Egholm, O. Buchardt, L.Christensen, C. Behrens, S. M. Freier, D. A. Driver, R. H. Berg, S. K. Kim, B. Norden, and P. E. Nielsen, Nature 365, 666 (1993), PNAs bind specifically and tightly to complementary DNA strands and are not degraded by nucleases. In fact, PNA binds more strongly to DNA than DNA itself does. This is probably because there is no electrostatic repulsion between the two strands, and also the polyamide
backbone is more flexible. Because of this, PNA/DNA duplexes bind under a wider range of stringency conditions than DNA/DNA duplexes, making it easier to perform multiplex hybridization. Smaller probes can be used than with DNA due to the strong binding. In addition, it is more likely that single base mismatches can be determined with PNA/DNA hybridization because a single mismatch in a PNA/DNA 15-mer lowers the melting point (T.sub.m) by 8°-20° C, vs. 4°-16° C for the DNA/DNA 15- mer duplex. Also, the absence of charge groups in PNA means that hybridization can be done at low ionic strengths and reduce possible interference by salt during the analysis. The present invention is useful for detecting cancer in mammals. In particular the invention is useful during diagnosis of pathological cell proliferative neoplasias which include, but are not limited to: acute myelogenous leukemias including acute monocytic leukemia, acute myeloblastic leukemia, acute promyelocytic leukemia, acute myelomonocytic leukemia, acute erythroleukemia, acute megakaryocytic leukemia, and acute undifferentiated leukemia, etc.; and chronic myelogenous leukemias including chronic myelomonocytic leukemia, chronic granulocytic leukemia, etc. Preferred mammals include monkeys, apes, cats, dogs, cows, pigs, horses, rabbits and humans. Particularly preferred are humans.
Pathological cell proliferative diseases, disorders, and or conditions are often associated with inappropriate activation of proto-oncogenes. (Gelmann, E. P. et al., "The Etiology of Acute Leukemia: Molecular Genetics and Viral Oncology," in Neoplastic Diseases of the Blood, Vol 1., Wiemik, P. H. et al. eds., 161-182 (1985)). Neoplasias are now believed to result from the qualitative alteration of a normal cellular gene product, or from the quantitative modification of gene expression by insertion into the chromosome of a viral sequence, by chromosomal translocation of a gene to a more actively transcribed region, or by some other mechanism. (Gelmann et al., supra) It is likely that mutated or altered expression of specific genes is involved in the pathogenesis of some leukemias, among other tissues and cell types. (Gelmann et al., supra) Indeed, the human counteφarts ofthe oncogenes involved in some animal neoplasias have been amplified or translocated in some cases of human leukemia and carcinoma. (Gelmann et al., supra)
For example, c-myc expression is highly amplified in the non-lymphocytic leukemia cell line HL-60. When HL-60 cells are chemically induced to stop proliferation, the level of c-myc is found to be downregulated. (International Publication Number WO 91/15580) However, it has been shown that exposure of HL-60 cells to a DNA construct that is complementary to the 5' end of c-myc or c- myb blocks translation of the corresponding mRNAs which downregulates expression ofthe c-myc or c-myb proteins and causes arrest of cell proliferation and differentiation ofthe treated cells. (International Publication Number WO 91/15580; Wickstrom et al., Proc. Natl. Acad. Sci. 85:1028 (1988); Anfossi et al., Proc. Natl. Acad. Sci. 86:3379 (1989)). However, the skilled artisan would appreciate the present invention's usefulness would not be limited to treatment of proliferative diseases, disorders, and/or conditions of hematopoietic cells and tissues, in light ofthe numerous cells and cell types of varying origins which are known to exhibit proliferative phenotypes. In addition to the foregoing, a polynucleotide can be used to control gene expression through triple helix formation or antisense DNA or RNA. Antisense techniques are discussed, for example, in Okano, J. Neurochem. 56: 560 (1991); "Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression,CRCPress, Boca Raton, FL (1988). Triple helix formation is discussed in, for instance Lee et al., Nucleic Acids Research 6: 3073 (1979); Cooney et al., Science 241 : 456 (1988); and Dervan et al., Science 251 : 1360 (1991). Both methods rely on binding ofthe polynucleotide to a complementary DNA or RNA. For these techniques, preferred polynucleotides are usually oligonucleotides 20 to 40 bases in length and complementary to either the region ofthe gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241 :456
(1988); and Dervan et al., Science 251 :1360 (1991) ) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxy-nucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988).) Triple helix formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques are effective in model systems, and the information
disclosed herein can be used to design antisense or triple helix polynucleotides in an effort to treat or prevent disease.
Polynucleotides ofthe present invention are also useful in gene therapy. One goal of gene therapy is to insert a normal gene into an organism having a defective gene, in an effort to correct the genetic defect. The polynucleotides disclosed in the present invention offer a means of targeting such genetic defects in a highly accurate manner. Another goal is to insert a new gene that was not present in the host genome, thereby producing a new trait in the host cell.
The polynucleotides are also useful for identifying individuals from minute biological samples. The United States military, for example, is considering the use of restriction fragment length polymoφhism (RFLP) for identification of its personnel. In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identifying personnel. This method does not suffer from the current limitations of "Dog Tags" which can be lost, switched, or stolen, making positive identification difficult. The polynucleotides ofthe present invention can be used as additional DNA markers for RFLP.
The polynucleotides ofthe present invention can also be used as an alternative to RFLP, by determining the actual base-by-base DNA sequence of selected portions of an individual's genome. These sequences can be used to prepare PCR primers for amplifying and isolating such selected DNA, which can then be sequenced. Using this technique, individuals can be identified because each individual will have a unique set of DNA sequences. Once an unique ID database is established for an individual, positive identification of that individual, living or dead, can be made from extremely small tissue samples.
Forensic biology also benefits from using DNA-based identification techniques as disclosed herein. DNA sequences taken from very small biological samples such as tissues, e.g., hair or skin, or body fluids, e.g., blood, saliva, semen, synovial fluid, amniotic fluid, breast milk, lymph, pulmonary sputum or surfactant,urine,fecal matter, etc., can be amplified using PCR. In one prior art technique, gene sequences amplified from polymoφhic loci, such as DQa class II HLA gene, are used in forensic biology to identify individuals. (Erlich, H., PCR
Technology, Freeman and Co. (1992).) Once these specific polymoφhic loci are amplified, they are digested with one or more restriction enzymes, yielding an identifying set of bands on a Southern blot probed with DNA corresponding to the DQa class II HLA gene. Similarly, polynucleotides ofthe present invention can be used as polymoφhic markers for forensic puφoses.
There is also a need for reagents capable of identifying the source of a particular tissue. Such need arises, for example, in forensics when presented with tissue of unknown origin. Appropriate reagents can comprise, for example, DNA probes or primers specific to particular tissue prepared from the sequences ofthe present invention. Panels of such reagents can identify tissue by species and/or by organ type. In a similar fashion, these reagents can be used to screen tissue cultures for contamination.
In the very least, the polynucleotides ofthe present invention can be used as molecular weight markers on Southern gels, as diagnostic probes for the presence of a specific mRNA in a particular cell type, as a probe to "subtract-out" known sequences in the process of discovering novel polynucleotides, for selecting and making oligomers for attachment to a "gene chip" or other support, to raise anti-DNA antibodies using DNA immunization techniques, and as an antigen to elicit an immune response.
Uses of the Polypeptides
Each ofthe polypeptides identified herein can be used in numerous ways. The following description should be considered exemplary and utilizes known techniques. A polypeptide of the present invention can be used to assay protein levels in a biological sample using antibody-based techniques. For example, protein expression in tissues can be studied with classical immunohistological methods. (Jalkanen, M., et al., J. Cell. Biol. 101:976-985 (1985); Jalkanen, M., et al., J. Cell . Biol. 105:3087- 3096 (1987).) Other antibody-based methods useful for detecting protein gene expression include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA). Suitable antibody assay labels are known in the art and include enzyme labels, such as, glucose oxidase, and radioisotopes, such as iodine (1251, 1211), carbon (14C), sulfur (35S), tritium (3H), indium (112In), and
technetium (99mTc), and fluorescent labels, such as fluorescein and rhodamine, and biotin.
In addition to assaying secreted protein levels in a biological sample, proteins can also be detected in vivo by imaging. Antibody labels or markers for in vivo imaging of protein include those detectable by X-radiography, NMR or ESR. For X- radiography, suitable labels include radioisotopes such as barium or cesium, which emit detectable radiation but are not overtly harmful to the subject. Suitable markers for NMR and ESR include those with a detectable characteristic spin, such as deuterium, which may be incoφorated into the antibody by labeling of nutrients for the relevant hybridoma.
A protein-specific antibody or antibody fragment which has been labeled with an appropriate detectable imaging moiety, such as a radioisotope (for example, 1311, 112In, 99mTc), a radio-opaque substance, or a material detectable by nuclear magnetic resonance, is introduced (for example, parenterally, subcutaneously, or intraperitoneally) into the mammal. It will be understood in the art that the size ofthe subject and the imaging system used will determine the quantity of imaging moiety needed to produce diagnostic images. In the case of a radioisotope moiety, for a human subject, the quantity of radioactivity injected will normally range from about 5 to 20 milhcuries of 99mTc. The labeled antibody or antibody fragment will then preferentially accumulate at the location of cells which contain the specific protein. In vivo tumor imaging is described in S.W. Burchiel et al., "Immunopharmacokinetics of Radiolabeled Antibodies and Their Fragments." (Chapter 13 in Tumor Imaging: The Radiochemical Detection of Cancer, S.W. Burchiel and B. A. Rhodes, eds., Masson Publishing Inc. (1982).) Thus, the invention provides a diagnostic method of a disorder, which involves (a) assaying the expression of a polypeptide ofthe present invention in cells or body fluid of an individual; (b) comparing the level of gene expression with a standard gene expression level, whereby an increase or decrease in the assayed polypeptide gene expression level compared to the standard expression level is indicative of a disorder. With respect to cancer, the presence of a relatively high amount of transcript in biopsied tissue from an individual may indicate a predisposition for the development ofthe disease, or may provide a means for
detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer. Moreover, polypeptides of the present invention can be used to treat, prevent, and/or diagnose disease. For example, patients can be administered a polypeptide of the present invention in an effort to replace absent or decreased levels ofthe polypeptide (e.g., insulin), to supplement absent or decreased levels of a different polypeptide (e.g., hemoglobin S for hemoglobin B, SOD, catalase, DNA repair proteins), to inhibit the activity of a polypeptide (e.g., an oncogene or tumor supressor), to activate the activity of a polypeptide (e.g., by binding to a receptor), to reduce the activity of a membrane bound receptor by competing with it for free ligand (e.g., soluble TNF receptors used in reducing inflammation), or to bring about a desired response (e.g., blood vessel growth inhibition, enhancement ofthe immune response to proliferative cells or tissues).
Similarly, antibodies directed to a polypeptide of the present invention can also be used to treat, prevent, and/or diagnose disease. For example, administration of an antibody directed to a polypeptide ofthe present invention can bind and reduce oveφroduction ofthe polypeptide. Similarly, administration of an antibody can activate the polypeptide, such as by binding to a polypeptide bound to a membrane (receptor).
At the very least, the polypeptides ofthe present invention can be used as molecular weight markers on SDS-PAGE gels or on molecular sieve gel filtration columns using methods well known to those of skill in the art. Polypeptides can also be used to raise antibodies, which in rum are used to measure protein expression from a recombinant cell, as a way of assessing transformation ofthe host cell. Moreover, the polypeptides ofthe present invention can be used to test the following biological activities.
Gene Therapy Methods
Another aspect ofthe present invention is to gene therapy methods for treatingor preventing disorders, diseases and conditions. The gene therapy methods relate to the introduction of nucleic acid (DNA, RNA and antisense DNA or RNA) sequences into an animal to achieve expression of a polypeptide ofthe present invention. This method requires a polynucleotide which codes for a polypeptide ofthe invention that operatively linked to a promoter and any other genetic elements necessary for the expression ofthe polypeptide by the target tissue. Such gene therapy and delivery techniques are known in the art, see, for example, WO90/11092, which is herein incoφorated by reference.
Thus, for example, cells from a patient may be engineered with a polynucleotide (DNA or RNA) comprising a promoter operably linked to a polynucleotide of the invention ex vivo, with the engineered cells then being provided to a patient to be treated with the polypeptide. Such methods are well-known in the art. For example, see Belldegrun et al., J. Natl. Cancer Inst., 85:207-216 (1993); Ferrantini et al., Cancer Research, 53:107-1112 (1993); Ferrantini et al., J. Immunology 153: 4604-4615 (1994); Kaido, T., et al., Int. J. Cancer 60: 221-229 (1995); Ogura et al., Cancer Research 50: 5102-5106 (1990); Santodonato, et al., Human Gene Therapy 7:1-10 (1996); Santodonato, et al., Gene Therapy 4:1246-1255 (1997); and Zhang, et al., Cancer Gene Therapy 3: 31-38 (1996)), which are herein incoφorated by reference. In one embodiment, the cells which are engineered are arterial cells. The arterial cells may be reintroduced into the patient through direct injection to the artery, the tissues surrounding the artery, or through catheter injection. As discussed in more detail below, the polynucleotide constructs can be delivered by any method that delivers injectable materials to the cells of an animal, such as, injection into the interstitial space of tissues (heart, muscle, skin, lung, liver, and the like). The polynucleotide constructs may be delivered in a pharmaceutically acceptable liquid or aqueous carrier.
In one embodiment, the polynucleotide ofthe invention is delivered as a naked polynucleotide. The term "naked" polynucleotide, DNA or RNA refers to sequences that are free from any delivery vehicle that acts to assist, promote or facilitate entry into the cell, including viral sequences, viral particles, liposome formulations,
lipofectin or precipitating agents and the like. However, the polynucleotides ofthe invention can also be delivered in liposome formulations and lipofectin formulations and the like can be prepared by methods well known to those skilled in the art. Such methods are described, for example, in U.S. Patent Nos. 5,593,972, 5,589,466, and 5,580,859, which are herein incoφorated by reference.
The polynucleotide vector constructs ofthe invention used in the gene therapy method are preferably constructs that will not integrate into the host genome nor will they contain sequences that allow for replication. Appropriate vectors include pWLNEO, pSV2CAT, pOG44, pXTl and pSG available from Stratagene; pSVK3, pBPV, pMSG and pSVL available from Pharmacia; and pEFl V5, pcDNA3.1, and pRc/CMV2 available from Invitrogen. Other suitable vectors will be readily apparent to the skilled artisan.
Any strong promoter known to those skilled in the art can be used for driving the expression of polynucleotide sequence ofthe invention. Suitable promoters include adenoviral promoters, such as the adenoviral major late promoter; or heterologous promoters, such as the cytomegalovirus (CMV) promoter; the respiratory syncytial virus (RSV) promoter; inducible promoters, such as the MMT promoter, the metallothionein promoter; heat shock promoters; the albumin promoter; the ApoAI promoter; human globin promoters; viral thymidine kinase promoters, such as the Heφes Simplex thymidine kinase promoter; retroviral LTRs; the b-actin promoter; and human growth hormone promoters. The promoter also may be the native promoter for the polynucleotides ofthe invention.
Unlike other gene therapy techniques, one major advantage of introducing naked nucleic acid sequences into target cells is the transitory nature ofthe polynucleotide synthesis in the cells. Studies have shown that non-replicating DNA sequences can be introduced into cells to provide production ofthe desired polypeptide for periods of up to six months.
The polynucleotide construct ofthe invention can be delivered to the interstitial space of tissues within the an animal, including of muscle, skin, brain, lung, liver, spleen, bone marrow, thymus, heart, lymph, blood, bone, cartilage, pancreas, kidney, gall bladder, stomach, intestine, testis,. ovary, uterus, rectum, nervous system, eye, gland, and connective tissue. Interstitial space ofthe tissues comprises the intercellular,
fluid, mucopolysaccharide matrix among the reticular fibers of organ tissues, elastic fibers in the walls of vessels or chambers, collagen fibers of fibrous tissues, or that same matrix within connective tissue ensheathing muscle cells or in the lacunae of bone. It is similarly the space occupied by the plasma ofthe circulation and the lymph fluid ofthe lymphatic channels. Delivery to the interstitial space of muscle tissue is preferred for the reasons discussed below. They may be conveniently delivered by injection into the tissues comprising these cells. They are preferably delivered to and expressed in persistent, non-dividing cells which are differentiated, although delivery and expression may be achieved in non-differentiated or less completely differentiated cells, such as, for example, stem cells of blood or skin fibroblasts. In vivo muscle cells are particularly competent in their ability to take up and express polynucleotides.
For the nakednucleic acid sequence injection, an effective dosage amount of DNA or RNA will be in the range of from about 0.05 mg/kg body weight to about 50 mg/kg body weight. Preferably the dosage will be from about 0.005 mg/kg to about 20 mg/kg and more preferably from about 0.05 mg/kg to about 5 mg/kg. Of course, as the artisan of ordinary skill will appreciate, this dosage will vary according to the tissue site of injection. The appropriate and effective dosage of nucleic acid sequence can readily be determined by those of ordinary skill in the art and may depend on the condition being treated and the route of administration. The preferred route of administration is by the parenteral route of injection into the interstitial space of tissues. However, other parenteral routes may also be used, such as, inhalation of an aerosol formulation particularly for delivery to lungs or bronchial tissues, throat or mucous membranes of the nose. In addition, naked DNA constructs can be delivered to arteries during angioplasty by the catheter used in the procedure.
The naked polynucleotides are delivered by any method known in the art, including, but not limited to, direct needle injection at the delivery site, intravenous injection, topical administration, catheter infusion, and so-called "gene guns". These delivery methods are known in the art. The constructs may also be delivered with delivery vehicles such as viral sequences, viral particles, liposome formulations, lipofectin, precipitating agents, etc. Such methods of delivery are known in the art.
In certain embodiments, the polynucleotide constructs ofthe invention are complexed in a liposome preparation. Liposomal preparations for use in the instant invention include cationic (positively charged), anionic (negatively charged) and neutral preparations. However, cationic liposomes are particularly preferred because a tight charge complex can be formed between the cationic liposome and the polyanionic nucleic acid. Cationic liposomes have been shown to mediate intracellular delivery of plasmid DNA (Feigner et al., Proc. Natl. Acad. Sci. USA , 84:7413-7416 (1987), which is herein incoφorated by reference); mRNA (Malone et al., Proc. Natl. Acad. Sci. USA , 86:6077-6081 (1989), which is herein incoφorated by reference); and purified transcription factors (Debs et al., J. Biol. Chem.,
265:10189-10192 (1990), which is herein incoφorated by reference), in functional form.
Cationic liposomes are readily available. For example, N[l-2,3-dioleyloxy)propyl]-N,N,N-triethylammonium (DOTMA) liposomes are particularly useful and are available under the trademark Lipofectin, from GIBCO BRL, Grand Island, N.Y. (See, also, Feigner et al., Proc. Natl Acad. Sci. USA , 84:7413-7416 (1987), which is herein incoφorated by reference). Other commercially available liposomes include transfectace (DDAB/DOPE) and DOTAP/DOPE (Boehringer). Other cationic liposomes can be prepared from readily available materials using techniques well known in the art. See, e.g. PCT Publication NO: WO 90/11092 (which is herein incoφorated by reference) for a description ofthe synthesis of DOTAP (l,2-bis(oleoyloxy)-3-(trimethylammonio)propane) liposomes. Preparation of DOTMA liposomes is explained in the literature, see, e.g., Feigner et al., Proc. Natl. Acad. Sci. USA, 84:7413-7417, which is herein incoφorated by reference.
Similar methods can be used to prepare liposomes from other cationic lipid materials.
Similarly, anionic and neutral liposomes are readily available, such as from Avanti Polar Lipids (Birmingham, Ala.), or can be easily prepared using readily available materials. Such materials include phosphatidyl, choline, cholesterol, phosphatidyl ethanolamine, dioleoylphosphatidyl choline (DOPC), dioleoylphosphatidyl glycerol (DOPG), dioleoylphoshatidyl ethanolamine (DOPE), among others. These materials can also be mixed with the DOTMA and DOTAP
starting materials in appropriate ratios. Methods for making liposomes using these materials are well known in the art.
For example, commercially dioleoylphosphatidyl choline (DOPC), dioleoylphosphatidyl glycerol (DOPG), and dioleoylphosphatidyl ethanolamine (DOPE) can be used in various combinations to make conventional liposomes, with or without the addition of cholesterol. Thus, for example, DOPG/DOPC vesicles can be prepared by drying 50 mg each of DOPG and DOPC under a stream of nitrogen gas into a sonication vial. The sample is placed under a vacuum pump overnight and is hydrated the following day with deionized water. The sample is then sonicated for 2 hours in a capped vial, using a Heat Systems model 350 sonicator equipped with an inverted cup (bath type) probe at the maximum setting while the bath is circulated at 15EC. Alternatively, negatively charged vesicles can be prepared without sonication to produce multilamellar vesicles or by extrusion through nucleopore membranes to produce unilamellar vesicles of discrete size. Other methods are known and available to those of skill in the art.
The liposomes can comprise multilamellar vesicles (MLVs), small unilamellar vesicles (SUVs), or large unilamellar vesicles (LUVs), with SUVs being preferred. The various liposome-nucleic acid complexes are prepared using methods well known in the art. See, e.g., Straubinger et al., Methods of Immunology , 101 :512-527 (1983), which is herein incoφorated by reference. For example, MLVs containing nucleic acid can be prepared by depositing a thin film of phospho lipid on the walls of a glass tube and subsequently hydrating with a solution ofthe material to be encapsulated. SUVs are prepared by extended sonication of MLVs to produce a homogeneous population of unilamellar liposomes. The material to be entrapped is added to a suspension of preformed MLVs and then sonicated. When using liposomes containing cationic lipids, the dried lipid film is resuspended in an appropriate solution such as sterile water or an isotonic buffer solution such as 10 mM Tris/NaCl, sonicated, and then the preformed liposomes are mixed directly with the DNA. The liposome and DNA form a very stable complex due to binding ofthe positively charged liposomes to the cationic DNA. SUVs find use with small nucleic acid fragments. LUVs are prepared by a number of methods, well known in the art. Commonly used methods include Ca2+-EDTA chelation (Papahadjopoulos et al., Biochim. Biophys. Acta,
394:483 (1975); Wilson et al., Cell , 17:77 (1979)); ether injection (Deamer et al., Biochim. Biophys. Acta, 443:629 (1976); Ostro et al., Biochem. Biophys. Res. Commun., 76:836 (1977); Fraley et al., Proc. Natl. Acad. Sci. USA, 76:3348 (1979)); detergent dialysis (Enoch et al., Proc. Natl. Acad. Sci. USA , 76:145 (1979)); and reverse-phase evaporation (REV) (Fraley et al., J. Biol. Chem., 255:10431 (1980); Szoka et al., Proc. Natl. Acad. Sci. USA , 75:145 (1978); Schaefer-Ridder et al., Science, 215:166 (1982)), which are herein incoφorated by reference.
Generally, the ratio of DNA to liposomes will be from about 10:1 to about 1:10. Preferably, the ration will be from about 5:1 to about 1:5. More preferably, the ration will be about 3 : 1 to about 1 :3. Still more preferably, the ratio will be about 1 :1. U.S. Patent NO: 5,676,954 (which is herein incoφorated by reference) reports on the injection of genetic material, complexed with cationic liposomes carriers, into mice. U.S. Patent Nos. 4,897,355, 4,946,787, 5,049,386, 5,459,127, 5,589,466, 5,693,622, 5,580,859, 5,703,055, and international publication NO: WO 94/9469 (which are herein incoφorated by reference) provide cationic lipids for use in transfecting DNA into cells and mammals. U.S. Patent Nos. 5,589,466, 5,693,622, 5,580,859, 5,703,055, and international publication NO: WO 94/9469 (which are herein incoφorated by reference) provide methods for delivering DNA-cationic lipid complexes to mammals. In certain embodiments, cells are engineered, ex vivo or in vivo, using a retroviral particle containing RNA which comprises a sequence encoding polypeptides of the invention. Retroviruses from which the retroviral plasmid vectors may be derived include, but are not limited to, Moloney Murine Leukemia Virus, spleen necrosis virus, Rous sarcoma Virus, Harvey Sarcoma Virus, avian leukosis virus, gibbon ape leukemia virus, human immunodeficiency virus, Myeloproliferative Sarcoma Virus, and mammary tumor virus.
The retroviral plasmid vector is employed to transduce packaging cell lines to form producer cell lines. Examples of packaging cells which may be transfected include, but are not limited to, the PE501, PA317, R-2, R-AM, PA12, T19-14X, VT- 19-17-H2, RCRE, RCREP, GP+E-86, GP+envAml2, and DAN cell lines as described in Miller, Human Gene Therapy , 1 :5-14 (1990), which is incoφorated herein by reference in its entirety. The vector may transduce the packaging cells through any
means known in the art. Such means include, but are not limited to, electroporation, the use of liposomes, and CaPO4 precipitation. In one alternative, the retroviral plasmid vector may be encapsulated into a liposome, or coupled to a lipid, and then administered to a host. The producer cell line generates infectious retroviral vector particles which include polynucleotide encoding polypeptides ofthe invention. Such retroviral vector particles then may be employed, to transduce eukaryotic cells, either in vitro or in vivo. The transduced eukaryotic cells will express polypeptides ofthe invention. In certain other embodiments, cells are engineered, ex vivo or in vivo, with polynucleotides ofthe invention contained in an adenovirus vector. Adenovirus can be manipulated such that it encodes and expresses polypeptides ofthe invention, and at the same time is inactivated in terms of its ability to replicate in a normal lytic viral life cycle. Adenovirus expression is achieved without integration ofthe viral DNA into the host cell chromosome, thereby alleviating concerns about insertional mutagenesis. Furthermore, adenoviruses have been used as live enteric vaccines for many years with an excellent safety profile (Schwartzet al., Am. Rev. Respir. Dis., 109:233-238 (1974)). Finally, adenovirus mediated gene transfer has been demonstrated in a number of instances including transfer of alpha- 1 -antitrypsin and CFTR to the lungs of cotton rats (Rosenfeld et al.,Science , 252:431-434 (1991); Rosenfeld et al., Cell, 68:143-155 (1992)). Furthermore, extensive studies to attempt to establish adenovirus as a causative agent in human cancer were uniformly negative (Green et al. Proc. Natl. Acad. Sci. USA , 76:6606 (1979)).
Suitable adenoviral vectors useful in the present invention are described, for example, in Kozarsky and Wilson, Curr. Opin. Genet. Devel., 3:499-503 (1993); Rosenfeld et al., Cell , 68:143-155 (1992); Engelhardt et al., Human Genet. Ther., 4:759-769 (1993); Yang et al., Nature Genet., 7:362-369 (1994); Wilson et al., Nature , 365:691-692 (1993); and U.S. Patent NO: 5,652,224, which are herein incoφorated by reference. For example, the adenovirus vector Ad2 is useful and can be grown in human 293 cells. These cells contain the El region of adenovirus and constitutively express Ela and Elb, which complement the defective adenoviruses by providing the products ofthe genes deleted from the vector. In addition to Ad2, other
varieties of adenovirus (e.g., Ad3, Ad5, and Ad7) are also useful in the present invention.
Preferably, the adenoviruses used in the present invention are replication deficient. Replication deficient adenoviruses require the aid of a helper virus and/or packaging cell line to form infectious particles. The resulting virus is capable of infecting cells and can express a polynucleotide of interest which is operably linked to a promoter, but cannot replicate in most cells. Replication deficient adenoviruses may be deleted in one or more of all or a portion of the following genes: Ela, Elb, E3, E4, E2a, or LI through L5. In certain other embodiments, the cells are engineered, ex vivo or in vivo, using an adeno-associated virus (AAV). AAVs are naturally occurring defective viruses that require helper viruses to produce infectious particles (Muzyczka, Curr. Topics in Microbiol. Immunol., 158:97 (1992)). It is also one ofthe few viruses that may integrate its DNA into non-dividing cells. Vectors containing as little as 300 base pairs of AAV can be packaged and can integrate, but space for exogenous DNA is limited to about 4.5 kb. Methods for producing and using such AAVs are known in the art. See, for example, U.S. Patent Nos. 5,139,941, 5,173,414, 5,354,678, 5,436,146, 5,474,935, 5,478,745, and 5,589,377.
For example, an appropriate AAV vector for use in the present invention will include all the sequences necessary for DNA replication, encapsidation, and host-cell integration. The polynucleotide construct containing polynucleotides ofthe invention is inserted into the AAV vector using standard cloning methods, such as those found in Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press (1989). The recombinant AAV vector is then transfected into packaging cells which are infected with a helper virus, using any standard technique, including lipofection, electroporation, calcium phosphate precipitation, etc. Appropriate helper viruses include adenoviruses, cytomegaloviruses, vaccinia viruses, or heφes viruses. Once the packaging cells are transfected and infected, they will produce infectious AAV viral particles which contain the polynucleotide construct ofthe invention. These viral particles are then used to transduce eukaryotic cells, either ex vivo or in vivo. The transduced cells will contain the polynucleotide construct integrated into its genome, and will express the desired gene product.
Another method of gene therapy involves operably associating heterologous control regions and endogenous polynucleotide sequences (e.g. encoding the polypeptide sequence of interest) via homologous recombination (see, e.g., U.S. Patent NO: 5,641,670, issued June 24, 1997; International Publication NO: WO 96/29411 , published September 26, 1996; international Publication NO: WO 94/12650, published August 4, 1994; Koller et al., Proc. Natl. Acad. Sci. USA, 86:8932-8935 (1989); and Zijlstra et al., Nature, 342:435-438 (1989). This method involves the activation of a gene which is present in the target cells, but which is not normally expressed in the cells, or is expressed at a lower level than desired. Polynucleotide constructs are made, using standard techniques known in the art, which contain the promoter with targeting sequences flanking the promoter. Suitable promoters are described herein. The targeting sequence is sufficiently complementary to an endogenous sequence to permit homologous recombination of the promoter-targeting sequence with the endogenous sequence. The targeting sequence will be sufficiently near the 5 ' end of the desired endogenous polynucleotide sequence so the promoter will be operably linked to the endogenous sequence upon homologous recombination.
The promoter and the targeting sequences can be amplified using PCR. ' Preferably, the amplified promoter contains distinct restriction enzyme sites on the 5 ' and 3 ' ends. Preferably, the 3 ' end ofthe first targeting sequence contains the same restriction enzyme site as the 5 ' end ofthe amplified promoter and the 5 ' end ofthe second targeting sequence contains the same restriction site as the 3' end ofthe amplified promoter. The amplified promoter and targeting sequences are digested and ligated together. The promoter-targeting sequence construct is delivered to the cells, either as naked polynucleotide, or in conjunction with transfection-facilitating agents, such as liposomes, viral sequences, viral particles, whole viruses, lipofection, precipitating agents, etc., described in more detail above. The P promoter-targeting sequence can be delivered by any method, included direct needle injection, intravenous injection, topical administration, catheter infusion, particle accelerators, etc. The methods are described in more detail below.
The promoter-targeting sequence construct is taken up by cells. Homologous recombination between the construct and the endogenous sequence takes place, such that an endogenous sequence is placed under the control ofthe promoter. The promoter then drives the expression ofthe endogenous sequence. The polynucleotides encoding polypeptides of the present invention may be administered along with other polynucleotides encoding other angiongenic proteins. Angiogenic proteins include, but are not limited to, acidic and basic fibroblast growth factors, VEGF-1, VEGF-2 (VEGF-C), VEGF-3 (VEGF-B), epidermal growth factor alpha and beta, platelet-derived endothelial cell growth factor, platelet-derived growth factor, tumor necrosis factor alpha, hepatocyte growth factor, insulin like growth factor, colony stimulating factor, macrophage colony stimulating factor, granulocyte/macrophage colony stimulating factor, and nitric oxide synthase. Preferably, the polynucleotide encoding a polypeptide ofthe invention contains a secretory signal sequence that facilitates secretion ofthe protein. Typically, the signal sequence is positioned in the coding region ofthe polynucleotide to be expressed towards or at the 5' end ofthe coding region. The signal sequence may be homologous or heterologous to the polynucleotide of interest and may be homologous or heterologous to the cells to be transfected. Additionally, the signal sequence may be chemically synthesized using methods known in the art. Any mode of administration of any of the above-described polynucleotides constructs can be used so long as the mode results in the expression of one or more molecules in an amount sufficient to provide a therapeutic effect. This includes direct needle injection, systemic injection, catheter infusion, biolistic injectors, particle accelerators (i.e., "gene guns"), gelfoam sponge depots, other commercially available depot materials, osmotic pumps (e.g., Alza minipumps), oral or suppositorial solid (tablet or pill) pharmaceutical formulations, and decanting or topical applications during surgery. For example, direct injection of naked calcium phosphate-precipitated plasmid into rat liver and rat spleen or a protein-coated plasmid into the portal vein has resulted in gene expression ofthe foreign gene in the rat livers. (Kaneda et al., Science, 243:375 (1989)).
A preferred method of local administration is by direct injection. Preferably, a recombinant molecule ofthe present invention complexed with a delivery vehicle is
administered by direct injection into or locally within the area of arteries. Administration of a composition locally within the area of arteries refers to injecting the composition centimeters and preferably, millimeters within arteries.
Another method of local administration is to contact a polynucleotide construct ofthe present invention in or around a surgical wound. For example, a patient can undergo surgery and the polynucleotide construct can be coated on the surface of tissue inside the wound or the construct can be injected into areas of tissue inside the wound.
Therapeutic compositions useful in systemic administration, include recombinant molecules of the present invention complexed to a targeted delivery vehicle ofthe present invention. Suitable delivery vehicles for use with systemic administration comprise liposomes comprising ligands for targeting the vehicle to a particular site.
Preferred methods of systemic administration, include intravenous injection, aerosol, oral and percutaneous (topical) delivery. Intravenous injections can be performed using methods standard in the art. Aerosol delivery can also be performed using methods standard in the art (see, for example, Stribling et al., Proc. Natl. Acad. Sci. USA , 189:11277-11281 (1992), which is incoφorated herein by reference). Oral delivery can be performed by complexing a polynucleotide construct ofthe present invention to a carrier capable of withstanding degradation by digestive enzymes in the gut of an animal. Examples of such carriers, include plastic capsules or tablets, such as those known in the art. Topical delivery can be performed by mixing a polynucleotide construct ofthe present invention with a lipophilic reagent (e.g., DMSO) that is capable of passing into the skin. Determining an effective amount of substance to be delivered can depend upon a number of factors including, for example, the chemical structure and biological activity ofthe substance, the age and weight ofthe animal, the precise condition requiring treatment and its severity, and the route of administration. The frequency of treatments depends upon a number of factors, such as the amount of polynucleotide constructs administered per dose, as well as the health and history of the subject. The precise amount, number of doses, and timing of doses will be determined by the attending physician or veterinarian. Therapeutic compositions of
the present invention can be administered to any animal, preferably to mammals and birds. Preferred mammals include humans, dogs, cats, mice, rats, rabbits sheep, cattle, horses and pigs, with humans being particularly
Biological Activities
The polynucleotides or polypeptides, or agonists or antagonists ofthe present invention can be used in assays to test for one or more biological activities. If these polynucleotides and polypeptides do exhibit activity in a particular assay, it is likely that these molecules may be involved in the diseases associated with the biological activity. Thus, the polynucleotides or polypeptides, or agonists or antagonists could be used to treat the associated disease.
Polynucleotides, translation products and antibodies corresponding to this gene may be useful for the diagnosis, prognosis, prevention, and/or treatment of diseases and/or disorders associated with the following systems.
Immune Activity
Polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention may be useful in treating, preventing, diagnosing and/or prognosing diseases, disorders, and/or conditions ofthe immune system, by, for example, activating or inhibiting the proliferation, differentiation, or mobilization (chemotaxis) of immune cells. Immune cells develop through a process called hematopoiesis, producing myeloid (platelets, red blood cells, neutrophils, and macrophages) and lymphoid (B and T lymphocytes) cells from pluripotent stem cells. The etiology of these immune diseases, disorders, and/or conditions may be genetic, somatic, such as cancer and some autoimmune diseases, acquired (e.g., by chemotherapy or toxins), or infectious. Moreover, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention can be used as a marker or detector of a particular immune system disease or disorder. In another embodiment, a polypeptide ofthe invention, or polynucleotides, antibodies, agonists, or antagonists corresponding to that polypeptide, may be used to treat diseases and disorders ofthe immune system and/or to inhibit or enhance an
immune response generated by cells associated with the tissue(s) in which the polypeptide ofthe invention is expressed, including one, two, three, four, five, or more tissues disclosed in Table 1 , column 8 (Tissue Distribution Library Code).
Polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention may be useful in treating, preventing, diagnosing, and/or prognosing immunodeficiencies, including both congenital and acquired immunodeficiencies. Examples of B cell immunodeficiencies in which immunoglobulin levels B cell function and/or B cell numbers are decreased include: X-linked agammaglobulinemia (Bruton's disease), X-linked infantile agammaglobulinemia, X-linked immunodeficiency with hyper IgM, non X-linked immunodeficiency with hyper IgM, X-linked lymphoproliferative syndrome (XLP), agammaglobulinemia including congenital and acquired agammaglobulinemia, adult onset agammaglobulinemia, late- onset agammaglobulinemia, dysgammaglobulinemia, hypogammaglobulinemia, unspecified hypogammaglobulinemia, recessive agammaglobulinemia (Swiss type), Selective IgM deficiency, selective IgA deficiency, selective IgG subclass deficiencies, IgG subclass deficiency (with or without IgA deficiency), lg deficiency with increased IgM, IgG and IgA deficiency with increased IgM, antibody deficiency with normal or elevated Igs, lg heavy chain deletions, kappa chain deficiency, B cell lymphoproliferative disorder (BLPD), common variable immunodeficiency (CVID), common variable immunodeficiency (CVI) (acquired), and transient . hypogammaglobulinemia of infancy.
In specific embodiments, ataxia-telangiectasia or conditions associated with ataxia-telangiectasia are treated, prevented, diagnosed, and/or prognosing using the polypeptides or polynucleotides of the invention, and/or agonists or antagonists thereof.
Examples of congenital immunodeficiencies in which T cell and or B cell function and/or number is decreased include, but are not limited to: DiGeorge anomaly, severe combined immunodeficiencies (SCID) (including, but not limited to, X-linked SCID, autosomal recessive SCID, adenosine deaminase deficiency, purine nucleoside phosphorylase (PNP) deficiency, Class II MHC deficiency (Bare lymphocyte syndrome), Wiskott-Aldrich syndrome, and ataxia telangiectasia), thymic hypoplasia, third and fourth pharyngeal pouch syndrome, 22ql 1.2 deletion, chronic
mucocutaneous candidiasis, natural killer cell deficiency (NK), idiopathic CD4+ T- lymphocytopenia, immunodeficiency with predominant T cell defect (unspecified), and unspecified immunodeficiency of cell mediated immunity.
In specific embodiments, DiGeorge anomaly or conditions associated with DiGeorge anomaly are treated, prevented, diagnosed, and/or prognosed using polypeptides or polynucleotides ofthe invention, or antagonists or agonists thereof. Other immunodeficiencies that may be treated, prevented, diagnosed, and/or prognosed using polypeptides or polynucleotides ofthe invention, and/or agonists or antagonists thereof, include, but are not limited to, chronic granulomatous disease, Chediak-Higashi syndrome, myeloperoxidase deficiency, leukocyte glucose-6- phosphate dehydrogenase deficiency, X-linked lymphoproliferative syndrome (XLP), leukocyte adhesion deficiency, complement component deficiencies (including Cl, C2, C3, C4, C5, C6, C7, C8 and/or C9 deficiencies), reticular dysgenesis, thymic alymphoplasia-aplasia, immunodeficiency with thymoma, severe congenital leukopenia, dysplasia with immunodeficiency, neonatal neutropenia, short limbed dwarfism, and Nezelof syndrome-combined immunodeficiency with Igs.
In a preferred embodiment, the immunodeficiencies and/or conditions associated with the immunodeficiencies recited above are treated, prevented, diagnosed and/or prognosed using polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention.
In a preferred embodiment polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention could be used as an agent to boost immunoresponsiveness among immunodeficient individuals. In specific embodiments, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention could be used as an agent to boost immunoresponsiveness among B cell and or T cell immunodeficient individuals.
The polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention may be useful in treating, preventing, diagnosing and/or prognosing autoimmune disorders. Many autoimmune disorders result from inappropriate recognition of self as foreign material by immune cells. This inappropriate recognition results in an immune response leading to the destruction of the host tissue. Therefore, the administration of polynucleotides and polypeptides of
the invention that can inhibit an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing autoimmune disorders.
Autoimmune diseases or disorders that may be treated, prevented, diagnosed and/or prognosed by polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention include, but are not limited to, one or more ofthe following: systemic lupus erythematosus, rheumatoid arthritis, ankylosing spondylitis, multiple sclerosis, autoimmune thyroiditis, Hashimoto's thyroiditis, autoimmune hemolytic anemia, hemolytic anemia, thrombocytopenia, autoimmune thrombocytopenia puφura, autoimmune neonatal thrombocytopenia, idiopathic thrombocytopenia puφura, puφura (e.g., Henloch-Scoenlein puφura), autoimmunocytopenia, Goodpasture's syndrome, Pemphigus vulgaris, myasthenia gravis, Grave's disease (hyperthyroidism), and insulin-resistant diabetes mellitus. Additional disorders that are likely to have an autoimmune component that may be treated, prevented, and/or diagnosed with the compositions ofthe invention include, but are not limited to, type II collagen-induced arthritis, antiphospholipid syndrome, dermatitis, allergic encephalomyelitis, myocarditis, relapsing polychondritis, rheumatic heart disease, neuritis, uveitis ophthalmia, polyendocrinopathies, Reiter's Disease, Stiff-Man Syndrome, autoimmune pulmonary inflammation, autism, Guillain-Barre Syndrome, insulin dependent diabetes mellitus, and autoimmune inflammatory eye disorders.
Additional disorders that are likely to have an autoimmune component that may be treated, prevented, diagnosed and/or prognosed with the compositions ofthe invention include, but are not limited to, scleroderma with anti-collagen antibodies (often characterized, e.g., by nucleolar and other nuclear antibodies), mixed connective tissue disease (often characterized, e.g., by antibodies to extractable nuclear antigens (e.g., ribonucleoprotein)), polymyositis (often characterized, e.g., by nonhistone ANA), pernicious anemia (often characterized, e.g., by antiparietal cell, microsomes, and intrinsic factor antibodies), idiopathic Addison's disease (often characterized, e.g., by humoral and cell-mediated adrenal cytotoxicity, infertility
(often characterized, e.g., by antispermatozoal antibodies), glomerulonephritis (often characterized, e.g., by glomerular basement membrane antibodies or immune
complexes), bullous pemphigoid (often characterized, e.g., by IgG and complement in basement membrane), Sjogren's syndrome (often characterized, e.g., by multiple tissue antibodies, and/or a specific nonhistone ANA (SS-B)), diabetes mellitus (often characterized, e.g., by cell-mediated and humoral islet cell antibodies), and adrenergic drug resistance (including adrenergic drug resistance with asthma or cystic fibrosis) (often characterized, e.g., by beta-adrenergic receptor antibodies).
Additional disorders that may have an autoimmune component that may be treated, prevented, diagnosed and/or prognosed with the compositions ofthe invention include, but are not limited to, chronic active hepatitis (often characterized, e.g., by smooth muscle antibodies), primary biliary cirrhosis (often characterized, e.g., by mitochondria antibodies), other endocrine gland failure (often characterized, e.g., by specific tissue antibodies in some cases), vitiligo (often characterized, e.g., by melanocyte antibodies), vasculitis (often characterized, e.g., by lg and complement in vessel walls and/or low serum complement), post-MI (often characterized, e.g., by myocardial antibodies), cardiotomy syndrome (often characterized, e.g., by myocardial antibodies), urticaria (often characterized, e.g., by IgG and IgM antibodies to IgE), atopic dermatitis (often characterized, e.g., by IgG and IgM antibodies to IgE), asthma (often characterized, e.g., by IgG and IgM antibodies to IgE), and many other inflammatory, granulomatous, degenerative, and atrophic disorders. In a preferred embodiment, the autoimmune diseases and disorders and/or conditions associated with the diseases and disorders recited above are treated, prevented, diagnosed and/or prognosed using for example, antagonists or agonists, polypeptides or polynucleotides, or antibodies ofthe present invention. In a specific preferred embodiment, rheumatoid arthritis is treated, prevented, and/or diagnosed using polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention.
In another specific preferred embodiment, systemic lupus erythematosus is treated, prevented, and/or diagnosed using polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention. In another specific preferred embodiment, idiopathic thrombocytopenia puφura is treated, prevented, and/or diagnosed using polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention.
In another specific preferred embodiment IgA nephropathy is treated, prevented, and/or diagnosed using polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention.
In a preferred embodiment, the autoimmune diseases and disorders and/or conditions associated with the diseases and disorders recited above are treated, prevented, diagnosed and/or prognosed using polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention
In preferred embodiments, polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention are used as a immunosuppressive agent(s).
Polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention may be useful in treating, preventing, prognosing, and/or diagnosing diseases, disorders, and/or conditions of hematopoietic cells. Polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention could be used to increase differentiation and proliferation of hematopoietic cells, including the pluripotent stem cells, in an effort to treat or prevent those diseases, disorders, and/or conditions associated with a decrease in certain (or many) types hematopoietic cells, including but not limited to, leukopenia, neutropenia, anemia, and thrombocytopenia. Alternatively, Polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention could be used to increase differentiation and proliferation of hematopoietic cells, including the pluripotent stem cells, in an effort to treat or prevent those diseases, disorders, and/or conditions associated with an increase in certain (or many) types of hematopoietic cells, including but not limited to, histiocytosis. Allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems, may also be treated, prevented, diagnosed and/or prognosed using polypeptides, antibodies, or polynucleotides ofthe invention, and/or agonists or antagonists thereof. Moreover, these molecules can be used to treat, prevent, prognose, and/or diagnose anaphylaxis, hypersensitivity to an antigenic molecule, or blood group incompatibility.
Additionally, polypeptides or polynucleotides ofthe invention, and/or agonists or antagonists thereof, may be used to treat, prevent, diagnose and/or prognose
IgE-mediated allergic reactions. Such allergic reactions include, but are not limited to, asthma, rhinitis, and eczema. In specific embodiments, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention may be used to modulate IgE concentrations in vitro or in vivo. Moreover, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention have uses in the diagnosis, prognosis, prevention, and/or treatment of inflammatory conditions. For example, since polypeptides, antibodies, or polynucleotides ofthe invention, and/or agonists or antagonists ofthe invention may inhibit the activation, proliferation and/or differentiation of cells involved in an inflammatory response, these molecules can be used to prevent and/or treat chronic and acute inflammatory conditions. Such inflammatory conditions include, but are not limited to, for example, inflammation associated with infection (e.g., septic shock, sepsis, or systemic inflammatory response syndrome), ischemia- reperfusion injury, endotoxin lethality, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine induced lung injury, inflammatory bowel disease, Crohn's disease, over production of cytokines (e.g., TNF or IL-1.), respiratory disorders (e.g., asthma and allergy); gastrointestinal disorders (e.g., inflammatory bowel disease); cancers (e.g., gastric, ovarian, lung, bladder, liver, and breast); CNS disorders (e.g., multiple sclerosis; ischemic brain injury and/or stroke, traumatic brain injury, neurodegenerative disorders (e.g., Parkinson's disease and Alzheimer's disease); AIDS-related dementia; and prion disease); cardiovascular disorders (e.g., atherosclerosis, myocarditis, cardiovascular disease, and cardiopulmonary bypass complications); as well as many additional diseases, conditions, and disorders that are characterized by inflammation (e.g., hepatitis, rheumatoid arthritis, gout, trauma, pancreatitis, sarcoidosis, dermatitis, renal ischemia-reperfusion injury, Grave's disease, systemic lupus erythematosus, diabetes mellitus, and allogenic transplant rejection).
Because inflammation is a fundamental defense mechanism, inflammatory disorders can effect virtually any tissue ofthe body. Accordingly, polynucleotides, polypeptides, and antibodies ofthe invention, as well as agonists or antagonists thereof, have uses in the treatment of tissue-specific inflammatory disorders, including, but not limited to, adrenalitis, alveolitis, angiocholecystitis, appendicitis,
balanitis, blepharitis, bronchitis, bursitis, carditis, cellulitis, cervicitis, cholecystitis, chorditis, cochlitis, colitis, conjunctivitis, cystitis, dermatitis, diverticulitis, encephalitis, endocarditis, esophagitis, eustachitis, fibrositis, folliculitis, gastritis, gastroenteritis, gingivitis, glossitis, hepatosplenitis, keratitis, labyrinthitis, laryngitis, lymphangitis, mastitis, media otitis, meningitis, metritis, mucitis, myocarditis, myosititis, myringitis, nephritis, neuritis, orchitis, osteochondritis, otitis, pericarditis, peritendonitis, peritonitis, pharyngitis, phlebitis, poliomyelitis, prostatitis, pulpitis, retinitis, rhinitis, salpingitis, scleritis, sclerochoroiditis, scrotitis, sinusitis, spondylitis, steatitis, stomatitis, synovitis, syringitis, tendonitis, tonsillitis, urethritis, and vaginitis. In specific embodiments, polypeptides, antibodies, or polynucleotides ofthe invention, and/or agonists or antagonists thereof, are useful to diagnose, prognose, prevent, and/or treat organ transplant rejections and graft-versus-host disease. Organ rejection occurs by host immune cell destruction ofthe transplanted tissue through an immune response. Similarly, an immune response is also involved in GVHD, but, in this case, the foreign transplanted immune cells destroy the host tissues.
Polypeptides, antibodies, or polynucleotides ofthe invention, and/or agonists or antagonists thereof, that inhibit an immune response, particularly the activation, proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing organ rejection or GVHD. In specific embodiments, polypeptides, antibodies, or polynucleotides ofthe invention, and/or agonists or antagonists thereof, that inhibit an immune response, particularly the activation, proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing experimental allergic and hyperacute xenograft rejection.
In other embodiments, polypeptides, antibodies, or polynucleotides ofthe invention, and/or agonists or antagonists thereof, are useful to diagnose, prognose, prevent, and/or treat immune complex diseases, including, but not limited to, serum sickness, post streptococcal glomerulonephritis, polyarteritis nodosa, and immune complex-induced vasculitis.
Polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe invention can be used to treat, detect, and/or prevent infectious agents. For example, by increasing the immune response, particularly increasing the proliferation activation and/or differentiation of B and/or T cells, infectious diseases may be treated, detected,
and/or prevented. The immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention may also directly inhibit the infectious agent (refer to section of application listing infectious agents, etc), without necessarily eliciting an immune response.
In another embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention are used as a vaccine adjuvant that enhances immune responsiveness to an antigen. In a specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention are used as an adjuvant to enhance tumor-specific immune responses.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention are used as an adjuvant to enhance anti-viral immune responses. Anti-viral immune responses that may be enhanced using the compositions ofthe invention as an adjuvant, include virus and virus associated diseases or symptoms described herein or otherwise known in the art. In specific embodiments, the compositions ofthe invention are used as an adjuvant to enhance an immune response to a virus, disease, or symptom selected from the group consisting of: AIDS, meningitis, Dengue, EBV, and hepatitis (e.g., hepatitis B). In another specific embodiment, the compositions ofthe invention are used as an adjuvant to enhance an immune response to a virus,* disease, or symptom selected from the group consisting of: HIV/ AIDS, respiratory syncytial virus, Dengue, rotavirus, Japanese B encephalitis, influenza A and B, parainfluenza, measles, cytomegalovirus, rabies, Junin, Chikungunya, Rift Valley Fever, heφes simplex, and yellow fever.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention are used as an adjuvant to enhance anti-bacterial or anti-fungal immune responses. Anti-bacterial or anti-fungal immune responses that may be enhanced using the compositions ofthe invention as an adjuvant, include bacteria or fungus and bacteria or fungus associated diseases or symptoms described herein or otherwise known in the art. In specific embodiments, the compositions ofthe invention are used as an adjuvant to enhance an immune
response to a bacteria or fungus, disease, or symptom selected from the group consisting of: tetanus, Diphtheria, botulism, and meningitis type B.
In another specific embodiment, the compositions ofthe invention are used as an adjuvant to enhance an immune response to a bacteria or fungus, disease, or symptom selected from the group consisting of: Vibrio cholerae, Mycobacterium leprae, Salmonella typhi, Salmonella paratyphi, Meisseria meningitidis, Streptococcus pneumoniae, Group B streptococcus, Shigella spp., Enterotoxigenic Escherichia coli, Enterohemorrhagic E. coli, and Borrelia burgdorferi.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention are used as an adjuvant to enhance anti-parasitic immune responses. Anti-parasitic immune responses that may be enhanced using the compositions ofthe invention as an adjuvant, include parasite and parasite associated diseases or symptoms described herein or otherwise known in the art. In specific embodiments, the compositions ofthe invention are used as an adjuvant to enhance an immune response to a parasite. In another specific embodiment, the compositions of the invention are used as an adjuvant to enhance an immune response to Plasmodium (malaria) or Leishmania.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention may also be employed to treat infectious diseases including silicosis, sarcoidosis, and idiopathic pulmonary fibrosis; for example, by preventing the recruitment and activation of mononuclear phagocytes.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention are used as an antigen for the generation of antibodies to inhibit or enhance immune mediated responses against polypeptides of the invention.
In one embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention are administered to an animal (e.g., mouse, rat, rabbit, hamster, guinea pig, pigs, micro-pig, chicken, camel, goat, horse, cow, sheep, dog, cat, non-human primate, and human, most preferably human) to boost the immune system to produce increased quantities of one or more antibodies (e.g., IgG, IgA, IgM, and IgE), to induce higher affinity antibody production and
immunoglobulin class switching (e.g., IgG, IgA, IgM, and IgE), and/or to increase an immune response.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention are used as a stimulator of B cell responsiveness to pathogens.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention are used as an activator of T cells.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention are used as an agent that elevates the immune status of an individual prior to their receipt of immunosuppressive therapies.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention are used as an agent to induce higher affinity antibodies.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention are used as an agent to increase serum immunoglobulin concentrations.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention are used as an agent to accelerate recovery of immunocompromised individuals.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an agent to boost immunoresponsiveness among aged populations and/or neonates. In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention are used as an immune system enhancer prior to, during, or after bone marrow transplant and/or other transplants (e.g., allogeneic or xenogeneic organ transplantation). With respect to transplantation, compositions ofthe invention may be administered prior to, concomitant with, and/or after transplantation. In a specific embodiment, compositions ofthe invention are administered after transplantation, prior to the beginning of recovery of T-cell populations. In another specific embodiment,
compositions ofthe invention are first administered after transplantation after the beginning of recovery of T cell populations, but prior to full recovery of B cell populations.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention are used as an agent to boost immunoresponsiveness among individuals having an acquired loss of B cell function. Conditions resulting in an acquired loss of B cell function that may be ameliorated or treated by administering the polypeptides, antibodies, polynucleotides and/or agonists or antagonists thereof, include, but are not limited to, HIN Infection, AIDS, bone marrow transplant, and B cell chronic lymphocytic leukemia (CLL).
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention are used as an agent to boost immunoresponsiveness among individuals having a temporary immune deficiency. Conditions resulting in a temporary immune deficiency that may be ameliorated or treated by administering the polypeptides, antibodies, polynucleotides and/or agonists or antagonists thereof, include, but are not limited to, recovery from viral infections (e.g., influenza), conditions associated with malnutrition, recovery from infectious mononucleosis, or conditions associated with stress, recovery from measles, recovery from blood transfusion, and recovery from surgery. In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention are used as a regulator of antigen presentation by monocytes, dendritic cells, and/or B-cells. In one embodiment, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention enhance antigen presentation or antagonizes antigen presentation in vitro or in vivo. Moreover, in related embodiments, said enhancement or antagonism of antigen presentation may be useful as an anti-tumor treatment or to modulate the immune system.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention are used as an agent to direct an individual's immune system towards development of a humoral response (i.e. TH2) as opposed to a TH1 cellular response.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a means to induce tumor proliferation and thus make it more susceptible to anti-neoplastic agents. For example, multiple myeloma is a slowly dividing disease and is thus refractory to virtually all anti-neoplastic regimens. If these cells were forced to proliferate more rapidly their susceptibility profile would likely change.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention are used as a stimulator of B cell production in pathologies such as AIDS, chronic lymphocyte disorder and/or Common Variable Immunodificiency.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention are used as a therapy for generation and/or regeneration of lymphoid tissues following surgery, trauma or genetic defect. In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention are used in the pretreatment of bone marrow samples prior to transplant.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a gene-based therapy for genetically inherited disorders resulting in immuno- incompetence/immunodeficiency such as observed among SCID patients.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a means of activating monocytes/macrophages to defend against parasitic diseases that effect monocytes such as Leishmania. In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention are used as a means of regulating secreted cytokines that are elicited by polypeptides of the invention.
In another embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used in one or more ofthe applications decribed herein, as they may apply to veterinary medicine.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a means of
blocking various aspects of immune responses to foreign agents or self. Examples of diseases or conditions in which blocking of certain aspects of immune responses may be desired include autoimmune disorders such as lupus, and arthritis, as well as immunoresponsiveness to skin allergies, inflammation, bowel disease, injury and diseases/disorders associated with pathogens.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention are used as a therapy for preventing the B cell proliferation and lg secretion associated with autoimmune diseases such as idiopathic thrombocytopenic puφura, systemic lupus erythematosus and multiple sclerosis.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention are used as a inhibitor of B and/or T cell migration in endothelial cells. This activity disrupts tissue architecture or cognate responses and is useful, for example in disrupting immune responses, and blocking sepsis.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention are used as a therapy for chronic hypergammaglobulinemia evident in such diseases as monoclonal gammopathy of undetermined significance (MGUS), Waldenstrom's disease, related idiopathic monoclonal gammopathies, and plasmacytomas.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention may be employed for instance to inhibit polypeptide chemotaxis and activation of macrophages and their precursors, and of neutrophils, basophils, B lymphocytes and some T-cell subsets, e.g., activated and CD8 cytotoxic T cells and natural killer cells, in certain autoimmune and chronic inflammatory and infective diseases. Examples of autoimmune diseases are described herein and include multiple sclerosis, and insulin-dependent diabetes.
The polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention may also be employed to treat idiopathic hyper-eosinophilic syndrome by, for example, preventing eosinophil production and migration.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention are used to enhance or inhibit complement mediated cell lysis.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention are used to enhance or inhibit antibody dependent cellular cytotoxicity.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention may also be employed for treating atherosclerosis, for example, by preventing monocyte infiltration in the artery wall.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention may be employed to treat adult respiratory distress syndrome (ARDS).
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention may be useful for stimulating wound and tissue repair, stimulating angiogenesis, and/or stimulating the repair of vascular or lymphatic diseases or disorders. Additionally, agonists and antagonists of the invention may be used to stimulate the regeneration of mucosal surfaces.
In a specific embodiment, polynucleotides or polypeptides, and/or agonists thereof are used to diagnose, prognose, treat, and/or prevent a disorder characterized by primary or acquired immunodeficiency, deficient serum immunoglobulin production, recurrent infections, and/or immune system dysfunction. Moreover, polynucleotides or polypeptides, and/or agonists thereof may be used to treat or prevent infections of the joints, bones, skin, and/or parotid glands, blood-borne infections (e.g., sepsis, meningitis, septic arthritis, and/or osteomyelitis), autoimmune diseases (e.g., those disclosed herein), inflammatory disorders, and malignancies, and/or any disease or disorder or condition associated with these infections, diseases, disorders and/or malignancies) including, but not limited to, CVID, other primary immune deficiencies, HIV disease, CLL, recurrent bronchitis, sinusitis, otitis media, conjunctivitis, pneumonia, hepatitis, meningitis, heφes zoster (e.g., severe heφes zoster), and/or pneumocystis carnii. Other diseases and disorders that may be prevented, diagnosed, prognosed, and/or treated with polynucleotides or
polypeptides, and/or agonists ofthe present invention include, but are not limited to, HIV infection, HTLV-BLV infection, lymphopenia, phagocyte bactericidal dysfunction anemia, thrombocytopenia, and hemoglobinuria.
In another embodiment, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention are used to treat, and/or diagnose an individual having common variable immunodeficiency disease ("CVID"; also known as "acquired agammaglobulinemia" and "acquired hypogammaglobulinemia") or a subset of this disease.
In a specific embodiment, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention may be used to diagnose, prognose, prevent, and/or treat cancers or neoplasms including immune cell or immune tissue- related cancers or neoplasms. Examples of cancers or neoplasms that may be prevented, diagnosed, or treated by polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention include, but are not limited to, acute myelogenous leukemia, chronic myelogenous leukemia, Hodgkin's disease, non- Hodgkin's lymphoma, acute lymphocytic anemia (ALL) Chronic lymphocyte leukemia, plasmacytomas, multiple myeloma, Burkitt's lymphoma, EBV-transformed diseases, and/or diseases and disorders described in the section entitled "Hypeφroliferative Disorders" elsewhere herein. In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention are used as a therapy for decreasing cellular proliferation of Large B-cell Lymphomas.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention are used as a means of decreasing the involvement of B cells and lg associated with Chronic Myelogenous Leukemia.
In specific embodiments, the compositions ofthe invention are used as an agent to boost immunoresponsiveness among B ceirimmunodeficient individuals, such as, for example, an individual who has undergone a partial or complete splenectomy. ""
Antagonists ofthe invention include, for example, binding and/or inhibitory antibodies, antisense nucleic acids, ribozymes or soluble forms of the polypeptides of
the present invention (e.g., Fc fusion protein; see, e.g., Example 9). Agonists ofthe invention include, for example, binding or stimulatory antibodies, and soluble forms of the polypeptides (e.g., Fc fusion proteins; see, e.g., Example 9). polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention may be employed in a composition with a pharmaceutically acceptable carrier, e.g., as described herein.
In another embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention are administered to an animal (including, but not limited to, those listed above, and also including transgenic animals) incapable of producing functional endogenous antibody molecules or having an otherwise compromised endogenous immune system, but which is capable of producing human immunoglobulin molecules by means of a reconstituted or partially reconstituted immune system from another animal (see, e.g., published PCT Application Nos. WO98/24893, WO/9634096, WO/9633735, and WO/9110741). Administration of polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention to such animals is useful for the generation of monoclonal antibodies against the polypeptides, antibodies, polynucleotides and/or agonists or antagonists ofthe present invention in an organ system listed above.
Blood-Related Disorders
The polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention may be used to modulate hemostatic (the stopping of bleeding) or thrombolytic (clot dissolving) activity. For example, by increasing hemostatic or thrombolytic activity, polynucleotides or polypeptides, and/or agonists or antagonists ofthe present invention could be used to treat or prevent blood coagulation diseases, disorders, and/or conditions (e.g., afibrinogenemia, factor deficiencies, hemophilia), blood platelet diseases, disorders, and/or conditions (e.g., thrombocytopenia), or wounds resulting from trauma, surgery, or other causes. Alternatively, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention that can decrease hemostatic or thrombolytic activity could be used to inhibit or dissolve clotting. These molecules could be
important in the treatment or prevention of heart attacks (infarction), strokes, or scarring.
In specific embodiments, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention may be used to prevent, diagnose, prognose, and/or treat thrombosis, arterial thrombosis, venous thrombosis, thromboembolism, pulmonary embolism, atherosclerosis, myocardial infarction, transient ischemic attack, unstable angina. In specific embodiments, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention may be used for the prevention of occulsion of saphenous grafts, for reducing the risk of periprocedural thrombosis as might accompany angioplasty procedures, for reducing the risk of stroke in patients with atrial fibrillation including nonrheumatic atrial fibrillation, for reducing the risk of embolism associated with mechanical heart valves and or mitral valves disease. Other uses for the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention, include, but are not limited to, the prevention of occlusions in extrcoφoreal devices (e.g., intravascular canulas, vascular access shunts in hemodialysis patients, hemodialysis machines, and cardiopulmonary bypass machines).
In another embodiment, a polypeptide ofthe invention, or polynucleotides, antibodies, agonists, or antagonists corresponding to that polypeptide, may be used to prevent, diagnose, prognose, and/or treat diseases and disorders ofthe blood and/or blood forming organs associated with the tissue(s) in which the polypeptide ofthe invention is expressed, including one, two, three, four, five, or more tissues disclosed in Table 1 , column 8 (Tissue Distribution Library Code). The polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention may be used to modulate hematopoietic activity (the formation of blood cells). For example, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be used to increase the quantity of all or subsets of blood cells, such as, for example, erythrocytes, lymphocytes (B or T cells), myeloid cells (e.g., basophils, eosinophils, neutrophils, mast cells, macrophages) and platelets. The ability to decrease the quantity of blood cells or subsets of blood cells may be useful in the prevention, detection, diagnosis
and/or treatment of anemias and leukopenias described below. Alternatively, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention may be used to decrease the quantity of all or subsets of blood cells, such as, for example, erythrocytes, lymphocytes (B or T cells), myeloid cells (e.g., basophils, eosinophils, neutrophils, mast cells, macrophages) and platelets.. The ability to decrease the quantity of blood cells or subsets of blood cells may be useful in the prevention, detection, diagnosis and/or treatment of leukocytoses, such as, for example eosinophilia.
The polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention may be used to prevent, treat, or diagnose blood dyscrasia. Anemias are conditions in which the number of red blood cells or amount of hemoglobin (the protein that carries oxygen) in them is below normal. Anemia may be caused by excessive bleeding, decreased red blood cell production, or increased red blood cell destruction (hemolysis). The polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in treating, preventing, and/or diagnosing anemias. Anemias that may be treated prevented or diagnosed by the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention include iron deficiency anemia, hypochromic anemia, microcytic anemia, chlorosis, hereditary siderob;astic anemia, idiopathic acquired sideroblastic anemia, red cell aplasia, megaloblastic anemia (e.g., pernicious anemia, (vitamin B12 deficiency) and folic acid deficiency anemia), aplastic anemia, hemolytic anemias (e.g., autoimmune helolytic anemia, microangiopathic hemolytic anemia, and paroxysmal nocturnal hemoglobinuria). The polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention may be useful in treating, preventing, and/or diagnosing anemias associated with diseases including but not limited to, anemias associated with systemic lupus erythematosus, cancers, lymphomas, chronic renal disease, and enlarged spleens. The polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention may be useful in treating, preventing, and/or diagnosing anemias arising from drug treatments such as anemias associated with methyldopa, dapsone, and/or sulfadrugs. Additionally, rhe polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in treating, preventing,
and/or diagnosing anemias associated with abnormal red blood cell architecture including but not limited to, hereditary spherocytosis, hereditary elliptocytosis, glucose-6-phosphate dehydrogenase deficiency, and sickle cell anemia.
The polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention may be useful in treating, preventing, and/or diagnosing hemoglobin abnormalities, (e.g., those associated with sickle cell anemia, hemoglobin C disease, hemoglobin S-C disease, and hemoglobin E disease). Additionally, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention may be useful in diagnosing, prognosing, preventing, and/or treating thalassemias, including, but not limited to major and minor forms of alpha- thalassemia and beta-thalassemia.
In another embodiment, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention may be useful in diagnosing, prognosing, preventing, and/or treating bleeding disorders including, but not limited to, thrombocytopenia (e.g., idiopathic thrombocytopenic puφura, and thrombotic thrombocytopenic puφura), Von Willebrand's disease, hereditary platelet disorders (e.g., storage pool disease such as Chediak-Higashi and Hermansky-Pudlak syndromes, thromboxane A2 dysfunction, thromboasthenia, and Bernard-Soulier syndrome), hemolytic-uremic syndrome, hemophelias such as hemophelia A or Factor VII deficiency and Christmas disease or Factor IX deficiency, Hereditary
Hemorhhagic Telangiectsia, also known as Rendu-Osler-Weber syndrome, allergic puφura (Henoch Schonlein puφura) and disseminated intravascular coagulation.
The effect ofthe polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention on the clotting time of blood may be monitored using any of the clotting tests known in the art including, but not limited to, whole blood partial thromboplastin time (PTT), the activated partial thromboplastin time (aPTT), the activated clotting time (ACT), the recalcified activated clotting time, or the Lee-White Clotting time.
Several diseases and a variety of drugs can cause platelet dysfunction. Thus, in a specific embodiment, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention may be useful in diagnosing, prognosing, preventing, and/or treating acquired platelet dysfunction such as platelet dysfunction
accompanying kidney failure, leukemia, multiple myeloma, cirrhosis ofthe liver, and systemic lupus erythematosus as well as platelet dysfunction associated with drug treatments, including treatment with aspirin, ticlopidine, nonsteroidal anti- inflammatory drugs (used for arthritis, pain, and sprains), and penicillin in high doses. In another embodiment, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention may be useful in diagnosing, prognosing, preventing, and/or treating diseases and disorders characterized by or associated with increased or decreased numbers of white blood cells. Leukopenia occurs when the number of white blood cells decreases below normal. Leukopenias include, but are not limited to, neutropenia and lymphocytopenia. An increase in the number of white blood cells compared to normal is known as leukocytosis. The body generates increased numbers of white blood cells during infection. Thus, leukocytosis may simply be a normal physiological parameter that reflects infection. Alternatively, leukocytosis may be an indicator of injury or other disease such as cancer. Leokocytoses, include but are not limited to, eosinophilia, and accumulations of macrophages. In specific embodiments, the polynucleotides, polypeptides, antibodies, and or agonists or antagonists ofthe present invention may be useful in diagnosing, prognosing, preventing, and/or treating leukopenia. In other specific embodiments, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention may be useful in diagnosing, prognosing, preventing, and/or treating leukocytosis.
Leukopenia may be a generalized decreased in all types of white blood cells, or may be a specific depletion of particular types of white blood cells. Thus, in specific embodiments, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention may be useful in diagnosing, prognosing, preventing, and/or treating decreases in neutrophil numbers, known as neutropenia. Neutropenias that may be diagnosed, prognosed, prevented, and/or treated by the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention include, but are not limited to, infantile genetic agranulocytosis, familial neutropenia, cyclic neutropenia, neutropenias resulting from or associated with dietary deficiencies (e.g., vitamin B 12 deficiency or folic acid deficiency), neutropenias resulting from or associated with drug treatments (e.g., antibiotic
regimens such as penicillin treatment, sulfonamide treatment, anticoagulant treatment, anticonvulsant drugs, anti-thyroid drugs, and cancer chemotherapy), and neutropenias resulting from increased neutrophil destruction that may occur in association with some bacterial or viral infections, allergic disorders, autoimmune diseases, conditions in which an individual has an enlarged spleen (e.g., Felty syndrome, malaria and sarcoidosis), and some drug treatment regimens.
The polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention may be useful in diagnosing, prognosing, preventing, and/or treating lymphocytopenias (decreased numbers of B and/or T lymphocytes), including, but not limited lymphocytopenias resulting from or associated with stress, drug treatments (e.g., drug treatment with corticosteroids, cancer chemotherapies, and/or radiation therapies), AIDS infection and/or other diseases such as, for example, cancer, rheumatoid arthritis, systemic lupus erythematosus, chronic infections, some viral infections and/or hereditary disorders (e.g., DiGeorge syndrome, Wiskott- Aldrich Syndome, severe combined immunodeficiency, ataxia telangiectsia).
The polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention may be useful in diagnosing, prognosing, preventing, and/or treating diseases and disorders associated with macrophage numbers and/or macrophage function including, but not limited to, Gaucher's disease, Niemann-Pick disease, Letterer-Siwe disease and Hand-Schuller-Christian disease.
In another embodiment, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention may be useful in diagnosing, prognosing, preventing, and/or treating diseases and disorders associated with eosinophil numbers and/or eosinophil function including, but not limited to, idiopathic hypereosinophilic syndrome, eosinophilia-myalgia syndrome, and Hand- Schuller-Christian disease.
In yet another embodiment, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention may be useful in diagnosing, prognosing, preventing, and/or treating leukemias and lymphomas including, but not limited to, acute lymphocytic (lymphpblastic) leukemia (ALL), acute myeloid (myelocytic, myelogenous, myeloblastic, or myelomonocytic) leukemia, chronic lymphocytic leukemia (e.g., B cell leukemias, T cell leukemias, Sezary syndrome, and
Hairy cell leukenia), chronic myelocytic (myeloid, myelogenous, or granulocytic) leukemia, Hodgkin's lymphoma, non-hodgkin's lymphoma, Burkitt's lymphoma, and mycosis fungoides.
In other embodiments, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention may be useful in diagnosing, prognosing, preventing, and/or treating diseases and disorders of plasma cells including, but not limited to, plasma cell dyscrasias, monoclonal gammaopathies, monoclonal gammopathies of undetermined significance, multiple myeloma, macroglobulinemia, Waldenstrom's macroglobulinemia, cryoglobulinemia, and Raynaud's phenomenon.
In other embodiments, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention may be useful in treating, preventing, and/or diagnosing myeloproliferative disorders, including but not limited to, polycythemia vera, relative polycythemia, secondary polycythemia, myelofibrosis, acute myelofibrosis, agnogenic myelod metaplasia, thrombocythemia, (including both primary and seconday thrombocythemia) and chronic myelocytic leukemia.
In other embodiments, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention may be useful as a treatment prior to surgery, to increase blood cell production. In other embodiments, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention may be useful as an agent to enhance the migration, phagocytosis, superoxide production, antibody dependent cellular cytotoxicity of neutrophils, eosionophils and macrophages.
In other embodiments, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful as an agent to increase the number of stem cells in circulation prior to stem cells pheresis. In another specific embodiment, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention may be useful as an agent to increase the number of stem cells in circulation prior to platelet pheresis. In other embodiments, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful as an agent to increase cytokine production.
In other embodiments, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention may be useful in preventing, diagnosing, and/or treating primary hematopoietic disorders.
Hyperproliferative Disorders
In certain embodiments, polynucleotides or polypeptides, or agonists or antagonists ofthe present invention can be used to treat or detect hypeφroliferative disorders, including neoplasms. Polynucleotides or polypeptides, or agonists or antagonists ofthe present invention may inhibit the proliferation ofthe disorder through direct or indirect interactions. Alternatively, Polynucleotides or polypeptides, or agonists or antagonists of the present invention may proliferate other cells which can inhibit the hypeφroliferative disorder.
For example, by increasing an immune response, particularly increasing antigenic qualities ofthe hypeφroliferative disorder or by proliferating, differentiating, or mobilizing T-cells, hypeφroliferative disorders can be treated. This immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, decreasing an immune response may also be a method of treating hypeφroliferative disorders, such as a chemotherapeutic agent. Examples of hypeφroliferative disorders that can be treated or detected by polynucleotides or polypeptides, or agonists or antagonists ofthe present invention include, but are not limited to neoplasms located in the: colon, abdomen, bone, breast, digestive system, liver, pancreas, peritoneum, endocrine glands (adrenal, parathyroid, pituitary, testicles, ovary, thymus, thyroid), eye, head and neck, nervous (central and peripheral), lymphatic system, pelvis, skin, soft tissue, spleen, thorax, and urogenital tract.
Similarly, other hypeφroliferative disorders can also be treated or detected by polynucleotides or polypeptides, or agonists or antagonists ofthe present invention. Examples of such hypeφroliferative disorders include, but are not limited to: Acute Childhood Lymphoblastic Leukemia, Acute Lymphoblastic Leukemia, Acute
Lymphocytic Leukemia, Acute Myeloid Leukemia, Adrenocortical Carcinoma, Adult (Primary) Hepatocellular Cancer, Adult (Primary) Liver Cancer, Adult Acute
Lymphocytic Leukemia, Adult Acute Myeloid Leukemia, Adult Hodgkin's Disease, Adult Hodgkin's Lymphoma, Adult Lymphocytic Leukemia, Adult Non-Hodgkin's Lymphoma, Adult Primary Liver Cancer, Adult Soft Tissue Sarcoma, AIDS-Related Lymphoma, AIDS-Related Malignancies, Anal Cancer, Astrocytoma, Bile Duct Cancer, Bladder Cancer, Bone Cancer, Brain Stem Glioma, Brain Tumors, Breast Cancer, Cancer of the Renal Pelvis and Ureter, Central Nervous System (Primary) Lymphoma, Central Nervous System Lymphoma, Cerebellar Astrocytoma, Cerebral Astrocytoma, Cervical Cancer, Childhood (Primary) Hepatocellular Cancer, Childhood (Primary) Liver Cancer, Childhood Acute Lymphoblastic Leukemia, Childhood Acute Myeloid Leukemia, Childhood Brain Stem Glioma, Childhood Cerebellar Astrocytoma, Childhood Cerebral Astrocytoma, Childhood Extracranial Germ Cell Tumors, Childhood Hodgkin's Disease, Childhood Hodgkin's Lymphoma, Childhood Hypothalamic and Visual Pathway Glioma, Childhood Lymphoblastic Leukemia, Childhood MeduUoblastoma, Childhood Non-Hodgkin's Lymphoma, Childhood Pineal and Supratentorial Primitive Neuroectodermal Tumors, Childhood Primary Liver Cancer, Childhood Rhabdomyosarcoma, Childhood Soft Tissue Sarcoma, Childhood Visual Pathway and Hypothalamic Glioma, Chronic Lymphocytic Leukemia, Chronic Myelogenous Leukemia, Colon Cancer, Cutaneous T-Cell Lymphoma, Endocrine Pancreas Islet Cell Carcinoma, Endometrial Cancer, Ependymoma, Epithelial Cancer, Esophageal Cancer, Ewing's Sarcoma and Related Tumors, Exocrine Pancreatic Cancer, Extracranial Germ Cell Tumor, Extragonadal Germ Cell Tumor, Extrahepatic Bile Duct Cancer, Eye Cancer, Female Breast Cancer, Gaucher's Disease, Gallbladder Cancer, Gastric Cancer, Gastrointestinal Carcinoid Tumor, Gastrointestinal Tumors, Germ Cell Tumors, Gestational Trophoblastic Tumor, Hairy Cell Leukemia, Head and Neck Cancer, Hepatocellular Cancer, Hodgkin's Disease, Hodgkin's Lymphoma, Hypergammaglobulinemia, Hypopharyngeal Cancer, Intestinal Cancers, Intraocular Melanoma, Islet Cell Carcinoma, Islet Cell Pancreatic Cancer, Kaposi's Sarcoma, Kidney Cancer, Laryngeal Cancer, Lip and Oral Cavity Cancer, Liver Cancer, Lung Cancer, Lymphoproliferative Disorders, Macroglobulinemia, Male Breast Cancer, Malignant Mesothelioma, Malignant Thymoma, MeduUoblastoma, Melanoma, Mesothelioma, Metastatic Occult Primary Squamous Neck Cancer, Metastatic Primary Squamous
Neck Cancer, Metastatic Squamous Neck Cancer, Multiple Myeloma, Multiple Myeloma/Plasma Cell Neoplasm, Myelodysplastic Syndrome, Myelogenous Leukemia, Myeloid Leukemia, Myeloproliferative Disorders, Nasal Cavity and Paranasal Sinus Cancer, Nasopharyngeal Cancer, Neuroblastoma, Non-Hodgkin's Lymphoma During Pregnancy, Nonmelanoma Skin Cancer, Non-Small Cell Lung Cancer, Occult Primary Metastatic Squamous Neck Cancer, Oropharyngeal Cancer, Osteo-/Malignant Fibrous Sarcoma, Osteosarcoma/Malignant Fibrous Histiocytoma, Osteosarcoma Malignant Fibrous Histiocytoma of Bone, Ovarian Epithelial Cancer, Ovarian Germ Cell Tumor, Ovarian Low Malignant Potential Tumor, Pancreatic Cancer, Paraproteinemias, Puφura, Parathyroid Cancer, Penile Cancer,
Pheochromocytoma, Pituitary Tumor, Plasma Cell Neoplasm/Multiple Myeloma, Primary Central Nervous System Lymphoma, Primary Liver Cancer, Prostate Cancer, Rectal Cancer, Renal Cell Cancer, Renal Pelvis and Ureter Cancer, Retinoblastoma, Rhabdomyosarcoma, Salivary Gland Cancer, Sarcoidosis Sarcomas, Sezary Syndrome, Skin Cancer, Small Cell Lung Cancer, Small Intestine Cancer, Soft Tissue Sarcoma, Squamous Neck Cancer, Stomach Cancer, Supratentorial Primitive Neuroectodermal and Pineal Tumors, T-Cell Lymphoma, Testicular Cancer, Thymoma, Thyroid Cancer, Transitional Cell Cancer ofthe Renal Pelvis and Ureter, Transitional Renal Pelvis and Ureter Cancer, Trophoblastic Tumors, Ureter and Renal Pelvis Cell Cancer, Urethral Cancer, Uterine Cancer, Uterine Sarcoma, Vaginal
Cancer, Visual Pathway and Hypothalamic Glioma, Vulvar Cancer, Waldenstrom's Macroglobulinemia, Wilms' Tumor, and any other hypeφroliferative disease, besides neoplasia, located in an organ system listed above.
In another preferred embodiment, polynucleotides or polypeptides, or agonists or antagonists ofthe present invention are used to diagnose, prognose, prevent, and/or treat premalignant conditions and to prevent progression to a neoplastic or malignant state, including but not limited to those disorders described above. Such uses are indicated in conditions known or suspected of preceding progression to neoplasia or cancer, in particular, where non-neoplastic cell growth consisting of hypeφlasia, metaplasia, or most particularly, dysplasia has occurred (for review of such abnormal growth conditions, see Robbins and Angell, 1976, Basic Pathology, 2d Ed., W. B. Saunders Co., Philadelphia, pp. 68-79.)
Hypeφlasia is a form of controlled cell proliferation, involving an increase in cell number in a tissue or organ, without significant alteration in structure or function. Hypeφlastic disorders which can be diagnosed, prognosed, prevented, and/or treated with compositions ofthe invention (including polynucleotides, polypeptides, agonists or antagonists) include, but are not limited to, angiofolhcular mediastinal lymph node hypeφlasia, angiolymphoid hypeφlasia with eosinophilia, atypical melanocytic hypeφlasia, basal cell hypeφlasia, benign giant lymph node hypeφlasia, cementum hypeφlasia, congenital adrenal hypeφlasia, congenital sebaceous hypeφlasia, cystic hypeφlasia, cystic hypeφlasia of the breast, denture hypeφlasia, ductal hypeφlasia, endometrial hypeφlasia, fibromuscular hypeφlasia, focal epithelial hypeφlasia, gingival hypeφlasia, inflammatory fibrous hypeφlasia, inflammatory papillary hypeφlasia, intravascular papillary endothelial hypeφlasia, nodular hypeφlasia of prostate, nodular regenerative hypeφlasia, pseudoepitheliomatous hypeφlasia, senile sebaceous hypeφlasia, and verrucous hypeφlasia. Metaplasia is a form of controlled cell growth in which one type of adult or fully differentiated cell substitutes for another type of adult cell. Metaplastic disorders which can be diagnosed, prognosed, prevented, and/or treated with compositions of the invention (including polynucleotides, polypeptides, agonists or antagonists) include, but' are not limited to, agnogenic myeloid metaplasia, apocrine metaplasia, atypical metaplasia, autoparenchymatous metaplasia, connective tissue metaplasia, epithelial metaplasia, intestinal metaplasia, metaplastic anemia, metaplastic ossification, metaplastic polyps, myeloid metaplasia, primary myeloid metaplasia, secondary myeloid metaplasia, squamous metaplasia, squamous metaplasia of amnion, and symptomatic myeloid metaplasia. Dysplasia is frequently a forerunner of cancer, and is found mainly in the epithelia; it is the most disorderly form of non-neoplastic cell growth, involving a loss in individual cell uniformity and in the architectural orientation of cells. Dysplastic cells often have abnormally large, deeply stained nuclei, and exhibit pleomoφhism. Dysplasia characteristically occurs where there exists chronic irritation or inflammation. Dysplastic disorders which can be diagnosed, prognosed, prevented, and/or treated with compositions ofthe invention (including polynucleotides, polypeptides, agonists or antagonists) include, but are not limited to, anhidrotic
ectodermal dysplasia, anterofacial dysplasia, asphyxiating thoracic dysplasia, atriodigital dysplasia, bronchopulmonary dysplasia, cerebral dysplasia, cervical dysplasia, chondroectodermal dysplasia, cleidocranial dysplasia, congenital ectodermal dysplasia, craniodiaphysial dysplasia, craniocaφotarsal dysplasia, craniometaphysial dysplasia, dentin dysplasia, diaphysial dysplasia, ectodermal dysplasia, enamel dysplasia, encephalo-ophthalmic dysplasia, dysplasia epiphysialis hemimelia, dysplasia epiphysialis multiplex, dysplasia epiphysialis punctata, epithelial dysplasia, faciodigi to genital dysplasia, familial fibrous dysplasia of jaws, familial white folded dysplasia, fibromuscular dysplasia, fibrous dysplasia of bone, florid osseous dysplasia, hereditary renal-retinal dysplasia, hidrotic ectodermal dysplasia, hypohidrotic ectodermal dysplasia, lymphopenic thymic dysplasia, mammary dysplasia, mandibulofacial dysplasia, metaphysial dysplasia, Mondini dysplasia, monostotic fibrous dysplasia, mucoepithehal dysplasia, multiple epiphysial dysplasia, oculoauriculovertebral dysplasia, oculodentodigital dysplasia, oculovertebral dysplasia, odontogenic dysplasia, ophthalmomandibulomelic dysplasia, periapical cemental dysplasia, polyostotic fibrous dysplasia, pseudoachondroplastic spondyloepiphysial dysplasia, retinal dysplasia, septo-optic dysplasia, spondyloepiphysial dysplasia, and ventriculoradial dysplasia.
Additional pre-neoplastic disorders which can be diagnosed, prognosed, prevented, and/or treated with compositions ofthe invention (including polynucleotides, polypeptides, agonists or antagonists) include, but are not limited to, benign dysproliferative disorders (e.g., benign tumors, fibrocystic conditions, tissue hypertrophy, intestinal polyps, colon polyps, and esophageal dysplasia), leukoplakia, keratoses, Bowen's disease, Farmer's Skin, solar cheilitis, and solar keratosis. In another embodiment, a polypeptide ofthe invention, or polynucleotides, antibodies, agonists, or antagonists corresponding to that polypeptide, may be used to diagnose and/or prognose disorders associated with the tissue(s) in which the polypeptide ofthe invention is expressed, including one, two, three, four, five, or more tissues disclosed in Table 1, column 8 (Tissue Distribution Library Code). In another embodiment, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention conjugated to a toxin or a radioactive isotope, as described herein, may be used to treat cancers and neoplasms, including,
but not limited to those described herein. In a further preferred embodiment, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention conjugated to a toxin or a radioactive isotope, as described herein, may be used to treat acute myelogenous leukemia. Additionally, polynucleotides, polypeptides, and/or agonists or antagonists of the invention may affect apoptosis, and therefore, would be useful in treating a number of diseases associated with increased cell survival or the inhibition of apoptosis. For example, diseases associated with increased cell survival or the inhibition of apoptosis that could be diagnosed, prognosed, prevented, and/or treated by polynucleotides, polypeptides, and/or agonists or antagonists ofthe invention, include cancers (such as follicular lymphomas, carcinomas with p53 mutations, and hormone-dependent tumors, including, but not limited to colon cancer, cardiac tumors, pancreatic cancer, melanoma, retinoblastoma, glioblastoma, lung cancer, intestinal cancer, testicular cancer, stomach cancer, neuroblastoma, myxoma, myoma, lymphoma, endothelioma, osteoblastoma, osteoclastoma, osteosarcoma, chondrosarcoma, adenoma, breast cancer, prostate cancer, Kaposi's sarcoma and ovarian cancer); autoimmune disorders such as, multiple sclerosis, Sjogren's syndrome, Hashimoto's thyroiditis, biliary cirrhosis, Behcet's disease, Crohn's disease, polymyositis, systemic lupus erythematosus and immune-related glomerulonephritis and rheumatoid arthritis) and viral infections (such as heφes viruses, pox viruses and adenoviruses), inflammation, graft v. host disease, acute graft rejection, and chronic graft rejection.
In preferred embodiments, polynucleotides, polypeptides, and/or agonists or antagonists of the invention are used to inhibit growth, progression, and/or metastasis of cancers, in particular those listed above.
Additional diseases or conditions associated with increased cell survival that could be diagnosed, prognosed, prevented, and/or treated by polynucleotides, polypeptides, and/or agonists or antagonists ofthe invention, include, but are not limited to, progression, and/or metastases of malignancies and related disorders such as leukemia (including acute leukemias (e.g., acute lymphocytic leukemia, acute myelocytic leukemia (including myeloblastic, promyelocytic, myelomonocytic, monocytic, and erythroleukemia)) and chronic leukemias (e.g., chronic myelocytic
(granulocytic) leukemia and chronic lymphocytic leukemia)), polycythemia vera, lymphomas (e.g., Hodgkin's disease and non-Hodgkin's disease), multiple myeloma, Waldenstrom's macroglobulinemia, heavy chain disease, and solid tumors including, but not limited to, sarcomas and carcinomas such as fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilm's tumor, cervical cancer, testicular tumor, lung carcinoma, small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, emangioblastoma, acoustic neuroma, oligodendroglioma, menangioma, melanoma, neuroblastoma, and retinoblastoma.
Diseases associated with increased apoptosis that could be diagnosed, prognosed, prevented, and/or treated by polynucleotides, polypeptides, and/or agonists or antagonists ofthe invention, include AIDS; neurodegenerative disorders (such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, retinitis pigmentosa, cerebellar degeneration and brain tumor or prior associated disease); autoimmune disorders (such as, multiple sclerosis, Sjogren's syndrome, Hashimoto's thyroiditis, biliary cirrhosis, Behcet's disease, Crohn's disease, polymyositis, systemic lupus erythematosus and immune-related glomerulonephritis and rheumatoid arthritis) myelodysplastic syndromes (such as aplastic anemia), graft v. host disease, ischemic injury (such as that caused by myocardial infarction, stroke and reperfiision injury), liver injury (e.g., hepatitis related liver injury, ischemia/reperfusion injury, cholestosis (bile duct injury) and liver cancer); toxin- induced liver disease (such as that caused by alcohol), septic shock, cachexia and anorexia.
Hypeφroliferative diseases and/or disorders that could be diagnosed, prognosed, prevented, and/or treated by polynucleotides, polypeptides, and/or agonists or antagonists ofthe invention, include, but are not limited to, neoplasms located in the liver, abdomen, bone, breast, digestive system, pancreas, peritoneum, endocrine glands (adrenal, parathyroid, pituitary, testicles, ovary, thymus, thyroid), eye, head and neck, nervous system (central and peripheral), lymphatic system, pelvis, skin, soft tissue, spleen, thorax, and urogenital tract.
Similarly, other hypeφroliferative disorders can also be diagnosed, prognosed, prevented, and/or treated by polynucleotides, polypeptides, and/or agonists or antagonists of the invention. Examples of such hypeφroliferative disorders include, but are not limited to: hypergammaglobulinemia, lymphoproliferative disorders, paraproteinemias, puφura, sarcoidosis, Sezary Syndrome, Waldenstron's macroglobulinemia, Gaucher's Disease, histiocytosis, and any other hypeφroliferative disease, besides neoplasia, located in an organ system listed above. Another preferred embodiment utilizes polynucleotides ofthe present invention to inhibit aberrant cellular division, by gene therapy using the present invention, and/or protein fusions or fragments thereof.
Thus, the present invention provides a method for treating cell proliferative disorders by inserting into an abnormally proliferating cell a polynucleotide ofthe present invention, wherein said polynucleotide represses said expression.
Another embodiment ofthe present invention provides a method of treating cell-proliferative disorders in individuals comprising administration of one or more active gene copies ofthe present invention to an abnormally proliferating cell or cells. In a preferred embodiment, polynucleotides ofthe present invention is a DNA construct comprising a recombinant expression vector effective in expressing a DNA sequence encoding said polynucleotides. In another preferred embodiment ofthe present invention, the DNA construct encoding the poynucleotides ofthe present invention is inserted into cells to be treated utilizing a retrovirus, or more preferably an adenoviral vector (See G J. Nabel, et. al., PNAS 1999 96: 324-326, which is hereby incoφorated by reference). In a most preferred embodiment, the viral vector is defective and will not transform non-proliferating cells, only proliferating cells. Moreover, in a preferred embodiment, the polynucleotides ofthe present invention
inserted into proliferating cells either alone, or in combination with or fused to other polynucleotides, can then be modulated via an external stimulus (i.e. magnetic, specific small molecule, chemical, or drug administration, etc.), which acts upon the promoter upstream of said polynucleotides to induce expression ofthe encoded protein product. As such the beneficial therapeutic affect ofthe present invention may be expressly modulated (i.e. to increase, decrease, or inhibit expression ofthe present invention) based upon said external stimulus.
Polynucleotides ofthe present invention may be useful in repressing expression of oncogenic genes or antigens. By "repressing expression of the oncogenic genes " is intended the suppression of the transcription ofthe gene, the degradation ofthe gene transcript (pre-message RNA), the inhibition of splicing, the destruction ofthe messenger RNA, the prevention ofthe post-translational modifications ofthe protein, the destruction ofthe protein, or the inhibition ofthe normal function ofthe protein. For local administration to abnormally proliferating cells, polynucleotides of the present invention may be administered by any method known to those of skill in the art including, but not limited to transfection, electroporation, microinjection of cells, or in vehicles such as liposomes, lipofectin, or as naked polynucleotides, or any other method described throughout the specification. The polynucleotide ofthe present invention may be delivered by known gene delivery systems such as, but not limited to, retroviral vectors (Gilboa, J. Virology 44:845 (1982); Hocke, Nature 320:275 (1986); Wilson, et al., Proc. Natl. Acad. Sci. U.S.A. 85:3014), vaccinia virus system (Chakrabarty et al., Mol. Cell Biol. 5:3403 (1985) or other efficient DNA delivery systems (Yates et al., Nature 313:812 (1985)) known to those skilled in the art. These references are exemplary only and are hereby incoφorated by reference. In order to specifically deliver or transfect cells which are abnormally proliferating and spare non-dividing cells, it is preferable to utilize a retrovirus, or adenoviral (as described in the art and elsewhere herein) delivery system known to those of skill in the art. Since host DNA replication is required for retroviral DNA to integrate and the retrovirus will be unable to self replicate due to the lack ofthe retrovirus genes needed for its life cycle. Utilizing such a retroviral delivery system for
polynucleotides ofthe present invention will target said gene and constructs to abnormally proliferating cells and will spare the non-dividing normal cells.
The polynucleotides ofthe present invention may be delivered directly to cell proliferative disorder/disease sites in internal organs, body cavities and the like by use of imaging devices used to guide an injecting needle directly to the disease site. The polynucleotides ofthe present invention may also be administered to disease sites at the time of surgical intervention.
By "cell proliferative disease" is meant any human or animal disease or disorder, affecting any one or any combination of organs, cavities, or body parts, which is characterized by single or multiple local abnormal proliferations of cells, groups of cells, or tissues, whether benign or malignant.
Any amount ofthe polynucleotides ofthe present invention may be administered as long as it has a biologically inhibiting effect on the proliferation of the treated cells. Moreover, it is possible to administer more than one ofthe polynucleotide ofthe present invention simultaneously to the same site. By "biologically inhibiting" is meant partial or total growth inhibition as well as decreases in the rate of proliferation or growth ofthe cells. The biologically inhibitory dose may be determined by assessing the effects ofthe polynucleotides of the present invention on target malignant or abnormally proliferating cell growth in tissue culture, tumor growth in animals and cell cultures, or any other method known to one of ordinary skill in the art.
The present invention is further directed to antibody-based therapies which involve administering of anti-polypeptides and anti-polynucleotide antibodies to a mammalian, preferably human, patient for treating one or more ofthe described disorders. Methods for producing anti-polypeptides and anti-polynucleotide antibodies polyclonal and monoclonal antibodies are described in detail elsewhere herein. Such antibodies may be provided in pharmaceutically acceptable compositions as known in the art or as described herein.
A summary ofthe ways in which the antibodies ofthe present invention may be used therapeutically includes binding polynucleotides or polypeptides ofthe present invention locally or systemically in the body or by direct cytotoxicity ofthe antibody, e.g. as mediated by complement (CDC) or by effector cells (ADCC). Some
of these approaches are described in more detail below. Armed with the teachings provided herein, one of ordinary skill in the art will know how to use the antibodies of the present invention for diagnostic, monitoring or therapeutic puφoses without undue experimentation. In particular, the antibodies, fragments and derivatives ofthe present invention are useful for treating a subject having or developing cell proliferative and/or differentiation disorders as described herein. Such treatment comprises administering a single or multiple doses ofthe antibody, or a fragment, derivative, or a conjugate thereof. The antibodies ofthis invention may be advantageously utilized in combination with other monoclonal or chimeric antibodies, or with lymphokines or hematopoietic growth factors, for example., which serve to increase the number or activity of effector cells which interact with the antibodies.
It is preferred to use high affinity and/or potent in vivo inhibiting and/or neutralizing antibodies against polypeptides or polynucleotides of the present invention, fragments or regions thereof, for both immunoassays directed to and * therapy of disorders related to polynucleotides or polypeptides, including fragements thereof, ofthe present invention. Such antibodies, fragments, or regions, will preferably have an affinity for polynucleotides or polypeptides, including fragements thereof. Preferred binding affinities include those with a dissociation constant or Kd less than 5X10"6M, 10_6M, 5X10"7M, 10"7M, 5X10"8M, 10"8M, 5X10"9M, 10"9M, 5X10"10M, 10"'°M, 5X10""M, 10"nM, 5X10",2M, 10"12M, 5X10"13M, 10"13M, 5X10" 14M, 10",4M, 5X10"15M, and 10",5M.
Moreover, polypeptides ofthe present invention are useful in inhibiting the angiogenesis of proliferative cells or tissues, either alone, as a protein fusion, or in combination with other polypeptides directly or indirectly, as described elsewhere herein. In a most preferred embodiment, said anti-angiogenesis effect may be achieved indirectly, for example, through the inhibition of hematopoietic, tumor- specific cells, such as tumor-associated macrophages (See Joseph IB, et al. J Natl Cancer ist, 90(21): 1648-53 (1998), which is hereby incoφorated by reference).
Antibodies directed to polypeptides or polynucleotides ofthe present invention may also result in inhibition of angiogenesis directly, or indirectly (See Witte L, et al.,
Cancer Metastasis Rev. 17(2):155-61 (1998), which is hereby incoφorated by reference)).
Polypeptides, including protein fusions, of the present invention, or fragments thereof may be useful in inhibiting proliferative cells or tissues through the induction of apoptosis. Said polypeptides may act either directly, or indirectly to induce apoptosis of proliferative cells and tissues, for example in the activation of a death- domain receptor, such as tumor necrosis factor (TNF) receptor-1, CD95 (Fas/APO-1), TNF-receptor-related apoptosis-mediated protein (TRAMP) and TNF-related apoptosis-inducing ligand (TRAIL) receptor-1 and -2 (See Schulze-Osthoff K, et.al., Eur J Biochem 254(3):439-59 (1998), which is hereby incoφorated by reference). Moreover, in another preferred embodiment ofthe present invention, said polypeptides may induce apoptosis through other mechanisms, such as in the activation of other proteins which will activate apoptosis, or through stimulating the expression of said proteins, either alone or in combination with small molecule drugs or adjuviants, such as apoptonin, galectins, thioredoxins, anti-inflammatory proteins (See for example, Mutat Res 400(1 -2):447-55 (1998), Med Hypotheses.50(5):423-33 (1998), Chem Biol Interact. Apr 24; 111-112:23-34 (1998), J Mol Med.76(6):402-12 (1998), Int J Tissue React;20(l):3-15 (1998), which are all hereby incoφorated by reference). Polypeptides, including protein fusions to, or fragments thereof, ofthe present invention are useful in inhibiting the metastasis of proliferative cells or tissues. Inhibition may occur as a direct result of administering polypeptides, or antibodies directed to said polypeptides as described elsewere herein, or indirectly, such as activating the expression of proteins known to inhibit metastasis, for example alpha 4 integrins, (See, e.g., Curr Top Microbiol Immunol 1998;231 :125-41, which is hereby incoφorated by reference). Such thereapeutic affects ofthe present invention may be achieved either alone, or in combination with small molecule drugs or adjuvants.
In another embodiment, the invention provides a method of delivering compositions containing the polypeptides of the invention (e.g., compositions containing polypeptides or polypeptide antibodes associated with heterologous polypeptides, heterologous nucleic acids, toxins, or prodrugs) to targeted cells expressing the polypeptide ofthe present invention. Polypeptides or polypeptide
antibodes ofthe invention may be associated with with heterologous polypeptides, heterologous nucleic acids, toxins, or prodrugs via hydrophobic, hydrophilic, ionic and/or covalent interactions.
Polypeptides, protein fusions to, or fragments thereof, ofthe present invention are useful in enhancing the immunogenicity and/or antigenicity of proliferating cells or tissues, either directly, such as would occur if the polypeptides ofthe present invention 'vaccinated' the immune response to respond to proliferative antigens and immunogens, or indirectly, such as in activating the expression of proteins known to enhance the immune response (e.g. chemokines), to said antigens and immunogens.
Renal Disorders
Polynucleotides, polypeptides, antibodies, and/or agonists or antagonists ofthe present invention, may be used to treat, prevent, diagnose, and/or prognose disorders ofthe renal system. Renal disorders which can be diagnosed, prognosed, prevented, and/or treated with compositions ofthe invention include, but are not limited to, kidney failure, nephritis, blood vessel disorders of kidney, metabolic and congenital kidney disorders, urinary disorders ofthe kidney, autoimmune disorders, sclerosis and necrosis, electrolyte imbalance, and kidney cancers.
Kidney diseases which can be diagnosed, prognosed, prevented, and/or treated with compositions ofthe invention include, but are not limited to, acute kidney failure, chronic kidney failure, atheroembolic renal failure, end-stage renal disease, inflammatory diseases ofthe kidney (e.g., acute glomerulonephritis, postinfectious glomerulonephritis, rapidly progressive glomerulonephritis, nephrotic syndrome, membranous glomerulonephritis, familial nephrotic syndrome, membranoprohferative glomerulonephritis I and II, mesangial proliferative glomerulonephritis, chronic glomerulonephritis, acute tubulointerstitial nephritis, chronic tubulointerstitial nephritis, acute post-streptococcal glomerulonephritis (PSGN), pyelonephritis, lupus nephritis, chronic nephritis, interstitial nephritis, and post-streptococcal glomerulonephritis), blood vessel disorders ofthe kidneys (e.g., kidney infarction, atheroembolic kidney disease, cortical necrosis, malignant nephrosclerosis, renal vein thrombosis, renal undeφerfusion, renal retinopathy, renal ischemia-reperfusion, renal
artery embolism, and renal artery stenosis), and kidney disorders resulting form urinary tract disease (e.g., pyelonephritis, hydronephrosis, urolithiasis (renal lithiasis, nephrolithiasis), reflux nephropathy, urinary tract infections, urinary retention, and acute or chronic unilateral obstructive uropathy.) In addition, compositions ofthe invention can be used to diagnose, prognose, prevent, and/or treat metabolic and congenital disorders ofthe kidney (e.g., uremia, renal amyloidosis, renal osteodystrophy, renal tubular acidosis, renal glycosuria, nephrogenic diabetes insipidus, cystinuria, Fanconi's syndrome, renal fibrocystic osteosis (renal rickets), Hartnup disease, Bartter's syndrome, Liddle's syndrome, polycystic kidney disease, medullary cystic disease, medullary sponge kidney,
Alport's syndrome, nail-patella syndrome, congenital nephrotic syndrome, CRUSH syndrome, horseshoe kidney, diabetic nephropathy, nephrogenic diabetes insipidus, analgesic nephropathy, kidney stones, and membranous nephropathy), and autoimmune disorders ofthe kidney (e.g., systemic lupus erythematosus (SLE), Goodpasture syndrome, IgA nephropathy, and IgM mesangial proliferative glomerulonephritis) .
Compositions of the invention can also be used to diagnose, prognose, prevent, and/or treat sclerotic or necrotic disorders ofthe kidney (e.g., glomerulosclerosis, diabetic nephropathy, focal segmental glomerulosclerosis (FSGS), necrotizing glomerulonephritis, and renal papillary necrosis), cancers ofthe kidney (e.g., nephroma, hypernephroma, nephroblastoma, renal cell cancer, transitional cell cancer, renal adenocarcinoma, squamous cell cancer, and Wilm's tumor), and electrolyte imbalances (e.g., nephrocalcinosis, pyuria, edema, hydronephritis, proteinuria, hyponatremia, hypernatremia, hypokalemia, hyperkalemia, hypocalcemia, hypercalcemia, hypophosphatemia, and hypeφhosphatemia).
Polypeptides may be administered using any method known in the art, including, but not limited to, direct needle injection at the delivery site, intravenous injection, topical administration, catheter infusion, biolistic injectors, particle accelerators, gelfoam sponge depots, other commercially available depot materials, osmotic pumps, oral or suppositorial solid pharmaceutical formulations, decanting or topical applications during surgery, aerosol delivery. Such methods are known in the
art. Polypeptides may be administered as part of a Therapeutic, described in more detail below. Methods of delivering polynucleotides are described in more detail herein.
Cardiovascular Disorders
Polynucleotides or polypeptides, or agonists or antagonists ofthe present invention, may be used to treat, prevent, diagnose, and/or prognose cardiovascular disorders, including, but not limited to, peripheral artery disease, such as limb ischemia. Cardiovascular disorders include, but are not limited to, cardiovascular abnormalities, such as arterio-arterial fistula, arteriovenous fistula, cerebral arteriovenous malformations, congenital heart defects, pulmonary atresia, and Scimitar Syndrome. Congenital heart defects include, but are not limited to, aortic coarctation, cor triatriatum, coronary vessel anomalies, crisscross heart, dextrocardia, patent ductus arteriosus, Ebstein's anomaly, Eisenmenger complex, hypoplastic left heart syndrome, levocardia, tetralogy of fallot, transposition of great vessels, double outlet right ventricle, tricuspid atresia, persistent truncus arteriosus, and heart septal defects, such as aortopulmonary septal defect, endocardial cushion defects, Lutembacher's Syndrome, trilogy of Fallot, ventricular heart septal defects. Cardiovascular disorders also include, but are not limited to, heart disease, such as arrhythmias, carcinoid heart disease, high cardiac output, low cardiac output, cardiac tamponade, endocarditis (including bacterial), heart aneurysm, cardiac arrest, congestive heart failure, congestive cardiomyopathy, paroxysmal dyspnea, cardiac edema, heart hypertrophy, congestive cardiomyopathy, left ventricular hypertrophy, right ventricular hypertrophy, post-infarction heart rupture, ventricular septal rupture, heart valve diseases, myocardial diseases, myocardial ischemia, pericardial effusion, pericarditis (including constrictive and tuberculous), pneumopericardium, postpericardiotomy syndrome, pulmonary heart disease, rheumatic heart disease, ventricular dysfunction, hyperemia, cardiovascular pregnancy complications, Scimitar Syndrome, cardiovascular syphilis, and cardiovascular tuberculosis.
Arrhythmias include, but are not limited to, sinus arrhythmia, atrial fibrillation, atrial flutter, bradycardia, extrasystole, Adams-Stokes Syndrome, bundle-
branch block, sinoatrial block, long QT syndrome, parasystole, Lown-Ganong-Levine Syndrome, Mahaim-type pre-excitation syndrome, Wolff-Parkinson- White syndrome, sick sinus syndrome, tachycardias, and ventricular fibrillation. Tachycardias include paroxysmal tachycardia, supraventricular tachycardia, accelerated idioventricular rhythm, atrioventricular nodal reentry tachycardia, ectopic atrial tachycardia, ectopic junctional tachycardia, sinoatrial nodal reentry tachycardia, sinus tachycardia, Torsades de Pointes, and ventricular tachycardia.
Heart valve diseases include, but are not limited to, aortic valve insufficiency, aortic valve stenosis, hear murmurs, aortic valve prolapse, mitral valve prolapse, tricuspid valve prolapse, mitral valve insufficiency, mitral valve stenosis, pulmonary" atresia, pulmonary valve insufficiency, pulmonary valve stenosis, tricuspid atresia, tricuspid valve insufficiency, and tricuspid valve stenosis.
Myocardial diseases include, but are not limited to, alcoholic cardiomyopathy, congestive cardiomyopathy, hypertrophic cardiomyopathy, aortic subvalvular stenosis, pulmonary subvalvular stenosis, restrictive cardiomyopathy, Chagas cardiomyopathy, endocardial fibroelastosis, endomyocardial fibrosis, Kearns Syndrome, myocardial reperfiision injury, and myocarditis.
Myocardial ischemias include, but are not limited to, coronary disease, such as angina pectoris, coronary aneurysm, coronary arteriosclerosis, coronary thrombosis, coronary vasospasm, myocardial infarction and myocardial stunning.
Cardiovascular diseases also include vascular diseases such as aneurysms, angiodysplasia, angiomatosis, bacillary angiomatosis, Hippel-Lindau Disease, Klippel-Trenaunay- Weber Syndrome, Sturge-Weber Syndrome, angioneurotic edema, aortic diseases, Takayasu's Arteritis, aortitis, Leriche's Syndrome, arterial occlusive diseases, arteritis, enarteritis, polyarteritis nodosa, cerebrovascular disorders, diabetic angiopathies, diabetic retinopathy, embolisms, thrombosis, erythromelalgia, hemorrhoids, hepatic veno-occlusive disease, hypertension, hypotension, ischemia, peripheral vascular diseases, phlebitis, pulmonary veno-occlusive disease, Raynaud's disease, CREST syndrome, retinal vein occlusion, Scimitar syndrome, superior vena cava syndrome, telangiectasia, atacia telangiectasia, hereditary hemorrhagic telangiectasia, varicocele, varicose veins, varicose ulcer, vasculitis, and venous insufficiency.
Aneurysms include, but are not limited to, dissecting aneurysms, false aneurysms, infected aneurysms, ruptured aneurysms, aortic aneurysms, cerebral aneurysms, coronary aneurysms, heart aneurysms, and iliac aneurysms.
Arterial occlusive diseases include, but are not limited to, arteriosclerosis, intermittent claudication, carotid stenosis, fibromuscular dysplasias, mesenteric vascular occlusion, Moyamoya disease, renal artery obstruction, retinal artery occlusion, and thromboangiitis obliterans.
Cerebrovascular disorders include, but are not limited to, carotid artery diseases, cerebral amyloid angiopathy, cerebral aneurysm, cerebral anoxia, cerebral arteriosclerosis, cerebral arteriovenous malformation, cerebral artery diseases, cerebral embolism and thrombosis, carotid artery thrombosis, sinus thrombosis, Wallenberg's syndrome, cerebral hemorrhage, epidural hematoma, subdural hematoma, subaraxhnoid hemorrhage, cerebral infarction, cerebral ischemia (including transient), subclavian steal syndrome, periventricular leukomalacia, vascular headache, cluster headache, migraine, and vertebrobasilar insufficiency.
Embolisms include, but are not limited to, air embolisms, amniotic fluid embolisms, cholesterol embolisms, blue toe syndrome, fat embolisms, pulmonary embolisms, and thromoboembolisms. Thrombosis include, but are not limited to, coronary thrombosis, hepatic vein thrombosis, retinal vein occlusion, carotid artery thrombosis, sinus thrombosis, Wallenberg's syndrome, and thrombophlebitis.
Ischemic disorders include, but are not limited to, cerebral ischemia, ischemic colitis, compartment syndromes, anterior compartment syndrome, myocardial ischemia, reperfiision injuries, and peripheral limb ischemia. Vasculitis includes, but is not limited to, aortitis, arteritis, Behcet's Syndrome, Churg-Strauss Syndrome, mucocutaneous lymph node syndrome, thromboangiitis obliterans, hypersensitivity vasculitis, Schoenlein-Henoch puφura, allergic cutaneous vasculitis, and Wegener's granulomatosis.
Polypeptides may be administered using any method known in the art, including, but not limited to, direct needle injection at the delivery site, intravenous injection, topical administration, catheter infusion, biolistic injectors, particle accelerators, gelfoam sponge depots, other commercially available depot materials, osmotic pumps, oral or suppositorial solid pharmaceutical formulations, decanting or
topical applications during surgery, aerosol delivery. Such methods are known in the art. Polypeptides may be administered as part of a Therapeutic, described in more detail below. Methods of delivering polynucleotides are described in more detail herein.
Respiratory Disorders
Polynucleotides or polypeptides, or agonists or antagonists ofthe present invention may be used to treat, prevent, diagnose, and/or prognose diseases and/or disorders of the respiratory system. Diseases and disorders ofthe respiratory system include, but are not limited to, nasal vestibulitis, nonallergic rhinitis (e.g., acute rhinitis, chronic rhinitis, atrophic rhinitis, vasomotor rhinitis), nasal polyps, and sinusitis, juvenile angiofibromas, cancer ofthe nose and juvenile papillomas, vocal cord polyps, nodules (singer's nodules), contact ulcers, vocal cord paralysis, laryngoceles, pharyngitis (e.g., viral and bacterial), tonsillitis, tonsillar cellulitis, parapharyngeal abscess, laryngitis, laryngoceles, and throat cancers (e.g., cancer ofthe nasopharynx,' tonsil cancer, larynx cancer), lung cancer (e.g., squamous cell carcinoma, small cell (oat cell) carcinoma, large cell carcinoma, and adenocarcinoma), allergic disorders (eosinophilic pneumonia, hypersensitivity pneumonitis (e.g., extrinsic allergic alveolitis, allergic interstitial pneumonitis, organic dust pneumoconiosis, allergic bronchopulmonary aspergillosis, asthma, Wegener's granulomatosis (granulomatous vasculitis), Goodpasture's syndrome)), pneumonia (e.g., bacterial pneumonia (e.g., Streptococcus pneumoniae (pneumoncoccal pneumonia), Staphylococcus aureus (staphylococcal pneumonia), Gram-negative bacterial pneumonia (caused by, e.g., Klebsiella and Pseudomas spp.), Mycoplasma pneumoniae pneumonia, Hemophilus influenzae pneumonia, Legionella pneumophila (Legionnaires' disease), and Chlamydia psittaci (Psittacosis)), and viral pneumonia (e.g., influenza, chickenpox (varicella).
Additional diseases and disorders ofthe respiratory system include, but are not limited to bronchiolitis, polio (poliomyelitis), croup, respiratory syncytial viral infection, mumps, erythema infectiosum (fifth disease), roseola infantum, progressive rubella panencephalitis, german measles, and subacute sclerosing panencephalitis), fungal pneumonia (e.g., Histoplasmosis, Coccidioidomycosis, Blastomycosis, fungal
infections in people with severely suppressed immune systems (e.g., cryptococcosis, caused by Cryptococcus neoformans; aspergillosis, caused by Aspergillus spp.; candidiasis, caused by Candida; and mucormycosis)), Pneumocystis carinii (pneumocystis pneumonia), atypical pneumonias (e.g., Mycoplasma and Chlamydia spp.), opportunistic infection pneumonia, nosocomial pneumonia, chemical pneumonitis, and aspiration pneumonia, pleural disorders (e.g., pleurisy, pleural effusion, and pneumothorax (e.g., simple spontaneous pneumothorax, complicated spontaneous pneumothorax, tension pneumothorax)), obstructive airway diseases (e.g., asthma, chronic obstructive pulmonary disease (COPD), emphysema, chronic or acute bronchitis), occupational lung diseases (e.g., silicosis, black lung (coal workers' pneumoconiosis), asbestosis, berylliosis, occupational asthsma, byssinosis, and benign pneumoconioses), Infiltrative Lung Disease (e.g., pulmonary fibrosis (e.g., fibrosing alveolitis, usual interstitial pneumonia), idiopathic pulmonary fibrosis, desquamative interstitial pneumonia, lymphoid interstitial pneumonia, histiocytosis X (e.g., Letterer-Siwe disease, Hand-Schϋller-Christian disease, eosinophilic granuloma), idiopathic pulmonary hemosiderosis, sarcoidosis and pulmonary alveolar proteinosis), Acute respiratory distress syndrome (also called, e.g., adult respiratory distress syndrome), edema, pulmonary embolism, bronchitis (e.g., viral, bacterial), bronchiectasis, atelectasis, lung abscess (caused by, e.g., Staphylococcus aureus or Legionella pneumophila), and cystic fibrosis.
Anti-Angiogenesis Activity
The naturally occurring balance between endogenous stimulators and inhibitors of angiogenesis is one in which inhibitory influences predominate. Rastinejad et al, Cell 5-5:345-355 (1989). In those rare instances in which neovascularization occurs under normal physiological conditions, such as wound healing, organ regeneration, embryonic development, and female reproductive processes, angiogenesis is stringently regulated and spatially and temporally delimited. Under conditions of pathological angiogenesis such as that characterizing solid tumor growth, these regulatory controls fail. Unregulated angiogenesis becomes pathologic and sustains progression of many neoplastic and non-neoplastic diseases. A number of serious diseases are dominated by abnormal neovascularization
including solid tumor growth and metastases, arthritis, some types of eye disorders, and psoriasis. See, e.g., reviews by Moses et al, Biotech. 9:630-634 (1991); Folkman et al, N. Engl J. Med, 333:1757-1763 (1995); Auerbach et al, J. Microvasc. Res. 29:401-411 (1985); Folkman, Advances in Cancer Research, eds. Klein and Weinhouse, Academic Press, New York, pp. 175-203 (1985); Patz, Am. J.
Opthalmol 94:715-743 (1982); and Folkman et al, Science 221:719-725 (1983). In a number of pathological conditions, the process of angiogenesis contributes to the disease state. For example, significant data have accumulated which suggest that the growth of solid tumors is dependent on angiogenesis. Folkman and Klagsbrun, Science 235:442-447 (1987).
The present invention provides for treatment of diseases or disorders associated with neovascularization by administration ofthe polynucleotides and/or polypeptides ofthe invention, as well as agonists or antagonists ofthe present invention. Malignant and metastatic conditions which can be treated with the polynucleotides and polypeptides, or agonists or antagonists ofthe invention include, but are not limited to, malignancies, solid tumors, and cancers described herein and otherwise known in the art (for a review of such disorders, see Fishman et al, Medicine, 2d Ed., j. B. Lippincott Co., Philadelphia (1985)). Thus, the present invention provides a method of treating an angiogenesis-related disease and/or disorder, comprising administering to an individual in need thereof a therapeutically effective amount of a polynucleotide, polypeptide, antagonist and/or agonist ofthe invention. For example, polynucleotides, polypeptides, antagonists and/or agonists may be utilized in a variety of additional methods in order to therapeutically treat a cancer or tumor. Cancers which may be treated with polynucleotides, polypeptides, antagonists and/or agonists include, but are not limited to solid tumors, including prostate, lung, breast, ovarian, stomach, pancreas, larynx, esophagus, testes, liver, parotid, biliary tract, colon, rectum, cervix, uterus, endometrium, kidney, bladder, thyroid cancer; primary tumors and metastases; melanomas; glioblastoma; Kaposi's sarcoma; leiomyosarcoma; non- small cell lung cancer; colorectal cancer; advanced malignancies; and blood born tumors such as leukemias. For example, polynucleotides, polypeptides, antagonists and/or agonists may be delivered topically, in order to treat cancers such as skin cancer, head and neck tumors, breast tumors, and
Kaposi's sarcoma.
Within yet other aspects, polynucleotides, polypeptides, antagonists and/or agonists may be utilized to treat superficial forms of bladder cancer by, for example, intravesical administration. Polynucleotides, polypeptides, antagonists and/or agonists may be delivered directly into the tumor, or near the tumor site, via injection or a catheter. Of course, as the artisan of ordinary skill will appreciate, the appropriate mode of administration will vary according to the cancer to be treated. Other modes of delivery are discussed herein.
Polynucleotides, polypeptides, antagonists and/or agonists may be useful in treating other disorders, besides cancers, which involve angiogenesis. These disorders include, but are not limited to: benign tumors, for example hemangiomas, acoustic neuromas, neurofibromas, trachomas, and pyogenic granulomas; artheroscleric plaques; ocular angiogenic diseases, for example, diabetic retinopathy, retinopathy of prematurity, macular degeneration, corneal graft rejection, neovascular glaucoma, retrolental fibroplasia, rubeosis, retinoblastoma, uvietis and Pterygia - (abnormal blood vessel growth) of the eye; rheumatoid arthritis; psoriasis; delayed wound healing; endometriosis; vasculogenesis; granulations; hypertrophic scars (keloids); nonunion fractures; scleroderma; trachoma; vascular adhesions; myocardial angiogenesis; coronary collaterals; cerebral collaterals; arteriovenous malformations; ischemic limb angiogenesis; Osier- Webber Syndrome; plaque neovascularization; telangiectasia; hemophiliac joints; angiofibroma; fibromuscular dysplasia; wound granulation; Crohn's disease; and atherosclerosis.
For example, within one aspect ofthe present invention methods are provided for treating hypertrophic scars and keloids, comprising the step of administering a polynucleotide, polypeptide, antagonist and/or agonist ofthe invention to a hypertrophic scar or keloid.
Within one embodiment ofthe present invention polynucleotides, polypeptides, antagonists and/or agonists ofthe invention are directly injected into a hypertrophic scar or keloid, in order to prevent the progression of these lesions. This therapy is of particular value in the prophylactic treatment of conditions which are known to result in the development of hypertrophic scars and keloids (e.g., burns), and is preferably initiated after the proliferative phase has had time to progress
(approximately 14 days after the initial injury), but before hypertrophic scar or keloid development. As noted above, the present invention also provides methods for treating neovascular diseases ofthe eye, including for example, corneal neovascularization, neovascular glaucoma, proliferative diabetic retinopathy, retrolental fibroplasia and macular degeneration.
Moreover, Ocular disorders associated with neovascularization which can be treated with the polynucleotides and polypeptides of the present invention (including agonists and/or antagonists) include, but are not limited to: neovascular glaucoma, diabetic retinopathy, retinoblastoma, retrolental fibroplasia, uveitis, retinopathy of prematurity macular degeneration, comeal graft neovascularization, as well as other eye inflammatory diseases, ocular tumors and diseases associated with choroidal or iris neovascularization. See, e.g., reviews by Waltman et al, Am. J. Ophthal. 85:704- 710 (1978) and Gartner et al, Surv. Ophthal. 22:291-312 (1978).
Thus, within one aspect ofthe present invention methods are provided for treating neovascular diseases ofthe eye such as corneal neovascularization (including corneal graft neovascularization), comprising the step of administering to a patient a therapeutically effective amount of a compound (as described above) to the cornea, such that the formation of blood vessels is inhibited. Briefly, the cornea is a tissue which normally lacks blood vessels. In certain pathological conditions however, capillaries may extend into the cornea from the pericorneal vascular plexus ofthe limbus. When the cornea becomes vascularized, it also becomes clouded, resulting in a decline in the patient's visual acuity. Visual loss may become complete if the cornea completely opacitates. A wide variety of disorders can result in corneal neovascularization, including for example, corneal infections (e.g., trachoma, heφes simplex keratitis, leishmaniasis and onchocerciasis), immunological processes (e.g., graft rejection and Stevens- Johnson's syndrome), alkali burns, trauma, inflammation (of any cause), toxic and nutritional deficiency states, and as a complication of wearing contact lenses.
Within particularly preferred embodiments ofthe invention, may be prepared for topical administration in saline (combined with any ofthe preservatives and antimicrobial agents commonly used in ocular preparations), and administered in eyedrop form. The solution or suspension may be prepared in its pure form and
administered several times daily. Alternatively, anti-angiogenic compositions, prepared as described above, may also be administered directly to the cornea. Within preferred embodiments, the anti-angiogenic composition is prepared with a muco- adhesive polymer which binds to cornea. Within further embodiments, the anti- angiogenic factors or anti-angiogenic compositions may be utilized as an adjunct to conventional steroid therapy. Topical therapy may also be useful prophylactically in corneal lesions which are known to have a high probability of inducing an angiogenic response (such as chemical burns). In these instances the treatment, likely in combination with steroids, may be instituted immediately to help prevent subsequent complications.
Within other embodiments, the compounds described above may be injected directly into the corneal stroma by an ophthalmologist under microscopic guidance. The preferred site of injection may vary with the moφhology ofthe individual lesion, but the goal ofthe administration would be to place the composition at the advancing front ofthe vasculature (i.e., interspersed between the blood vessels and the normal cornea). In most cases this would involve perilimbic corneal injection to "protect" the cornea from the advancing blood vessels. This method may also be utilized shortly after a corneal insult in order to prophylactically prevent corneal neovascularization. In this situation the material could be injected in the perilimbic cornea interspersed between the comeal lesion and its undesired potential limbic blood supply. Such methods may also be utilized in a similar fashion to prevent capillary invasion of transplanted corneas. In a sustained-release form injections might only be required 2- 3 times per year. A steroid could also be added to the injection solution to reduce inflammation resulting from the injection itself. Within another aspect ofthe present invention, methods are provided for treating neovascular glaucoma, comprising the step of administering to a patient a therapeutically effective amount of a polynucleotide, polypeptide, antagonist and/or agonist to the eye, such that the formation of blood vessels is inhibited. In one embodiment, the compound may be administered topically to the eye in order to treat early forms of neovascular glaucoma. Within other embodiments, the compound may be implanted by injection into the region ofthe anterior chamber angle. Within other embodiments, the compound may also be placed in any location such that the
compound is continuously released into the aqueous humor. Within another aspect of the present invention, methods are provided for treating proliferative diabetic retinopathy, comprising the step of administering to a patient a therapeutically effective amount of a polynucleotide, polypeptide, antagonist and/or agonist to the eyes, such that the formation of blood vessels is inhibited.
Within particularly preferred embodiments ofthe invention, proliferative diabetic retinopathy may be treated by injection into the aqueous humor or the vitreous, in order to increase the local concentration ofthe polynucleotide, polypeptide, antagonist and/or agonist in the retina. Preferably, this treatment should be initiated prior to the acquisition of severe disease requiring photocoagulation. Within another aspect of the present invention, methods are provided for treating retrolental fibroplasia, comprising the step of administering to a patient a therapeutically effective amount of a polynucleotide, polypeptide, antagonist and/or agonist to the eye, such that the formation of blood vessels is inhibited. The compound may be administered topically, via intravitreous injection and/or via intraocular implants.
Additionally, disorders which can be treated with the polynucleotides, polypeptides, agonists and/or agonists include, but are not limited to, hemangioma, arthritis, psoriasis, angiofibroma, atherosclerotic plaques, delayed wound healing, granulations, hemophilic joints, hypertrophic scars, nonunion fractures, Osier- Weber syndrome, pyogenic granuloma, scleroderma, trachoma, and vascular adhesions.
Moreover, disorders and/or states, which can be treated, prevented, diagnosed, and/or prognosed with the the polynucleotides, polypeptides, agonists and/or agonists ofthe invention include, but are not limited to, solid tumors, blood born tumors such as leukemias, tumor metastasis, Kaposi's sarcoma, benign tumors, for example hemangiomas, acoustic neuromas, neurofibromas, trachomas, and pyogenic granulomas, rheumatoid arthritis, psoriasis, ocular angiogenic diseases, for example, diabetic retinopathy, retinopathy of prematurity, macular degeneration, corneal graft rejection, neovascular glaucoma, retrolental fibroplasia, rubeosis, retinoblastoma, and uvietis, delayed wound healing, endometriosis, vascluogenesis, granulations, hypertrophic scars (keloids), nonunion fractures, scleroderma, trachoma, vascular adhesions, myocardial angiogenesis, coronary collaterals, cerebral collaterals,
arteriovenous malformations, ischemic limb angiogenesis, Osier- Webber Syndrome, plaque neovascularization, telangiectasia, hemophiliac joints, angiofibroma fibromuscular dysplasia, wound granulation, Crohn's disease, atherosclerosis, birth control agent by preventing vascularization required for embryo implantation controlling menstruation, diseases that have angiogenesis as a pathologic consequence such as cat scratch disease (Rochele minalia quintosa), ulcers (Helicobacter pylori), Bartonellosis and bacillary angiomatosis.
In one aspect ofthe birth control method, an amount ofthe compound sufficient to block embryo implantation is administered before or after intercourse and fertilization have occurred, thus providing an effective method of birth control, possibly a "morning after" method. Polynucleotides, polypeptides, agonists and/or agonists may also be used in controlling menstruation or administered as either a peritoneal lavage fluid or for peritoneal implantation in the treatment of endometriosis. Polynucleotides, polypeptides, agonists and/or agonists of the present invention may be incoφorated into surgical sutures in order to prevent stitch granulomas.
Polynucleotides, polypeptides, agonists and/or agonists may be utilized in a wide variety of surgical procedures. For example, within one aspect ofthe present invention a compositions (in the form of, for example, a spray or film) may be utilized to coat or spray an area prior to removal of a tumor, in order to isolate normal surrounding tissues from malignant tissue, and/or to prevent the spread of disease to surrounding tissues. Within other aspects ofthe present invention, compositions (e.g., in the form of a spray) may be delivered via endoscopic procedures in order to coat tumors, or inhibit angiogenesis in a desired locale. Within yet other aspects ofthe present invention, surgical meshes which have been coated with anti- angiogenic compositions ofthe present invention may be utilized in any procedure wherein a surgical mesh might be utilized. For example, within one embodiment ofthe invention a surgical mesh laden with an anti-angiogenic composition may be utilized during abdominal cancer resection surgery (e.g., subsequent to colon resection) in order to provide support to the structure, and to release an amount ofthe anti- angiogenic factor.
Within further aspects ofthe present invention, methods are provided for treating tumor excision sites, comprising administering a polynucleotide, polypeptide, agonist and/or agonist to the resection margins of a tumor subsequent to excision, such that the local recurrence of cancer and the formation of new blood vessels at the site is inhibited. Within one embodiment ofthe invention, the anti-angiogenic compound is administered directly to the tumor excision site (e.g., applied by swabbing, brushing or otherwise coating the resection margins ofthe tumor with the anti-angiogenic compound). Alternatively, the anti-angiogenic compounds may be incoφorated into known surgical pastes prior to administration. Within particularly preferred embodiments ofthe invention, the anti-angiogenic compounds are applied after hepatic resections for malignancy, and after neurosurgical operations.
Within one aspect ofthe present invention, polynucleotides, polypeptides, agonists and/or agonists may be administered to the resection margin of a wide variety of tumors, including for example, breast, colon, brain and hepatic tumors. For example, within one embodiment ofthe invention, anti-angiogenic compounds may be administered to the site of a neurological tumor subsequent to excision, such that the formation of new blood vessels at the site are inhibited.
The polynucleotides, polypeptides, agonists and/or agonists of the present invention may also be administered along with other anti-angiogenic factors. Representative examples of other anti-angiogenic factors include: Anti-Invasive
Factor, retinoic acid and derivatives thereof, paclitaxel, Suramin, Tissue Inhibitor of Metalloproteinase-1, Tissue Inhibitor of Metalloproteinase-2, Plasminogen Activator Inhibitor- 1, Plasminogen Activator Inhibitor-2, and various forms ofthe lighter "d group" transition metals. Lighter "d group" transition metals include, for example, vanadium, molybdenum, tungsten, titanium, niobium, and tantalum species. Such transition metal species may form transition metal complexes. Suitable complexes ofthe above-mentioned transition metal species include oxo transition metal complexes. Representative examples of vanadium complexes include oxo vanadium complexes such as vanadate and vanadyl complexes. Suitable vanadate complexes include metavanadate and orthovanadate complexes such as, for example, ammonium metavanadate, sodium metavanadate, and sodium orthovanadate. Suitable vanadyl
complexes include, for example, vanadyl acetylacetonate and vanadyl sulfate including vanadyl sulfate hydrates such as vanadyl sulfate mono- and trihydrates.
Representative examples of tungsten and molybdenum complexes also include oxo complexes. Suitable oxo tungsten complexes include tungstate and tungsten oxide complexes. Suitable tungstate complexes include ammonium tungstate, calcium tungstate, sodium tungstate dihydrate, and tungstic acid. Suitable tungsten oxides include tungsten (IV) oxide and tungsten (VI) oxide. Suitable oxo molybdenum complexes include molybdate, molybdenum oxide, and molybdenyl complexes. Suitable molybdate complexes include ammonium molybdate and its hydrates, sodium molybdate and its hydrates, and potassium molybdate and its hydrates. Suitable molybdenum oxides include molybdenum (VI) oxide, molybdenum (VI) oxide, and molybdic acid. Suitable molybdenyl complexes include, for example, molybdenyl acetylacetonate. Other suitable tungsten and molybdenum complexes include hydroxo derivatives derived from, for example, glycerol, tartaric acid, and sugars.
A wide variety of other anti-angiogenic factors may also be utilized within the context ofthe present invention. Representative examples include platelet factor 4; protamine sulphate; sulphated chitin derivatives (prepared from queen crab shells), (Murata et al., Cancer Res. 51 :22-26, 1991); Sulphated Polysaccharide Peptidoglycan Complex (SP- PG) (the function of this compound may be enhanced by the presence of steroids such as estrogen, and tamoxifen citrate); Staurosporine; modulators of matrix metabolism, including for example, proline analogs, cishydroxyproline, d,L- 3,4-dehydroproline,.Thiaproline, alpha,alpha-dipyridyl, aminopropionitrile fumarate; 4-propyl-5-(4-pyridinyl)-2(3H)-oxazolone; Methotrexate; Mitoxantrone; Heparin; Interferons; 2 Macroglobulin-serum; ChIMP-3 (Pavloff et al., J. Bio. Chem.
267:17321-17326, 1992); Chymostatin (Tomkinson et al., Biochem J. 286:475-480, 1992); Cyclodextrin Tetradecasulfate; Eponemycin; Camptothecin; Fumagillin (Ingber et al., Nature 348:555-557, 1990); Gold Sodium Thiomalate ("GST"; Matsubara and Ziff, J. Clin. Invest. 79:1440-1446, 1987); anticollagenase-serum; alpha2-antiρlasmin (Holmes et al., J. Biol. Chem. 262(4): 1659- 1664, 1987);
Bisantrene (National Cancer Institute); Lobenzarit disodium (N-(2)-carboxyphenyl-4- chloroanthronilic acid disodium or "CCA"; Takeuchi et al., Agents Actions 36:312-
316, 1992); Thalidomide; Angostatic steroid; AGM-1470; carboxynaminolmidazole; and metalloproteinase inhibitors such as BB94.
Diseases at the Cellular Level Diseases associated with increased cell survival or the inhibition of apoptosis that could be treated, prevented, diagnosed, and/or prognosed using polynucleotides or polypeptides, as well as antagonists or agonists ofthe present invention, include cancers (such as follicular lymphomas, carcinomas with p53 mutations, and hormone- dependent tumors, including, but not limited to colon cancer, cardiac tumors, pancreatic cancer, melanoma, retinoblastoma, glioblastoma, lung cancer, intestinal cancer, testicular cancer, stomach cancer, neuroblastoma, myxoma, myoma, lymphoma, endothelioma, osteoblastoma, osteoclastoma, osteosarcoma, chondrosarcoma, adenoma, breast cancer, prostate cancer, Kaposi's sarcoma and ovarian cancer); autoimmune disorders (such as, multiple sclerosis, Sjogren's syndrome, Hashimoto's thyroiditis, biliary cirrhosis, Behcet's disease, Crohn's disease, polymyositis, systemic lupus erythematosus and immune-related glomerulonephritis and rheumatoid arthritis) and viral infections (such as heφes viruses, pox viruses and adenoviruses), inflammation, graft v. host disease, acute graft rejection, and chronic graft rejection. In preferred embodiments, polynucleotides, polypeptides, and/or antagonists ofthe invention are used to inhibit growth, progression, and/or metasis of cancers, in particular those listed above.
Additional diseases or conditions associated with increased cell survival that could be treated or detected by polynucleotides or polypeptides, or agonists or antagonists ofthe present invention include, but are not limited to, progression, and/or metastases of malignancies and related disorders such as leukemia (including acute leukemias (e.g., acute lymphocytic leukemia, acute myelocytic leukemia (including myeloblastic, promyelocytic, myelomonocytic, monocytic, and erythroleukemia)) and chronic leukemias (e.g., chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia)), polycythemia vera, lymphomas (e.g., Hodgkin's disease and non-Hodgkin's disease), multiple myeloma, Waldenstrom's macroglobulinemia, heavy chain disease, and solid tumors including, but not limited to, sarcomas and
carcinomas such as fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilm's tumor, cervical cancer, testicular tumor, lung carcinoma, small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, menangioma, melanoma, neuroblastoma, and retinoblastoma.
Diseases associated with increased apoptosis that could be treated, prevented, diagnosed, and/or prognesed using polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, include, but are not limited to, AIDS; neurodegenerative disorders (such as Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, Retinitis pigmentosa, Cerebellar degeneration and brain tumor or prior associated disease); autoimmune disorders (such as, multiple sclerosis, Sjogren's syndrome, Hashimoto's thyroiditis, biliary cirrhosis, Behcet's disease, Crohn's disease, polymyositis, systemic lupus erythematosus and immune- related glomerulonephritis and rheumatoid arthritis) myelodysplastic syndromes (such as aplastic anemia), graft v. host disease, ischemic injury (such as that caused by myocardial infarction, stroke and reperfiision injury), liver injury (e.g., hepatitis related liver injury, ischemia/reperfusion injury, cholestosis (bile duct injury) and liver cancer); toxin-induced liver disease (such as that caused by alcohol), septic shock, cachexia and anorexia.
Wound Healing and Epithelial Cell Proliferation In accordance with yet a further aspect ofthe present invention, there is provided a process for utilizing polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, for therapeutic puφoses, for example, to
stimulate epithelial cell proliferation and basal keratinocytes for the puφose of wound healing, and to stimulate hair follicle production and healing of dermal wounds. Polynucleotides or polypeptides, as well as agonists or antagonists ofthe present invention, may be clinically useful in stimulating wound healing including surgical wounds, excisional wounds, deep wounds involving damage ofthe dermis and epidermis, eye tissue wounds, dental tissue wounds, oral cavity wounds, diabetic ulcers, dermal ulcers, cubitus ulcers, arterial ulcers, venous stasis ulcers, burns resulting from heat exposure or chemicals, and other abnormal wound healing conditions such as uremia, malnutrition, vitamin deficiencies and complications associated with systemic treatment with steroids, radiation therapy and antineoplastic drugs and antimetabolites. Polynucleotides or polypeptides, as well as agonists or antagonists ofthe present invention, could be used to promote dermal reestabhshment subsequent to dermal loss
Polynucleotides or polypeptides, as well as agonists or antagonists ofthe present invention, could be used to increase the adherence of skin grafts to a wound bed and to stimulate re-epithelialization from the wound bed. The following are types of grafts that polynucleotides or polypeptides, agonists or antagonists ofthe present invention, could be used to increase adherence to a wound bed: autografts, artificial skin, allografts, autodermic graft, autoepdermic grafts, avacular grafts, Blair-Brown grafts, bone graft, brephoplastic grafts, cutis graft, delayed graft, dermic graft, epidermic graft, fascia graft, full thickness graft, heterologous graft, xenograft, homologous graft, hypeφlastic graft, lamellar graft, mesh graft, mucosal graft, Ollier- Thiersch graft, omenpal graft, patch graft, pedicle graft, penetrating graft, split skin graft, thick split graft. Polynucleotides or polypeptides, as well as agonists or antagonists ofthe present invention, can be used to promote skin strength and to improve the appearance of aged skin.
It is believed that polynucleotides or polypeptides, as well as agonists or antagonists ofthe present invention, will also produce changes in hepatocyte proliferation, and epithelial cell proliferation in the lung, breast, pancreas, stomach, small intestine, and large intestine. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could promote proliferation of epithelial cells such as sebocytes, hair follicles, hepatocytes, type II pneumocytes,
mucin-producing goblet cells, and other epithelial cells and their progenitors contained within the skin, lung, liver, and gastrointestinal tract. Polynucleotides or polypeptides, agonists or antagonists ofthe present invention, may promote proliferation of endothelial cells, keratinocytes, and basal keratinocytes. Polynucleotides or polypeptides, as well as agonists or antagonists ofthe present invention, could also be used to reduce the side effects of gut toxicity that result from radiation, chemotherapy treatments or viral infections. Polynucleotides or polypeptides, as well as agonists or antagonists ofthe present invention, may have a cytoprotective effect on the small intestine mucosa. Polynucleotides or polypeptides, as well as agonists or antagonists ofthe present invention, may also stimulate healing of mucositis (mouth ulcers) that result from chemotherapy and viral infections.
Polynucleotides or polypeptides, as well as agonists or antagonists ofthe present invention, could further be used in full regeneration of skin in full and partial thickness skin defects, including burns, (i.e., repopulation of hair follicles, sweat glands, and sebaceous glands), treatment of other skin defects such as psoriasis. Polynucleotides or polypeptides, as well as agonists or antagonists ofthe present invention, could be used to treat epidermolysis bullosa, a defect in adherence ofthe epidermis to the underlying dermis which results in frequent, open and painful blisters by accelerating reepithelialization of these lesions. Polynucleotides or polypeptides, as well as agonists or antagonists ofthe present invention, could also be used to treat gastric and doudenal ulcers and help heal by scar formation ofthe mucosal lining and regeneration of glandular mucosa and duodenal mucosal lining more rapidly. Inflammatory bowel diseases, such as Crohn's disease and ulcerative colitis, are diseases which result in destruction of the mucosal surface ofthe small or large intestine, respectively. Thus, polynucleotides or polypeptides, as well as agonists or antagonists ofthe present invention, could be used to promote the resurfacing ofthe mucosal surface to aid more rapid healing and to prevent progression of inflammatory bowel disease. Treatment with polynucleotides or polypeptides, agonists or antagonists ofthe present invention, is expected to have a significant effect on the production of mucus throughout the gastrointestinal tract and could be used to protect the intestinal mucosa from injurious substances that are ingested or following surgery.
Polynucleotides or polypeptides, as well as agonists or antagonists ofthe present invention, could be used to treat diseases associate with the under expression.
Moreover, polynucleotides or polypeptides, as well as agonists or antagonists ofthe present invention, could be used to prevent and heal damage to the lungs due to various pathological states. Polynucleotides or polypeptides, as well as agonists or antagonists ofthe present invention, which could stimulate proliferation and differentiation and promote the repair of alveoli and brochiolar epithelium to prevent or treat acute or chronic lung damage. For example, emphysema, which results in the progressive loss of aveoli, and inhalation injuries, i.e., resulting from smoke inhalation and burns, that cause necrosis ofthe bronchiolar epithelium and alveoli could be effectively treated using polynucleotides or polypeptides, agonists or antagonists of the present invention. Also, polynucleotides or polypeptides, as well as agonists or antagonists ofthe present invention, could be used to stimulate the proliferation of and differentiation of type II pneumocytes, which may help treat or prevent disease such as hyaline membrane diseases, such as infant respiratory distress syndrome and bronchopulmonary displasia, in premature infants.
Polynucleotides or polypeptides, as well as agonists or antagonists ofthe present invention, could stimulate the proliferation and differentiation of hepatocytes and, thus, could be used to alleviate or treat liver diseases and pathologies such as fulminant liver failure caused by cirrhosis, liver damage caused by viral hepatitis and toxic substances (i.e., acetaminophen, carbon tetraholoride and other hepatotoxins known in the art).
In addition, polynucleotides or polypeptides, as well as agonists or antagonists ofthe present invention, could be used treat or prevent the onset of diabetes mellitus. In patients with newly diagnosed Types I and II diabetes, where some islet cell function remains, polynucleotides or polypeptides, as well as agonists or antagonists ofthe present invention, could be used to maintain the islet function so as to alleviate, delay or prevent permanent manifestation ofthe disease. Also, polynucleotides or polypeptides, as well as agonists or antagonists ofthe present invention, could be used as an auxiliary in islet cell transplantation to improve or promote islet cell function.
Neural Activity and Neurological Diseases
The polynucleotides, polypeptides and agonists or antagonists ofthe invention may be used for the diagnosis and/or treatment of diseases, disorders, damage or injury ofthe brain and/or nervous system. Nervous system disorders that can be treated with the compositions of the invention (e.g., polypeptides, polynucleotides, and/or agonists or antagonists), include, but are not limited to, nervous system injuries, and diseases or disorders which result in either a disconnection of axons, a diminution or degeneration of neurons, or demyelination. Nervous system lesions which may be treated in a patient (including human and non-human mammalian patients) according to the methods ofthe invention, include but are not limited to, the following lesions of either the central (including spinal cord, brain) or peripheral nervous systems: (1) ischemic lesions, in which a lack of oxygen in a portion ofthe nervous system results in neuronal injury or death, including cerebral infarction or ischemia, or spinal cord infarction or ischemia; (2) traumatic lesions, including lesions caused by physical injury or associated with surgery, for example, lesions which sever a portion ofthe nervous system, or compression injuries; (3) malignant lesions, in which a portion ofthe nervous system is destroyed or injured by malignant tissue which is either a nervous system associated malignancy or a malignancy derived from non-nervous system tissue; (4) infectious lesions, in which a portion of the nervous system is destroyed or injured as a result of infection, for example, by an abscess or associated with infection by human immunodeficiency virus, heφes zoster, or heφes simplex virus or with Lyme disease, tuberculosis, or syphilis; (5) degenerative lesions, in which a portion ofthe nervous system is destroyed or injured as a result of a degenerative process including but not limited to, degeneration associated with Parkinson's disease, Alzheimer's disease, Huntington's chorea, or amyotrophic lateral sclerosis (ALS); (6) lesions associated with nutritional diseases or disorders, in which a portion ofthe nervous system is destroyed or injured by a nutritional disorder or disorder of metabolism including, but not limited to, vitamin B12 deficiency, folic acid deficiency, Wernicke disease, tobacco-alcohol amblyopia, Marchiafava-Bignami disease (primary degeneration ofthe coφus callosum), and
/ alcoholic cerebellar degeneration; (7) neurological lesions associated with systemic diseases including, but not limited to, diabetes (diabetic neuropathy, Bell's palsy),
systemic lupus erythematosus, carcinoma, or sarcoidosis; (8) lesions caused by toxic substances including alcohol, lead, or particular neurotoxins; and (9) demyelinated lesions in which a portion ofthe nervous system is destroyed or injured by a demyelinating disease including, but not limited to, multiple sclerosis, human immunodeficiency virus-associated myelopathy, transverse myelopathy or various etiologies, progressive multifocal leukoencephalopathy, and central pontine myelinolysis.
In one embodiment, the polypeptides, polynucleotides, or agonists or antagonists ofthe invention are used to protect neural cells from the damaging effects of hypoxia. In a further preferred embodiment, the polypeptides, polynucleotides, or agonists or antagonists of the invention are used to protect neural cells from the damaging effects of cerebral hypoxia. According to this embodiment, the compositions ofthe invention are used to treat or prevent neural cell injury associated with cerebral hypoxia. In one non-exclusive aspect ofthis embodiment, the polypeptides, polynucleotides, or agonists or antagonists ofthe invention, are used to treat or prevent neural cell injury associated with cerebral ischemia. In another nonexclusive aspect ofthis embodiment, the polypeptides, polynucleotides, or agonists or antagonists ofthe invention are used to treat or prevent neural cell injury associated with cerebral infarction. In another preferred embodiment, the polypeptides, polynucleotides, or agonists or antagonists ofthe invention are used to treat or prevent neural cell injury associated with a stroke. In a specific embodiment, the polypeptides, polynucleotides, or agonists or antagonists of the invention are used to treat or prevent cerebral neural cell injury associated with a stroke. In another preferred embodiment, the polypeptides, polynucleotides, or agonists or antagonists ofthe invention are used to treat or prevent neural cell injury associated with a heart attack. In a specific embodiment, the polypeptides, polynucleotides, or agonists or antagonists ofthe invention are used to treat or prevent cerebral neural cell injury associated with a heart attack. The compositions ofthe invention which are useful for treating or preventing a nervous system disorder may be selected by testing for biological activity in promoting the survival or differentiation of neurons. For example, and not by way of
limitation, compositions ofthe invention which elicit any ofthe following effects may be useful according to the invention: (1) increased survival time of neurons in culture either in the presence or absence of hypoxia or hypoxic conditions; (2) increased sprouting of neurons in culture or in vivo; (3) increased production of a neuron- associated molecule in culture or in vivo, e.g. , choline acetyltransferase or acetylcholinesterase with respect to motor neurons; or (4) decreased symptoms of neuron dysfunction in vivo. Such effects may be measured by any method known in the art. In preferred, non-limiting embodiments, increased survival of neurons may routinely be measured using a method set forth herein or otherwise known in the art, such as, for example, in Zhang et al, Proc Natl Acad Sci USA 97:3637-42 (2000) or in Arakawa et al, J. Neurosci., 70:3507-15 (1990); increased sprouting of neurons may be detected by methods known in the art, such as, for example, the methods set forth in Pestronk et al, Exp. Neurol, 70:65-82 (1980), or Brown et al, Ann. Rev. Neurosci., 4:17-42 (1981); increased production of neuron-associated molecules may be measured by bioassay, enzymatic assay, antibody binding, Northern blot assay, etc., using techniques known in the art and depending on the molecule to be measured; and motor neuron dysfunction may be measured by assessing the physical manifestation of motor neuron disorder, e.g., weakness, motor neuron conduction velocity, or functional disability. In specific embodiments, motor neuron disorders that may be treated according to the invention include, but are not limited to, disorders such as infarction, infection, exposure to toxin, trauma, surgical damage, degenerative disease or malignancy that may affect motor neurons as well as other components ofthe nervous system, as well as disorders that selectively affect neurons such as amyotrophic lateral sclerosis, and including, but not limited to, progressive spinal muscular atrophy, progressive bulbar palsy, primary lateral sclerosis, infantile and juvenile muscular atrophy, progressive bulbar paralysis of childhood (Fazio-Londe syndrome), poliomyelitis and the post polio syndrome, and Hereditary Motorsensory Neuropathy (Charcot-Marie-Tooth Disease). Further, polypeptides or polynucleotides ofthe invention may play a role in neuronal survival; synapse formation; conductance; neural differentiation, etc. Thus, compositions of the invention (including polynucleotides, polypeptides, and agonists
or antagonists) may be used to diagnose and/or treat or prevent diseases or disorders associated with these roles, including, but not limited to, learning and/or cognition disorders. The compositions of the invention may also be useful in the treatment or prevention of neurodegenerative disease states and/or behavioural disorders. Such neurodegenerative disease states and/or behavioral disorders include, but are not limited to, Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Tourette Syndrome, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder, panic disorder, learning disabilities, ALS, psychoses, autism, and altered behaviors, including disorders in feeding, sleep patterns, balance, and perception. In addition, compositions ofthe invention may also play a role in the treatment, prevention and/or detection of developmental disorders associated with the developing embryo, or sexually-linked disorders.
Additionally, polypeptides, polynucleotides and/or agonists or antagonists of the invention, may be useful in protecting neural cells from diseases, damage, disorders, or injury, associated with cerebrovascular disorders including, but not limited to, carotid artery diseases (e.g., carotid artery thrombosis, carotid stenosis, or Moyamoya Disease), cerebral amyloid angiopathy, cerebral aneurysm, cerebral anoxia, cerebral arteriosclerosis, cerebral arteriovenous malformations, cerebral artery diseases, cerebral embolism and thrombosis (e.g., carotid artery thrombosis, sinus thrombosis, or Wallenberg's Syndrome), cerebral hemorrhage (e.g., epidural or subdural hematoma, or subarachnoid hemonhage), cerebral infarction, cerebral ischemia (e.g., transient cerebral ischemia, Subclavian Steal Syndrome, or vertebrobasilar insufficiency), vascular dementia (e.g., multi-infarct), leukomalacia, periventricular, and vascular headache (e.g., cluster headache or migraines). In accordance with yet a further aspect of the present invention, there is provided a process for utilizing polynucleotides or polypeptides, as well as agonists or antagonists ofthe present invention, for therapeutic puφoses, for example, to stimulate neurological cell proliferation and/or differentiation. Therefore, polynucleotides, polypeptides, agonists and/or antagonists ofthe invention may be used to treat and/or detect neurologic diseases. Moreover, polynucleotides or polypeptides, or agonists or antagonists of the invention, can be used as a marker or detector of a particular nervous system disease or disorder.
Examples of neurologic diseases which can be treated or detected with polynucleotides, polypeptides, agonists, and/or antagonists of the present invention include brain diseases, such as metabolic brain diseases which includes phenylketonuria such as maternal phenylketonuria, pyruvate carboxylase deficiency, pyruvate dehydrogenase complex deficiency, Wernicke's Encephalopathy, brain edema, brain neoplasms such as cerebellar neoplasms which include infratentorial neoplasms, cerebral ventricle neoplasms such as choroid plexus neoplasms, hypothalamic neoplasms, supratentorial neoplasms, canavan disease, cerebellar diseases such as cerebellar ataxia which include spinocerebellar degeneration such as ataxia telangiectasia, cerebellar dyssynergia, Friederich's Ataxia, Machado-Joseph Disease, olivopontocerebellar atrophy, cerebellar neoplasms such as infratentorial neoplasms, diffuse cerebral sclerosis such as encephalitis periaxialis, globoid cell leukodystrophy, metachromatic leukodystrophy and subacute sclerosing panencephalitis. Additional neurologic diseases which can be treated or detected with polynucleotides, polypeptides, agonists, and/or antagonists of the present invention include cerebrovascular disorders (such as carotid artery diseases which include carotid artery thrombosis, carotid stenosis and Moyamoya Disease), cerebral amyloid angiopathy, cerebral aneurysm, cerebral anoxia, cerebral arteriosclerosis, cerebral arteriovenous malformations, cerebral artery diseases, cerebral embolism and thrombosis such as carotid artery thrombosis, sinus thrombosis and Wallenberg's Syndrome, cerebral hemorrhage such as epidural hematoma, subdural hematoma and subarachnoid hemorrhage, cerebral infarction, cerebral ischemia such as transient cerebral ischemia, Subclavian Steal Syndrome and vertebrobasilar insufficiency, vascular dementia such as multi-infarct dementia, periventricular leukomalacia, vascular headache such as cluster headache and migraine.
Additional neurologic diseases which can be treated or detected with polynucleotides, polypeptides, agonists, and/or antagonists ofthe present invention include dementia such as AIDS Dementia Complex, presenile dementia such as Alzheimer's Disease and Creutzfeldt- Jakob Syndrome, senile dementia such as
Alzheimer's Disease and progressive supranuclear palsy, vascular dementia such as multi-infarct dementia, encephalitis which include encephalitis periaxialis, viral
encephalitis such as epidemic encephalitis, Japanese Encephalitis, St. Louis Encephalitis, tick-borne encephalitis and West Nile Fever, acute disseminated encephalomyelitis, meningoencephalitis such as uveomeningoencephalitic syndrome, Postencephalitic Parkinson Disease and subacute sclerosing panencephalitis, encephalomalacia such as periventricular leukomalacia, epilepsy such as generalized epilepsy which includes infantile spasms, absence epilepsy, myoclonic epilepsy which includes MERRF Syndrome, tonic-clonic epilepsy, partial epilepsy such as complex partial epilepsy, frontal lobe epilepsy and temporal lobe epilepsy, post-traumatic epilepsy, status epilepticus such as Epilepsia Partialis Continua, and Hallervorden- Spatz Syndrome.
Additional neurologic diseases which can be treated or detected with polynucleotides, polypeptides, agonists, and/or antagonists ofthe present invention include hydrocephalus such as Dandy- Walker Syndrome and normal pressure hydrocephalus, hypothalamic diseases such as hypothalamic neoplasms, cerebral malaria, narcolepsy which includes cataplexy, bulbar poliomyelitis, cerebri pseudotumor, Rett Syndrome, Reye's Syndrome, thalamic diseases, cerebral toxoplasmosis, intracranial tuberculoma and Zellweger Syndrome, central nervous system infections such as AIDS Dementia Complex, Brain Abscess, subdural empyema, encephalomyelitis such as Equine Encephalomyelitis, Venezuelan Equine Encephalomyelitis, Necrotizing Hemorrhagic Encephalomyelitis, Visna, and cerebral malaria.
Additional neurologic diseases which can be treated or detected with polynucleotides, polypeptides, agonists, and/or antagonists ofthe present invention include meningitis such as arachnoiditis, aseptic meningtitis such as viral meningtitis which includes lymphocytic choriomeningitis, Bacterial meningtitis which includes Haemophilus Meningtitis, Listeria Meningtitis, Meningococcal Meningtitis such as Waterhouse-Friderichsen Syndrome, Pneumococcal Meningtitis and meningeal tuberculosis, fungal meningitis such as Cryptococcal Meningtitis, subdural effusion, meningoencephalitis such as uvemeningoencephalitic syndrome, myelitis such as transverse myelitis, neurosyphihs such as tabes dorsalis, poliomyelitis which includes bulbar poliomyelitis and postpoliomyelitis syndrome, prion diseases (such as
Creutzfeldt- Jakob Syndrome, Bovine Spongiform Encephalopathy, Gerstmann- Straussler Syndrome, Kuru, Scrapie), and cerebral toxoplasmosis.
Additional neurologic diseases which can be treated or detected with polynucleotides, polypeptides, agonists, and/or antagonists ofthe present invention include central nervous system neoplasms such as brain neoplasms that include cerebellar neoplasms such as infratentorial neoplasms, cerebral ventricle neoplasms such as choroid plexus neoplasms, hypothalamic neoplasms and supratentorial neoplasms, meningeal neoplasms, spinal cord neoplasms which include epidural neoplasms, demyelinating diseases such as Canavan Diseases, diffuse cerebral sceloris which includes adreno leukodystrophy, encephalitis periaxialis, globoid cell leukodystrophy, diffuse cerebral sclerosis such as metachromatic leukodystrophy, allergic encephalomyelitis, necrotizing hemorrhagic encephalomyelitis, progressive multifocal leukoencephalopathy, multiple sclerosis, central pontine myelinolysis, transverse myelitis, neuromyelitis optica, Scrapie, Swayback, Chronic Fatigue Syndrome, Visna, High Pressure Nervous Syndrome, Meningism, spinal cord diseases such as amyotonia congenita, amyotrophic lateral sclerosis, spinal muscular atrophy such as Werdnig-Hoffmann Disease, spmal cord compression, spinal cord neoplasms such as epidural neoplasms, syringomyelia, Tabes Dorsalis, Stiff-Man Syndrome, mental retardation such as Angelman Syndrome, Cri-du-Chat Syndrome, De Lange's Syndrome, Down Syndrome, Gangliosidoses such as gangliosidoses G(M1), Sandhoff Disease, Tay-Sachs Disease, Hartnup Disease, homocystinuria, Laurence-Moon- Biedl Syndrome, Lesch-Nyhan Syndrome, Maple Syrup Urine Disease, mucolipidosis such as fucosidosis, neuronal ceroid-lipofuscinosis, oculocerebrorenal syndrome, phenylketonuria such as maternal phenylketonuria, Prader-Willi Syndrome, Rett Syndrome, Rubinstein-Taybi Syndrome, Tuberous Sclerosis, WAGR Syndrome, nervous system abnormalities such as holoprosencephaly, neural tube defects such as anencephaly which includes hydrangencephaly, Arnold-Chairi Deformity, encephalocele, meningocele, meningomyelocele, spinal dysraphism such as spina bifida cystica and spina bifida occulta. Additional neurologic diseases which can be treated or detected with polynucleotides, polypeptides, agonists, and/or antagonists ofthe present invention include hereditary motor and sensory neuropathies which include Charcot-Marie
Disease, Hereditary optic atrophy, Refsum's Disease, hereditary spastic paraplegia, Werdnig-Hoffmann Disease, Hereditary Sensory and Autonomic Neuropathies such as Congenital Analgesia and Familial Dysautonomia, Neurologic manifestations (such as agnosia that include Gerstmann's Syndrome, Amnesia such as retrograde amnesia, apraxia, neurogenic bladder, cataplexy, communicative disorders such as hearing disorders that includes deafness, partial hearing loss, loudness recruitment and tinnitus, language disorders such as aphasia which include agraphia, anomia, broca aphasia, and Wernicke Aphasia, Dyslexia such as Acquired Dyslexia, language development disorders, speech disorders such as aphasia which includes anomia, broca aphasia and Wernicke Aphasia, articulation disorders, communicative disorders such as speech disorders which include dysarthria, echolalia, mutism and stuttering, voice disorders such as aphonia and hoarseness, decerebrate state, delirium, fasciculation, hallucinations, meningism, movement disorders such as angelman syndrome, ataxia, athetosis, chorea, dystonia, hypokinesia, muscle hypotonia, myoclonus, tic, torticollis and tremor, muscle hypertonia such as muscle rigidity such as stiff-man syndrome, muscle spasticity, paralysis such as facial paralysis which includes Heφes Zoster Oticus, Gastroparesis, Hemiplegia, ophthalmoplegia such as diplopia, Duane's Syndrome, Homer's Syndrome, Chronic progressive external ophthalmoplegia such as Kearns Syndrome, Bulbar Paralysis, Tropical Spastic Paraparesis, Paraplegia such as Brown-Sequard Syndrome, quadriplegia, respiratory paralysis and vocal cord paralysis, paresis, phantom limb, taste disorders such as ageusia and dysgeusia, vision disorders such as amblyopia, blindness, color vision defects, diplopia, hemianopsia, scotoma and subnormal vision, sleep disorders such as hypersomnia which includes Kleine-Levin Syndrome, insomnia, and somnambulism, spasm such as trismus, unconsciousness such as coma, persistent vegetative state and syncope and vertigo, neuromuscular diseases such as amyotonia congenita, amyotrophic lateral sclerosis, Lambert-Eaton Myasthenic Syndrome, motor neuron disease, muscular atrophy such as spinal muscular atrophy, Charcot-Marie Disease and Werdnig-Hoffmann Disease, Postpoliomyelitis Syndrome, Muscular Dystrophy, Myasthenia Gravis, Myotonia Atrophica, Myotonia Confenita, Nemaline Myopathy, Familial Periodic Paralysis, Multiplex Paramyloclonus, Tropical Spastic Paraparesis and Stiff-Man Syndrome, peripheral nervous system diseases such as acrodynia,
amyloid neuropathies, autonomic nervous system diseases such as Adie's Syndrome, Barre-Lieou Syndrome, Familial Dysautonomia, Homer's Syndrome, Reflex Sympathetic Dystrophy and Shy-Drager Syndrome, Cranial Nerve Diseases such as Acoustic Nerve Diseases such as Acoustic Neuroma which includes Neurofibromatosis 2, Facial Nerve Diseases such as Facial Neuralgia,Melkersson- Rosenthal Syndrome, ocular motility disorders which includes amblyopia, nystagmus, oculomotor nerve paralysis, ophthalmoplegia such as Duane's Syndrome, Homer's Syndrome, Chronic Progressive External Ophthalmoplegia which includes Keams Syndrome, Strabismus such as Esotropia and Exotropia, Oculomotor Nerve Paralysis, Optic Nerve Diseases such as Optic Atrophy which includes Hereditary Optic Atrophy, Optic Disk Drusen, Optic Neuritis such as Neuromyelitis Optica, Papilledema, Trigeminal Neuralgia, Vocal Cord Paralysis, Demyelinating Diseases such as Neuromyelitis Optica and Swayback, and Diabetic neuropathies such as diabetic foot. Additional neurologic diseases which can be treated or detected with polynucleotides, polypeptides, agonists, and/or antagonists ofthe present invention include nerve compression syndromes such as caφal tunnel syndrome, tarsal tunnel syndrome, thoracic outlet syndrome such as cervical rib syndrome, ulnar nerve compression syndrome, neuralgia such as causalgia, cervico-brachial neuralgia, facial neuralgia and trigeminal neuralgia, neuritis such as experimental allergic neuritis, optic neuritis, polyneuritis, polyradiculoneuritis and radiculities such as polyradiculitis, hereditary motor and sensory neuropathies such as Charcot-Marie Disease, Hereditary Optic Atrophy, Refsum's Disease, Hereditary Spastic Paraplegia and Werdnig-Hoffmann Disease, Hereditary Sensory and Autonomic Neuropathies which include Congenital Analgesia and Familial Dysautonomia, POEMS Syndrome, Sciatica, Gustatory Sweating and Tetany).
Endocrine Disorders
Polynucleotides or polypeptides, or agonists or antagonists ofthe present invention, may be used to treat, prevent, diagnose, and/or prognose disorders and/or diseases related to hormone imbalance, and/or disorders or diseases ofthe endocrine
system.
Hormones secreted by the glands ofthe endocrine system control physical growth, sexual function, metabolism, and other functions. Disorders may be classified in two ways: disturbances in the production of hormones, and the inability of tissues to respond to hormones. The etiology of these hormone imbalance or endocrine system diseases, disorders or conditions may be genetic, somatic, such as cancer and some autoimmune diseases, acquired (e.g., by chemotherapy, injury or toxins), or infectious. Moreover, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention can be used as a marker or detector of a particular disease of disorder related to the endocrine system and/or hormone imbalance. Endocrine system and/or hormone imbalance and/or diseases encompass disorders of uterine motility including, but not limited to: complications with pregnancy and labor (e.g., pre-term labor, post-term pregnancy, spontaneous abortion, and slow or stopped labor); and disorders and/or diseases ofthe menstrual cycle (e.g., dysmenorrhea and endometriosis).
Endocrine system and/or hormone imbalance disorders and/or diseases include disorders and/or diseases ofthe pancreas, such as, for example, diabetes mellitus, diabetes insipidus, congenital pancreatic agenesis, pheochromocytoma—islet cell tumor syndrome; disorders and/or diseases ofthe adrenal glands such as, for example, Addison's Disease, corticosteroid deficiency, virilizing disease, hirsutism, Cushing's Syndrome, hyperaldosteronism, pheochromocytoma; disorders and/or diseases ofthe pituitary gland, such as, for example, hypeφituitarism, hypopituitarism, pituitary dwarfism, pituitary adenoma, panhypopituitarism, acromegaly, gigantism; disorders and/or diseases ofthe thyroid, including but not limited to, hyperthyroidism, hypothyroidism, Plummer's disease, Graves' disease (toxic diffuse goiter), toxic nodular goiter, thyroiditis (Hashimoto's thyroiditis, subacute granulomatous thyroiditis, and silent lymphocytic thyroiditis), Pendred's syndrome, myxedema, cretinism, thyrotoxicosis, thyroid hormone coupling defect, thymic aplasia, Hurthle cell tumours ofthe thyroid, thyroid cancer, thyroid carcinoma, Medullary thyroid carcinoma; disorders and/or diseases ofthe parathyroid, such as, for example, hypeφarathyroidism, hypoparathyroidism; disorders and/or diseases ofthe hypothalamus.
In addition, endocrine system and/or hormone imbalance disorders and/or diseases may also include disorders and/or diseases of the testes or ovaries, including cancer. Other disorders and/or diseases ofthe testes or ovaries further include, for example, ovarian cancer, polycystic ovary syndrome, Klinefelter's syndrome, vanishing testes syndrome (bilateral anorchia), congenital absence of Leydig's cells, cryptorchidism, Noonan's syndrome, myotonic dystrophy, capillary haemangioma of the testis (benign), neoplasias ofthe testis and neo-testis.
Moreover, endocrine system and/or hormone imbalance disorders and/or diseases may also include disorders and/or diseases such as, for example, polyglandular deficiency syndromes, pheochromocytoma, neuroblastoma, multiple Endocrine neoplasia, and disorders and/or cancers of endocrine tissues.
In another embodiment, a polypeptide ofthe invention, or polynucleotides, antibodies, agonists, or antagonists corresponding to that polypeptide, may be used to diagnose, prognose, prevent, and/or treat endocrine diseases and/or disorders associated with the tissue(s) in which the polypeptide ofthe invention is expressed, including one, two, three, four, five, or more tissues disclosed in Table 1 , column 8 (Tissue Distribution Library Code).
Reproductive System Disorders The polynucleotides or polypeptides, or agonists or antagonists ofthe invention may be used for the diagnosis, treatment, or prevention of diseases and/or disorders ofthe reproductive system. Reproductive system disorders that can be treated by the compositions ofthe invention, include, but are not limited to, reproductive system injuries, infections, neoplastic disorders, congenital defects, and diseases or disorders which result in infertility, complications with pregnancy, labor, or parturition, and postpartum difficulties.
Reproductive system disorders and/or diseases include diseases and/or disorders ofthe testes, including testicular atrophy, testicular feminization, cryptorchism (unilateral and bilateral), anorchia, ectopic testis, epididymitis and " orchitis (typically resulting from infections such as, for example, gonorrhea, mumps, tuberculosis, and syphilis), testicular torsion, vasitis nodosa, germ cell tumors (e.g., seminomas, embryonal cell carcinomas, teratocarcinomas, choriocarcinomas, yolk sac
tumors, and teratomas), stromal tumors (e.g., Leydig cell tumors), hydrocele, hematocele, varicocele, spermatocele, inguinal hernia, and disorders of sperm production (e.g., immotile cilia syndrome, aspermia, asthenozoospermia, azoospermia, oligospermia, and teratozoospermia). Reproductive system disorders also include disorders ofthe prostate gland, such as acute non-bacterial prostatitis, chronic non-bacterial prostatitis, acute bacterial prostatitis, chronic bacterial prostatitis, prostatodystonia, prostatosis, granulomatous prostatitis, malacoplakia, benign prostatic hypertrophy or hypeφlasia, and prostate neoplastic disorders, including adenocarcinomas, transitional cell carcinomas, ductal carcinomas, and squamous cell carcinomas.
Additionally, the compositions ofthe invention may be useful in the diagnosis, treatment, and/or prevention of disorders or diseases ofthe penis and urethra, including inflammatory disorders, such as balanoposthitis, balanitis xerotica obliterans, phimosis, paraphimosis, syphilis, heφes simplex virus, gonorrhea, non- gonococcal urethritis, chlamydia, mycoplasma, trichomonas, HIV, AIDS, Reiter's syndrome, condyloma acuminatum, condyloma latum, and pearly penile papules; urethral abnormalities, such as hypospadias, epispadias, and phimosis; premalignant lesions, including Erythroplasia of Queyrat, Bowen's disease, Bowenoid paplosis, giant condyloma of Buscke-Lowenstein, and varrucous carcinoma; penile cancers, including squamous cell carcinomas, carcinoma in situ, vermcous carcinoma, and disseminated penile carcinoma; urethral neoplastic disorders, including penile urethral carcinoma, bulbomembranous urethral carcinoma, and prostatic urethral carcinoma; and erectile disorders, such as priapism, Peyronie's disease, erectile dysfunction, and impotence. Moreover, diseases and/or disorders ofthe vas deferens include vasculititis and CBAVD (congenital bilateral absence ofthe vas deferens); additionally, the polynucleotides, polypeptides, and agonists or antagonists ofthe present invention may be used in the diagnosis, treatment, and/or prevention of diseases and/or disorders of the seminal vesicles, including hydatid disease, congenital chloride diarrhea, and polycystic kidney disease.
Other disorders and/or diseases ofthe male reproductive system include, for example, Klinefelter's syndrome, Young's syndrome, premature ejaculation, diabetes
mellitus, cystic fibrosis, Kartagener's syndrome, high fever, multiple sclerosis, and gynecomastia.
Further, the polynucleotides, polypeptides, and agonists or antagonists ofthe present invention may be used in the diagnosis, treatment, and/or prevention of diseases and/or disorders ofthe vagina and vulva, including bacterial vaginosis, Candida vaginitis, heφes simplex vims, chancroid, granuloma inguinale, lymphogranuloma venereum, scabies, human papillomavirus, vaginal trauma, vulvar trauma, adenosis, chlamydia vaginitis, gonorrhea, trichomonas vaginitis, condyloma acuminatum, syphilis, moUuscum contagiosum, atrophic vaginitis, Paget's disease, lichen sclerosus, lichen planus, vulvodynia, toxic shock syndrome, vaginismus, vulvovaginitis, vulvar vestibulitis, and neoplastic disorders, such as squamous cell hypeφlasia, clear cell carcinoma, basal cell carcinoma, melanomas, cancer of Bartholin's gland, and vulvar intraepithelial neoplasia.
Disorders and/or diseases ofthe utems include dysmenorrhea, retroverted utems, endometriosis, fibroids, adenomyosis, anovulatory bleeding, amenorrhea, Cushing's syndrome, hydatidiform moles, Asherman's syndrome, premature menopause, precocious puberty, uterine polyps, dysfunctional uterine bleeding (e.g., due to aberrant hormonal signals), and neoplastic disorders, such as adenocarcinomas, keiomyosarcomas, and sarcomas. Additionally, the polypeptides, polynucleotides, or agonists or antagonists ofthe invention may be useful as a marker or detector of, as well as in the diagnosis, treatment, and/or prevention of congenital uterine abnormalities, such as bicornuate utems, septate utems, simple unicornuate utems, unicornuate utems with a noncavitary rudimentary hom, unicornuate utems with a non-communicating cavitary rudimentary hom, unicornuate utems with a communicating cavitary hom, arcuate utems, uterine didelfus, and T-shaped utems. Ovarian diseases and/or disorders include anovulation, polycystic ovary syndrome (Stein-Leventhal syndrome), ovarian cysts, ovarian hypofunction, ovarian insensitivity to gonadotropins, ovarian oveφroduction of androgens, right ovarian vein syndrome, amenorrhea, himtism, and ovarian cancer (including, but not limited to, primary and secondary cancerous growth, Sertoli-Leydig tumors, endometriod carcinoma ofthe ovary, ovarian papillary serous adenocarcinoma, ovarian mucinous adenocarcinoma, and Ovarian Krukenberg tumors).
Cervical diseases and/or disorders include cervicitis, chronic cervicitis, mucopumlent cervicitis, cervical dysplasia, cervical polyps, Nabothian cysts, cervical erosion, cervical incompetence, and cervical neoplasms (including, for example, cervical carcinoma, squamous metaplasia, squamous cell carcinoma, adenosquamous cell neoplasia, and columnar cell neoplasia).
Additionally, diseases and/or disorders ofthe reproductive system include disorders and/or diseases of pregnancy, including miscarriage and stillbirth, such as early abortion, late abortion, spontaneous abortion, induced abortion, therapeutic abortion, threatened abortion, missed abortion, incomplete abortion, complete abortion, habitual abortion, missed abortion, and septic abortion; ectopic pregnancy, anemia, Rh incompatibility, vaginal bleeding during pregnancy, gestational diabetes, intrauterine growth retardation, polyhydramnios, HELLP syndrome, abmptio placentae, placenta previa, hyperemesis, preeclampsia, eclampsia, heφes gestationis, and urticaria of pregnancy. Additionally, the polynucleotides, polypeptides, and agonists or antagonists ofthe present invention may be used in the diagnosis, treatment, and/or prevention of diseases that can complicate pregnancy, including heart disease, heart failure, rheumatic heart disease, congenital heart disease, mitral valve prolapse, high blood pressure, anemia, kidney disease, infectious disease (e.g., rubella, cytomegalovirus, toxoplasmosis, infectious hepatitis, chlamydia, HIV, AIDS, and genital heφes), diabetes mellitus, Graves' disease, thyroiditis, hypothyroidism, Hashimoto's thyroiditis, chronic active hepatitis, cirrhosis ofthe liver, primary biliary cirrhosis, asthma, systemic lupus eryematosis, rheumatoid arthritis, myasthenia gravis, idiopathic thrombocytopenic puφura, appendicitis, ovarian cysts, gallbladder disorders,and obstmction ofthe intestine. Complications associated with labor and parturition include premature mpture of the membranes, pre-term labor, post-term pregnancy, postmaturity, labor that progresses too slowly, fetal distress (e.g., abnormal heart rate (fetal or maternal), breathing problems, and abnormal fetal position), shoulder dystocia, prolapsed umbilical cord, amniotic fluid embolism, and aberrant uterine bleeding. Further, diseases and/or disorders ofthe postdelivery period, including endometritis, myometritis, parametritis, peritonitis, pelvic thrombophlebitis,
pulmonary embolism, endotoxemia, pyelonephritis, saphenous thrombophlebitis, mastitis, cystitis, postpartum hemorrhage, and inverted utems.
Other disorders and/or diseases ofthe female reproductive system that may be diagnosed, treated, and/or prevented by the polynucleotides, polypeptides, and agonists or antagonists of the present invention include, for example, Turner's syndrome, pseudohermaphroditism, premenstmal syndrome, pelvic inflammatory disease, pelvic congestion (vascular engorgement), frigidity, anorgasmia, dyspareunia, mptured fallopian tube, and Mittelschmerz.
Infectious Disease
Polynucleotides or polypeptides, as well as agonists or antagonists ofthe present invention can be used to treat or detect infectious agents. For example, by increasing the immune response, particularly increasing the proliferation and differentiation of B and/or T cells, infectious diseases may be treated. The immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, polynucleotides or polypeptides, as well as agonists or antagonists ofthe present invention may also directly inhibit the infectious agent, without necessarily eliciting an immune response.
Vimses are one example of an infectious agent that can cause disease or symptoms that can be treated or detected by a polynucleotide or polypeptide and/or agonist or antagonist ofthe present invention. Examples of vimses, include, but are not limited to Examples of vimses, include, but are not limited to the following DNA and RNA vimses and viral families: Arbovirus, Adenoviridae, Arenaviridae, Arterivirus, Birnaviridae, Bunyaviridae, Caliciviridae, Circoviridae, Coronaviridae, Dengue, EBV, HIV, Flaviviridae, Hepadnaviridae (Hepatitis), Heφesviridae (such as, Cytomegalovirus, Heφes Simplex, Heφes Zoster), Mononegavims (e.g., Paramyxoviridae, Morbillivims, Rhabdoviridae), Orthomyxoviridae (e.g., Influenza A, Influenza B, and parainfluenza), Papiloma vims, Papovaviridae, Parvoviridae, Picornaviridae, Poxviridae (such as Smallpox or Vaccinia), Reoviridae (e.g., Rotavims), Retroviridae (HTLV-I, HTLV-II, Lentivims), and Togaviridae (e.g., Rubivims). Vimses falling within these families can cause a variety of diseases or symptoms, including, but not limited to: arthritis, bronchiolhtis, respiratory syncytial
vims, encephalitis, eye infections (e.g., conjunctivitis, keratitis), chronic fatigue syndrome, hepatitis (A, B, C, E, Chronic Active, Delta), Japanese B encephalitis, Junin, Chikungunya, Rift Valley fever, yellow fever, meningitis, opportunistic infections (e.g., AIDS), pneumonia, Burkitt's Lymphoma, chickenpox, hemorrhagic fever, Measles, Mumps, Parainfluenza, Rabies, the common cold, Polio, leukemia, Rubella, sexually transmitted diseases, skin diseases (e.g., Kaposi's, warts), and viremia. polynucleotides or polypeptides, or agonists or antagonists of the invention, can be used to treat or detect any of these symptoms or diseases. In specific embodiments, polynucleotides, polypeptides, or agonists or antagonists of the invention are used to treat: meningitis, Dengue, EBV, and/or hepatitis (e.g., hepatitis B). In an additional specific embodiment polynucleotides, polypeptides, or agonists or antagonists of the invention are used to treat patients non-responsive to one or more other commercially available hepatitis vaccines. In a further specific embodiment polynucleotides, polypeptides, or agonists or antagonists ofthe invention are used to treat AIDS.
Similarly, bacterial and fungal agents that can cause disease or symptoms and that can be treated or detected by a polynucleotide or polypeptide and/or agonist or antagonist ofthe present invention include, but not limited to, the following Gram- Negative and Gram-positive bacteria, bacterial families, and fungi: Actinomyces (e.g., Norcardia), Acinetobacter, Cryptococcus neoformans, Aspergillus, Bacillaceae (e.g., Bacillus anthrasis), Bacteroides (e.g., Bacteroides fragilis), Blastomycosis, Bordetella, Borrelia (e.g., Borrelia burgdorferi), Brucella, Candidia, Campylobacter, Chlamydia, Clostridium (e.g., Clostridium botulinum, Clostridium dificile, Clostridium perfringens, Clostridium tetani), Coccidioides, Corynebacterium (e.g., Corynebacterium diptheriae), Cryptococcus, Dermatocycoses, E. coli (e.g., Enterotoxigenic E. coli and Enterohemorrhagic E. coli), Enterobacter (e.g. Enterobacter aerogenes), Enterobacteriaceae (Klebsiella, Salmonella (e.g., Salmonella typhi, Salmonella enteritidis, Salmonella typhi), Serratia, Yersinia, Shigella), Erysipelothrix, Haemophilus (e.g., Haemophilus influenza type B), Hehcobacter, Legionella (e.g., Legionella pneumophila), Leptospira, Listeria (e.g., Listeria monocytogenes), Mycoplasma, Mycobacterium (e.g., Mycobacterium leprae and Mycobacterium tuberculosis), Vibrio (e.g., Vibrio cholerae), Neisseriaceae (e.g.,
Neisseria gonorrhea, Neisseria meningitidis), Pasteurellacea, Proteus, Pseudomonas (e.g., Pseudomonas aeruginosa), Rickettsiaceae, Spirochetes (e.g., Treponema spp., Leptospira spp., Borrelia spp.), Shigella spp., Staphylococcus (e.g., Staphylococcus aureus), Meningiococcus, Pneumococcus and Streptococcus (e.g., Streptococcus pneumoniae and Groups A, B, and C Streptococci), and Ureaplasmas. These bacterial, parasitic, and fungal families can cause diseases or symptoms, including, but not limited to: antibiotic-resistant infections, bacteremia, endocarditis, septicemia, eye infections (e.g., conjunctivitis), uveitis, tuberculosis, gingivitis, bacterial diarrhea, opportunistic infections (e.g., AIDS related infections), paronychia, prosthesis-related infections, dental caries, Reiter's Disease, respiratory tract infections, such as Whooping Cough or Empyema, sepsis, Lyme Disease, Cat-Scratch Disease, dysentery, paratyphoid fever, food poisoning, Legionella disease, chronic and acute inflammation, erythema, yeast infections, typhoid, pneumonia, gonorrhea, meningitis (e.g., mengitis types A and B), chlamydia, syphillis, diphtheria, leprosy, brucellosis, peptic ulcers, anthrax, spontaneous abortions, birth defects, pneumonia, lung infections, ear infections, deafness, blindness, lethargy, malaise, vomiting, chronic diarrhea, Crohn's disease, colitis, vaginosis, sterility, pelvic inflammatory diseases, candidiasis, paratuberculosis, tuberculosis, lupus, botulism, gangrene, tetanus, impetigo, Rheumatic Fever, Scarlet Fever, sexually transmitted diseases, skin diseases (e.g., cellulitis, dermatocycoses), toxemia, urinary tract infections, wound infections, noscomial infections. Polynucleotides or polypeptides, agonists or antagonists ofthe invention, can be used to treat or detect any of these symptoms or diseases. In specific embodiments, polynucleotides, polypeptides, agonists or antagonists of the invention are used to treat: tetanus, diptheria, botulism, and/or meningitis type B. Moreover, parasitic agents causing disease or symptoms that can be treated, prevented, and/or diagnosed by a polynucleotide or polypeptide and/or agonist or antagonist ofthe present invention include, but not limited to, the following families or class: Amebiasis, Babesiosis, Coccidiosis, Cryptosporidiosis, Dientamoebiasis, Dourine, Ectoparasitic, Giardias, Helminthiasis, Leishmaniasis, Schistisoma, Theileriasis, Toxoplasmosis, Trypanosomiasis, and Trichomonas and Sporozoans (e.g., Plasmodium virax, Plasmodium falciparium, Plasmodium malariae and Plasmodium ovale). These parasites can cause a variety of diseases or symptoms,
including, but not limited to: Scabies, Trombiculiasis, eye infections, intestinal disease (e.g., dysentery, giardiasis), liver disease, lung disease, opportunistic infections (e.g., AIDS related), malaria, pregnancy complications, and toxoplasmosis. polynucleotides or polypeptides, or agonists or antagonists ofthe invention, can be used to treat, prevent, and/or diagnose any of these symptoms or diseases. In specific embodiments, polynucleotides, polypeptides, or agonists or antagonists ofthe invention are used to treat, prevent, and/or diagnose malaria.
Polynucleotides or polypeptides, as well as agonists or antagonists ofthe present invention ofthe present invention could either be by administering an effective amount of a polypeptide to the patient, or by removing cells from the patient, supplying the cells with a polynucleotide ofthe present invention, and returning the engineered cells to the patient (ex vivo therapy). Moreover, the polypeptide or polynucleotide ofthe present invention can be used as an antigen in a vaccine to raise an immune response against infectious disease.
Regeneration
Polynucleotides or polypeptides, as well as agonists or antagonists ofthe present invention can be used to differentiate, proliferate, and attract cells, leading to the regeneration of tissues. (See, Science 276:59-87 (1997)). The regeneration of tissues could be used to repair, replace, or protect tissue damaged by congenital defects, trauma (wounds, bums, incisions, or ulcers), age, disease (e.g. osteoporosis, osteocarthritis, periodontal disease, liver failure), surgery, including cosmetic plastic surgery, fibrosis, reperfiision injury, or systemic cytokine damage.
Tissues that could be regenerated using the present invention include organs (e.g., pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac), vasculature (including vascular and lymphatics), nervous, hematopoietic, and skeletal (bone, cartilage, tendon, and ligament) tissue. Preferably, regeneration occurs without or decreased scarring. Regeneration also may include angiogenesis. Moreover, polynucleotides or polypeptides, as well as agonists or antagonists ofthe present invention, may increase regeneration of tissues difficult to heal. For example, increased tendon/ligament regeneration would quicken recovery time after damage. Polynucleotides or polypeptides, as well as agonists or antagonists ofthe
present invention could also be used prophylactically in an effort to avoid damage. Specific diseases that could be treated include of tendinitis, caφal tunnel syndrome, and other tendon or ligament defects. A further example of tissue regeneration of non-healing wounds includes pressure ulcers, ulcers associated with vascular insufficiency, surgical, and traumatic wounds.
Similarly, nerve and brain tissue could also be regenerated by using polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, to proliferate and differentiate nerve cells. Diseases that could be treated using this method include cenfral and peripheral nervous system diseases, neuropathies, or mechanical and traumatic disorders (e.g., spinal cord disorders, head trauma, cerebrovascular disease, and stoke). Specifically, diseases associated with peripheral nerve injuries, peripheral neuropathy (e.g., resulting from chemotherapy or other medical therapies), localized neuropathies, and central nervous system diseases (e.g., Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome), could all be treated using the polynucleotides or polypeptides, as well as agonists or antagonists of the present invention.
Gastrointestinal Disorders Polynucleotides or polypeptides, or agonists or antagonists ofthe present invention, may be used to treat, prevent, diagnose, and/or prognose gastrointestinal disorders, including inflammatory diseases and/or conditions, infections, cancers (e.g., intestinal neoplasms (carcinoid tumor ofthe small intestine, non-Hodgkin's lymphoma of the small intestine, small bowl lymphoma)), and ulcers, such as peptic ulcers.
Gastrointestinal disorders include dysphagia, odynophagia, inflammation of the esophagus, peptic esophagitis, gastric reflux, submucosal fibrosis and stricturing, Mallory- Weiss lesions, leiomyomas, lipomas, epidermal cancers, adeoncarcinomas, gastric retention disorders, gastroenteritis, gastric atrophy, gastric/stomach cancers, polyps ofthe stomach, autoimmune disorders such as pernicious anemia, pyloric stenosis, gastritis (bacterial, viral, eosinophilic, stress-induced, chronic erosive, atrophic, plasma cell, and Menetrier's), and peritoneal diseases (e.g., chyloperioneum,
hemoperitoneum, mesenteric cyst, mesenteric lymphadenitis, mesenteric vascular occlusion, panniculitis, neoplasms, peritonitis, pneumoperitoneum, bubphrenic abscess,).
Gastrointestinal disorders also include disorders associated with the small intestine, such as malabsoφtion syndromes, distension, irritable bowel syndrome, sugar intolerance, celiac disease, duodenal ulcers, duodenitis, tropical spme, Whipple's disease, intestinal lymphangiectasia, Crohn's disease, appendicitis, obstructions ofthe ileum, Meckel's diverticulum, multiple diverticula, failure of complete rotation ofthe small and large intestine, lymphoma, and bacterial and parasitic diseases (such as Traveler's diarrhea, typhoid and paratyphoid, cholera, infection by Roundworms (Ascariasis lumbricoides), Hookworms (Ancylostoma duodenale), Threadworms (Enterobius vermicularis), Tapeworms (Taenia saginata, Echinococcus granulosus, Diphyllobothrium spp., and T. solium).
Liver diseases and/or disorders include intrahepatic cholestasis (alagille syndrome, biliary liver cirrhosis), fatty liver (alcoholic fatty liver, reye syndrome), hepatic vein thrombosis, hepatolentricular degeneration, hepatomegaly, hepatopulmonary syndrome, hepatorenal syndrome, portal hypertension (esophageal and gastric varices), liver abscess (amebic liver abscess), liver cirrhosis (alcoholic, biliary and experimental), alcoholic liver diseases (fatty liver, hepatitis, cirrhosis), parasitic (hepatic echinococcosis, fascioliasis, amebic liver abscess), jaundice
(hemolytic, hepatocellular, and cholestatic), cholestasis, portal hypertension, liver enlargement, ascites, hepatitis (alcoholic hepatitis, animal hepatitis, chronic hepatitis (autoimmune, hepatitis B, hepatitis C, hepatitis D, dmg induced), toxic hepatitis, viral human hepatitis (hepatitis A, hepatitis B, hepatitis C, hepatitis D, hepatitis E), Wilson's disease, granulomatous hepatitis, secondary biliary cirrhosis, hepatic encephalopathy, portal hypertension, varices, hepatic encephalopathy, primary biliary cirrhosis, primary sclerosing cholangitis, hepatocellular adenoma, hemangiomas, bile stones, liver failure (hepatic encephalopathy, acute liver failure), and liver neoplasms (angiomyolipoma, calcified liver metastases, cystic liver metastases, epithelial tumors, fibrolamellar hepatocarcinoma, focal nodular hypeφlasia, hepatic adenoma, hepatobiliary cystadenoma, hepatoblastoma, hepatocellular carcinoma, hepatoma, liver cancer, liver hemangioendothelioma, mesenchymal hamartoma, mesenchymal
tumors of liver, nodular regenerative hypeφlasia, benign liver tumors (Hepatic cysts [Simple cysts, Polycystic liver disease, Hepatobiliary cystadenoma, Choledochal cyst], Mesenchymal tumors [Mesenchymal hamartoma, Infantile hemangioendothelioma, Hemangioma, Peliosis hepatis, Lipomas, Inflammatory pseudotumor, Miscellaneous], Epithelial tumors [Bile duct epithelium (Bile duct hamartoma, Bile duct adenoma), Hepatocyte (Adenoma, Focal nodular hypeφlasia, Nodular regenerative hypeφlasia)], malignant liver tumors [hepatocellular, hepatoblastoma, hepatocellular carcinoma, cholangiocellular, cholangiocarcinoma, cystadenocarcinoma, tumors of blood vessels, angiosarcoma, Kaφosi's sarcoma, hemangioendothelioma, other tumors, embryonal sarcoma, fibrosarcoma, leiomyosarcoma, rhabdomyosarcoma, carcinosarcoma, teratoma, carcinoid, squamous carcinoma, primary lymphoma]), peliosis hepatis, erythrohepatic poφhyria, hepatic poφhyria (acute intermittent poφhyria, poφhyria cutanea tarda), Zellweger syndrome). Pancreatic diseases and/or disorders include acute pancreatitis, chronic pancreatitis (acute necrotizing pancreatitis, alcoholic pancreatitis), neoplasms (adenocarcinoma ofthe pancreas, cystadenocarcinoma, insulinoma, gastrinoma, and glucagonoma, cystic neoplasms, islet-cell tumors, pancreoblastoma), and other pancreatic diseases (e.g., cystic fibrosis, cyst (pancreatic pseudocyst, pancreatic fistula, insufficiency)).
Gallbladder diseases include gallstones (cholelithiasis and choledochohthiasis), postcholecystectomy syndrome, diverticulosis ofthe gallbladder, acute cholecystitis, chronic cholecystitis, bile duct tumors, and mucocele.
Diseases and/or disorders ofthe large intestine include antibiotic-associated colitis, diverticulitis, ulcerative colitis, acquired megacolon, abscesses, fungal and bacterial infections, anorectal disorders (e.g., fissures, hemorrhoids), colonic diseases (colitis, colonic neoplasms [colon cancer, adenomatous colon polyps (e.g., villous adenoma), colon carcinoma, colorectal cancer], colonic diverticulitis, colonic diverticulosis, megacolon [Hirschspmng disease, toxic megacolon]; sigmoid diseases [proctocohtis, sigmoin neoplasms]), constipation, Crohn's disease, diarrhea (infantile diarrhea, dysentery), duodenal diseases (duodenal neoplasms, duodenal obstmction, duodenal ulcer, duodenitis), enteritis (enterocolitis), HIV enteropathy, ileal diseases
(ileal neoplasms, ileitis), immunoproliferative small intestinal disease, inflammatory bowel disease (ulcerative colitis, Crohn's disease), intestinal atresia, parasitic diseases (anisakiasis, balantidiasis, blastocystis infections, cryptosporidiosis, dientamoebiasis, amebic dysentery, giardiasis), intestinal fistula (rectal fistula), intestinal neoplasms (cecal neoplasms, colonic neoplasms, duodenal neoplasms, ileal neoplasms, intestinal polyps, jejunal neoplasms, rectal neoplasms), intestinal obstmction (afferent loop syndrome, duodenal obstmction, impacted feces, intestinal pseudo-obstmction [cecal volvulus], intussusception), intestinal perforation, intestinal polyps (colonic polyps, gardner syndrome, peutz-jeghers syndrome), jejunal diseases (jejunal neoplasms), malabsoφtion syndromes (blind loop syndrome, celiac disease, lactose intolerance, short bowl syndrome, tropical sp e, whipple's disease), mesenteric vascular occlusion, pneumatosis cystoides intestinalis, protein-losing enteropathies (intestinal lymphagiectasis), rectal diseases (anus diseases, fecal incontinence, hemorrhoids, proctitis, rectal fistula, rectal prolapse, rectocele), peptic ulcer (duodenal ulcer, peptic esophagitis, hemorrhage, perforation, stomach ulcer, ZoUinger-Ellison syndrome), postgastrectomy syndromes (dumping syndrome), stomach diseases (e.g., achlorhydria, duodenogastric reflux (bile reflux), gastric antral vascular ectasia, gastric fistula, gastric outlet obstruction, gastritis (atrophic or hypertrophic), gastroparesis, stomach dilatation, stomach diverticulum, stomach neoplasms (gastric cancer, gastric polyps, gastric adenocarcinoma, hypeφlastic gastric polyp), stomach mpture, stomach ulcer, stomach volvulus), tuberculosis, visceroptosis, vomiting (e.g., hematemesis, hyperemesis gravidarum, postoperative nausea and vomiting) and hemorrhagic colitis.
Further diseases and/or disorders ofthe gastrointestinal system include biliary tract diseases, such as, gastroschisis, fistula (e.g., biliary fistula, esophageal fistula, gastric fistula, intestinal fistula, pancreatic fistula), neoplasms (e.g., biliary tract neoplasms, esophageal neoplasms, such as adenocarcinoma ofthe esophagus, esophageal squamous cell carcinoma, gastrointestinal neoplasms, pancreatic neoplasms, such as adenocarcinoma ofthe pancreas, mucinous cystic neoplasm ofthe pancreas, pancreatic cystic neoplasms, pancreatoblastoma, and peritoneal neoplasms), esophageal disease (e.g., bullous diseases, candidiasis, glycogenic acanthosis, ulceration, barrett esophagus varices, atresia, cyst, diverticulum (e.g., Zenker's
diverticulum), fistula (e.g., tracheoesophageal fistula), motility disorders (e.g., CREST syndrome, deglutition disorders, achalasia, spasm, gastroesophageal reflux), neoplasms, perforation (e.g., Boerhaave syndrome, Mallory-Weiss syndrome), stenosis, esophagitis, diaphragmatic hernia (e.g., hiatal hernia); gastrointestinal diseases, such as, gastroenteritis (e.g., cholera morbus, norwalk vims infection), hemorrhage (e.g., hematemesis, melena, peptic ulcer hemorrhage), stomach neoplasms (gastric cancer, gastric polyps, gastric adenocarcinoma, stomach cancer)), hernia (e.g., congenital diaphragmatic hernia, femoral hernia, inguinal hernia, obturator hernia, umbilical hernia, ventral hernia), and intestinal diseases (e.g., cecal diseases (appendicitis, cecal neoplasms)).
Chemotaxis
Polynucleotides or polypeptides, as well as agonists or antagonists ofthe present invention may have chemotaxis activity. A chemotaxic molecule attracts or mobilizes cells (e.g., monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells) to a particular site in the body, such as inflammation, infection, or site of hypeφroliferation. The mobilized cells can then fight off and/or heal the particular trauma or abnormality.
Polynucleotides or polypeptides, as well as agonists or antagonists ofthe present invention may increase chemotaxic activity of particular cells. These chemotactic molecules can then be used to freat inflammation, infection, hypeφroliferative disorders, or any immune system disorder by increasing the number of cells targeted to a particular location in the body. For example, chemotaxic molecules can be used to treat wounds and other trauma to tissues by attracting immune cells to the injured location. Chemotactic molecules ofthe present invention can also attract fibroblasts, which can be used to treat wounds.
It is also contemplated that polynucleotides or polypeptides, as well as agonists or antagonists of the present invention may inhibit chemotactic activity. These molecules could also be used to treat disorders. Thus, polynucleotides or polypeptides, as well as agonists or antagonists ofthe present invention could be used as an inhibitor of chemotaxis.
Binding Activity
A polypeptide of the present invention may be used to screen for molecules that bind to the polypeptide or for molecules to which the polypeptide binds. The binding ofthe polypeptide and the molecule may activate (agonist), increase, inhibit (antagonist), or decrease activity ofthe polypeptide or the molecule bound. Examples of such molecules include antibodies, oligonucleotides, proteins (e.g., receptors),or small molecules.
Preferably, the molecule is closely related to the natural ligand of the polypeptide, e.g., a fragment ofthe ligand, or a natural substrate, a ligand, a stmctural or functional mimetic. (See, Coligan et al., Current Protocols in Immunology l(2):Chapter 5 (1991)). Similarly, the molecule can be closely related to the natural receptor to which the polypeptide binds, or at least, a fragment ofthe receptor capable of being bound by the polypeptide (e.g., active site). In either case, the molecule can be rationally designed using known techniques. Preferably, the screening for these molecules involves producing appropriate cells which express the polypeptide. Preferred cells include cells from mammals, yeast, Drosophila, or E. coli. Cells expressing the polypeptide (or cell membrane containing the expressed polypeptide) are then preferably contacted with a test compound potentially containing the molecule to observe binding, stimulation, or inhibition of activity of either the polypeptide or the molecule.
The assay may simply test binding of a candidate compound to the polypeptide, wherein binding is detected by a label, or in an assay involving competition with a labeled competitor. Further, the assay may test whether the candidate compound results in a signal generated by binding to the polypeptide. Alternatively, the assay can be carried out using cell-free preparations, polypeptide/molecule affixed to a solid support, chemical libraries, or natural product mixtures. The assay may also simply comprise the steps of mixing a candidate compound with a solution containing a polypeptide, measuring polypeptide/molecule activity or binding, and comparing the polypeptide/molecule activity or binding to a standard.
Preferably, an ELISA assay can measure polypeptide level or activity in a sample (e.g., biological sample) using a monoclonal or polyclonal antibody. The
antibody can measure polypeptide level or activity by either binding, directly or indirectly, to the polypeptide or by competing with the polypeptide for a substrate. Additionally, the receptor to which the polypeptide ofthe present invention binds can be identified by numerous methods known to those of skill in the art, for example, ligand panning and FACS sorting (Coligan, et al., Current Protocols in Immun., 1(2), Chapter 5, (1991)). For example, expression cloning is employed wherein polyadenylated RNA is prepared from a cell responsive to the polypeptides, for example, NIH3T3 cells which are known to contain multiple receptors for the FGF family proteins, and SC-3 cells, and a cDNA library created from this RNA is > divided into pools and used to transfect COS cells or other cells that are not responsive to the polypeptides. Transfected cells which are grown on glass slides are exposed to the polypeptide ofthe present invention, after they have been labeled. The polypeptides can be labeled by a variety of means including iodination or inclusion of a recognition site for a site-specific protein kinase. Following fixation and incubation, the slides are subjected to auto- radiographic analysis. Positive pools are identified and sub-pools are prepared and re- transfected using an iterative sub-pooling and re-screening process, eventually yielding a single clones that encodes the putative receptor.
As an alternative approach for receptor identification, the labeled polypeptides can be photoaffinity linked with cell membrane or extract preparations that express the receptor molecule. Cross-linked material is resolved by PAGE analysis and exposed to X-ray film. The labeled complex containing the receptors ofthe polypeptides can be excised, resolved into peptide fragments, and subjected to protein microsequencing. The amino acid sequence obtained from microsequencing would be used to design a set of degenerate oligonucleotide probes to screen a cDNA library to identify the genes encoding the putative receptors.
Moreover, the techniques of gene-shuffling, motif-shuffling, exon-shuffling, and/or codon-shuffling (collectively referred to as "DNA shuffling") may be employed to modulate the activities ofthe polypeptide ofthe present invention thereby effectively generating agonists and antagonists of the polypeptide ofthe present invention. See generally, U.S. Patent Nos. 5,605,793, 5,811,238, 5,830,721, 5,834,252, and 5,837,458, and Patten, P. A., et al, Curr. Opinion Biotechnol. 8:724-
33 (1997); Harayama, S. Trends Biotechnol. 16(2):76-82 (1998); Hansson, L. O., et al, J. Mol Biol. 287:265-76 (1999); and Lorenzo, M. M. and Blasco, R. Biotechniques 24(2):308-13 (1998); each of these patents and publications are hereby incoφorated by reference). In one embodiment, alteration of polynucleotides and corresponding polypeptides may be achieved by DNA shuffling. DNA shuffling involves the assembly of two or more DNA segments into a desired molecule by homologous, or site-specific, recombination. In another embodiment, polynucleotides and corresponding polypeptides may be altered by being subjected to random mutagenesis by error-prone PCR, random nucleotide insertion or other methods prior to recombination. In another embodiment, one or more components, motifs, sections, parts, domains, fragments, etc., ofthe polypeptide ofthe present invention may be recombined with one or more components, motifs, sections, parts, domains, fragments, etc. of one or more heterologous molecules. In preferred embodiments, the heterologous molecules are family members. In further preferred embodiments, the heterologous molecule is a growth factor such as, for example, platelet-derived growth factor (PDGF), insulin-like growth factor (IGF-I), transforming growth factor (TGF)-alpha, epidermal growth factor (EGF), fibroblast growth factor (FGF), TGF- beta, bone oφhogenetic protein (BMP)-2, BMP-4, BMP-5, BMP-6, BMP-7, activins A and B, decapentaplegic(dpp), 60A, OP-2, dorsalin, growth differentiation factors (GDFs), nodal, MIS, inhibin-alpha, TGF-betal , TGF-beta2, TGF-beta3, TGF- beta5, and glial-derived neurotrophic factor (GDNF).
Other preferred fragments are biologically active fragments ofthe polypeptide ofthe present invention. Biologically active fragments are those exhibiting activity similar, but not necessarily identical, to an activity ofthe polypeptide ofthe present invention. The biological activity ofthe fragments may include an improved desired activity, or a decreased undesirable activity.
Additionally, this invention provides a method of screening compounds to identify those which modulate the action of the polypeptide ofthe present invention. An example of such an assay comprises combining a mammalian fibroblast cell, a the polypeptide ofthe present invention, the compound to be screened and 3[H] thymidine under cell culture conditions where the fibroblast cell would normally proliferate. A control assay may be performed in the absence ofthe compound to be
screened and compared to the amount of fibroblast proliferation in the presence ofthe compound to determine if the compound stimulates proliferation by determining the • uptake of 3[H] thymidine in each case. The amount of fibroblast cell proliferation is measured by liquid scintillation chromatography which measures the incoφoration of 3[H thymidine. Both agonist and antagonist compounds may be identified by this procedure.
In another method, a mammalian cell or membrane preparation expressing a receptor for a polypeptide ofthe present invention is incubated with a labeled polypeptide ofthe present invention in the presence ofthe compound. The ability of the compound to enhance or block this interaction could then be measured. Alternatively, the response of a known second messenger system following interaction of a compound to be screened and the receptor is measured and the ability of the compound to bind to the receptor and elicit a second messenger response is measured to determine if the compound is a potential agonist or antagonist. Such second messenger systems include but are not limited to, cAMP guanylate cyclase, ion channels or phosphoinositide hydrolysis.
All of these above assays can be used as diagnostic or prognostic markers. The molecules discovered using these assays can be used to treat disease or to bring about a particular result in a patient (e.g., blood vessel growth) by activating or inhibiting the polypeptide/molecule. Moreover, the assays can discover agents which may inhibit or enhance the production ofthe polypeptides ofthe invention from suitably manipulated cells or tissues.
Therefore, the invention includes a method of identifying compounds which bind to a polypeptide ofthe invention comprising the steps of: (a) incubating a candidate binding compound with a polypeptide ofthe present invention; and (b) determining if binding has occurred. Moreover, the invention includes a method of identifying agonists/antagonists comprising the steps of: (a) incubating a candidate compound with a polypeptide ofthe present invention, (b) assaying a biological activity, and (b) determining if a biological activity ofthe polypeptide has been altered.
Targeted Delivery
In another embodiment, the invention provides a method of delivering compositions to targeted cells expressing a receptor for a polypeptide of the invention, or cells expressing a cell bound form of a polypeptide ofthe invention. As discussed herein, polypeptides or antibodies ofthe invention may be associated with heterologous polypeptides, heterologous nucleic acids, toxins, or prodmgs via hydrophobic, hydrophilic, ionic and/or covalent interactions. In one embodiment, the invention provides a method for the specific delivery of compositions ofthe invention to cells by administering polypeptides ofthe invention (including antibodies) that are associated with heterologous polypeptides or nucleic acids. In one example, the invention provides a method for delivering a therapeutic protein into the targeted cell. In another example, the invention provides a method for delivering a single stranded nucleic acid (e.g., antisense or ribozymes) or double stranded nucleic acid (e.g., DNA that can integrate into the cell's genome or replicate episomally and that can be transcribed) into the targeted cell.
In another embodiment, the invention provides a method for the specific destmction of cells (e.g., the destmction of tumor cells) by administering polypeptides ofthe invention (e.g., polypeptides ofthe invention or antibodies ofthe invention) in association with toxins or cytotoxic prodmgs. By "toxin" is meant compounds that bind and activate endogenous cytotoxic effector systems, radioisotopes, holotoxins, modified toxins, catalytic subunits of toxins, or any molecules or enzymes not normally present in or on the surface of a cell that under defined conditions cause the cell's death. Toxins that may be used according to the methods ofthe invention include, but are not limited to, radioisotopes known in the art, compounds such as, for example, antibodies (or complement fixing containing portions thereof) that bind an inherent or induced endogenous cytotoxic effector system, thymidine kinase, endonuclease, RNAse, alpha toxin, ricin, abrin, Pseudomonas exotoxin A, diphtheria toxin, saporin, momordin, gelonin, pokeweed antiviral protein, alpha-sarcin and cholera toxin. By "cytotoxic prodrug" is meant a non-toxic compound that is converted by an enzyme, normally present in the cell, into a cytotoxic compound. Cytotoxic prodmgs that may be used according to the methods of the invention include, but are not limited to, glutamyl derivatives of
benzoic acid mustard alkylating agent, phosphate derivatives of etoposide or mitomycin C, cytosine arabinoside, daunombisin, and phenoxyacetamide derivatives of doxombicin.
Drug Screening
Further contemplated is the use ofthe polypeptides ofthe present invention, or the polynucleotides encoding these polypeptides, to screen for molecules which modify the activities ofthe polypeptides ofthe present invention. Such a method would include contacting the polypeptide ofthe present invention with a selected compound(s) suspected of having antagonist or agonist activity, and assaying the activity of these polypeptides following binding.
This invention is particularly useful for screening therapeutic compounds by using the polypeptides ofthe present invention, or binding fragments thereof, in any of a variety of dmg screening techniques. The polypeptide or fragment employed in such a test may be affixed to a solid support, expressed on a cell surface, free in solution, or located intracellularly. One method of dmg screening utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant nucleic acids expressing the polypeptide or fragment. Dmgs are screened against such transformed cells in competitive binding assays. One may measure, for example, the formulation of complexes between the agent being tested and a polypeptide ofthe present invention.
Thus, the present invention provides methods of screening for dmgs or any other agents which affect activities mediated by the polypeptides ofthe present invention. These methods comprise contacting such an agent with a polypeptide ofthe present invention or a fragment thereof and assaying for the presence of a complex between the agent and the polypeptide or a fragment thereof, by methods well known in the art. In such a competitive binding assay, the agents to screen are typically labeled. Following incubation, free agent is separated from that present in bound form, and the amount of free or uncomplexed label is a measure ofthe ability of a particular agent to bind to the polypeptides ofthe present invention.
Another technique for dmg screening provides high throughput screening for compounds having suitable binding affinity to the polypeptides of the present
invention, and is described in great detail in European Patent Application 84/03564, published on September 13, 1984, which is incoφorated herein by reference herein. Briefly stated, large numbers of different small peptide test compounds are synthesized on a solid substrate, such as plastic pins or some other surface. The peptide test compounds are reacted with polypeptides ofthe present invention and washed. Bound polypeptides are then detected by methods well known in the art. Purified polypeptides are coated directly onto plates for use in the aforementioned dmg screening techniques. In addition, non-neutralizing antibodies may be used to capture the peptide and immobilize it on the solid support. This invention also contemplates the use of competitive dmg screening assays in which neutralizing antibodies capable of binding polypeptides ofthe present invention specifically compete with a test compound for binding to the polypeptides or fragments thereof. In this manner, the antibodies are used to detect the presence of any peptide which shares one or more antigenic epitopes with a polypeptide ofthe invention.
Polypeptides of the Invention Binding Peptides and Other Molecules
The invention also encompasses screening methods for identifying polypeptides and nonpolypeptides that bind polypeptides ofthe invention, and the polypeptide ofthe invention binding molecules identified thereby. These binding molecules are useful, for example, as agonists and antagonists ofthe polypeptides of the invention. Such agonists and antagonists can be used, in accordance with the invention, in the therapeutic embodiments described in detail, below.
This method comprises the steps ofcontacting a polypeptide ofthe invention with a plurality of molecules; and identifying a molecule that binds the polypeptide of the invention.
The step ofcontacting the polypeptide ofthe invention with the plurality of molecules may be effected in a number of ways. For example, one may contemplate immobilizing the polypeptide of the invention on a solid support and bringing a solution ofthe plurality of molecules in contact with the immobilized polypeptide of the invention. Such a procedure would be akin to an affinity chromatographic process, with the affinity matrix being comprised ofthe immobilized polypeptide ofthe
invention. The molecules having a selective affinity for the polypeptide ofthe invention can then be purified by affinity selection. The nature of the solid support, process for attachment ofthe polypeptide ofthe invention to the solid support, solvent, and conditions ofthe affinity isolation or selection are largely conventional and well known to those of ordinary skill in the art.
Alternatively, one may also separate a plurality of polypeptides into substantially separate fractions comprising a subset of or individual polypeptides. For instance, one can separate the plurality of polypeptides by gel elecfrophoresis, column chromatography, or like method known to those of ordinary skill for the separation of polypeptides. The individual polypeptides can also be produced by a transformed host cell in such a way as to be expressed on or about its outer surface (e.g., a recombinant phage). Individual isolates can then be "probed" by the polypeptide ofthe invention, optionally in the presence of an inducer should one be required for expression, to determine if any selective affinity interaction takes place between the polypeptide of the invention and the individual clone. Prior to contacting the polypeptide ofthe invention with each fraction comprising individual polypeptides, the polypeptides could first be transferred to a solid support for additional convenience. Such a solid support may simply be a piece of filter membrane, such as one made of nitrocellulose or nylon. In this manner, positive clones could be identified from a collection of transformed host cells of an expression library, which harbor a DNA constmct encoding a polypeptide having a selective affinity for a polypeptide ofthe invention. Furthermore, the amino acid sequence ofthe polypeptide having a selective affinity for the polypeptide ofthe invention can be determined directly by conventional means or the coding sequence ofthe DNA encoding the polypeptide can frequently be determined more conveniently. The primary sequence can then be deduced from the corresponding DNA sequence. If the amino acid sequence is to be determined from the polypeptide itself, one may use microsequencing techniques. The sequencing technique may include mass spectroscopy.
In certain situations, it may be desirable to wash away any unbound polypeptide ofthe invention, or altemtatively, unbound polypeptides, from a mixture ofthe polypeptide ofthe invention and the plurality of polypeptides prior to attempting to determine or to detect the presence of a selective affinity interaction.
Such a wash step may be particularly desirable when the polypeptide ofthe invention or the plurality of polypeptides is bound to a solid support.
The plurality of molecules provided according to this method may be provided by way of diversity libraries, such as random or combinatorial peptide or nonpeptide libraries which can be screened for molecules that specifically bind to a polypeptide ofthe invention. Many libraries are known in the art that can be used, e.g., chemically synthesized libraries, recombinant (e.g., phage display libraries), and in vitro translation-based libraries. Examples of chemically synthesized libraries are described in Fodor et al., 1991, Science 251:767-773; Houghten et al., 1991, Nature 354:84-86; Lam et al., 1991, Nature 354:82-84; Medynski, 1994, Bio/Technology 12:709-710;Gallop et al, 1994, J. Medicinal Chemistry 37(9):1233-1251 ; Ohlmeyer et al., 1993, Proc. Natl. Acad. Sci. USA 90:10922-10926; Erb et al., 1994, Proc. Natl. Acad. Sci. USA 91 :11422-11426; Houghten et al., 1992, Biotechniques 13:412; Jayawickreme et al., 1994, Proc. Natl. Acad. Sci. USA 91 :1614-1618; Salmon et al., 1993, Proc. Natl. Acad. Sci. USA 90:11708-11712; PCT Publication No. WO
93/20242; and Brenner and Lerner, 1992, Proc. Natl. Acad. Sci. USA 89:5381-5383.
Examples of phage display libraries are described in Scott and Smith, 1990, Science 249:386-390; Devlin et al., 1990, Science, 249:404-406; Christian, R. B., et al., 1992, J. Mol. Biol. 227:711-718); Lenstra, 1992, J. Immunol. Meth. 152:149-157; Kay et al., 1993, Gene 128:59-65; and PCT Publication No. WO 94/18318 dated Aug. 18, 1994.
In vitro translation-based libraries include but are not limited to those described in PCT Publication No. WO 91/05058 dated Apr. 18, 1991 ; and Mattheakis et al., 1994, Proc. Natl. Acad. Sci. USA 91 :9022-9026. By way of examples of nonpeptide libraries, a benzodiazepine library (see e.g., Bunin et al., 1994, Proc. Natl. Acad. Sci. USA 91 :4708-4712) can be adapted for use. Peptoid libraries (Simon et al., 1992, Proc. Natl. Acad. Sci. USA 89:9367-9371) can also be used. Another example of a library that can be used, in which the amide functionalities in peptides have been permethylated to generate a chemically transformed combinatorial library, is described by Ostresh et al. (1994, Proc. Natl. Acad. Sci. USA 91 :11138-11142).
The variety of non-peptide libraries that are useful in the present invention is
great. For example, Ecker and Crooke, 1995, Bio/Technology 13:351-360 list benzodiazepines, hydantoins, piperazinediones, biphenyls, sugar analogs, beta- mercaptoketones, arylacetic acids, acylpiperidines, benzopyrans, cubanes, xanthines, aminimides, and oxazolones as among the chemical species that form the basis of various libraries.
Non-peptide libraries can be classified broadly into two types: decorated monomers and oligomers. Decorated monomer libraries employ a relatively simple scaffold structure upon which a variety functional groups is added. Often the scaffold will be a molecule with a known useful pharmacological activity. For example, the scaffold might be the benzodiazepine stmcture.
Non-peptide oligomer libraries utilize a large number of monomers that are assembled together in ways that create new shapes that depend on the order of the monomers. Among the monomer units that have been used are carbamates, pyrrolinones, and moφholinos. Peptoids, peptide-like oligomers in which the side chain is attached to the alpha amino group rather than the alpha carbon, form the basis of another version of non-peptide oligomer libraries. The first non-peptide oligomer libraries utilized a single type of monomer and thus contained a repeating backbone. Recent libraries have utilized more than one monomer, giving the libraries added flexibility. Screening the libraries can be accomplished by any of a variety of commonly known methods. See, e.g., the following references, which disclose screening of peptide libraries: Parmley and Smith, 1989, Adv. Exp. Med. Biol. 251 :215-218; Scott and Smith, 1990, Science 249:386-390; Fowlkes et al., 1992; BioTechniques 13:422- 427; Oldenburg et al., 1992, Proc. Natl. Acad. Sci. USA 89:5393-5397; Yu et al., 1994, Cell 76:933-945; Staudt et al., 1988, Science 241 :577-580; Bock et al., 1992, Nature 355:564-566; Tuerk et al., 1992, Proc. Natl. Acad. Sci. USA 89:6988-6992; Ellington et al., 1992, Nature 355:850-852; U.S. Pat. No. 5,096,815, U.S. Pat. No. 5,223,409, and U.S. Pat. No. 5,198,346, all to Ladner et al.; Rebar and Pabo, 1993, Science 263:671-673; and CT Publication No. WO 94/18318. In a specific embodiment, screening to identify a molecule that binds a polypeptide ofthe invention can be carried out by contacting the library members with a polypeptide ofthe invention immobilized on a solid phase and harvesting those
library members that bind to the polypeptide ofthe invention. Examples of such screening methods, termed "panning" techniques are described by way of example in Parmley and Smith, 1988, Gene 73:305-318; Fowlkes et al., 1992, BioTechniques 13:422-427; PCT Publication No. WO 94/18318; and in references cited herein. In another embodiment, the two-hybrid system for selecting interacting proteins in yeast (Fields and Song, 1989, Nature 340:245-246; Chien et al., 1991, Proc. Natl. Acad. Sci. USA 88:9578-9582) can be used to identify molecules that specifically bind to a polypeptide ofthe invention.
Where the polypeptide ofthe invention binding molecule is a polypeptide, the polypeptide can be conveniently selected from any peptide library, including random peptide libraries, combinatorial peptide libraries, or biased peptide libraries. The term "biased" is used herein to mean that the method of generating the library is manipulated so as to restrict one or more parameters that govern the diversity ofthe resulting collection of molecules, in this case peptides. Thus, a t ly random peptide library would generate a collection of peptides in which the probability of finding a particular amino acid at a given position ofthe peptide is the same for all 20 amino acids. A bias can be introduced into the library, however, by specifying, for example, that a lysine occur every fifth amino acid or that positions 4, 8, and 9 of a decapeptide library be fixed to include only arginine. Clearly, many types of biases can be contemplated, and the present invention is not restricted to any particular bias. Furthermore, the present invention contemplates specific types of peptide libraries, such as phage displayed peptide libraries and those that utilize a DNA constmct comprising a lambda phage vector with a DNA insert. As mentioned above, in the case of a polypeptide ofthe invention binding molecule that is a polypeptide, the polypeptide may have about 6 to less than about 60 amino acid residues, preferably about 6 to about 10 amino acid residues, and most preferably, about 6 to about 22 amino acids. In another embodiment, a polypeptide of the invention binding polypeptide has in the range of 15-100 amino acids, or 20-50 amino acids. The selected polypeptide ofthe invention binding polypeptide can be obtained by chemical synthesis or recombinant expression.
Antisense And Ribozyme (Antagonists)
In specific embodiments, antagonists according to the present invention are nucleic acids corresponding to the sequences contained in SEQ ID NO:X, or the complementary strand thereof, and/or to nucleotide sequences contained a deposited clone. In one embodiment, antisense sequence is generated internally by the organism, in another embodiment, the antisense sequence is separately administered (see, for example, O'Connor, Neurochem., 56:560 (1991). Oligodeoxynucleotides as Anitsense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988). Antisense technology can be used to control gene expression through antisense DNA or RNA, or through triple-helix formation. Antisense techniques are discussed for example, in Okano, Neurochem., 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988). Triple helix formation is discussed in, for instance, Lee et al., Nucleic Acids Research, 6:3073 (1979); Cooney et al, Science, 241:456 (1988); and Dervan et al., Science, 251:1300 (1991). The methods are based on binding of a polynucleotide to a complementary DNA or RNA.
For example, the use of c-myc and c-myb antisense RNA constmcts to inhibit the growth ofthe non-lymphocytic leukemia cell line HL-60 and other cell lines was previously described. (Wickstrom et al. (1988); Anfossi et al. (1989)). These experiments were performed in vitro by incubating cells with the oligoribonucleotide. A similar procedure for in vivo use is described in WO 91/15580. Briefly, a pair of oligonucleotides for a given antisense RNA is produced as follows: A sequence complimentary to the first 15 bases ofthe open reading frame is flanked by an EcoRI site on the 5 end and a Hindlll site on the 3 end. Next, the pair of oligonucleotides is heated at 90°C for one minute and then annealed in 2X ligation buffer (20mM TRIS HCl pH 7.5, lOmM MgC12, 10MM dithiothreitol (DTT) and 0.2 mM ATP) and then ligated to the EcoRI /Hind III site ofthe retroviral vector PMV7 (WO 91/15580).
For example, the 5' coding portion of a polynucleotide that encodes the mature polypeptide ofthe present invention may be used to design an antisense RNA oligonucleotide of from about 10 to 40 base pairs in length. A DNA oligonucleotide is designed to be complementary to a region ofthe gene involved in transcription thereby preventing transcription and the production ofthe receptor. The antisense
RNA oligonucleotide hybridizes to the mRNA in vivo and blocks translation of the mRNA molecule into receptor polypeptide.
In one embodiment, the antisense nucleic acid ofthe invention is produced intracellularly by transcription from an exogenous sequence. For example, a vector or a portion thereof, is transcribed, producing an antisense nucleic acid (RNA) ofthe invention. Such a vector would contain a sequence encoding the antisense nucleic acid ofthe invention. Such a vector can remain episomal or become chromosomally integrated, as long as it can be transcribed to produce the desired antisense RNA. Such vectors can be constmcted by recombinant DNA technology methods standard in the art. Vectors can be plasmid, viral, or others known in the art, used for replication and expression in vertebrate cells. Expression ofthe sequence encoding a polypeptide ofthe invention, or fragments thereof, can be by any promoter known in the art to act in vertebrate, preferably human cells. Such promoters can be inducible or constitutive. Such promoters include, but are not limited to, the SV40 early promoter region (Bemoist and Chambon, Nature, 29:304-310 (1981), the promoter contained in the 3 ' long terminal repeat of Rous sarcoma vims (Yamamoto et al., Cell, 22:787-797 (1980), the heφes thymidine promoter (Wagner et al., Proc. Natl. Acad. Sci. U.S.A., 78:1441-1445 (1981), the regulatory sequences ofthe metallothionein gene (Brinster et al., Nature, 296:39-42 (1982)), etc. The antisense nucleic acids of the invention comprise a sequence complementary to at least a portion of an RNA transcript of a gene of interest. However, absolute complementarity, although preferred, is not required. A sequence "complementary to at least a portion of an RNA," referred to herein, means a sequence having sufficient complementarity to be able to hybridize with the RNA, forming a stable duplex; in the case of double stranded antisense nucleic acids ofthe invention, a single strand of the duplex DNA may thus be tested, or triplex formation may be assayed. The ability to hybridize will depend on both the degree of complementarity and the length ofthe antisense nucleic acid Generally, the larger the hybridizing nucleic acid, the more base mismatches with a RNA sequence ofthe invention it may contain and still form a stable duplex (or triplex as the case may be). One skilled in the art can ascertain a tolerable degree of mismatch by use of standard procedures to determine the melting point ofthe hybridized complex.
Oligonucleotides that are complementary to the 5 ' end ofthe message, e.g., the 5 ' untranslated sequence up to and including the AUG initiation codon, should work most efficiently at inhibiting translation. However, sequences complementary to the 3' untranslated sequences of mRNAs have been shown to be effective at inhibiting translation of mRNAs as well. See generally, Wagner, R., Nature,
372:333-335 (1994). Thus, oligonucleotides complementary to either the 5' - or 3' - non- translated, non-coding regions of a polynucleotide sequence ofthe invention could be used in an antisense approach to inhibit translation of endogenous mRNA. Oligonucleotides complementary to the 5 ' untranslated region ofthe mRNA should include the complement ofthe AUG start codon. Antisense oligonucleotides complementary to mRNA coding regions are less efficient inhibitors of translation but could be used in accordance with the invention. Whether designed to hybridize to the 5' -, 3' - or coding region of mRNA, antisense nucleic acids should be at least six nucleotides in length, and are preferably oligonucleotides ranging from 6 to about 50 nucleotides in length. In specific aspects the oligonucleotide is at least 10 nucleotides, at least 17 nucleotides, at least 25 nucleotides or at least 50 nucleotides.
The polynucleotides ofthe invention can be DNA or RNA or chimeric mixtures or derivatives or modified versions thereof, single-stranded or double- stranded. The oligonucleotide can be modified at the base moiety, sugar moiety, or phosphate backbone, for example, to improve stability ofthe molecule, hybridization, etc. The oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al., Proc. Natl. Acad. Sci. U.S.A. 86:6553-6556 (1989); Lemaitre et al., Proc. Natl. Acad. Sci., 84:648-652 (1987); PCT Publication NO: WO88/09810, published December 15, 1988) or the blood-brain barrier (see, e.g., PCT Publication NO: WO89/10134, published April 25, 1988), hybridization- triggered cleavage agents. (See, e.g., Krol et al., BioTechniques, 6:958-976 (1988)) or intercalating agents. (See, e.g., Zon, Pharm. Res., 5:539-549 (1988)). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.
The antisense oligonucleotide may comprise at least one modified base moiety which is selected from the group including, but not limited to, 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xantine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5 '-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6- isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine.
The antisense oligonucleotide may also comprise at least one modified sugar moiety selected from the group including, but not limited to, arabinose, 2-fluoroarabinose, xylulose, and hexose.
In yet another embodiment, the antisense oligonucleotide comprises at least one modified phosphate backbone selected from the group including, but not limited to, a phosphorothioate, a phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosphordiamidate, a methylphosphonate, an alkyl phosphotriester, and a formacetal or analog thereof.
In yet another embodiment, the antisense oligonucleotide is an a-anomeric oligonucleotide. An a-anomeric oligonucleotide forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual b-units, the strands mn parallel to each other (Gautier et al., Nucl. Acids Res., 15:6625-6641 (1987)). The oligonucleotide is a 2-0-methylribonucleotide (Inoue et al., Nucl. Acids Res., 15:6131-6148 (1987)), or a chimeric RNA-DNA analogue (Inoue et al., FEBS Lett. 215:327-330 (1987)).
Polynucleotides of the invention may be synthesized by standard methods known in the art, e.g. by use of an automated DNA synthesizer (such as are
commercially available from Biosearch, Applied Biosystems, etc.). As examples, phosphorothioate oligonucleotides may be synthesized by the method of Stein et al. (Nucl. Acids Res., 16:3209 (1988)), methylphosphonate oligonucleotides can be prepared by use of controlled pore glass polymer supports (Sarin et al., Proc. Natl. Acad. Sci. U.S.A., 85:7448-7451 (1988)), etc.
While antisense nucleotides complementary to the coding region sequence of the invention could be used, those complementary to the transcribed untranslated region are most preferred.
Potential antagonists according to the invention also include catalytic RNA, or a ribozyme (See, e.g., PCT International Publication WO 90/11364, published
October 4, 1990; Sarver et al, Science, 247:1222-1225 (1990). While ribozymes that cleave mRNA at site specific recognition sequences can be used to destroy mRNAs corresponding to the polynucleotides ofthe invention, the use of hammerhead ribozymes is preferred. Hammerhead ribozymes cleave mRNAs at locations dictated by flanking regions that form complementary base pairs with the target mRNA. The sole requirement is that the target mRNA have the following sequence of two bases: 5' -UG-3' . The constmction and production of hammerhead ribozymes is well known in the art and is described more fully in Haseloff and Gerlach, Nature, 334:585-591 (1988). There are numerous potential hammerhead ribozyme cleavage sites within each nucleotide sequence disclosed in the sequence listing. Preferably, the ribozyme is engineered so that the cleavage recognition site is located near the 5 ' end of the mRNA corresponding to the polynucleotides ofthe invention; i.e., to increase efficiency and minimize the intracellular accumulation of non-functional mRNA transcripts. As in the antisense approach, the ribozymes ofthe invention can be composed of modified oligonucleotides (e.g. for improved stability, targeting, etc.) and should be delivered to cells which express the polynucleotides ofthe invention in vivo. DNA constmcts encoding the ribozyme may be introduced into the cell in the same manner as described above for the introduction of antisense encoding DNA. A prefened method of delivery involves using a DNA constmct "encoding" the ribozyme under the control of a strong constitutive promoter, such as, for example, pol III or pol II promoter, so that transfected cells will produce sufficient quantities of
the ribozyme to destroy endogenous messages and inhibit translation. Since ribozymes unlike antisense molecules, are catalytic, a lower intracellular concentration is required for efficiency.
Antagonist/agonist compounds may be employed to inhibit the cell growth and proliferation effects ofthe polypeptides ofthe present invention on neoplastic cells and tissues, i.e. stimulation of angiogenesis of tumors, and, therefore, retard or prevent abnormal cellular growth and proliferation, for example, in tumor formation or growth.
The antagonist/agonist may also be employed to prevent hyper-vascular diseases, and prevent the proliferation of epithelial lens cells after extracapsular cataract surgery. Prevention ofthe mitogenic activity ofthe polypeptides ofthe present invention may also be desirous in cases such as restenosis after balloon angioplasty.
The antagonist/agonist may also be employed to prevent the growth of scar tissue during wound healing.
The antagonist/agonist may also be employed to treat, prevent, and/or diagnose the diseases described herein.
Thus, the invention provides a method of treating or preventing diseases, disorders, and/or conditions, including but not limited to the diseases, disorders, and/or conditions listed throughout this application, associated with overexpression of a polynucleotide ofthe present invention by administering to a patient (a) an antisense molecule directed to the polynucleotide ofthe present invention, and or (b) a ribozyme directed to the polynucleotide ofthe present invention. invention, and/or (b) a ribozyme directed to the polynucleotide ofthe present invention
Other Activities
The polypeptide ofthe present invention, as a result ofthe ability to stimulate vascular endothelial cell growth, may be employed in treatment for stimulating re- vascularization of ischemic tissues due to various disease conditions such as thrombosis, arteriosclerosis, and other cardiovascular conditions. These polypeptide
may also be employed to stimulate angiogenesis and limb regeneration, as discussed above.
The polypeptide may also be employed for treating wounds due to injuries, bums, post-operative tissue repair, and ulcers since they are mitogenic to various cells of different origins, such as fibroblast cells and skeletal muscle cells, and therefore, facilitate the repair or replacement of damaged or diseased tissue.
The polypeptide ofthe present invention may also be employed stimulate neuronal growth and to treat, prevent, and/or diagnose neuronal damage which occurs * in certain neuronal disorders or neuro-degenerative conditions such as Alzheimer's disease, Parkinson's disease, and AIDS-related complex. The polypeptide ofthe invention may have the ability to stimulate chondrocyte growth, therefore, they may be employed to enhance bone and periodontal regeneration and aid in tissue transplants or bone grafts.
The polypeptide ofthe present invention may be also be employed to prevent skin aging due to sunburn by stimulating keratinocyte growth.
The polypeptide ofthe invention may also be employed for preventing hair loss, since FGF family members activate hair-forming cells and promotes melanocyte growth. Along the same lines, the polypeptides ofthe present invention may be employed to stimulate growth and differentiation of hematopoietic cells and bone marrow cells when used in combination with other cytokines.
The polypeptide ofthe invention may also be employed to maintain organs before transplantation or for supporting cell culture of primary tissues.
The polypeptide ofthe present invention may also be employed for inducing tissue of mesodermal origin to differentiate in early embryos. The polypeptide or polynucleotides and/or agonist or antagonists ofthe present invention may also increase or decrease the differentiation or proliferation of embryonic stem cells, besides, as discussed above, hematopoietic lineage.
The polypeptide or polynucleotides and/or agonist or antagonists ofthe present invention may also be used to modulate mammalian characteristics, such as body height, weight, hair color, eye color, skin, percentage of adipose tissue, pigmentation, size, and shape (e.g., cosmetic surgery). Similarly, polypeptides or polynucleotides and/or agonist or antagonists ofthe present invention may be used to
modulate mammalian metabolism affecting catabolism, anabolism, processing, utilization, and storage of energy.
Polypeptide or polynucleotides and/or agonist or antagonists ofthe present invention may be used to change a mammal's mental state or physical state by influencing biorhythms, caricadic rhythms, depression (including depressive diseases, disorders, and/or conditions), tendency for violence, tolerance for pain, reproductive capabilities (preferably by Activin or Inhibin-like activity), hormonal or endocrine levels, appetite, libido, memory, stress, or other cognitive qualities.
Polypeptide or polynucleotides and/or agonist or antagonists ofthe present invention may also be used as a food additive or preservative, such as to increase or decrease storage capabilities, fat content, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional components.
Other Preferred Embodiments Other preferred embodiments ofthe claimed invention include an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 50 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1.
Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position ofthe 5' Nucleotide of the Clone Sequence and ending with the nucleotide at about the position ofthe 3' Nucleotide ofthe Clone Sequence as defined for SEQ ID NO:X in Table 1.
Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position ofthe 5 ' Nucleotide of the Start Codon and ending with the nucleotide at about the position ofthe 3' Nucleotide ofthe Clone Sequence as defined for SEQ ID NO:X in Table 1.
Similarly preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5'
Nucleotide ofthe First Amino Acid ofthe Signal Peptide and ending with the nucleotide at about the position of the 3' Nucleotide ofthe Clone Sequence as defined for SEQ ID NO:X in Table 1.
Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 150 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X.
Further preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 500 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X. A further preferred embodiment is a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the nucleotide sequence of SEQ ED NO:X beginning with the nucleotide at about the position ofthe 5 ' Nucleotide of the First Amino Acid ofthe Signal Peptide and ending with the nucleotide at about the position ofthe 3' Nucleotide ofthe Clone Sequence as defined for SEQ ID NO:X in Table 1.
A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence of SEQ ID NO:X.
Also preferred is an isolated nucleic acid molecule which hybridizes under stringent hybridization conditions to a nucleic acid molecule, wherein said nucleic acid molecule which hybridizes does not hybridize under stringent hybridization conditions to a nucleic acid molecule having a nucleotide sequence consisting of only A residues or of only T residues.
Also preferred is a composition of matter comprising a DNA molecule which comprises a human cDNA clone identified by a cDNA Clone Identifier in Table 1, which DNA molecule is contained in the material deposited with the American Type Culture Collection and given the ATCC Deposit Number shown in Table 1 for said cDNA Clone Identifier.
Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides in the nucleotide sequence of a human cDNA clone identified by a cDNA
Clone Identifier in Table 1 , which DNA molecule is contained in the deposit given the ATCC Deposit Number shown in Table 1.
Also preferred is an isolated nucleic acid molecule, wherein said sequence of at least 50 contiguous nucleotides is included in the nucleotide sequence ofthe complete open reading frame sequence encoded by said human cDNA clone.
Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95%o identical to sequence of at least 150 contiguous nucleotides in the nucleotide sequence encoded by said human cDNA clone.
A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 500 contiguous nucleotides in the nucleotide sequence encoded by said human cDNA clone.
A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence encoded by said human cDNA clone.
A further preferred embodiment is a method for detecting in a biological sample a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1 ; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1; which method comprises a step of comparing a nucleotide sequence of at least one nucleic acid molecule in said sample with a sequence selected from said group and determining whether the sequence of said nucleic acid molecule in said sample is at least 95*% identical to said selected sequence.
Also preferred is the above method wherein said step of comparing sequences comprises determining the extent of nucleic acid hybridization between nucleic acid molecules in said sample and a nucleic acid molecule comprising said sequence selected from said group. Similarly, also preferred is the above method wherein said step of comparing sequences is performed by comparing the nucleotide sequence determined from a nucleic acid molecule in said sample with said sequence selected
from said group. The nucleic acid molecules can comprise DNA molecules or RNA molecules.
A further preferred embodiment is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting nucleic acid molecules in said sample, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1 ; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.
The method for identifying the species, tissue or cell type of a biological sample can comprise a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.
Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal stmcture or expression of a gene encoding a secreted protein identified in Table 1, which method comprises a step of detecting in a biological sample obtained from said subject nucleic acid molecules, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1 ; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.
The method for diagnosing a pathological condition can comprise a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.
Also preferred is a composition of matter comprising isolated nucleic acid molecules wherein the nucleotide sequences of said nucleic acid molecules comprise a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95%> identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1 ; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1. The nucleic acid molecules can comprise DNA molecules or RNA molecules.
Also preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1.
Also preferred is a polypeptide, wherein said sequence of contiguous amino acids is included in the amino acid sequence of SEQ ID NO:Y in the range of positions beginning with the residue at about the position ofthe First Amino Acid of the Secreted Portion and ending with the residue at about the Last Amino Acid ofthe Open Reading Frame as set forth for SEQ ID NON in Table 1.
Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the amino acid sequence of SEQ ED ΝON.
Further preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of SEQ JD ΝON. Further preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the complete amino acid sequence of SEQ ID ΝON.
Further preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the complete amino acid sequence of a secreted protein encoded by a human cDΝA clone identified by a cDΝA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.
Also preferred is a polypeptide wherein said sequence of contiguous amino acids is included in the amino acid sequence of a secreted portion of the secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.
Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the amino acid sequence ofthe secreted portion ofthe protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.
Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence ofthe secreted portion ofthe protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.
Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the amino acid sequence ofthe secreted portion ofthe protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.
Further preferred is an isolated antibody which binds specifically to a polypeptide comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NON wherein Y is any integer as defined in Table 1 ; and a complete amino acid sequence of a protein encoded by a human cDΝA clone identified by a cDΝA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.
Further prefened is a method for detecting in a biological sample a polypeptide comprising an amino acid sequence which is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ED NON wherein Y is any integer as
defined in Table 1 ; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1 ; which method comprises a step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group and determining whether the sequence of said polypeptide molecule in said sample is at least 90% identical to said sequence of at least 10 contiguous amino acids.
Also preferred is the above method wherein said step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group comprises determining the extent of specific binding of polypeptides in said sample to an antibody which binds specifically to a polypeptide comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ED NON wherein Y is any integer as defined in Table 1 ; and a complete amino acid sequence of a protein encoded by a human cDΝA clone identified by a cDΝA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.
Also preferred is the above method wherein said step of comparing sequences is performed by comparing the amino acid sequence determined from a polypeptide molecule in said sample with said sequence selected from said group.
Also preferred is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting polypeptide molecules in said sample, if any, comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NON wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDΝA clone identified by a cDΝA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1. Also preferred is the above method for identifying the species, tissue or cell type of a biological sample, which method comprises a step of detecting polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid
sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the above group.
Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal stmcture or expression of a gene encoding a secreted protein identified in Table 1, which method comprises a step of detecting in a biological sample obtained from said subject polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NON wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDΝA clone identified by a cDΝA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1. In any of these methods, the step of detecting said polypeptide molecules includes using an antibody.
Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a nucleotide sequence encoding a polypeptide wherein said polypeptide comprises an amino acid sequence that is at least 90%> identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ED NON wherein Y is any integer as defined in Table 1 ; and a complete amino acid sequence of a secreted protein encoded by a human cDΝA clone identified by a cDΝA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.
Also preferred is an isolated nucleic acid molecule, wherein said nucleotide sequence encoding a polypeptide has been optimized for expression of said polypeptide in a prokaryotic host.
Also preferred is an isolated nucleic acid molecule, wherein said polypeptide comprises an amino acid sequence selected from the group consisting of: an amino acid sequence of SEQ ID NON wherein Y is any integer as defined in Table 1 ; and a complete amino acid sequence of a secreted protein encoded by a human cDΝA clone
identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.
Further prefened is a method of making a recombinant vector comprising inserting any ofthe above isolated nucleic acid molecule into a vector. Also preferred is the recombinant vector produced by this method. Also preferred is a method of making a recombinant host cell comprising introducing the vector into a host cell, as well as the recombinant host cell produced by this method.
Also preferred is a method of making an isolated polypeptide comprising culturing this recombinant host cell under conditions such that said polypeptide is expressed and recovering said polypeptide. Also prefened is this method of making an isolated polypeptide, wherein said recombinant host cell is a eukaryotic cell and said polypeptide is a secreted portion of a human secreted protein comprising an amino acid sequence selected from the group consisting of: an amino acid sequence of SEQ ED NO:Y beginning with the residue at the position ofthe First Amino Acid of the Secreted Portion of SEQ ED NO:Y wherein Y is an integer set forth in Table 1 and said position ofthe First Amino Acid of the Secreted Portion of SEQ ED NO:Y is defined in Table 1; and an amino acid sequence of a secreted portion of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1. The isolated polypeptide produced by this method is also preferred. Also preferred is a method of treatment of an individual in need of an increased level of a secreted protein activity, which method comprises administering to such an individual a pharmaceutical composition comprising an amount of an isolated polypeptide, polynucleotide, or antibody ofthe claimed invention effective to increase the level of said protein activity in said individual.
The above-recited applications have uses in a wide variety of hosts. Such hosts include, but are not limited to, human, murine, rabbit, goat, guinea pig, camel, horse, mouse, rat, hamster, pig, micro-pig, chicken, goat, cow, sheep, dog, cat, non- human primate, and human. In specific embodiments, the host is a mouse, rabbit, goat, guinea pig, chicken, rat, hamster, pig, sheep, dog or cat. In preferred embodiments, the host is a mammal. In most preferred embodiments, the host is a human.
In specific embodiments ofthe invention, for each "Contig ED" listed in the fourth column of Table 5, preferably excluded are one or more polynucleotides comprising, or alternatively consisting of, a nucleotide sequence referenced in the fifth column of Table 5 and described by the general formula of a-b, whereas a and b are uniquely determined for the conesponding SEQ ID NO:X referred to in column 3 of Table 5. Further specific embodiments are directed to polynucleotide sequences excluding one, two, three, four, or more ofthe specific polynucleotide sequences referred to in the fifth column of Table 5. In no way is this listing meant to encompass all ofthe sequences which may be excluded by the general formula, it is just a representative example. All references available through these accessions are hereby incoφorated by reference in their entirety.
TABLE 5
AL041730, R28735, AL038983, AL046392, AL044272, AL040090, AI546875, AI526184, AL040510, AL040625, AL045817, AL041 142, AL041238, AL041 133, AL041 131, AL046330, AL040322, AL047183, AL041051, AL041292, AL047036, AL040119, AL047170, AL047057, AL041227, AL047219, AL040463, AL039915, AL043612, AL041197, AL040155, AL041346, AL040529, AL041096, AL047012, AL041358, AL041277, AL041 163, AL041098, AL040621, AL043538, AL041324, AL040464, AL044162, AL041086, AL043496, AL041296, AL041233, AL043467, AL041 159, AL045725, AL044186, AL041140, AL040193, AL044037, AL040168, AL040091, AL040128, AL040255, AL040342, AL040285, AL040332, AL040617, AL040553, AL045684, AL040745, AL043677, AL040370, AA585438, AL046442, AL040839, AL041752, AL040149, AL043775, D57491, AL044165, A1557084, AL043492, AL041602, AL045920, AL041278, AL038838, AL040253, AL044074, AL041635, AL045990, AL040458, AL044199, AL044187, AI525320, AJ239433, AL040294, AL041186, AL040052, AL042135, AL037727, T23985, AL040576, AI142134, AI546891, AL045753, AL044274, AI557796, AL079878, AL049018, AL040444, AL039744, AL045857, AL038822, AI525321, AL046327, AI541013, AL041168, AA585476, AL049069, AI557238, AL043444, AL041246, AL040472, AL040238, AL041955, AL041347, AI540920, C16305, AL038761, AL040075, T41289, T23957, AI541506, AL080031, AI557155, AI541345, AL045989, R29177, AL080075, AF221069, AF221068, ARO 17907, 113349, A91965, 166498, 166495, 166494, 166487, 166497, 166496, 166486, 166488, 166489, 166490, 166491, 166492, 166493, 166481, A83642, A83643, 166485, 166482, 166483, 166484, A83151, X81969, 105488, 161310, A60977, A91752, 108196, A32110, A58524, A58523, A68112, A68104, AR028564, AR067731, A06419, A21892, A23997, A84772, AR067732, A681 14, A20702, A86792, A58522, AR062872, AR027319, AR037157, AR054109, A21895, A84776, A25909, A60985, A64973, A84773, A84775, A91751, AR062873, A47368, A43189, AR027318, A84774, A43188, A60990, 119516, A05160, A08030, A20502, 119517, A89633, A89634, A60987, 163560, 163561, 163563, AR062871, 108776, AR009152, AR009151, E14304, AR002333, A81878, 125027, 126929, 144515, 126928, 126930, 126927, 144516, El 6678, 125041, A95096, A95106, A95105, A29109, A32111, A98767, A93963, A93964, 115353, A91750, A20700, AF082186, AR035975,
AR035974, AR035977, AR035976, AR035978, 108051, A60961, A92133, 107249, AR068508, AR068510, AR068509, A63954, 191969, AR038762, 158322, 158323, AR003585, A76773, A22413, A38214, 156772, 195540, AR038855, A58521, A91754, AR031374, AR031375, AR020969, E12584, AR036903, A90655, AR008429, 101987, AJ244004, A85395, A85476, A49700, 144681, 118895, AJ244005, AJ244003, A92666, A92668, A92667, A92665, A98420, A98423, A98432, A98436, A98417, A98427, 163120, 119525, Y16359, D78345, X83865, A93016, A18053, M28262, AJ244007, 115717, 115718, E03627, 149890, 148927, A02712, A77094, A77095, 184553, A95051, 184554, A18050, A23334, A75888, 170384, A601 11, A23633, AR007512, 108396, A60212, A60209, A60210, A60211, 100682, Al 1623, E00609, Al 1624, E13740, Al 1178, E01007, A10361, A62298, A35536, A35537, A02135, A04663, A02136, A04664, 108395, 106859, U94592, AR043601, Al 1245, 162368, X12660, A02710, E12615, AR035193, A07700, A13392, A13393, AR031488, 113521, 152048, A27396, AR027100, 144531, 128266, 121869, A70040, A82653, E16636, A24783, A24782, 103331, A95117, AF149828, 101995, AR031566, 160241, 160242, AR038066, A20699, E00696, E00697, E03813, AR027099, Y09813, AR051652, AR051651, A62300, and A25246.
HPJCP79 12 1097166 AI13 U58, AI143233, AI084060, AI796995, AW024300, AI690136, AW068636, AA187976, AI990865, AA188104, AA702670, AI248604, AW241327, AI796740, AI638567, AA526922, AI147820, AA728795, AI955736, All 25679, AA036781, AI298768, AI653728, W58025, AI042104, AA903790, W57793, AI681520, N41467, AI148201, AI825715, AI982785, AL121341, AW068147, AA449957, AI917005, AA036838, AI125117, AW139372, AA536124, AI342363, R63264, H03741, AA451767, AI242453, AI928172, AI884809, A1536994, AI917991, AA833643, AW236630, A1769003, AI654929, AA364665, T88911, H06496, AI672523, AA343825, R45487, R66598, T79474, AA356796, AA135794, R07310, AA961256, AWI 18743, W95716, AI339456, AI863802, AA135750, W95688, AA046714, R66752, R63216, AA046595, T84216, AW027460, AI203114, AI685956, AAl 12706, D20929, AI557697, AI525221, D42044, AL035413, AI637994, AI990544, AW071667, and AW235783.
HPJCP79 34 1035470 W55896, W55856, AI033991, AI581098, AW068238, R76895, R86326, AW362820, R77060, AI028412, AI220844, AA862718,
AL042984, AL043003, ALl 19464, ALl 19488, 125027, AR054109, 144515, 126928, 126930, 126927, 125041, 144516, AR035224, 185513, AR009152, AR009151, AR027099, 105393, A10617, AR028792, A94046, A94054, A01324, A01323, AR034783, 163120, AR067733, AR064322, AR064323, AR064320, AR064321, A32110, A94048, A94061, AR038307, AR038321, A49045, A83642, A83643, A70359, AR019094, 105430, A92666, A92668, 149890, A92667, A92665, AR028791, AR028793, ARO 19098, AR020199, AR020200, AR001287, AR020198, AR020197, AR029418, AR067734, AR067731, AR067732, AR029417, 189986, AR018924, AR018923, A48774, A48775, AR000006, ARO 15960, AR000007, AR015961, AR051652, A92081, A92080, A92077, A92078, A92079, A91752, A91751 , 109121 , AR068508, AR068510, AR068509, 191969, AR003585, 158322, 158323, A91754, A63067, A51047, A63064, A63072, A85308, AR031375, AR068507, AR068506, A60213, AR062871, AR051957, A44171, A29109, A321 11, AR068550, A23373, AR068551, A49700, A60207, A60208, 158669, A58521, Y14971, AB026436, AR055065, A93444, A46342, A46343, A30600, AR055066, AR054110, A81671, AR032878, AR060234, AR066494, and AR069079.
HARMJ38 42 1038066 AA020742.
HARMJ38 43 1031878 AW410706, AI748798, AA402147, AA725637, AI419313, AL049126, AI147283, AI478369, AA020743, AI148856, AA284946, AA393884, AA393789, AW236603, AW410705, AI889197, T27037, AI921312, AA394113, AI189667, AA284766, AAl 80305, AW 172788, AA402989, AI990726, AI948636, AI866673, AW071781, HI 9479, AA284767, R56450, T27036, AW237208, AI500384, AI678354, Z39780, AI470278, H20936, AI270491, H84411, AA292332, AI826066, AA285099, H20935, AI336345, H19561, Z43720, AI541240, AW004032, R15049, AI801457, AI948651, F04685, AW135154, AI290375, AI480181, AI611126, AI982513, AA179952, F21516, AA634385, R41485, Z45818, AI699619, AI791349, Y17793, AF064854, and AI673327
HTTIJ31 17 1 165265 AL046746, AL041706, AA488903, AW102955, AL120058, All 10760, AI471543, AI445582, AI6311 19, AI961232, AW024544, F28204, N23097, AA838140, AI888852, AA525409, AA568314, AI125167, AI925321, AL120343, AW410402, AA640305, AW410844, AA736713, AA679538,
AW167374, AW265468, AA427470, AA449661, AA604333, AI890283, AA084439, AA573024, AL121039, AI702049, AL040921, AA515677, AI547110, AI538404, AI754257, AI572680, AF034176, AW021674, AI564209, AI792586, AI792498, AI908381, AI312267, AI445768, AI345166, AW 148821, AI252611, AI431434, A W411 147, AW021608, AA064983, AA533660, AA584360, AW162288, AA502104, AW069110, AA610644, AC009516, AP000553, AC007227, AL022322, AL133448, Z97630, AC006449, AC005529, AL034423, AC005399, AL031662, AC005484, AL031311, AL022165, Z99716, AL008719, AP000692, AC003043, AC006285, L44140, AC004812, AC016025, AC006088, AC004263, AC005015, AC006006, AC005971, AP000501, AC005531, Z83844, AC005102, AP000503, AL022476, AC005288, Z84469, AC005695, AC005231, AC003688, AC004890, AC005527, AC004895, Z98048, AC004703, AL034420, AC005500, Y14768, AL022326, AC004491, AL008582, AC000025, M63796, AL096791, Z99128, AL121653, AC004560, U62317, AF207550, AC006312, AC004821, AC004033, AC006538, Z98051, AC004851, AFl 96779, Z95113, AC007676, AL022316, AL109628, AJ246003, AC005755, AC007055, AL049869, AC002314, AL009179, AC004253, AC005049, AC005081, AC004019, AC004922, AFl 11168, AL050318, ALl 33163, AP000505, AP000555, AL021 154, AL022320, AC004150, AC005808, AL096701, U52112, AC004531, AC002418, AP000359, Z97054, AC005331, AC002312, AC004000, AC006077, AC004999, AC007537, AC005913, AC006064, AC002126, AF053356, AC005280, AL035072, AC005031, AF001550, AL035405, AC004167, AC005412, AL023879, AC004099, U91326, AC003006, AC005785, U80017, AC007421, AL133243, AF109907, AC002115, AP000557, AF045555, AC007731, AC002492, AL035079, AL109627, AL021391, Z98941, AL033521, AC004386, AC004972, AL022163, AC005821, AL035455, AC005071, AC006084, AL049759, AC004883, AC004876, AL031846, AC002*96, AC005519, AL109952, AC004858, AL050321, AC006509, AC006057, AC004659, AL049761, AC005225, U62292, AC005914, AC002404, AC002039, AC005209, AC007546, AC005619, AC005180, AL008710, AL031767, AC002553, AC005200, AC005358, U91327, AC005300, AL031281, AL135744, AC004887, AC005228, AC000353, AL133245, AC002477, AC007384, AF003626, AL035086, U85195, AP000691, AC003689, AL035422, AB023048, Z93017,
AL031255, AC006261, AC005562, AC007666, AF205588, AC004584, AC005736, AL022336, AC007308, AL022313, Z85986, AC0O5523, AL035659, AC002563, AL021453, AC007435, AL022315, AL008729, AL035249, AE000658, AC006001, AL022323, AC004638, AC004477, ALl 17258, ALl 17330, AP000356, AC007993, AC005089, U78027, AC003109, D87675, AL049776, Z97056, AC007919, AC005839, Z81364, AL031848, AL031670, AFl 34726, AC005694, AC002310, AD000092, Z82244, AL035587, AC004832, AC005250, AC010205, AL031427, AL049636, AC004878, AB023049, AL008716, AF11 1167, AL121915, AL049694, AP0001 16, AC004973, Z93241, AL031657, AC004134, AC007277, AC005086, AC00591 1, AL121655, AC002395, AL080243, and U91321.
HTTIJ31 44 977169 AC009516 and AP000553.
HHTLB76 18 1138860 AA829036, AI061313, AA449997, AI733856, AW328331, AI609972, AA535216, AI612142, AI755214, AI610941, AL079734, AI279417, AI754567, AI583252, AA704393, AA410788, AI754105, AI912401, AI249365, T74524, AI962030, AL041375, AA584862, AA483606, AI926033, AI380617, AW237905, AA225406, AA570740, AW272294, AW327624, AA838091, AA169245, AA420546, T57767, AI884383, H07953, AI491765, A-I635028, AA502991, AI446623, All 14557, AA349193, AA568204, AW265359, AI792521, AL037714, AI859438, AA469327, AA829065, AI251576, AA862312, AW301771, AA228778, AA828592, AA492584, AA297666, AI581193, AI628859, AI249688, AI457596, AI457389, AA534064, AA812684, AA552989, AJ229041 , AL050317, AC008179, AC005874, AFl 34471, Z97181, AJ003147, U82695, AC004526, AC005529, AL022162, AP000245, AL022098, AF031078, AF030876, AC006263, AL031295, AC007228, AC003037, AL049839, AC004534, AC007401, AC006427, Z85987, AP000014, AC002369, AC002123, AP000036, AC002378, AC004970, AL133238, AF031076, AC006080, AC005538, AL022336, AC001231, AP000206, APO0O128, AC005527, AL023807, AP000098, AL031289, AC005520, AL078638, AC003035, AC005060, AC005533, AC003684, AL022337, AJ229042, AL031121, AL008729, AL031681 , AL009031, AC002326, AP000501, AC0023O2, AF001550, AC004554, AC005284, Z93930, AC005192, AC004887, AF011889, M63544, AC004890, Z84466, AL080243, AC007073, AC007376, AL034402, M63543, AP000330, AL031597, AL096703, U91321, Z98941, AC005914, AL049869, AC005531, AC007919, AC005799, AFl 11 169, AC006928, AC003657,
AL031123, Z97353, AP000032, D86995, AC002347, AL078477, Z98751, AL022163, Z85994, AP000260, AC004966, AC002070, AP000696, AL009181, AC004778, AC005871, AC007450, AL031737, AL034429, AC007298, AC005291, AC006961, AC007263, AL031664, AC004125, AP000099, AC005859, AL034384, AC005722, AC004967, AC006101, AC003663, AP000212, AP000134, AP000030, AC004551, AP000466, AC004685, AP000689, AC005694, ACO 16831, L44140, AC005703, AL133244, AC008372, AC005036, AC007731, AC007057, AC004020, AC00621 1, AP000013, AC004865, AC007129, AC006992, AC004674, AL121653, AP000295, AC007917, AC004787, AF003529, U95739, Z98304, AC002549, AC007051, Z83826, AL022326, AJ251973, AL031733, AC004816, AC006257, AL049795, AC008041, AC005822, AC005500, AC004895, AL021939, AC005295, Z82195, AC004216, AC005699, AC005081, AC004453, AC006252, AC002067, AF196969, AC002351, AC005377, AC007011, AC007207, AC007276, AL122003, AP000103, AP000109, AP000041, AC005702, AL033525, AL049712, Z95331, Z85996, AC005274, AL133445, AP000247, AL035420, AC007993, AP000121, AP000053, AP000168, AL022320, AC005697, AL008719, AC005255, AC002288, AP000111, AP000043, AC007151, AL133163, AC002365, Z84572, AL008730, AC002492, AL031577, AL031297, AL132642, Z83836, AP000500, AF196970, AP000263, AL031848, AC004682, AC002045, AP000688, AF121782, AC008115, AF015262, AC012384, AC005245, AB003151, AF003626, AL078593, AC006203, AC007684, AJ229043, AC002456, AC004687, AP000056, AC006011, AC004143, Z98050, AC003003, AL033397, AC006130, AC005823, AL034549, Z82198, Z98044, AC005399, AF091512, AC006505, and AC006160.
HHTLB76 45 1136207 ALl 34524, AI525316, AA829036, AI733856, AI061313, AA535216, AI609972, AI612142, AI279417, AW328331, AI610941, AL079734, AI583252, AI912401, AA483606, AI380617, AI249365, AW237905, AA570740, AI962030, T74524, AA169245, AA704393, AI755214, AA838091, AA225406, AI251576, AI792521, AI754567, AI884383, AA568204, AW272294, AI754105, AA584862, AL037714, AI635028, AA502991, H07953, AI583466, AW265359, AA862312, AW301771, AA829065, AA828047, AA828592, AL041375, AI306232, AI890971 , AW274191, AA631517, AA013168, All 14557, A1281431, AI961983, AI417469, A1053696, AI628859, AA558404, A1280266, AA629894, AA629902, H53284,
AW021116, AW439703, AA019973, AI310464, AI793172, AI793209, AJ229041, AL050317, AR038762, AFl 34471, AC008179, U82695, AP000245, AF031078, AF030876, AJ003147, AL022098, AC005874, Z97181 , AP000036, M63544, AF031076, AL031295, AC002369, AC006263, M63543, AL049839, AC004534, AC002123, AC005913, AC001231, Z85987, AC006427, AC007228, AC004526, AL132642, AL133238, AP000206, AP000128, AC005538, AL009031, AC002326, AC006080; AC003684, AC003037, AL031289, AF011889, AL022337, AL078638, AC007263, AC005192, AL031737, AC004890, AC005060, AL031597, AC005036, Z83826, AC003035, AC007073, AC007401, AL008729, AC005533, AFl 1 1169, AC005529, AP000330, AC007130, AJ229042, AL023807, AL049869, AC005699, Z85994, AC004966, AC006211, AC002302, AC004685, AC004554, Z93020, Z84466, AL031733, AL022336, AC004967, AP000260, AL049712, AC007376, AC005859, AL009181, AL034384, D86995, AC006101, AL096703, AC005284, AL080243, U95739, AC007917, AJ229043, AC006515, AF003529, Z95331, AC007057, Z85996, AC005799, AC004887, AC005694, AC007919, AP000099, AL049795, AP000030, AC006961, AC005527, AF015262, AC007298, AP000240, AC004778, AC002378, AL034429, AC007051, Z98941, AC002347, AL022162, AC004787, AC005871, AC008115, AP000466, AP000696, AL035461, AP000212, AP000134, AF003626, AC005377, AL022163, AF001550, AF196970, AC007878, AP000032, AC005971, AP000689, AC007276, AC007684, AC005386, AL078593, AC008372, U91321, AC006928, AC007151, AL031681, AP000694, AC007129, Z951 13, AC003657, AB003151, AC004970, AC004551, AC005531, AC005291, AL031123, AP000295, AC005295, AP000103, AC004020, AP000109, AP000041, AL008719, AC002351, AC005722, AF196969, Z68287, AC006257, AC016831, AC002549, AP000697, AC005245, AC009044, ALl 33244, AP000098, AC005255, Z97353, Z98044, AC005822, AC005914, AL031121, AC006974, AC006160, AL049636, AL022326, AF099810, AL034402, AC002045, AC002067, AP000501, AC004816, AF091512, U07000, AC005703, AC00701 1, AC008041, AP000155, AC003003, AL122003, AC007731, AC00601 1, AC007157, AL121757, AC004674, AC006075, AC005399, AL022316, Z82195, AP000263, AC006992, AL021977, AL031120, AC007450, Z98304, AC002070, AC005071, AL035089, L44140, AC006953, AP000247, AP000688, AL121653, AC004865, AC004963, AC005500, AL078584,
AC003098, AP000201, AP000013, AC007262, AP000143, AC004682, AL049553, AP000097, AL133445, AC004453, AC005786, AP000493, Z98200, AC003663, AC004143, AC005520, AC005081, AL078477, AC006238, AP0001 11, AP000043, AL033525, and AP000555.
HTEGF16 19 1160908 AA203365, AI813708, AW300554, AW026370, AI654923, AA252931, AW299408, N70033, AI859872, AA977420, AA629258, N46021, R77192, AI659888, AA252888, HI 1937, AA149537, AI024609, N69894, AI768599, AI420563, AI472810, AI810949, AA489009, N98886, AI698854, AA364127, Z38327, AA488535, All 87721, AA488402, AI803900, AA309914, and AW612414.
HTEGF16 47 1049385 R77192, HI 1937, N46021, N69894, N70033, N98886, AA203365, AA252888, AA252931, AA977420, AA488402, AA488535, AA629258, AI024609, Z38327, AI420563, AI654923, AI698854, AI768599, AI803900, AI810949, AI813708, AW026370, AW299408, AW300554, and AW612414.
HTEGF16 48 952104 D51799, D80439, AA305409, D80212, D59859, C14331, D59619, D80210, D80240, D80166, D80157, D81030, C14014, C14389, D51060, D80219, D80164, D51423, D80133, D80253, D51759, AA514186, D80268, D80195, D59610, D80022, D80366, D58283, D80188, D80247, D80391, D80248, D45260, C06015, D59787, D59502, D59889, D59467, D59275, D80038, D80043, D80227, D80045, D81026, D57483, D80196, D80269, D80024, D59653, D51022, D50979, D80522, D50995, AA305578, C05695, D59927, C15076, C14429, D80241, D80193, D80302, C03092, AA514188, D80251, D80378, D51103, D81111, AW177440, AW178893, D80064, AW360811, D59373, D80949, AA809122, D58246, H67854, Tl 1417, C14344, F13647, C75259, D51221, AW377671, AW375405, AI525920, AI525917, H67866, AI525923, T03269, T03116, AA514184, AW360817, AW360834, D80258, C14227, D59503, D59317, D80014, D59474, D59695, AW366296, C14973, D51079, AW178906, AI535686, AW360844, D80228, C14407, AW179328, T48593, D59551, D58101, AW375406, AW378534, AW179332, AW377672, AW179023, AW178905, AW 177731, C14957, AW378528, AW178762, AW179019, D60010, AW378533, AW378532, C14046, AW177501, AW17751 1, AI525235, Z21582, D60214, AW179020, AI525215, AI525227, AW377676, AI557774, AW352171, AW360841, AW352170, AW 178907, AW177733, AW178908, AW179024,
AW352120, AI525912, AI525925, D51250, D59627, AW178914, AW178774, AW176467, AI525242, AW178986, AA285331, AW177505, AI557751, AI525222, AW178775, D51053, AW367950, AW178909, AW177456, AW179004, AW179329, AW178980, D45273, C14298, AW178754, Z30160, AW179018, D51213, AW352158, C16955, D80168, AW378542, AW352117, C05763, Z33452, T02974, Z17814, AW178781, AW378539, AW178911, AW378543, AW378525, AW378540, AW352163, AW360855, AW177734, AI525237, H67858, AW179009, AW179012, C04682, AW177728, AW177722, AI525238, T02868, AI910186, AW369651, C13958, AI525928, N66429, C14077, D80314, D31458, AI525216, D50981, F13796, AW177508, AI525228, AW177497, T03048, AI525239, AR060385, A62298, AR018138, AR008278, A82595, A84916, A62300, AB028859, AJ132110, AF058696, AB002449, 150126, 150132, 150128, 150133, 114842, AR054175, AR008277, AR008281, AR016514, A63261, X67155, Y17187, AR060138, A45456, Y17188, A94995, D26022, A26615, AR052274, A43192, Y 12724, A43190, AR038669, A25909, AR066488, Y09669, AR066487, A70867, A67220, D89785, A78862, D34614, A30438, AR062872, AR008443, 179511, AR016691, AR016690, U46128, A64136, A68321, D88547, 182448, D50010, X68127, X82626, X72378, AR008408, AFl 23263, AR032065, AR060133, and AR025207.
HISET33 20 1102795 AL134524, AI142134, AL045327, AL134110, AL045328, AL038983, AL038878, AL047163, ALl 19324, AL042898, AL037727, U46344, AL039432, AW372827, AL135012, AL037295, AL038838, AL048677, AL037343, AL039643, AI318479, AL038651, AI547295, ALl 19457, D29033, AL037436, AL037335, AL037323, AL049018, ALl 19399, AL037443, AL038532, AW392670, AL038822, AL042420, AL04761 1, AL042655, AI431323, AL045494, AL045891, AL042523, AL038761, AL037435, AL042741, AL040472, Z99396, AL043941, AL043321, AL044125, AL043923, AL043814, AL047012, AL041238, AL044186, AL040617, AL043845, AL041347, AL042931, AL040576, AL040193, AL045753, AL041955, AL040463, AL047170, AL044037, AL041635, AL040294, AL044064, AL041459, AL041577, AL038024, AL043089, AL044162, AL047219, AL040625, AL048657, AL045684, AL041752, AL046850, AL040768, AL045671, AL046994, AL046914, AL048714, AL039360, AL038745, ALl 19443, AL042519, AL043496, AL040052,
AL042802, AL042508, AL043538, AL040444, AL040621, AL040464, AL042488, AL046356, AL040510, AL043467, AW363350, AL043677, AL040839, AL043492, AL041602, AL044074, AL041730, AL041523, AL043627, AL041374, AL043848, AL043570, AL047183, AI431307, AL042135, AI623302, AI432644, AI431316, AI431238, AL042515, AL046442, AL041324, AL041133, AL042533, AL039316, AI432666, AL041098, AL040322, AW384394, AL042853, AL046392, AL042832, AI431235, AI431315, AL040119, AW363220, AL044272, AL044258, AL043091, AL037341, AL042468, ALl 34920, AL041096, ALl 19396, AL042729, AL042096, AI431246, AL043166, AL042842, AL042787, AL041168, ALl 19497, AL038040, AW081103, AI432653, AI431230, AI431321, U46350, AL041163, AL04U-59, ALl 19483, AL045817, AI431257, AL045920, AL040148, ALl 19418, AL079852, AL047057, AL040207, AI432654, AL045326, AI432650, AI432677, AL040458, AL044187, U46349, AL043278, U46351, AL043295, AL038041, ALl 19335, AL041296, AW084068, U46341, AI431328, AL041358, AL041292, ALl 19319, AL040571, AL045990, AL047675, ALl 19341, U46346, AI431353, ALl 19522, AI431312, AI432656, AI431231, AI432655, AR066494, AR064707, AR023813, AJ238010, A93923, A93916, D 17247, A93931, ALl 33053, AR060234, AL122101, AL133074, AF019249, AL133049, Y17793, A85203, A81671, AL133082, AL133076, AL133068, AR069079, AR054110, and AB026436.
HISET33 49 977186 AW392670, Z99396, ALl 19396, AL042965, AW372827, AW384394, ALl 19497, ALl 19401, ALl 19443, ALl 19483, AW363220, ALl 19418, AL134524, U46350, AL134533, U46346, ALl 19335, ALl 19522, ALl 34902, ALl 34920, ALl 19341, U46349, U46341, U46351, ALl 19496, AL042896, AI142132, ALl 19399, AL134531, AL134538, AI142139, U46345, A81671, AR060234, AR066494, AR069079, AR054110, and AB026436.
HTFMX90 21 1055914 AL134524, AL042420, AA515728, AA829036, AI279417, AW237905, AI887235, AI358712, AI380617, AI912401, AW419389, AI926728, AA706495, AI244127, AA225406, AI755214, AI754105, AA572813, AI754567, AW026305, AI421950, AI904840, AI419337, AA704393, AI090377, AI224583, AA573067, AA640430, AI859438, AA502991, AI612142, ALl 18925, AA640410, AL031428, AP000245, AP000128, AP000206, AL109627, AC005274, AF139813, AC005740, AC004228, AL034549, Z82206, AL050331, AC005670, ALl 09801,
AL079303, AP000503, AF134726, AC005921, AP000696, AC005520, AC003669, AC005071 , AC006480, AC007371, AC005228, AC006530, AC007216, AC002477, AC006449, AL031589, AC007052, AC007363, AP000694, AC002301, AC002425, AP000113, AP000045, AL021154, AC004139, AC003982, AL049780, AL021155, AC005668, AC005412, AC003101, AP000211, AP000133, AC006064, AC004827, AC005399, AL121652, AL03131 1 , AB014078, Z73417, AC004020, AC008179, AP000697, AC005899, AL049697, AL133244, AL031664, AL022069, U80017, AL096791, AC004821, AC004859, AL022334, AL137100, AC004797, AC002549, AC007421, AC006388, AC002365, L44140, AC006501, AL023803, AC002429, AC003663, AC004805, AP000514, AL021394, AC007707, Z84469, AC004181, AC002565, AC002073, AC004765, AB020868, AL034420, AJ003147, U95742, AC006312, AC005031, AC004774, AC004841, AC007731, AC005011, AF042484, AP000497, ACOO550O, AL133396, AC005039, AL121655, AL035587, AC000353, U91321, AL049831, Z82195, AC006441, AL049839, AC005920, AL033521, Y14768, AC002045, AL022399, AC004905, AC006211, AL049759, AL031602, ALl 33448, AC006061, AC004079, Z93241, AL031228, AC006487, AC007773, Z82194, AL035423, AC005701, AL024507, AP000505, AC007842, AP000240, AC005696, AL078477, Z82172, AC004891, AC006581, AC005295, AL034554, AFl 65926, AC002115, AF064861, AL034548, AC005799, AC004975, AC005536, AC005585, Z84486, AL031737, AL031670, AL035410, AC007298, AFl 11168, AL049871, AP000098, AC002302, AC007917, AB023048, AC005913, AC006597, AC002401, AL078583, AC002558, ALl 33353, AP000563, AC007041, AC008125, AL031666, AL079304, AL133245, APOOOl 14, AP000046, AL009181, Z82215, AC005231, Z85986, AB000876, AC007686, AC005049, AL035683, M89651, AL035089, AL031283, AC005901, AP000557, AL133243, AC005409, AC002314, AC005778, AC004383, AC006115, AC007243, AL096775, AC008372, Z93017, AC004972, U91326, AF124523, AL109798, AC006111, AC005939, AP000022, AL035413, AC005089, ACO 10205, AF064857, AC00541 1, AC005592, AC005225, AP000501, AC002316, AF196779, AC007151, AC005940, AL035088, AC006023, Z97056, AC002080, AC002449, U95743, AC007386, AL031774, AL121748, AC004491, AC007226, AL021393, AL109623, AC005058, AC004125, Z93244, AL022316, AC007868, AC005086, AC000063, and
AL035407
HTFMX90 51 1052131 AA515728, AA829036, AI279417, AW237905, AI887235, AI358712, AI380617, AI912401, AI244127, AI926728, AI755214, AA225406, AW419389, AI754105, AA572813, AI754567, AA706495, AW026305, AI421950, AI904840, AI419337, AA704393, AI090377, AI224583, AA640430, AI859438, AA573067, AA502991, AA640410, ALl 18925, AI311647, AI361090, AC007216, AC005274, U91321, AC007363, AP000128, AP000206, AC00O353, AC006449, AP000245, Y10196, AC007052, AFl 11169, AL031428, AC006480, AC005740, AP000503, AC004228, AF139813, ALl 09801, Z82206, AC003669, AP000696, AC003101, AL079303, AC005670, AL031589, AL109627, AC005412, AC006530, AC005921, AL049697, AP000694, AC006501, AC005520, AF134726, AL049780, AC004139, AC002301, AC003982, AC006061, AC006064, AC003663, AC004765, AL035410, AC002477, AP000211, APOOOl 33, AC004827, AL031311, AC002425, AC005668, AC004020, AC005039, APOOOl 13, AP000045, AL133244, AC005228, U80017, AL034549, AL022334, AP000697, AC007277, AC004821, AC002365, AF042484, AL031664, AC004805, AC006388, U95742, AC006211, AL021 155, AL022069, AL034420, AC005399, AC004905, AL021154, AC005778, AC004797, AB020868, AJ003147, Z93241, AC002395, AL121652, AL096791, AC008179, AB014078, AC005071, AP000514, Z84469, AP000497, AC007421, AC007707, AL049831, AL121655, AL035407, Z93244, AL078477, AC002073, AC002045, AFl 11168, AC006312, AL031737, AC002565, AC005031, AC004774, AB023048, ALl 33396, AC004181, AL050331, AL049759, AC004859, AL031602, AC005913, AC006581, AC004841, AC002558, Z73417, AL031228, AL035587, AC005011, AC005701, AC006115, Z82195, AC005920, AC005899, AC007842, AL023803, AC007773, Y14768, L44140, AC005696, AP000240, AL022399, AC002316, Z82194, Z82172, AL033521, AF165926, AL133448, AC007055, AL024507, AC005536, AC005585, AC004975, AFl 96779, AC002429, AL035423, AC006441, AF064861, AL049871, Z98946, AC005295, AP000505, AC007371, AC004125, AC007731 , AC002115, AL 133353, AC008372, AL031666, AC0O550O, AP000022, AL009181, AC005005, AC007298, Z85986, AL133243, AC004891, AC006088, AL031283, AC005821, Z82215, AC005049, AC005409, AC004079, AL137100, AP000098, AR036572, U91328, AC002302, AL021394, AC005088, AC008125, AC005690, AC004491, AL031670, AF124523,
AI432672, AI431248, AI432662, AI432676, AW128846, AI431340, AW128897, AI432664, AI432650, AI431307, AI431316, AI492520, AI432643, AI492509, AI431751, AW128884, AI432657, AI431352, AI431247, AI431356, AI492510, AI431308, AI432645, AW129223, AB006624, Y17793, AF064854, AF019249, and AF048686.
HEOQX60 24 1035205 AA614014, AW084519, AA903338, AI244442, AI342240, AI962752, AI717991, AW139714, AA354504, AI660761, AW207518, AW402742, D20168, AA380395, T29020, AW 138271 , AI219797, AI041118, F19235, AI798637, F16699, AI201892, AL047399, AI808637, AI564067, AW393736, AW393737, AA748165, AA918804, AL041067, AA282129, AL041068, AA282128, AA81 1883, AI921541, AW393733, Z99396, ALl 19443, AW392670, AW372827, ALl 19497, ALl 19418, ALl 19457, AW384394, ALl 19496, ALl 19483, U46341, AW363220, U46349, ALl 19324, U46346, U46351, ALl 19391, AL036418, AL038837, AL134524, AA631969, ALl 19335, ALl 19399, ALl 19484, AL037051, AL036725, U46350, ALl 19319, AL042544, AL134902, ALl 19363, ALl 19341, ALl 19444, ALl 19396, ALl 19439, U46347, AL134518, ALl 19355, AI142132, ALl 19522, AL037205, AL042614, AL038509, AL036858, AL036924, AL039074, ALl 19401, AL134528, U46345, AL042965, AL042975, AL134525, AL134538, ALl 19464, AL042970, AL042450, AL042984, AI142137, AL042551, AL037082, AL043019, AL043029, AL042542, AL037639, AL037094, AL036196, AL037526, AL043003, ALl 19488, AL036767, AL038851, AL037085, AL037077, AL036268, AL036190, AL038520, AL037615, AL036998, D30758, AR060234, AR066494, A81671, AR023813, AR064707, AR054110, AR069079, and AB026436.
HEOQX60 57 918920 AI253192, A1913253, AI597595, AA713495, AA972065, AA135967, AI928486, AA621901, AI261821, N87925, AA767100, AA427998, AW375405, C14331, AA514186, D80188, D58283, D59275, AW366296, D57483, D80253, D80166, C14014, D51060, D80024, AA305409, C14389, D59859, D80043, D80366, D51799, D80248, D51423, D59619, D80210, D80240, D50979, D81030, C14429, D80212, D80022, D80219, D80195, D59467, D80391, D80164, D59610, D59787, D80227, AA305578, D59502, D80133, D80522, D81026, D80269, D59889, D80196, D51022, D80268, D50995, D59927, D80251, C15076, D80038, D80439, D80193, D80045, D80241, AA514188, AW360811, D80378, AW177440,
D80247, D80302, AW178893, D59373, AW377671, AA809122, C75259, AI557751, AI905856, T03269, T48593, C05695, AW178906, AW179328, D51103, AW360844, D51759, AW360817, D80157, AW375406, AW378534, AW179332, AW377672, AW179023, AW178905, AW378532, AW177501, AW177511, AW352171, AW377676, AW178983, AW352170, AW 177731, AW 178907, AW378528, AW178762, AW179019, AW179024, AW3521 17, AW176467, D51250, D80134, AW360841, AW177505, D80132, C14407, D58253, AW179020, AW178775, AW178909, AW177456, AW179329, AI535686, AW178980, AW178914, AW177733, AW178908, AW178754, AW179018, AW352158, D52291, AW367967, AW369651, D59653, C06015, AW360834, AW 178774, AW352120, AW179004, D45260, AW179012, AW352163, AW378525, D51079, F13647, D80949, AW378543, D59627, C14344, AW 177728, D80258, H67854, AW 179009, AW178911, AW177722, AW367950, AI910186, AW378540, D80168, AW352174, C03092, D80064, H67866, AW178781, C14298, C14227, D59503, Tl 1417, AI525923, C14957, D59317, D58101, D81111, AW177734, AI525917, D58246, AW178986, D59474, Z21582, D51221, AA514184, D80228, T03116, AW177508, AW177723, D80014, AI525920, C14973, AI525912, AW378533, AW177497, D60010, D51213, D45273, AI525235, D59551, AI525227, D51097, C14046, D60214, AI557774, N66429, T03048, AI525215, C16955, AI525242, AA285331, AW378542, AI535959, AI525925, AI525222, AW378539, AI525237, C05763, Z33452, T02974, AW360855, 125810, X99477, A62298, A84916, A62300, A82595, AR018138, Y17188, AJ132110, AB028859, AR008278, AF058696, AR016808, A30438, Y17187, A94995, AR060385, X82626, AB002449, X67155, D26022, Y 12724, A25909, AR016514, A67220, D89785, A78862, D34614, AR008443, 150126, 150132, 150128, 150133, D88547, AR066488, AR060138, A45456, A26615, AR052274, A43190, AR038669, Y09669, X68127, A43192, AR025207, AR066487, AR008277, AR008281, D50010, 114842, AR054175, U46128, AR016691, AR016690, AR066490, A63261, U79457, AR008408, 118367, AR062872, A70867, Z82022, D 13509, AR060133, AB0121 17, A64136, A68321, 179511, A44171, A85396, D88507, AR066482, AF123263, A85477, 119525, A86792,
AR032065, X93549, and AR008382.
HFXDI56 25 1218288 T85435, T85337, AA904610, AI220608, ALl 17340, AP000080, and X55499.
HFXDI56 58 1218744 T85435, T85337, AA904610, AI220608, ALl 17340, and AP000080.
HFXDI56 59 1035197 ALl 17340.
HFXDI56 60 609313 T85435, T85337, AA904610, AI220608, ALl 17340, AP000080, and X55499.
HCUHQ40 26 1179279 AI826538, AL038664, AI051237, AI267318, AI688542, AI052104, AW 163010, AI376453, AW192514, AI818589, AW029328, AI678648, AI566340, AI972077, AI811155, AI936746, AI089502, AI372947, AI004230, AI354532, ALl 19666, AW074007, AI084362, AI027083, AJ691080, AA862706, AA621070, AI744332, AI149953, AW242075, AI149949, AI150745, All 99180, AI625208, AI003733, W20002, AI627187, AW 130451, AW270647, AIO 14764, AI091649, AA041468, W55944, AW149580, AI445868, AW151070, AA148318, AI092273, AI005484, AI372493, AA040575, AA595861, AI689545, AI524423, AI521587, AA342697, AA908191, AI689268, AI270577, AI952557, AI372494, AI619883, AI538583, AW263138, AI026832, AA040673, W25901, AI368864, AW316596, AI539834, AA349447, AA721376, AW292131, R19495, AA662403, AW085967, T75472, AA808860, AA199620, AI125767, AW090571, H20652, N78681, AA176087, N32970, AI074758, AA740389, AA814692, AA300365, AA329440, AI547225, AW275741, AA894651, AA302328, AI680268, T48533, AA719848, F13229, AA383093, AA386145, AA970611, AI536066, D31244, Z44196, H20558, AI350433, AW243606, AI784415, AI676163, AA063203, D82747, W26208, AA471277, AA903068, AA664940, AA853050, AA897635, AW021288, D31438, AI535982, AI419708, AI680414, AA090164, AA362084, AA386197, R62151, AI250661, R62259, W28043, AI521566, AI611841, F10830, AA355685, AA343846, R43842, AA334321, T69962, AA093703, T24661, AA845417, D56184, AA332748, Z40172, R39290, T27330, AI695489, D80027, R12857, R38429, AI524545, AA095572, W15187, T28780, F24108, AA176086, AW375368, AA323934, AA337850, D81428, AA373966, AA344329, AW293901, AA039822, AW375337, T69912, AI802643, F35697, AA848160, AI523217, AI241878, AAl 48317, H60591, AI709179, T25879, AA970902, N63253, T79010, AW 169467, T16724, AA093662, N84238, AW241154, AW270806, All 98549, AW380896, AI630928, AL038665, AI284509, AI557186, AL041150, AI433157, AI554821,
AW151136, AI539771, AI537677, AI494201, AI500659, AI815232, AI801325, AI500523, AI436429, AI582932, AI923989, AI284517, AI371228, AI500706, AI445237, AI491776, AW151138, AI889189, AI521560, AI500662, AI889168, AI866573, AI633493, AI434256, AI805769, AI888661, AI284513, AI888118, AI889147, AI440252, AI610557, AI366900, AI538850, AI872423, AW 172723, AI440263, AI866469, AI434242, AI859991, AI866786, AI860003, AI242736, AI887499, AL080007, AW 151132, AL045500, AI866465, D31885, AE000658, U85195, AF223953, AF172088, AF133669, 189947, AL049938, AL122101, A58524, A58523, AFl 13019, AL133072, AL122049, AR011880, AL050138, U35846, AFl 11851, AFO 17437, AL049423, Y09972, AL133113, A77033, A77035, ALl 10280, AL050277, AL137459, AF124728, E06743, AR038854, AL137476, AL133640, L31396, L31397, AL137539, ALl 10221, AL1221 10, Y16645, AL133080, 133392, AL133077, AB029066, AL137550, E07361, AF061943, AC002471, AC005374, AF097996, A65340, AL050024, Y11587, AL133081, AF185614, AL137463, A21625, U91329, AF076464, AFl 13677, U67958, U58996, U42766, X72889, U3O290, AF081195, X00474, AF028823, AL137526, ALl 17583, ALl 17585, AL122123, 109360, A18777, AL049300, ALl 17460, AF158248, AL049283, X84990, AL133075, U49434, AL133565, S78214, 100734, AF078844, AFl 13694, AL133084, AFl 18094, AL133070, ALl 10197, AL133098, AL049466, E00617, E00717, E00778, AL133015, A03736, AJ012755, ALl 10269, S61953, AL137298, E03671, 142402, 146765, ALl 17457, AL096744, AL050108, AF102578, AF104032, S66283, AL049447, 189944, AB031064, LI 9437, ALl 17649, Y 10823, Z49216, X61399, AR034821, AF100931, AFl 13691, ALl 33558, A45787, ALl 33608, U78525, ALl 10222, X63574, AF008439, AW273036, AW473757, AW474360, AW510479, AW514205, AW516993, AW518951, AW630807, AW662059, and AW664721.
HKZCK47 28 1045503 H95452, N30257, N40659, N41980, W32409, W32855, AA001776, AA747202, AA876069, D81852, D81929, D81992, AI373734, AI299574, AI221043, AI910470, and AW 196676.
HRDEP41 31 1 129342 AI819066, AI096889, N57566, AI652475, AI762701, AI571414, AW072021, AW136982, AA770246, AI360284, All 85794, AA653289, AI632543, N39261, AI093864, AI361124, W78162, AW072658, AA434490, AI092771,
W79205, AL044476, All 26467, AI377502, AI371895, AA086103, AI768304, N50074, AI347630, W57608, A1004516, AI684524, AA702096, AI992245, AA434395, AI360808, AI359558, AA324953, AA781993, AI933385, AA026053, AI243341, AI654422, H09521, AA086102, AA789226, AA988193, H09520, Z45285, W28501, Z40993, C04672, AI623520, AA969690, AI674810, AW 138990, AI214707, AI368537, N46707, Z49982, U30172, and Z49983.
HKGBJ74 32 1189265 AW245735, AW245623, AW245881, N57252, AW409766, AW247020, AW250562, AI885802, AW250222, AI829136, H98166, AW072012, AW409650, AA236737, AA130880, AA081326, AA176211, AA081347, AA618083, AA176210, AA486434, AI092870, AI589540, AW273066, AI74551 1, AI953980, AW409675, AA524975, AW173680, AW149138, AW248461, AA056429, T66277, AI686881, AW246286, AA633178, AI361334, AA313766, AA081346, AI972465, AA878148, AA828127, AA135151, AA490323, AA541297, AI208260, AA448202, N31322, AI283002, AW102925, AA132698, AA024484, AA814452, AI278141, AI338188, AI802624, AA922736, N35048, AI002040, AA502359, AW079983, AA634343, AA564581. AW251043, AI143056, N21370, AI087009, AL045365, AI038842, AA081325, AA235062, AA724588, AA234910, AW272966, AA219233, AW245379, AA219293, AA380625, AA135288, AA147048, AW002314, AA627088, Z44936, T66190, AA604261, AA490427, AA132809, AW263614, AA845407, AI300044, AA393562, AA939182, AA309709, AA936143, AA298671, AA298672, T90842, R02758, AA579652, AA025328, AA297935, AL135190, AI798307, AA054656, AA296918, F12298, AI024248, AI480173, N45060, AW250136, AI952399, AA297613, R02757, AA-298705, AI469323, AA130935, AW247374, AI766398, AA876843, AA297025, AA346949, AW380104, AA551740, AA285283, AA309007, AI337489, AA090542, T19272, AI799323, T73385, F09925, AA090691, AA598486, AI627371, AA102203, AA147239, AW246489, AI358227, AW380065, AW409756, AA759368, AI954095, AI434969, AI241741, AW198112, AW176261, AI612913, AI554821, AI680221, AI868204, AI613038, AI580436, A1345688, AI289791, AI961589, AI698391, AI440238, AI582932, AI583578, AL120254, AI669639, AI565031, AI537187, AL039086, AI973272, AW129929, AI433157, AI702073,
AI633125, AI432570, AW172982, AI539260, AI690389, AL042745, AI345415, AW084151, AI610362, AA937574, AI687568, AI433611, AI590043, AI309306, AI584130, AI251221, AW022682, AWI 63834, AI638644, AI927233, AI559863, AI624938, AI699823, AL042515, AL037582, AI799183, AL037602, AI582966, AI583065, AI801793, AW167146, AW167926, AL040241, AI249389, A1161279, N75779, AL036954, AI475339, AI889189, AA464646, AL046466, AI623835, AI471909, AI628325, AI590134, R69938, AI524654, AI318280, AI886415, AA954134, AA595932, ALl 18781, AW149069, A1933992, AI491710, All 14703, AI621341, AI254042, AW268080, AW075669, AI916419, AW089387, AI81 1840, AA693331, AI565172, AI345612, AW022636, AI685517, AL134830, AW020397, AI690748, AW 150557, AI635016, AI679959, AL043981, AI954080, AW025279, AI524179, AI446511, AI280637, AF090385, AF161489, AF046025, AFl 10956, AB024303, AL137530, U77594, 189947, A65340, AFl 13699, ALl 33619, 133392, 109499, M92439, X99226, AL049324, ALl 17416, AL050138, AL137292, AR034821, X83508, 148978, AL137558, S68736, AB007812, AL136884, S36676, AL133665, 132738, AF200464, AL049938, A65341, AF079763, AL137533, U73682, ALl 17435, A03736, AL133080, AF176651, AF102578, Z97214, E04233, AF038847, Z37987, AF177401, AF044323, AL096720, AL137550, U35846, E01614, E13364, AL080110, A08913, AL137480, AL080124, 126207, AF026124, A08912, AF139986, A08910, AF106862, AR020905, A08909, ALl 17587, AR038854, E02914, A08908, AF159615, AF090900, S77771, A12297, AL133049, S76508, S78453, AL049283, AL137459, ALl 10221, AFl 13676, ALl 37641, AF090934, AFl 83393, AF090903, ALl 10222, D83032, AF017437, X80340, S53987, X63574, 100734, S61953, A18777, AL122110, AFl 18070, AF107847, AF069506, U58996, AJ242859, X52128, AF017790, AF106697, AL133016, E00617, E00717, E00778, A21101, U72621, AF061573, AL137476, A15345, 189931, AF028823, AL049339, A83556, A77033, A77035, AL 117460, AF 117657, AL080140, AJ003118, ALl 33568, ALl 17394, ALl 22093, AL050092, AL096751, AF032666, 149625, ALl 37271, U86379, AF000301, AL137529, AF090901, X65873, ALl 22098, AFl 1 1112, A08907, AF100781, AL133558, A65336, D44497, 152013, AF047716, Y09972, AL137548, AL050366, A08911, 129004, 189934, X98066, AL133067, Z82022, AL122100, AL137711,
AL080126, ALl 10280, X63410, S83456,- AL133104, AF126247, 148979, AF141289, S82852, AB025103, U42031, AL080127, ALl 17578, M27260, ALl 10225, ALl 10224, X93495, AJ005690, X53587, Y10655, AL133637, AFl 18094, Yl 1254, AL080159, AR054987, U68233, 192592, X92070, M96857, AL023657, AF055917, AFl 85576, AF137367, AF008439, 168732, AF013214, AF017152, AF207750, AFl 13690, L13297, A07588, X66871, AF067728, AL133640, AFl 11849, AF125948, AF199027, AL122121, AF030513, ALl 37665, AL080163, AF057300, AF057299, AJ012755, S75997, AL137526, X99257, AFl 11851, U95114, Z13966, E01812, AF047443, U35146, AL137538, AL133557, AL050149, U57352, D16301, AF081197, AF081 195, X72889, S78214, AFl 13691, AF026816, AL137463, ALl 17648, X82434, AFl 13677, AL050277, A86558, AF090943, AL122050, AL137523, AL049382, AL049314, AFl 15392, X63162, AF153205, AJ238278, ALl 17585, AL080234, U96683, S69510, AL133075, U72620, A08916, AR011880, AFl 15410, and AW467171.
HKGBJ74 67 1025650 AW245735, AW245623, AW245881, N57252, AW247020, AW250562, AI885802, AW250222, AI829136, H98166, AW072012, AW409650, AA236737, AW409766, AA130880, AA081326, AA176211, AA081347, AA618083, AA176210, AA486434, AI092870, AI589540, AW273066, AI745511, AI953980, AW409675, AA524975, AW173680, AW149138, AW248461, T66277, AI686881, AW246286, AA633178, AA056429, AI361334, AA313766, AA081346, AI972465, AA878148, AA828127, AA135151, AA490323, AA541297, AI208260, AA448202, N31322, AI283002, AW102925, AA132698, AA024484, AA814452, AI278141, AI338188, AI802624, AA922736, N35048, AI002040, AA502359, AW079983, AA634343, AA564581, AW251043, AI143056, N21370, AI038842, AA081325, AI087009, AA235062, AA724588, AA234910, AW272966, AA219233, AW245379, AA219293, AA380625, AA135288, AA147048, AW002314, AA627088, Z44936, T66190, AL045365, AA490427, AA132809, AW263614, AA845407, AI300044, AA393562, AA939182, AA309709, AA936143, AA298671, AA298672, T90842, R02758, AA604261, AA579652, AA025328, AA297935, ALl 35190, AI798307, AA054656, AA296918, F 12298, N45060, AI024248, AA297613, R02757, AA298705, AI952399, AI469323, AA130935, AI480173, AW247374,
Having generally described the invention, the same will be more readily understood by reference to the following examples, which are provided by way of illustration and are not intended as limiting.
Examples
Example 1 : Isolation of a Selected cDNA Clone From the Deposited Sample
Each cDNA clone in a cited ATCC deposit is contained in a plasmid vector. Table 1 identifies the vectors used to constmct the cDNA library from which each clone was isolated. In many cases, the vector used to construct the library is a phage vector from which a plasmid has been excised. The table immediately below correlates the related plasmid for each phage vector used in constmcting the cDNA library. For example, where a particular clone is identified in Table 1 as being isolated in the vector "Lambda Zap," the corresponding deposited clone is in "pBluescript."
Vector Used to Constmct Library Conesponding Deposited Plasmid Lambda Zap pBluescript (pBS)
Uni-Zap XR pBluescript (pBS)
Zap Express pBK lafmid BA plafmid BA pSportl pSportl pCMVSport 2.0 pCMVSport 2.0 pCMVSport 3.0 pCMVSport 3.0 pCR®2.1 pCR®2.1
Vectors Lambda Zap (U.S. Patent Nos. 5,128,256 and 5,286,636), Uni-Zap XR (U.S. Patent Nos. 5,128, 256 and 5,286,636), Zap Express (U.S. Patent Nos. 5,128,256 and 5,286,636), pBluescript (pBS) (Short, J. M. et al., Nucleic Acids Res. 16:7583-7600 (1988); Alting-Mees, M. A. and Short, J. M., Nucleic Acids Res. 17:9494 (1989)) and pBK (Alting-Mees, M. A. et al., Strategies 5:58-61 (1992)) are commercially available from Stratagene Cloning Systems, Inc., 11011 N. Torrey Pines Road, La Jolla, CA, 92037. pBS contains an ampicillin resistance gene and
pBK contains a neomycin resistance gene. Both can be transformed into E. coli strain XL-1 Blue, also available from Stratagene. pBS comes in 4 forms SK+, SK-, KS+ and KS. The S and K refers to the orientation of the polylinker to the T7 and T3 primer sequences which flank the polylinker region ("S" is for Sad and "K" is for Kpnl which are the first sites on each respective end of the linker). "+" or "-" refer to the orientation ofthe fl origin of replication ("ori"), such that in one orientation, single stranded rescue initiated from the fl ori generates sense strand DNA and in the other, antisense.
Vectors pSportl, pCMVSport 2.0 and pCMVSport 3.0, were obtained from Life Technologies, Inc., P. O. Box 6009, Gaithersburg, MD 20897. All Sport vectors contain an ampicillin resistance gene and may be transformed into E. coli strain DH10B, also available from Life Technologies. (See, for instance, Gmber, C. E., et al., Focus 15:59 (1993).) Vector lafmid BA (Bento Soares, Columbia University, NY) contains an ampicillin resistance gene and can be transformed into E. coli strain XL-1 Blue. Vector pCR®2.1, which is available from Invitrogen, 1600 Faraday Avenue, Carlsbad, CA 92008, contains an ampicillin resistance gene and may be transformed into E. coli strain DH10B, available from Life Technologies. (See, for instance, Clark, J. M., Nuc. Acids Res. 16:9677-9686 (1988) and Mead, D. et al., Bio/Technology 9: (1991).) Preferably, a polynucleotide ofthe present invention does not comprise the phage vector sequences identified for the particular clone in Table 1 , as well as the corresponding plasmid vector sequences designated above. The deposited material in the sample assigned the ATCC Deposit Number cited in Table 1 for any given cDNA clone also may contain one or more additional plasmids, each comprising a cDNA clone different from that given clone. Thus, deposits sharing the same ATCC Deposit Number contain at least a plasmid for each cDNA clone identified in Table 1. Typically, each ATCC deposit sample cited in Table 1 comprises a mixture of approximately equal amounts (by weight) of about 50 plasmid DNAs, each containing a different cDNA clone; but such a deposit sample may include plasmids for more or less than 50 cDNA clones, up to about 500 cDNA clones.
Two approaches can be used to isolate a particular clone from the deposited sample of plasmid DNAs cited for that clone in Table 1. First, a plasmid is directly
isolated by screening the clones using a polynucleotide probe corresponding to SEQ ID NO:X.
Particularly, a specific polynucleotide with 30-40 nucleotides is synthesized using an Applied Biosystems DNA synthesizer according to the sequence reported. The oligonucleotide is labeled, for instance, with 32P-γ-ATP using T4 polynucleotide kinase and purified according to routine methods. (E.g., Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring, NY (1982).) The plasmid mixture is transformed into a suitable host, as indicated above (such as XL-1 Blue (Stratagene)) using techniques known to those of skill in the art, such as those provided by the vector supplier or in related publications or patents cited above. The transformants are plated on 1.5% agar plates (containing the appropriate selection agent, e.g., ampicillin) to a density of about 150 transformants (colonies) per plate. These plates are screened using Nylon membranes according to routine methods for bacterial colony screening (e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edit., (1989), Cold Spring Harbor Laboratory Press, pages 1.93 to 1.104), or other techniques known to those of skill in the art.
Alternatively, two primers of 17-20 nucleotides derived from both ends ofthe SEQ ID NO:X (i.e., within the region of SEQ ID NO:X bounded by the 5' NT and the 3' NT of the clone defined in Table 1) are synthesized and used to amplify the desired cDNA using the deposited cDNA plasmid as a template. The polymerase chain reaction is carried out under routine conditions, for instance, in 25 ul of reaction mixture with 0.5 ug ofthe above cDNA template. A convenient reaction mixture is 1.5-5 mM MgCl2, 0.01% (w/v) gelatin, 20 uM each of dATP, dCTP, dGTP, dTTP, 25 pmol of each primer and 0.25 Unit of Taq polymerase. Thirty five cycles of PCR (denaturation at 94 degree C for 1 min; annealing at 55 degree C for 1 min; elongation at 72 degree C for 1 min) are performed with a Perkin-Elmer Cetus automated thermal cycler. The amplified product is analyzed by agarose gel elecfrophoresis and the DNA band with expected molecular weight is excised and purified. The PCR product is verified to be the selected sequence by subcloning and sequencing the DNA product.
Several methods are available for the identification ofthe 5' or 3' non-coding portions of a gene which may not be present in the deposited clone. These methods
include but are not limited to, filter probing, clone enrichment using specific probes, and protocols similar or identical to 5 ' and 3 ' "RACE" protocols which are well known in the art. For instance, a method similar to 5 ' RACE is available for generating the missing 5 ' end of a desired full-length transcript. (Fromont-Racine et al., Nucleic Acids Res. 21(7): 1683-1684 (1993).)
Briefly, a specific RNA oligonucleotide is ligated to the 5 ' ends of a population of RNA presumably containing full-length gene RNA transcripts. A primer set containing a primer specific to the ligated RNA oligonucleotide and a primer specific to a known sequence ofthe gene of interest is used to PCR amplify the 5' portion ofthe desired full-length gene. This amplified product may then be sequenced and used to generate the full length gene.
This above method starts with total RNA isolated from the desired source, although poly-A+ RNA can be used. The RNA preparation can then be treated with phosphatase if necessary to eliminate 5' phosphate groups on degraded or damaged RNA which may interfere with the later RNA ligase step. The phosphatase should then be inactivated and the RNA treated with tobacco acid pyrophosphatase in order to remove the cap structure present at the 5 ' ends of messenger RNAs. This reaction leaves a 5 ' phosphate group at the 5 ' end ofthe cap cleaved RNA which can then be ligated to an RNA oligonucleotide using T4 RNA ligase. This modified RNA preparation is used as a template for first strand cDNA synthesis using a gene specific oligonucleotide. The first strand synthesis reaction is used as a template for PCR amplification ofthe desired 5 ' end using a primer specific to the ligated RNA oligonucleotide and a primer specific to the known sequence of the gene of interest. The resultant product is then sequenced and analyzed to confirm that the 5' end sequence belongs to the desired gene.
Example 2: Isolation of Genomic Clones Corresponding to a Polynucleotide
A human genomic PI library (Genomic Systems, Inc.) is screened by PCR using primers selected for the cDNA sequence corresponding to SEQ ID NO:X., according to the method described in Example 1. (See also, Sambrook.)
Example 3: Tissue Distribution of Polypeptide
Tissue distribution of mRNA expression of polynucleotides ofthe present invention is determined using protocols for Northern blot analysis, described by, among others, Sambrook et al. For example, a cDNA probe produced by the method described in Example 1 is labeled with P32 using the rediprime™ DNA labeling system (Amersham Life Science), according to manufacturer's instmctions. After labeling, the probe is purified using CHROMA SPIN- 100™ column (Clontech Laboratories, Inc.), according to manufacturer's protocol number PTl 200-1. The purified labeled probe is then used to examine various human tissues for mRNA expression.
Multiple Tissue Northern (MTN) blots containing various human tissues (H) or human immune system tissues (LM) (Clontech) are examined with the labeled probe using ExpressHyb™ hybridization solution (Clontech) according to manufacturer's protocol number PTl 190-1. Following hybridization and washing, the blots are mounted and exposed to film at -70 degree C overnight, and the films developed according to standard procedures.
Example 4: Chromosomal Mapping of the Polynucleotides
An oligonucleotide primer set is designed according to the sequence at the 5' end of SEQ ID NO:X. This primer preferably spans about 100 nucleotides. This primer set is then used in a polymerase chain reaction under the following set of conditions : 30 seconds,95 degree C; 1 minute, 56 degree C; 1 minute, 70 degree C.
This cycle is repeated 32 times followed by one 5 minute cycle at 70 degree C.
Human, mouse, and hamster DNA is used as template in addition to a somatic cell hybrid panel containing individual chromosomes or chromosome fragments (Bios,
Inc). The reactions is analyzed on either 8% polyacrylamide gels or 3.5 % agarose gels. Chromosome mapping is determined by the presence of an approximately 100 bp PCR fragment in the particular somatic cell hybrid.
Example 5: Bacterial Expression of a Polypeptide
A polynucleotide encoding a polypeptide of the present invention is amplified using PCR oligonucleotide primers corresponding to the 5' and 3' ends ofthe DNA
sequence, as outlined in Example 1, to synthesize insertion fragments. The primers used to amplify the cDNA insert should preferably contain restriction sites, such as BamHl and Xbal, at the 5' end ofthe primers in order to clone the amplified product into the expression vector. For example, BamHl and Xbal correspond to the restriction enzyme sites on the bacterial expression vector pQE-9. (Qiagen, Inc.,
Chatsworth, CA). This plasmid vector encodes antibiotic resistance (Amp1), a bacterial origin of replication (ori), an IPTG-regulatable promoter/operator (P/O), a ribosome binding site (RBS), a 6-histidine tag (6-His), and restriction enzyme cloning sites. The pQE-9 vector is digested with BamHl and Xbal and the amplified fragment is ligated into the pQE-9 vector maintaining the reading frame initiated at the bacterial RBS. The ligation mixture is then used to transform the E. coli strain M15/rep4 (Qiagen, Inc.) which contains multiple copies ofthe plasmid pREP4, which expresses the lad repressor and also confers kanamycin resistance (Kan1). Transformants are identified by their ability to grow on LB plates and ampicillin/kanamycin resistant colonies are selected. Plasmid DNA is isolated and confirmed by restriction analysis.
Clones containing the desired constmcts are grown overnight (O/N) in liquid culture in LB media supplemented with both Amp (100 ug/ml) and Kan (25 ug/ml). The O/N culture is used to inoculate a large culture at a ratio of 1 :100 to 1 :250. The cells are grown to an optical density 600 (O.D.600) of between 0.4 and 0.6. J-PTG (Isopropyl-B-D-thiogalacto pyranoside) is then added to a final concentration of 1 mM. IPTG induces by inactivating the lad repressor, clearing the P/O leading to increased gene expression. Cells are grown for an extra 3 to 4 hours. Cells are then harvested by centrifugation (20 mins at 6000Xg). The cell pellet is solubilized in the chaotropic agent 6 Molar Guanidine HCl by stirring for 3-4 hours at 4 degree C. The cell debris is removed by centrifugation, and the supernatant containing the polypeptide is loaded onto a nickel-nitrilo-tri-acetic acid ("Ni-NTA") affinity resin column (available from QIAGEN, Inc., supra). Proteins with a 6 x His tag bind to the Ni-NTA resin with high affinity and can be purified in a simple one-step procedure (for details see: The QIAexpressionist (1995) QIAGEN, Inc., supra).
Briefly, the supernatant is loaded onto the column in 6 M guanidine-HCl, pH 8, the column is first washed with 10 volumes of 6 M guanidine-HCl, pH 8, then washed with 10 volumes of 6 M guanidine-HCl pH 6, and finally the polypeptide is eluted with 6 M guanidine-HCl, pH 5. The purified protein is then renatured by dialyzing it against phosphate- buffered saline (PBS) or 50 mM Na-acetate, pH 6 buffer plus 200 mM NaCl. Alternatively, the protein can be successfully refolded while immobilized on the Ni- NTA column. The recommended conditions are as follows: renature using a linear 6M-1M urea gradient in 500 mM NaCl, 20% glycerol, 20 mM Tris/HCl pH 7.4, containing protease inhibitors. The renaturation should be performed over a period of 1.5 hours or more. After renaturation the proteins are eluted by the addition of 250 mM immidazole. immidazole is removed by a final dialyzing step against PBS or 50 mM sodium acetate pH 6 buffer plus 200 mM NaCl. The purified protein is stored at 4 degree C or frozen at -80 degree C. In addition to the above expression vector, the present invention further includes an expression vector comprising phage operator and promoter elements operatively linked to a polynucleotide ofthe present invention, called pHE4a. (ATCC Accession Number 209645, deposited on February 25, 1998.) This vector contains: 1) a neomycinphosphotransferase gene as a selection marker, 2) an E. coli origin of replication, 3) a T5 phage promoter sequence, 4) two lac operator sequences, 5) a Shine-Delgarno sequence, and 6) the lactose operon repressor gene (laclq). The origin of replication (oriC) is derived from pUC19 (LTI, Gaithersburg, MD). The promoter sequence and operator sequences are made synthetically.
DNA can be inserted into the pHEa by restricting the vector with Ndel and Xbal, BamHl, Xhol, or Asp718, running the restricted product on a gel, and isolating the larger fragment (the stuffer fragment should be about 310 base pairs). The DNA insert is generated according to the PCR protocol described in Example 1 , using PCR primers having restriction sites for Ndel (5' primer) and Xbal, BamHl, Xhol, or Asp718 (3' primer). The PCR insert is gel purified and restricted with compatible enzymes. The insert and vector are ligated according to standard protocols.
The engineered vector could easily be substituted in the above protocol to express protein in a bacterial system.
Example 6: Purification of a Polypeptide from an Inclusion Body
The following alternative method can be used to purify a polypeptide expressed in E coli when it is present in the form of inclusion bodies. Unless otherwise specified, all ofthe following steps are conducted at 4-10 degree C.
Upon completion of the production phase ofthe E. coli fermentation, the cell culture is cooled to 4-10 degree C and the cells harvested by continuous centrifugation at 15,000 φm (Heraeus Sepatech). On the basis ofthe expected yield of protein per unit weight of cell paste and the amount of purified protein required, an appropriate amount of cell paste, by weight, is suspended in a buffer solution containing 100 mM Tris, 50 mM EDTA, pH 7.4. The cells are dispersed to a homogeneous suspension using a high shear mixer.
The cells are then lysed by passing the solution through a microfluidizer (Microfuidics, Coφ. or APV Gaulin, Inc.) twice at 4000-6000 psi. The homogenate is then mixed with NaCl solution to a final concentration of 0.5 M NaCl, followed by centrifugation at 7000 xg for 15 min. The resultant pellet is washed again using 0.5M NaCl, 100 mM Tris, 50 mM EDTA, pH 7.4.
The resulting washed inclusion bodies are solubilized with 1.5 M guanidine hydrochloride (GuHCl) for 2-4 hours. After 7000 xg centrifugation for 15 min., the pellet is discarded and the polypeptide containing supernatant is incubated at 4 degree C overnight to allow further GuHCl extraction.
Following high speed centrifugation (30,000 xg) to remove insoluble particles, the GuHCl solubilized protein is refolded by quickly mixing the GuHCl extract with 20 volumes of buffer containing 50 mM sodium, pH 4.5, 150 mM NaCl, 2 mM EDTA by vigorous stirring. The refolded diluted protein solution is kept at 4 degree C without mixing for 12 hours prior to further purification steps.
To clarify the refolded polypeptide solution, a previously prepared tangential filtration unit equipped with 0.16 um membrane filter with appropriate surface area (e.g., Filtron), equilibrated with 40 mM sodium acetate, pH 6.0 is employed. The filtered sample is loaded onto a cation exchange resin (e.g., Poros HS-50, Perseptive Biosystems). The column is washed with 40 mM sodium acetate, pH 6.0 and eluted with 250 mM, 500 mM, 1000 mM, and 1500 mM NaCl in the same buffer, in a
stepwise manner. The absorbance at 280 nm ofthe effluent is continuously monitored. Fractions are collected and further analyzed by SDS-PAGE.
Fractions containing the polypeptide are then pooled and mixed with 4 volumes of water. The diluted sample is then loaded onto a previously prepared set of tandem columns of strong anion (Poros HQ-50, Perseptive Biosystems) and weak anion (Poros CM-20, Perseptive Biosystems) exchange resins. The columns are equilibrated with 40 mM sodium acetate, pH 6.0. Both columns are washed with 40 mM sodium acetate, pH 6.0, 200 mM NaCl. The CM-20 column is then eluted using a 10 column volume linear gradient ranging from 0.2 M NaCl, 50 mM sodium acetate, pH 6.0 to 1.0 M NaCl, 50 mM sodium acetate, pH 6.5. Fractions are collected under constant A280 monitoring ofthe effluent. Fractions containing the polypeptide (determined, for instance, by 16% SDS-PAGE) are then pooled.
The resultant polypeptide should exhibit greater than 95% purity after the above refolding and purification steps. No major contaminant bands should be observed from Commassie blue stained 16% SDS-PAGE gel when 5 ug of purified protein is loaded. The purified protein can also be tested for endotoxin/LPS contamination, and typically the LPS content is less than 0.1 ng/ml according to LAL assays.
Example 7: Cloning and Expression of a Polypeptide in a Baculovirus Expression System
In this example, the plasmid shuttle vector pA2 is used to insert a polynucleotide into a baculovims to express a polypeptide. This expression vector contains the strong polyhedrin promoter ofthe Autographa californica nuclear polyhedrosis vims (AcMNPV) followed by convenient restriction sites such as
BamHl, Xba I and Asp718. The polyadenylation site ofthe simian vims 40 ("SV40") is used for efficient polyadenylation. For easy selection of recombinant vims, the plasmid contains the beta-galactosidase gene from E. coli under control of a weak Drosophila promoter in the same orientation, followed by the polyadenylation signal of the polyhedrin gene. The inserted genes are flanked on both sides by viral sequences for cell-mediated homologous recombination with wild-type viral DNA to generate a viable vims that express the cloned polynucleotide.
Many other baculovims vectors can be used in place ofthe vector above, such as pAc373, pVL941, and pAcIMl, as one skilled in the art would readily appreciate, as long as the constmct provides appropriately located signals for transcription, translation, secretion and the like, including a signal peptide and an in-frame AUG as required. Such vectors are described, for instance, in Luckow et al., Virology 170:31- 39 (1989).
Specifically, the cDNA sequence contained in the deposited clone, including the AUG initiation codon and the naturally associated leader sequence identified in Table 1, is amplified using the PCR protocol described in Example 1. If the naturally occurring signal sequence is used to produce the secreted protein, the pA2 vector does not need a second signal peptide. Alternatively, the vector can be modified (pA2 GP) to include a baculovims leader sequence, using the standard methods described in Summers et al., "A Manual of Methods for Baculovims Vectors and Insect Cell Culture Procedures," Texas Agricultural Experimental Station Bulletin No. 1555 (1987).
The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel. The plasmid is digested with the corresponding restriction enzymes and optionally, can be dephosphorylated using calf intestinal phosphatase, using routine procedures known in the art. The DNA is then isolated from a 1 % agarose gel using a commercially available kit ("Geneclean" BIO 101 Inc., La Jolla, Ca.).
The fragment and the dephosphorylated plasmid are ligated together with T4 DNA ligase. E. coli HB101 or other suitable E. coli hosts such as XL-1 Blue
(Stratagene Cloning Systems, La Jolla, CA) cells are transformed with the ligation mixture and spread on culture plates. Bacteria containing the plasmid are identified by digesting DNA from individual colonies and analyzing the digestion product by gel elecfrophoresis. The sequence ofthe cloned fragment is confirmed by DNA sequencing.
Five ug of a plasmid containing the polynucleotide is co-transfected with 1.0 ug of a commercially available linearized baculovims DNA ("BaculoGold™
baculovims DNA", Pharmingen, San Diego, CA), using the lipofection method described by Feigner et al., Proc. Natl. Acad. Sci. USA 84:7413-7417 (1987). One ug of BaculoGold™ vims DNA and 5 ug ofthe plasmid are mixed in a sterile well of a microtiter plate containing 50 ul of serum-free Grace's medium (Life Technologies Inc., Gaithersburg, MD). Afterwards, 10 ul Lipofectin plus 90 ul Grace's medium are added, mixed and incubated for 15 minutes at room temperature. Then the transfection mixture is added drop-wise to Sf9 insect cells (ATCC CRL 1711) seeded in a 35 mm tissue culture plate with 1 ml Grace's medium without semm. The plate is then incubated for 5 hours at 27 degrees C. The transfection solution is then removed from the plate and 1 ml of Grace's insect medium supplemented with 10%) fetal calf semm is added. Cultivation is then continued at 27 degrees C for four days.
After four days the supernatant is collected and a plaque assay is performed, as described by Summers and Smith, supra. An agarose gel with "Blue Gal" (Life Technologies Inc., Gaithersburg) is used to allow easy identification and isolation of gal-expressing clones, which produce blue-stained plaques. (A detailed description of a "plaque assay" ofthis type can also be found in the user's guide for insect cell culture and baculovirology distributed by Life Technologies Inc., Gaithersburg, page 9-10.) After appropriate incubation, blue stained plaques are picked with the tip of a micropipettor (e.g., Eppendorf). The agar containing the recombinant vimses is then resuspended in a microcentrifuge tube containing 200 ul of Grace's medium and the suspension containing the recombinant baculovims is used to infect Sf9 cells seeded in 35 mm dishes. Four days later the supematants of these culture dishes are harvested and then they are stored at 4 degree C.
To verify the expression ofthe polypeptide, Sf9 cells are grown in Grace's medium supplemented with 10% heat-inactivated FBS. The cells are infected with the recombinant baculovims containing the polynucleotide at a multiplicity of infection ("MOI") of about 2. If radiolabeled proteins are desired, 6 hours later the medium is removed and is replaced with SF900 II medium minus methionine and cysteine (available from Life Technologies Inc., Rockville, MD). After 42 hours, 5 uCi of 35S-methionine and 5 uCi 35S-cysteine (available from Amersham) are added. The cells are further incubated for 16 hours and then are harvested by centrifugation.
The proteins in the supernatant as well as the intracellular proteins are analyzed by SDS-PAGE followed by autoradiography (if radiolabeled).
Microsequencing ofthe amino acid sequence ofthe amino terminus of purified protein may be used to determine the amino terminal sequence ofthe produced protein.
Example 8: Expression of a Polypeptide in Mammalian Cells
The polypeptide ofthe present invention can be expressed in a mammalian cell. A typical mammalian expression vector contains a promoter element, which mediates the initiation of transcription of mRNA, a protein coding sequence, and signals required for the termination of transcription and polyadenylation ofthe transcript. Additional elements include enhancers, Kozak sequences and intervening sequences flanked by donor and acceptor sites for RNA splicing. Highly efficient transcription is achieved with the early and late promoters from SV40, the long terminal repeats (LTRs) from Retroviruses, e.g., RSV, HTLVI, HIVI and the early promoter ofthe cytomegalovims (CMV). However, cellular elements can also be used (e.g., the human actin promoter).
Suitable expression vectors for use in practicing the present invention include, for example, vectors such as pSVL and pMSG (Pharmacia, Uppsala, Sweden), pRSVcat (ATCC 37152), pSV2dhfr (ATCC 37146), pBC12MI (ATCC 67109), pCMVSport 2.0, and pCMVSport 3.0. Mammalian host cells that could be used include, human Hela, 293, H9 and Jurkat cells, mouse NIH3T3 and C127 cells, Cos 1, Cos 7 and CV1, quail QC1-3 cells, mouse L cells and Chinese hamster ovary (CHO) cells.
Alternatively, the polypeptide can be expressed in stable cell lines containing the polynucleotide integrated into a chromosome. The co-transfection with a selectable marker such as dhfr, gpt, neomycin, hygromycin allows the identification and isolation ofthe transfected cells.
The transfected gene can also be amplified to express large amounts ofthe encoded protein. The DHFR (dihydrofolate reductase) marker is useful in developing cell lines that carry several hundred or even several thousand copies ofthe gene of interest. (See, e.g., Alt, F. W., et al., J. Biol. Chem. 253:1357-1370 (1978); Hamlin, J.
L. and Ma, C, Biochem. et Biophys. Acta, 1097:107-143 (1990); Page, M. J. and Sydenham, M. A., Biotechnology 9:64-68 (1991).) Another useful selection marker is the enzyme glutamine synthase (GS) (Muφhy et al., Biochem J. 227:277-279 (1991); Bebbington et al., Bio/Technology 10:169-175 (1992). Using these markers, the mammalian cells are grown in selective medium and the cells with the highest resistance are selected. These cell lines contain the amplified gene(s) integrated into a chromosome. Chinese hamster ovary (CHO) and NSO cells are often used for the production of proteins.
Derivatives ofthe plasmid pSV2-dhfr (ATCC Accession No. 37146), the expression vectors pC4 (ATCC Accession No. 209646) and pC6 (ATCC Accession No.209647) contain the strong promoter (LTR) ofthe Rous Sarcoma Vims (Cullen et al., Molecular and Cellular Biology, 438-447 (March, 1985)) plus a fragment ofthe CMV-enhancer (Boshart et al., Cell 41 :521-530 (1985).) Multiple cloning sites, e.g., with the restriction enzyme cleavage sites BamHl, Xbal and Asp718, facilitate the cloning ofthe gene of interest. The vectors also contain the 3' intron, the polyadenylation and termination signal ofthe rat preproinsulin gene, and the mouse DHFR gene under control of the SV40 early promoter.
Specifically, the plasmid pC6, for example, is digested with appropriate restriction enzymes and then dephosphorylated using calf intestinal phosphates by procedures known in the art. The vector is then isolated from a 1% agarose gel. A polynucleotide ofthe present invention is amplified according to the protocol outlined in Example 1. If the naturally occurring signal sequence is used to produce the secreted protein, the vector does not need a second signal peptide. Alternatively, if the naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., WO 96/34891.) The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel. The amplified fragment is then digested with the same restriction enzyme and purified on a 1% agarose gel. The isolated fragment and the dephosphorylated vector are then ligated with T4 DNA ligase. E. coli HB101 or XL-1 Blue cells are then
transformed and bacteria are identified that contain the fragment inserted into plasmid pC6 using, for instance, restriction enzyme analysis.
Chinese hamster ovary cells lacking an active DHFR gene is used for transfection. Five μg of the expression plasmid pC6 a pC4 is cotransfected with 0.5 ug ofthe plasmid pSVneo using lipofectin (Feigner et al., supra). The plasmid pSV2- neo contains a dominant selectable marker, the neo gene from Tn5 encoding an enzyme that confers resistance to a group of antibiotics including G418. The cells are seeded in alpha minus MEM supplemented with 1 mg/ml G418. After 2 days, the cells are trypsinized and seeded in hybridoma cloning plates (Greiner, Germany) in alpha minus MEM supplemented with 10, 25, or 50 ng/ml of metothrexate plus 1 mg/ml G418. After about 10-14 days single clones are trypsinized and then seeded in 6-well petri dishes or 10 ml flasks using different concentrations of methotrexate (50 nM, 100 nM, 200 nM, 400 nM, 800 nM). Clones growing at the highest concentrations of methotrexate are then transferred to new 6-well plates containing even higher concentrations of methotrexate (1 uM, 2 uM, 5 uM, 10 mM, 20 mM). The same procedure is repeated until clones are obtained which grow at a concentration of 100 - 200 uM. Expression ofthe desired gene product is analyzed, for instance, by SDS-PAGE and Western blot or by reversed phase HPLC analysis.
Example 9: Protein Fusions
The polypeptides of the present invention are preferably fused to other proteins. These fusion proteins can be used for a variety of applications. For example, fusion of the present polypeptides to His-tag, HA-tag, protein A, IgG domains, and maltose binding protein facilitates purification. (See Example 5; see also EP A 394,827; Traunecker, et al., Nature 331 :84-86 (1988).) Similarly, fusion to IgG-1, IgG-3, and albumin increases the halflife time in vivo. Nuclear localization signals fused to the polypeptides ofthe present invention can target the protein to a specific subcellular localization, while covalent heterodimer or homodimers can increase or decrease the activity of a fusion protein. Fusion proteins can also create chimeric molecules having more than one function. Finally, fusion proteins can increase solubility and/or stability ofthe fused protein compared to the non-fused protein. All ofthe types of fusion proteins described above can be made by
modifying the following protocol, which outlines the fusion of a polypeptide to an IgG molecule, or the protocol described in Example 5.
Briefly, the human Fc portion ofthe IgG molecule can be PCR amplified, using primers that span the 5' and 3' ends ofthe sequence described below. These primers also should have convenient restriction enzyme sites that will facilitate cloning into an expression vector, preferably a mammalian expression vector.
For example, if pC4 (Accession No. 209646) is used, the human Fc portion can be ligated into the BamHl cloning site. Note that the 3' BamHl site should be destroyed. Next, the vector containing the human Fc portion is re-restricted with BamHl, linearizing the vector, and a polynucleotide ofthe present invention, isolated by the PCR protocol described in Example 1 , is ligated into this BamHl site. Note that the polynucleotide is cloned without a stop codon, otherwise a fusion protein will not be produced.
If the naturally occurring signal sequence is used to produce the secreted protein, pC4 does not need a second signal peptide. Altematively, if the naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., WO 96/34891.)
Human IgG Fc region: GGGATCCGGAGCCCAAATCTTCTGACAAAACTCACACATGCCCACC
GTGCCCAGCACCTGAATTCGAGGGTGCACCGTCAGTCTTCCTCTTCCCCCC AAAACCCAAGGACACCCTCATGATCTCCCGGACTCCTGAGGTCACATGCG TGGTGGTGGACGTAAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTAC GTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGC AGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAG GACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCT CCCAACCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGA GAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAA CCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCAAGCGACATCG CCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCAC GCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCAC CGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGA
TGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCT CCGGGTAAATGAGTGCGACGGCCGCGACTCTAGAGGAT (SEQ ID NO: 1)
Example 10: Production of an Antibody from a Polypeptide The antibodies ofthe present invention can be prepared by a variety of methods. (See, Current Protocols, Chapter 2.) As one example of such methods, cells expressing a polypeptide ofthe present invention is administered to an animal to induce the production of sera containing polyclonal antibodies. In a preferred method, a preparation ofthe secreted protein is prepared and purified to render it substantially free of natural contaminants. Such a preparation is then introduced into an animal in order to produce polyclonal antisera of greater specific activity.
In the most preferred method, the antibodies ofthe present invention are monoclonal antibodies (or protein binding fragments thereof). Such monoclonal antibodies can be prepared using hybridoma technology. (Kohler et al., Nature 256:495 (1975); Kohler et al., Eur. J. Immunol. 6:511 (1976); Kohler et al., Eur. J. Immunol. 6:292 (1976); Hammerling et al., in: Monoclonal Antibodies and T- Cell Hybridomas, Elsevier, N.Y., pp. 563-681 (1981).) In general, such procedures involve immunizing an animal (preferably a mouse) with polypeptide or, more preferably, with a secreted polypeptide-expressing cell. Such cells may be cultured in any suitable tissue culture medium; however, it is preferable to culture cells in Earle's modified Eagle's medium supplemented with 10% fetal bovine semm (inactivated at about 56 degrees C), and supplemented with about 10 g/1 of nonessential amino acids, about 1,000 U/ml of penicillin, and about 100 ug/ml of streptomycin.
The splenocytes of such mice are extracted and fused with a suitable myeloma cell line. Any suitable myeloma cell line may be employed in accordance with the present invention; however, it is preferable to employ the parent myeloma cell line (SP2O), available from the ATCC. After fusion, the resulting hybridoma cells are selectively maintained in HAT medium, and then cloned by limiting dilution as described by Wands et al. (Gastroenterology 80:225-232 (1981).) The hybridoma cells obtained through such a selection are then assayed to identify clones which secrete antibodies capable of binding the polypeptide.
Alternatively, additional antibodies capable of binding to the polypeptide can be produced in a two-step procedure using anti-idiotypic antibodies. Such a method makes use ofthe fact that antibodies are themselves antigens, and therefore, it is possible to obtain an antibody which binds to a second antibody. In accordance with this method, protein specific antibodies are used to immunize an animal, preferably a mouse. The splenocytes of such an animal are then used to produce hybridoma cells, and the hybridoma cells are screened to identify clones which produce an antibody whose ability to bind to the protein-specific antibody can be blocked by the polypeptide. Such antibodies comprise anti-idiotypic antibodies to the protein- specific antibody and can be used to immunize an animal to induce formation of further protein-specific antibodies.
It will be appreciated that Fab and F(ab')2 and other fragments ofthe antibodies ofthe present invention may be used according to the methods disclosed herein. Such fragments are typically produced by proteolytic cleavage, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab')2 fragments). Altematively, secreted protein-binding fragments can be produced through the application of recombinant DNA technology or through synthetic chemistry.
For in vivo use of antibodies in humans, it may be preferable to use "humanized" chimeric monoclonal antibodies. Such antibodies can be produced using genetic constmcts derived from hybridoma cells producing the monoclonal antibodies described above. Methods for producing chimeric antibodies are known in the art. (See, for review, Morrison, Science 229:1202 (1985); Oi et al., BioTechniques 4:214 (1986); Cabilly et al., U.S. Patent No. 4,816,567; Taniguchi et al., EP 171496; Morrison et al., EP 173494; Neuberger et al., WO 8601533; Robinson et al., WO 8702671 ; Boulianne et al., Nature 312:643 (1984); Neuberger et al., Nature 314:268 (1985).)
Example 11: Production Of Secreted Protein For High-Throughput Screening Assays
The following protocol produces a supernatant containing a polypeptide to be tested. This supernatant can then be used in the Screening Assays described herein.
First, dilute Poly-D-Lysine (644 587 Boehringer-Mannheim) stock solution (lmg/ml in PBS) 1 :20 in PBS (w/o calcium or magnesium 17-516F Biowhittaker) for a working solution of 50ug/ml. Add 200 ul ofthis solution to each well (24 well plates) and incubate at RT for 20 minutes. Be sure to distribute the solution over each well (note: a 12-channel pipetter may be used with tips on every other channel).
Aspirate off the Poly-D-Lysine solution and rinse with 1ml PBS (Phosphate Buffered Saline). The PBS should remain in the well until just prior to plating the cells and plates may be poly-lysine coated in advance for up to two weeks.
Plate 293T cells (do not carry cells past P+20) at 2 x 105 cells/well in .5ml DMEM(Dulbecco's Modified Eagle Medium)(with 4.5 G/L glucose and L-glutamine (12-604F Biowhittaker))/ 10% heat inactivated FBS(14-503F Biowhittaker)/ lx Penstrep(17-602E Biowhittaker). Let the cells grow overnight.
The next day, mix together in a sterile solution basin: 300 ul Lipofectamine (18324-012 Gibco/BRL) and 5ml Optimem I (31985070 Gibco/BRL)/96-well plate. With a small volume multi-channel pipetter, aliquot approximately 2ug of an expression vector containing a polynucleotide insert, produced by the methods described in Examples 8 or 9, into an appropriately labeled 96-well round bottom plate. With a multi-channel pipetter, add 50ul ofthe Lipofectamine/Optimem I mixture to each well. Pipette up and down gently to mix. Incubate at RT 15-45 minutes. After about 20 minutes, use a multi-channel pipetter to add 150ul Optimem I to each well. As a control, one plate of vector DNA lacking an insert should be transfected with each set of transfections.
Preferably, the transfection should be performed by tag-teaming the following tasks. By tag-teaming, hands on time is cut in half, and the cells do not spend too much time on PBS. First, person A aspirates off the media from four 24-well plates of cells, and then person B rinses each well with .5-lml PBS. Person A then aspirates off PBS rinse, and person B, using al2-channel pipetter with tips on every other channel, adds the 200ul of DNA/Lipofectamine/Optimem I complex to the odd wells first, then to the even wells, to each row on the 24-well plates. Incubate at 37 degrees C for 6 hours.
While cells are incubating, prepare appropriate media, either 1%BSA in DMEM with lx penstrep, or CHO-5 media (1 16.6 mg/L of CaC12 (anhyd); 0.00130
mg/L CuSO4-5H2O; 0.050 mg/L of Fe(NO3)3-9H2O; 0.417 mg/L of FeSO4-7H2O; 311.80 mg/L of Kcl; 28.64 mg/L of MgCl2; 48.84 mg/L of MgSO4; 6995.50 mg/L of NaCl; 2400.0 mg/L of NaHCO3; 62.50 mg/L of NaH2PO4-H20; 71.02 mg/L of Na2HPO4; .4320 mg/L of ZnSO4-7H2O; .002 mg/L of Arachidonic Acid ; 1.022 mg/L of Cholesterol; .070 mg/L of DL-alpha-Tocopherol- Acetate; 0.0520 mg/L of Linoleic Acid; 0.010 mg/L of Linolenic Acid; 0.010 mg/L of Myristic Acid; 0.010 mg/L of Oleic Acid; 0.010 mg/L of Palmitric Acid; 0.010 mg/L of Palmitic Acid; 100 mg/L of Pluronic F-68; 0.010 mg/L of Stearic Acid; 2.20 mg/L of Tween 80; 4551 mg/L of D- Glucose; 130.85 mg/ml of L- Alanine; 147.50 mg/ml of L- Arginine-HCL; 7.50 mg/ml of L-Asparagine-H20; 6.65 mg/ml of L- Aspartic Acid; 29.56 mg/ml of L-Cystine-
2HCL-H20; 31.29 mg/ml of L-Cystine-2HCL; 7.35 mg/ml of L-Glutamic Acid; 365.0 mg/ml of L-Glutamine; 18.75 mg/ml of Glycine; 52.48 mg/ml of L-Histidine-HCL- H 0; 106.97 mg/ml of L-Isoleucine; 111.45 mg/ml of L-Leucine; 163.75 mg/ml of L- Lysine HCL; 32.34 mg/ml of L-Methionine; 68.48 mg/ml of L-Phenylalainine; 40.0 mg/ml of L-Proline; 26.25 mg/ml of L-Serine; 101.05 mg/ml of L-Threonine; 19.22 mg/ml of L-Tryptophan; 91.79 mg/ml of L-Tryrosine-2Na-2H20; 99.65 mg/ml of L- Valine; 0.0035 mg/L of Biotin; 3.24 mg/L of D-Ca Pantothenate; 11.78 mg/L of Choline Chloride; 4.65 mg/L of Folic Acid; 15.60 mg/L of i-Inositol; 3.02 mg/L of Niacinamide; 3.00 mg/L of Pyridoxal HCL; 0.031 mg/L of Pyridoxine HCL; 0.319 , mg/L of Riboflavin; 3.17 mg/L of Thiamine HCL; 0.365 mg/L of Thymidine; and 0.680 mg/L of Vitamin B]2; 25 mM of HEPES Buffer; 2.39 mg/L of Na Hypoxanthine; 0.105 mg/L of Lipoic Acid; 0.081 mg/L of Sodium Putrescine-2HCL; 55.0 mg/L of Sodium Pyruvate; 0.0067 mg/L of Sodium Selenite; 20uM of Ethanolamine; 0.122 mg/L of Ferric Citrate; 41.70 mg/L of Methyl-B-Cyclodextrin complexed with Linoleic Acid; 33.33 mg/L of Methyl-B-Cyclodextrin complexed with Oleic Acid; and 10 mg/L of Methyl-B-Cyclodextrin complexed with Retinal) with 2mm glutamine and lx penstrep. (BSA (81-068-3 Bayer) lOOgm dissolved in 1L DMEM for a 10% BSA stock solution). Filter the media and collect 50 ul for endotoxin assay in 15ml polystyrene conical. The transfection reaction is terminated, preferably by tag-teaming, at the end ofthe incubation period. Person A aspirates off the transfection media, while person
B adds 1.5ml appropriate media to each well. Incubate at 37 degrees C for 45 or 72 hours depending on the media used: 1%BSA for 45 hours or CHO-5 for 72 hours.
On day four, using a 300ul multichannel pipetter, aliquot 600ul in one 1ml deep well plate and the remaining supernatant into a 2ml deep well. The supematants from each well can then be used in the assays described in Examples 13-20.
It is specifically understood that when activity is obtained in any ofthe assays described below using a supernatant, the activity originates from either the polypeptide directly (e.g., as a secreted protein) or by the polypeptide inducing expression of other proteins, which are then secreted into the supernatant. Thus, the invention further provides a method of identifying the protein in the supernatant characterized by an activity in a particular assay.
Example 12: Construction of GAS Reporter Construct
One signal transduction pathway involved in the differentiation and proliferation of cells is called the Jaks-STATs pathway. Activated proteins in the Jaks-STATs pathway bind to gamma activation site "GAS" elements or interferon- sensitive responsive element ("ISRE"), located in the promoter of many genes. The binding of a protein to these elements alter the expression of the associated gene. GAS and ISRE elements are recognized by a class of transcription factors called Signal Transducers and Activators of Transcription, or "STATs." There are six members ofthe STATs family. Statl and Stat3 are present in many cell types, as is Stat2 (as response to IFN-alpha is widespread). Stat4 is more restricted and is not in many cell types though it has been found in T helper class I, cells after treatment with IL-12. Stat5 was originally called mammary growth factor, but has been found at higher concentrations in other cells including myeloid cells. It can be activated in tissue culture cells by many cytokines.
The STATs are activated to translocate from the cytoplasm to the nucleus upon tyrosine phosphorylation by a set of kinases known as the Janus Kinase ("Jaks") family. Jaks represent a distinct family of soluble tyrosine kinases and include Tyk2, Jakl, Jak2, and Jak3. These kinases display significant sequence similarity and are generally catalytically inactive in resting cells.
The Jaks are activated by a wide range of receptors summarized in the Table below. (Adapted from review by Schidler and Darnell, Ann. Rev. Biochem. 64:621- 51 (1995).) A cytokine receptor family, capable of activating Jaks, is divided into two groups: (a) Class 1 includes receptors for IL-2, IL-3, IL-4, IL-6, IL-7, IL-9, IL-11, IL- 12, IL-15, Epo, PRL, GH, G-CSF, GM-CSF, LIF, CNTF, and thrombopoietin; and (b) Class 2 includes IFN-a, IFN-g, and IL-10. The Class 1 receptors share a conserved cysteine motif (a set of four conserved cysteines and one tryptophan) and a WSXWS motif (a membrane proximal region encoding Tφ-Ser-Xxx-Tφ-Ser (SEQ ID NO:2)).
Thus, on binding of a ligand to a receptor, Jaks are activated, which in turn activate STATs, which then translocate and bind to GAS elements. This entire process is encompassed in the Jaks-STATs signal transduction pathway.
Therefore, activation ofthe Jaks-STATs pathway, reflected by the binding of the GAS or the ISRE element, can be used to indicate proteins involved in the proliferation and differentiation of cells. For example, growth factors and cytokines are known to activate the Jaks-STATs pathway. (See Table below.) Thus, by using GAS elements linked to reporter molecules, activators ofthe Jaks-STATs pathway can be identified.
JAKs STATS GAS(elements or ISRE
Ligand tvk2 Jakl Jak2 Jak3
IFN familv
IFN-a/B + + - - 1,2,3 ISRE
IFN-g + + - 1 GAS (IRFl >Lys6>IFP)
11-10 + ? ? - 1,3 gpl30 familv
IL-6 (Pleiotrophic) + + + ? 1,3 GAS (IRFl>Lys6>IFP)
Il-l l(Pleiotrophic) 7 + ? ? 1,3
OnM(Pleiotrophic) ? + + ? 1,3
LIF(Pleiotrophic) ? + + ? 1,3
CNTF(Pleiotrophic) -/+ + + ? 1,3
G-CSF(Pleiotrophic) 9 + ? ? 1,3
IL-12(Pleiotrophic) + - + + 1,3 e-C familv
IL-2 (lymphocytes) - + - + 1,3,5 GAS
IL-4 (lymph/myeloid) - + - + 6 GAS (IRFl = IFP »Ly6)(IgH)
IL-7 (lymphocytes) - + - + 5 GAS
IL-9 (lymphocytes) - + - + 5 GAS
IL-13 (lymphocyte) - + ? ? 6 GAS
IL-15 ? + ? + 5 GAS εpl40 familv
IL-3 (myeloid) - - + - 5 GAS (IRFl>IFP»Ly6)
IL-5 (myeloid) - - + - 5 GAS
GM-CSF (myeloid) - - + - 5 GAS
Growth hormone familv
GH ? - + - 5
PRL ? +/- + - 1,3,5
EPO ? - + - 5 G AS(B-C AS>IRF 1 =IFP»Ly6)
Receptor Tyrosine Kinases
EGF ? + + - 1,3 GAS (IRFl)
PDGF ? + + - 1,3
CSF-1 ? + + - 1,3 GAS (not IRFl)
To constmct a synthetic GAS containing promoter element, which is used in the Biological Assays described in Examples 13-14, a PCR based strategy is employed to generate a GAS-SV40 promoter sequence. The 5' primer contains four tandem copies ofthe GAS binding site found in the IRFl promoter and previously demonstrated to bind STATs upon induction with a range of cytokines (Rothman et al., Immunity 1 :457-468 (1994).), although other GAS or ISRE elements can be used instead. The 5 ' primer also contains 18bp of sequence complementary to the S V40 early promoter sequence and is flanked with an Xhol site. The sequence ofthe 5' primer is: 5':GCGCCTCGAGATTTCCCCGAAATCTAGATTTCCCCGAAATGATTT CCCCGAAATGATTTCCCCGAAATATCTGCCATCTCAATTAG:3' (SEQ ID NO:3)
The downstream primer is complementary to the SV40 promoter and is flanked with a Hind III site: 5':GCGGCAAGCTTTTTGCAAAGCCTAGGC:3' (SEQ U> NO:4)
PCR amplification is performed using the SV40 promoter template present in the B-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with Xhol Hind III and subcloned into BLSK2-. (Stratagene.) Sequencing with forward and reverse primers confirms that the insert contains the following sequence:
5 ' :CTCGAGATTTCCCCGAAATCTAGATTTCCCCGAAATGATTTCCCC GAAATGATTTCCCCGAAATATCTGCCATCTCAATTAGTCAGCAACCATAGT CCCGCCCCTAACTCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCA TTCTCCGCCCCATGGCTGACTAATTTTTTTTATTTATGCAGAGGCCGAGGC CGCCTCGGCCTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTTTTTGGAG GCCTAGGCTTTTGCAAAAAGCTT:3' (SEQ ID NO:5)
With this GAS promoter element linked to the SV40 promoter, a GAS:SEAP2 reporter constmct is next engineered. Here, the reporter molecule is a secreted alkaline phosphatase, or "SEAP." Clearly, however, any reporter molecule can be instead of SEAP, in this or in any ofthe other Examples. Well known reporter molecules that can be used instead of SEAP include chloramphenicol
acetyltransferase (CAT), luciferase, alkaline phosphatase, B-galactosidase, green fluorescent protein (GFP), or any protein detectable by an antibody.
The above sequence confirmed synthetic GAS-SV40 promoter element is subcloned into the pSEAP -Promoter vector obtained from Clontech using Hindlll and Xhol, effectively replacing the SV40 promoter with the amplified GAS:SV40 promoter element, to create the GAS-SEAP vector. However, this vector does not contain a neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.
Thus, in order to generate mammalian stable cell lines expressing the GAS- SEAP reporter, the GAS-SEAP cassette is removed from the GAS-SEAP vector using Sail and Notl, and inserted into a backbone vector containing the neomycin resistance gene, such as pGFP-1 (Clontech), using these restriction sites in the multiple cloning site, to create the GAS-SEAP/Neo vector. Once this vector is transfected into mammalian cells, this vector can then be used as a reporter molecule for GAS binding as described in Examp les 13-14.
Other constmcts can be made using the above description and replacing GAS with a different promoter sequence. For example, constmction of reporter molecules containing NFK-B and EGR promoter sequences are described in Examples 15 and 16. However, many other promoters can be substituted using the protocols described in these Examples. For instance, SRE, IL-2, NFAT, or Osteocalcin promoters can be substituted, alone or in combination (e.g., GAS/NF-KB/EGR, GAS/NF-KB, II- 2/NFAT, or NF-KB/GAS). Similarly, other cell lines can be used to test reporter constmct activity, such as HELA (epithelial), HUVEC (endothelial), Reh (B-cell), Saos-2 (osteoblast), HUN AC (aortic), or Cardiomyocyte.
Example 13: High-Throughput Screening Assay for T-cell Activity.
The following protocol is used to assess T-cell activity by identifying factors, and determining whether supemate containing a polypeptide ofthe invention proliferates and/or differentiates T-cells. T-cell activity is assessed using the GAS/SEAP/Νeo constmct produced in Example 12. Thus, factors that increase SEAP activity indicate the ability to activate the Jaks-STATS signal transduction pathway. The T-cell used in this assay is Jurkat T-cells (ATCC Accession No. TIB- 152),
although Molt-3 cells (ATCC Accession No. CRL-1552) and Molt-4 cells (ATCC Accession No. CRL-1582) cells can also be used.
Jurkat T-cells are lymphoblastic CD4+ Thl helper cells. In order to generate stable cell lines, approximately 2 million Jurkat cells are transfected with the GAS- SEAP/neo vector using DMRIE-C (Life Technologies)(transfection procedure described below). The transfected cells are seeded to a density of approximately 20,000 cells per well and transfectants resistant to 1 mg/ml genticin selected. Resistant colonies are expanded and then tested for their response to increasing concentrations of interferon gamma. The dose response of a selected clone is demonstrated.
Specifically, the following protocol will yield sufficient cells for 75 wells containing 200 ul of cells. Thus, it is either scaled up, or performed in multiple to generate sufficient cells for multiple 96 well plates. Jurkat cells are maintained in RPMI + 10%) semm with l%Pen-Strep. Combine 2.5 mis of OPTI-MEM (Life Technologies) with 10 ug of plasmid DNA in a T25 flask. Add 2.5 ml OPTI-MEM containing 50 ul of DMRIE-C and incubate at room temperature for 15-45 mins.
During the incubation period, count cell concentration, spin down the required number of cells (107 per transfection), and resuspend in OPTI-MEM to a final concentration of 107 cells/ml. Then add 1ml of 1 x 107 cells in OPTI-MEM to T25 flask and incubate at 37 degrees C for 6 hrs. After the incubation, add 10 ml of RPMI + 15% semm.
The Jurkat:GAS-SEAP stable reporter lines are maintained in RPMI + 10% semm, 1 mg/ml Genticin, and 1% Pen-Strep. These cells are treated with supematants containing polypeptides ofthe invention and/or induced polypeptides of the invention as produced by the protocol described in Example 11.
On the day of treatment with the supernatant, the cells should be washed and resuspended in fresh RPMI + 10% semm to a density of 500,000 cells per ml. The exact number of cells required will depend on the number of supematants being screened. For one 96 well plate, approximately 10 million cells (for 10 plates, 100 million cells) are required.
Transfer the cells to a triangular reservoir boat, in order to dispense the cells into a 96 well dish, using a 12 channel pipette. Using a 12 channel pipette, transfer 200 ul of cells into each well (therefore adding 100, 000 cells per well).
After all the plates have been seeded, 50 ul ofthe supematants are transferred directly from the 96 well plate containing the supematants into each well using a 12 channel pipette. In addition, a dose of exogenous interferon gamma (0.1, 1.0, 10 ng) is added to wells H9, H10, and HI 1 to serve as additional positive controls for the . assay.
The 96 well dishes containing Jurkat cells treated with supematants are placed in an incubator for 48 hrs (note: this time is variable between 48-72 hrs). 35 ul samples from each well are then transferred to an opaque 96 well plate using a 12 channel pipette. The opaque plates should be covered (using sellophene covers) and stored at -20 degrees C until SEAP assays are performed according to Example 17. The plates containing the remaining treated cells are placed at 4 degrees C and serve as a source of material for repeating the assay on a specific well if desired.
As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate Jurkat T cells. Over 30 fold induction is typically observed in the positive control wells.
The above protocol may be used in the generation of both transient, as well as, stable transfected cells, which would be apparent to those of skill in the art.
Example 14: High-Throughput Screening Assay Identifying Myeloid Activity
The following protocol is used to assess myeloid activity by determining whether polypeptides ofthe invention proliferates and/or differentiates myeloid cells. Myeloid cell activity is assessed using the GAS/SEAP/Neo constmct produced in
Example 12. Thus, factors that increase SEAP activity indicate the ability to activate the Jaks-STATS signal transduction pathway. The myeloid cell used in this assay is U937, a pre-monocyte cell line, although TF-1, HL60, or KG1 can be used.
To transiently transfect U937 cells with the GAS/SEAP/Neo constmct produced in Example 12, a DEAE-Dextran method (Kharbanda et. al., 1994, Cell
Growth & Differentiation, 5:259-265) is used. First, harvest 2x10e^ U937 cells and wash with PBS. The U937 cells are usually grown in RPMI 1640 medium containing
10%) heat-inactivated fetal bovine semm (FBS) supplemented with 100 units/ml penicillin and 100 mg/ml streptomycin.
Next, suspend the cells in 1 ml of 20 mM Tris-HCl (pH 7.4) buffer containing 0.5 mg/ml DEAE-Dextran, 8 ug GAS-SEAP2 plasmid DNA, 140 mM NaCl, 5 mM KC1, 375 uM Na2HPO4.7H2O, 1 mM MgCl2, and 675 uM CaCl2. Incubate at 37 degrees C for 45 min.
Wash the cells with RPMI 1640 medium containing 10% FBS and then resuspend in 10 ml complete medium and incubate at 37 degrees C for 36 hr.
The GAS-SEAP/U937 stable cells are obtained by growing the cells in 400 ug/ml G418. The G418-free medium is used for routine growth but every one to two months, the cells should be re-grown in 400 ug/ml G418 for couple of passages.
8
These cells are tested by harvesting 1x10 cells (this is enough for ten 96-well plates assay) and wash with PBS. Suspend the cells in 200 ml above described growth medium, with a final density of 5x105 cells/ml. Plate 200 ul cells per well in the 96-well plate (or lxl 05 cells/well).
Add 50 ul ofthe supernatant prepared by the protocol described in Example 11. Incubate at 37 degrees C for 48 to 72 hr. As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate U937 cells. Over 30 fold induction is typically observed in the positive control wells. SEAP assay the supernatant according to the protocol described in Example 17.
Example 15: High-Throughput Screening Assay Identifying Neuronal Activity.
When cells undergo differentiation and proliferation, a group of genes are activated through many, different signal transduction pathways. One of these genes, EGRl (early growth response gene 1), is induced in various tissues and cell types upon activation. The promoter of EGRl is responsible for such induction. Using the EGRl promoter linked to reporter molecules, activation of cells can be assessed.
Particularly, the following protocol is used to assess neuronal activity in PC 12 cell lines. PC 12 cells (rat phenochromocytoma cells) are known to proliferate and/or differentiate by activation with a number of mitogens, such as TPA (tetradecanoyl phorbol acetate), NGF (nerve growth factor), and EGF (epidermal growth factor). The EGRl gene expression is activated during this treatment. Thus, by stably
transfecting PC 12 cells with a constmct containing an EGR promoter linked to SEAP reporter, activation of PC 12 cells can be assessed.
The EGR/SEAP reporter constmct can be assembled by the following protocol. The EGR-1 promoter sequence (-633 to +l)(Sakamoto K et al., Oncogene 6:867-871 (1991)) can be PCR amplified from human genomic DNA using the following primers:
5' GCGCTCGAGGGATGACAGCGATAGAACCCCGG -3' (SEQ ID NO:6)
5' GCGAAGCTTCGCGACTCCCCGGATCCGCCTC-3' (SEQ ID NO:7)
Using the GAS:SEAP/Neo vector produced in Example 12, EGRl amplified product can then be inserted into this vector. Linearize the GAS:SEAP/Neo vector using restriction enzymes Xhol/Hindlll, removing the GAS/SN40 sniffer. Restrict the EGRl amplified product with these same enzymes. Ligate the vector and the EGRl promoter.
To prepare 96 well-plates for cell culture, two mis of a coating solution (1 :30 dilution of collagen type I (Upstate Biotech Inc. Cat#08-115) in 30% ethanol (filter sterilized)) is added per one 10 cm plate or 50 ml per well of the 96-well plate, and allowed to air dry for 2 hr.
PC 12 cells are routinely grown in RPMI- 1640 medium (Bio Whittaker) containing 10% horse semm (JRH BIOSCIEΝCES, Cat. # 12449-78P), 5%> heat- inactivated fetal bovine semm (FBS) supplemented with 100 units/ml penicillin and 100 ug/ml streptomycin on a precoated 10 cm tissue culture dish. One to four split is done every three to four days. Cells are removed from the plates by scraping and resuspended with pipetting up and down for more than 15 times.
Transfect the EGR/SEAP/Νeo constmct into PC 12 using the Lipofectamine protocol described in Example 11. EGR-SEAP/PC12 stable cells are obtained by growing the cells in 300 ug/ml G418. The G418-free medium is used for routine growth but every one to two months, the cells should be re-grown in 300 ug/ml G418 for couple of passages.
To assay for neuronal activity, a 10 cm plate with cells around 70 to 80% confluent is screened by removing the old medium. Wash the cells once with PBS
(Phosphate buffered saline). Then starve the cells in low semm medium (RPMI- 1640 containing 1% horse semm and 0.5% FBS with antibiotics) overnight.
The next morning, remove the medium and wash the cells with PBS. Scrape off the cells from the plate, suspend the cells well in 2 ml low semm medium. Count the cell number and add more low serum medium to reach final cell density as 5x10-5 cells/ml. Add 200 ul ofthe cell suspension to each well of 96-well plate (equivalent to lxlO5 cells/well). Add 50 ul supernatant produced by Example 11, 37°C for 48 to 72 hr. As a positive control, a growth factor known to activate PC 12 cells through EGR can be used, such as 50 ng/ul of Neuronal Growth Factor (NGF). Over fifty- fold induction of SEAP is typically seen in the positive control wells. SEAP assay the supernatant according to Example 17.
Example 16: High-Throughput Screening Assay for T-cell Activity
NF-KB (Nuclear Factor KB) is a transcription factor activated by a wide variety of agents including the inflammatory cytokines IL-1 and TNF, CD30 and CD40, lymphotoxin-alpha and lymphotoxin-beta, by exposure to LPS or thrombin, and by expression of certain viral gene products. As a transcription factor, NF-KB regulates the expression of genes involved in immune cell activation, control of apoptosis (NF- KB appears to shield cells from apoptosis), B and T-cell development, anti-viral and antimicrobial responses, and multiple stress responses. In non-stimulated conditions, NF- KB is retained in the cytoplasm with I-KB
(Inhibitor KB). However, upon stimulation, I- KB is phosphorylated and degraded, causing NF- KB to shuttle to the nucleus, thereby activating transcription of target genes. Target genes activated by NF- KB include IL-2, IL-6, GM-CSF, ICAM-1 and class 1 MHC. Due to its central role and ability to respond to a range of stimuli, reporter constmcts utilizing the NF-KB promoter element are used to screen the supematants produced in Example 11. Activators or inhibitors of NF-KB would be useful in freating diseases. For example, inhibitors of NF-KB could be used to treat those diseases related to the acute or chronic activation of NF-KB, such as rheumatoid arthritis.
To constmct a vector containing the NF-KB promoter element, a PCR based strategy is employed. The upstream primer contains four tandem copies ofthe NF-
KB binding site (GGGGACTTTCCC) (SEQ ID NO:8), 18 bp of sequence complementary to the 5' end ofthe SN40 early promoter sequence, and is flanked with an Xhol site:
5 ' :GCGGCCTCGAGGGGACTTTCCCGGGGACTTTCCGGGGACTTTCC GGGACTTTCCATCCTGCCATCTCAATTAG:3' (SEQ ID ΝO:9)
The downstream primer is complementary to the 3' end ofthe SN40 promoter and is flanked with a Hind III site:
5':GCGGCAAGCTTTTTGCAAAGCCTAGGC:3' (SEQ ID ΝO:4)
PCR amplification is performed using the SN40 promoter template present in the pB-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with Xhol and Hind III and subcloned into BLSK2-. (Stratagene) Sequencing with the T7 and T3 primers confirms the insert contains the following sequence:
5 ' :CTCGAGGGGACTTTCCCGGGGACTTTCCGGGGACTTTCCGGGAC
TTTCCATCTGCCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTC CGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATG GCTGACTAATTTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCTCTG AGCTATTCCAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGC AAAAAGCTT:3' (SEQ ID NO: 10)
Next, replace the SN40 minimal promoter element present in the pSEAP2- promoter plasmid (Clontech) with this ΝF-KB/SN40 fragment using Xhol and Hindlll. However, this vector does not contain a neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.
In order to generate stable mammalian cell lines, the ΝF-KB/SN40/SEAP cassette is removed from the above ΝF-KB/SEAP vector using restriction enzymes Sail and ΝotI, and inserted into a vector containing neomycin resistance. Particularly, the ΝF-KB/SN40/SEAP cassette was inserted into pGFP-1 (Clontech), replacing the GFP gene, after restricting pGFP-1 with Sail and Νotl.
Once ΝF-KB/SN40/SEAP/Νeo vector is created, stable Jurkat T-cells are created and maintained according to the protocol described in Example 13. Similarly,
the method for assaying supematants with these stable Jurkat T-cells is also described in Example 13. As a positive control, exogenous TNF alpha (0.1,1, 10 ng) is added to wells H9, H10, and HI 1, with a 5-10 fold activation typically observed.
Example 17: Assay for SEAP Activity
As a reporter molecule for the assays described in Examples 13-16, SEAP activity is assayed using the Tropix Phospho-light Kit (Cat. BP-400) according to the following general procedure. The Tropix Phospho-light Kit supplies the Dilution, Assay, and Reaction Buffers used below. Prime a dispenser with the 2.5x Dilution Buffer and dispense 15 ul of 2.5x dilution buffer into Optiplates containing 35 ul of a supernatant. Seal the plates with a plastic sealer and incubate at 65 degree C for 30 min. Separate the Optiplates to avoid uneven heating.
Cool the samples to room temperature for 15 minutes. Empty the dispenser and prime with the Assay Buffer. Add 50 ml Assay Buffer and incubate at room temperature 5 min. Empty the dispenser and prime with the Reaction Buffer (see the table below). Add 50 ul Reaction Buffer and incubate at room temperature for 20 minutes. Since the intensity ofthe chemiluminescent signal is time dependent, and it takes about 10 minutes to read 5 plates on luminometer, one should treat 5 plates at each time and start the second set 10 minutes later.
Read the relative light unit in the luminometer. Set HI 2 as blank, and print the results. An increase in chemiluminescence indicates reporter activity.
Reaction Buffer Formulation:
# of Rxn buffer diluent CSPD plates (ml) (ml)
10 60 3
11 65 3.25
12 70 3.5
13. 75 3.75
14 80 4
15 85 4.25
16 90 4.5
17 95 4.75
18 100 5
19 105 5.25
20 110 5.5
21 115 5.75
22 120 6
23 125 6.25
24 130 6.5
25 135 6.75
26 140 7
27 145 7.25
28 150 7.5
29 155 7.75
30 160 8
31 165 8.25
32 170 8.5
33 175 8.75
34 180 9
35 185 9.25
36 190 9.5
37 195 9.75
38 200 10
39 205 10.25
40 210 10.5
41 215 10.75
42 220 11
43 225 11.25
44 230 11.5
45 235 11.75
46 240 12
47 245 12.25
48 250 12.5
49 255 12.75
50 260 13
Example 18: High-Throughput Screening Assay Identifying Changes in Small Molecule Concentration and Membrane Permeability
Binding of a ligand to a receptor is known to alter intracellular levels of small molecules, such as calcium, potassium, sodium, and pH, as well as alter membrane potential. These alterations can be measured in an assay to identify supematants which bind to receptors of a particular cell. Although the following protocol describes an assay for calcium, this protocol can easily be modified to detect changes in potassium, sodium, pH, membrane potential, or any other small molecule which is detectable by a fluorescent probe.
The following assay uses Fluorometric Imaging Plate Reader ("FLIPR") to measure changes in fluorescent molecules (Molecular Probes) that bind small molecules. Clearly, any fluorescent molecule detecting a small molecule can be used instead ofthe calcium fluorescent molecule, fluo-4 (Molecular Probes, Inc.; catalog no. F- 14202), used here.
For adherent cells, seed the cells at 10,000 -20,000 cells/well in a Co-star black 96-well plate with clear bottom. The plate is incubated in a CO2 incubator for 20 hours. The adherent cells are washed two times in Biotek washer with 200 ul of HBSS (Hank's Balanced Salt Solution) leaving 100 ul of buffer after the final wash. A stock solution of 1 mg/ml fluo-4 is made in 10%> pluronic acid DMSO. To load the cells with fluo-4 , 50 ul of 12 ug/ml fluo-4 is added to each well. The plate is incubated at 37 degrees C in a CO2 incubator for 60 min. The plate is washed four times in the Biotek washer with HBSS leaving 100 ul of buffer.
For non-adherent cells, the cells are spun down from culture media. Cells are re-suspended to 2-5x106 cells/ml with HBSS in a 50-ml conical tube. 4 ul of I mg/ml fluo-4 solution in 10% pluronic acid DMSO is added to each ml of cell suspension. The tube is then placed in a 37 degrees C water bath for 30-60 min. The cells are washed twice with HBSS, resuspended to lxl 06 cells/ml, and dispensed into a microplate, 100 ul/well. The plate is centrifuged at 1000 φm for 5 min. The plate is then washed once in Denley CellWash with 200 ul, followed by an aspiration step to 100 ul final volume.
For a non-cell based assay, each well contains a fluorescent molecule, such as fluo-4 . The supematant is added to the well, and a change in fluorescence is detected. To measure the fluorescence of intracellular calcium, the FLIPR is set for the following parameters: (1) System gain is 300-800 mW; (2) Exposure time is 0.4 second; (3) Camera F/stop is F/2; (4) Excitation is 488 nm; (5) Emission is 530 nm; and (6) Sample addition is 50 ul. increased emission at 530 nm indicates an extracellular signaling event which has resulted in an increase in the intracellular Ca++ concentration.
Example 19: High-Throughput Screening Assay Identifying Tyrosine Kinase Activity
The Protein Tyrosine Kinases (PTK) represent a diverse group of transmembrane and cytoplasmic kinases. Within the Receptor Protein Tyrosine Kinase RPTK) group are receptors for a range of mitogenic and metabolic growth factors including the PDGF, FGF, EGF, NGF, HGF and Insulin receptor subfamilies. In addition there are a large family of RPTKs for which the conesponding ligand is unknown. Ligands for RPTKs include mainly secreted small proteins, but also membrane-bound and extracellular matrix proteins. Activation of RPTK by ligands involves ligand-mediated receptor dimerization, resulting in transphosphorylation ofthe receptor subunits and activation ofthe cytoplasmic tyrosine kinases. The cytoplasmic tyrosine kinases include receptor associated tyrosine kinases ofthe src-family (e.g., src, yes, lck, lyn, fyn) and non-receptor linked and cytosolic protein tyrosine kinases, such as the Jak family, members of which mediate signal transduction triggered by the cytokine superfamily of receptors (e.g., the Interleukins, Interferons, GM-CSF, and Leptin).
Because ofthe wide range of known factors capable of stimulating tyrosine kinase activity, the identification of novel human secreted proteins capable of activating tyrosine kinase signal transduction pathways are of interest. Therefore, the following protocol is designed to identify those novel human secreted proteins capable of activating the tyrosine kinase signal transduction pathways.
Seed target cells (e.g., primary keratinocytes) at a density of approximately 25,000 cells per well in a 96 well Loprodyne Silent Screen Plates purchased from Nalge Nunc (Naperville, IL). The plates are sterilized with two 30 minute rinses with 100% ethanol, rinsed with water and dried overnight. Some plates are coated for 2 hr with 100 ml of cell culture grade type I collagen (50 mg/ml), gelatin (2%) or polylysine (50 mg/ml), all of which can be purchased from Sigma Chemicals (St. Louis, MO) or 10%> Matrigel purchased from Becton Dickinson (Bedford,MA), or calf semm, rinsed with PBS and stored at 4 degree C. Cell growth on these plates is assayed by seeding 5,000 cells/well in growth medium and indirect quantitation of cell number through use of alamarBlue as described by the manufacturer Alamar Biosciences, Inc. (Sacramento, CA) after 48 hr. Falcon plate covers #3071 from
Becton Dickinson (Bedford,MA) are used to cover the Loprodyne Silent Screen Plates. Falcon Microtest III cell culture plates can also be used in some proliferation experiments.
To prepare extracts, A431 cells are seeded onto the nylon membranes of Loprodyne plates (20,000/200ml/well) and cultured overnight in complete medium. Cells are quiesced by incubation in semm-free basal medium for 24 hr. After 5-20 minutes treatment with EGF (60ng/ml) or 50 ul ofthe supernatant produced in Example 11, the medium was removed and 100 ml of extraction buffer ((20 mM HEPES pH 7.5, 0.15 M NaCl, 1% Triton X-100, 0.1% SDS, 2 mM Na3VO4, 2 mM Na4P2O7 and a cocktail of protease inhibitors (# 1836170) obtained from
Boeheringer Mannheim (Indianapolis, IN) is added to each well and the plate is shaken on a rotating shaker for 5 minutes at 4 degrees C. The plate is then placed in a vacuum transfer manifold and the extract filtered through the 0.45 mm membrane bottoms of each well using house vacuum. Extracts are collected in a 96-well catch/assay plate in the bottom ofthe vacuum manifold and immediately placed on ice. To obtain extracts clarified by centrifugation, the content of each well, after detergent solubilization for 5 minutes, is removed and centrifuged for 15 minutes at 4 degrees C at 16,000 x g.
Test the filtered extracts for levels of tyrosine kinase activity. Although many methods of detecting tyrosine kinase activity are known, one method is described here.
Generally, the tyrosine kinase activity of a supernatant is evaluated by determining its ability to phosphorylate a tyrosine residue on a specific substrate (a biotinylated peptide). Biotinylated peptides that can be used for this puφose include PSKl (conesponding to amino acids 6-20 ofthe cell division kinase cdc2-p34) and PSK2 (conesponding to amino acids 1-17 of gastrin). Both peptides are substrates for a range of tyrosine kinases and are available from Boehringer Mannheim.
The tyrosine kinase reaction is set up by adding the following components in order. First, add lOul of 5uM Biotinylated Peptide, then lOul ATP/Mg2+ (5mM ATP/50mM MgCl ), then 1 Oul of 5x Assay Buffer (40mM imidazole hydrochloride, pH7.3, 40 mM beta-glycerophosphate, ImM EGTA, lOOmM MgCl2, 5 mM MnCl2
0.5 mg/ml BSA), then 5ul of Sodium Vanadate(lmM), and then 5ul of water. Mix the components gently and preincubate the reaction mix at 30 degrees C for 2 min. initial the reaction by adding lOul ofthe control enzyme or the filtered supernatant.
The tyrosine kinase assay reaction is then terminated by adding 10 ul of 120mm EDTA and place the reactions on ice.
Tyrosine kinase activity is determined by transferring 50 ul aliquot of reaction mixture to a microtiter plate (MTP) module and incubating at 37 degrees C for 20 min. This allows the streptavadin coated 96 well plate to associate with the biotinylated peptide. Wash the MTP module with 300ul/well of PBS four times. Next add 75 ul of anti-phospotyrosine antibody conjugated to horse radish peroxidase(anti-P-Tyr-POD(0.5u/ml)) to each well and incubate at 37 degrees C for one hour. Wash the well as above.
Next add lOOul of peroxidase substrate solution (Boehringer Mannheim) and incubate at room temperature for at least 5 mins (up to 30 min). Measure the absorbance ofthe sample at 405 nm by using ELISA reader. The level of bound peroxidase activity is quantitated using an ELISA reader and reflects the level of tyrosine kinase activity.
Example 20: High-Throughput Screening Assay Identifying Phosphorylation Activity
As a potential alternative and/or compliment to the assay of protein tyrosine kinase activity described in Example 19, an assay which detects activation (phosphorylation) of major intracellular signal transduction intermediates can also be used. For example, as described below one particular assay can detect tyrosine phosphorylation of the Erk-1 and Erk-2 kinases. However, phosphorylation of other molecules, such as Raf, JNK, p38 MAP, Map kinase kinase (MEK), MEK kinase, Src, Muscle specific kinase (MuSK), IRAK, Tec, and Janus, as well as any other phosphoserine, phosphotyrosine, or phosphothreonine molecule, can be detected by substituting these molecules for Erk-1 or Erk-2 in the following assay. Specifically, assay plates are made by coating the wells of a 96-well ELISA plate with 0.1ml of protein G (lug/ml) for 2 hr at room temp, (RT). The plates are then nnsed with PBS and blocked with 3% BSA/PBS for 1 hr at RT. The protein G
plates are then treated with 2 commercial monoclonal antibodies (lOOng/well) against Erk-1 and Erk-2 (1 hr at RT) (Santa Cmz Biotechnology). (To detect other molecules, this step can easily be modified by substituting a monoclonal antibody detecting any ofthe above described molecules.) After 3-5 rinses with PBS, the plates are stored at 4 degrees C until use.
A431 cells are seeded at 20,000/well in a 96-well Loprodyne filteφlate and cultured overnight in growth medium. The cells are then starved for 48 hr in basal medium (DMEM) and then treated with EGF (6ng/well) or 50 ul ofthe supematants obtained in Example 11 for 5-20 minutes. The cells are then solubilized and extracts filtered directly into the assay plate.
After incubation with the extract for 1 hr at RT, the wells are again rinsed. As a positive control, a commercial preparation of MAP kinase (lOng/well) is used in place of A431 extract. Plates are then treated with a commercial polyclonal (rabbit) antibody (lug/ml) which specifically recognizes the phosphorylated epitope ofthe Erk-1 and Erk-2 kinases (1 hr at RT). This antibody is biotinylated by standard procedures. The bound polyclonal antibody is then quantitated by successive incubations with Europium-streptavidin and Europium fluorescence enhancing reagent in the Wallac DELFIA instrument (time-resolved fluorescence). An increased fluorescent signal over background indicates a phosphorylation.
Example 21: Method of Determining Alterations in a Gene Corresponding to a Polynucleotide
RNA isolated from entire families or individual patients presenting with a phenotype of interest (such as a disease) is be isolated. cDNA is then generated from these RNA samples using protocols known in the art. (See, Sambrook.) The cDNA is then used as a template for PCR, employing primers surrounding regions of interest in SEQ ID NO:X. Suggested PCR conditions consist of 35 cycles at 95 degrees C for 30 seconds; 60-120 seconds at 52-58 degrees C; and 60-120 seconds at 70 degrees C, using buffer solutions described in Sidransky et al., Science 252:706 (1991). < PCR products are then sequenced using primers labeled at their 5' end with T4 polynucleotide kinase, employing SequiTherm Polymerase. (Epicentre Technologies). The intron-exon borders of selected exons is also determined and
genomic PCR products analyzed to confirm the results. PCR products harboring suspected mutations is then cloned and sequenced to validate the results ofthe direct sequencing.
PCR products is cloned into T-tailed vectors as described in Holton et al., Nucleic Acids Research, 19:1156 (1991) and sequenced with T7 polymerase (United States Biochemical). Affected individuals are identified by mutations not present in unaffected individuals.
Genomic rearrangements are also observed as a method of determining alterations in a gene corresponding to a polynucleotide. Genomic clones isolated according to Example 2 are nick-translated with digoxigenindeoxy-uridine 5'- triphosphate (Boehringer Manheim), and FISH performed as described in Johnson et al., Methods Cell Biol. 35:73-99 (1991). Hybridization with the labeled probe is carried out using a vast excess of human cot-1 DNA for specific hybridization to the corresponding genomic locus. Chromosomes are counterstained with 4,6-diamino-2-phenylidole and propidium iodide, producing a combination of C- and R-bands. Aligned images for precise mapping are obtained using a triple-band filter set (Chroma Technology, Brattleboro, VT) in combination with a cooled charge-coupled device camera (Photometries, Tucson, AZ) and variable excitation wavelength filters. (Johnson et al., Genet. Anal. Tech. Appl., 8:75 (1991).) Image collection, analysis and chromosomal fractional length measurements are performed using the ISee Graphical Program System. (Inovision Coφoration, Durham, NC.) Chromosome alterations of the genomic region hybridized by the probe are identified as insertions, deletions, and translocations. These alterations are used as a diagnostic marker for an associated disease.
Example 22: Method of Detecting Abnormal Levels of a Polypeptide in a Biological Sample
A polypeptide ofthe present invention can be detected in a biological sample, and if an increased or decreased level ofthe polypeptide is detected, this polypeptide is a marker for a particular phenotype. Methods of detection are numerous, and thus,
it is understood that one skilled in the art can modify the following assay to fit their particular needs.
For example, antibody-sandwich ELISAs are used to detect polypeptides in a sample, preferably a biological sample. Wells of a microtiter plate are coated with specific antibodies, at a final concentration of 0.2 to 10 ug/ml. The antibodies are either monoclonal or polyclonal and are produced by the method described in Example 10. The wells are blocked so that non-specific binding ofthe polypeptide to the well is reduced.
The coated wells are then incubated for > 2 hours at RT with a sample containing the polypeptide. Preferably, serial dilutions ofthe sample should be used to validate results. The plates are then washed three times with deionized or distilled water to remove unbounded polypeptide.
Next, 50 ul of specific antibody-alkaline phosphatase conjugate, at a concentration of 25-400 ng, is added and incubated for 2 hours at room temperature. The plates are again washed three times with deionized or distilled water to remove unbounded conjugate.
Add 75 ul of 4-methylumbelliferyl phosphate (MUP) or p-nitrophenyl phosphate (NPP) substrate solution to each well and incubate 1 hour at room temperature. Measure the reaction by a microtiter plate reader. Prepare a standard curve, using serial dilutions of a control sample, and plot polypeptide concentration on the X-axis (log scale) and fluorescence or absorbance ofthe Y-axis (linear scale). Inteφolate the concentration ofthe polypeptide in the sample using the standard curve.
Example 23: Formulation
The invention also provides methods of treatment and/or prevention of diseases or disorders (such as, for example, any one or more ofthe diseases or disorders disclosed herein) by administration to a subject of an effective amount of a Therapeutic. By therapeutic is meant polynucleotides or polypeptides ofthe invention (including fragments and variants), agonists or antagonists thereof, and/or antibodies thereto, in combination with a pharmaceutically acceptable carrier type (e.g., a sterile carrier).
The Therapeutic will be formulated and dosed in a fashion consistent with good medical practice, taking into account the clinical condition ofthe individual patient (especially the side effects of treatment with the Therapeutic alone), the site of delivery, the method of administration, the scheduling of administration, and other factors known to practitioners. The "effective amount" for puφoses herein is thus determined by such considerations.
As a general proposition, the total pharmaceutically effective amount of the Therapeutic administered parenterally per dose will be in the range of about lug/kg/day to 10 mg/kg/day of patient body weight, although, as noted above, this will be subject to therapeutic discretion. More preferably, this dose is at least 0.01 mg/kg/day, and most preferably for humans between about 0.01 and 1 mg/kg/day for the hormone. If given continuously, the Therapeutic is typically administered at a dose rate of about 1 ug/kg/hour to about 50 ug/kg/hour, either by 1-4 injections per day or by continuous subcutaneous infusions, for example, using a mini -pump. An intravenous bag solution may also be employed. The length of treatment needed to observe changes and the interval following treatment for responses to occur appears to vary depending on the desired effect.
Therapeutics can be are administered orally, rectally, parenterally, intracistemally, intravaginally, intraperitoneally, topically (as by powders, ointments, gels, drops or transdermal patch), bucally, or as an oral or nasal spray.
"Pharmaceutically acceptable carrier" refers to a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any. The term "parenteral" as used herein refers to modes of administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.
Therapeutics of the invention are also suitably administered by sustained- release systems. Suitable examples of sustained-release Therapeutics are administered orally, rectally, parenterally, intracistemally, intravaginally, intraperitoneally, topically (as by powders, ointments, gels, drops or transdermal patch), bucally, or as an oral or nasal spray. "Pharmaceutically acceptable carrier" refers to a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. The term "parenteral" as used herein refers to
modes of administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.
Therapeutics ofthe invention are also suitably administered by sustained- release systems. Suitable examples of sustained-release Therapeutics include suitable polymeric materials (such as, for example, semi-permeable polymer matrices in the form of shaped articles, e.g., films, or mirocapsules), suitable hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, and sparingly soluble derivatives (such as, for example, a sparingly soluble salt).
Sustained-release matrices include polylactides (U.S. Pat. No. 3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma-ethyl-L-glutamate (Sidman et al., Biopolymers 22:547-556 (1983)), poly (2- hydroxyethyl methacrylate) (Langer et al, J. Biomed. Mater. Res. 15:167-277 (1981), and Langer, Chem. Tech. 12:98-105 (1982)), ethylene vinyl acetate (Langer et al., Id.) or poly-D- (-)-3-hydroxybutyric acid (EP 133,988). Sustained-release Therapeutics also include liposomally entrapped
Therapeutics ofthe invention (see generally, Langer, Science 249:1527-1533 (1990); Treat et al., in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez- Berestein and Fidler (eds.), Liss, New York, pp. 317 -327 and 353-365 (1989)). Liposomes containing the Therapeutic are prepared by methods known per se: DE 3,218,121; Epstein et al., Proc. Natl. Acad. Sci. (USA) 82:3688-3692 (1985); Hwang et al., Proc. Natl. Acad. Sci.(USA) 77:4030-4034 (1980); EP 52,322; EP 36,676; EP 88,046; EP 143,949; EP 142,641; Japanese Pat. Appl. 83-118008; U.S. Pat. Nos. 4,485,045 and 4,544,545; and EP 102,324. Ordinarily, the liposomes are ofthe small (about 200-800 Angstroms) unilamellar type in which the lipid content is greater than about 30 mol. percent cholesterol, the selected proportion being adjusted for the optimal Therapeutic.
In yet an additional embodiment, the Therapeutics ofthe invention are delivered by way of a pump (see Langer, supra; Sefton, CRC Crit. Ref. Biomed. Eng. 14:201 (1987); Buchwald et al., Surgery 88:507 (1980); Saudek et al., N. Engl. J. Med. 321 :574 (1989)).
Other controlled release systems are discussed in the review by Langer (Science 249:1527-1533 (1990)).
For parenteral administration, in one embodiment, the Therapeutic is formulated generally by mixing it at the desired degree of purity, in a unit dosage injectable form (solution, suspension, or emulsion), with a pharmaceutically acceptable carrier, i.e., one that is non-toxic to recipients at the dosages and concentrations employed and is compatible with other ingredients ofthe formulation. For example, the formulation preferably does not include oxidizing agents and other compounds that are known to be deleterious to the Therapeutic.
Generally, the formulations are prepared by contacting the Therapeutic uniformly and intimately with liquid carriers or finely divided solid carriers or both. Then, if necessary, the product is shaped into the desired formulation. Preferably the carrier is a parenteral carrier, more preferably a solution that is isotonic with the blood ofthe recipient. Examples of such carrier vehicles include water, saline, Ringer's solution, and dextrose solution. Non-aqueous vehicles such as fixed oils and ethyl oleate are also useful herein, as well as liposomes. The carrier suitably contains minor amounts of additives such as substances that enhance isotonicity and chemical stability. Such materials are non-toxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, succinate, acetic acid, and other organic acids or their salts; antioxidants such as ascorbic acid; low molecular weight (less than about ten residues) polypeptides, e.g., polyarginine or tripeptides; proteins, such as semm albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids, such as glycine, glutamic acid, aspartic acid, or arginine; monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, glucose, manose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; counterions such as sodium; and/or nonionic surfactants such as polysorbates, poloxamers, or PEG.
The Therapeutic is typically formulated in such vehicles at a concentration of about 0.1 mg/ml to 100 mg/ml, preferably 1-10 mg/ml, at a pH of about 3 to 8. It will be understood that the use of certain ofthe foregoing excipients, carriers, or stabilizers will result in the formation of polypeptide salts.
Any pharmaceutical used for therapeutic administration can be sterile. Sterility is readily accomplished by filtration through sterile filtration membranes
(e.g., 0.2 micron membranes). Therapeutics generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.
Therapeutics ordinarily will be stored in unit or multi-dose containers, for example, sealed ampoules or vials, as an aqueous solution or as a lyophilized formulation for reconstitution. As an example of a lyophilized formulation, 10-ml vials are filled with 5 ml of sterile-filtered 1% (w/v) aqueous Therapeutic solution, and the resulting mixture is lyophilized. The infusion solution is prepared by reconstituting the lyophilized Therapeutic using bacteriostatic Water- for-lnjecti on. The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients ofthe Therapeutics ofthe invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human admimstration. In addition, the Therapeutics may be employed in conjunction with other therapeutic compounds.
The Therapeutics ofthe invention may be administered alone or in combination with adjuvants. Adjuvants that may be administered with the Therapeutics ofthe invention include, but are not limited to, alum, alum plus deoxycholate (ImmunoAg), MTP-PE (Biocine Coφ.), QS21 (Genentech, Inc.), BCG (e.g., THERACYS®), MPL and nonviable prepartions of Corynebacterium parvum. In a specific embodiment, Therapeutics ofthe invention are administered in combination with alum. In another specific embodiment, Therapeutics ofthe invention are administered in combination with QS-21. Further adjuvants that may be administered with the Therapeutics ofthe invention include, but are not limited to, Monophosphoryl lipid immunomodulator, AdjuVax 100a, QS-21, QS-18, CRL1005, Aluminum salts, MF-59, and Virosomal adjuvant technology. Vaccines that may be administered with the Therapeutics ofthe invention include, but are not limited to, vaccines directed toward protection against MMR (measles, mumps, rubella), polio, varicella, tetanus/diptheria, hepatitis A, hepatitis B, haemophilus influenzae B, whooping cough, pneumonia, influenza, Lyme's Disease, rotavims, cholera, yellow fever, Japanese encephalitis, poliomyelitis, rabies, typhoid fever, and pertussis.
Combinations may be administered either concomitantly, e.g., as an admixture, separately but simultaneously or concunently; or sequentially. This includes presentations in which the combined agents are administered together as a therapeutic mixture, and also procedures in which the combined agents are administered separately but simultaneously, e.g., as through separate intravenous lines into the same individual. Administration "in combination" further includes the separate administration of one ofthe compounds or agents given first, followed by the second.
The Therapeutics ofthe invention may be administered alone or in combination with other therapeutic agents. Therapeutic agents that may be administered in combination with the Therapeutics ofthe invention, include but not limited to, chemotherapeutic agents, antibiotics, steroidal and non-steroidal anti- inflammatories, conventional immunotherapeutic agents, and/or therapeutic treatments described below. Combinations may be administered either concomitantly, e.g., as an admixture, separately but simultaneously or concurrently; or sequentially. This includes presentations in which the combined agents are administered together as a therapeutic mixture, and also procedures in which the combined agents are administered separately but simultaneously, e.g., as through separate intravenous lines into the same individual. Administration "in combination" further includes the separate administration of one ofthe compounds or agents given first, followed by the second.
In certain embodiments, Therapeutics ofthe invention are administered in combination with antiretroviral agents, nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), and/or protease inhibitors (Pis). NRTIs that may be administered in combination with the Therapeutics of the invention, include, but are not limited to, RETROVIR™
(zidovudine/AZT), VIDEX™ (didanosine/ddl), HIVID™ (zalcitabine/ddC), ZERIT™ (stavudine/d4T), EPINIR™ (lamivudine/3TC), and COMBINIR™ (zidovudine/lamivudine). ΝΝRTIs that may be administered in combination with the Therapeutics ofthe invention, include, but are not limited to, VIRAMUΝETM (nevirapine), RESCRIPTOR™ (delavirdine), and SUSTINA™ (efavirenz). Protease inhibitors that may be administered in combination with the Therapeutics ofthe
invention, include, but are not limited to, CRI-XJNAN™ (indinavir), NORVIR™ (ritonavir), INVIRASE™ (saquinavir), and VIRACEPT™ (nelfmavir). In a specific embodiment, antiretroviral agents, nucleoside reverse transcriptase inhibitors, non- nucleoside reverse transcriptase inhibitors, and or protease inhibitors may be used in any combination with Therapeutics ofthe invention to treat AIDS and/or to prevent or treat HIN infection.
Additional ΝRTIs include LODEΝOSIΝE™ (F-ddA; an acid-stable adenosine ΝRTI; Triangle/ Abbott; COVIRACIL™ (emtricitabine/FTC; structurally related to lamivudine (3TC) but with 3- to 10-fold greater activity in vitro; Triangle/ Abbott); dOTC (BCH- 10652, also structurally related to lamivudine but retains activity against a substantial proportion of lamivudine-resistant isolates; Biochem Pharma); Adefovir (refused approval for anti-HIV therapy by FDA; Gilead Sciences); PREVEOΝ® (Adefovir Dipivoxil, the active prodrug of adefovir; its active form is PMEA-pp); TEΝOFOVIR™ (bis-POC PMPA, a PMPA prodrug; Gilead); DAPD/DXG (active metabolite of DAPD; Triangle/ Abbott); D-D4FC (related to 3TC, with activity against AZT/3TC-resistant vims); GW420867X (Glaxo Wellcome); ZIAGEΝ™ (abacavir/159U89; Glaxo Wellcome Inc.); CS-87 (3'azido- 2',3'-dideoxyuridine; WO 99/66936); and S-acyl-2-thioethyl (SATE)-bearing prodmg forms of β-L-FD4C and β-L-FddC (WO 98/17281). Additional ΝΝRTIs include COACTIΝOΝ™ (Emivirine/MKC-442, potent
ΝΝRTI of the HEPT class; Triangle/Abbott); CAPRAVIRiΝE™ (AG-1549/S-1153, a next generation ΝΝRTI with activity against vimses containing the K103Ν mutation; Agouron); PNU- 142721 (has 20- to 50-fold greater activity than its predecessor delavirdine and is active against K103N mutants; Pharmacia & Upjohn); DPC-961 and DPC-963 (second-generation derivatives of efavirenz, designed to be active against vimses with the K103N mutation; DuPont); GW-420867X (has 25-fold greater activity than HBY097 and is active against K103N mutants; Glaxo Wellcome); CALANOLIDE A (naturally occurring agent from the latex tree; active against vimses containing either or both the Y181C and K103N mutations); and Propolis (WO 99/49830).
Additional protease inhibitors include LOPINAVIR™ (ABT378/r; Abbott Laboratories); BMS-232632 (an azapeptide; Bristol-Myres Squibb); TIPRANAVIR™ (PNU-140690, a non-peptic dihydropyrone; Pharmacia & Upjohn); PD-178390 (a nonpeptidic dihydropyrone; Parke-Davis); BMS 232632 (an azapeptide; Bristol- Myers Squibb); L-756,423 (an indinavir analog; Merck); DMP-450 (a cyclic urea compound; Avid & DuPont); AG-1776 (a peptidomimetic with in vitro activity against protease inhibitor-resistant vimses; Agouron); VX-175/GW-433908 (phosphate prodmg of amprenavir; Vertex & Glaxo Welcome); CGP61755 (Ciba); and AGENERASE™ (amprenavir; Glaxo Wellcome Inc.). Additional antiretroviral agents include fusion inhibitors/gp41 binders.
Fusion inhibitors/gp41 binders include T-20 (a peptide from residues 643-678 ofthe HIV gp41 transmembrane protein ectodomain which binds to gp41 in its resting state and prevents transformation to the fusogenic state; Trimeris) and T-1249 (a second- generation fusion inhibitor; Trimeris). Additional antiretroviral agents include fusion inhibitors/chemokine receptor antagonists. Fusion inhibitors/chemokine receptor antagonists include CXCR4 antagonists such as AMD 3100 (a bicyclam), SDF-1 and its analogs, and ALX40-4C (a cationic peptide), T22 (an 18 amino acid peptide; Trimeris) and the T22 analogs T 134 and T140; CCR5 antagomsts such as RANTES (9-68), AOP-RANTES, NNY- RANTES, and TAK-779; and CCR5/CXCR4 antagonists such as NSC 651016 (a distamycin analog). Also included are CCR2B, CCR3, and CCR6 antagonists. Chemokine recpetor agonists such as RANTES, SDF-1, MlP-lα, MlP-lβ, etc., may also inhibit fusion.
Additional antiretroviral agents include integrase inhibitors. Integrase inhibitors include dicaffeoylquinic (DFQA) acids; L-chicoric acid (a dicaffeoyltartaric (DCTA) acid); quinalizarin (QLC) and related anthraquinones; ZINTEVIR™ (AR 177, an oligonucleotide that probably acts at cell surface rather than being a tme integrase inhibitor; Arondex); and naphthols such as those disclosed in WO 98/50347. Additional antiretroviral agents include hydroxyurea-like compunds such as
BCX-34 (a purine nucleoside phosphorylase inhibitor; Biocryst); ribonucleotide
reductase inhibitors such as DIDOX™ (Molecules for Health); inosine monophosphate dehydrogenase (EVIPDH) inhibitors sucha as VX-497 (Vertex); and mycopholic acids such as CellCept (mycophenolate mofetil; Roche).
Additional antiretroviral agents include inhibitors of viral integrase, inhibitors of viral genome nuclear translocation such as arylene bis(methylketone) compounds; inhibitors of HIV entry such as AOP-RANTES, NNY-RANTES, RANTES-IgG fusion protein, soluble complexes of RANTES and glycosaminoglycans (GAG), and AMD-3100; nucleocapsid zinc fmger inhibitors such as dithiane compounds; targets of HIV Tat and Rev; and pharmacoenhancers such as ABT-378. Other antiretroviral therapies and adjunct therapies include cytokines and lymphokines such as MlP-lα, MlP-lβ, SDF-lα, IL-2, PROLEUKIN™ (aldesleukin/L2-7001; Chiron), IL-4, IL-10, IL-12, and IL-13; interferons such as IFN-α2a; antagonists of TNFs, NFKB, GM-CSF, M-CSF, and IL-10; agents that modulate immune activation such as cyclosporin and prednisone; vaccines such as Remune™ (HIN Immunogen), APL 400-003 (Apollon), recombinant gpl20 and fragments, bivalent (B/E) recombinant envelope glycoprotein, rgpl20CM235, MΝ rgpl20, SF-2 rgpl20, gpl20/soluble CD4 complex, Delta JR-FL protein, branched synthetic peptide derived from discontinuous gρl20 C3/C4 domain, fusion- competent immunogens, and Gag, Pol, Νef, and Tat vaccines; gene-based therapies such as genetic suppressor elements (GSEs; WO 98/54366), and intrakines
(genetically modified CC chemokines targetted to the ER to block surface expression of newly synthesized CCR5 (Yang et al, PNAS 94:X 1567-72 (1997); Chen et al, Nat. Med. 3:1110-16 (1997)); antibodies such as the anti-CXCR4 antibody 12G5, the anti-CCR5 antibodies 2D7, 5C7, PA8, PA9, PA10, PA11, PA12, and PA14, the anti- CD4 antibodies Q4120 and RPA-T4, the anti-CCR3 antibody 7B11, the anti-gpl20 antibodies 17b, 48d, 447-52D, 257-D, 268-D and 50.1, anti-Tat antibodies, anti-TΝF- α antibodies, and monoclonal antibody 33A; aryl hydrocarbon (AH) receptor agonists and antagonists such as TCDD, 3,3',4,4',5-pentachlorobiphenyl, 3,3',4,4'- tetrachlorobiphenyl, and α-naphthoflavone (WO 98/30213); and antioxidants such as γ-L-glutamyl-L-cysteine ethyl ester (γ-GCE; WO 99/56764).
In a further embodiment, the Therapeutics ofthe invention are administered in combination with an antiviral agent. Antiviral agents that may be administered with the Therapeutics ofthe invention include, but are not limited to, acyclovir, ribavirin, amantadine, and remantidine. 5 In other embodiments, Therapeutics ofthe invention may be administered in combination with anti-opportunistic infection agents. Anti-opportunistic agents that may be administered in combination with the Therapeutics of the invention, include, but are not limited to, TRIMETHOPRIM-SULFAMETHOXAZOLE™, DAPSONE™, PENTAMIDINE™, ATOVAQUONE™, ISONIAZID™, l o RΓFAMPΓN™, PYRAZINAMΓDE™, ETHAMBUTOL™, RIFABUTIN™, CLARITHROMYCΓN™, AZITHROMYCIN™, GANCICLOVIR™, FOSCARNET™, CIDOFOVIR™, FLUCONAZOLE™, ITRACONAZOLE™, KETOCONAZOLE™, ACYCLOVIR™, FAMCICOLVIR™, PYRIMETHAMINE™, LEUCOVORIN™, NEUPOGEN™ (filgrastim/G-CSF), and LEUKTNE™
15 (sargramostim GM-CSF). In a specific embodiment, Therapeutics ofthe invention are used in any combination with TRIMETHOPRIM-SULFAMETHOXAZOLE™, DAPSONE™, PENTAMIDINE™, and/or ATOVAQUONE™ to prophylactically treat or prevent an opportunistic Pneumocystis carinii pneumonia infection. In another specific embodiment, Therapeutics ofthe invention are used in any 0 combination with ISONIAZID™, RTF AMPIN™, PYRAZINAMJOE™, and/or ETHAMBUTOL™ to prophylactically treat or prevent an opportunistic Mycobacterium avium complex infection. In another specific embodiment, Therapeutics of the invention are used in any combination with RIFABUTIN™, CLARITHROMYCIN™, and or AZITHROMYCIN™ to prophylactically treat or 5 prevent an opportunistic Mycobacterium tuberculosis infection. In another specific embodiment, Therapeutics of the invention are used in any combination with GANCICLOVIR™, FOSCARNET™, and/or CIDOFOVIR™ to prophylactically treat or prevent an opportunistic cytomegalovims infection. In another specific embodiment, Therapeutics ofthe invention are used in any combination with 0 FLUCONAZOLE™, ITRACONAZOLE™, and/or KETOCONAZOLE™ to prophylactically treat or prevent an opportunistic fungal infection. In another
specific embodiment, Therapeutics ofthe invention are used in any combination with ACYCLOVIR™ and/or FAMCICOLVIR™ to prophylactically treat or prevent an opportunistic heφes simplex vims type I and/or type II infection. In another specific embodiment, Therapeutics ofthe invention are used in any combination with PYRIMETHAMINE™ and/or LEUCOVORIN™ to prophylactically treat or prevent an opportunistic Toxoplasma gondii infection. In another specific embodiment, Therapeutics ofthe invention are used in any combination with LEUCOVORIN™ and/or NEUPOGEN™ to prophylactically treat or prevent an opportunistic bacterial infection. In a further embodiment, the Therapeutics ofthe invention are administered in combination with an antibiotic agent. Antibiotic agents that may be administered with the Therapeutics of the invention include, but are not limited to, amoxicillin, beta-lactamases, aminoglycosides, beta-lactam (glycopeptide), beta-lactamases, Clindamycin, chloramphenicol, cephalosporins, ciprofloxacin, erythromycin, fluoroquinolones, macrolides, metromdazole, penicillins, quinolones, rapamycin, rifampin, streptomycin, sulfonamide, tetracyclines, trimethoprim, trimethoprim- sulfamethoxazole, and vancomycin.
In other embodiments, Therapeutics ofthe invention are administered in combination with immunosuppressive agents. Immunosuppressive agents that may be administered in combination with the Therapeutics ofthe invention include, but are not limited to, steroids, cyclosporine, cyclosporine analogs, cyclophosphamide methylprednisone, prednisone, azathioprine, FK-506, 15-deoxyspergualin, and other immunosuppressive agents that act by suppressing the function of responding T cells. Other immunosuppressive agents that may be administered in combination with the Therapeutics ofthe invention include, but are not limited to, prednisolone, methotrexate, thalidomide, methoxsalen, rapamycin, leflunomide, mizoribine (BREDININ™), brequinar, deoxyspergualin, and azaspirane (SKF 105685), ORTHOCLONE OKT® 3 (muromonab-CD3), SANDIMMUNE™, NEORAL™, SANGDYA™ (cyclosporine), PROGRAF® (FK506, tacrolimus), CELLCEPT® (mycophenolate motefil, of which the active metabolite is mycophenolic acid), IMURAN™ (azathioprine), glucocorticosteroids, adrenocortical steroids such as
DELTASONE™ (prednisone) and HYDELTRASOL™ (prednisolone), FOLEX™ and MEXATE™ (methotrxate), OXSORALEN-ULTRA™ (methoxsalen) and RAPAMUNE™ (sirolimus). In a specific embodiment, immunosuppressants may be used to prevent rejection of organ or bone marrow transplantation. In an additional embodiment, Therapeutics ofthe invention are administered alone or in combination with one or more intravenous immune globulin preparations. Intravenous immune globulin preparations that may be administered with the Therapeutics ofthe invention include, but not limited to, GAMMAR™, TVEEGAM™, SANDOGLOBULIN™, GAMMAGARD S/D™, ATGAM™ (antithymocyte glubulin), and GAMIMUNE™. In a specific embodiment,
Therapeutics ofthe invention are administered in combination with intravenous immune globulin preparations in transplantation therapy (e.g., bone marrow transplant).
In certain embodiments, the Therapeutics ofthe invention are administered alone or in combination with an anti-inflammatory agent. Anti-inflammatory agents that may be administered with the Therapeutics ofthe invention include, but are not limited to, corticosteroids (e.g. betamethasone, budesonide, cortisone, dexamethasone, hydrocortisone, methylprednisolone, prednisolone, prednisone, and triamcinolone), nonsteroidal anti-inflammatory drugs (e.g., diclofenac, diflunisal, etodolac, fenoprofen, floctafenine, flurbiprofen, ibuprofen, indomethacin, ketoprofen, meclofenamate, mefenamic acid, meloxicam, nabumetone, naproxen, oxaprozin, phenylbutazone, piroxicam, sulindac, tenoxicam, tiaprofenic acid, and tolmetin.), as well as antihistamines, aminoarylcarboxylic acid derivatives, arylacetic acid derivatives, arylbutyric acid derivatives, arylcarboxylic acids, arylpropionic acid derivatives, pyrazoles, pyrazolones, salicylic acid derivatives, thiazmecarboxamides, e-acetamidocaproic acid, S-adenosylmethionine, 3-amino-4-hydroxybutyric acid, amixetrine, bendazac, benzydamine, bucolome, difenpiramide, ditazol, emorfazone, guaiazulene, nabumetone, nimesulide, orgotein, oxaceprol, paranyline, perisoxal, pifoxime, proquazone, proxazole, and tenidap. In an additional embodiment, the compositions ofthe invention are administered alone or in combination with an anti-angiogenic agent. Anti-angiogenic agents that may be administered with the compositions ofthe invention include, but
are not limited to, Angiostatin (Entremed, Rockville, MD), Troponin-1 (Boston Life Sciences, Boston, MA), anti-Invasive Factor, retinoic acid and derivatives thereof, paclitaxel (Taxol), Suramin, Tissue Inhibitor of Metalloproteinase-1, Tissue Inhibitor of Metalloproteinase-2, VEGI, Plasminogen Activator Inhibitor-1, Plasminogen Activator Inhibitor-2, and various forms ofthe lighter "d group" transition metals. Lighter "d group" transition metals include, for example, vanadium, molybdenum, tungsten, titanium, niobium, and tantalum species. Such transition metal species may form transition metal complexes. Suitable complexes ofthe above-mentioned transition metal species include oxo transition metal complexes. Representative examples of vanadium complexes include oxo vanadium complexes such as vanadate and vanadyl complexes. Suitable vanadate complexes include metavanadate and orthovanadate complexes such as, for example, ammonium metavanadate, sodium metavanadate, and sodium orthovanadate. Suitable vanadyl complexes include, for example, vanadyl acetylacetonate and vanadyl sulfate including vanadyl sulfate hydrates such as vanadyl sulfate mono- and trihydrates.
Representative examples of tungsten and molybdenum complexes also include oxo complexes. Suitable oxo tungsten complexes include tungstate and tungsten oxide complexes. Suitable tungstate complexes include ammonium tungstate, calcium tungstate, sodium tungstate dihydrate, and tungstic acid. Suitable tungsten oxides include tungsten (IV) oxide and tungsten (VI) oxide. Suitable oxo molybdenum complexes include molybdate, molybdenum oxide, and molybdenyl complexes. Suitable molybdate complexes include ammonium molybdate and its hydrates, sodium molybdate and its hydrates, and potassium molybdate and its hydrates. Suitable molybdenum oxides include molybdenum (VI) oxide, molybdenum (VI) oxide, and molybdic acid. Suitable molybdenyl complexes include, for example, molybdenyl acetylacetonate. Other suitable tungsten and molybdenum complexes include hydroxo derivatives derived from, for example, glycerol, tartaric acid, and sugars.
A wide variety of other anti-angiogenic factors may also be utilized within the context ofthe present invention. Representative examples include, but are not limited to, platelet factor 4; protamine sulphate; sulphated chitin derivatives (prepared from queen crab shells), (Murata et al., Cancer Res. 51 :22-26, (1991)); Sulphated
Polysaccharide Peptidoglycan Complex (SP- PG) (the function of this compound may be enhanced by the presence of steroids such as estrogen, and tamoxifen citrate); Staurosporine; modulators of matrix metabolism, including for example, pro line analogs, cishydroxyproline, d,L-3,4-dehydroproline, Thiaproline, alpha,alpha- dipyridyl, aminopropionitrile fumarate; 4-propyl-5-(4-pyridinyl)-2(3H)-oxazolone; Methotrexate; Mitoxantrone; Heparin; Interferons; 2 Macroglobulin-serum; ChIMP-3 (Pavloff et al., J. Bio. Chem. 267:17321-17326, (1992)); Chymostatin (Tomkinson et al., Biochem J. 286:475-480, (1992)); Cyclodextrin Tetradecasulfate; Eponemycin; Camptothecin; Fumagillin (Ingber et al., Nature 348:555-557, (1990)); Gold Sodium Thiomalate ("GST"; Matsubara and Ziff, J. Clin. Invest. 79:1440-1446, (1987)); anticollagenase-serum; alpha2-antiplasmin (Holmes et al., J. Biol. Chem. 262(4): 1659-1664, (1987)); Bisantrene (National Cancer Institute); Lobenzarit disodium (N-(2)-carboxyphenyl-4- chloroanthronilic acid disodium or "CCA"; (Takeuchi et al., Agents Actions 36:312-316, (1992)); and metalloproteinase inhibitors such as BB94.
Additional anti-angiogenic factors that may also be utilized within the context ofthe present invention include Thalidomide, (Celgene, Warren, NJ); Angiostatic steroid; AGM-1470 (H. Brem and J. Folkman J Pediatr. Surg. 28:445-51 (1993)); an integrin alpha v beta 3 antagonist (C. Storgard et al., J Clin. Invest. 103:47-54 (1999)); carboxynammolmidazole; Carboxyamidotriazole (CAI) (National Cancer Institute, Bethesda, MD); Conbretastatin A-4 (CA4P) (OXiGENE, Boston, MA); Squalamine (Magainin Pharmaceuticals, Plymouth Meeting, PA); TNP-470, (Tap Pharmaceuticals, Deerfield, IL); ZD-0101 AstraZeneca (London, UK); APRA (CT2584); Benefin, Byrostatin-1 (SC339555); CGP-41251 (PKC 412); CM101; Dexrazoxane (ICRF187); DMXAA; Endostatin; Flavopridiol; Genestein; GTE; ImmTher; Iressa (ZD1839); Octreotide (Somatostatin); Panretin; Penacillamine; Photopoint; PI-88; Prinomastat (AG-3340) Purlytin; Suradista (FCE26644); Tamoxifen (Nolvadex); Tazarotene; Tetrathiomolybdate; Xeloda (Capecitabine); and 5-Fluorouracil. Anti-angiogenic agents that may be administed in combination with the compounds ofthe invention may work through a variety of mechanisms including, but not limited to, inhibiting proteolysis ofthe extracellular matrix, blocking the
function of endothelial cell-extracellular matrix adhesion molecules, by antagonizing the function of angiogenesis inducers such as growth factors, and inhibiting integrin receptors expressed on proliferating endothelial cells. Examples of anti-angiogenic inhibitors that interfere with extracellular matrix proteolysis and which may be administered in combination with the compositons ofthe invention include, but are not lmited to, AG-3340 (Agouron, La Jolla, CA), BAY-12-9566 (Bayer, West Haven, CT), BMS-275291 (Bristol Myers Squibb, Princeton, NJ), CGS-27032A (Novartis, East Hanover, NJ), Marimastat (British Biotech, Oxford, UK), and Metastat (Aetema, St-Foy, Quebec). Examples of anti-angiogenic inhibitors that act by blocking the function of endothelial cell-extracellular matrix adhesion molecules and which may be administered in combination with the compositons ofthe invention include, but are^ not lmited to, EMD-121974 (Merck KcgaA Darmstadt, Germany) and Vitaxin (Ixsys, La Jolla, CA/Medimmune, Gaithersburg, MD). Examples of anti-angiogenic agents that act by directly antagonizing or inhibiting angiogenesis inducers and which may be administered in combination with the compositons ofthe invention include, but are not lmited to, Angiozyme (Ribozyme, Boulder, CO), Anti-VEGF antibody (Genentech, S. San Francisco, CA), PTK-787/ZK-225846 (Novartis, Basel, Switzerland), SU-101 (Sugen, S. San Francisco, CA), SU-5416 (Sugen Pharmacia Upjohn, Bridgewater, NJ), and SU-6668 (Sugen). Other anti-angiogenic agents act to indirectly inhibit angiogenesis. Examples of indirect inhibitors of angiogenesis which may be administered in combination with the compositons of the invention include, but are not limited to, IM-862 (Cytran, Kirkland, WA), Interferon-alpha, IL-12 (Roche, Nutley, NJ), and Pentosan polysulfate (Georgetown University, Washington, DC). In particular embodiments, the use of compositions of the invention in combination with anti-angiogenic agents is contemplated for the treatment, prevention, and/or amelioration of an autoimmune disease, such as for example, an autoimmune disease described herein.
In a particular embodiment, the use of compositions ofthe invention in combination with anti-angiogenic agents is, contemplated for the treatment, prevention, and/or amelioration of arthritis. In a more particular embodiment, the use of compositions ofthe invention in combination with anti-angiogenic agents is
contemplated for the treatment, prevention, and/or amelioration of rheumatoid arthritis.
In another embodiment, the polynucleotides encoding a polypeptide ofthe present invention are administered in combination with an angiogenic protein, or polynucleotides encoding an angiogenic protein. Examples of angiogenic proteins that may be administered with the compositions ofthe invention include, but are not limited to, acidic and basic fibroblast growth factors, VEGF- 1, VEGF-2, VEGF-3, epidermal growth factor alpha and beta, platelet-derived endothelial cell growth factor, platelet-derived growth factor, tumor necrosis factor alpha, hepatocyte growth factor, insulin-like growth factor, colony stimulating factor, macrophage colony stimulating factor, granulocyte/macrophage colony stimulating factor, and nitric oxide synthase.
In additional embodiments, compositions of the invention are administered in combination with a chemotherapeutic agent. Chemotherapeutic agents that may be administered with the Therapeutics of the invention include, but are not limited to alkylating agents such as nitrogen mustards (for example, Mechlorethamine, cyclophosphamide, Cyclophosphamide Ifosfamide, Melphalan (L-sarcolysin), and Chlorambucil), ethylenimines and methylmelamines (for example, Hexamethylmelamine and Thiotepa), alkyl sulfonates (for example, Busulfan), nitrosoureas (for example, Carmustine (BCNU), Lomustine (CCNU), Semustine (methyl-CCNU), and Streptozocin (streptozotocin)), triazenes (for example, Dacarbazine (DTIC; dimethyltriazenoimidazolecarboxamide)), folic acid analogs (for example, Methotrexate (amethopterin)), pyrimidine analogs (for example, Fluorouacil (5-fluorouracil; 5-FU), Floxuridine (fluorodeoxyuridine; FudR), and Cytarabine (cytosine arabinoside)), purine analogs and related inhibitors (for example, Mercaptopurine (6-mercaptopurine; 6-MP), Thioguanine (6-thioguanine; TG), and Pentostatin (2'-deoxycoformycin)), vinca alkaloids (for example, Vinblastine (VLB, vinblastine sulfate)) and Vincristine (vincristine sulfate)), epipodophyllotoxins (for example, Etoposide and Teniposide), antibiotics (for example, Dactinomycin (actinomycin D), Daunombicin (daunomycin; mbidomycin), Doxombicin, Bleomycin, Plicamycin (mithramycin), and Mitomycin (mitomycin C), enzymes (for example, L-Asparaginase), biological response modifiers (for example,
Interferon-alpha and interferon-alpha-2b), platinum coordination compounds (for example, Cisplatin (cis-DDP) and Carboplatin), anthracenedione (Mitoxantrone), substituted ureas (for example, Hydroxyurea), methylhydrazine derivatives (for example, Procarbazine (N-methylhydrazine; MIH), adrenocorticosteroids (for example, Prednisone), progestins (for example, Hydroxyprogesterone caproate, Medroxyprogesterone, Medroxyprogesterone acetate, and Megestrol acetate), estrogens (for example, Diethylstilbestrol (DES), Diethylstilbestrol diphosphate, Estradiol, and Ethinyl estradiol), antiestrogens (for example, Tamoxifen), androgens (Testosterone proprionate, and Fluoxymesterone), antiandrogens (for example, Flutamide), gonadofropin-releasing horomone analogs (for example, Leuprolide), other hormones and hormone analogs (for example, methyltestosterone, estramustine, estramustine phosphate sodium, chlorotrianisene, and testolactone), and others (for example, dicarbazine, glutamic acid, and mitotane).
In one embodiment, the compositions ofthe invention are administered in combination with one or more ofthe following dmgs: infliximab (also known as Remicade™ Centocor, Inc.), Trocade (Roche, RO-32-3555), Leflunomide (also known as Arava™ from Hoechst Marion Roussel), Kineret™ (an IL-1 Receptor antagonist also known as Anakinra from Amgen, Inc.)
In a specific embodiment, compositions of the invention are administered in combination with CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone) or combination of one or more ofthe components of CHOP. In one embodiment, the compositions ofthe invention are administered in combination with anti-CD20 antibodies, human monoclonal anti-CD20 antibodies. In another embodiment, the compositions ofthe invention are administered in combination with anti-CD20 antibodies and CHOP, or anti-CD20 antibodies and any combination of one or more of the components of CHOP, particularly cyclophosphamide and/or prednisone. In a specific embodiment, compositions ofthe invention are administered in combination with Rituximab. In a further embodiment, compositions of the invention are administered with Rituximab and CHOP, or Rituximab and any combination of one or more ofthe components of CHOP, particularly cyclophosphamide and/or prednisone. In a specific embodiment, compositions ofthe invention are administered in combination with tositumomab. In a further
embodiment, compositions of the invention are administered with tositumomab and CHOP, or tositumomab and any combination of one or more ofthe components of CHOP, particularly cyclophosphamide and/or prednisone. The anti-CD20 antibodies may optionally be associated with radioisotopes, toxins or cytotoxic prodmgs. In another specific embodiment, the compositions ofthe invention are administered in combination Zevalin™. In a further embodiment, compositions ofthe invention are administered with Zevalin™ and CHOP, or Zevalin™ and any combination of one or more ofthe components of CHOP, particularly cyclophosphamide and/or prednisone. Zevalin™ may be associated with one or more radisotopes. Particularly preferred isotopes are 90Y and '"in.
In an additional embodiment, the Therapeutics ofthe invention are administered in combination with cytokines. Cytokines that may be administered with the Therapeutics ofthe invention include, but are not limited to, IL2, IL3, IL4, IL5, IL6, IL7, IL10, IL12, IL13, IL15, anti-CD40, CD40L, IFN-gamma and TNF- alpha. In another embodiment, Therapeutics of the invention may be administered with any interleukin, including, but not limited to, IL-lalpha, IL-lbeta, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17, IL-18, IL-19, IL-20, and IL-21.
In one embodiment, the Therapeutics ofthe invention are administered in combination with members of the TNF family. TNF, TNF-related or TNF-like molecules that may be administered with the Therapeutics of the invention include, but are not limited to, soluble forms of TNF-alpha, lymphotoxin-alpha (LT-alpha, also known as TNF-beta), LT-beta (found in complex heterotrimer LT-alpha2-beta), OPGL, FasL, CD27L, CD30L, CD40L, 4-1BBL, DcR3, OX40L, TNF-gamma (International Publication No. WO 96/14328), AJ-M-I (International Publication No. WO 97/33899), endokine-alpha (International Publication No. WO 98/07880), OPG, and neutrokine-alpha (International Publication No. WO 98/18921, OX40, and nerve growth factor (NGF), and soluble forms of Fas, CD30, CD27, CD40 and 4-IBB, TR2 (International Publication No. WO 96/34095), DR3 (International Publication No. WO 97/33904), DR4 (International Publication No. WO 98/32856), TR5 (International Publication No. WO 98/30693), TRANK, TR9 (International Publication No. WO 98/56892),TR10 (International Publication No. WO 98/54202),
312C2 (International Publication No. WO 98/06842), and TR12, and soluble forms CD154, CD70, and CD153.
In an additional embodiment, the Therapeutics ofthe invention are administered in combination with angiogenic proteins. Angiogenic proteins that may be administered with the Therapeutics ofthe invention include, but are not limited to, Glioma Derived Growth Factor (GDGF), as disclosed in European Patent Number EP-399816; Platelet Derived Growth Factor-A (PDGF-A), as disclosed in European Patent Number EP-682110; Platelet Derived Growth Factor-B (PDGF-B), as disclosed in European Patent Number EP-282317; Placental Growth Factor (PIGF), as disclosed in International Publication Number WO 92/06194; Placental Growth
Factor-2 (P1GF-2), as disclosed in Hauser et al., Growth Factors, 4:259-268 (1993); Vascular Endothelial Growth Factor (VEGF), as disclosed in International Publication Number WO 90/13649; Vascular Endothelial Growth Factor-A (VEGF-A), as disclosed in European Patent Number EP-506477; Vascular Endothelial Growth Factor-2 (VEGF-2), as disclosed in International Publication Number WO 96/39515; Vascular Endothelial Growth Factor B (VEGF-3); Vascular Endothelial Growth Factor B-186 (VEGF-B186), as disclosed in International Publication Number WO 96/26736; Vascular Endothelial Growth Factor-D (VEGF-D), as disclosed in International Publication Number WO 98/02543; Vascular Endothelial Growth Factor-D (VEGF-D), as disclosed in International Publication Number WO 98/07832; and Vascular Endothelial Growth Factor-E (VEGF-E), as disclosed in German Patent Number DE19639601. The above mentioned references are herein incoφorated by reference in their entireties.
In an additional embodiment, the Therapeutics ofthe invention are administered in combination with Fibroblast Growth Factors. Fibroblast Growth Factors that may be administered with the Therapeutics ofthe invention include, but are not limited to, FGF-1, FGF-2, FGF-3, FGF-4, FGF-5, FGF-6, FGF-7, FGF-8, FGF-9, FGF-10, FGF-11, FGF- 12, FGF- 13, FGF-14, and FGF-15.
In an additional embodiment, the Therapeutics ofthe invention are administered in combination with hematopoietic growth factors. Hematopoietic growth factors that may be administered with the Therapeutics ofthe invention include, but are not limited to, granulocyte macrophage colony stimulating factor
(GM-CSF) (sargramostim, LEUKTNE™, PROKTNE™), granulocyte colony stimulating factor (G-CSF) (filgrastim, NEUPOGEN™), macrophage colony stimulating factor (M-CSF, CSF-1) erythropoietin (epoetin alfa, EPOGEN™, PROCRIT™), stem cell factor (SCF, c-kit ligand, steel factor), megakaryocyte colony stimulating factor, PIXY321 (a GMCSF/IL-3 fusion protein), interleukins, especially any one or more of IL-1 through IL-12, interferon-gamma, or thrombopoietin.
In certain embodiments, Therapeutics ofthe present invention are administered in combination with adrenergic blockers, such as, for example, acebutolol, atenolol, betaxolol, bisoprolol, carteolol, labetalol, metoprolol, nadolol, oxprenolol, penbutolol, pindolol, propranolol, sotalol, and timolol.
In another embodiment, the Therapeutics of the invention are administered in combination with an antiarrhythmic drag (e.g., adenosine, amidoarone, bretylium, digitalis, digoxin, digitoxin, diliazem, disopyramide, esmolol, flecainide, lidocaine, mexiletine, moricizine, phenytoin, procainamide, N-acetyl procainamide, propafenone, propranolol, quinidine, sotalol, tocainide, and verapamil).
In another embodiment, the Therapeutics ofthe invention are administered in combination with diuretic agents, such as carbonic anhydrase-inhibiting agents (e.g., acetazolamide, dichloφhenamide, and methazolamide), osmotic diuretics (e.g., glycerin, isosorbide, mannitol, and urea), diuretics that inhibit Na+-K+-2C1" symport (e.g., furosemide, bumetanide, azosemide, piretanide, tripamide, ethacrynic acid, muzolimine, and torsemide), thiazide and thiazide-like diuretics (e.g., bendroflumethiazide, benzthiazide, chlorothiazide, hydrochlorothiazide, hydro flumethiazide, methyclothiazide, polythiazide, trichormethiazide, chlorthalidone, indapamide, metolazone, and quinethazone), potassium sparing diuretics (e.g., amiloride and tnamterene), and mineralcorticoid receptor antagonists (e.g., spironolactone, canrenone, and potassium canrenoate).
In one embodiment, the Therapeutics ofthe invention are administered in combination with treatments for endocrine and/or hormone imbalance disorders. Treatments for endocrine and/or hormone imbalance disorders include, but are not limited to, 127I, radioactive isotopes of iodine such as 13,I and 123I; recombinant growth hormone, such as HUMATROPE™ (recombinant somatropin); growth
hormone analogs such as PROTROPIN™ (somatrem); dopamine agonists such as PARLODEL™ (bromocriptine); somatostatin analogs such as SANDOSTATIN™ (octreotide); gonadotropin preparations such as PREGNYL™, A.P.L.™ and PROFASI™ (chorionic gonadotropin (CG)), PERGONAL™ (menotropins), and METRODIN™ (urofollitropin (uFSH)); synthetic human gonadotropin releasing hormone preparations such as FACTREL™ and LUTREPULSE™ (gonadorelin hydrochloride); synthetic gonadotropin agonists such as LUPRON™ (leuprolide acetate), SUPPRELIN™ (histrelin acetate), SYNAREL™ (nafarelin acetate), and ZOLADEX™ (goserelin acetate); synthetic preparations of thyrotropin-releasing hormone such as RELEFACT TRH™ and THYPINONE™ (protirelin); recombinant human TSH such as THYROGEN™; synthetic preparations ofthe sodium salts ofthe natural isomers of thyroid hormones such as L-T4™, SYNTHROID™ and LEVOTHROID™ (levothyroxine sodium), L-T3™, CYTOMEL™ and TRIOSTAT™ (liothyroine sodium), and THYROLAR™ (liotrix); anti thyroid compounds such as 6- n-propylthiouracil (propylthiouracil), l-methyl-2-mercaptoimidazole and
TAPAZOLE™ (methimazole), NEO-MERCAZOLE™ (carbimazole); beta-adrenergic receptor antagonists such as propranolol and esmolol; Ca2+ channel blockers; dexamethasone and iodinated radiological contrast agents such as TELEPAQUE™ (iopanoic acid) and ORAGRAFIN™ (sodium ipodate). Additional treatments for endocrine and/or hormone imbalance disorders include, but are not limited to, estrogens or congugated estrogens such as ESTRACE™ (estradiol), ESTINYL™ (ethinyl estradiol), PREMARJN™, ESTRATAB™, ORTHO-EST™, OGEN™ and estropipate (estrone), ESTROVIS™ (quinestrol), ESTRADERM™ (estradiol), DELESTROGEN™ and VALERGEN™ (estradiol valerate), DEPO-ESTRADIOL CYPIONATE™ and ESTROJECT LA™ (estradiol cypionate); antiestrogens such as NOLVADEX™ (tamoxifen), SEROPHENE™ and CLOMID™ (clomiphene); progestins such as DURALUTTN™ (hydroxyprogesterone caproate), MPA™ and DEPO-PROVERA™ (medroxyprogesterone acetate), PROVERA™ and CYCRTN™ (MPA), MEGACE™ (megestrol acetate), NORLUTIN™ (norethindrone), and NORLUTATE™ and
AYGESTIN™ (norethindrone acetate); progesterone implants such as NORPLANT SYSTEM™ (subdermal implants of norgestrel); antiprogestins such as RU 486™ (mifepristone); hormonal contraceptives such as ENOVID™ (norethynodrel plus mestranol), PROGESTASERT™ (intrauterine device that releases progesterone), LOESTR-IN™, BREVICON™, MODICON™, GENORA™, NELONA™,
NORINYL™, OVACON-35™ and OVACON-50™ (ethinyl estradiol norethindrone), LEVLEN™, NORDETTE™, TRI-LEVLEN™ and TRIPHASIL-21™ (ethinyl estradiol/levonorgestrel) LO/OVRAL™ and OVRAL™ (ethinyl estradiol norgestrel), DEMULEN™ (ethinyl estradiol/ethynodiol diacetate), NORINYL™, ORTHO- NOVUM™, NORETHIN™, GENORA™, and NELOV A™ (norethindrone/mestranol), DESOGEN™ and ORTHO-CEPT™ (ethinyl estradiol/desogestrel), ORTHO- CYCLEN™ and ORTHO-TRICYCLEN™ (ethinyl estradiol/norgestimate), MICRONOR™ and NOR-QD™ (norethindrone), and OVRETTE™ (norgestrel). Additional treatments for endocrine and/or hormone imbalance disorders include, but are not limited to, testosterone esters such as methenolone acetate and testosterone undecanoate; parenteral and oral androgens such as TESTOJECT-50™ (testosterone), TESTEX™ (testosterone propionate), DELATESTRYL™ (testosterone enanthate), DEPO-TESTOSTERONE™ (testosterone cypionate), DANOCRINE™ (danazol), HALOTESTIN™ (fluoxymesterone), ORETON METHYL™, TESTRED™ and VIRILON™ (methyltestosterone), and OXANDRIN™ (oxandrolone); testosterone transdermal systems such as TESTODERM™; androgen receptor antagonist and 5-alpha-reductase inhibitors such as ANDROCUR™ (cyproterone acetate), EULEXIN™ (flutamide), and PROSCAR™ (finasteride); adrenocorticotropic hormone preparations such as CORTROSYN™ (cosyntropin); adrenocortical steroids and their synthetic analogs such as ACLOVATE™ (alclometasone dipropionate),
CYCLOCORT™ (amcinonide), BECLOVENT™ and VANCERIL™ (beclomethasone dipropionate), CELESTONE™ (betamethasone), BENISONE™ and UTICORT™ (betamethasone benzoate), DIPROSONE™ (betamethasone dipropionate), CELESTONE PHOSPHATE™ (betamethasone sodium phosphate), CELESTONE SOLUSPAN™ (betamethasone sodium phosphate and acetate), BETA-VAL™ and
VALISONE™ (betamethasone valerate), TEMOVATE™ (clobetasol propionate), CLODERM™ (clocortolone pivalate), CORTEF™ and HYDROCORTONE™ (cortisol (hydrocortisone)), HYDROCORTONE ACETATE™ (cortisol (hydrocortisone) acetate), LOCOID™ (cortisol (hydrocortisone) butyrate), HYDROCORTONE PHOSPHATE™ (cortisol (hydrocortisone) sodium phosphate), A-HYDROCORT™ and SOLU CORTEF™ (cortisol (hydrocortisone) sodium succinate), WESTCORT™ (cortisol (hydrocortisone) valerate), CORTISONE ACETATE™ (cortisone acetate), DESOWEN™ and TRIDESILON™ (desonide), TOPICORT™ (desoximetasone), DECADRON™ (dexamethasone), DECADRON LA™ (dexamethasone acetate), DECADRON PHOSPHATE™ and HEXADROL PHOSPHATE™ (dexamethasone sodium phosphate), FLORONE™ and MAXIFLOR™ (diflorasone diacetate), FLORINEF ACETATE™ (fludrocortisone acetate), AEROBID™ and NASALIDE™ (flunisolide), FLUONID™ and SYNALAR™ (fluocinolone acetonide), LIDEX™ (fluocinonide), FLUOR-OP™ and FML™ (fluorometholone), CORDRAN™ (flurandrenolide), HALOG™ (halcinonide), HMS LIZUIFILM™ (medrysone), MEDROL™ (methylprednisolone), DEPO- MEDROL™ and MEDROL ACETATE™ (methylprednisone acetate), A- METHAPRED™ and SOLUMEDROL™ (methylpredmsolone sodium succinate), ELOCON™ (mometasone furoate), HALDRONE™ (paramethasone acetate), DELTA-CORTEF™ (prednisolone), ECONOPRED™ (prednisolone acetate), HYDELTRASOL™ (prednisolone sodium phosphate), HYDELTRA-T.B.A™ (prednisolone tebutate), DELTASONE™ (prednisone), ARISTOCORT™ and KENACORT™ (triamcinolone), KENALOG™ (triamcinolone acetonide), ARISTOCORT™ and KENACORT DIACETATE™ (triamcinolone diacetate), and ARISTOSPAN™ (triamcinolone hexacetonide); inhibitors of biosynthesis and action of adrenocortical steroids such as CYTADREN™ (aminoglutethimide), NIZORAL™ (ketoconazole), MODRASTANE™ (trilostane), and METOPIRONE™ (metyrapone); bovine, porcine or human insulin or mixtures thereof; insulin analogs; recombinant human insulin such as HUMULIN™ and NOVOLIN™; oral hypoglycemic agents such as ORAMIDE™ and ORINASE™ (tolbutamide), DIABINESE™
(chloφropamide), TOLAMIDE™ and TOLTNASE™ (tolazamide), DYMELOR™ (acetohexamide), glibenclamide, MICRONASE™, DIBETA™ and GLYNASE™ (glyburide), GLUCOTROL™ (glipizide), and DIAMICRON™ (gliclazide), GLUCOPHAGE™ (metformin), ciglitazone, pioglitazone, and alpha-glucosidase inhibitors; bovine or porcine glucagon; somatostatins such as SANDOSTATIN™ (octreotide); and diazoxides such as PROGLYCEM™ (diazoxide).
In one embodiment, the Therapeutics ofthe invention are administered in combination with treatments for uterine motility disorders. Treatments for uterine motility disorders include, but are not limited to, estrogen dmgs such as conjugated estrogens (e.g., PREMARIN® and ESTRATAB®), estradiols (e.g., CLIMARA® and ALORA®), estropipatej and chlorotrianisene; progestin dmgs (e.g., AMEN® (medroxyprogesterone), MICRONOR® (norethidrone acetate), PROMETRIUM® progesterone, and megestrol acetate); and estrogen/progesterone combination therapies such as, for example, conjugated estrogens/medroxyprogesterone (e.g., PREMPRO™ and PREMPHASE®) and norethindrone acetate/ethinyl estsradiol (e.g., FEMHRT™).
In an additional embodiment, the Therapeutics of the invention are administered in combination with drags effective in treating iron deficiency and hypochromic anemias, including but not limited to, ferrous sulfate (iron sulfate, FEOSOL™), ferrous fumarate (e.g., FEOSTAT™), ferrous gluconate (e.g., FERGON™), polysaccharide-iron complex (e.g., NIFEREX™), iron dextran injection (e.g., UNFED™), cupric sulfate, pyroxidine, riboflavin, Vitamin B* , cyancobalamin injection (e.g., REDISOL™, RUBRAMIN PC™), hydroxocobalamin, folic acid (e.g., FOLVITE™), leucovorin (folinic acid, 5-CHOH4PteGlu, citrovomm factor) or WELLCOVORTN (Calcium salt of leucovorin), transferrin or ferritin.
In certain embodiments, the Therapeutics ofthe invention are administered in combination with agents used to treat psychiatric disorders. Psychiatric drags that may be administered with the Therapeutics ofthe invention include, but are not limited to, antipsychotic agents (e.g., chloφromazine, chloφrothixene, clozapine, fluphenazine, haloperidol, loxapine, mesoridazine, molindone, olanzapine, peφhenazine, pimozide, quetiapine, risperidone, thioridazine, thiothixene,
trifluoperazine, and triflupromazine), antimanic agents (e.g., carbamazepine, divalproex sodium, lithium carbonate, and lithium citrate), antidepressants (e.g., amitriptyline, amoxapine, bupropion, citalopram, clomipramine, desipramine, doxepin, fluvoxamine, fluoxetine, imipramine, isocarbox-azid, maprotiline, mirtazapine, nefazodone, nortriptyline, paroxetine, phenelzine, protriptyline, sertraline, tranylcypromine, trazodone, trimipramine, and venlafaxine), antianxiety agents (e.g., alprazolam, buspirone, chlordiazepoxide, clorazepate, diazepam, halazepam, lorazepam, oxazepam, and prazepam), and stimulants (e.g., d- amphetamine, methylphenidate, and pemoline). In other embodiments, the Therapeutics of the invention are administered in combination with agents used to treat neurological disorders. Neurological agents that may be administered with the Therapeutics ofthe invention include, but are not limited to, antiepileptic agents (e.g., carbamazepine, clonazepam, ethosuximide, phenobarbital, phenytoin, primidone, valproic acid, divalproex sodium, felbamate, gabapentin, lamotrigine, levetiracetam, oxcarbazepine, tiagabine, topiramate, zonisamide, diazepam, lorazepam, and clonazepam), antiparkinsonian agents (e.g., levodopa/carbidopa, selegiline, amantidine, bromocriptine, pergolide, ropinirole, pramipexole, benztropine; biperiden; ethopropazine; procyclidine; trihexyphenidyl, tolcapone), and ALS therapeutics (e.g. riluzole). In another embodiment, Therapeutics ofthe invention are administered in combination with vasodilating agents and or calcium channel blocking agents. Vasodilating agents that may be administered with the Therapeutics ofthe invention include, but are not limited to, Angiotensin Converting Enzyme (ACE) inhibitors (e.g., papaverine, isoxsuprine, benazepril, captopril, cilazapril, enalapril, enalaprilat, fosinopril, lisinopril, moexipril, perindopril, quinapril, ramipril, spirapril, trandolapril, and nylidrin), and nitrates (e.g., isosorbide dinitrate, isosorbide mononitrate, and nitroglycerin). Examples of calcium channel blocking agents that may be administered in combination with the Therapeutics ofthe invention include, but are not limited to amlodipine, bepridil, diltiazem, felodipine, flunarizine, isradipine, nicardipine, nifedipine, nimodipine, and verapamil.
In additional embodiments, the Therapeutics ofthe invention are administered in combination with other therapeutic or prophylactic regimens, such as, for example, radiation therapy.
Example 24: Method of Treating Decreased Levels of the Polypeptide
The present invention relates to a method for treating an individual in need of an increased level of a polypeptide ofthe invention in the body comprising administering to such an individual a composition comprising a therapeutically effective amount of an agonist ofthe invention (including polypeptides ofthe invention). Moreover, it will be appreciated that conditions caused by a decrease in the standard or normal expression level of a secreted protein in an individual can be treated by administering the polypeptide ofthe present invention, preferably in the secreted form. Thus, the invention also provides a method of treatment of an individual in need of an increased level ofthe polypeptide comprising administering to such an individual a Therapeutic comprising an amount of the polypeptide to increase the activity level ofthe polypeptide in such an individual.
For example, a patient with decreased levels of a polypeptide receives a daily dose 0.1-100 ug/kg ofthe polypeptide for six consecutive days. Preferably, the polypeptide is in the secreted form. The exact details ofthe dosing scheme, based on administration and formulation, are provided in Example 23.
Example 25: Method of Treating Increased Levels of the Polypeptide
The present invention also relates to a method of treating an individual in need of a decreased level of a polypeptide ofthe invention in the body comprising administering to such an individual a composition comprising a therapeutically effective amount of an antagonist ofthe invention (including polypeptides and antibodies ofthe invention).
In one example, antisense technology is used to inhibit production of a polypeptide ofthe present invention. This technology is one example of a method of decreasing levels of a polypeptide, preferably a secreted form, due to a variety of etiologies, such as cancer. For example, a patient diagnosed with abnormally increased levels of a polypeptide is administered intravenously antisense
polynucleotides at 0.5, 1.0, 1.5, 2.0 and 3.0 mg/kg day for 21 days. This treatment is repeated after a 7-day rest period if the treatment was well tolerated. The formulation ofthe antisense polynucleotide is provided in Example 23.
Example 26: Method of Treatment Using Gene Therapy-Ex Nivo
One method of gene therapy transplants fibroblasts, which are capable of expressing a polypeptide, onto a patient. Generally, fibroblasts are obtained from a subject by skin biopsy. The resulting tissue is placed in tissue-culture medium and separated into small pieces. Small chunks ofthe tissue are placed on a wet surface of a tissue culture flask, approximately ten pieces are placed in each flask. The flask is turned upside down, closed tight and left at room temperature over night. After 24 hours at room temperature, the flask is inverted and the chunks of tissue remain fixed to the bottom ofthe flask and fresh media (e.g., Ham's F12 media, with 10% FBS, penicillin and streptomycin) is added. The flasks are then incubated at 37 degree C for approximately one week.
At this time, fresh media is added and subsequently changed every several days. After an additional two weeks in culture, a monolayer of fibroblasts emerge. The monolayer is trypsinized and scaled into larger flasks. pMV-7 (Kirschmeier, P.T. et al., DΝA, 7:219-25 (1988)), flanked by the long terminal repeats ofthe Moloney murine sarcoma vims, is digested with EcoRI and
Hindlll and subsequently treated with calf intestinal phosphatase. The linear vector is fractionated on agarose gel and purified, using glass beads.
The cDΝA encoding a polypeptide ofthe present invention can be amplified using PCR primers which correspond to the 5' and 3' end sequences respectively as set forth in Example 1 using primers and having appropriate restriction sites and initiation/stop codons, if necessary. Preferably, the 5' primer contains an EcoRI site and the 3' primer includes a Hindlll site. Equal quantities ofthe Moloney murine sarcoma vims linear backbone and the amplified EcoRI and Hindlll fragment are added together, in the presence of T4 DΝA ligase. The resulting mixture is maintained under conditions appropriate for ligation ofthe two fragments. The ligation mixture is then used to transform bacteria HB101, which are then plated onto
agar containing kanamycin for the purpose of confirming that the vector has the gene of interest properly inserted.
The amphotropic pA317 or GP+aml2 packaging cells are grown in tissue culture to confluent density in Dulbecco's Modified Eagles Medium (DMEM) with 10% calf seram (CS), penicillin and streptomycin. The MSV vector containing the gene is then added to the media and the packaging cells transduced with the vector. The packaging cells now produce infectious viral particles containing the gene (the packaging cells are now referred to as producer cells).
Fresh media is added to the transduced producer cells, and subsequently, the media is harvested from a 10 cm plate of confluent producer cells. The spent media, containing the infectious viral particles, is filtered through a millipore filter to remove detached producer cells and this media is then used to infect fibroblast cells. Media is removed from a sub-confluent plate of fibroblasts and quickly replaced with the media from the producer cells. This media is removed and replaced with fresh media. If the titer of viras is high, then virtually all fibroblasts will be infected and no selection is required. If the titer is very low, then it is necessary to use a retroviral vector that has a selectable marker, such as neo or his. Once the fibroblasts have been efficiently infected, the fibroblasts are analyzed to determine whether protein is produced. The engineered fibroblasts are then transplanted onto the host, either alone or after having been grown to confluence on cytodex 3 microcarrier beads.
Example 27: Gene Therapy Using Endogenous Genes Corresponding To Polynucleotides of the Invention Another method of gene therapy according to the present invention involves operably associating the endogenous polynucleotide sequence ofthe invention with a promoter via homologous recombination as described, for example, in U.S. Patent NO: 5,641,670, issued June 24, 1997; International Publication NO: WO 96/29411, published September 26, 1996; International Publication NO: WO 94/12650, published August 4, 1994; Koller et al., Proc. Natl Acad. Sci. USA, 86:8932-8935 (1989); and Zijlstra et al., Nature, 342:435-438 (1989). This method involves the
activation of a gene which is present in the target cells, but which is not expressed in the cells, or is expressed at a lower level than desired.
Polynucleotide constructs are made which contain a promoter and targeting sequences, which are homologous to the 5' non-coding sequence of endogenous polynucleotide sequence, flanking the promoter. The targeting sequence will be sufficiently near the 5' end ofthe polynucleotide sequence so the promoter will be operably linked to the endogenous sequence upon homologous recombination. The promoter and the targeting sequences can be amplified using PCR. Preferably, the amplified promoter contains distinct restriction enzyme sites on the 5' and 3' ends. Preferably, the 3' end of the first targeting sequence contains the same restriction enzyme site as the 5' end ofthe amplified promoter and the 5' end of the second targeting sequence contains the same restriction site as the 3' end ofthe amplified promoter.
The amplified promoter and the amplified targeting sequences are digested with the appropriate restriction enzymes and subsequently treated with calf intestinal phosphatase. The digested promoter and digested targeting sequences are added together in the presence of T4 DNA ligase. The resulting mixture is maintained under conditions appropriate for ligation ofthe two fragments. The constmct is size fractionated on an agarose gel then purified by phenol extraction and ethanol precipitation.
In this Example, the polynucleotide constmcts are administered as naked polynucleotides via electroporation. However, the polynucleotide constructs may also be administered with transfection-facilitating agents, such as liposomes, viral sequences, viral particles, precipitating agents, etc. Such methods of delivery are known in the art.
Once the cells are transfected, homologous recombination will take place which results in the promoter being operably linked to the endogenous polynucleotide sequence. This results in the expression of polynucleotide corresponding to the polynucleotide in the cell. Expression may be detected by immunological staining, or any other method known in the art.
Fibroblasts are obtained from a subject by skin biopsy. The resulting tissue is placed in DMEM + 10% fetal calf seram. Exponentially growing or early stationary
phase fibroblasts are trypsinized and rinsed from the plastic surface with nutrient medium. An aliquot ofthe cell suspension is removed for counting, and the remaining cells are subjected to centrifugation. The supematant is aspirated and the pellet is resuspended in 5 ml of electroporation buffer (20 mM HEPES pH 7.3, 137 mM NaCl, 5 mM KC1, 0.7 mM Na2 HPO4, 6 mM dextrose). The cells are recentrifuged, the supernatant aspirated, and the cells resuspended in electroporation buffer containing 1 mg/ml acetylated bovine semm albumin. The final cell suspension contains approximately 3X106 cells/ml. Electroporation should be performed immediately following resuspension. Plasmid DNA is prepared according to standard techniques. For example, to constmct a plasmid for targeting to the locus corresponding to the polynucleotide of the invention, plasmid pUC18 (MBI Fermentas, Amherst, NY) is digested with Hindlll. The CMN promoter is amplified by PCR with an Xbal site on the 5' end and a BamHl site on the 3'end. Two non-coding sequences are amplified via PCR: one non-coding sequence (fragment 1) is amplified with a Hindlll site at the 5' end and an Xba site at the 3'end; the other non-coding sequence (fragment 2) is amplified with a BamHl site at the 5 'end and a Hindlll site at the 3'end. The CMN promoter and the fragments (1 and 2) are digested with the appropriate enzymes (CMN promoter - Xbal and BamHl; fragment 1 - Xbal; fragment 2 - BamHl) and ligated together. The resulting ligation product is digested with Hindlll, and ligated with the Hindlll- digested pUC18 plasmid.
Plasmid DΝA is added to a sterile cuvette with a 0.4 cm electrode gap (Bio-Rad). The final DΝA concentration is generally at least 120 μg/ml. 0.5 ml ofthe cell suspension (containing approximately 1.5.X106 cells) is then added to the cuvette, and the cell suspension and DΝA solutions are gently mixed. Electroporation is performed with a Gene-Pulser apparatus (Bio-Rad). Capacitance and voltage are set at 960 μF and 250-300 N, respectively. As voltage increases, cell survival decreases, but the percentage of surviving cells that stably incoφorate the introduced DΝA into their genome increases dramatically. Given these parameters, a pulse time of approximately 14-20 mSec should be observed.
Electroporated cells are maintained at room temperature for approximately 5 min, and the contents ofthe cuvette are then gently removed with a sterile transfer
pipette. The cells are added directly to 10 ml of prewarmed nutrient media (DMEM with 15%) calf semm) in a 10 cm dish and incubated at 37 degree C. The following day, the media is aspirated and replaced with 10 ml of fresh media and incubated for a further 16-24 hours. The engineered fibroblasts are then injected into the host, either alone or after having been grown to confluence on cytodex 3 microcarrier beads. The fibroblasts now produce the protein product. The fibroblasts can then be introduced into a patient as described above.
Example 28: Method of Treatment Using Gene Therapy - In Nivo
Another aspect ofthe present invention is using in vivo gene therapy methods to treat disorders, diseases and conditions. The gene therapy method relates to the introduction of naked nucleic acid (DΝA, RΝA, and antisense DΝA or RΝA) sequences into an animal to increase or decrease the expression ofthe polypeptide. The polynucleotide ofthe present invention may be operatively linked to a promoter or any other genetic elements necessary for the expression ofthe polypeptide by the target tissue. Such gene therapy and delivery techniques and methods are known in the art, see, for example, WO90/11092, WO98/11779; U.S. Patent NO. 5693622, 5705151, 5580859; Tabata et al., Cardiovasc. Res. 35(3):470-479 (1997); Chao et al., Pharmacol. Res. 35(6):517-522 (1997); Wolff, Neuromuscul. Disord. 7(5):314-318 (1997); Schwartz et al., Gene Ther. 3(5):405-411 (1996); Tsurumi et al., Circulation 94( 12) :3281-3290 (1996) (incoφorated herein by reference).
The polynucleotide constructs may be delivered by any method that delivers injectable materials to the cells of an animal, such as, injection into the interstitial space of tissues (heart, muscle, skin, lung, liver, intestine and the like). The polynucleotide constructs can be delivered in a pharmaceutically acceptable liquid or aqueous carrier.
The term "naked" polynucleotide, DNA or RNA, refers to sequences that are free from any delivery vehicle that acts to assist, promote, or facilitate entry into the cell, including viral sequences, viral particles, liposome formulations, lipofectin or precipitating agents and the like. However, the polynucleotides ofthe present invention may also be delivered in liposome formulations (such as those taught in
Feigner P.L. et al. (1995) Ann. NY Acad. Sci. 772:126-139 and Abdallah B. et al. (1995) Biol. Cell 85(l):l-7) which can be prepared by methods well known to those skilled in the art.
The polynucleotide vector constructs used in the gene therapy method are preferably constructs that will not integrate into the host genome nor will they contain sequences that allow for replication. Any strong promoter known to those skilled in the art can be used for driving the expression of DNA. Unlike other gene therapies techniques, one major advantage of introducing naked nucleic acid sequences into target cells is the transitory nature ofthe polynucleotide synthesis in the cells. Studies have shown that non-replicating DNA sequences can be introduced into cells to provide production ofthe desired polypeptide for periods of up to six months.
The polynucleotide constmct can be delivered to the interstitial space of tissues within the an animal, including of muscle, skin, brain, lung, liver, spleen, bone marrow, thymus, heart, lymph, blood, bone, cartilage, pancreas, kidney, gall bladder, stomach, intestine, testis, ovary, uterus, rectum, nervous system, eye, gland, and connective tissue. Interstitial space ofthe tissues comprises the intercellular fluid, mucopolysaccharide matrix among the reticular fibers of organ tissues, elastic fibers in the walls of vessels or chambers, collagen fibers of fibrous tissues, or that same matrix within connective tissue ensheathing muscle cells or in the lacunae of bone. It is similarly the space occupied by the plasma ofthe circulation and the lymph fluid of the lymphatic channels. Delivery to the interstitial space of muscle tissue is preferred for the reasons discussed below. They may be conveniently delivered by injection into the tissues comprising these cells. They are preferably delivered to and expressed in persistent, non-dividing cells which are differentiated, although delivery and expression may be achieved in non-differentiated or less completely differentiated cells, such as, for example, stem cells of blood or skin fibroblasts. In vivo muscle cells are particularly competent in their ability to take up and express polynucleotides.
For the naked polynucleotide injection, an effective dosage amount of DNA or RNA will be in the range of from about 0.05 g/kg body weight to about 50 mg/kg body weight. Preferably the dosage will be from about 0.005 mg/kg to about 20 mg/kg and more preferably from about 0.05 mg/kg to about 5 mg/kg. Of course, as
the artisan of ordinary skill will appreciate, this dosage will vary according to the tissue site of injection. The appropriate and effective dosage of nucleic acid sequence can readily be determined by those of ordinary skill in the art and may depend on the condition being treated and the route of administration. The preferred route of administration is by the parenteral route of injection into the interstitial space of tissues. However, other parenteral routes may also be used, such as, inhalation of an aerosol formulation particularly for delivery to lungs or bronchial tissues, throat or mucous membranes of the nose. In addition, naked polynucleotide constmcts can be delivered to arteries during angioplasty by the catheter used m the procedure. The dose response effects of injected polynucleotide in muscle in vivo is determined as follows. Suitable template DNA for production of mRNA coding for polypeptide ofthe present invention is prepared in accordance with a standard recombinant DNA methodology. The template DNA, which may be either circular or linear, is either used as naked DNA or complexed with liposomes. The quadriceps muscles of mice are then injected with various amounts ofthe template DNA. Five to six week old female and male Balb/C mice are anesthetized by intraperitoneal injection with 0.3 ml of 2.5% Avertin. A 1.5 cm incision is made on the anterior thigh, and the quadriceps muscle is directly visualized. The template DNA is injected in 0.1 ml of carrier in a 1 cc syringe through a 27 gauge needle over one minute, approximately 0.5 cm from the distal insertion site ofthe muscle into the knee and about 0.2 cm deep. A suture is placed over the injection site for future localization, and the skin is closed with stainless steel clips.
After an appropriate incubation time (e.g., 7 days) muscle extracts are prepared by excising the entire quadriceps. Every fifth 15 um cross-section ofthe individual quadriceps muscles is histochemically stained for protein expression. A time course for protein expression may be done in a similar fashion except that quadriceps from different mice are harvested at different times. Persistence of DNA in muscle following injection may be determined by Southern blot analysis after preparing total cellular DNA and HIRT supematants from injected and control mice. The results ofthe above experimentation in mice can be use to extrapolate proper dosages and other treatment parameters in humans and other animals using naked DNA.
Example 29: Transgenic Animals.
The polypeptides ofthe invention can also be expressed in transgenic animals. Animals of any species, including, but not limited to, mice, rats, rabbits, hamsters, guinea pigs, pigs, micro-pigs, goats, sheep, cows and non-human primates, e.g., baboons, monkeys, and chimpanzees may be used to generate transgenic animals. In a specific embodiment, techniques described herein or otherwise known in the art, are used to express polypeptides ofthe invention in humans, as part of a gene therapy protocol. Any technique known in the art may be used to introduce the transgene (i.e., polynucleotides ofthe invention) into animals to produce the founder lines of transgenic animals. Such techniques include, but are not limited to, pronuclear micro injection (Paterson et al., Appl. Microbiol. Biotechnol. 40:691-698 (1994); Carver et al., Biotechnology (NY) 11:1263-1270 (1993); Wright et al., Biotechnology (NY) 9:830-834 (1991); and Hoppe et al., U.S. Pat. No. 4,873,191 (1989)); retroviras mediated gene transfer into germ lines (Nan der Putten et al., Proc. Νatl. Acad. Sci., USA 82:6148-6152 (1985)), blastocysts or embryos; gene targeting in embryonic stem cells (Thompson et al., Cell 56:313-321 (1989)); electroporation of cells or embryos (Lo, 1983, Mol Cell. Biol. 3:1803-1814 (1983)); introduction ofthe polynucleotides ofthe invention using a gene gun (see, e.g., Ulmer et al., Science 259:1745 (1993); introducing nucleic acid constructs into embryonic pleuripotent stem cells and transferring the stem cells back into the blastocyst; and sperm- mediated gene transfer (Lavitrano et al., Cell 57:717-723 (1989); etc. For a review of such techniques, see Gordon, "Transgenic Animals," Intl. Rev. Cytol. 115:171-229 (1989), which is incoφorated by reference herein in its entirety.
Any technique known in the art may be used to produce transgenic clones containing polynucleotides ofthe invention, for example, nuclear fransfer into enucleated oocytes of nuclei from cultured embryonic, fetal, or adult cells induced to quiescence (Campell et al., Nature 380:64-66 (1996); Wilmut et al., Nature 385:810- 813 (1997)).
The present invention provides for transgenic animals that carry the transgene in all their cells, as well as animals which carry the transgene in some, but not all their
cells, i.e., mosaic animals or chimeric. The transgene may be integrated as a single transgene or as multiple copies such as in concatamers, e.g., head-to-head tandems or head-to-tail tandems. The transgene may also be selectively introduced into and activated in a particular cell type by following, for example, the teaching of Lasko et al. (Lasko et al., Proc. Natl. Acad. Sci. USA 89:6232-6236 (1992)). The regulatory sequences required for such a cell-type specific activation will depend upon the particular cell type of interest, and will be apparent to those of skill in the art. When it is desired that the polynucleotide transgene be integrated into the chromosomal site ofthe endogenous gene, gene targeting is preferred. Briefly, when such a technique is to be utilized, vectors containing some nucleotide sequences homologous to the endogenous gene are designed for the puφose of integrating, via homologous recombination with chromosomal sequences, into and disrupting the function ofthe nucleotide sequence ofthe endogenous gene. The transgene may also be selectively introduced into a particular cell type, thus inactivating the endogenous gene in only that cell type, by following, for example, the teaching of Gu et al. (Gu et al., Science 265:103-106 (1994)). The regulatory sequences required for such a cell-type specific inactivation will depend upon the particular cell type of interest, and will be apparent to those of skill in the art.
Once transgenic animals have been generated, the expression ofthe recombinant gene may be assayed utilizing standard techniques. Initial screening may be accomplished by Southern blot analysis or PCR techniques to analyze animal tissues to verify that integration ofthe transgene has taken place. The level of mRNA expression ofthe transgene in the tissues of the transgenic animals may also be assessed using techniques which include, but are not limited to, Northern blot analysis of tissue samples obtained from the animal, in situ hybridization analysis, and reverse transcriptase-PCR (rt-PCR). Samples of transgenic gene-expressing tissue may also be evaluated immunocytochemically or immunohistochemically using antibodies specific for the transgene product.
Once the founder animals are produced, they may be bred, inbred, outbred, or crossbred to produce colonies ofthe particular animal. Examples of such breeding strategies include, but are not limited to: outbreeding of founder animals with more than one integration site in order to establish separate lines; inbreeding of separate
lines in order to produce compound transgenics that express the transgene at higher levels because ofthe effects of additive expression of each transgene; crossing of heterozygous transgenic animals to produce animals homozygous for a given integration site in order to both augment expression and eliminate the need for screening of animals by DNA analysis; crossing of separate homozygous lines to produce compound heterozygous or homozygous lines; and breeding to place the transgene on a distinct background that is appropriate for an experimental model of interest.
Transgenic animals ofthe invention have uses which include, but are not limited to, animal model systems useful in elaborating the biological function of polypeptides ofthe present invention, studying diseases, disorders, and/or conditions associated with aberrant expression, and in screening for compounds effective in ameliorating such diseases, disorders, and/or conditions.
Example 30: Knock-Out Animals.
Endogenous gene expression can also be reduced by inactivating or "knocking out" the gene and/or its promoter using targeted homologous recombination. (E.g., see Smithies et al., Nature 317:230-234 (1985); Thomas & Capecchi, Cell 51:503- 512 (1987); Thompson et al., Cell 5:313-321 (1989); each of which is incoφorated by reference herein in its entirety). For example, a mutant, non- functional polynucleotide ofthe invention (or a completely unrelated DNA sequence) flanked by DNA homologous to the endogenous polynucleotide sequence (either the coding regions or regulatory regions ofthe gene) can be used, with or without a selectable marker and/or a negative selectable marker, to transfect cells that express polypeptides ofthe invention in vivo. In another embodiment, techniques known in the art are used to generate knockouts in cells that contain, but do not express the gene of interest. Insertion ofthe DNA constmct, via targeted homologous recombination, results in inactivation ofthe targeted gene. Such approaches are particularly suited in research and agricultural fields where modifications to embryonic stem cells can be used to generate animal offspring with an inactive targeted gene (e.g., see Thomas & Capecchi 1987 and Thompson 1989, supra). However this approach can be routinely adapted for use in humans provided the recombinant DNA constmcts are directly
administered or targeted to the required site in vivo using appropriate viral vectors that will be apparent to those of skill in the art.
In further embodiments ofthe invention, cells that are genetically engineered to express the polypeptides ofthe invention, or alternatively, that are genetically engineered not to express the polypeptides ofthe invention (e.g., knockouts) are administered to a patient in vivo. Such cells may be obtained from the patient (i.e., animal, including human) or an MHC compatible donor and can include, but are not limited to fibroblasts, bone marrow cells, blood cells (e.g.. lymphocytes), adipocytes, muscle cells, endothelial cells etc. The cells are genetically engineered in vitro using recombinant DNA techniques to introduce the coding sequence of polypeptides ofthe invention into the cells, or alternatively, to disrupt the coding sequence and/or endogenous regulatory sequence associated with the polypeptides ofthe invention, e.g.. by transduction (using viral vectors, and preferably vectors that integrate the transgene into the cell genome) or transfection procedures, including, but not limited to, the use of plasmids, cosmids, YACs, naked DNA, electroporation, liposomes, etc. The coding sequence ofthe polypeptides ofthe invention can be placed under the control of a strong constitutive or inducible promoter or promoter/enhancer to achieve expression, and preferably secretion, ofthe polypeptides ofthe invention. The engineered cells which express and preferably secrete the polypeptides ofthe invention can be introduced into the patient systemically, e.g., in the circulation, or intraperitoneally.
Alternatively, the cells can be incoφorated into a matrix and implanted in the body, e.g., genetically engineered fibroblasts can be implanted as part of a skin graft; genetically engineered endothelial cells can be implanted as part of a lymphatic or vascular graft. (See, for example, Anderson et al. U.S. Patent No. 5,399,349; and Mulligan & Wilson, U.S. Patent No. 5,460,959 each of which is incoφorated by reference herein in its entirety).
When the cells to be administered are non-autologous or non-MHC compatible cells, they can be administered using well known techniques which prevent the development of a host immune response against the introduced cells. For example, the cells may be introduced in an encapsulated form which, while allowing
for an exchange of components with the immediate extracellular environment, does not allow the introduced cells to be recognized by the host immune system.
Transgenic and "knock-out" animals ofthe invention have uses which include, but are not limited to, animal model systems useful in elaborating the biological function of polypeptides ofthe present invention, studying diseases, disorders, and/or conditions associated with aberrant expression, and in screening for compounds effective in ameliorating such diseases, disorders, and/or conditions.
Example 31 : Production of an Antibody Hybridoma Technology
The antibodies ofthe present invention can be prepared by a variety of methods. (See, Current Protocols, Chapter 2.) As one example of such methods, cells expressing polypeptide(s) ofthe invention are administered to an animal to induce the production of sera containing polyclonal antibodies. In a preferred method, a preparation of polypeptide(s) of the invention is prepared and purified to render it substantially free of natural contaminants. Such a preparation is then introduced into an animal in order to produce polyclonal antisera of greater specific activity. Monoclonal antibodies specific for polypeptide(s) of the invention are prepared using hybridoma technology. (Kohler et al., Nature 256:495 (1975); Kohler et al., Eur. J. Immunol. 6:511 (1976); Kohler et al., Eur. J. Immunol. 6:292 (1976); Hammerling et al., in: Monoclonal Antibodies and T-Cell Hybridomas, Elsevier, N.Y., pp. 563-681 (1981)). In general, an animal (preferably a mouse) is immunized with polypeptide(s) ofthe invention, or, more preferably, with a secreted polypeptide- expressing cell. Such polypeptide-expressing cells are cultured in any suitable tissue culture medium, preferably in Earle's modified Eagle's medium supplemented with 10%) fetal bovine semm (inactivated at about 56°C), and supplemented with about 10 g/1 of nonessential amino acids, about 1,000 U/ml of penicillin, and about 100 μg/ml of streptomycin.
The splenocytes of such mice are extracted and fused with a suitable myeloma cell line. Any suitable myeloma cell line may be employed in accordance with the present invention; however, it is preferable to employ the parent myeloma cell line (SP2O), available from the ATCC. After fusion, the resulting hybridoma cells are
selectively maintained in HAT medium, and then cloned by limiting dilution as described by Wands et al. (Gastroenterology 80:225-232 (1981)). The hybridoma cells obtained through such a selection are then assayed to identify clones which secrete antibodies capable of binding the polypeptide(s) ofthe invention. Alternatively, additional antibodies capable of binding polypeptide(s) of the invention can be produced in a two-step procedure using anti-idiotypic antibodies. Such a method makes use ofthe fact that antibodies are themselves antigens, and therefore, it is possible to obtain an antibody which binds to a second antibody. In accordance with this method, protein specific antibodies are used to immunize an animal, preferably a mouse. The splenocytes of such an animal are then used to produce hybridoma cells, and the hybridoma cells are screened to identify clones which produce an antibody whose ability to bind to the polypeptide(s) ofthe invention protein-specific antibody can be blocked by polypeptide(s) ofthe invention. Such antibodies comprise anti-idiotypic antibodies to the polypeptide(s) ofthe invention protein-specific antibody and are used to immunize an animal to induce formation of further polypeptide(s) ofthe invention protein-specific antibodies.
For in vivo use of antibodies in humans, an antibody is "humanized". Such antibodies can be produced using genetic constmcts derived from hybridoma cells producing the monoclonal antibodies described above. Methods for producing chimeric and humanized antibodies are known in the art and are discussed herein. (See, for review, Morrison, Science 229:1202 (1985); Oi et al., BioTechniques 4:214 (1986); Cabilly et al., U.S. Patent No. 4,816,567; Taniguchi et al., EP 171496; Morrison et al., EP 173494; Neuberger et al., WO 8601533; Robinson et al., WO 8702671; Boulianne et al., Nature 312:643 (1984); Neuberger etal., Nature 314:268 (1985).)
Isolation Of Antibody Fragments Directed polypeptide(s) ofthe invention From A Library OfscFvs
Naturally occurring V-genes isolated from human PBLs are constructed into a library of antibody fragments which contain reactivities against polypeptide(s) ofthe invention to which the donor may or may not have been exposed (see e.g., U.S. Patent 5,885,793 incoφorated herein by reference in its entirety).
Rescue ofthe Library. A library of scFvs is constmcted from the RNA of human PBLs as described in PCT publication WO 92/01047. To rescue phage displaying antibody fragments, approximately 109 E. coli harboring the phagemid are used to inoculate 50 ml of 2xTY containing 1%> glucose and 100 μg/ml of ampicillin (2xTY-AMP-GLU) and grown to an O.D. of 0.8 with shaking. Five ml ofthis culture is used to innoculate 50 ml of 2xTY-AMP-GLU, 2 x 108 TU of delta gene 3 helper (Ml 3 delta gene III, see PCT publication WO 92/01047) are added and the culture incubated at 37°C for 45 minutes without shaking and then at 37°C for 45 minutes with shaking. The culture is centrifuged at 4000 r.p.m. for 10 min. and the pellet resuspended in 2 liters of 2xTY containing 100 μg/ml ampicillin and 50 ug/ml kanamycin and grown overnight. Phage are prepared as described in PCT publication WO 92/01047.
M13 delta gene III is prepared as follows: Ml 3 delta gene III helper phage does not encode gene III protein, hence the phage(mid) displaying antibody fragments have a greater avidity of binding to antigen. Infectious Ml 3 delta gene III particles are made by growing the helper phage in cells harboring a pUC19 derivative supplying the wild type gene III protein during phage moφhogenesis. The culture is incubated for 1 hour at 37° C without shaking and then for a further hour at 37°C with shaking. Cells are spun down (IEC-Centra 8,400 r.p.m. for 10 min), resuspended in 300 ml 2xTY broth containing 100 μg ampicillin/ml and 25 μg kanamycin/ml (2xTY- AMP-KAN) and grown overnight, shaking at 37°C. Phage particles are purified and concentrated from the culture medium by two PEG-precipitations (Sambrook et al., 1990), resuspended in 2 ml PBS and passed through a 0.45 μm filter (Minisart NML; Sartorius) to give a final concentration of approximately 1013 transducing units/ml (ampicillin-resistant clones).
Panning ofthe Library. Immunotubes (Nunc) are coated overnight in PBS with 4 ml of either 100 μg/ml or 10 μg/ml of a polypeptide ofthe present invention. Tubes are blocked with 2% Marvel-PBS for 2 hours at 37°C and then washed 3 times in PBS. Approximately 1013 TU of phage is applied to the tube and incubated for 30 minutes at room temperature tumbling on an over and under turntable and then left to stand for another 1.5 hours. Tubes are washed 10 times with PBS 0.1 % Tween-20 and 10 times with PBS. Phage are eluted by adding 1 ml of 100 mM triethylamine and
rotating 15 minutes on an under and over turntable after which the solution is immediately neutralized with 0.5 ml of 1.0M Tris-HCl, pH 7.4. Phage are then used to infect 10 ml of mid-log E. coli TGI by incubating eluted phage with bacteria for 30 minutes at 37°C. The E. coli are then plated on TYE plates containing 1%> glucose and 100 μg/ml ampicillin. The resulting bacterial library is then rescued with delta gene 3 helper phage as described above to prepare phage for a subsequent round of selection. This process is then repeated for a total of 4 rounds of affinity purification with tube-washing increased to 20 times with PBS, 0.1% Tween-20 and 20 times with PBS for rounds 3 and 4. Characterization of Binders. Eluted phage from the 3rd and 4th rounds of selection are used to infect E. coli HB 2151 and soluble scFv is produced (Marks, et al., 1991) from single colonies for assay. ELISAs are performed with microtitre plates coated with either 10 pg/ml ofthe polypeptide ofthe present invention in 50 mM bicarbonate pH 9.6. Clones positive in ELISA are further characterized by PCR fingeφrinting (see, e.g., PCT publication WO 92/01047) and then by sequencing. These ELISA positive clones may also be further characterized by techniques known in the art, such as, for example, epitope mapping, binding affinity, receptor signal transduction, ability to block or competitively inhibit antibody/antigen binding, and competitive agonistic or antagonistic activity.
Example 32: Assays Detecting Stimulation or Inhibition of B cell Proliferation and Differentiation
Generation of functional humoral immune responses requires both soluble and cognate signaling between B-lineage pells and their microenvironment. Signals may impart a positive stimulus that allows a B-lineage cell to continue its programmed development, or a negative stimulus that instructs the cell to arrest its current developmental pathway. To date, numerous stimulatory and inhibitory signals have been found to influence B cell responsiveness including IL-2, IL-4, IL-5, IL-6, IL-7, IL10, IL- 13,TL-14 and IL-15. Interestingly, these signals are by themselves weak effectors but can, in combination with various co-stimulatory proteins, induce activation, proliferation, differentiation, homing, tolerance and death among B cell populations.
One ofthe best studied classes of B-cell co-stimulatory proteins is the TNF- superfamily. Within this family CD40, CD27, and CD30 along with their respective ligands CD 154, CD70, and CDI 53 have been found to regulate a variety of immune responses. Assays which allow for the detection and/or observation ofthe proliferation and differentiation of these B-cell populations and their precursors are valuable tools in determining the effects various proteins may have on these B-cell populations in terms of proliferation and differentiation. Listed below are two assays designed to allow for the detection ofthe differentiation, proliferation, or inhibition of B-cell populations and their precursors. In Nitro Assay- Purified polypeptides ofthe invention, or tmncated forms thereof, is assessed for its ability to induce activation, proliferation, differentiation or inhibition and/or death in B-cell populations and their precursors. The activity ofthe polypeptides ofthe invention on purified human tonsillar B cells, measured qualitatively over the dose range from 0.1 to 10,000 ng/mL, is assessed in a standard B-lymphocyte co-stimulation assay in which purified tonsillar B cells are cultured in the presence of either formalin-fixed Staphylococcus aureus Cowan I (SAC) or immobilized anti-human IgM antibody as the priming agent. Second signals such as IL-2 and IL-15 synergize with SAC and IgM crosslinking to elicit B cell proliferation as measured by tritiated-thymidine incoφoration. Novel synergizing agents can be readily identified using this assay. The assay involves isolating human tonsillar B cells by magnetic bead (MACS) depletion of CD3-positive cells. The resulting cell population is greater than 95% B cells as assessed by expression of CD45R(B220).
Various dilutions of each sample are placed into individual wells of a 96-well plate to which are added 105 B-cells suspended in culture medium (RPMI 1640 containing 10% FBS, 5 X 10"5M 2ME, lOOU/ml penicillin, lOug/ml streptomycin, and 10"5 dilution of SAC) in a total volume of 150ul. Proliferation or inhibition is quantitated by a 20h pulse (luCi/well) with 3H-thymidine (6.7 Ci/mM) beginning 72h post factor addition. The positive and negative controls are IL2 and medium respectively.
In Vivo Assay- BALB/c mice are injected (i.p.) twice per day with buffer only, or 2 mg/Kg of a polypeptide ofthe invention, or tmncated forms thereof. Mice receive this treatment for 4 consecutive days, at which time they are sacrificed and various tissues and semm collected for analyses. Comparison of H&E sections from
normal spleens and spleens treated with polypeptides ofthe invention identify the results ofthe activity ofthe polypeptides on spleen cells, such as the diffusion of peri- arterial lymphatic sheaths, and/or significant increases in the nucleated cellularity of the red pulp regions, which may indicate the activation ofthe differentiation and proliferation of B-cell populations. Immunohistochemical studies using a B cell marker, anti-CD45R(B220), are used to determine whether any physiological changes to splenic cells, such as splenic disorganization, are due to increased B-cell representation within loosely defined B-cell zones that infiltrate established T-cell regions. Flow cytometric analyses ofthe spleens from mice treated with polypeptide is used to indicate whether the polypeptide specifically increases the proportion of ThB+, CD45R(B220)dull B cells over that which is observed in control mice.
Likewise, a predicted consequence of increased mature B-cell representation in vivo is a relative increase in semm lg titers. Accordingly, semm IgM and IgA levels are compared between buffer and polypeptide-treated mice.
The studies described in this example tested activity of a polypeptide ofthe invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides ofthe invention (e.g., gene therapy), agonists, and/or antagonists of polynucleotides or polypeptides ofthe invention.
Example 33: T Cell Proliferation Assay
Proliferation assay for Resting PBLs.
A CD3-induced proliferation assay is performed on PBMCs and is measured by the uptake of 3H-thymidine. The assay is performed as follows. Ninety-six well plates are coated with 100 microliters per well of mAb to CD3 (HIT3a, Pharmingen) or isotype-matched control mAb (B33.1) overnight at 4 C (1 microgram/ml in .05M bicarbonate buffer, pH 9.5), then washed three times with PBS. PBMC are isolated by F/H gradient centrifugation from human peripheral blood and added to quadmplicate wells (5 x 104/well) of mAb coated plates in RPMI containing 10% FCS and P/S in the presence of varying concentrations of TNF Delta and/or TNF Epsilon protein (total volume 200 microliters). Relevant protein buffer and medium alone are controls. After 48 hr. culture at 37 C, plates are spun for 2 min. at 1000 φm and 100 microliters of supernatant is removed and stored -20 C for measurement of IL-2 (or other cytokines) if effect on
proliferation is observed. Wells are supplemented with 100 microliters of medium containing 0.5 microcuries of 3H-thymidine and cultured at 37 C for 18-24 hr. Wells are harvested and incoφoration of 3H-thymidine used as a measure of proliferation. Anti-CD3 alone is the positive control for proliferation. IL-2 (100 U/ml) is also used as a control which enhances proliferation. Control antibody which does not induce proliferation of T cells is used as the negative controls for the effects of TNF Delta and/or TNF Epsilon proteins.
Alternatively, a proliferation assay on resting PBL (peripheral blood lymphocytes) is measured by the up-take of 3H-thymidine. The assay is performed as follows. PBMC are isolated by Ficoll (LSM, ICN Biotechnologies, Aurora, Ohio) gradient centrifugation from human peripheral blood, and are cultured overnight in 10%) (Fetal Calf Semm, Biofluids, Rockville, MD)/RPMI (Gibco BRL, Gaithersburg, MD). This overnight incubation period allows the adherent cells to attach to the plastic, which results in a lower background in the assay as there are fewer cells that can act as antigen presenting cells or that might be producing growth factors. The following day the non-adherent cells are collected, washed and used in the proliferation assay. The assay is performed in a 96 well plate using 2 xlO4 cells/well in a final volume of 200 microliters. The supematants (e.g., CHO or 293T supematants) expressing the protein of interest are tested at a 30% final dilution, therefore 60ul are added to 140ul of 10% FCS/RPMI containing the cells. Control supematants are used at the same final dilution and express the following proteins: vector (negative control), IL-2 (*), IFN , TNF , IL-10 and TR2. In addition to the control supematants, recombinant human IL-2 (R & D Systems, Minneapolois, MN) at a final concentration of lOOng/ml is also used. After 24 hours of culture, each well is pulsed with luCi of 3H-thymidine (Nen, Boston, MA). Cells are then harvested 20 hours following pulsing and incoφoration of 3H-thymidine is used as a measure of proliferation. Results are expressed as an average of triplicate samples plus or minus standard error.
(*) The amount of the control cytokines IL-2, IFN , TNF and IL-10 produced in each transfection varies between 300pg to 5ng/ml.
Costimulation assay.
A costimulation assay on resting PBL (peripheral blood lymphocytes) is performed in the presence of immobilized antibodies to CD3 and CD28. The use of antibodies specific for the invariant regions of CD 3 mimic the induction of T cell activation that would occur through stimulation ofthe T cell receptor by an antigen. Cross-linking ofthe TCR (first signal) in the absence of a costimulatory signal
(second signal) causes very low induction of proliferation and will eventually result in a state of "anergy", which is characterized by the absence of growth and inability to produce cytokines. The addition of a costimulatory signal such as an antibody to CD28, which mimics the action ofthe costimulatory molecule. B7-1 expressed on activated APCs, results in enhancement of T cell responses including cell survival and production of IL-2. Therefore this type of assay allows to detect both positive and negative effects caused by addition of supematants expressing the proteins of interest on T cell proliferation.
The assay is performed as follows. Ninety-six well plates are coated with lOOng/ml anti-CD3 and 5ug/ml anti-CD28 (Pharmingen, San Diego, CA) in a final volume of lOOul and incubated overnight at 4C. Plates are washed twice with PBS before use. PBMC are isolated by Ficoll (LSM, ICN Biotechnologies, Aurora, Ohio) gradient centrifugation from human peripheral blood, and are cultured overnight in 10% FCS(Fetal Calf Seram, Biofluids, Rockville, MD)/RPMI (Gibco BRL, Gaithersburg, MD). This overnight incubation period allows the adherent cells to attach to the plastic, which results in a lower background in the assay as there are fewer cells that can act as antigen presenting cells or that might be producing growth factors. The following day the non adherent cells are collected, washed and used in the proliferation assay. The assay is performed in a 96 well plate using 2 xlO4 cells/well in a final volume of 200ul. The supematants (e.g., CHO or 293T supematants) expressing the protein of interest are tested at a 30%> final dilution, therefore 60ul are added to 140ul of 10% FCS/RPMI containing the cells. Control supematants are used at the same final dilution and express the following proteins: vector only (negative control), IL-2, IFN , TNF , IL-10 and TR2. In addition to the control supematants recombinant human IL-2 (R & D Systems, Minneapolis, MN) at a final concentration of lOng/ml is also used. After 24 hours of culture, each well is pulsed with luCi of 3H-thymidine (Nen, Boston, MA). Cells are then harvested 20
hours following pulsing and incoφoration of 3H-thymidine is used as a measure of proliferation. Results are expressed as an average of triplicate samples plus or minus standard error.
Costimulation assay: IFN γ and IL-2 ELISA
The assay is performed as follows. Twenty-four well plates are coated with either 300ng/ml or 600ng/ml anti-CD3 and 5ug/ml anti-CD28 (Pharmingen, San Diego, CA) in a final volume of 500ul and incubated overnight at 4C. Plates are washed twice with PBS before use. PBMC are isolated by Ficoll (LSM, ICN Biotechnologies, Aurora, Ohio) gradient centrifugation from human peripheral blood, and are cultured overnight in 10% FCS(Fetal Calf Semm, Biofluids, Rockville, MD)/RPMI (Gibco BRL, Gaithersburg, MD). This overnight incubation period allows the adherent cells to attach to the plastic, which results in a lower background in the assay as there are fewer cells that can act as antigen presenting cells or that might be producing growth factors. The following day the non adherent cells are collected, washed and used in the costimulation assay. The assay is performed in the pre-coated twenty-four well plate using 1 x 105 cells/well in a final volume of 900ul. The supematants (293T supematants) expressing the protein of interest are tested at a 30% final dilution, therefore 300ul are added to 600ul of 10% FCS/RPMI containing the cells. Control supematants are used at the same final dilution and express the following proteins: vector only(negative control), IL-2, IFN , IL-12 and IL-18. In addition to the control supematants recombinant human IL-2 (all cytokines were purchased from R & D Systems, Minneapolis, MN) at a final concentration of lOng/ml, IL-12 at a final concentration of 1 ng/ml and IL-18 at a final concentration of 50ng/ml are also used. Controls and unknown samples are tested in duplicate.
Supernatant samples (250ul) are collected 2 days and 5 days after the beginning ofthe assay. ELISAs to test for IFN and IL-2 secretion are performed using kits purchased from R & D Systems, (Minneapolis, MN). Results are expressed as an average of duplicate samples plus or minus standard error.
Proliferation assay for preactivated-resting T cells.
A proliferation assay on preactivated-resting T cells is performed on cells that are previously activated with the lectin phytohemagglutinin (PHA). Lectins are polymeric plant proteins that can bind to residues on T cell surface glycoproteins including the TCR and act as polyclonal activators. PBLs treated with PHA and then cultured in the presence of low doses of IL-2 resemble effector T cells. These cells are generally more sensitive to further activation induced by growth factors such as IL-2. This is due to the expression of high affinity IL-2 receptors that allows this population to respond to amounts of IL-2 that are 100 fold lower than what would have an effect on a naϊve T cell. Therefore the use ofthis type of cells might enable to detect the effect of very low doses of an unknown growth factor, that would not be sufficient to induce proliferation on resting (naive ) T cells.
The assay is performed as follows. PBMC are isolated by F H gradient centrifugation from human peripheral blood, and are cultured inl0%> FCS(Fetal Calf Semm, Biofluids, Rockville, MD)/RPMI (Gibco BRL, Gaithersburg, MD) in the presence of 2ug/ml PHA (Sigma, Saint Louis, MO) for three days. The cells are then washed in PBS and cultured inl0%> FCS/RPMI in the presence of 5ng/ml of human recombinant IL-2 (R & D Systems, Minneapolis, MN) for 3 days. The cells are washed and rested in starvation medium (1%)FCS/RPMI) for 16 hours prior to the beginning ofthe proliferation assay. An aliquot ofthe cells is analyzed by FACS to determine the percentage of T cells (CD3 positive cells) present; this usually ranges between 93-97% depending on the donor. The assay is performed in a 96 well plate using 2 xlO4 cells/well in a final volume of 200ul. The supematants (e.g., CHO or 293T supematants) expressing the protein of interest are tested at a 30% final dilution, therefore 60ul are added to 140ul of inl0% FCS/RPMI containing the cells. Control supematants are used at the same final dilution and express the following proteins: vector (negative control), IL-2, IFN , TNF , IL-10 and TR2. In addition to the control supematants recombinant human IL-2 at a final concentration of lOng/ml is also used. After 24 hours of culture, each well is pulsed with luCi of 3H- thymidine(Nen, Boston, MA). Cells are then harvested 20 hours following pulsing and incoφoration of 3H-thymidine is used as a measure of proliferation. Results are expressed as an average of triplicate samples plus or minus standard error.
The studies described in this example test activity of polypeptides ofthe invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides ofthe invention (e.g., gene therapy), agonists, and/or antagonists of polynucleotides or polypeptides ofthe invention.
Example 34: Effect of Polypeptides of the Invention on the Expression of MHC Class II, Costimulatory and Adhesion Molecules and Cell Differentiation of Monocytes and Monocyte-Derived Human Dendritic Cells
Dendritic cells are generated by the expansion of proliferating precursors found in the peripheral blood: adherent PBMC or elutriated monocytic fractions are cultured for 7- 10 days with GM-CSF (50 ng/ml) and IL-4 (20 ng/ml). These dendritic cells have the characteristic phenotype of immature cells (expression of CDI, CD80, CD86, CD40 and MHC class II antigens). Treatment with activating factors, such as TNF-α, causes a rapid change in surface phenotype (increased expression of MHC class I and II, costimulatory and adhesion molecules, downregulation of FCγRII, upregulation of CD83). These changes correlate with increased antigen-presenting capacity and with functional maturation ofthe dendritic cells.
FACS analysis of surface antigens is performed as follows. Cells are treated 1-3 days with increasing concentrations of polypeptides ofthe invention or LPS (positive control), washed with PBS containing 1% BSA and 0.02 mM sodium azide, and then incubated with 1 :20 dilution of appropriate FITC- or PE-labeled monoclonal antibodies for 30 minutes at 4 degrees C. After an additional wash, the labeled cells are analyzed by flow cytometry on a FACScan (Becton Dickinson).
Effect on the production of cytokines. Cytokines generated by dendritic cells, in particular IL-12, are important in the initiation of T-cell dependent immune responses. IL-12 strongly influences the development of Thl helper T-cell immune response, and induces cytotoxic T and NK cell function. An ELISA is used to measure the IL-12 release as follows. Dendritic cells (106/ml) are treated with increasing concentrations of polypeptides ofthe invention for 24 hours. LPS (100 ng/ml) is added to the cell culture as positive control. Supematants from the cell
cultures are then collected and analyzed for IL-12 content using commercial ELISA kit (e..g, R & D Systems (Minneapolis, MN)). The standard protocols provided with the kits are used.
Effect on the expression of MHC Class II, costimulatory and adhesion molecules. Three major families of cell surface antigens can be identified on monocytes: adhesion molecules, molecules involved in antigen presentation, and Fc receptor. Modulation ofthe expression of MHC class II antigens and other costimulatory molecules, such as B7 and ICAM-1, may result in changes in the antigen presenting capacity of monocytes and ability to induce T cell activation. Increase expression of Fc receptors may correlate with improved monocyte cytotoxic activity, cytokine release and phagocytosis.
FACS analysis is used to examine the surface antigens as follows. Monocytes are treated 1-5 days with increasing concentrations of polypeptides ofthe invention or LPS (positive control), washed with PBS containing 1% BSA and 0.02 mM sodium azide, and then incubated with 1 :20 dilution of appropriate FITC- or PE-labeled monoclonal antibodies for 30 minutes at 4 degreesC. After an additional wash, the labeled cells are analyzed by flow cytometry on a FACScan (Becton Dickinson).
Monocyte activation and/or increased survival. Assays for molecules that activate (or alternatively, inactivate) monocytes and/or increase monocyte survival (or alternatively, decrease monocyte survival) are known in the art and may routinely be applied to determine whether a molecule of the invention functions as an inhibitor or activator of monocytes. Polypeptides, agonists, or antagonists ofthe invention can be screened using the three assays described below. For each of these assays, Peripheral blood mononuclear cells (PBMC) are purified from single donor leukopacks (American Red Cross, Baltimore, MD) by centrifugation through a Histopaque gradient (Sigma). Monocytes are isolated from PBMC by counterflow centrifugal elutriation.
Monocyte Survival Assay. Human peripheral blood monocytes progressively lose viability when cultured in absence of seram or other stimuli. Their death results from internally regulated process (apoptosis). Addition to the culture of activating
factors, such as TNF-alpha dramatically improves cell survival and prevents DNA fragmentation. Propidium iodide (PI) staining is used to measure apoptosis as follows. Monocytes are cultured for 48 hours in polypropylene tubes in serum-free medium (positive control), in the presence of 100 ng/ml TNF-alpha (negative control), and in the presence of varying concentrations ofthe compound to be tested. Cells are suspended at a concentration of 2 x 106/ml in PBS containing PI at a final concentration of 5 μg/ml, and then incubaed at room temperature for 5 minutes before FACScan analysis. PI uptake has been demonstrated to correlate with DNA fragmentation in this experimental paradigm.
Effect on cytokine release. An important function of monocytes/macrophages is their regulatory activity on other cellular populations ofthe immune system through the release of cytokines after stimulation. An ELISA to measure cytokine release is performed as follows. Human monocytes are incubated at a density of 5x105 cells/ml with increasing concentrations ofthe a polypeptide ofthe invention and under the same conditions, but in the absence ofthe polypeptide. For IL-12 production, the cells are primed overnight with IFN (100 U/ml) in presence of a polypeptide ofthe invention. LPS (10 ng/ml) is then added. Conditioned media are collected after 24h and kept frozen until use. Measurement of TNF-alpha, IL-10, MCP-1 and IL-8 is then performed using a commercially available ELISA kit (e..g, R & D Systems
(Minneapolis, MN)) and applying the standard protocols provided with the kit.
Oxidative burst. Purified monocytes are plated in 96-w plate at 2-lxlO5 cell/well. Increasing concentrations of polypeptides of the invention are added to the wells in a total volume of 0.2 ml culture medium (RPMI 1640 + 10% FCS, glutamine and antibiotics). After 3 days incubation, the plates are centrifuged and the medium is removed from the wells. To the macrophage monolayers, 0.2 ml per well of phenol red solution (140 mM NaCl, 10 mM potassium phosphate buffer pH 7.0, 5.5 mM dextrose, 0.56 mM phenol red and 19 U/ml of HRPO) is added, together with the stimulant (200 nM PMA). The plates are incubated at 37°C for 2 hours and the reaction is stopped by adding 20 μl IN NaOH per well. The absorbance is read at 610
nm. To calculate the amount of H O2 produced by the macrophages, a standard curve of a H2O2 solution of known molarity is performed for each experiment.
The studies described in this example tested activity of a polypeptide ofthe invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polypeptides, polynucleotides (e.g., gene therapy), agonists, and/or antagonists ofthe invention.
Example 35: Biological Effects of Polypeptides of the Invention
Astrocyte and Neuronal Assays- Recombinant polypeptides ofthe invention, expressed in Escherichia coli and purified as described above, can be tested for activity in promoting the survival, neurite outgrowth, or phenotypic differentiation of cortical neuronal cells and for inducing the proliferation of glial fibrillary acidic protein immunopositive cells, astrocytes. The selection of cortical cells for the bioassay is based on the prevalent expression of FGF-1 and FGF-2 in cortical stractures and on the previously reported enhancement of cortical neuronal survival resulting from FGF-2 treatment. A thymidine incoφoration assay, for example, can be used to elucidate a polypeptide ofthe invention's activity on these cells.
Moreover, previous reports describing the biological effects of FGF-2 (basic FGF) on cortical or hippocampal neurons in vitro have demonstrated increases in both neuron survival and neurite outgrowth (Walicke et al., "Fibroblast growth factor promotes survival of dissociated hippocampal neurons and enhances neurite extension." Proc. Natl. Acad. Sci. USA -.5:3012-3016. (1986), assay herein incoφorated by reference in its entirety). However, reports from experiments done on PC- 12 cells suggest that these two responses are not necessarily synonymous and may depend on not only which FGF is being tested but also on which receptor(s) are expressed on the target cells. Using the primary cortical neuronal culture paradigm, the ability of a polypeptide of the invention to induce neurite outgrowth can be compared to the response achieved with FGF-2 using, for example, a thymidine incoφoration assay.
Fibroblast and endothelial cell assays-
Human lung fibroblasts are obtained from Clonetics (San Diego, CA) and maintained in growth media from Clonetics. Dermal microvascular endothelial cells are obtained from Cell Applications (San Diego, CA). For proliferation assays, the human lung fibroblasts and dermal microvascular endothelial cells can be cultured at 5,000 5 cells/well in a 96-well plate for one day in growth medium. The cells are then incubated for one day in 0.1%> BSA basal medium. After replacing the medium with fresh 0.1%> BSA medium, the cells are incubated with the test proteins for 3 days. Alamar Blue (Alamar Biosciences, Sacramento, CA) is added to each well to a final concentration of 10%>. The cells are incubated for 4 hr. Cell viability is measured by reading in a CytoFluor 0 fluorescence reader. For the PGE2 assays, the human lung fibroblasts are cultured at 5,000 cells/well in a 96-well plate for one day. After a medium change to 0.1% BSA basal medium, the cells are incubated with FGF-2 or polypeptides ofthe invention with or without IL-lα for 24 hours. The supematants are collected and assayed for PGE2 by EIA kit (Cayman, Ann Arbor, MI). For the IL-6 assays, the human lung fibroblasts are 5 cultured at 5,000 cells/well in a 96-well plate for one day. After a medium change to 0.1% BSA basal medium, the cells are incubated with FGF-2 or with or without polypeptides ofthe invention IL-lα for 24 hours. The supematants are collected and assayed for IL-6 by ELISA kit (Endogen, Cambridge, MA).
Human lung fibroblasts are cultured with FGF-2 or polypeptides ofthe invention Q for 3 days in basal medium before the addition of Alamar Blue to assess effects on growth ofthe fibroblasts. FGF-2 should show a stimulation at 10 - 2500 ng/ml which can be used to compare stimulation with polypeptides ofthe invention.
Parkinson Models. 5 The loss of motor function in Parkinson's disease is attributed to a deficiency of striatal dopamine resulting from the degeneration ofthe nigrostriatal dopaminergic projection neurons. An animal model for Parkinson's that has been extensively characterized involves the systemic administration of l-methyl-4 phenyl 1,2,3,6- tetrahydropyridine (MPTP). In the CNS, MPTP is taken-up by astrocytes and catabolized 0 by monoamine oxidase B to 1 -methyl-4-phenyl pyridine (MPP+) and released.
Subsequently, MPP+ is actively accumulated in dopaminergic neurons by the high-affinity reuptake transporter for dopamine. MPP+ is then concentrated in mitochondria by the electrochemical gradient and selectively inhibits nicotidamide adenine disphosphate: ubiquinone oxidoreductionase (complex I), thereby interfering with electron transport and eventually generating oxygen radicals.
It has been demonstrated in tissue culture paradigms that FGF-2 (basic FGF) has trophic activity towards nigral dopaminergic neurons (Ferrari et al., Dev. Biol. 1989). Recently, Dr. Unsicker's group has demonstrated that administering FGF-2 in gel foam implants in the striatum results in the near complete protection of nigral dopaminergic neurons from the toxicity associated with MPTP exposure (Otto and Unsicker, J. Neuroscience, 1990).
Based on the data with FGF-2, polypeptides ofthe invention can be evaluated to determine whether it has an action similar to that of FGF-2 in enhancing dopaminergic neuronal survival in vitro and it can also be tested in vivo for protection of dopaminergic neurons in the striatum from the damage associated with MPTP treatment. The potential effect of a polypeptide ofthe invention is first examined in vitro in a dopaminergic neuronal cell culture paradigm. The cultures are prepared by dissecting the midbrain floor plate from gestation day 14 Wistar rat embryos. The tissue is dissociated with trypsin and seeded at a density of 200,000 cells/cm2 on polyorthinine-laminin coated glass coverslips. The cells are maintained in Dulbecco's Modified Eagle's medium and F12 medium containing hormonal supplements (Nl). The cultures are fixed with paraformaldehyde after 8 days in vitro and are processed for tyrosine hydroxylase, a specific marker for dopminergic neurons, immunohistochemical staining. Dissociated cell cultures are prepared from embryonic rats. The culture medium is changed every third day and the factors are also added at that time.
Since the dopaminergic neurons are isolated from animals at gestation day 14, a developmental time which is past the stage when the dopaminergic precursor cells are proliferating, an increase in the number of tyrosine hydroxylase immunopositive neurons would represent an increase in the number of dopaminergic neurons surviving in vitro. Therefore, if a polypeptide ofthe invention acts to prolong the survival of dopaminergic neurons, it would suggest that the polypeptide may be involved in Parkinson's Disease.
The studies described in this example tested activity of a polypeptide ofthe invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides (e.g., gene therapy), agonists, and/or antagonists ofthe invention.
Example 36: The Effect of Polypeptides of the Invention on the Growth of Vascular Endothelial Cells
On day 1, human umbilical vein endothelial cells (HUVEC) are seeded at 2-5x104 cells/35 mm dish density in Ml 99 medium containing 4% fetal bovine semm (FBS), 16 units/ml heparin, and 50 units/ml endothelial cell growth supplements (ECGS, Biotechnique, Inc.). On day 2, the medium is replaced with Ml 99 containing 10%> FBS, 8 units/ml heparin. A polypeptide having the amino acid sequence of SEQ ID NON, and positive controls, such as VEGF and basic FGF (bFGF) are added, at varying concentrations. On days 4 and 6, the medium is replaced. On day 8, cell number is determined with a Coulter Counter.
An increase in the number of HUVEC cells indicates that the polypeptide ofthe invention may proliferate vascular endothelial cells.
The studies described in this example tested activity of a polypeptide ofthe invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides (e.g., gene therapy), agonists, and/or antagonists ofthe invention.
Example 37: Stimulatory Effect of Polypeptides of the Invention on the Proliferation of Vascular Endothelial Cells
For evaluation of mitogenic activity of growth factors, the colorimetric MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)2H- tetrazolium) assay with the electron coupling reagent PMS (phenazine methosulfate) was performed (CellTiter 96 AQ, Promega). Cells are seeded in a 96-well plate (5,000 cells/well) in 0.1 mL semm-supplemented medium and are allowed to attach overnight. After serum-starvation for 12 hours in 0.5%> FBS, conditions (bFGF, VEGFι65 or a
polypeptide ofthe invention in 0.5% FBS) with or without Heparin (8 U/ml) are added to wells for 48 hours. 20 mg of MTS/PMS mixture (1 :0.05) are added per well and allowed to incubate for 1 hour at 37°C before measuring the absorbance at 490 nm in an ELISA plate reader. Background absorbance from control wells (some media, no cells) is subtracted, and seven wells are performed in parallel for each condition. See, Leak et al. In Vitro Cell. Dev. Biol J04.512-518 (1994).
The studies described in this example tested activity of a polypeptide ofthe invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides (e.g., gene therapy), agonists, and or antagonists ofthe invention.
Example 38: Inhibition of PDGF-induced Vascular Smooth Muscle Cell Proliferation Stimulatory Effect
HAoSMC proliferation can be measured, for example, by BrdUrd incoφoration.
Briefly, subconfluent, quiescent cells grown on the 4-chamber slides are transfected with CRP or FITC-labeled AT2-3LP. Then, the cells are pulsed with 10% calf serum and 6 mg/ml BrdUrd. After 24 h, immunocytochemistry is performed by using BrdUrd Staining Kit (Zymed Laboratories). In brief, the cells are incubated with the biotinylated mouse anti-BrdUrd antibody at 4 degrees C for 2 h after being exposed to denaturing solution and then incubated with the streptavidin-peroxidase and diaminobenzidine. After counterstaining with hematoxylin, the cells are mounted for microscopic examination, and the BrdUrd-positive cells are counted. The BrdUrd index is calculated as a percent ofthe BrdUrd-positive cells to the total cell number. In addition, the simultaneous detection of the BrdUrd staining (nucleus) and the FITC uptake (cytoplasm) is performed for individual cells by the concomitant use of bright field illumination and dark field-UV fluorescent illumination. See, Hayashida et al., J. Biol. Chem. 6:271(36):21985-21992 (1996).
The studies described in this example tested activity of a polypeptide ofthe invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides (e.g., gene therapy), agonists, and/or antagonists ofthe invention.
Example 39: Stimulation of Endothelial Migration
This example will be used to explore the possibility that a polypeptide ofthe invention may stimulate lymphatic endothelial cell migration.
Endothelial cell migration assays are performed using a 48 well microchemotaxis chamber (Neuroprobe Inc., Cabin John, MD; Falk, W., et al., J. Immunological Methods 1980;33:239-247). Polyvinylpyrrolidone-free polycarbonate filters with a pore size of 8 um (Nucleopore Coφ. Cambridge, MA) are coated with 0.1 %> gelatin for at least 6 hours at room temperature and dried under sterile air. Test substances are diluted to appropriate concentrations in Ml 99 supplemented with 0.25%> bovine seram albumin (BSA), and 25 ul ofthe final dilution is placed in the lower chamber ofthe modified Boyden apparatus. Subconfluent, early passage (2-6) HUVEC or BMEC cultures are washed and trypsinized for the minimum time required to achieve cell detachment. After placing the filter between lower and upper chamber, 2.5 x 105 cells suspended in 50 ul Ml 99 containing 1% FBS are seeded in the upper compartment. The apparatus is then incubated for 5 hours at 37°C in a humidified chamber with 5% CO2 to allow cell migration. After the incubation period, the filter is removed and the upper side ofthe filter with the non-migrated cells is scraped with a rubber policeman. The filters are fixed with methanol and stained with a Giemsa solution (Diff-Quick, Baxter, McGraw Park, IL). Migration is quantified by counting cells of three random high-power fields (40x) in each well, and all groups are performed in quadmplicate.
The studies described in this example tested activity of a polypeptide ofthe invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides (e.g., gene therapy), agonists, and/or antagonists ofthe invention.
Example 40: Stimulation of Nitric Oxide Production by Endothelial Cells
Nitric oxide released by the vascular endothelium is believed to be a mediator of vascular endothelium relaxation. Thus, activity of a polypeptide ofthe invention can be
assayed by determining nitric oxide production by endothelial cells in response to the polypeptide.
Nitric oxide is measured in 96-well plates of confluent microvascular endothelial cells after 24 hours starvation and a subsequent 4 hr exposure to various levels of a positive control (such as VEGF-1) and the polypeptide ofthe invention. Nitric oxide in the medium is determined by use ofthe Griess reagent to measure total nitrite after reduction of nitric oxide-derived nitrate by nitrate reductase. The effect ofthe polypeptide ofthe invention on nitric oxide release is examined on HUVEC.
Briefly, NO release from cultured HUVEC monolayer is measured with a NO- specific polarographic electrode connected to a NO meter (Iso-NO, World Precision Instruments Inc.) (1049). Calibration ofthe NO elements is performed according to the following equation:
2 KNO2 + 2 KI + 2 H2SO4 6 2 NO + 12 + 2 H2O + 2 K2SO4
The standard calibration curve is obtained by adding graded concentrations of KNO2 (0, 5, 10, 25, 50, 100, 250, and 500 nmol/L) into the calibration solution containing KI and H2SO4. The specificity ofthe Iso-NO electrode to NO is previously determined by measurement of NO from authentic NO gas (1050). The culture medium is removed and HUVECs are washed twice with Dulbecco's phosphate buffered saline. The cells are then bathed in 5 ml of filtered Krebs-Henseleit solution in 6-well plates, and the cell plates are kept on a slide warmer (Lab Line Instmments Inc.) To maintain the temperature at 37°C. The NO sensor probe is inserted vertically into the wells, keeping the tip ofthe electrode 2 mm under the surface ofthe solution, before addition ofthe different conditions. S-nitroso acetyl penicillamin (SNAP) is used as a positive control. The amount of released NO is expressed as picomoles per lxl 06 endothelial cells. All values reported are means of four to six measurements in each group (number of cell culture wells). See, Leak et al. Biochem. and Biophys. Res. Comm. 217:96-105 (1995).
The studies described in this example tested activity of polypeptides ofthe invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides (e.g., gene therapy), agonists, and/or antagonists ofthe invention.
Example 41 : Effect of Polypepides of the Invention on Cord Formation in Angiogenesis
Another step in angiogenesis is cord formation, marked by differentiation of endothelial cells. This bioassay measures the ability of microvascular endothelial cells to form capillary-like stractures (hollow structures) when cultured in vitro.
CADMEC (microvascular endothelial cells) are purchased from Cell Applications, Inc. as proliferating (passage 2) cells and are cultured in Cell Applications' CADMEC Growth Medium and used at passage 5. For the in vitro angiogenesis assay, the wells of a 48-well cell culture plate are coated with Cell Applications' Attachment Factor Medium (200 ml/well) for 30 min. at 37°C. CADMEC are seeded onto the coated wells at 7,500 cells/well and cultured overnight in Growth Medium. The Growth Medium is then replaced with 300 mg Cell Applications' Chord Formation Medium containing control buffer or a polypeptide ofthe invention (0.1 to 100 ng/ml) and the cells are cultured for an additional 48 hr. The numbers and lengths ofthe capillary-like chords are quantitated through use ofthe Boeckeler VIA- 170 video image analyzer. All assays are done in triplicate.
Commercial (R&D) VEGF (50 ng/ml) is used as a positive control, b-esteradiol (1 ng/ml) is used as a negative control. The appropriate buffer (without protein) is also utilized as a control.
The studies described in this example tested activity of a polypeptide ofthe invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides (e.g., gene therapy), agonists, and/or antagonists ofthe invention.
Example 42: Angiogenic Effect on Chick Chorioallantoic Membrane
Chick chorioallantoic membrane (CAM) is a well-established system to examine angiogenesis. Blood vessel formation on CAM is easily visible and quantifiable. The ability of polypeptides of the invention to stimulate angiogenesis in CAM can be examined.
Fertilized eggs of the White Leghorn chick (Gallus gallus) and the Japanese qual (Coturnix coturnix) are incubated at 37.8°C and 80% humidity. Differentiated CAM of 16-day-old chick and 13-day-old qual embryos is studied with the following methods.
On Day 4 of development, a window is made into the egg shell of chick eggs. The embryos are checked for normal development and the eggs sealed with cellotape. They are further incubated until Day 13. Thermanox coverslips (Nunc, Naperville, IL) are cut into disks of about 5 mm in diameter. Sterile and salt-free growth factors are dissolved in distilled water and about 3.3 mg/ 5 ml are pipetted on the disks. After air-drying, the inverted disks are applied on CAM. After 3 days, the specimens are fixed in 3%> glutaraldehyde and 2% formaldehyde and rinsed in 0.12 M sodium cacodylate buffer.
They are photographed with a stereo microscope [Wild M8] and embedded for semi- and ultrathin sectioning as described above. Controls are performed with carrier disks alone.
The studies described in this example tested activity of a polypeptide ofthe invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides (e.g., gene therapy), agonists, and/or antagonists ofthe invention.
Example 43: Angiogenesis Assay Using a Matrigel Implant in Mouse
In vivo angiogenesis assay of a polypeptide ofthe invention measures the ability of an existing capillary network to form new vessels in an implanted capsule of murine extracellular matrix material (Matrigel). The protein is mixed with the liquid Matrigel at 4 degree C and the mixture is then injected subcutaneously in mice where it solidifies. After 7 days, the solid "plug" of Matrigel is removed and examined for the presence of new blood vessels. Matrigel is purchased from Becton Dickinson Labware/Collaborative Biomedical Products.
When thawed at 4 degree C the Matrigel material is a liquid. The Matrigel is mixed with a polypeptide ofthe invention at 150 ng/ml at 4 degrees C and drawn into cold 3 ml syringes. Female C57B1 6 mice approximately 8 weeks old are injected with the mixture of Matrigel and experimental protein at 2 sites at the midventral aspect ofthe abdomen (0.5 ml/site). After 7 days, the mice are sacrificed by cervical dislocation, the
Matrigel plugs are removed and cleaned (i.e., all clinging membranes and fibrous tissue is removed). Replicate whole plugs are fixed in neutral buffered 10%> formaldehyde, embedded in paraffin and used to produce sections for histological examination after staining with Masson's Trichrome. Cross sections from 3 different regions of each plug are processed. Selected sections are stained for the presence of vWF. The positive control for this assay is bovine basic FGF (150 ng/ml). Matrigel alone is used to determine basal levels of angiogenesis.
The studies described in this example tested activity of a polypeptide ofthe invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides (e.g., gene therapy), agonists, and/or antagonists ofthe invention.
Example 44: Rescue of Ischemia in Rabbit Lower Limb Model
To study the in vivo effects of polynucleotides and polypeptides ofthe invention on ischemia, a rabbit hindlimb ischemia model is created by surgical removal of one femoral arteries as described previously (Takeshita et al, Am J. Pathol 747:1649-1660 (1995)). The excision ofthe femoral artery results in retrograde propagation of thrombus and occlusion of the external iliac artery. Consequently, blood flow to the ischemic limb is dependent upon collateral vessels originating from the internal iliac artery (Takeshitaet al. Am J. Pathol 1 '41 ': 1649- 1660 (1995)). An interval of 10 days is allowed for postoperative recovery of rabbits and development of endogenous collateral vessels. At 10 day post-operatively (day 0), after performing a baseline angiogram, the internal iliac artery ofthe ischemic limb is transfected with 500 mg naked expression plasmid containing a polynucleotide ofthe invention by arterial gene transfer technology using a hydrogel-coated balloon catheter as described (Riessen et al. Hum Gene Ther. :749-758 (1993); Leclerc et al. J. Clin. Invest. 90: 936-944 (1992)). When a polypeptide ofthe invention is used in the treatment, a single bolus of 500 mg polypeptide ofthe invention or control is delivered into the internal iliac artery ofthe ischemic limb over a period of 1 min. through an infusion catheter. On day 30, various parameters are measured in these rabbits: (a) BP ratio - The blood pressure ratio of systolic pressure of the ischemic limb to that of normal limb; (b) Blood Flow and Flow Reserve - Resting FL: the blood flow
during undilated condition and Max FL: the blood flow during fully dilated condition (also an indirect measure ofthe blood vessel amount) and Flow Reserve is reflected by the ratio of max FL: resting FL; (c) Angiographic Score - This is measured by the angiogram of collateral vessels. A score is determined by the percentage of circles in an overlaying grid that with crossing opacified arteries divided by the total number m the rabbit thigh; (d) Capillary density - The number of collateral capillaries determined in light microscopic - sections taken from hindlimbs.
The studies described in this example tested activity of polynucleotides and polypeptides ofthe invention. However, one skilled in the art could easily modify the exemplified studies to test the agonists, and/or antagonists of the invention.
Example 45: Effect of Polypeptides of the Invention on Vasodilation
Since dilation of vascular endothelium is important in reducing blood pressure, the ability of polypeptides ofthe invention to affect the blood pressure in spontaneously hypertensive rats (SHR) is examined, increasing doses (0, 10, 30, 100, 300, and 900 mg/kg) ofthe polypeptides ofthe invention are administered to 13-14 week old spontaneously hypertensive rats (SHR). Data are expressed as the mean +/- SEM. Statistical analysis are performed with a paired t-test and statistical significance is defined as p<0.05 vs. the response to buffer alone.
The studies described in this example tested activity of a polypeptide ofthe invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides (e.g., gene therapy), agonists, and/or antagonists ofthe invention.
Example 46: Rat Ischemic Skin Flap Model
The evaluation parameters include skin blood flow, skin temperature, and factor VIII immunohistochemistry or endothelial alkaline phosphatase reaction. Expression of polypeptides ofthe invention, during the skin ischemia, is studied using in situ hybridization.
The study in this model is divided into three parts as follows:
Ischemic skin
Ischemic skin wounds
Normal wounds
The experimental protocol includes: Raising a 3x4 cm, single pedicle full-thickness random skin flap (myocutaneous flap over the lower back ofthe animal).
An excisional wounding (4-6 mm in diameter) in the ischemic skin (skin-flap).
Topical treatment with a polypeptide ofthe invention ofthe excisional wounds (day 0, 1, 2, 3, 4 post-wounding) at the following various dosage ranges: lmg to 100 mg. Harvesting the wound tissues at day 3, 5, 7, 10, 14 and 21 post-wounding for histological, immunohistochemical, and in situ studies.
The studies described in this example tested activity of a polypeptide ofthe invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides (e.g., gene therapy), agonists, and/or antagonists ofthe invention.
Example 47: Peripheral Arterial Disease Model
Angiogenic therapy using a polypeptide ofthe invention is a novel therapeutic strategy to obtain restoration of blood flow around the ischemia in case of peripheral arterial diseases. The experimental protocol includes:
One side ofthe femoral artery is ligated to create ischemic muscle of the hindlimb, the other side of hindlimb serves as a control, a polypeptide ofthe invention, in a dosage range of 20 mg - 500 mg, is delivered intravenously and/or intramuscularly 3 times (perhaps more) per week for 2-3 weeks. The ischemic muscle tissue is collected after ligation ofthe femoral artery at 1, 2, and 3 weeks for the analysis of expression of a polypeptide ofthe invention and histology. Biopsy is also performed on the other side of normal muscle of the contralateral hindlimb. The studies described in this example tested activity of a polypeptide ofthe invention. However, one skilled in the art could easily modify the exemplified studies to
test the activity of polynucleotides (e.g., gene therapy), agonists, and/or antagonists ofthe invention.
Example 48: Ischemic Myocardial Disease Model
A polypeptide ofthe invention is evaluated as a potent mitogen capable of stimulating the development of collateral vessels, and restructuring new vessels after coronary artery occlusion. Alteration of expression ofthe polypeptide is investigated in situ. The experimental protocol includes: The heart is exposed through a left-side thoracotomy in the rat. Immediately, the left coronary artery is occluded with a thin suture (6-0) and the thorax is closed. a polypeptide ofthe invention, in a dosage range of 20 mg - 500 mg, is delivered intravenously and/or intramuscularly 3 times (perhaps more) per week for 2-4 weeks.
Thirty days after the surgery, the heart is removed and cross-sectioned for moφhometric and in situ analyzes.
The studies described in this example tested activity of a polypeptide ofthe invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides (e.g., gene therapy), agonists, and/or antagonists ofthe invention.
Example 49: Rat Corneal Wound Healing Model
This animal model shows the effect of a polypeptide ofthe invention on neovascularization. The experimental protocol includes: Making a 1-1.5 mm long incision from the center of cornea into the stromal layer.
Inserting a spatula below the lip ofthe incision facing the outer comer ofthe eye. Making a pocket (its base is 1-1.5 mm form the edge ofthe eye). Positioning a pellet, containing 50ng- 5ug of a polypeptide ofthe invention, within the pocket. Treatment with a polypeptide ofthe invention can also be applied topically to the comeal wounds in a dosage range of 20mg - 500mg (daily treatment for five days).
The studies described in this example tested activity of a polypeptide ofthe invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides (e.g., gene therapy), agonists, and/or antagonists ofthe invention.
Example 50: Diabetic Mouse and Glucocorticoid-Impaired Wound Healing Models
Diabetic db+/db+ Mouse Model. To demonstrate that a polypeptide ofthe invention accelerates the healing process, the genetically diabetic mouse model of wound healing is used. The full thickness wound healing model in the db+/db+ mouse is a well characterized, clinically relevant and reproducible model of impaired wound healing. Healing ofthe diabetic wound is dependent on formation of granulation tissue and re-epithelialization rather than contraction (Gartner, M.H. et al, J Surg. Res. 52:389 (1992); Greenhalgh, D.G. et al, Am. J. Pathol. 136:1235 (1990)).
The diabetic animals have many ofthe characteristic features observed in Type II diabetes mellitus. Homozygous (db+/db+) mice are obese in comparison to their normal heterozygous (db+/+m) littermates. Mutant diabetic (db+/db+) mice have a single autosomal recessive mutation on chromosome 4 (db+) (Coleman et al. Proc. Natl. Acad. Sci. USA 77:283-293 (1982)). Animals show polyphagia, polydipsia and polyuria. Mutant diabetic mice (db+/db+) have elevated blood glucose, increased or normal insulin levels, and suppressed cell-mediated immunity (Mandel et al, J. Immunol 720:1375 (1978); Debray-Sachs, M. et al, Clin. Exp. Immunol. 51(l):l-7 (1983); Leiter et al, Am. J. ofPathol. 114:46-55 (1985)). Peripheral neuropathy, myocardial complications, and microvascular lesions, basement membrane thickening and glomerular filtration abnormalities have been described in these animals (Norido, F. et al, Exp. Neurol 83(2):22X-232 (1984); Robertson et al, Diabetes 29(l):60-67 (1980); Giacomelli et al, Lab Investc40(4):460-473 (1979); Coleman, D.L., Diabetes 31 (Suppl):l-6 (1982)). These homozygous diabetic mice develop hyperglycemia that is resistant to insulin analogous to human type II diabetes (Mandel et al, J. Immunol. 120:1375-1377 (1978)).
The characteristics observed in these animals suggests that healing in this model may be similar to the healing observed in human diabetes (Greenhalgh, et al, Am. J. of Pathol 736:1235-1246 (1990)).
Genetically diabetic female C57BL/KsJ (db+/db+) mice and their non-diabetic (db+/+m) heterozygous littermates are used in this study (Jackson Laboratories). The animals are purchased at 6 weeks of age and are 8 weeks old at the beginning ofthe study. Animals are individually housed and received food and water ad libitum. All manipulations are performed using aseptic techniques. The experiments are conducted according to the rales and guidelines of Human Genome Sciences, Inc. Institutional Animal Care and Use Committee and the Guidelines for the Care and Use of Laboratory Animals.
Wounding protocol is performed according to previously reported methods (Tsuboi, R. and Rifkin, D.B., J. Exp. Med. 172:245-251 (1990)). Briefly, on the day of wounding, animals are anesthetized with an intraperitoneal injection of Avertin (0.01 mg/mL), 2,2,2-tribromoethanol and 2-methyl-2-butanol dissolved in deionized water. The dorsal region ofthe animal is shaved and the skin washed with 70% ethanol solution and iodine. The surgical area is dried with sterile gauze prior to wounding. An 8 mm full- thickness wound is then created using a Keyes tissue punch. Immediately following wounding, the surrounding skin is gently stretched to eliminate wound expansion. The wounds are left open for the duration ofthe experiment. Application ofthe treatment is given topically for 5 consecutive days commencing on the day of wounding. Prior to treatment, wounds are gently cleansed with sterile saline and gauze sponges.
Wounds are visually examined and photographed at a fixed distance at the day of surgery and at two day intervals thereafter. Wound closure is determined by daily measurement on days 1-5 and on day 8. Wounds are measured horizontally and vertically using a calibrated Jameson caliper. Wounds are considered healed if granulation tissue is no longer visible and the wound is covered by a continuous epithelium.
A polypeptide ofthe invention is administered using at a range different doses, from 4mg to 500mg per wound per day for 8 days in vehicle. Vehicle control groups received 50mL of vehicle solution.
Animals are euthanized on day 8 with an intraperitoneal injection of sodium pentobarbital (300mg/kg). The wounds and surrounding skin are then harvested for
histology and immunohistochemistry. Tissue specimens are placed in 10% neutral buffered formalin in tissue cassettes between biopsy sponges for further processing.
Three groups of 10 animals each (5 diabetic and 5 non-diabetic controls) are evaluated: 1) Vehicle placebo control, 2) untreated group, and 3) treated group.
Wound closure is analyzed by measuring the area in the vertical and horizontal axis and obtaining the total square area of the wound. Contraction is then estimated by establishing the differences between the initial wound area (day 0) and that of post treatment (day 8). The wound area on day 1 is 64mm2, the corresponding size ofthe dermal punch. Calculations are made using the following formula:
[Open area on day 8] - [Open area on day 1] / [Open area on day 1]
Specimens are fixed in 10%> buffered formalin and paraffin embedded blocks are sectioned peφendicular to the wound surface (5mm) and cut using a Reichert-Jung microtome. Routine hematoxylin-eosin (H&E) staining is performed on cross-sections of bisected wounds. Histologic examination ofthe wounds are used to assess whether the healing process and the moφhologic appearance ofthe repaired skin is altered by treatment with a polypeptide ofthe invention. This assessment included verification of the presence of cell accumulation, inflammatory cells, capillaries, fibroblasts, re- epithehalization and epidermal maturity (Greenhalgh, D.G. et al, Am. J. Pathol. 136:1235 (1990)). A calibrated lens micrometer is used by a blinded observer.
Tissue sections are also stained immunohistochemically with a polyclonal rabbit anti-human keratin antibody using ABC Elite detection system. Human skin is used as a positive tissue control while non-immune IgG is used as a negative control. Keratinocyte growth is determined by evaluating the extent of reepithelialization ofthe wound using a calibrated lens micrometer.
Proliferating cell nuclear antigen/cyclin (PCNA) in skin specimens is demonstrated by using anti-PCNA antibody (1 :50) with an ABC Elite detection system. Human colon cancer can serve as a positive tissue control and human brain tissue can be used as a negative tissue control. Each specimen includes a section with omission ofthe primary antibody and substitution with non-immune mouse IgG. Ranking of these sections is
based on the extent of proliferation on a scale of 0-8, the lower side ofthe scale reflecting slight proliferation to the higher side reflecting intense proliferation.
Experimental data are analyzed using an unpaired t test. A p value of < 0.05 is considered significant.
Steroid Impaired Rat Model
The inhibition of wound healing by steroids has been well documented in various in vitro and in vivo systems (Wahl, Glucocorticoids and Wound healing. In: Anti- Inflammatory Steroid Action: Basic and Clinical Aspects. 280-302 (1989); Wahlet al, J. Immunol 115: 476-481 (1975); Werb et al, J. Exp. Med. 147:1684-1694 (1978)).
Glucocorticoids retard wound healing by inhibiting angiogenesis, decreasing vascular permeability (Ebert et al, An. Intern. Med. 57:701-705 (1952)), fibroblast proliferation, and collagen synthesis (Beck et al, Growth Factors. 5: 295-304 (1991); Haynes et al. , J. Clin. Invest. 61: 703-797 (1978)) and producing a transient reduction of circulating monocytes (Haynes et al., J Clin. Invest. 61: 703-797 (1978); Wahl, "Glucocorticoids and wound healing", In: Antiinflammatory Steroid Action: Basic and Clinical Aspects, Academic Press, New York, pp. 280-302 (1989)). The systemic administration of steroids to impaired wound healing is a well establish phenomenon in rats (Beck et al, Growth Factors. 5: 295-304 (1991); Haynes et al, J. Clin. Invest. 61: 703-797 (1978); Wahl, "Glucocorticoids and wound healing", In: Antiinflammatory Steroid Action: Basic and Clinical Aspects, Academic Press, New York, pp. 280-302 (1989); Pierce et al, Proc. Natl. Acad. Sci. USA 86: 2229-2233 (1989)).
To demonstrate that a polypeptide ofthe invention can accelerate the healing process, the effects of multiple topical applications ofthe polypeptide on full thickness excisional skin wounds in rats in which healing has been impaired by the systemic administration of methylprednisolone is assessed.
Young adult male Sprague Dawley rats weighing 250-300 g (Charles River Laboratories) are used in this example. The animals are purchased at 8 weeks of age and are 9 weeks old at the beginning ofthe study. The healing response of rats is impaired by the systemic administration of methylprednisolone (17mg/kg rat intramuscularly) at the time of wounding. Animals are individually housed and received food and water ad libitum. All manipulations are performed using aseptic techniques. This study is
conducted according to the rales and guidelines of Human Genome Sciences, Inc.
Institutional Animal Care and Use Committee and the Guidelines for the Care and Use of
Laboratory Animals.
The wounding protocol is followed according to section A, above. On the day of wounding, animals are anesthetized with an intramuscular injection of ketamine (50 mg/kg) and xylazine (5 mg/kg). The dorsal region ofthe animal is shaved and the skin washed with 70%> ethanol and iodine solutions. The surgical area is dried with sterile gauze prior to wounding. An 8 mm full-thickness wound is created using a Keyes tissue punch. The wounds are left open for the duration ofthe experiment. Applications ofthe testing materials are given topically once a day for 7 consecutive days commencing on the day of wounding and subsequent to methylprednisolone administration. Prior to treatment, wounds are gently cleansed with sterile saline and gauze sponges.
Wounds are visually examined and photographed at a fixed distance at the day of wounding and at the end of treatment. Wound closure is determined by daily measurement on days 1-5 and on day 8. Wounds are measured horizontally and vertically using a calibrated Jameson caliper. Wounds are considered healed if granulation tissue is no longer visible and the wound is covered by a continuous epithelium.
The polypeptide ofthe invention is administered using at a range different doses, from 4mg to 500mg per wound per day for 8 days in vehicle. Vehicle control groups received 50mL of vehicle solution.
Animals are euthanized on day 8 with an intraperitoneal injection of sodium pentobarbital (300mg/kg). The wounds and surrounding skin are then harvested for histology. Tissue specimens are placed in 10% neutral buffered formalin in tissue cassettes between biopsy sponges for further processing. Four groups of 10 animals each (5 with methylprednisolone and 5 without glucocorticoid) are evaluated: 1) Untreated group 2) Vehicle placebo control 3) treated groups.
Wound closure is analyzed by measuring the area in the vertical and horizontal axis and obtaining the total area ofthe wound. Closure is then estimated by establishing the differences between the initial wound area (day 0) and that of post treatment (day 8).
The wound area on day 1 is 64mm , the corresponding size ofthe dermal punch.
Calculations are made using the following formula:
[Open area on day 8] - [Open area on day 1] / [Open area on day 1]
Specimens are fixed in 10%> buffered formalin and paraffin embedded blocks are sectioned peφendicular to the wound surface (5mm) and cut using an Olympus microtome. Routine hematoxylin-eosin (H&E) staining is performed on cross-sections of bisected wounds. Histologic examination ofthe wounds allows assessment of whether the healing process and the moφhologic appearance ofthe repaired skin is improved by treatment with a polypeptide ofthe invention. A calibrated lens micrometer is used by a blinded observer to determine the distance ofthe wound gap.
Experimental data are analyzed using an unpaired t test. A p value of < 0.05 is considered significant.
The studies described in this example tested activity of a polypeptide ofthe invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides (e.g., gene therapy), agonists, and/or antagonists ofthe invention.
Example 51: Lvmphadema Animal Model
The puφose ofthis experimental approach is to create an appropriate and consistent lymphedema model for testing the therapeutic effects of a polypeptide ofthe invention in lymphangiogenesis and re-establishment ofthe lymphatic circulatory system in the rat hind limb. Effectiveness is measured by swelling volume ofthe affected limb, quantification ofthe amount of lymphatic vasculature, total blood plasma protein, and histopathology. Acute lymphedema is observed for 7-10 days. Perhaps more importantly, the chronic progress ofthe edema is followed for up to 3-4 weeks.
Prior to beginning surgery, blood sample is drawn for protein concentration analysis. Male rats weighing approximately ~350g are dosed with Pentobarbital. Subsequently, the right legs are shaved from knee to hip. The shaved area is swabbed with gauze soaked in 70% EtOH. Blood is drawn for semm total protein testing.
Circumference and volumetric measurements are made prior to injecting dye into paws after marking 2 measurement levels (0.5 cm above heel, at mid-pt of dorsal paw). The
intradermal dorsum of both right and left paws are injected with 0.05 ml of 1%> Evan's Blue. Circumference and volumetric measurements are then made following injection of dye into paws.
Using the knee joint as a landmark, a mid-leg inguinal incision is made circumferentially allowing the femoral vessels to be located. Forceps and hemostats are used to dissect and separate the skin flaps. After locating the femoral vessels, the lymphatic vessel that mns along side and underneath the vessel(s) is located. The main lymphatic vessels in this area are then electrically coagulated suture ligated.
Using a microscope, muscles in back ofthe leg (near the semitendinosis and adductors) are bluntly dissected. The popliteal lymph node is then located. The 2 proximal and 2 distal lymphatic vessels and distal blood supply ofthe popliteal node are then and ligated by suturing. The popliteal lymph node, and any accompanying adipose tissue, is then removed by cutting connective tissues.
Care is taken to control any mild bleeding resulting from this procedure. After lymphatics are occluded, the skin flaps are sealed by using liquid skin (Vetbond) ( AJ
Buck). The separated skin edges are sealed to the underlying muscle tissue while leaving a gap of -0.5 cm around the leg. Skin also may be anchored by suturing to underlying muscle when necessary.
To avoid infection, animals are housed individually with mesh (no bedding). Recovering animals are checked daily through the optimal edematous peak, which typically occurred by day 5-7. The plateau edematous peak are then observed. To evaluate the intensity ofthe lymphedema, the circumference and volumes of 2 designated places on each paw before operation and daily for 7 days are measured. The effect plasma proteins on lymphedema is determined and whether protein analysis is a useful testing perimeter is also investigated. The weights of both control and edematous limbs are evaluated at 2 places. Analysis is performed in a blind manner.
Circumference Measurements: Under brief gas anesthetic to prevent limb movement, a cloth tape is used to measure limb circumference. Measurements are done at the ankle bone and dorsal paw by 2 different people then those 2 readings are averaged. Readings are taken from both control and edematous limbs.
Volumetric Measurements: On the day of surgery, animals are anesthetized with Pentobarbital and are tested prior to surgery. For daily volumetrics animals are under
brief halothane anesthetic (rapid immobilization and quick recovery), both legs are shaved and equally marked using wateφroof marker on legs. Legs are first dipped in water, then dipped into instmment to each marked level then measured by Buxco edema software(Chen/Victor). Data is recorded by one person, while the other is dipping the limb to marked area.
Blood-plasma protein measurements: Blood is drawn, spun, and serum separated prior to surgery and then at conclusion for total protein and Ca2+ comparison.
Limb Weight Comparison: After drawing blood, the animal is prepared for tissue collection. The limbs are amputated using a quillitine, then both experimental and control legs are cut at the ligature and weighed. A second weighing is done as the tibio-cacaneal joint is disarticulated and the foot is weighed.
Histological Preparations: The transverse muscle located behind the knee (popliteal) area is dissected and arranged in a metal mold, filled with freezeGel, dipped into cold methylbutane, placed into labeled sample bags at - 80EC until sectioning. Upon sectioning, the muscle is observed under fluorescent microscopy for lymphatics.. The studies described in this example tested activity of a polypeptide ofthe invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides (e.g., gene therapy), agonists, and or antagonists ofthe invention.
Example 52: Suppression of TΝF alpha-induced adhesion molecule expression by a Polypeptide of the Invention
The recruitment of lymphocytes to areas of inflammation and angiogenesis involves specific receptor-ligand interactions between cell surface adhesion molecules (CAMs) on lymphocytes and the vascular endothelium. The adhesion process, in both normal and pathological settings, follows a multi-step cascade that involves intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and endothelial leukocyte adhesion molecule-1 (E-selectin) expression on endothelial cells (EC). The expression of these molecules and others on the vascular endothelium determines the efficiency with which leukocytes may adhere to the local vasculature and extravasate into the local tissue during the development of an inflammatory response. The
local concentration of cytokines and growth factor participate in the modulation ofthe • expression of these CAMs.
Tumor necrosis factor alpha (TNF-a), a potent proinflammatory cytokine, is a stimulator of all three CAMs on endothelial cells and may be involved in a wide variety of inflammatory responses, often resulting in a pathological outcome.
The potential of a polypeptide ofthe invention to mediate a suppression of TNF-a induced CAM expression can be examined. A modified ELISA assay wliich uses ECs as a solid phase absorbent is employed to measure the amount of CAM expression on TNF-a treated ECs when co-stimulated with a member ofthe FGF family of proteins. To perform the experiment, human umbilical vein endothelial cell (HUVEC) cultures are obtained from pooled cord harvests and maintained in growth medium (EGM- 2; Clonetics, San Diego, CA) supplemented with 10% FCS and 1% penicillin/streptomycin in a 37 degree C humidified incubator containing 5% CO2.
HUVECs are seeded in 96-well plates at concentrations of 1 x 10^ cells/well in EGM medium at 37 degree C for 18-24 hrs or until confluent. The monolayers are subsequently washed 3 times with a seram- free solution of RPMI- 1640 supplemented with 100 U/ml penicillin and 100 mg/ml streptomycin, and treated with a given cytokine and/or growth factor(s) for 24 h at 37 degree C. Following incubation, the cells are then evaluated for CAM expression. Human Umbilical Vein Endothelial cells (HUVECs) are grown in a standard 96 well plate to confluence. Growth medium is removed from the cells and replaced with 90 ul of 199 Medium (10%> FBS). Samples for testing and positive or negative controls are added to the plate in triplicate, (in 10 ul volumes). Plates are incubated at 37 degree C for either 5 h (selectin and integrin expression) or 24 h (integrin expression only). Plates are aspirated to remove medium and 100 μl of 0.1 %> paraformaldehyde-PBS(with Ca++ and Mg++) is added to each well. Plates are held at 4°C for 30 min.
Fixative is then removed from the wells and wells are washed IX with PBS(+Ca,Mg)+0.5% BSA and drained. Do not allow the wells to dry. Add 10 μl of diluted primary antibody to the test and control wells. Anti-ICAM-1 -Biotin, Anti-VCAM- 1 -Biotin and Anti-E-selectin-Biotin are used at a concentration of 10 μg/ml (1 :10 dilution of 0.1 mg/ml stock antibody). Cells are incubated at 37°C for 30 min. in a humidified environment. Wells are washed X3 with PBS(+Ca,Mg)+0.5% BSA.
Then add 20 μl of diluted ExtrAvidin-Alkaline Phosphotase (1:5,000 dilution) to each well and incubated at 37°C for 30 min. Wells are washed X3 with PBS(+Ca,Mg)+0.5% BSA. 1 tablet of p-Nitrophenol Phosphate pNPP is dissolved in 5 ml of glycine buffer (pH 10.4). 100 μl of pNPP substrate in glycine buffer is added to each test well. Standard wells in triplicate are prepared from the working dilution ofthe
ExtrAvidin-Alkaline Phosphotase in glycine buffer: 1 :5,000 (10°) > 10'° 5 > 10'1 > 10"1 5. 5 μl of each dilution is added to triplicate wells and the resulting AP content in each well is 5.50 ng, 1.74 ng, 0.55 ng, 0.18 ng. 100 μl of pNNP reagent must then be added to each of the standard wells. The plate must be incubated at 37°C for 4h. A volume of 50 μl of 3M NaOH is added to all wells. The results are quantified on a plate reader at 405 nm. The background subtraction option is used on blank wells filled with glycine buffer only. The template is set up to indicate the concentration of AP-conjugate in each standard well [ 5.50 ng; 1.74 ng; 0.55 ng; 0.18 ng]. Results are indicated as amount of bound AP- conjugate in each sample. The studies described in this example tested activity of a polypeptide ofthe invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides (e.g., gene therapy), agonists, and/or antagonists ofthe invention.
Example 53: Assay for the Stimulation of Bone Marrow CD34+ Cell Proliferation
This assay is based on the ability of human CD34+ to proliferate in the presence of hematopoietic growth factors and evaluates the ability of isolated polypeptides expressed in mammalian cells to stimulate proliferation of CD34+ cells. It has been previously shown that most mature precursors will respond to only a single signal. More immature precursors require at least two signals to respond. Therefore, to test the effect of polypeptides on hematopoietic activity of a wide range of progenitor cells, the assay contains a given polypeptide in the presence or absence of other hematopoietic growth factors. Isolated cells are cultured for 5 days in the presence of Stem Cell Factor (SCF) in combination with tested sample. SCF alone has a very limited effect on the proliferation of bone marrow (BM) cells, acting in such conditions only as a "survival" factor. However, combined with any factor
exhibiting stimulatory effect on these cells (e.g., IL-3), SCF will cause a synergistic effect. Therefore, if the tested polypeptide has a stimulatory effect on a hematopoietic progenitors, such activity can be easily detected. Since normal BM cells have a low level of cycling cells, it is likely that any inhibitory effect of a given polypeptide, or agonists or antagonists thereof, might not be detected. Accordingly, assays for an inhibitory effect on progenitors is preferably tested in cells that are first subjected to in vitro stimulation with SCF+IL+3, and then contacted with the compound that is being evaluated for inhibition of such induced proliferation.
Briefly, CD34+ cells are isolated using methods known in the art. The cells are thawed and resuspended in medium (QBSF 60 serum-free medium with 1%> L- glutamine (500ml) Quality Biological, Inc., Gaithersburg, MD Cat# 160-204-101). After several gentle centrifugation steps at 200 x g, cells are allowed to rest for one hour. The cell count is adjusted to 2.5 x 105 cells/ml. During this time, 100 μl of sterile water is added to the peripheral wells of a 96-well plate. The cytokines that can be tested with a given polypeptide in this assay is rhSCF (R&D Systems,
Minneapolis, MN, Cat# 255-SC) at 50 ng/ml alone and in combination with rhSCF and rhIL-3 (R&D Systems, Minneapolis, MN, Cat# 203-ML) at 30 ng/ml. After one hour, 10 μl of prepared cytokines, 50 μl SID (supematants at 1 :2 dilution = 50 μl) and 20 μl of diluted cells are added to the media which is already present in the wells to allow for a final total volume of 100 μl. The plates are then placed in a 37°C/5% CO incubator for five days.
Eighteen hours before the assay is harvested, 0.5 μCi/well of [3H] Thymidine is added in a 10 μl volume to each well to determine the proliferation rate. The experiment is terminated by harvesting the cells from each 96-well plate to a filtermat using the Tomtec Harvester 96. After harvesting, the filtermats are dried, trimmed and placed into OmniFilter assemblies consisting of one OmniFilter plate and one OmniFilter Tray. 60 μl Microscint is added to each well and the plate sealed with TopSeal-A press-on sealing film A bar code 15 sticker is affixed to the first plate for counting. The sealed plates is then loaded and the level of radioactivity determined via the Packard Top Count and the printed data collected for analysis. The level of radioactivity reflects the amount of cell proliferation.
The studies described in this example test the activity of a given polypeptide to stimulate bone marrow CD34+ cell proliferation. One skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides (e.g., gene therapy), antibodies, agonists, and/or antagonists and fragments and variants thereof. As a nonlimiting example, potential antagonists tested in this assay would be expected to inhibit cell proliferation in the presence of cytokines and/or to increase the inhibition of cell proliferation in the presence of cytokines and a given polypeptide. In contrast, potential agonists tested in this assay would be expected to enhance cell proliferation and/or to decrease the inhibition of cell proliferation in the presence of cytokines and a given polypeptide.
The ability of a gene to stimulate the proliferation of bone marrow CD34+ cells indicates that polynucleotides and polypeptides corresponding to the gene are useful for the diagnosis and treatment of disorders affecting the immune system and hematopoiesis. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections above, and elsewhere herein.
Example 54: Assay for Extracellular Matrix Enhanced Cell Response (EMECR)
The objective ofthe Extracellular Matrix Enhanced Cell Response (EMECR) assay is to identify gene products (e.g., isolated polypeptides) that act on the hematopoietic stem cells in the context ofthe extracellular matrix (ECM) induced signal.
Cells respond to the regulatory factors in the context of signal(s) received - from the surrounding microenvironment. For example, fibroblasts, and endothelial and epithelial stem cells fail to replicate in the absence of signals from the ECM. Hematopoietic stem cells can undergo self-renewal in the bone marrow, but not in in vitro suspension culture. The ability of stem cells to undergo self-renewal in vitro is dependent upon their interaction with the stromal cells and the ECM protein fibronectin (fh). Adhesion of cells to fh is mediated by the α .βι and α4.βι integrin receptors, which are expressed by human and mouse hematopoietic stem cells. The factor(s) which integrate with the ECM environment and responsible for stimulating stem cell self-renewal has not yet been identified. Discovery of such factors should be of great interest in gene therapy and bone marrow transplant applications
Briefly, polystyrene, non tissue culture treated, 96-well plates are coated with fh fragment at a coating concentration of 0.2 μg/ cm2. Mouse bone marrow cells are plated (1,000 cells/well ) in 0.2 ml of serum-free medium. Cells cultured in the presence of IL-3 ( 5 ng/ml ) + SCF ( 50 ng/ml ) would serve as the positive control, conditions under which little self-renewal but pronounced differentiation ofthe stem cells is to be expected. Gene products are tested with appropriate negative controls in the presence and absence of SCF(5.0 ng/ml), where test factor supemates represent 10%) ofthe total assay volume. The plated cells are then allowed to grow by incubating in a low oxygen environment ( 5% CO , 7% O2, and 88% N2 ) tissue culture incubator for 7 days. The number of proliferating cells within the wells is then quantitated by measuring thymidine incoφoration into cellular DNA. Verification ofthe positive hits in the assay will require phenotypic characterization ofthe cells, which can be accomplished by scaling up ofthe culture system and using appropriate antibody reagents against cell surface antigens and FACScan. One skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides (e.g., gene therapy), antibodies, agonists, and/or antagonists and fragments and variants thereof.
If a particular gene product is found to be a stimulator of hematopoietic progenitors, polynucleotides and polypeptides conesponding to the gene may be useful for the diagnosis and treatment of disorders affecting the immune system and hematopoiesis. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections above, and elsewhere herein. The gene product may also be useful in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types. Additionally, the polynucleotides and/or polypeptides ofthe gene of interest and/or agonists and or antagonists thereof, may also be employed to inhibit the proliferation and differentiation of hematopoietic cells and therefore may be employed to protect bone manow stem cells from chemotherapeutic agents during chemotherapy. This antiproliferative effect may allow administration of higher doses of chemotherapeutic agents and, therefore, more effective chemotherapeutic treatment.
Moreover, polynucleotides and polypeptides corresponding to the gene of interest may also be useful for the treatment and diagnosis of hematopoietic related disorders such as, for example, anemia, pancytopenia, leukopenia, thrombocytopenia or leukemia since stromal cells are important in the production of cells of hematopoietic lineages. The uses include bone marrow cell ex-vivo culture, bone marrow transplantation, bone marrow reconstitution, radiotherapy or chemotherapy of neoplasia.
Example 55: Human Dermal Fibroblast and Aortic Smooth Muscle Cell Proliferation
The polypeptide of interest is added to cultures of normal human dermal fibroblasts (NHDF) and human aortic smooth muscle cells (AoSMC) and two co- assays are performed with each sample. The first assay examines the effect ofthe polypeptide of interest on the proliferation of normal human dermal fibroblasts
(NHDF) or aortic smooth muscle cells (AoSMC). Aberrant growth of fibroblasts or smooth muscle cells is a part of several pathological processes, including fibrosis, and restenosis. The second assay examines IL6 production by both NHDF and SMC. IL6 production is an indication of functional activation. Activated cells will have increased production of a number of cytokines and other factors, which can result in a proinflammatory or immunomodulatory outcome. Assays are run with and without co-TNFa stimulation, in order to check for costimulatory or inhibitory activity.
Briefly, on day 1 , 96-well black plates are set up with 1000 cells/well (NHDF) or 2000 cells/well (AoSMC) in 100 μl culture media. NHDF culture media contains: Clonetics FB basal media, lmg/ml hFGF, 5mg/ml insulin, 50mg/ml gentamycin,
2%>FBS, while AoSMC culture media contains Clonetics SM basal media, 0.5 μg/ml hEGF, 5mg/ml insulin, 1 μg/ml hFGF, 50mg/ml gentamycin, 50 μg/ml Amphotericin B, 5%FBS. After incubation @ 37°C for at least 4-5 hours culture media is aspirated and replaced with growth arrest media. Growth arrest media for NHDF contains N fibroblast basal media, 50mg/ml gentamycin, 2%> FBS, while growth arrest media for AoSMC contains SM basal media, 50mg/ml gentamycin, 50μg/ml Amphotericin B, 0.4%) FBS. Incubate at 37C until day 2.
On day 2, serial dilutions and templates of the polypeptide of interest are designed which should always include media controls and known-protein controls. For both stimulation and inhibition experiments, proteins are diluted in growth arrest media. For inhibition experiments, TNFa is added to a final concentration of 2ng/ml (NHDF) or 5ng/ml (AoSMC). Then add 1/3 vol media containing controls or supematants and incubate at 37C/5%> CO until day 5.
Transfer 60μl from each well to another labeled 96-well plate, cover with a plate-sealer, and store at 4C until Day 6 (for IL6 ELISA). To the remaining 100 μl in the cell culture plate, aseptically add Alamar Blue in an amount equal to 10% ofthe culture volume (lOμl). Retum plates to incubator for 3 to 4 hours. Then measure fluorescence with excitation at 530nm and emission at 590nm using the CytoFluor. This yields the growth stimulation/inhibition data.
On day 5, the IL6 ELISA is performed by coating a 96 well plate with 50-100 ul/well of Anti-Human IL6 Monoclonal antibody diluted in PBS, pH 7.4, incubate ON at room temperature.
On day 6, empty the plates into the sink and blot on paper towels. Prepare Assay Buffer containing PBS with 4% BSA. Block the plates with 200 μl/well of Pierce Super Block blocking buffer in PBS for 1-2 hr and then wash plates with wash buffer (PBS, 0.05% Tween-20). Blot plates on paper towels. Then add 50 μl/well of diluted Anti-Human IL-6 Monoclonal, Biotin-labeled antibody at 0.50 mg/ml. Make dilutions of IL-6 stock in media (30, 10, 3, 1, 0.3, 0 ng/ml). Add duplicate samples to top row of plate. Cover the plates and incubate for 2 hours at RT on shaker.
Wash plates with wash buffer and blot on paper towels. Dilute EU-labeled Streptavidin 1 :1000 in Assay buffer, and add 100 μl/well. Cover the plate and incubate 1 h at RT. Wash plates with wash buffer. Blot on paper towels.
Add 100 μl/well of Enhancement Solution. Shake for 5 minutes. Read the plate on the Wallac DELFIA Fluorometer. Readings from triplicate samples in each assay were tabulated and averaged.
A positive result in this assay suggests AoSMC cell proliferation and that the gene product of interest may be involved in dermal fibroblast proliferation and/or smooth muscle cell proliferation. A positive result also suggests many potential uses of polypeptides, polynucleotides, agonists and/or antagonists ofthe gene/gene product
of interest. For example, inflammation and immune responses, wound healing, and angiogenesis, as detailed throughout this specification. Particularly, polypeptides of the gene product and polynucleotides ofthe gene may be used in wound healing and dermal regeneration, as well as the promotion of vasculargenesis, both ofthe blood vessels and lymphatics. The growth of vessels can be used in the treatment of, for example, cardiovascular diseases. Additionally, antagonists of polypeptides ofthe gene product and polynucleotides ofthe gene may be useful in treating diseases, disorders, and/or conditions which involve angiogenesis by acting as an anti-vascular (e.g., anti-angiogenesis). These diseases, disorders, and/or conditions are known in the art and/or are described herein, such as, for example, malignancies, solid tumors, benign tumors, for example hemangiomas, acoustic neuromas, neurofibromas, trachomas, and pyogenic granulomas; artheroscleric plaques; ocular angiogenic diseases, for example, diabetic retinopathy, retinopathy of prematurity, macular degeneration, comeal graft rejection, neovascular glaucoma, retrolental fibroplasia, rubeosis, retinoblastoma, uvietis and Pterygia (abnormal blood vessel growth) ofthe eye; rheumatoid arthritis; psoriasis; delayed wound healing; endometriosis; vasculogenesis; granulations; hypertrophic scars (keloids); nonunion fractures; scleroderma; trachoma; vascular adhesions; myocardial angiogenesis; coronary collaterals; cerebral collaterals; arteriovenous malformations; ischemic limb angiogenesis; Osier-Webber Syndrome; plaque neovascularization; telangiectasia; hemophiliac joints; angiofibroma; fibromuscular dysplasia; wound granulation; Crohn's disease; and atherosclerosis. Moreover, antagonists of polypeptides ofthe gene product and polynucleotides ofthe gene may be useful in treating anti- hypeφroliferative diseases and/or anti-inflammatory known in the art and/or described herein.
One skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides (e.g., gene therapy), antibodies, agonists, and/or antagonists and fragments and variants thereof.
Example 56: Cellular Adhesion Molecule (CAM) Expression on Endothelial Cells
The recraitment of lymphocytes to areas of inflammation and angiogenesis involves specific receptor-ligand interactions between cell surface adhesion molecules (CAMs) on lymphocytes and the vascular endothelium. The adhesion process, in both normal and pathological settings, follows a multi-step cascade that involves intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1
(VCAM-1), and endothelial leukocyte adhesion molecule-1 (E-selectin) expression on endothelial cells (EC). The expression of these molecules and others on the vascular endothelium determines the efficiency with which leukocytes may adhere to the local vasculature and extravasate into the local tissue during the development of an inflammatory response. The local concentration of cytokines and growth factor participate in the modulation ofthe expression of these CAMs.
Briefly, endothelial cells (e.g., Human Umbilical Vein Endothelial cells (HUVECs)) are grown in a standard 96 well plate to confluence, growth medium is removed from the cells and replaced with 100 μl of 199 Medium (10%> fetal bovine semm (FBS)). Samples for testing and positive or negative controls are added to the plate in triplicate (in 10 μl volumes). Plates are then incubated at 37°C for either 5 h (selectin and integrin expression) or 24 h (integrin expression only). Plates are aspirated to remove medium and 100 μl of 0.1 %> paraformaldehyde-PBS(with Ca++ and Mg++) is added to each well. Plates are held at 4°C for 30 min. Fixative is removed from the wells and wells are washed IX with PBS(+Ca,Mg) + 0.5% BSA and drained. 10 μl of diluted primary antibody is added to the test and control wells. Anti-ICAM-1 -Biotin, Anti- VCAM-1 -Biotin and Anti-E-selectin-Biotin are used at a concentration of 10 μg/ml (1:10 dilution of 0.1 mg/ml stock antibody). Cells are incubated at 37°C for 30 min. in a humidified environment. Wells are washed three times with PBS(+Ca,Mg) + 0.5% BSA. 20 μl of diluted ExtrAvidin-Alkaline
Phosphotase (1 :5,000 dilution, refered to herein as the working dilution) are added to each well and incubated at 37°C for 30 min. Wells are washed three times with PBS(+Ca,Mg)+0.5% BSA. Dissolve 1 tablet of p-Nitrophenol Phosphate pNPP per 5 ml of glycine buffer (pH 10.4). 100 μl of pNPP substrate in glycine buffer is added to each-test well. Standard wells in triplicate are prepared from the working dilution of the ExtrAvidin-Alkaline Phosphotase in glycine buffer: 1:5,000 (10°) > 10"05 > 10"' > 10"1 5. 5 μl of each dilution is added to triplicate wells and the resulting AP content in
each well is 5.50 ng, 1.74 ng, 0.55 ng, 0.18 ng. 100 μl of pNNP reagent is then added to each ofthe standard wells. The plate is incubated at 37°C for 4h. A volume of 50 μl of 3M NaOH is added to all wells. The plate is read on a plate reader at 405 nm using the background subtraction option on blank wells filled with glycine buffer only. Additionally, the template is set up to indicate the concentration of AP- conjugate in each standard well [ 5.50 ng; 1.74 ng; 0.55 ng; 0.18 ng]. Results are indicated as amount of bound AP-conjugate in each sample.
Example 57: Alamar Blue Endothelial Cells Proliferation Assay This assay may be used to quantitatively determine protein mediated inhibition of bFGF-induced proliferation of Bovine Lymphatic Endothelial Cells (LECs), Bovine Aortic Endothelial Cells (BAECs) or Human Microvascular Uterine Myometrial Cells (UTMECs). This assay incoφorates a fluorometric growth indicator based on detection of metabolic activity. A standard Alamar Blue Proliferation Assay is prepared in EGM-2MV with 10 ng /ml of bFGF added as a source of endothelial cell stimulation. This assay may be used with a variety of endothelial cells with slight changes in growth medium and cell concentration. Dilutions ofthe protein batches to be tested are diluted as appropriate. Semm- free medium (GIBCO SFM) without bFGF is used as a non-stimulated control "and Angiostatin or TSP-1 are included as a known inhibitory controls.
Briefly, LEC, BAECs or UTMECs are seeded in growth media at a density of 5000 to 2000 cells/well in a 96 well plate and placed at 37-C overnight. After the overnight incubation ofthe cells, the growth media is removed and replaced with GIBCO EC-SFM. The cells are treated with the appropriate dilutions ofthe protein of interest or control protein sample(s) (prepared in SFM ) in triplicate wells with additional bFGF to a concentration of 10 ng/ ml. Once the cells have been treated with the samples, the plate(s) is/are placed back in the 37° C incubator for three days. After three days 10 ml of stock alamar blue (Biosource Cat# DAL1100) is added to each well and the plate(s) is/are placed back in the 37°C incubator for four hours. The plate(s) are then read at 530nm excitation and 590nm emission using the CytoFluor fluorescence reader. Direct output is recorded in relative fluorescence units.
Alamar blue is an oxidation-reduction indicator that both fluoresces and changes color in response to chemical reduction of growth medium resulting from cell growth. As cells grow in culture, innate metabolic activity results in a chemical reduction ofthe immediate surrounding environment. Reduction related to growth causes the indicator to change from oxidized (non-fluorescent blue) form to reduced (fluorescent red) form. i.e. stimulated proliferation will produce a stronger signal and inhibited proliferation will produce a weaker signal and the total signal is proportional to the total number of cells as well as their metabolic activity. The background level of activity is observed with the starvation medium alone. This is compared to the output observed from the positive control samples (bFGF in growth medium) and protein dilutions.
Example 58: Detection of Inhibition of a Mixed Lymphocyte Reaction
This assay can be used to detect and evaluate inhibition of a Mixed Lymphocyte Reaction (MLR) by gene products (e.g., isolated polypeptides).
Inhibition of a MLR may be due to a direct effect on cell proliferation and viability, modulation of costimulatory molecules on interacting cells, modulation of adhesiveness between lymphocytes and accessory cells, or modulation of cytokine production by accessory cells. Multiple cells may be targeted by these polypeptides since the peripheral blood mononuclear fraction used in this assay includes T, B and natural killer lymphocytes, as well as monocytes and dendritic cells.
Polypeptides of interest found to inhibit the MLR may find application in diseases associated with lymphocyte and monocyte activation or proliferation. These include, but are not limited to, diseases such as asthma, arthritis, diabetes, inflammatory skin conditions, psoriasis, eczema, systemic lupus erythematosus, multiple sclerosis, glomerulonephritis, inflammatory bowel disease, crohn's disease, ulcerative colitis, arteriosclerosis, cirrhosis, graft vs. host disease, host vs. graft disease, hepatitis, leukemia and lymphoma.
Briefly, PBMCs from human donors are purified by density gradient centrifugation using Lymphocyte Separation Medium (LSM®, density 1.0770 g/ml, Organon Teknika Coφoration, West Chester, PA). PBMCs from two donors are adjusted to 2 x 106 cells/ml in RPMI- 1640 (Life Technologies, Grand Island, NY)
supplemented with 10% FCS and 2 mM glutamine. PBMCs from a third donor is adjusted to 2 x 105 cells/ml. Fifty microliters of PBMCs from each donor is added to wells of a 96-well round bottom microtiter plate. Dilutions of test materials (50 μl) is added in triplicate to microtiter wells. Test samples (ofthe protein of interest) are added for final dilution of 1 :4; rhuIL-2 (R&D Systems, Minneapolis, MN, catalog number 202-IL) is added to a final concentration of 1 μg/ml; anti-CD4 mAb (R&D Systems, clone 34930.11, catalog number MAB379) is added to a final concentration of 10 μg/ml. Cells are cultured for 7-8 days at 37°C in 5% CO2, and 1 μC of [3H] thymidine is added to wells for the last 16 hrs of culture. Cells are harvested and thymidine incoφoration determined using a Packard TopCount. Data is expressed as the mean and standard deviation of triplicate determinations.
Samples ofthe protein of interest are screened in separate experiments and compared to the negative control treatment, anti-CD4 mAb, which inhibits proliferation of lymphocytes and the positive control treatment, IL-2 (either as recombinant material or supernatant), which enhances proliferation of lymphocytes. One skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides (e.g., gene therapy), antibodies, agonists, and/or antagonists and fragments and variants thereof.
It will be clear that the invention may be practiced otherwise than as particularly described in the foregoing description and examples. Numerous modifications and variations ofthe present invention are possible in light ofthe above teachings and, therefore, are within the scope ofthe appended claims.
The entire disclosure of each document cited (including patents, patent applications, journal articles, abstracts, laboratory manuals, books, or other disclosures) in the Background ofthe invention, Detailed Description, and Examples is hereby incoφorated herein by reference. Further, the hard copy ofthe sequence listing submitted herewith and the corresponding computer readable form are both incoφorated herein by reference in their entireties. Additionally, the contents of U.S. provisional applications Serial Nos. 60/179,065, 60/180,628, 60/251,988, 60/226,279, and Serial No. unknown (Atty. Docket PS730PP2) filed January 5, 2001 are all hereby incoφorated by reference in their entirety.
INDICATIONS RELATING TO A DEPOSITED MICROORGANISM OR OTHER BIOLOGICAL MATERIAL
(PCT Rule \3bis)
The indications made below relate to the deposited microorganism or other biological material referred to in the description in Table 1 on page 67.
B. IDENTIFICATION OF DEPOSIT Further deposits are identified on an additional sheet L--J.
Name of depositary institution: American Type Culture Collection
Address of depositary institution (including postal code and country) 10801 University Boulevard Manassas, Virginia 201 10-2209 United States of America
Date of deposit Accession Number
09 June 2000 PTA-2079
C. ADDITIONAL INDICATIONS (leave blank if not applicable)
This information is continued on an additional sheet LΔ
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (/the indications are not for all designated Stales)
Europe
In respect of those designations in which a European Patent is sought a sample ofthe deposited microorganism will be made available until the publication of the mention ofthe grant ofthe European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28(4) EPC). Continued on additional sheets
E. SEPARATE FURNISHING OF INDICATIONS (leave blank ,f no, appl .cable)
The indications listed below will be submitted to the international Bureau later (specify the general nature ofthe indications e g , "Accession Number of Deposit")
For receiving Office use only For International Bureau use only
D This sheet was received with the international application LJ This sheet was received by the International Bureau on.
Authorized officer Authorized officer
Revised Form PCT/RO/134 (January 2001) Pctrol34ep sollist
ATCC Deposit No. PTA-2079
CANADA
The applicant requests that, until either a Canadian patent has been issued on the basis of an application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the Commissioner of Patents only authorizes the furnishing of a sample ofthe deposited biological material referred to in the application to an independent expert nominated by the Commissioner, the applicant must, by a written statement, inform the International Bureau accordingly before completion of technical preparations for publication ofthe international application.
NORWAY
The applicant hereby requests that the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) ofthe Norwegian Patents Act. If such a request has been filed by the applicant! any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on the list of recognized experts drawn up by the Norwegian Patent Office or any person approved by the applicant in the individual case.
AUSTRALIA
The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest-in the invention (Regulation 3.25(3) ofthe Australian Patents Regulations).
FINLAND
The applicant hereby requests that, until the application has been laid open to public inspection (by the National Board of Patents and Regulations), or has been finally decided upon by the National Board of Patents and Registration without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art.
ATCC Deposit No.: PTA-2079
UNITED KINGDOM
The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion ofthe technical preparations for the international publication ofthe application.
DENMARK
The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later that at the time when the application is made available to the public under Sections 22 and 33(3) ofthe Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent Office or any person by the applicant in the individual case.
SWEDEN
The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I ofthe PCT Applicant's Guide). If such a request has been filed by the applicant any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent Office or any person approved by a applicant in the individual case.
NETHERLANDS
The applicant hereby requests that until the date of a grant of a Netherlands patent or until the date on which the application is refused or withdrawn or lapsed, the microorganism shall be made available as provided in the 31F(1) ofthe Patent Rules only by the issue of a sample to an expert. The request to this effect must be furnished by the applicant with the Netherlands Industrial Property Office before the date on which the application is made available to the public under Section 22C or Section 25 ofthe Patents Act ofthe Kingdom ofthe Netherlands, whichever ofthe two dates occurs earlier.