WO2001048900A2 - Battery pack - Google Patents
Battery pack Download PDFInfo
- Publication number
- WO2001048900A2 WO2001048900A2 PCT/US2000/042652 US0042652W WO0148900A2 WO 2001048900 A2 WO2001048900 A2 WO 2001048900A2 US 0042652 W US0042652 W US 0042652W WO 0148900 A2 WO0148900 A2 WO 0148900A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery pack
- converter
- group
- cells
- voltage
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0063—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/00712—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
- H02J7/007182—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2207/00—Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J2207/20—Charging or discharging characterised by the power electronics converter
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- BATTERY PACK This invention is related to battery packs.
- a battery pack includes a DC to DC converter and a group of at least one primary cell coupled to the DC-DC converter.
- the battery pack has a step down DC-DC converter.
- the group of primary cells comprise a plurality of cells coupled in series.
- the DC-DC converter includes a controller and an externally coupled switching transistor.
- the battery pack has the DC-DC converter with an input coupled to one terminal of the group of cells and an output that forms one of the terminals of the battery pack.
- the group of primary cells can be replaceable or non-replaceable.
- the battery pack includes a case that houses the DC to DC converter and group of primary cells.
- the primary cells can be configured in a parallel combination and used with a step up converter to provide a higher voltage output.
- This invention provides a battery pack including primary cells such as alkaline cells and other types of primary cells such as lithium manganese dioxide. Primary battery cells are not rechargeable.
- the battery pack includes a grouping of primary cells held in a cartridge and a DC to DC converter.
- FIG. 1 is a block diagram of a battery pack.
- FIGS. 2 and 3 are schematic diagrams of DC-DC converters for use in the battery pack of FIG. 1.
- FIG. 4 is a block diagram of an alternative battery pack.
- FIG. 5 is a block diagram of a battery pack that has an anti-charge circuit built in.
- FIG. 5A shows an embodiment of a signal detector circuit for the anti-charge circuit.
- FIG. 1 shows a battery pack 10 including a battery pack case 12 and a collection or group of primary cells 14 that are connected either in series or parallel, or as a combination of a series-parallel connection.
- the battery pack case 12 is represented as a box but in an actual embodiment would include a housing e.g., of plastic, having a compartment to house the group of primary cells 14 and internal electrodes (not shown) to connect the group of primary cells 14 in an appropriate manner to external electrode connections represented as 16a, 16b of the battery pack case 12.
- the group of primary cells 14 can be arranged in the battery pack case 12 in a manner where they are replaceable or not replaceable.
- the group of primary cells 14 include a plus terminal and a minus terminal 13a, 13b.
- the plus terminal 13a of the group of primary cells 14 is connected to an input side of a DC to DC converter 16.
- the DC-DC converter 16 acts as a voltage regulator for the voltage from the group of primary cells 14.
- the output of the DC to DC converter has two terminals e.g., a plus and a minus output that connect to a device 19 e.g., camcorder or cellular telephone, etc.
- the primary cells discharge through the DC to DC converter.
- the DC-DC converter 16 provides a regulated e.g., relatively constant output voltage to the device 19 being powered, while the cells are drained of voltage potential from an initial voltage to a terminal voltage of the primary cells.
- a device 19 such as a cellular telephone can operate at a nominal 3.6 volts, in a range of 3.15 volts to 5.6 volts. It is difficult to connect a set of alkaline cells in such a way to efficiently use the cells over that voltage range. For example, if three cells are connected in series (nominal total initial voltage of 4.5 volts), the cellular telephone will not be able to use the maximum capacity of the cells because the phone will shut off at 1.05 volts per cell. At this voltage level there is still significant energy left in each of the primary cells. On the other hand with four (4) primary cells connected in series, the total voltage from the cells (nominal total initial voltage of 6.0 volts) will exceed the 5.6 volt limit for the phone.
- the DC to DC converter 16 addresses both the upper and lower limit voltage problems.
- the DC to DC converter can be used to regulate the output voltage from e.g., five (5) triple A size cells connected in series.
- the DC-DC converter 16 converts the voltage to a regulated 3.6 volt nominal voltage.
- the DC-DC converter 16 prevents excessive voltage from appearing at the terminals and by regulating the battery voltage down to a constant 3.6 volts, the cells can discharge down to a voltage level of about .7 or .8 volts per cell before the DC-DC converter will cut out thereby enabling the maximum amount of energy transfer from of the cells.
- the battery pack can have an extra cell and discharge the cells down to a lower voltage.
- the cutoff voltage for each cell is arrived at by dividing the device cutoff voltage by the number of cells.
- Alkaline cell discharge efficiency benefits from low power drain. That is, more energy can be removed from a cell discharged at a low rate compared to a high discharge rate. Therefore, a high group voltage for the primary cells produces a low current drain and power drain per cell. For a given power requirement, this provides a higher discharge efficiency.
- the DC to DC conversion allows the group of battery cells to have an initially high voltage compared to the rating of the battery pack, while allowing the DC-DC converter to slowly discharge the cells to a minimum voltage. By discharging at a higher voltage and lower current drain enhances the discharge efficiency of each cell. Adding more cells improves this efficiency.
- FIG. 2 shows an exemplary DC to DC converter circuit 16.
- the DC to DC converter includes a controller device Ul from Linear Technology Corporation, Part No. LTC1474.
- the controller Ul has an internal switch (not shown) and low quiescent current.
- the controller Ul does not have high enough current switching capability to operate devices such as cellular phones and camcorders.
- the DC-DC converter also includes an external switching arrangement, 31 comprised of external transistors, Ql, Q2 and Q3.
- the external transistors enable the DC-DC converter to switch higher currents.
- the battery pack typically needs to provide up to .7 or .8 amps continuous current at the rated voltages.
- the DC-DC converter also includes an inductor LI and capacitors C4 and C5 to provide a low pass filter 33.
- the terminal Vin receives the voltage from the battery cells.
- the battery cells include five (5) AAA cells connected in series. The 5 cells produce a nominal initial output voltage of 7.5 volts.
- the battery pack 10 can output a constant voltage, e.g., 3.6 volts.
- the use of the DC-DC converter 16 extends the usable voltage of each of the primary cells. Therefore the usable life of the group of primary cells 14 is extended down to a voltage of about 4 volts.
- the DC-DC converter 16 circuit senses a voltage at the terminal of LI.
- the inductor LI in combination with resistors R3, R4 forms a voltage divider 35.
- a generated reference voltage in converter controller Ul is compared to a voltage across R4 combination that is fed back to a terminal Vfb.
- the controller Ul maintains a constant output voltage at the junction between resistors R3 and R4. That output voltage maintains a constant voltage at Vout.
- the controller causes the input voltage to be chopped by the transistor Q3 which turns off and on (by operation of transistors Ql and Q2) at a periodic rate.
- the chopped signal which appears to the left side of LI is applied to the low pass filter 33 to filter out AC components of the signal and provide a smooth, D.C. output voltage on terminals 16a, 16b.
- the DC-DC converter 16 is a step down converter. When Ql turns on it starts charging inductor LI through Q3. Inductor LI stores energy in the circuit and discharges the energy when transistor Q3 turns off. The inductor LI discharges through the diode D2 through the load to the Vout terminal.
- the DC-DC converter reduces the input voltage down to a lower output voltage Vout while the controller Ul maintains the proper duty cycle or a combination of duty cycle and switching frequency to switch transistor Q3 to maintain a constant DC output voltage at Vout.
- a CMOS arrangement of transistors Q1-Q3 is used to minimize quiescent current.
- FIG. 3 shows an alternative DC-DC converter circuit 16' that has high efficiency, low noise, good transient response, but a relatively high quiescent current (e.g., a couple hundred microamps).
- This DC-DC converter circuit 16' is less desirable. Ideally the DC-DC converter should have a vanishingly small amount of quiescent current drain.
- This DC-DC converter circuit 16' can meet the power conversion requirements of typical applications.
- This DC-DC converter circuit 16' is also a step down converter.
- the DC-DC converter circuit 16' takes the applied input voltage and chops it through the transistor Ql and charges up inductor LI.
- the combination of inductor LI and the capacitor C3, C7 act as a filter that filters out the AC component and provides a DC voltage.
- the DC-DC converter circuit 16' has a similar feedback connection back to a controller U2 as converter 16 (FIG. 3), here from the connection between resistors R2 and R3.
- the converter acts as a switching regulator that ratios the input voltage down in a controlled manner to provide a regulated DC output voltage.
- the controller U2 can be part number MAX 1627 manufactured by Maxim Integrated Products Inc., in Sunnyvale, California.
- FIG. 4 shows the primary cell group 14 coupled between the plus terminal 13a and the minus terminal 13b.
- a manually activated switch 20 Connected to the plus terminal of the cells is a manually activated switch 20.
- the other side of the switch is connected to the DC-DC converter 16.
- the output of the DC to DC converter 16 provides output terminal 16a for the battery pack.
- the switch 20 can interrupt the connection between the cells to the DC-DC converter 16 to eliminate the drain on the cells which would occur when the battery pack 10 is not in use.
- the switch 20 could require intervention by the user or it could be designed in such a way that it would function when the battery pack 10 was applied to the device (not shown) being powered.
- FIG. 5 shows a collection of primary cells connected to an anti-charge circuit 21 to prevent unwanted charging of the primary cells 14.
- the anti-charge circuit 21 includes a switch 20' that is activated by a signal conditioning circuit 24.
- the signal conditioning circuit 24 detects the presence of a reverse current through the alkaline cells. If that condition is detected, the signal conditioning circuit 24 opens the connection between the cells and the DC to DC converter.
- the purpose of this switch 20' would be for safety. In many applications that use rechargeable batteries there is the possibility for hooking up the primary battery pack to a device that has a charging circuit that is intended to charge rechargeable cells. Primary cells such as alkaline cells are not rechargeable and attempting to recharge them can be dangerous.
- the signal conditioning circuit 24 could either have a manual reset 27 (as shown) or an automatic reset that is triggered when the charging current disappears.
- the anti-charge circuit 21 senses a voltage across resistor 26.
- the voltage could be amplified and used to trip a comparator 29 (FIG. 5A) that provides a driver for the switch 20'.
- the signal conditioning circuit 24 and switch 20' could be included as part of the DC to DC converter. Ideally all of the integrated circuits are based on CMOS technology for low power consumption.
- the switching transistors could be separate from the controller.
- the capacitance and the inductance required for the amount of energy to be stored could be implemented as discrete capacitor and inductor devices.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Dc-Dc Converters (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU49039/01A AU4903901A (en) | 1999-12-10 | 2000-12-07 | Battery pack |
EP00993019A EP1254503A2 (en) | 1999-12-10 | 2000-12-07 | Battery pack |
JP2001548508A JP2003518725A (en) | 1999-12-10 | 2000-12-07 | Battery pack |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/459,196 US6232749B1 (en) | 1999-12-10 | 1999-12-10 | Battery pack |
US09/459,196 | 1999-12-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2001048900A2 true WO2001048900A2 (en) | 2001-07-05 |
WO2001048900A3 WO2001048900A3 (en) | 2002-03-21 |
Family
ID=23823796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2000/042652 WO2001048900A2 (en) | 1999-12-10 | 2000-12-07 | Battery pack |
Country Status (6)
Country | Link |
---|---|
US (1) | US6232749B1 (en) |
EP (1) | EP1254503A2 (en) |
JP (1) | JP2003518725A (en) |
CN (1) | CN1402901A (en) |
AU (1) | AU4903901A (en) |
WO (1) | WO2001048900A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003015237A1 (en) * | 2001-08-06 | 2003-02-20 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Energy storage device |
WO2004032696A2 (en) * | 2002-10-10 | 2004-04-22 | Polar Light Limited | Method and apparatus to control the power delivery to an appliance |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6583523B1 (en) * | 2000-08-09 | 2003-06-24 | Inverters Unlimited, Inc. | Parallel DC power sources with different characteristics |
US6887614B2 (en) | 2001-07-30 | 2005-05-03 | The Gillette Company | End cap assembly for an electrochemical cell |
JP3642769B2 (en) * | 2002-03-20 | 2005-04-27 | Necトーキン株式会社 | Battery pack |
AU2003239135A1 (en) * | 2002-04-10 | 2003-10-27 | Karl Storz Endoscopy-America, Inc. | Apparatus and method for powering portable battery operated light sources |
US7737658B2 (en) * | 2003-10-27 | 2010-06-15 | Sony Corporation | Battery packs having a charging mode and a discharging mode |
US20050191528A1 (en) * | 2003-12-17 | 2005-09-01 | Exide Technologies | Battery energy storage module |
JP4506571B2 (en) * | 2005-06-07 | 2010-07-21 | トヨタ自動車株式会社 | Vehicle power supply system and vehicle |
US7649335B2 (en) * | 2005-06-07 | 2010-01-19 | Toyota Jidosha Kabushiki Kaisha | Vehicular power supply system and vehicle |
US7633261B2 (en) * | 2007-03-27 | 2009-12-15 | Honeywell International Inc. | Primary battery with internal voltage regulator |
DE102009000323A1 (en) * | 2009-01-20 | 2010-07-22 | Robert Bosch Gmbh | Series connection of switching regulators for energy transmission in battery systems |
US20100190052A1 (en) * | 2009-01-27 | 2010-07-29 | Umesh Rajani | Battery pack with high and low current discharge terminals |
CN101860054B (en) * | 2010-04-29 | 2013-03-20 | 海洋王照明科技股份有限公司 | Charge management circuit of lithium-ion battery |
JP5609401B2 (en) * | 2010-08-06 | 2014-10-22 | 株式会社豊田自動織機 | Vehicle power supply apparatus and power supply control method |
CA2811802A1 (en) * | 2010-09-20 | 2012-03-29 | Fariborz Frankie Roohparvar | Structure and method for extending battery life |
US10008872B2 (en) | 2010-09-20 | 2018-06-26 | Batteroo, Inc. | Methods of extending the life of battery |
CN104034926B (en) * | 2014-06-24 | 2017-01-18 | 南宁学院 | Universal meter battery box |
DE102017206254B4 (en) | 2016-04-13 | 2024-07-11 | Dialog Semiconductor (Uk) Limited | DC-DC conversion for multi-cell batteries |
US10270071B2 (en) | 2016-09-02 | 2019-04-23 | Dell Products L.P. | Systems and methods for voltage regulated battery backup management |
CN108433731A (en) * | 2018-03-22 | 2018-08-24 | 北京农业智能装备技术研究中心 | A kind of method and device for realizing Rumen physiology information long term monitoring |
CN109861347B (en) * | 2019-03-29 | 2024-04-16 | 武汉小安科技有限公司 | Shared electric vehicle battery protection circuit and terminal equipment |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2040609A (en) * | 1979-01-29 | 1980-08-28 | Mallory & Co Inc P R | Battery package with dc to dc converter |
US5204608A (en) * | 1989-11-07 | 1993-04-20 | Norand Corporation | Battery pack including electronic power saver |
US5656876A (en) * | 1992-09-21 | 1997-08-12 | Nokia Mobile Phones Limited | Battery pack |
US5945806A (en) * | 1997-08-29 | 1999-08-31 | Compaq Computer Corporation | Variable-voltage programmable battery module |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05236650A (en) * | 1992-02-20 | 1993-09-10 | Asahi Optical Co Ltd | Power source |
US5990664A (en) * | 1998-03-30 | 1999-11-23 | Eveready Battery Company, Inc. | Process and apparatus for modulating terminal voltage of battery |
-
1999
- 1999-12-10 US US09/459,196 patent/US6232749B1/en not_active Expired - Lifetime
-
2000
- 2000-12-07 JP JP2001548508A patent/JP2003518725A/en active Pending
- 2000-12-07 CN CN00816606A patent/CN1402901A/en active Pending
- 2000-12-07 EP EP00993019A patent/EP1254503A2/en not_active Withdrawn
- 2000-12-07 WO PCT/US2000/042652 patent/WO2001048900A2/en not_active Application Discontinuation
- 2000-12-07 AU AU49039/01A patent/AU4903901A/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2040609A (en) * | 1979-01-29 | 1980-08-28 | Mallory & Co Inc P R | Battery package with dc to dc converter |
US5204608A (en) * | 1989-11-07 | 1993-04-20 | Norand Corporation | Battery pack including electronic power saver |
US5656876A (en) * | 1992-09-21 | 1997-08-12 | Nokia Mobile Phones Limited | Battery pack |
US5945806A (en) * | 1997-08-29 | 1999-08-31 | Compaq Computer Corporation | Variable-voltage programmable battery module |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003015237A1 (en) * | 2001-08-06 | 2003-02-20 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Energy storage device |
DE10293585B4 (en) * | 2001-08-06 | 2013-05-23 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Energy storage device |
WO2004032696A2 (en) * | 2002-10-10 | 2004-04-22 | Polar Light Limited | Method and apparatus to control the power delivery to an appliance |
WO2004032696A3 (en) * | 2002-10-10 | 2004-09-02 | Polar Light Ltd | Method and apparatus to control the power delivery to an appliance |
Also Published As
Publication number | Publication date |
---|---|
AU4903901A (en) | 2001-07-09 |
EP1254503A2 (en) | 2002-11-06 |
JP2003518725A (en) | 2003-06-10 |
WO2001048900A3 (en) | 2002-03-21 |
US6232749B1 (en) | 2001-05-15 |
CN1402901A (en) | 2003-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6232749B1 (en) | Battery pack | |
JP3826929B2 (en) | Battery pack | |
US6127801A (en) | Battery pack assembly | |
US7692330B2 (en) | Electronic equipment, and battery pack and load apparatus used in the same | |
US9397370B2 (en) | Single and multiple cell battery with built-in controller | |
CN1633739A (en) | Hybrid power supply | |
US20080278221A1 (en) | Power distribution circuit for use in a portable telecommunications device | |
US7535194B2 (en) | Fuel cell system built as a system in which a fuel cell and an electric device are provided in parallel | |
EP0752748B1 (en) | Multiple function battery charger, self-configuring as supply voltage regulator for battery powered apparatuses | |
EP1867215A1 (en) | A power supply | |
US4970451A (en) | Device for utilizing low voltage electric current sources | |
US6147472A (en) | Non-rechargeable battery pack | |
US20070229022A1 (en) | Power-Supply Unit | |
JP4133735B2 (en) | Battery pack | |
CN211880118U (en) | Battery management chip, battery management system and electronic equipment | |
JP4079108B2 (en) | Uninterruptible power system | |
CN214929039U (en) | Energy storage charging and battery replacing system | |
JP4079107B2 (en) | Uninterruptible power system | |
JP4186218B2 (en) | Secondary battery pack | |
JP3642105B2 (en) | Battery pack | |
JP2002354690A (en) | Battery power supply device | |
JP2005135672A (en) | Battery pack | |
CN113183780A (en) | Energy storage charging and battery replacing system | |
KR19990037412U (en) | Power supply for portable telephone | |
CA2596286A1 (en) | Battery pack |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2001 548508 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2000993019 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 008166064 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 2000993019 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2000993019 Country of ref document: EP |