Connect public, paid and private patent data with Google Patents Public Datasets

Dynamically optimizing the presentation of advertising messages

Info

Publication number
WO2001039087A2
WO2001039087A2 PCT/US2000/032325 US0032325W WO2001039087A2 WO 2001039087 A2 WO2001039087 A2 WO 2001039087A2 US 0032325 W US0032325 W US 0032325W WO 2001039087 A2 WO2001039087 A2 WO 2001039087A2
Authority
WO
Grant status
Application
Patent type
Prior art keywords
advertising
alternatives
cost
messages
facility
Prior art date
Application number
PCT/US2000/032325
Other languages
French (fr)
Other versions
WO2001039087A8 (en )
Inventor
Scott Eric Lipsky
Chen Yu
Original Assignee
Avenue A, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce, e.g. shopping or e-commerce
    • G06Q30/02Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards; Price estimation or determination
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce, e.g. shopping or e-commerce
    • G06Q30/02Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards; Price estimation or determination
    • G06Q30/0241Advertisement
    • G06Q30/0242Determination of advertisement effectiveness
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce, e.g. shopping or e-commerce
    • G06Q30/02Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards; Price estimation or determination
    • G06Q30/0241Advertisement
    • G06Q30/0242Determination of advertisement effectiveness
    • G06Q30/0243Comparative campaigns
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce, e.g. shopping or e-commerce
    • G06Q30/02Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards; Price estimation or determination
    • G06Q30/0241Advertisement
    • G06Q30/0273Fees for advertisement
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce, e.g. shopping or e-commerce
    • G06Q30/02Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards; Price estimation or determination
    • G06Q30/0241Advertisement
    • G06Q30/0277Online advertisement

Abstract

A facility for adjusting the execution of an advertising campaign in which advertising messages are presented using a plurality of advertising alternatives as described. During a first time period, the facility presents advertising messages using each of the advertising alternatives in accordance with an initial allocation for each of the advertising alternatives. Also during the first time period, the facility tracks the performance of the advertising campaign with respect to each of the advertising alternatives. Based upon the tracking during the first time period, the facility attributes a performance score to each of the advertising alternatives for the first time period. The facility compares these scores, and, based upon the comparison, adjusts the allocations for the advertising alternatives so as to increase one or more allocations for advertising alternatives which compare favorably in the comparison, and so as to reduce one or more allocations for advertising alternatives comparing disfavorably in the comparison. The facility then, during a second time period, presents advertising messages using each of the advertising alternatives in accordance with the adjusted allocation for each of the advertising alternatives.

Description

DYNAMICALLY OPTIMIZING THE PRESENTATION OF ADVERTISING MESSAGES

CROSS REFERENE TO RELATED APPLICATION

This application claims the benefit of provisional U.S. Patent Application No. 60/167,055 filed November 22, 1999 which is hereby incorporated by reference.

TECHNICAL FIELD

The present invention is directed to Internet advertising techniques.

BACKGROUND

The World Wide Web ("the Web") is a medium for making content available to requesting users, also known as "publishing" content. A Web publisher may provide content of various types, including visual Web pages having textual and static visual contents, as well as such other content such as animated images and audio and video sequences. The relatively low cost of publishing content on the Web enables many organizations and individuals to act as Web publishers.

To access content made available on the Web, a user typically directs a Web client program, or "browser," executing on his or her computer system to obtain and display a particular unit of content. Units of content are each identified by an address, also called a Uniform Resource Locator, or URL. The user may direct the browser to obtain and display a unit of content by directly entering the URL for the unit of content, or by selecting a link or bookmark with which the URL is associated. Internet advertising is a practice in which a Web publisher adds an advertising message or other content provided by a third party advertiser to the content provided by the Web publisher in exchange for payment or other consideration from the advertiser. For example, a Web-based travel agency may pay the publisher of a Web site directed to tips for travelers to add a banner advertisement for the Web-based travel agency to some of the Web pages comprising the Web site. Such a banner advertisement typically presents visual information promoting the advertiser that takes up a portion of the area of the Web page. Some banner advertisements further constitute a link to a Web site associated with the advertiser, so that the user may click anywhere within the banner advertisement to display, or "click through to," that Web site, and perform additional actions there, such as purchasing a product or registering with the advertiser Web site. When such additional actions are performed, it is said that a "conversion" has occurred. In the terminology of Web advertising, a particular banner advertisement may be called a "creative" or a "advertising message." The different locations on Web pages of publisher Web sites that the publisher makes available for advertising are called "placements." An instance of presenting a particular creative in a particular placement for a particular use is called an "impression." When a publisher enters into an advertising agreement with an advertiser in which the advertiser purchases for a single price the opportunity to display a certain number of impressions in each of a number of placements, these placements and impressions are said to constitute a "cost package." As computer use, and particularly the use of the Web, becomes more and more prevalent, the volume of Internet advertising presented grows larger and larger. As this volume continues to increase, the need to optimize the effectiveness of advertising increases significantly.

In this connection, it is now common for an advertiser to mount a campaign for an advertiser's cause, in which it presents a number of different "alternative" advertising messages for the cause in each of a number of different placements. Indeed, many advertising campaigns utilize multiple cost packages of placements purchased from multiple publishers.

Such an extensive campaign can be difficult to manage in an active manner. In particular, it can be difficult to determine whether to increase or decrease the number of impressions presented in a particular cost package, whether to increase or decrease the number of impressions presented in a particular placement, and whether to increase or decrease the rate at which a particular creative is presented. Accordingly, a facility for automatically and dynamically optimizing the use of resources in an advertising campaign would have significant utility.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a high-level block diagram showing the environment in which the facility preferably operates.

Figure 2 is a flow diagram showing the steps preferably performed by the facility in order to optimize the performance of an advertising campaign.

Figures 3-5 are data structure diagrams showing the analysis of sample data by the facility.

DETAILED DESCRIPTION

A software facility for automatically and dynamically optimizing the use of resources in an advertising campaign is provided. In designing an advertising campaign, an advertising service selects cost packages to use in presenting advertising messages for the campaign, each of which constitutes an opportunity to present a certain number advertising messages in each one or more placements. The advertising service further selects a number of advertising messages to present as part of the campaign. The facility conducts the campaigns, presenting the selected advertising messages in the placements within the selected cost packages While conducting the campaign, facility maintains statistics indicating the level of performance of each of the advertising messages, placements, and cost packages.

After the campaign has been conducted for a period of time, the facility compares the performance of the selected advertising messages, placements, and cost packages, and scores their relative performance. Performance scores for these aspects of the campaign, sometimes called "advertising alternatives," may be based upon a variety of factors, including click-throughs, conversions, and sales produced by these advertising alternatives, as well as their cost. To the extent that reallocations between advertising messages, placements, and cost packages are possible, the facility performs reallocations from advertising messages, placements, and cost packages indicated by their performance scores to be performing at a low level to higher-performing ones.

For example, reallocating between cost packages may involve negotiating with the publisher or other seller of a higher-performing cost package to increase the volume of the higher-performing cost package, as well as negotiating with the publisher or other seller of a lower-performing cost package to cancel or decrease the volume of the lower-performing cost package. Reallocating between the placements of a cost package may involve negotiating with the publisher or other seller of the cost package to increase the volume of the higher-performing allocations of the cost package and decrease the volume of the lower-performing allocations of the cost package. Reallocating between advertising messages presented in a placement may involve increasing the probability that higher-performing advertising messages are served in response to an advertising message request for the placement and decreasing that probability for lower- performing advertising messages. After adjusting these allocations in accordance with the effectiveness scores, the facility continues the campaign using these new allocations, again maintaining performance statistics in order to later perform further reallocations.

In some embodiments, the facility manages the operation of several advertising campaigns simultaneously. For example, the facility may simultaneously manage the operation of campaigns for several different advertisers. This further extends the facility's ability to optimize campaign performance, by enabling the facility to exchange measures of advertising alternatives between campaigns, thereby allowing reallocation of advertising alternatives that otherwise could not be reallocated, e.g., allowing reallocation between two cost packages whose seller declines to renegotiate.

By automatically optimizing the operating of advertising campaigns on-the-fly based upon the actual performance of the various advertising alternatives that comprise the campaign in this manner, the facility greatly increases the effectiveness of the campaign and produces significant efficiencies in operating the campaign.

Figure 1 is a high-level block diagram showing the environment in which the facility preferably operates. The diagram shows client computer systems 111 and 112. An Internet user preferably uses one of these client computer systems to connect, via the Internet 100, to an Internet publisher computer system, such as Internet publisher computer systems 130 and 140, to retrieve and display a Web page.

In cases where an Internet advertiser, through the Internet advertising service, has purchased advertising space on the Web page provided to the Internet user computer system by the Internet publisher computer system, the Web page contains a reference to a URL in the domain of the Internet advertising service computer system 120. When a user computer system receives a Web page that contains such a reference, the Internet user computer systems sends a request to the Internet advertising service computer system to return data comprising an advertising message, such as a banner advertising message. When the Internet advertising service computer system receives uch a request, it selects an advertising message to transmit to the Internet user computer system in response the request, and either itself transmits the selected advertising message or redirects the request containing an identification of the selected advertising message to an Internet content distributor computer system, such as Internet content distributor computer systems 170 and 180. When the Internet user computer system receives the selected advertising message, the Internet user computer system displays it within the Web page. The displayed advertising message preferably includes one or more links to Web pages of the Internet advertiser's Web site. When the Internet user selects one of these links in the advertising message, the Internet user computer system dereferences the link to retrieve the Web page from the appropriate Internet advertiser computer system, such as Internet advertiser computer system 150 or 160. In visiting the Internet advertiser's Web site, the Internet user may traverse several pages, and may take such actions as purchasing an item, bidding in an auction, or registering as a user of the Internet advertiser. Revenue from such actions typically finances, and is often the motivation for, the Internet advertiser's Internet advertising. The Internet advertising service computer system 120 preferably includes one or more central processing units (CPUs) 121 for executing computer programs such as the facility, a computer memory 122 for storing programs and data while they are being used, a persistent storage device 123 such as a hard drive for persistently storing programs and data, and a computer-readable media drive 143, such as a CD-ROM drive, for reading programs and data stored on a computer-readable medium.

While preferred embodiments are described in terms of the environment described above, those skilled in the art will appreciate that the facility may be implemented in a variety of other environments, including a single, monolithic computer system, as well as various other combinations of computer systems or similar devices.

In an embodiment discussed in detail below, the facility judges the effectiveness of advertising messages, placements, and cost packages in terms of the conversion rates that they produce. In some embodiments, however, the facility preferably uses a rating function that rates the effectiveness of each alternative advertising message when presenting each placement and cost package in which it is presented based upon other factors. The rating function preferably has a positive reaction, for a particular advertising message and publisher, to one or more of the following factors: (1) "conversion rate," the percentage of presentations of the advertising message at the publisher to users that coincided with users that performed some action on the advertiser's web site, such as visiting it or placing an order; (2) "click rate," the percentage of times the advertising message was presented at the publisher and was clicked on by the user viewing the advertising message; and/or (3) "average transaction value," the average dollar amount of orders placed by customers that viewed the advertising message at the publisher. The rating function also preferably has a negative reaction, for a particular advertising message and publisher, to the financial cost of presenting the advertising message at the publisher. After the rating function is applied to each advertising message for a particular publisher to produce raw rating scores, the raw rating scores are preferably normalized so that they sum to 100% for the publisher.

In various embodiments, the rating function is applied to update the weights at various frequencies, including frequencies such as once per week, once per day, once per hour, or continuously.

In certain embodiments, the rating function limits the extent to which the rating of a particular advertising message and publisher can change during a single period. For example, in one preferred embodiment, the rating function is limited to changing no more than 5% per period. In some embodiments, the facility retains the initial weightings without applying the rating function until a minimum number of advertising message presentations is reached. For example, the facility may defer re- weighting until a minimum number of total presentations of any of the advertising messages within the group at any of the publishers is reached. In additional embodiments, re-weighting is deferred until each advertising message, each publisher, or each combination of an advertising message and a publisher has a certain number of presentations.

In one embodiment, the facility maintains a history of the advertising presentation weights used during each period to facilitate the review of the performance of the advertising messages using different weights. In this manner, the facility can analyze the effects of particular weighting changes on performance.

Figure 2 is a flow diagram showing the steps preferably performed by the facility in order to optimize the performance of an advertising campaign. This process is preferably repeated by the facility periodically for each advertising campaign that is being managed by the facility. In steps 201-210, the facility loops through each cost package of placements that has been selected for the facility. In steps 202-206, the facility loops through each placement of the current cost package. In step 203, the facility generates scores measuring the effectiveness of advertising messages that have been presented in the current placement. In a preferred embodiment, effectiveness scores correspond to conversion rates ~ that is, the fraction of impressions of the advertising messages that lead to a conversion on the advertiser's web site, such as a purchase. In this embodiment, the effectiveness score of an advertising message is calculated by dividing the number of conversions produced by presenting the advertising message in the current placement by the number of times the advertising message was presented in the current placement, also described as the number of impressions of the advertising message in the current placement. As is discussed elsewhere herein, additional embodiments of the present invention utilize a variety of other formulae for generating effectiveness scores, which are in these embodiments utilized in step 203.

In step 203, the facility further compares the effectiveness scores generated for the advertising messages being presented in the current placement. In one preferred embodiment, the facility compares the absolute effectiveness scores of the advertising messages. In another preferred embodiment, the facility compares confidence intervals about the scores. Confidence intervals relate to statistical measures, such as effectiveness scores, that are based on a finite number of observations, or "samples." A confidence interval indicates a range of values around, or "about," the statistical measure into which there is a particular probability that the same statistical measure based upon a much larger population of samples will fall. In one embodiment, the facility compares 80 percent confidence intervals about the scores, meaning that the facility compares ranges about the scores into which there is an 80 percent chance that scores based on a much larger population of samples will fall.

Equations (1) - (12) below show the derivation of the formula in equation (12) preferably used by the facility to calculate an 80 percent confidence interval about each effectiveness score. Equation (1) indicates that the confidence interval (a,b)α for a particular confidence level α is defined as the statistical measure x , here the effectivess score + a confidence interval radius cα for that confidence level.

Equation (2) indicates that the confidence interval radius ca is equal to a z-score zα for the confidence level multiplied by the standard deviation of the larger population σ and divided by the square root of the number of samples n upon which the statistical measure is based. z*σ = (2) in

Equation (3) indicates that, in accordance with the Central Limit Theorem, the standard deviation σ of the larger population can be assumed to be equal to the standard deviation s of the samples upon which the statistical measure is based.

σ = s (3)

Equation (4) indicates that the standard deviation s of the samples upon wich the statistical measure is based is equal to the square root of the product of the proportion of successes p times the proportion of failures (1 -p).

Equation (5) shows the substitution of equations (3) and (4) in equation (1).

Equation (6) shows that, in this case, the number of samples n upon which the statistical measure is based is the number of impressions in which the current advertising message was presented in the current placement.

n = impressions (6) Equation (7) shows that the proportion of successes p is equal to the number of conversions that resulted from presenting the current advertising message in the placement divided by the number of impressions.

conversions , . impressions

Equation (8) shows the substitution of equations (6) and (7) in equation (5).

_ I conversions conversions impressions impressions J (8) impressions

Equation (9) shows the simplification of equation (8).

(9)

Equation (10) shows that the z-score for an 80 percent confidence interval is 1.28, as derived from statistical tables.

Zso* = 1.28 (10)

Equation (11) shows the substitution of equation (10) in equation (9).

Equation (12) shows the substitution of equation (11) in equation (1), and indicates how to calculate an 80 percent confidence interval about a conversion rate effectivess score for a particular advertising message in a particular placement given the number of conversions and the number of impressions measured for that advertising message in that placement.

(12)

(a b) - conversions , 1.28^] conversιons(ιmpressιons - conversions) impressions impressions

In step 204, the facility reallocates the relative weights of the advertising messages for the current placement based upon the comparison performed in step 203. When an advertising message presentation request is received requesting an advertising message to present in the current placement, these weights are used to determine which advertising message to return. The weight for a particular advertising message reflects the relative likelihood that that advertising message will be returned in response to each such request. A number of embodiments of the facility utilize various reallocation schemes in step 204. In some embodiments, one or more advertising messages are "dropped" by assigning them a weight of zero, thereby increasing the relative weights of the advertising message that are not dropped. In these embodiments, any number of advertising messages may be dropped: a single lowest-performing advertising messages, the bottom- performing n advertising messages, the lowest-performing half of the advertising messages, all but the highest-performing advertising message, etc. In other embodiments, the facility incrementally adjusts the weight of each advertising message, incrementally reducing the weights of lower-performing advertising messages, and incrementally increasing the weights of higher- performing advertising messages. Additional reallocation schemes may also be employed.

In step 205, the facility forecasts the effectiveness scores for the advertising messages based upon the new allocation of advertising messages created in step 204. In step 206, the facility loops back to step 202 to process the next placement in the current cost package. After the last placement in the current cost package has been processed, the facility continues in step 207. In step 207, the facility forecasts the effectiveness scores of the placements in the current cost package based upon the effectiveness scores forecasted in step 205 for the advertising messages presented in those placements. In step 208, the facility compares the effectiveness scores forecasted in step 207 for the placements in the current cost package. Step 208 is preferably performed in a manner similar to the comparison performed in step 203. In step 209, the facility reallocates the relative weights of the placements in the cost package based upon the comparison of the effectiveness scores forecasted for them in step 208. Step 209 is preferably performed in a manner similar to that of step 204. Reallocating between the placements of a cost package may involve negotiating with the publisher or other seller of the cost package to increase the volume of the higher-performing allocations of the cost package and decrease the volume of the lower-performing allocations of the cost package. In step 210, the facility loops back to step 201 to process the next cost package. After the last cost package is processed, the facility preferably continues in step 211. In step 211, the facility forecasts cost effectiveness scores for the cost packages based upon effectiveness scores forecasted in step 207 for the placements in each cost package. In step 212, the facility compares the cost effectiveness scores forecasted in step 211 for the cost packages. Step 212 is preferably performed in a manner similar to the comparison of step 203. In step 213, the facility reallocates the relative weights of the cost packages based upon the comparison of step 212. Step 213 is preferably performed in a manner similar to the comparison of step 204. Reallocating between cost packages may involve negotiating with the publisher or other seller of a higher-performing cost package to increase the volume of the higher-performing cost package, as well as negotiating with the publisher or other seller of a lower-performing cost package to cancel or decrease the volume of the lower-performing cost package. In step 214, the facility applies the reallocations performed in steps 204, 209, and 213. After step 214, these steps conclude.

Figures 3-5 are data structure diagrams showing the analysis of sample data by the facility. Figures 3-5 show sample data for a single cost package. As is discussed herein, however, the facility is preferably capable of managing campaigns that make use of more than one cost package, and, indeed, managing several such campaigns simultaneously.

Figure 3 is a data structure diagram showing data relating to the performance of a sample cost package. A table 300 contains rows 311-325. Rows 311-324 each correspond to a different combination of a placement and an advertising message presented in that placement. Row 325 contains values aggregated from rows 311-324. Each row contains a field in each of the following columns: a placement column 301 identifying a placement in the cost package; an advertising message 302 identifying an advertising message presented in that placement; an allocation column 303 showing the current allocation weighting for the advertising message without the placement; an impressions column 304 indicating the number of times that the identified advertising message has been presented in the identified placement; a conversions column 305, indicating the number of such impressions that have resulted in a conversion event at the advertiser's web site; a conversion rate column 306 indicating the quotient of conversions over impressions; a cost column 307 indicating, in row 325, the cost of presenting the counted impressions; and a cost per conversion column 308 indicating, in row 325 the ultimate cost incurred per conversion. For example, the contents of row 312 show that advertising message 2 has been presented in placement 1 234,333 times and produced 234 conversions, thus achieving a conversion rate of 0.0010 + .0404. The conversion rate of 0.0010 is obtained by the facility by dividing 234 conversions by 234,333 impressions. The confidence interval rate is of .0404 is obtained in accordance with equation (11) by subtracting the number of conversions, 23, from the number of impressions, 243,655, then multiplying by the number of conversions, 23, then taking the square root of this quantity, then multiplying by 1.28 and dividing by the number of impressions, 234,655. Row 325 shows that using cost package 1 in the current campaign has produced a total of 1,564 conversions, at a total cost of $200,000, for an ultimate cost per conversion of $13.28. It can be seen that advertising message 3 has the highest conversion rate for placement 1, advertising message 1 has the highest conversion rate for placement 2, advertising message 1 has the highest conversion rate for placement 3, advertising message 2 has the highest conversion rate for placement 4, and advertising message 2 has the highest conversion rate for placement 5.

Figure 4 is a data structure diagram showing reallocation among advertising messages for each placement. Table 400 shows the result of reallocating weights among the advertising messages displayed in each placement. By comparing the new allocation weights shown in allocation column 403 to the conversion rates shown in column 306 of Figure 3, it can be seen that the facility has assigned a new weight of 1 to the advertising message for each placement having the highest conversion rate, and an allocation weight of 0 to each of the other advertising messages within the placement. For example, advertising message 3 having the highest conversion rate within placement 1, is assigned an allocation weight of 1 for placement 1, while advertising messages 1 and 2 are assigned an allocation weight of 0 for placement 1. Impressions column 404 shows the number of impressions forecasted for each combination of placement and advertising message in the next analysis cycle. For placement and advertising message combinations having an allocation weight of 0, 0 impressions are projected. For placement and advertising message combinations having weight of 1, a number of impressions equal to the sum of observed impressions for all of the advertising messages for that placement is projected. For example, the 721,000 impressions projected for advertising message 3 in placement 1 is the sum of the number of impressions observed for all advertising messages in placement 1. Conversions column 405 contains a projection of the number of conversions that will be produced by those impressions, and is obtained by multiplying the projected number of impressions in column 404 by the observed conversion rate shown in column 306. For example, the projection of 313,526 conversions shown for placement 1 in advertising message 3 is the product of 721,000 impressions and a conversion rate of 0.0188. The conversions field in row 425 is updated to be the sum of projected conversions. Similarly, the cost per conversion field in row 425 is updated to a projection of $4.30 per conversion by dividing the total cost of $200,000 by the projected total number of conversions, 46,551. Thus, it can be seen that, by reallocating advertising message weights as shown, the facility projects that is will reduce an ultimate cost per conversion from $13.28 to $4.30.

Figure 5 is a data structure diagram showing the comparison of the performance of placements within a cost package. Table 500 shows that the facility, for each placement, attributes the conversion rate of the non-zero weighted advertising message to the entire placement. On that basis, the facility compares the conversion rates attributed to each placement for the purpose of performing a reallocation among placements. The facility determines that placement 3 has the highest conversion rate, .0233. Accordingly, the facility, if possible, reweights the placements so as to increase the allocation to placement 3 and decrease the allocation to lower- performing placements, such as placements 4 and 5. Based on these reallocations among the placements of cost package 1, the facility preferably repeats its forecasting to determine a new cost per conversion for cost package 1. On this basis, it preferably compares the cost per conversion projected for cost package 1 to costs per conversion similarly projected for the other cost packages of the campaign, and performs a reallocation away from cost packages having a higher cost per conversion toward cost packages having a lower cost per conversion.

It will be understood by those skilled in the art that the above- described facility could be adapted or extended in various ways. For example, while advertising campaigns in which the advertising alternatives are advertising messages, placements, and cost package are discussed above, the facility may be straightforwardly adapted to manage advertising campaigns having more, fewer, or different advertising alternatives. Additionally, the facility may employ a variety of different types of effectiveness scores for comparing the effectiveness of different advertising alternatives. Further, in the foregoing, embodiments of the facility have been described that automatically manage advertising campaigns in which advertising messages are delivered via the World Wide Web to users using general-purpose computer systems executing web browsers. Additional embodiments of the facility may be used to manage campaigns in which advertising messages are presented to users via various other communication channels and other types of devices, including special-purpose devices such as personal digital assistants, cellular and satellite telephones, devices installed in automobiles and other vehicles, pagers, automatic teller machines, televisions, and other home appliances. Moreover, a further embodiment of the facility is adapted to allocate advertising alternatives separately for each of a number of these alternative outlet types, so that, for example, an advertisement that is particularly effective on a certain publisher via personal digital assistants is presented more frequently on personal digital assistants than alternative advertisements. While the foregoing description makes reference to various preferred embodiments, the scope of the invention is defined solely by the claims that follow and the elements recited therein.

Claims

We claim:
L A method in a computing device for adjusting the execution of an advertising campaign for presenting advertising messages, the advertising campaign having a plurality of advertising alternatives for presenting advertising messages, comprising: during a first time period, presenting advertising messages using each of the advertising alternatives in accordance with an initial allocation for each of the advertising alternatives; tracking the performance of the advertising campaign with respect to each of the advertising alternatives; based upon the tracking during the first time period, attributing a performance score to each of the advertising alternatives for the first time period; comparing the scores attributed to the advertising alternatives for the first time period; based upon the comparison, adjusting the allocations for the advertising alternatives so as to increase one or more allocations for advertising alternatives comparing favorably in the comparison and so as to reduce one or more allocations for advertising alternatives comparing disfavorably in the comparison; and during a second time period, presenting advertising messages using each of the advertising alternatives in accordance with the adjusted allocation for each of the advertising alternatives.
2. The method of claim 1 wherein each of the plurality of advertising alternatives is a different advertising message.
3. The method of claim 2 wherein the allocation for each of the advertising alternatives determines the fraction of all of the advertising message presentations that present the advertising message constituting the advertising alternative.
4. The method of claim 1 wherein each of the plurality of advertising alternatives is a different advertising space.
5. The method of claim 4 wherein the allocation for each of the advertising alternatives determines the fraction of all of the advertising message presentations that are presented in the advertising space constituting the advertising alternative.
6. The method of claim 1 wherein each of the plurality of advertising alternatives is a different package of advertising spaces.
7. The method of claim 6 wherein the allocation for each of the advertising alternatives determines the fraction of all of the advertising message presentations that are presented in the package of advertising spaces constituting the advertising alternative.
8. The method of claim 1 wherein a single selected advertising alternative compares the most favorably in the comparison, and wherein the adjusting adjusts the allocations such that the adjusted allocations for all of the advertising alternatives except the selected advertising alternative is zero, such that advertising messages are presented using only the selected advertising alternative during the second time period.
9. The method of claim 1 wherein a selected subset of the advertising alternatives whose number is a predetermined fraction of the total number of advertising alternatives compares favorably in the comparison to the advertising alternatives other than the selected subset, and wherein the adjusting adjusts the allocations such that the adjusted allocations for all of the advertising alternatives except the selected subset of advertising alternatives is zero, such that advertising messages are presented using only the selected subset of advertising alternatives during the second time period.
10. The method of claim 1 wherein a selected subset of a predetermines size of the advertising alternatives compares favorably in the comparison to the advertising alternatives other than the selected subset, and wherein the adjusting adjusts the allocations such that the adjusted allocations for all of the advertising alternatives except the selected subset of advertising alternatives is zero, such that advertising messages are presented using only the selected subset of advertising alternatives during the second time period.
11. The method of claim 1 wherein a single selected advertising alternative compares the least favorably in the comparison, and wherein the adjusting adjusts the allocations such that the adjusted allocations for the selected advertising alternative is zero, such that advertising messages are presented without using the selected advertising alternative during the second time period.
12. The method of claim 1 wherein the adjusting adjusts the allocations such that all of the adjusted allocations are nonzero, such that advertising messages are presented using each of the advertising alternatives during the second time period.
13. The method of claim 1 wherein the performance score attributed to each advertising alternative reflects the percentage of advertising messages presented using the advertising alternative that were selected by users to which they were presented.
14. The method of claim 1 wherein the performance score attributed to each advertising alternative reflects the percentage of advertising messages presented using the advertising alternative that were selected by users to which they were presented to access additional information relating to an advertiser associated with the campaign where the user performed a further predefined action with respect to the additional information.
15. The method of claim 14 wherein the further predetermined action is transacting a purchase.
16. The method of claim 14 wherein the further predetermined action is registering as a user.
17. The method of claim 14 wherein the further predetermined action is specified by the advertiser.
18. The method of claim 1 wherein the performance score attributed to each advertising alternative reflects the total amount of purchases transacted as a result of presentations using the advertising alternative.
19. The method of claim 1 wherein the performance score attributed to each advertising alternative reflects the total amount of purchases transacted as a result of presentations using the advertising alternative as compared to the number of advertising messages presented using the advertising alternative.
20. The method of claim 1 wherein the performance score attributed to each advertising alternative reflects the cost of presenting advertising messages using the advertising alternative.
21. The method of claim 20 wherein the reflected cost of presenting advertising messages using the advertising alternative includes the cost of purchasing advertising space in which to present advertising messages using the advertising alternative.
22. The method of claim 20 wherein the reflected cost of presenting advertising messages using the advertising alternative includes the cost of delivering data comprising advertising messages using the advertising alternative.
23. The method of claim 1 further comprising: during the second time period, tracking the performance of the advertising campaign with respect to each of the advertising alternatives; based upon the tracking during the first time period, attributing a performance score to each of the advertising alternatives for the first time period; comparing the scores attributed to the advertising alternatives for the second time period; based upon the comparison of scores attributed to the advertising alternatives for the second time period, again adjusting the allocations for the advertising alternatives so as to increase one or more allocations for advertising alternatives comparing favorably in the comparison and so as to reduce one or more allocations for advertising alternatives comparing disfavorably in the comparison; and during a third time period, presenting advertising messages using each of the advertising alternatives in accordance with the twice- adjusted allocation for each of the advertising alternatives.
24. The method of claim 1 repeated for a plurality of iterations over a plurality of further time periods.
25. The method of claim 1 wherein the comparison is performed using confidence intervals about the performance scores.
26. The method of claim 25 wherein the comparison is performed using 80% confidence intervals about the performance scores.
27. A computer system for adjusting the execution of an advertising campaign for presenting advertising messages, the advertising campaign having a plurality of advertising alternatives for presenting advertising messages, comprising: a presenting component that presents advertising messages using each of the advertising alternatives in accordance with an allocation for each of the advertising alternatives, the presenting component presenting advertising messages using each of the advertising alternatives in accordance with an initial allocation for each of the advertising alternatives during a first time period, the presenting component presenting advertising messages using each of the advertising alternatives in accordance with an adjusted allocation for each of the advertising alternatives during a second time period; a tracking component that tracks the performance of the advertising campaign with respect to each of the advertising alternatives during a first time period; a scoring component that, based upon the tracking during the first time period, attributes a performance score to each of the advertising alternatives for the first time period; a comparison component that compares the scores attributed to the advertising alternatives for the first time period; and an allocation adjustment component that, based upon the comparison, adjusts the allocations for the advertising alternatives so as to increase one or more allocations for advertising alternatives comparing favorably in the comparison and so as to reduce one or more allocations for advertising alternatives comparing disfavorably in the comparison.
28. The computer system of claim 27, further comprising a cycling component that triggers repetition of tracking, scoring, comparing, and adjustment over a plurality of further time periods.
29. One or more computer memories collectively containing an advertising analysis data structure, comprising: for each of a plurality of advertising alternatives, information indicating the performance of advertising presented using the advertising alternative based on a selected allocation among advertising alternatives, such that the contents of the data structure may be used to analyze the relative effectiveness of the advertising alternatives and adjust the selected allocation to optimize future use of the advertising alternatives to present advertising.
30. The computer memories of claim 29 wherein each of the plurality of advertising alternatives is a different advertising message.
31. The computer memories of claim 29 wherein each of the plurality of advertising alternatives is a different advertising space.
32. The method of claim 29 wherein each of the plurality of advertising alternatives is a different package of advertising spaces.
33. One or more computer memories collectively containing an advertising presentation data structure, comprising: for each of a plurality of advertising alternatives, an indication of an allocation level for the advertising alternative specifying a fraction of advertising presentations that are to be presented in accordance with the advertising alternative, at least a portion of the indications indicating allocation levels that have been adjusted from initial allocation levels based upon effectiveness of foregoing advertising presentations presented in accordance with the advertising alternatives selected based upon pre-adjustment allocations, such that the contents of the data structure may be used to determine a fraction of advertising presentations to present in accordance with each of the plurality of advertising alternatives.
34. The computer memories of claim 33 wherein each of the plurality of advertising alternatives is a different advertising message.
35. The computer memories of claim 33 wherein each of the plurality of advertising alternatives is a different advertising space.
36. The computer memories of claim 33 wherein each of the plurality of advertising alternatives is a different package of advertising spaces.
37. A computer-readable medium whose contents cause a computer system to present advertising messages in a group of advertising messages by: during an evaluation period, presenting the advertising messages of the group; assessing the effectiveness of presenting each of the advertising messages during the evaluation period; assigning presentation weights to the advertising messages of the group in accordance with their assessed effectiveness; and during a weighted presentation period, presenting the advertising messages of the group with relative frequencies that are in accordance with their weights.
38. The computer-readable medium of claim 37 wherein the weighted presentation period is a second evaluation period, and wherein the assessing and assigning is repeated for the second evaluation period.
39. The computer-readable medium of claim 37 wherein the advertising messages are presented at a plurality of advertising sites, and wherein the assessing assesses the effectiveness of presenting each of the advertising messages at each of the advertising sites, and wherein the assigning assigns an advertising message separate weights for each of the advertising sites, and wherein the weights for the advertising site on which an advertising message is to be presented are used to select the advertising messages to be presented on that advertising site.
PCT/US2000/032325 1999-11-22 2000-11-22 Dynamically optimizing the presentation of advertising messages WO2001039087A8 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16705599 true 1999-11-22 1999-11-22
US60/167,055 1999-11-22
US09/626,266 2000-07-25
US09626266 US7031932B1 (en) 1999-11-22 2000-07-25 Dynamically optimizing the presentation of advertising messages

Publications (2)

Publication Number Publication Date
WO2001039087A2 true true WO2001039087A2 (en) 2001-05-31
WO2001039087A8 true WO2001039087A8 (en) 2001-11-15

Family

ID=26862823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/032325 WO2001039087A8 (en) 1999-11-22 2000-11-22 Dynamically optimizing the presentation of advertising messages

Country Status (2)

Country Link
US (2) US7031932B1 (en)
WO (1) WO2001039087A8 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009503689A (en) * 2005-07-29 2009-01-29 ヤフー! インコーポレイテッド System and method for displaying a group that advertiser provisions of the advertising campaign information
KR101018987B1 (en) * 2005-06-29 2011-03-07 구글 잉크. Prioritizing ad reviews, by using expected revenue for example, in an advertising system

Families Citing this family (149)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7831512B2 (en) 1999-09-21 2010-11-09 Quantumstream Systems, Inc. Content distribution system and method
US9451310B2 (en) 1999-09-21 2016-09-20 Quantum Stream Inc. Content distribution system and method
US7747465B2 (en) * 2000-03-13 2010-06-29 Intellions, Inc. Determining the effectiveness of internet advertising
US20020042739A1 (en) * 2000-03-13 2002-04-11 Kannan Srinivasan Method and system for creating and administering internet marketing promotions
CA2409995C (en) * 2000-05-24 2010-01-12 Overture Services, Inc. Online media exchange
US7089195B2 (en) * 2001-04-30 2006-08-08 Ari Rosenberg System and method for the presentation of advertisements
US8386315B1 (en) * 2001-05-30 2013-02-26 Carl Meyer Yield management system and method for advertising inventory
US7668946B1 (en) 2001-08-31 2010-02-23 Aol Advertising Inc. Traffic estimation
US7349827B1 (en) * 2002-09-18 2008-03-25 Doubleclick Inc. System and method for reporting website activity based on inferred attribution methodology
US20040225562A1 (en) * 2003-05-09 2004-11-11 Aquantive, Inc. Method of maximizing revenue from performance-based internet advertising agreements
US8655727B2 (en) * 2003-12-30 2014-02-18 Amazon Technologies, Inc. Method and system for generating and placing keyword-targeted advertisements
US20050149388A1 (en) * 2003-12-30 2005-07-07 Scholl Nathaniel B. Method and system for placing advertisements based on selection of links that are not prominently displayed
US7523087B1 (en) * 2003-12-31 2009-04-21 Google, Inc. Determining and/or designating better ad information such as ad landing pages
US20050154717A1 (en) * 2004-01-09 2005-07-14 Microsoft Corporation System and method for optimizing paid listing yield
US8341017B2 (en) * 2004-01-09 2012-12-25 Microsoft Corporation System and method for optimizing search result listings
US20050182676A1 (en) * 2004-02-17 2005-08-18 Chan Brian K.K. Method and system for advertisement campaign optimization
US20050209929A1 (en) * 2004-03-22 2005-09-22 International Business Machines Corporation System and method for client-side competitive analysis
US20050246391A1 (en) * 2004-04-29 2005-11-03 Gross John N System & method for monitoring web pages
US20060010029A1 (en) * 2004-04-29 2006-01-12 Gross John N System & method for online advertising
US20050246358A1 (en) * 2004-04-29 2005-11-03 Gross John N System & method of identifying and predicting innovation dissemination
US20060020506A1 (en) * 2004-07-20 2006-01-26 Brian Axe Adjusting or determining ad count and/or ad branding using factors that affect end user ad quality perception, such as document performance
US7752200B2 (en) * 2004-08-09 2010-07-06 Amazon Technologies, Inc. Method and system for identifying keywords for use in placing keyword-targeted advertisements
US20060074742A1 (en) * 2004-09-27 2006-04-06 Carmine Santandrea Scent delivery devices and methods
US20060074747A1 (en) * 2004-10-01 2006-04-06 Reachlocal, Inc. Method and apparatus for performing a marketing campaign on behalf of an advertiser
US20060074746A1 (en) * 2004-10-01 2006-04-06 Reachlocal, Inc. Method and apparatus for tracking and reporting campaign status information for a marketing campaign
US20060074749A1 (en) * 2004-10-01 2006-04-06 Reachlocal, Inc. Method and apparatus for allocating a campaign budget among publishers for a marketing campaign
US20060074748A1 (en) * 2004-10-01 2006-04-06 Reachlocal, Inc. Method and apparatus for generating advertisement information for performing a marketing campaign
US20060074751A1 (en) * 2004-10-01 2006-04-06 Reachlocal, Inc. Method and apparatus for dynamically rendering an advertiser web page as proxied web page
US20060122889A1 (en) * 2004-11-22 2006-06-08 Microsoft Corporation System and method for managing a plurality of content items displayed in a particular placement position on a rendered page
KR100718127B1 (en) * 2005-04-28 2007-05-14 삼성전자주식회사 Perpendicular magnetic recording head
EP1894386A4 (en) 2005-06-01 2011-05-18 Google Inc Media play optimization
US20070027751A1 (en) * 2005-07-29 2007-02-01 Chad Carson Positioning advertisements on the bases of expected revenue
US20070118392A1 (en) * 2005-10-28 2007-05-24 Richard Zinn Classification and Management of Keywords across Multiple Campaigns
US20070156510A1 (en) * 2005-12-30 2007-07-05 Edward Kim Methods and systems for determining reliability of product demand forecasts
US7827060B2 (en) * 2005-12-30 2010-11-02 Google Inc. Using estimated ad qualities for ad filtering, ranking and promotion
US8065184B2 (en) * 2005-12-30 2011-11-22 Google Inc. Estimating ad quality from observed user behavior
US20070156887A1 (en) * 2005-12-30 2007-07-05 Daniel Wright Predicting ad quality
US20070239528A1 (en) * 2006-03-29 2007-10-11 Reachlocal, Inc. Dynamic proxy method and apparatus for an online marketing campaign
US8682712B2 (en) * 2006-05-22 2014-03-25 Google Inc. Monitoring landing page experiments
US7831658B2 (en) 2006-05-22 2010-11-09 Google Inc. Generating landing page variants
US7739594B2 (en) 2006-05-22 2010-06-15 Google Inc. Encoding and displaying default landing page content
EP2030158A1 (en) * 2006-05-22 2009-03-04 Afrigis (pty) Ltd Information distribution system and method for a mobile network
US7844894B2 (en) 2006-05-22 2010-11-30 Google Inc. Starting landing page experiments
US20080004962A1 (en) * 2006-06-30 2008-01-03 Muthukrishnan Shanmugavelayuth Slot preference auction
US8869066B2 (en) 2006-07-06 2014-10-21 Addthis, Llc Generic content collection systems
US20090319365A1 (en) * 2006-09-13 2009-12-24 James Hallowell Waggoner System and method for assessing marketing data
JP2008071240A (en) * 2006-09-15 2008-03-27 Fuji Xerox Co Ltd Action efficiency improvement support system and method thereof
US8825677B2 (en) 2006-09-20 2014-09-02 Ebay Inc. Listing generation utilizing catalog information
US20080082415A1 (en) * 2006-09-20 2008-04-03 Vishwanath Shastry Listing generation and advertising management utilizing catalog information
US8056092B2 (en) 2006-09-29 2011-11-08 Clearspring Technologies, Inc. Method and apparatus for widget-container hosting and generation
US20080091516A1 (en) * 2006-10-17 2008-04-17 Giovanni Giunta Response monitoring system for an advertising campaign
US7974976B2 (en) 2006-11-09 2011-07-05 Yahoo! Inc. Deriving user intent from a user query
US8108390B2 (en) * 2006-12-21 2012-01-31 Yahoo! Inc. System for targeting data to sites referenced on a page
US20080154717A1 (en) * 2006-12-22 2008-06-26 Yahoo! Inc. Publisher scoring
US8266274B2 (en) * 2007-03-06 2012-09-11 Clearspring Technologies, Inc. Method and apparatus for data processing
US9009728B2 (en) 2007-03-06 2015-04-14 Addthis, Inc. Method and apparatus for widget and widget-container distribution control based on content rules
US20080222232A1 (en) * 2007-03-06 2008-09-11 Allen Stewart O Method and Apparatus for Widget and Widget-Container Platform Adaptation and Distribution
US8788320B1 (en) 2007-03-28 2014-07-22 Amazon Technologies, Inc. Release advertisement system
US20080249855A1 (en) * 2007-04-04 2008-10-09 Yahoo! Inc. System for generating advertising creatives
US20080256037A1 (en) * 2007-04-12 2008-10-16 Sihem Amer Yahia Method and system for generating an ordered list
US20080270228A1 (en) * 2007-04-24 2008-10-30 Yahoo! Inc. System for displaying advertisements associated with search results
US9396261B2 (en) 2007-04-25 2016-07-19 Yahoo! Inc. System for serving data that matches content related to a search results page
US20080270154A1 (en) * 2007-04-25 2008-10-30 Boris Klots System for scoring click traffic
US8577726B1 (en) * 2007-05-03 2013-11-05 Amazon Technologies, Inc. Calculating bid amounts based on category-specific advertising expense factors and conversion information
US7933798B1 (en) * 2007-05-25 2011-04-26 Google Inc. Determining and displaying impression share to advertisers
US9392074B2 (en) 2007-07-07 2016-07-12 Qualcomm Incorporated User profile generation architecture for mobile content-message targeting
US9398113B2 (en) 2007-07-07 2016-07-19 Qualcomm Incorporated Methods and systems for providing targeted information using identity masking in a wireless communications device
US20090094313A1 (en) * 2007-10-03 2009-04-09 Jay Feng System, method, and computer program product for sending interactive requests for information
US8209378B2 (en) * 2007-10-04 2012-06-26 Clearspring Technologies, Inc. Methods and apparatus for widget sharing between content aggregation points
CA2606689A1 (en) * 2007-10-16 2009-04-16 Paymail Inc. System and method for subscription-based advertising
US8296643B1 (en) 2007-10-18 2012-10-23 Google Inc. Running multiple web page experiments on a test page
US7809725B1 (en) 2007-10-18 2010-10-05 Google Inc. Acquiring web page experiment schema
US9846884B2 (en) * 2007-10-19 2017-12-19 Fair Isaac Corporation Click conversion score
US20100281389A1 (en) * 2007-10-29 2010-11-04 Hutchinson Kevin P System for measuring web traffic
US20090112976A1 (en) * 2007-10-29 2009-04-30 Hutchinson Kevin P Method for measuring web traffic
US7752308B2 (en) * 2007-10-30 2010-07-06 Hutchinson Kevin P System for measuring web traffic
US9203911B2 (en) 2007-11-14 2015-12-01 Qualcomm Incorporated Method and system for using a cache miss state match indicator to determine user suitability of targeted content messages in a mobile environment
US20090157442A1 (en) * 2007-12-13 2009-06-18 Yahoo! Inc. System and Method for Improving the Performance of Digital Advertisements
US9391789B2 (en) 2007-12-14 2016-07-12 Qualcomm Incorporated Method and system for multi-level distribution information cache management in a mobile environment
US8249912B2 (en) * 2008-02-20 2012-08-21 Sebastian Elliot Method for determining, correlating and examining the causal relationships between media program and commercial content with response rates to advertising and product placement
US7895293B1 (en) 2008-02-25 2011-02-22 Google Inc. Web page experiments with fragmented section variations
US20090144385A1 (en) * 2008-03-03 2009-06-04 Harry Gold Sequential Message Transmission System
US8775257B2 (en) * 2008-05-05 2014-07-08 Elan Branch, Llc Preservation of scores of the quality of traffic to network sites across clients and over time
US20100100605A1 (en) * 2008-09-15 2010-04-22 Allen Stewart O Methods and apparatus for management of inter-widget interactions
US20100070876A1 (en) * 2008-09-18 2010-03-18 Pictela, Inc. Self-Replicating Rich Media Interface
US8311884B2 (en) * 2008-09-30 2012-11-13 Yahoo! Inc. System for allocating advertising inventory in a unified marketplace
US8311885B2 (en) 2008-09-30 2012-11-13 Yahoo! Inc. System for display advertising optimization using click or conversion performance
US8311886B2 (en) * 2008-09-30 2012-11-13 Yahoo! Inc. System for display advertising optimization with uncertain supply
US20100082392A1 (en) * 2008-09-30 2010-04-01 Yahoo! Inc. Multi-objective optimization for allocation of advertising resources
US9002729B2 (en) * 2008-10-21 2015-04-07 Accenture Global Services Limited System and method for determining sets of online advertisement treatments using confidences
US20100106605A1 (en) * 2008-10-23 2010-04-29 Yahoo! Inc. Inventory allocation with tradeoff between fairness and maximal value of remaining inventory
US20100114696A1 (en) * 2008-10-31 2010-05-06 Yahoo! Inc. Method of programmed allocation of advertising opportunities for conformance with goals
US8489458B2 (en) * 2009-02-24 2013-07-16 Google Inc. Rebroadcasting of advertisements in a social network
US20100262497A1 (en) * 2009-04-10 2010-10-14 Niklas Karlsson Systems and methods for controlling bidding for online advertising campaigns
US20100262499A1 (en) * 2009-04-10 2010-10-14 Platform-A, Inc. Systems and methods for controlling initialization of advertising campaigns
US20110066508A1 (en) * 2009-09-11 2011-03-17 Marilyn Louise Kern-Foxworth Method for advertising in distributed media
US8689117B1 (en) 2009-10-30 2014-04-01 Google Inc. Webpages with conditional content
US8554619B2 (en) * 2009-12-31 2013-10-08 Google Inc. Multi-campaign content allocation
US20110258041A1 (en) * 2010-04-20 2011-10-20 LifeStreet Corporation Method and Apparatus for Landing Page Optimization
US9367847B2 (en) * 2010-05-28 2016-06-14 Apple Inc. Presenting content packages based on audience retargeting
US8799412B2 (en) 2011-06-30 2014-08-05 Amazon Technologies, Inc. Remote browsing session management
US9621406B2 (en) 2011-06-30 2017-04-11 Amazon Technologies, Inc. Remote browsing session management
US8706860B2 (en) 2011-06-30 2014-04-22 Amazon Technologies, Inc. Remote browsing session management
US8577963B2 (en) 2011-06-30 2013-11-05 Amazon Technologies, Inc. Remote browsing session between client browser and network based browser
US9037696B2 (en) 2011-08-16 2015-05-19 Amazon Technologies, Inc. Managing information associated with network resources
US9195768B2 (en) 2011-08-26 2015-11-24 Amazon Technologies, Inc. Remote browsing session management
US8849802B2 (en) 2011-09-27 2014-09-30 Amazon Technologies, Inc. Historical browsing session management
US9178955B1 (en) 2011-09-27 2015-11-03 Amazon Technologies, Inc. Managing network based content
US8589385B2 (en) 2011-09-27 2013-11-19 Amazon Technologies, Inc. Historical browsing session management
US9383958B1 (en) 2011-09-27 2016-07-05 Amazon Technologies, Inc. Remote co-browsing session management
US8914514B1 (en) 2011-09-27 2014-12-16 Amazon Technologies, Inc. Managing network based content
US9152970B1 (en) 2011-09-27 2015-10-06 Amazon Technologies, Inc. Remote co-browsing session management
US9641637B1 (en) 2011-09-27 2017-05-02 Amazon Technologies, Inc. Network resource optimization
US8615431B1 (en) * 2011-09-29 2013-12-24 Amazon Technologies, Inc. Network content message placement management
US9313100B1 (en) 2011-11-14 2016-04-12 Amazon Technologies, Inc. Remote browsing session management
US8972477B1 (en) 2011-12-01 2015-03-03 Amazon Technologies, Inc. Offline browsing session management
US9117002B1 (en) 2011-12-09 2015-08-25 Amazon Technologies, Inc. Remote browsing session management
US9009334B1 (en) 2011-12-09 2015-04-14 Amazon Technologies, Inc. Remote browsing session management
US9330188B1 (en) 2011-12-22 2016-05-03 Amazon Technologies, Inc. Shared browsing sessions
US9087024B1 (en) 2012-01-26 2015-07-21 Amazon Technologies, Inc. Narration of network content
US9509783B1 (en) 2012-01-26 2016-11-29 Amazon Technlogogies, Inc. Customized browser images
US8627195B1 (en) 2012-01-26 2014-01-07 Amazon Technologies, Inc. Remote browsing and searching
US9092405B1 (en) 2012-01-26 2015-07-28 Amazon Technologies, Inc. Remote browsing and searching
US8839087B1 (en) 2012-01-26 2014-09-16 Amazon Technologies, Inc. Remote browsing and searching
US9336321B1 (en) 2012-01-26 2016-05-10 Amazon Technologies, Inc. Remote browsing and searching
US20150066628A1 (en) * 2012-01-26 2015-03-05 Google Inc. Creating and evaluating changes to advertising campaigns of an advertiser
US9183258B1 (en) 2012-02-10 2015-11-10 Amazon Technologies, Inc. Behavior based processing of content
US9037975B1 (en) 2012-02-10 2015-05-19 Amazon Technologies, Inc. Zooming interaction tracking and popularity determination
US9137210B1 (en) 2012-02-21 2015-09-15 Amazon Technologies, Inc. Remote browsing session management
US9208316B1 (en) 2012-02-27 2015-12-08 Amazon Technologies, Inc. Selective disabling of content portions
US9374244B1 (en) 2012-02-27 2016-06-21 Amazon Technologies, Inc. Remote browsing session management
US20130238391A1 (en) * 2012-03-09 2013-09-12 Oracle International Corporation Product oriented web site analytics
US20140289036A1 (en) * 2012-03-21 2014-09-25 Pearce Aurigemma Marketing Prediction, Analysis, and Optimization
US9460220B1 (en) 2012-03-26 2016-10-04 Amazon Technologies, Inc. Content selection based on target device characteristics
US9307004B1 (en) 2012-03-28 2016-04-05 Amazon Technologies, Inc. Prioritized content transmission
US20130325589A1 (en) * 2012-05-30 2013-12-05 Patrick R. Jordan Using advertising campaign allocation optimization results to calculate bids
US20130325590A1 (en) * 2012-05-31 2013-12-05 Yahoo! Inc. Centralized and aggregated tracking in online advertising performance prediction
US20130325596A1 (en) * 2012-06-01 2013-12-05 Kenneth J. Ouimet Commerce System and Method of Price Optimization using Cross Channel Marketing in Hierarchical Modeling Levels
US9772979B1 (en) 2012-08-08 2017-09-26 Amazon Technologies, Inc. Reproducing user browsing sessions
US8943197B1 (en) 2012-08-16 2015-01-27 Amazon Technologies, Inc. Automated content update notification
US20140081741A1 (en) * 2012-09-19 2014-03-20 Anthony Katsur Systems and methods for optimizing returns on ad inventory of a publisher
US8666792B1 (en) 2012-10-18 2014-03-04 BoomTown, LLC System and method for prioritizing real estate opportunities in a lead handling system based on weighted lead quality scores
US20140172554A1 (en) * 2012-12-18 2014-06-19 Wal-Mart Stores, Inc. Method and apparatus for selecting a preferred message
US9578137B1 (en) 2013-06-13 2017-02-21 Amazon Technologies, Inc. System for enhancing script execution performance
US9697534B2 (en) * 2013-06-19 2017-07-04 Google Inc. Attribution marketing recommendations
US9449231B2 (en) 2013-11-13 2016-09-20 Aol Advertising Inc. Computerized systems and methods for generating models for identifying thumbnail images to promote videos
US9635041B1 (en) 2014-06-16 2017-04-25 Amazon Technologies, Inc. Distributed split browser content inspection and analysis
US20160125454A1 (en) * 2014-11-04 2016-05-05 Yahoo! Inc. Systems and methods for managing advertising campaigns
US20160189205A1 (en) * 2014-12-30 2016-06-30 Anto Chittilappilly Validation of bottom-up attributions to channels in an advertising campaign

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5724521A (en) * 1994-11-03 1998-03-03 Intel Corporation Method and apparatus for providing electronic advertisements to end users in a consumer best-fit pricing manner
US6026368A (en) * 1995-07-17 2000-02-15 24/7 Media, Inc. On-line interactive system and method for providing content and advertising information to a targeted set of viewers
WO1997026729A2 (en) * 1995-12-27 1997-07-24 Robinson Gary B Automated collaborative filtering in world wide web advertising
US5848396A (en) * 1996-04-26 1998-12-08 Freedom Of Information, Inc. Method and apparatus for determining behavioral profile of a computer user
US6714975B1 (en) * 1997-03-31 2004-03-30 International Business Machines Corporation Method for targeted advertising on the web based on accumulated self-learning data, clustering users and semantic node graph techniques
US7039599B2 (en) * 1997-06-16 2006-05-02 Doubleclick Inc. Method and apparatus for automatic placement of advertising
US5937392A (en) * 1997-07-28 1999-08-10 Switchboard Incorporated Banner advertising display system and method with frequency of advertisement control
US6061660A (en) * 1997-10-20 2000-05-09 York Eggleston System and method for incentive programs and award fulfillment
US6286005B1 (en) * 1998-03-11 2001-09-04 Cannon Holdings, L.L.C. Method and apparatus for analyzing data and advertising optimization
US6006197A (en) * 1998-04-20 1999-12-21 Straightup Software, Inc. System and method for assessing effectiveness of internet marketing campaign
JP2000056720A (en) * 1998-08-05 2000-02-25 Nri & Ncc Co Ltd Device and method to pass judgement on promotion effect and recording medium
US6182070B1 (en) * 1998-08-21 2001-01-30 International Business Machines Corporation System and method for discovering predictive association rules
US6338066B1 (en) * 1998-09-25 2002-01-08 International Business Machines Corporation Surfaid predictor: web-based system for predicting surfer behavior
JP2000148675A (en) * 1998-11-09 2000-05-30 Nec Corp Device and method for providing customized advertisement on www
JP3389948B2 (en) * 1998-11-27 2003-03-24 日本電気株式会社 Display ad selection system
US6907566B1 (en) * 1999-04-02 2005-06-14 Overture Services, Inc. Method and system for optimum placement of advertisements on a webpage
US7158959B1 (en) * 1999-07-03 2007-01-02 Microsoft Corporation Automated web-based targeted advertising with quotas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
No Search *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101018987B1 (en) * 2005-06-29 2011-03-07 구글 잉크. Prioritizing ad reviews, by using expected revenue for example, in an advertising system
US8452656B2 (en) 2005-06-29 2013-05-28 Google Inc. Prioritizing ad review, by using expected revenue for example, in an advertising system
JP2009503689A (en) * 2005-07-29 2009-01-29 ヤフー! インコーポレイテッド System and method for displaying a group that advertiser provisions of the advertising campaign information

Also Published As

Publication number Publication date Type
US20060184421A1 (en) 2006-08-17 application
US7031932B1 (en) 2006-04-18 grant
WO2001039087A8 (en) 2001-11-15 application

Similar Documents

Publication Publication Date Title
US7584118B1 (en) Methods and systems for electronic affiliate compensation
US7958007B2 (en) Method, system, and software for geographically focused network advertising
US6978263B2 (en) System and method for influencing a position on a search result list generated by a computer network search engine
US6907566B1 (en) Method and system for optimum placement of advertisements on a webpage
US6324519B1 (en) Advertisement auction system
US7110993B2 (en) System and method for influencing a position on a search result list generated by a computer network search engine
US7962363B2 (en) Online media exchange
US7043471B2 (en) Search engine account monitoring
US20070214045A1 (en) System and method for operating a marketplace for internet ad media and for delivering ads according to trades made in that marketplace
US20030216930A1 (en) Cost-per-action search engine system, method and apparatus
US20090063249A1 (en) Adaptive Ad Server
US20060212350A1 (en) Enhanced online advertising system
US20060122879A1 (en) Method and system for pricing electronic advertisements
US20030055729A1 (en) Method and system for allocating display space
US20020174011A1 (en) Systems and methods for conducting a loyalty program
US20110106630A1 (en) User feedback-based selection and prioritizing of online advertisements
US20090119172A1 (en) Advertising Futures Marketplace Methods and Systems
US20070271136A1 (en) Method for pricing advertising on the internet
US7657520B2 (en) Providing history and transaction volume information of a content source to users
US20080243569A1 (en) Automated loan system and method
US20020161625A1 (en) Online media planning system
US20030177066A1 (en) Integrated marketing promotion system and method
US20110276383A1 (en) Consumer-specific advertisement presentation and offer library
US20080004948A1 (en) Auctioning for video and audio advertising
US7124091B1 (en) Method and system for ordering an advertising spot over a data network

Legal Events

Date Code Title Description
AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

121 Ep: the epo has been informed by wipo that ep was designated in this application
AL Designated countries for regional patents

Kind code of ref document: C1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

D17 Declaration under article 17(2)a
AK Designated states

Kind code of ref document: C1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase