WO2001038723A1 - Fuel injection valve for internal combustion engines - Google Patents

Fuel injection valve for internal combustion engines Download PDF

Info

Publication number
WO2001038723A1
WO2001038723A1 PCT/DE2000/003798 DE0003798W WO0138723A1 WO 2001038723 A1 WO2001038723 A1 WO 2001038723A1 DE 0003798 W DE0003798 W DE 0003798W WO 0138723 A1 WO0138723 A1 WO 0138723A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
valve member
bore
pressure
fuel injection
Prior art date
Application number
PCT/DE2000/003798
Other languages
German (de)
French (fr)
Inventor
Werner Wagner
Siegfried Ruthardt
Holger Rapp
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2001038723A1 publication Critical patent/WO2001038723A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • F02M61/12Other injectors with elongated valve bodies, i.e. of needle-valve type characterised by the provision of guiding or centring means for valve bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/20Closing valves mechanically, e.g. arrangements of springs or weights or permanent magnets; Damping of valve lift

Definitions

  • the invention is based on a fuel injection valve for internal combustion engines according to the preamble of claim 1.
  • a fuel injection valve is known from published application DE 196 11 884.
  • a bore is formed in a valve body, in which a piston-shaped valve member, which is axially movable against a closing force, is arranged.
  • a piston-shaped valve member which is axially movable against a closing force, is arranged.
  • one or more pressure surfaces are formed on the valve member, which are arranged in the pressure chamber and to which a force can be exerted by filling the pressure chamber with fuel under high pressure, which acts counter to the closing force.
  • the closing force is applied at the end of the valve member facing away from the combustion chamber and ideally acts exactly in the axis of symmetry of the valve member. Faults and irregularities can, however, lead to a / deviation of the valve element from the ideal central position. This is possible in particular on the valve seat, which is far away from the guided section of the valve member. Since the closing force is applied far away from the valve seat, there is a relatively large, tilting movement in the event of a deflection
  • the fuel injection valve according to the invention for internal combustion engines with the characterizing features of claim 1 has the advantage that the closing force is exerted on the valve member near the valve sealing surface on the valve member, whereby the tilting moment of the closing force on the valve member is significantly reduced.
  • the valve member has a bore which is coaxial with the axis of the valve member and which is open at its end remote from the combustion chamber.
  • a push pin protrudes into this blind bore, which is supported at the end of the blind bore and which is acted upon by the closing force at its end facing away from the combustion chamber. Due to the introduction of the closing force near the valve sealing surface, there is only a slight tilting moment due to the closing force when the valve member on the valve seat is adjusted. The better centering of the valve member achieved in this way leads to a uniform injection pattern with a plurality of injection openings and to less wear in the region of the guided section of the valve member.
  • a support surface forming the bottom surface of the blind bore is essentially conical and the tip of the pressure pin is in contact with the support surface comes, has a spherical shape.
  • an annular gap is formed between the pressure pin and the wall of the blind bore.
  • the closing force is exerted on the pressure pin by a closing spring.
  • the closing force is exerted on the pressure pin via a pressure piston which can be moved by a hydraulic force.
  • the pressure pin at the end facing away from the valve member merges into a pressure pin head which is guided in a bore. This results in an exact centering of the pressure pin at the end facing away from the valve member, and thus when the valve member is readjusted, which means that the pressure pin is readjusted. This is accompanied by an additional driving moment on the valve member towards the central axis of the bore.
  • FIG. 1 shows a longitudinal section through a fuel injection valve according to the invention
  • FIG. 2 shows a longitudinal section through another fuel injection valve according to the invention
  • FIG. 3 shows an enlarged view of the valve member from FIG. 1 or FIG. 2
  • FIG. 4 shows an enlarged view of FIG. 1 in the area of the push pin head
  • FIG 5 a further embodiment of the push pin head and in FIGS. 6, 7, 8 and 9 different designs of the transition from the pressure piston to the push pin head are shown.
  • FIG. 1 shows a longitudinal section through a fuel injection valve to which the subject matter of the invention is applied.
  • the structure is first explained and then the mode of operation is explained.
  • a bore 7 is formed in the valve body 1, the end of which faces the combustion chamber has a valve seat 22 in which at least one injection opening 28 is formed.
  • a piston-shaped valve member 5 is arranged in the bore 7. net, which is stepped in diameter and is subdivided into a section facing away from the combustion chamber and having a larger diameter, which is guided in the bore 7, and a section facing the combustion chamber and having a smaller diameter.
  • a pressure chamber 20 is formed between the wall of the bore 7 and the section of the valve member 5 which is smaller in diameter and can be filled with fuel under high pressure via an inlet channel 26.
  • a pressure shoulder 6 is formed, which is arranged in the pressure chamber 20 and to which a force is exerted in the axial direction on the valve member 5 by the fuel pressure in the pressure chamber 20.
  • an essentially conical valve sealing surface 24 is formed, which cooperates with the valve seat 22 and closes the injection opening 28 against the pressure chamber 20 in the closed position of the valve member 5.
  • the valve body 1 is clamped with a clamping nut 8 against a valve holding body 2 in which a spring chamber 19 is formed coaxially with the valve member 5.
  • the valve member 5 is connected to a pressure pin head 18 which is arranged in the spring chamber 19 and is movable in the axial direction in the spring chamber 19.
  • a piston-shaped pressure piston 3 adjoins the valve pin 5 facing away from the valve member 5, said piston being arranged so as to be axially movable in a receiving bore 10 formed in the valve holding body 2 and the end facing the combustion chamber comes into contact with the pressure pin head 18.
  • the pressure piston 3 Since the pressure piston 3 is made smaller in diameter than the pressure pin head 18, an annular shoulder remains on the pressure pin head 18, between which and the end of the spring chamber 19 facing away from the combustion chamber there is a pretensioned closing spring 16 which acts on the pressure pin head 18 in the closing direction of the valve member 5 ,
  • the end of the pressure piston 3 facing away from the combustion chamber and the receiving bore 10 delimit a valve control chamber 41 which is connected via an inlet throttle 39 to the inlet 26 and via an outlet throttle 37 to a relief chamber 11 formed in the valve holding body 2.
  • An essentially rotationally symmetrical magnet armature 12 is arranged in the relief chamber 11, and a valve ball 35 is arranged at the end on the combustion chamber side thereof.
  • the magnet armature 12 is acted upon by the force of a closing spring 30 arranged at the end of the relief chamber 11 facing away from the combustion chamber in the direction of the valve member 5, whereby the valve ball 35 is pressed onto the opening of the outlet throttle 37 and the valve control chamber 41 is closed against the relief chamber 11.
  • the relief chamber 11 is connected via a drain channel 32 to a drain line, not shown in the drawing, via which fuel can flow out of the relief chamber 11.
  • an electromagnet 14 is arranged, which by energizing can exert a magnetic force on the magnet armature 12 against the force of the closing spring 30.
  • the fuel injector works as follows: Fuel is introduced into the inlet channel 26 under high pressure via a fuel inlet system, not shown in the drawing, and a certain pressure level in the inlet channel 26 is thereby maintained. If the electromagnet 14 is not energized, the magnet armature 12 is pressed by the force of the closing spring 30 with the valve ball 35 against the opening of the outlet throttle 37. As a result, the valve control chamber 41 is closed against the relief chamber 11, so that because of the inlet throttle 39 in the valve control chamber 41 the fuel pressure is the same as in the inlet channel 26 and in the pressure chamber 20.
  • the diameter of the pressure piston 3 is larger than the diameter of the guided section of the valve member 5, exceeds the hydraulic force on the the end face 43 of the pressure piston 3 which delimits the valve control chamber 41 and faces away from the combustion chamber, the hydraulic force on the pressure shoulder 6 and the valve sealing surface 24.
  • the pressure piston 3 is thereby pressed towards the combustion chamber and presses the valve member 5 with the valve sealing surface 24 against the
  • Valve seat 22 whereby the injection opening 28 is closed.
  • the opening of the fuel injection valve is initiated by energizing the electromagnet 14 and thereby moving the magnet armature 12 in the axial direction away from the combustion chamber towards the electromagnet 14 until it hits a stop formed in the region of the electromagnet 14 and not shown in the drawing comes to the plant.
  • the valve ball 35 is thus lifted from the opening of the outlet throttle 37 and fuel can flow from the valve control chamber 41 into the relief chamber 11.
  • the flow resistances of the outlet throttle 37 and the inlet throttle 39 are dimensioned such that pressure equalization to the inlet channel 26 cannot take place immediately. As a result, the pressure in the valve control chamber 41 drops below the pressure in the inlet channel 26 and the force on the end face 43 of the chamber remote from the combustion chamber
  • Pressure piston 3 drops accordingly and becomes smaller than that on the pressure shoulder 6 and the valve sealing surface 24.
  • the valve member 5 experiences a resultant force in the axial direction away from the combustion chamber and the valve sealing surface 24 lifts off the valve seat 22 and connects the pressure chamber 20 to the combustion chamber.
  • This opening stroke movement is continued until the end face 43 of the pressure piston 3 facing away from the combustion chamber, which serves as a stop surface, comes to rest against the end of the receiving bore 10 facing away from the combustion chamber.
  • the closing of the fuel injection valve is initiated in that the electromagnet 14 is no longer energized and the magnet armature 12 presses the valve ball 35 onto the opening of the outlet throttle 37 by the force of the closing spring 30. Since there is no drain from the valve control chamber 41 in the Relief chamber 11 can take place, the pressure in the valve control chamber 41 adjusts to the pressure in the inlet channel 26 via the inlet throttle 39. Due to the above-described ratios of the diameter of the pressure piston 3 and the valve member 5, the hydraulic force on the end face 43 of the pressure piston 3 again predominates, so that the pressure piston 3 and thus also the valve member 5 are moved in the direction of the combustion chamber and thereby stop the injection process.
  • the closing spring 16 only serves to seal the fuel injection valve in the non-operating state. The closing spring 16 is of secondary importance for the actual opening and closing movement of the valve member 5.
  • FIG. 2 shows a second fuel injection valve to which the subject matter of the invention is applied.
  • the valve body 1 is clamped against the valve holding body 2 with a clamping nut 8 with the interposition of an intermediate disk 56.
  • Pressure chamber 20, as well as valve surface 22, valve seat 24 and injection openings 28, are designed in the same way as in the fuel injection valve shown in FIG. 1.
  • the main differences are that the closing force is applied to the valve member 5 exclusively by a closing spring 54, the force of which is determined by the design, and that the injection process is controlled via the variable fuel pressure in the pressure chamber 20.
  • the valve member 5 is connected to a spring plate 58, which is arranged in a spring chamber 52 formed in the valve holding body 2.
  • the closing spring 54 is arranged under prestress between the spring plate 58 and the end of the spring chamber 52 facing away from the combustion chamber. Due to the force of the closing spring 54, the valve member 5 with the valve sealing surface 22 pressed against the valve seat 24. Magnetic or electrical control devices are not necessary with this fuel injection valve.
  • the fuel injection valve works as follows: The injection process is initiated by the fuel pressure in the inlet channel 26 increasing. This also increases the fuel pressure in the pressure chamber 20 and thus the hydraulic force on the pressure shoulder 6 or the valve sealing surface 24. If the resulting force in the axial direction on the valve member 5 exceeds the force of the closing spring 54, the valve member 5 lifts with the valve sealing surface 24 from the valve seat 22 and fuel is injected into the combustion chamber through the injection opening 28. The opening stroke movement of the valve member 5 continues until the valve member 5 comes to rest against a stop surface formed in the intermediate disk 56. The end of the injection process is initiated by the fact that the fuel pressure decreases in the inlet channel 26 and thus also in the pressure chamber 20.
  • valve member 5 is replaced by the force of the Closing spring 54 is moved toward valve seat 22 until valve sealing surface 24 abuts valve seat 22.
  • the injection openings 28 are closed against the pressure chamber 20 and the injection process is ended.
  • FIG. 3 shows an enlarged illustration of the valve member 5 of the exemplary embodiment shown in FIG. 1 or in FIG. 2.
  • the valve member 5 is constructed to be rotationally symmetrical and has a blind bore 60 which extends coaxially to its longitudinal axis and which extends from the end of the valve member 5 facing away from the combustion chamber into the half of the section of the valve which faces the combustion chamber and is smaller in diameter. limb 5 extends.
  • the end of the blind bore 60 is designed as a support surface 62 which is essentially conical, the tip of the cone cone pointing towards the valve seat 22.
  • the closing force on the valve member 5 is transmitted by a pressure pin 4 which connects to the pressure pin head mentioned in the exemplary embodiment in FIG. 1 or 2.
  • the pressure pin 4 projects into the blind bore 60 and comes into contact with the support surface 62 with its end face, which is designed as a pressure surface 64 and faces the valve seat 22.
  • the outer diameter of the pressure pin 4 is smaller than the inner diameter of the blind bore 60, so that an annular gap 66 is formed between the pressure pin 4 and the inner wall of the blind bore 60.
  • the pressure surface 64 is spherical, so that in interaction with the conical support surface 62 results in a force centering the pressure pin 4 in the blind bore 60 on the pressure pin 4.
  • the force application point of the pressure pin 4 is very close to the valve sealing surface 24, when the valve member 5 is deflected, there is only a slight tilting moment due to the closing force with respect to the valve seat 22. This results in a more precise guidance of the valve member 5 in the bore 7 and a more precise positioning of the valve sealing surface 24 on the valve seat 22. It is a further advantage that the force application point of the pressure pin 4 faces the valve seat towards the guided section of the valve member 5. If, during the closing movement of the valve member 5 on the valve seat 22, the valve member 5 gets caught, which leads to a tilting of the valve member 5, a restoring moment is exerted by the force application point on the valve seat side, which centering the valve member 5 in hole 7 restored. this leads to a reduction in wear in the guided section of the valve member 5.
  • FIG. 4 and FIG. 5 show an enlarged illustration of the end of the pressure pin 4 on the combustion chamber side of the fuel injection valve shown in FIG. 1.
  • the push pin 4 goes away from the combustion chamber into a push pin head
  • FIGS. 6 to 9 show different embodiments of the transition from the pressure piston 3 to the pressure pin head 18.
  • the end face 48 of the pressure piston 3 is ground flat, while the head surface 47 of the pressure pin head 18 has a concave shape.
  • the head surface 47 is also concave, but the end face 48 of the pressure piston 3 is convex.
  • FIG. 8 shows both the head surface 47 of the push pin head 18 and the end face 48 of the pressure piston 3 is formed flat and they lie flat against one another.
  • the top surface of the push pin head 18 is also flat, while the end surface 48 has a convex shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

The invention relates to a fuel injection valve with a valve member (5) that can be longitudinally displaced in a bore (7) against a closing force. Said valve member is guided in a combustion-chamber remote zone in the bore (7) and merges into a zone that is smaller in diameter in direction of the combustion chamber. Said latter zone and the wall of the bore (7) define a pressure chamber (20) between them that is filled with fuel. At the combustion-chamber end of the valve member (5) a valve stem (24) is configured that interacts with a valve seat (22) disposed at the end of the bore (7), thereby controlling at least one injection opening (28). The valve member (5) is provided with a blind bore (60) that extends coaxially relative to its longitudinal axis. Said blind bore is open towards the end facing away from the valve-seat and a pressure pin (4) projects into said bore, said pressure pin resting on the end of the blind bore (60) that is configured as a support surface (62). The pressure pin (4) projects over the combustion-chamber remote end of the valve member (5) and transmits the closing force to the valve member (5) so that said valve member, when brought out of axis with the bore (7), is subjected to less wear and has a more even injection behavior due to the reduction of tilting moments.

Description

Kraftstoffeinspritzventil für BrennkraftmaschinenFuel injection valve for internal combustion engines
Stand der TechnikState of the art
Die Erfindung geht von einem Kraftstoffeinspritzventil für Brennkraftmaschinen nach der Gattung des Patentanspruchs 1 aus. Ein derartiges Kraftstoffeinspritzventil ist aus der Offenlegungsschrift DE 196 11 884 bekannt. In einem Ventil - körper ist eine Bohrung ausgebildet, in der ein kolbenformi - ges, entgegen einer Schließkraft axial bewegliches Ventil - glied angeordnet ist. Durch eine Verjüngung des Ventilgliedes zum Brennraum hin sind am Ventilglied ein oder mehrere Druckflächen ausgebildet, die im Druckraum angeordnet sind und auf die durch Befüllen des Druckraums mit Kraftstoff un- ter hohem Druck eine Kraft ausgeübt werden kann, die entgegen der Schließkraft wirkt.The invention is based on a fuel injection valve for internal combustion engines according to the preamble of claim 1. Such a fuel injection valve is known from published application DE 196 11 884. A bore is formed in a valve body, in which a piston-shaped valve member, which is axially movable against a closing force, is arranged. By tapering the valve member towards the combustion chamber, one or more pressure surfaces are formed on the valve member, which are arranged in the pressure chamber and to which a force can be exerted by filling the pressure chamber with fuel under high pressure, which acts counter to the closing force.
Die Schließkraft wird am brennraumabgewandten Ende des Ventilgliedes eingebracht und wirkt im Idealfall genau in der Symmetrieachse des Ventilgliedes. Durch Störungen und Unre- gelmäßigkeiten kann es jedoch zu einer /Abweichung des Ventilgliedes aus der ideal -zentralen Lage kommen. Dies ist insbesondere am Ventilsitz möglich, der weit vom geführten Abschnitt des Ventilgliedes entfernt ist. Da die Schließkraft weit vom Ventilsitz entfernt aufgebracht wird, kommt es bei einer Deachsierung zu einem relativ großen, kippendenThe closing force is applied at the end of the valve member facing away from the combustion chamber and ideally acts exactly in the axis of symmetry of the valve member. Faults and irregularities can, however, lead to a / deviation of the valve element from the ideal central position. This is possible in particular on the valve seat, which is far away from the guided section of the valve member. Since the closing force is applied far away from the valve seat, there is a relatively large, tilting movement in the event of a deflection
Moment auf das Ventilglied, was eine weitere Deachsierung fördert. Sind im Ventilsitz mehrere über den Umfang verteilte Einspritzöffnungen angeordnet, so kommt es durch die Deachsierung des Ventilgliedes zu einer unsymmetrischen Ein- es bei einer Deachsierung zu einem relativ großen, kippenden Moment auf das Ventilglied, was eine weitere Deachsierung fördert. Sind im Ventilsitz mehrere über den Umfang verteilte Einspritzöffnungen angeordnet, so kommt es durch die Deachsierung des Ventilgliedes zu einer unsymmetrischen Einspritzung, was sich nachteilig auf den Verbrennungsprozeß auswirkt .Moment on the valve member, which promotes further teaching. If a plurality of injection openings distributed over the circumference are arranged in the valve seat, then an asymmetrical injection occurs due to the axis adjustment of the valve member. it at a relatively large, tipping moment on the valve member during a teaching, which promotes further teaching. If a plurality of injection openings distributed over the circumference are arranged in the valve seat, asymmetrical injection occurs as a result of the axis adjustment of the valve member, which has a disadvantageous effect on the combustion process.
Vorteile der ErfindungAdvantages of the invention
Das erfindungsgemäße Kraftstoffeinspritzventil für Brennkraftmaschinen mit den kennzeichnenden Merkmalen des Patentanspruchs 1 hat demgegenüber den Vorteil, daß die Schließ- kraft auf das Ventilglied nahe der Ventildichtfläche auf das Ventilglied ausgeübt wird, wodurch das kippende Moment der Schließkraft auf das Ventilglied entscheidend verringert wird. Das Ventilglied weist eine koaxial zur Achse des Ventilglieds ausgebildete Bohrung auf, die an ihrem brennrau- mabgewandten Ende offen ist. In diese Sackbohrung ragt ein Druckstift, der sich am Ende der Sackbohrung abstützt und der an seinem brennraumabgewandten Ende von der Schließkraft beaufschlagt wird. Durch die Einleitung der Schließkraft nahe der Ventildichtfläche kommt es bei einer Deachsierung des Ventilgliedes am Ventilsitz nur zu einem geringen kippenden Moment durch die Schließkraft. Die dadurch erreichte bessere Zentrierung des Ventilgliedes führt bei mehreren Einspritzöffnungen zu einem gleichmäßigen Einspritzbild und zu einem geringeren Verschleiß im Bereich des geführten Ab- Schnittes des Ventilgliedes.The fuel injection valve according to the invention for internal combustion engines with the characterizing features of claim 1 has the advantage that the closing force is exerted on the valve member near the valve sealing surface on the valve member, whereby the tilting moment of the closing force on the valve member is significantly reduced. The valve member has a bore which is coaxial with the axis of the valve member and which is open at its end remote from the combustion chamber. A push pin protrudes into this blind bore, which is supported at the end of the blind bore and which is acted upon by the closing force at its end facing away from the combustion chamber. Due to the introduction of the closing force near the valve sealing surface, there is only a slight tilting moment due to the closing force when the valve member on the valve seat is adjusted. The better centering of the valve member achieved in this way leads to a uniform injection pattern with a plurality of injection openings and to less wear in the region of the guided section of the valve member.
In einer vorteilhaften Ausgestaltung des Gegenstandes der Erfindung ist eine die Bodenfläche der Sackbohrung bildende Stützfläche im wesentlichen konisch ausgebildet und die Spitze des Druckstif es, die an der Stützfläche zur Anlage kommt, weist eine ballige Form auf. Dadurch wird das ventil- sitzseitige Ende des Druckstiftes automatisch in der Sackbohrung zentriert und die Schließkraft wird genau in axialer Richtung auf das Ventilglied ausgeübt.In an advantageous embodiment of the object of the invention, a support surface forming the bottom surface of the blind bore is essentially conical and the tip of the pressure pin is in contact with the support surface comes, has a spherical shape. As a result, the end of the pressure pin on the valve seat side is automatically centered in the blind bore and the closing force is exerted precisely on the valve member in the axial direction.
In einer weiteren vorteilhaften Ausgestaltung ist zwischen dem Druckstift und der Wand der Sackbohrung ein Ringspalt ausgebildet. Durch dieses Spiel kann die Schließkraft auf das Ventilglied auch bei einer leichten Deachsierung oder Verformung des Ventilgliedes genau in axialer Richtung amIn a further advantageous embodiment, an annular gap is formed between the pressure pin and the wall of the blind bore. With this play, the closing force on the valve member can be exactly in the axial direction even when the valve member is slightly deflected or deformed
Mittelpunkt der Stützfläche der Sackbohrung eingebracht werden.Center point of the support surface of the blind bore.
In einer weiteren vorteilhaften Ausgestaltung wird die Schließkraft auf den Druckstift durch eine Schließfeder ausgeübt. Dies erlaubt, den Gegenstand der Erfindung bei Düsen- halterko binationen anzuwenden, bei denen der Öffnungshub des Ventilgliedes gegen die Kraft einer oder mehrerer Schließfedern erfolgt, die einzeln oder zusammengeschaltet die Schließkraft erzeugen.In a further advantageous embodiment, the closing force is exerted on the pressure pin by a closing spring. This allows the subject of the invention to be applied to nozzle holder combinations in which the opening stroke of the valve member takes place against the force of one or more closing springs which, individually or in combination, generate the closing force.
In einer weiteren vorteilhaften Ausgestaltung wird die Schließkraft auf den Druckstift über einen Druckkolben ausgeübt, der über eine hydraulische Kraft bewegt werden kann. Diese Ausgestaltung erlaubt es, den Gegenstand der Erfindung insbesondere bei Kraftstoffeinspritzsystemen einzusetzen, die nach dem Common-Rail-Prinzip arbeiten.In a further advantageous embodiment, the closing force is exerted on the pressure pin via a pressure piston which can be moved by a hydraulic force. This configuration allows the subject of the invention to be used in particular in fuel injection systems which operate on the common rail principle.
In einer weiteren vorteilhaften Ausgestaltung geht der Druckstift am ventilgliedabgewandten Ende in einen Druck- stiftkopf über, der in einer Bohrung geführt ist. Dadurch erhält man am ventilgliedabgewandten Ende eine genaue Zentrierung des Druckstiftes und damit bei einer Deachsierung des Ventilgliedes, die mit einer Deachsierung des Druckstif- tes einhergeht, ein zusätzliches rücktreibendes Moment auf das Ventilglied zur Mittelachse der Bohrung hin.In a further advantageous embodiment, the pressure pin at the end facing away from the valve member merges into a pressure pin head which is guided in a bore. This results in an exact centering of the pressure pin at the end facing away from the valve member, and thus when the valve member is readjusted, which means that the pressure pin is readjusted. This is accompanied by an additional driving moment on the valve member towards the central axis of the bore.
Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstandes der Erfindung sind der Zeichnung, der Beschreibung und den Ansprüchen entnehmbar .Further advantages and advantageous embodiments of the subject matter of the invention can be found in the drawing, the description and the claims.
Zeichnungdrawing
Zwei Ausführungsbeispiele eines erfindungsgemäßen Kraftstoffeinspritzventils sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert . Es zeigt die Figur 1 einen Längsschnitt durch ein erfindungsgemäßes Kraftstoffeinspritzventil, Figur 2 einen Längsschnitt durch ein weiteres erfindungsgemäßes Kraftstoffeinspritzventil , Figur 3 eine vergrößerte Darstellung des Ventilgliedes aus Figur 1 oder Figur 2, Figur 4 eine vergrößerte Darstellung von Figur 1 im Bereich des Druckstiftkopfs, Figur 5 eine weitere Ausgestaltung des Druckstiftkopfs und in den Figuren 6, 7, 8 und 9 sind verschiedene Ausgestaltungen des Übergangs vom Druckkolben zum Druckstiftkopf dargestellt.Two embodiments of a fuel injection valve according to the invention are shown in the drawing and explained in more detail in the following description. 1 shows a longitudinal section through a fuel injection valve according to the invention, FIG. 2 shows a longitudinal section through another fuel injection valve according to the invention, FIG. 3 shows an enlarged view of the valve member from FIG. 1 or FIG. 2, FIG. 4 shows an enlarged view of FIG. 1 in the area of the push pin head, FIG 5 a further embodiment of the push pin head and in FIGS. 6, 7, 8 and 9 different designs of the transition from the pressure piston to the push pin head are shown.
Beschreibung der AusführungsbeispieleDescription of the embodiments
In Figur 1 ist ein Längsschnitt durch ein Kraftstoffeinspritzventil dargestellt, an dem der Gegenstand der Erfindung angewandt ist . Im folgenden wird zuerst der Aufbau er- läutert und anschließend die Funktionsweise dargelegt.1 shows a longitudinal section through a fuel injection valve to which the subject matter of the invention is applied. In the following, the structure is first explained and then the mode of operation is explained.
Im Ventilkörper 1 ist eine Bohrung 7 ausgebildet, deren dem brennraumzugewandten Ende einen Ventilsitz 22 aufweist, in dem wenigstens eine Einspritzöffnung 28 ausgebildet ist. In der Bohrung 7 ist ein kolbenförmiges Ventilglied 5 angeord- net, das im Durchmesser gestuft ausgebildet ist und sich in einen brennraumabgewandten, im Durchmesser größeren Abschnitt, der in der Bohrung 7 geführt ist, und einen brenn- raumzugewandten, im Durchmesser kleineren Abschnitt unter- teilt. Zwischen der Wand der Bohrung 7 und dem im Durchmesser kleineren Abschnitt des Ventilgliedes 5 ist ein Druckraum 20 ausgebildet, der über einen Zulaufkanal 26 mit Kraftstoff unter hohem Druck befüllbar ist. Am Übergang der beiden Ventilglied-Abschnitte ist eine Druckschulter 6 aus- gebildet, die im Druckraum 20 angeordnet ist und auf die durch den Kraftstoffdruck im Druckraum 20 eine Kraft in axialer Richtung auf das Ventilglied 5 ausgeübt wird. Am brennraumseitigen Ende des Ventilgliedes 5 ist eine im wesentlichen konische Ventildichtfläche 24 ausgebildet, die mit dem Ventilsitz 22 zusammenwirkt und in Schließstellung des Ventilgliedes 5 die Einspritzöffnung 28 gegen den Druckraum 20 verschließt.A bore 7 is formed in the valve body 1, the end of which faces the combustion chamber has a valve seat 22 in which at least one injection opening 28 is formed. A piston-shaped valve member 5 is arranged in the bore 7. net, which is stepped in diameter and is subdivided into a section facing away from the combustion chamber and having a larger diameter, which is guided in the bore 7, and a section facing the combustion chamber and having a smaller diameter. A pressure chamber 20 is formed between the wall of the bore 7 and the section of the valve member 5 which is smaller in diameter and can be filled with fuel under high pressure via an inlet channel 26. At the transition of the two valve member sections, a pressure shoulder 6 is formed, which is arranged in the pressure chamber 20 and to which a force is exerted in the axial direction on the valve member 5 by the fuel pressure in the pressure chamber 20. At the end of the valve member 5 on the combustion chamber side, an essentially conical valve sealing surface 24 is formed, which cooperates with the valve seat 22 and closes the injection opening 28 against the pressure chamber 20 in the closed position of the valve member 5.
Der Ventilkörper 1 ist mit einer Spannmutter 8 gegen einen Ventilhaltekörper 2 verspannt, in dem koaxial zum Ventil - glied 5 ein Federraum 19 ausgebildet ist. Das Ventilglied 5 ist mit einem im Federraum 19 angeordneten Druckstiftkopf 18 verbunden, der in axialer Richtung im Federraum 19 beweglich ist. An den Druckstiftkopf 18 schließt sich dem Ventilglied 5 abgewandt ein kolbenförmiger Druckkolben 3 an, der in ei- ner im Ventilhaltekörper 2 ausgebildeten Aufnahmebohrung 10 axial beweglich angeordnet ist und dessen brennraumzugewand- tes Ende am Druckstiftkopf 18 zur Anlage kommt. Da der Druckkolben 3 im Durchmesser kleiner ausgebildet ist als der Druckstiftkopf 18, verbleibt am Druckstiftkopf 18 eine Ring- schulter, zwischen der und dem brennraumabgewandten Ende des Federraums 19 eine Schließfeder 16 unter Vorspannung angeordnet ist, die den Druckstiftkopf 18 in Schließrichtung des Ventilgliedes 5 beaufschlagt. Das brennraumabgewandte Ende des Druckkolbens 3 und die Auf- nahmebohrung 10 begrenzen einen Ventilsteuerraum 41, der über eine Zulaufdrossel 39 mit dem Zulauf anal 26 und über eine Ablaufdrossel 37 mit einem im Ventilhaltekörper 2 aus- gebildeten Entlastungsraum 11 verbunden ist. Im Entlastungs- raum 11 ist ein im wesentlichen rotationssymmetrischer Magnetanker 12 angeordnet, an dessen brennraumseitigen Ende eine Ventilkugel 35 angeordnet ist. Der Magnetanker 12 wird durch die Kraft einer am brennraumabgewandten Ende des Ent- lastungsraumes 11 angeordneten Schließfeder 30 in Richtung auf das Ventilglied 5 beaufschlagt, wodurch die Ventilkugel 35 auf die Öffnung der Ablaufdrossel 37 gepreßt wird und der Ventilsteuerraum 41 gegen den Entlastungsraum 11 verschlossen wird. Der Entlastungsraum 11 ist über einen Ablaufkanal 32 mit einer in der Zeichnung nicht dargestellten Ablauflei- tung verbunden, über die Kraftstoff aus dem Entlastungsraum 11 abfließen kann. Im brennraumabgewandten Bereich des Entlastungsraums 11 ist ein Elektromagnet 14 angeordnet, der durch Bestromen eine magnetische Kraft auf den Magnetanker 12 entgegen der Kraft der Schließfeder 30 ausüben kann.The valve body 1 is clamped with a clamping nut 8 against a valve holding body 2 in which a spring chamber 19 is formed coaxially with the valve member 5. The valve member 5 is connected to a pressure pin head 18 which is arranged in the spring chamber 19 and is movable in the axial direction in the spring chamber 19. A piston-shaped pressure piston 3 adjoins the valve pin 5 facing away from the valve member 5, said piston being arranged so as to be axially movable in a receiving bore 10 formed in the valve holding body 2 and the end facing the combustion chamber comes into contact with the pressure pin head 18. Since the pressure piston 3 is made smaller in diameter than the pressure pin head 18, an annular shoulder remains on the pressure pin head 18, between which and the end of the spring chamber 19 facing away from the combustion chamber there is a pretensioned closing spring 16 which acts on the pressure pin head 18 in the closing direction of the valve member 5 , The end of the pressure piston 3 facing away from the combustion chamber and the receiving bore 10 delimit a valve control chamber 41 which is connected via an inlet throttle 39 to the inlet 26 and via an outlet throttle 37 to a relief chamber 11 formed in the valve holding body 2. An essentially rotationally symmetrical magnet armature 12 is arranged in the relief chamber 11, and a valve ball 35 is arranged at the end on the combustion chamber side thereof. The magnet armature 12 is acted upon by the force of a closing spring 30 arranged at the end of the relief chamber 11 facing away from the combustion chamber in the direction of the valve member 5, whereby the valve ball 35 is pressed onto the opening of the outlet throttle 37 and the valve control chamber 41 is closed against the relief chamber 11. The relief chamber 11 is connected via a drain channel 32 to a drain line, not shown in the drawing, via which fuel can flow out of the relief chamber 11. In the area of the relief chamber 11 facing away from the combustion chamber, an electromagnet 14 is arranged, which by energizing can exert a magnetic force on the magnet armature 12 against the force of the closing spring 30.
Die Funktionsweise des Kraftstoffeinspritzventils ist wie folgt: Über ein in der Zeichnung nicht dargestelltes KraftstoffZulaufSystem wird Kraftstoff unter hohem Druck in den Zulaufkanal 26 eingeführt und dadurch ein bestimmtes Druckniveau im Zulaufkanal 26 aufrechterhalten. Ist der Elektromagnet 14 nicht bestromt, so wird der Magnetanker 12 durch die Kraft der Schließfeder 30 mit der Ventilkugel 35 gegen die Öffnung der Ablaufdrossel 37 gepreßt. Hierdurch ist der Ventilsteuerraum 41 gegen den Entlastungsraum 11 verschlossen, so daß wegen der Zulaufdrossel 39 im Ventilsteuerraum 41 derselbe Kraftstoffdruck herrscht wie im Zulaufkanal 26 und im Druckraum 20. Da der Durchmesser des Druckkolbens 3 größer ist als der Durchmesser des geführten Abschnitts des Ventilgliedes 5, übersteigt die hydraulische Kraft auf die den Ventilsteuerraum 41 begrenzende, brennraumabgewandte Stirnfläche 43 des Druckkolbens 3 die hydraulische Kraft auf die Druckschulter 6 und die Ventildichtfläche 24. Der Druckkolben 3 wird dadurch zum Brennraum hin gepreßt und drückt das Ventilglied 5 mit der Ventildichtfläche 24 gegen denThe fuel injector works as follows: Fuel is introduced into the inlet channel 26 under high pressure via a fuel inlet system, not shown in the drawing, and a certain pressure level in the inlet channel 26 is thereby maintained. If the electromagnet 14 is not energized, the magnet armature 12 is pressed by the force of the closing spring 30 with the valve ball 35 against the opening of the outlet throttle 37. As a result, the valve control chamber 41 is closed against the relief chamber 11, so that because of the inlet throttle 39 in the valve control chamber 41 the fuel pressure is the same as in the inlet channel 26 and in the pressure chamber 20. Since the diameter of the pressure piston 3 is larger than the diameter of the guided section of the valve member 5, exceeds the hydraulic force on the the end face 43 of the pressure piston 3 which delimits the valve control chamber 41 and faces away from the combustion chamber, the hydraulic force on the pressure shoulder 6 and the valve sealing surface 24. The pressure piston 3 is thereby pressed towards the combustion chamber and presses the valve member 5 with the valve sealing surface 24 against the
Ventilsitz 22, wodurch die Einspritzöffnung 28 verschlossen wird. Die Öffnung des Kraftstoffeinspritzventils wird dadurch initiiert, daß der Elektromagnet 14 bestromt wird und sich der Magnetanker 12 dadurch in axialer Richtung vom Brennraum weg auf den Elektromagneten 14 zu bewegt, bis er an einem im Bereich des Elektromagneten 14 ausgebildeten und in der Zeichnung nicht dargestellten Anschlag zur Anlage kommt. Die Ventilkugel 35 wird damit von der Öffnung der Ablaufdrossel 37 abgehoben und Kraftstoff kann aus dem Ventil- steuerraum 41 in den Entlas ungsraum 11 fließen. Die Durchflußwiderstände der Ablaufdrossel 37 und der Zulaufdrossel 39 sind so bemessen, daß ein Druckausgleich zum Zulaufkanal 26 nicht sofort stattfinden kann. Dadurch fällt der Druck im Ventilsteuerraum 41 unter den Druck im Zulaufkanal 26 ab und die Kraft auf die brennraumabgewandte Stirnseite 43 desValve seat 22, whereby the injection opening 28 is closed. The opening of the fuel injection valve is initiated by energizing the electromagnet 14 and thereby moving the magnet armature 12 in the axial direction away from the combustion chamber towards the electromagnet 14 until it hits a stop formed in the region of the electromagnet 14 and not shown in the drawing comes to the plant. The valve ball 35 is thus lifted from the opening of the outlet throttle 37 and fuel can flow from the valve control chamber 41 into the relief chamber 11. The flow resistances of the outlet throttle 37 and the inlet throttle 39 are dimensioned such that pressure equalization to the inlet channel 26 cannot take place immediately. As a result, the pressure in the valve control chamber 41 drops below the pressure in the inlet channel 26 and the force on the end face 43 of the chamber remote from the combustion chamber
Druckkolbens 3 sinkt entsprechend ab und wird kleiner als die auf die Druckschulter 6 und die Ventildichtfläche 24. Das Ventilglied 5 erfährt eine resultierende Kraft in axialer Richtung vom Brennraum weg und die Ventildichtfläche 24 hebt vom Ventilsitz 22 ab und verbindet den Druckraum 20 mit dem Brennraum. Diese Öffnungshubbewegung wird solange fortgesetzt, bis die brennraumabgewandte Stirnfläche 43 des Druckkolbens 3, die als Anschlagtlache dient, am brennraumabgewandten Ende der Aufnahmebohrung 10 zur Anlage kommt.Pressure piston 3 drops accordingly and becomes smaller than that on the pressure shoulder 6 and the valve sealing surface 24. The valve member 5 experiences a resultant force in the axial direction away from the combustion chamber and the valve sealing surface 24 lifts off the valve seat 22 and connects the pressure chamber 20 to the combustion chamber. This opening stroke movement is continued until the end face 43 of the pressure piston 3 facing away from the combustion chamber, which serves as a stop surface, comes to rest against the end of the receiving bore 10 facing away from the combustion chamber.
Das Schließen des Kraftstoffeinspritzventils wird dadurch eingeleitet, daß der Elektromagnet 14 nicht mehr bestromt wird und der Magnetanker 12 durch die Kraft der Schließfeder 30 die Ventilkugel 35 auf die Öffnung der Ablaufdrossel 37 preßt. Da nun kein Abfluß aus dem Ventilsteuerraum 41 in den Entlastungsraum 11 mehr stattfinden kann, gleicht sich der Druck im Ventilsteuerraum 41 über die Zulaufdrossel 39 dem Druck im Zulaufkanal 26 an. Durch die oben beschriebenen Verhältnisse der Durchmesser von Druckkolben 3 und Ventil - glied 5 überwiegt jetzt wieder die hydraulische Kraft auf die Stirnfläche 43 des Druckkolbens 3, so daß der Druckkolben 3 und damit auch das Ventilglied 5 in Richtung auf den Brennraum zu bewegt werden und dadurch den Einspritzvorgang beenden. Die Schließfeder 16 dient lediglich dazu, das Kraftstoffeinspritzventil im nicht betriebenen Zustand abzudichten. Für die eigentliche Öffnungs- und Schließbewegung des Ventil - gliedes 5 ist die Schließfeder 16 von untergeordneter Bedeutung .The closing of the fuel injection valve is initiated in that the electromagnet 14 is no longer energized and the magnet armature 12 presses the valve ball 35 onto the opening of the outlet throttle 37 by the force of the closing spring 30. Since there is no drain from the valve control chamber 41 in the Relief chamber 11 can take place, the pressure in the valve control chamber 41 adjusts to the pressure in the inlet channel 26 via the inlet throttle 39. Due to the above-described ratios of the diameter of the pressure piston 3 and the valve member 5, the hydraulic force on the end face 43 of the pressure piston 3 again predominates, so that the pressure piston 3 and thus also the valve member 5 are moved in the direction of the combustion chamber and thereby stop the injection process. The closing spring 16 only serves to seal the fuel injection valve in the non-operating state. The closing spring 16 is of secondary importance for the actual opening and closing movement of the valve member 5.
In Figur 2 ist ein zweites Kraftstoffeinspritzventils dargestellt, an dem der Gegenstand der Erfindung angewandt ist. Der Ventilkörper 1 ist unter Zwischenlage einer Zwischenscheibe 56 gegen den Ventilhaltekörper 2 mit einer Spannmut- ter 8 verspannt. Die Bohrung 7, das Ventilglied 5 und derFIG. 2 shows a second fuel injection valve to which the subject matter of the invention is applied. The valve body 1 is clamped against the valve holding body 2 with a clamping nut 8 with the interposition of an intermediate disk 56. The bore 7, the valve member 5 and the
Druckraum 20, ebenso wie die Ventilfläche 22, der Ventilsitz 24 und die Einspritzöffnungen 28, sind in gleicher Weise ausgebildet wie bei dem in Figur 1 gezeigten Kraftstoffeinspritzventil . Die wesentlichen Unterschiede bestehen darin, daß die Schließkraft auf das Ventilglied 5 ausschließlich durch eine Schließfeder 54, deren Kraft konstruktiv festgelegt ist, aufgebracht wird und daß die Steuerung des Ein- spritzvorgangs über den veränderbaren Kraftstoffdruck im Druckraum 20 erfolgt. Das Ventilglied 5 ist mit einem Federteller 58 verbunden, der in einem im Ventilhaltekörper 2 ausgebildeten Federraum 52 angeordnet ist. Zwischen dem Federteller 58 und dem brennraumabgewandten Ende des Federraums 52 ist die Schließfeder 54 unter Vorspannung angeordnet . Durch die Kraft der Schließfeder 54 wird das Ventilglied 5 mit der Ventildicht- fläche 22 gegen den Ventilsitz 24 gepreßt. Magnetische oder elektrische Steuereinrichtungen sind bei diesem Kraftstoffeinspritzventil nicht notwendig.Pressure chamber 20, as well as valve surface 22, valve seat 24 and injection openings 28, are designed in the same way as in the fuel injection valve shown in FIG. 1. The main differences are that the closing force is applied to the valve member 5 exclusively by a closing spring 54, the force of which is determined by the design, and that the injection process is controlled via the variable fuel pressure in the pressure chamber 20. The valve member 5 is connected to a spring plate 58, which is arranged in a spring chamber 52 formed in the valve holding body 2. The closing spring 54 is arranged under prestress between the spring plate 58 and the end of the spring chamber 52 facing away from the combustion chamber. Due to the force of the closing spring 54, the valve member 5 with the valve sealing surface 22 pressed against the valve seat 24. Magnetic or electrical control devices are not necessary with this fuel injection valve.
Die Funktionsweise des Kraftstoffeinspritzventils ist wie folgt: Der Einspritzvorgang wird dadurch initiiert, daß der Kraftstoffdruck im Zulaufkanal 26 ansteigt. Dadurch erhöht sich auch der Kraftstoffdruck im Druckraum 20 und damit die hydraulische Kraft auf die Druckschulter 6 beziehungsweise die Ventildichtfläche 24. Übersteigt die resultierende Kraft in axialer Richtung auf das Ventilglied 5 die Kraft der Schließfeder 54, so hebt das Ventilglied 5 mit der Ventil - dichtfläche 24 vom Ventilsitz 22 ab und Kraftstoff wird durch die Einspritzöffnung 28 in den Brennraum eingespritzt. Die Öffnungshubbewegung des Ventilglieds 5 wird solange fortgesetzt, bis das Ventilglied 5 an einer in der Zwischenscheibe 56 ausgebildeten Anschlagfläche zur Anlage kommt. Das Ende des Einspritzvorgangs wird dadurch eingeleitet, daß der Kraftsto fdruck im Zulaufkanal 26 abnimmt und damit auch im Druckraum 20. Unterschreitet die resultierende Kraft auf die Druckschulter 6 beziehungsweise die Ventildichtfläche 24 die Kraft der Schließfeder 54, so wird das Ventilglied 5 durch die Kraft der Schließfeder 54 auf den Ventilsitz 22 zu bewegt bis die Ventildichtfläche 24 am Ventilsitz 22 an- liegt. Die Einspritzöffnungen 28 werden gegen den Druckraum 20 verschlossen und der Einspritzvorgang ist beendet.The fuel injection valve works as follows: The injection process is initiated by the fuel pressure in the inlet channel 26 increasing. This also increases the fuel pressure in the pressure chamber 20 and thus the hydraulic force on the pressure shoulder 6 or the valve sealing surface 24. If the resulting force in the axial direction on the valve member 5 exceeds the force of the closing spring 54, the valve member 5 lifts with the valve sealing surface 24 from the valve seat 22 and fuel is injected into the combustion chamber through the injection opening 28. The opening stroke movement of the valve member 5 continues until the valve member 5 comes to rest against a stop surface formed in the intermediate disk 56. The end of the injection process is initiated by the fact that the fuel pressure decreases in the inlet channel 26 and thus also in the pressure chamber 20. If the resulting force on the pressure shoulder 6 or the valve sealing surface 24 falls below the force of the closing spring 54, the valve member 5 is replaced by the force of the Closing spring 54 is moved toward valve seat 22 until valve sealing surface 24 abuts valve seat 22. The injection openings 28 are closed against the pressure chamber 20 and the injection process is ended.
In Figur 3 ist eine vergrößerte Darstellung des Ventilgliedes 5 des in Figur 1 beziehungsweise des in Figur 2 darge- stellten Ausführungsbeispiels vergrößert dargestellt. Das Ventilglied 5 ist rotationssymmetrisch aufgebaut und weist eine koaxial zu dessen Längsachse verlaufende Sackbohrung 60 auf, die sich ausgehend von der brennraumabgewandten Stirnseite des Ventilgliedes 5 bis in die brennraumzugewandte Hälfte des im Durchmesser kleineren Abschnitts des Ventil- gliedes 5 erstreckt. Das Ende der Sackbohrung 60 ist als Stützfläche 62 ausgebildet, die im wesentlichen konisch ausgebildet ist, wobei die Spitze des Konuskegels zum Ventilsitz 22 hin zeigt. Die Schließkraft auf das Ventilglied 5 wird durch einen Druckstift 4 übertragen, der sich an den im Ausführungsbeispiel der Figur 1 oder 2 erwähnten Druckstift - köpf anschließt. Der Druckstift 4 ragt ausgehend vom Ventilhaltekörper 2 beziehungsweise der Zwischenscheibe 56 in die Sackbohrung 60 und kommt mit seiner als Druckfläche 64 aus- gebildeten, dem Ventilsitz 22 zugewandten Stirnseite an der Stützfläche 62 zur Anlage. Der Außendurchmesser des Druckstifts 4 ist dabei kleiner als der Innendurchmesser der Sackbohrung 60, so daß zwischen dem Druckstift 4 und der Innenwand der Sackbohrung 60 ein Ringspalt 66 ausgebildet ist. Die Druckfläche 64 ist ballig ausgebildet, so daß im Zusammenspiel mit der konisch ausgebildeten Stützfläche 62 eine den Druckstift 4 in der Sackbohrung 60 zentrierende Kraft auf den Druckstift 4 resultiert.FIG. 3 shows an enlarged illustration of the valve member 5 of the exemplary embodiment shown in FIG. 1 or in FIG. 2. The valve member 5 is constructed to be rotationally symmetrical and has a blind bore 60 which extends coaxially to its longitudinal axis and which extends from the end of the valve member 5 facing away from the combustion chamber into the half of the section of the valve which faces the combustion chamber and is smaller in diameter. limb 5 extends. The end of the blind bore 60 is designed as a support surface 62 which is essentially conical, the tip of the cone cone pointing towards the valve seat 22. The closing force on the valve member 5 is transmitted by a pressure pin 4 which connects to the pressure pin head mentioned in the exemplary embodiment in FIG. 1 or 2. Starting from the valve holding body 2 or the intermediate disk 56, the pressure pin 4 projects into the blind bore 60 and comes into contact with the support surface 62 with its end face, which is designed as a pressure surface 64 and faces the valve seat 22. The outer diameter of the pressure pin 4 is smaller than the inner diameter of the blind bore 60, so that an annular gap 66 is formed between the pressure pin 4 and the inner wall of the blind bore 60. The pressure surface 64 is spherical, so that in interaction with the conical support surface 62 results in a force centering the pressure pin 4 in the blind bore 60 on the pressure pin 4.
Da der Kraftangriffspunkt des Druckstifts 4 sehr nahe an der Ventildichtfläche 24 ist, ergibt sich bei einer Deachsierung des Ventilgliedes 5 nur ein geringes kippendes Moment durch die Schließkraft bezüglich des Ventilsitzes 22. Dadurch folgt eine exaktere Führung des Ventilgliedes 5 in der Boh- rung 7 und eine genauere Positionierung der Ventildichtfläche 24 am Ventilsitz 22. Von weiterem Vorteil ist, daß der Kraftangriffspunkt des Druckstiftes 4 ventilsitzzugewandt zum geführten Abschnitt des Ventilgliedes 5 ist. Kommt es bei der Schließbewegung des Ventilgliedes 5 auf den Ventil - sitz 22 zu zu einer Verhakung des Ventilgliedes 5, die zu einer Verkippung des Ventilgliedes 5 führt, so wird durch den ventilsitzseitig gelegenen Kraftangriffspunkt ein rückstellendes Moment ausgeübt, das die Zentrierung des Ventil - gliedes 5 in der Bohrung 7 wiederherstellt. Dies führt zu einer Verringerung des Verschleißes im geführten Abschnitt des Ventilgliedes 5.Since the force application point of the pressure pin 4 is very close to the valve sealing surface 24, when the valve member 5 is deflected, there is only a slight tilting moment due to the closing force with respect to the valve seat 22. This results in a more precise guidance of the valve member 5 in the bore 7 and a more precise positioning of the valve sealing surface 24 on the valve seat 22. It is a further advantage that the force application point of the pressure pin 4 faces the valve seat towards the guided section of the valve member 5. If, during the closing movement of the valve member 5 on the valve seat 22, the valve member 5 gets caught, which leads to a tilting of the valve member 5, a restoring moment is exerted by the force application point on the valve seat side, which centering the valve member 5 in hole 7 restored. this leads to a reduction in wear in the guided section of the valve member 5.
In Figur 4 und in Figur 5 ist eine vergrößerte Darstellung des brennraumseitigen Endes des Druckstiftes 4 des in Figur 1 dargestellten Kraftstoffeinspritzventils gezeigt. Der Druckstift 4 geht brennraumabgewandt in einen DruckstiftkopfFIG. 4 and FIG. 5 show an enlarged illustration of the end of the pressure pin 4 on the combustion chamber side of the fuel injection valve shown in FIG. 1. The push pin 4 goes away from the combustion chamber into a push pin head
18 über, der im Durchmesser größer ausgebildet ist als der Druckstift 4. Er ist im Federraum 19 angeordnet und weist bei dem in Figur 4 gezeigten Ausführungsbeispiel einen geringeren Außendurchmesser auf als der Durchmesser des Federraums 19. Der Druckkolben 3, der ebenfalls in den Federraum18, which is larger in diameter than the pressure pin 4. It is arranged in the spring chamber 19 and, in the exemplary embodiment shown in FIG. 4, has a smaller outer diameter than the diameter of the spring chamber 19. The pressure piston 3, which is also in the spring chamber
19 ragt, kommt mit seiner dem Ventilglied 5 zugewandten Stirnfläche 48 an der dem Druckkolben 3 zugewandten Kopfflä- ehe 47 des Druckstiftkopfs 18 zur Anlage.19 protrudes, with its end face 48 facing the valve member 5 comes to rest against the head face 47 of the pressure pin head 18 facing the pressure piston 3.
In Figur 5 ist im Prinzip derselbe Aufbau gezeigt, nur ist hier der Druckstiftkopf 18 im Federraum 19 geführt. Durch die Führung des Druckstiftkopfs 18 im Federraum 19 ergibt sich eine größere Stabilität und eine exaktere Zentrierung des Druckstiftes 4 am brennraumabgewandten Ende. An der Außenmantelfläche des Druckstiftkopfs 18 sind ein oder mehrere Ausnehmungen 45 ausgebildet, wodurch der Federraum 19 mit der Bohrung 7 verbunden ist. Dadurch kann Lecköl, das aus dem Druckraum 20 am geführten Abschnitt des Ventilgliedes 5 vorbei gepreßt wird, in den Federraum 19 abfließen.In principle, the same structure is shown in FIG. 5, only the push pin head 18 is guided in the spring chamber 19 here. The guidance of the push pin head 18 in the spring chamber 19 results in greater stability and a more exact centering of the push pin 4 at the end facing away from the combustion chamber. One or more recesses 45 are formed on the outer lateral surface of the pressure pin head 18, as a result of which the spring chamber 19 is connected to the bore 7. Leakage oil, which is pressed out of the pressure chamber 20 past the guided section of the valve member 5, can thereby flow into the spring chamber 19.
In den Figuren 6 bis 9 sind verschiedene Ausführungsformen des Übergangs vom Druckkolben 3 auf den Druckstiftkopf 18 gezeigt. In Figur 6 ist die Stirnfläche 48 des Druckkolbens 3 plan geschliffen, während die Kopffläche 47 des Druckstiftkopfs 18 eine konkave Form aufweist. In Figur 7 ist die Kopffläche 47 ebenfalls konkav ausgebildet, hingegen ist die Stirnfläche 48 des Druckkolbens 3 konvex ausgebildet. In Fi- gur 8 ist sowohl die Kopffläche 47 des Druckstiftkopfs 18 als auch die Stirnfläche 48 des Druckkolbens 3 plan ausgebildet und sie liegen flächig aneinander an. In dem in Figur 9 dargestellten Ausführungsbeispiel ist die Kopffläche des Druckstiftkopfs 18 ebenfalls plan ausgebildet, während die Stirnfläche 48 eine konvexe Form aufweist. In den Ausführungsformen der Figur 6, 7 und 9 ergibt sich eine punktför- mige Berührung zwischen dem Druckkolben 3 und dem Druckstiftkopf 18. Je nach Anforderung an die Stabilität und die sonstigen Erfordernisse des Kraftstoffeinspritzventils kön- nen also verschiedene Krafteinleitungen vom Druckkolben 3 in den Druckstift 4 gewählt werden. FIGS. 6 to 9 show different embodiments of the transition from the pressure piston 3 to the pressure pin head 18. In Figure 6, the end face 48 of the pressure piston 3 is ground flat, while the head surface 47 of the pressure pin head 18 has a concave shape. In Figure 7, the head surface 47 is also concave, but the end face 48 of the pressure piston 3 is convex. FIG. 8 shows both the head surface 47 of the push pin head 18 and the end face 48 of the pressure piston 3 is formed flat and they lie flat against one another. In the exemplary embodiment shown in FIG. 9, the top surface of the push pin head 18 is also flat, while the end surface 48 has a convex shape. In the embodiments of FIGS. 6, 7 and 9, there is a point-like contact between the pressure piston 3 and the pressure pin head 18. Depending on the requirements for the stability and the other requirements of the fuel injector, different force transmissions from the pressure piston 3 into the pressure pin can occur 4 can be selected.

Claims

Ansprüche Expectations
1. Kraftstoffeinspritzventil für Brennkraftmaschinen mit einem Ventilkörper (1) mit einer darin ausgebildeten Boh- rung (7), in der ein kolbenförmiges, entgegen einer1. Fuel injection valve for internal combustion engines with a valve body (1) with a bore (7) formed therein, in which a piston-shaped, against a
Schließkraft durch Druckbeaufschlagung einer Druckfläche (6, 24) längsverschiebbares Ventilglied (5) angeordnet ist, welches Ventilglied (5) im Außendurchmesser gestuft ausgebildet ist, wobei der im Außendurchmesser größere Abschnitt im brennraumabgewandten Bereich der Bohrung (7) geführt ist und der im Durchmesser kleinere Abschnitt in einem zwischen der Wand der Bohrung (7) und dem Ventil - glied (5) ausgebildeten, mit Kraftstoff befüllbaren Druckraum (20) angeordnet ist, und mit einer am brenn- raumseitigen Ende des Ventilgliedes (5) ausgebildetenClosing force by pressurizing a pressure surface (6, 24) longitudinally displaceable valve member (5) is arranged, which valve member (5) is designed stepped in the outside diameter, the larger section in the outside diameter being guided in the area of the bore (7) facing away from the combustion chamber and the smaller section Section is arranged in a pressure chamber (20) which can be filled with fuel and is formed between the wall of the bore (7) and the valve member (5), and with one at the end of the valve member (5) on the combustion chamber side
Ventildichtfläche (24), die mit einem am brennraumseiti- gen Ende der Bohrung (7) ausgebildeten, kegelförmigen Ventilsitz (22) zusammenwirkt und dort in Schließstellung des Kraftstoffeinspritzventils unter Einwirkung der Schließkraft zur Anlage kommt, wobei im Ventilsitz (22) wenigstens eine Einspritzöffnung (28) ausgebildet ist, durch die der Druckraum (20) mit dem Brennraum zur Kraftstoffeinspritzung verbindbar ist, dadurch gekennzeichnet, daß das Ventilglied (5) eine am ventilsitzabgewandten En- de offene, koaxial zur Achse des Ventilgliedes (5) verlaufende Sackbohrung (60) aufweist, in die ein Druckstift (4) ragt, der sich am als Stützfläche (62) ausgebildeten Ende der Sackbohrung (60) abstützt und durch welchen Druckstift (4) die Schließkraft auf das Ventilglied (5) übertragbar ist. Valve sealing surface (24) which cooperates with a conical valve seat (22) formed on the combustion chamber end of the bore (7) and comes into contact with the fuel injector in the closed position under the action of the closing force, at least one injection opening (22) in the valve seat (22) 28) through which the pressure chamber (20) can be connected to the combustion chamber for fuel injection, characterized in that the valve member (5) has a blind bore (60) which is open at the end facing away from the valve seat and extends coaxially to the axis of the valve member (5). has a push pin (4) which is supported on the end of the blind bore (60) designed as a support surface (62) and through which push pin (4) the closing force can be transmitted to the valve member (5).
2. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß die Sackbohrung (60) bis in den im Durchmesser kleineren Abschnitt des Ventilgliedes (5) reicht . 2. Fuel injection valve according to claim 1, characterized in that the blind bore (60) extends into the smaller diameter section of the valve member (5).
3. Kraftstoffeinspritzventil nach Anspruch 2, dadurch gekennzeichnet, daß sich die Sackbohrung (60) bis in die ventilsitzseitige Hälfte des Ventilgliedes (5) erstreckt.3. Fuel injection valve according to claim 2, characterized in that the blind bore (60) extends into the valve seat side half of the valve member (5).
4. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß die Stützfläche (62) eine konische Form aufweist, wobei die Spitze des Konuskegels dem Ventilsitz4. Fuel injection valve according to claim 1, characterized in that the support surface (62) has a conical shape, the tip of the cone cone the valve seat
(22) zugewandt ist.(22) faces.
5. Kraftstoffeinspritzventil nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die am ventilsitzzugewandte Ende des Druckstifts (4) ausgebildete Druckflä- ehe (64) ballig ausgebildet ist.5. Fuel injection valve according to one of the preceding claims, characterized in that the end of the pressure pin (4) formed on the valve seat facing pressure surface (64) is spherical.
6. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß zwischen dem Druckstift (4) und der Wand der Sackbohrung (60) ein Ringspalt (66) ausgebildet ist . 6. Fuel injection valve according to claim 1, characterized in that an annular gap (66) is formed between the pressure pin (4) and the wall of the blind bore (60).
7. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß die Schließkraft über wenigstens eine im Ventilhaltekörper (2) angeordnete Schließfeder (54) auf den Druckstift (4) ausgeübt wird. 7. Fuel injection valve according to claim 1, characterized in that the closing force on at least one in the valve holding body (2) arranged closing spring (54) is exerted on the pressure pin (4).
8. Kraftstoffeinspritzventil nach Anspruch 1, dadurch ge- kennzeichnet, daß im Ventilhaltekörper (2) ein kolbenförmiger Druckkolben (3) angeordnet ist, der zumindest mittelbar am Ventilglied (5) zur Anlage kommt und der hydraulisch bewegt die Schließkraft auf das Ventilglied (5) ausübt . 8. Fuel injection valve according to claim 1, characterized in that a piston-shaped pressure piston (3) is arranged in the valve holding body (2), which comes into contact at least indirectly with the valve member (5) and which hydraulically moves the closing force on the valve member (5). exercises.
9. Kraftstoffeinspritzventil nach Anspruch 8, dadurch gekennzeichnet, daß am brennraumabgewandten Ende des Druckstifts ein Druckstiftkopf (18) ausgebildet ist, an dem das dem Ventilglied (5) zugewandte Ende des Druckkolbens (3) zur Anlage kommt. 9. Fuel injection valve according to claim 8, characterized in that a pressure pin head (18) is formed on the end of the pressure pin facing away from the combustion chamber, on which the end of the pressure piston (3) facing the valve member (5) comes to rest.
0. Kraftstoffeinspritzventil nach Anspruch 9, dadurch gekennzeichnet, daß der Druckstiftkopf (18) in einer im Ventilhaltekörper (2) ausgebildeten Bohrung (17) geführt ist . 0. Fuel injection valve according to claim 9, characterized in that the push pin head (18) is guided in a bore (17) formed in the valve holding body (2).
PCT/DE2000/003798 1999-11-19 2000-10-27 Fuel injection valve for internal combustion engines WO2001038723A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1999155663 DE19955663A1 (en) 1999-11-19 1999-11-19 Fuel injector valve for internal combustion engines has spring actuated closing push rod inserted in valve plunger body to maintain vertical alignment
DE19955663.6 1999-11-19

Publications (1)

Publication Number Publication Date
WO2001038723A1 true WO2001038723A1 (en) 2001-05-31

Family

ID=7929599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/003798 WO2001038723A1 (en) 1999-11-19 2000-10-27 Fuel injection valve for internal combustion engines

Country Status (2)

Country Link
DE (1) DE19955663A1 (en)
WO (1) WO2001038723A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1264983A2 (en) * 2001-06-05 2002-12-11 C.R.F. Società Consortile per Azioni Internal combustion engine fuel injector

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10148861A1 (en) * 2001-10-04 2003-04-24 Bosch Gmbh Robert Fuel injector, for an IC motor common rail fuel injection system, has a centered ball between the valve piston and jet needle with conical recesses at their ends against the ball
DE102007011047A1 (en) 2007-03-07 2008-09-11 Robert Bosch Gmbh Magnetventilinjektor
DE102007062702A1 (en) * 2007-12-27 2009-07-02 Robert Bosch Gmbh fuel injector

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH161145A (en) * 1932-01-06 1933-04-15 Schweiz Lokomotiv Und Maschine Liquid-controlled fuel valve for internal combustion engines.
US3610529A (en) * 1968-08-28 1971-10-05 Sopromi Soc Proc Modern Inject Electromagnetic fuel injection spray valve
JPS5993959A (en) * 1982-11-19 1984-05-30 Nippon Kokan Kk <Nkk> Fuel injection valve nozzle
JPH03168356A (en) * 1989-11-27 1991-07-22 Nissan Motor Co Ltd Fuel injection nozzle
US5464156A (en) * 1991-12-24 1995-11-07 Elasis Sistema Ricerca Fiat Nel Mizzogiorno Societa Consortile Per Azioni Electromagnetic fuel injection valve
DE19611884A1 (en) 1996-03-26 1997-10-02 Bosch Gmbh Robert Fuel injection valve for IC engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH161145A (en) * 1932-01-06 1933-04-15 Schweiz Lokomotiv Und Maschine Liquid-controlled fuel valve for internal combustion engines.
US3610529A (en) * 1968-08-28 1971-10-05 Sopromi Soc Proc Modern Inject Electromagnetic fuel injection spray valve
JPS5993959A (en) * 1982-11-19 1984-05-30 Nippon Kokan Kk <Nkk> Fuel injection valve nozzle
JPH03168356A (en) * 1989-11-27 1991-07-22 Nissan Motor Co Ltd Fuel injection nozzle
US5464156A (en) * 1991-12-24 1995-11-07 Elasis Sistema Ricerca Fiat Nel Mizzogiorno Societa Consortile Per Azioni Electromagnetic fuel injection valve
DE19611884A1 (en) 1996-03-26 1997-10-02 Bosch Gmbh Robert Fuel injection valve for IC engine

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 008, no. 207 (M - 327) 21 September 1984 (1984-09-21) *
PATENT ABSTRACTS OF JAPAN vol. 015, no. 407 (M - 1169) 17 October 1991 (1991-10-17) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1264983A2 (en) * 2001-06-05 2002-12-11 C.R.F. Società Consortile per Azioni Internal combustion engine fuel injector
EP1264983A3 (en) * 2001-06-05 2003-04-09 C.R.F. Società Consortile per Azioni Internal combustion engine fuel injector
US7044109B2 (en) 2001-06-05 2006-05-16 C.R.F. Societa Consortile Per Azioni Internal combustion engine fuel injector

Also Published As

Publication number Publication date
DE19955663A1 (en) 2001-05-23

Similar Documents

Publication Publication Date Title
EP1991773B1 (en) Fuel injection valve for internal combustion engines
EP1266135B1 (en) Electrovalve for controlling an injection valve in an internal combustion engine
EP0686763A1 (en) Fuel injection valve for internal combustion engines
DE19742320A1 (en) Fuel injector
DE19709794A1 (en) Valve for controlling liquids
DE19946827C1 (en) Valve for controlling liquids
DE19744723A1 (en) Fuel injector
EP1118765A2 (en) Fuel injector for internal combustion engines
WO2002042632A2 (en) Electromagnetic valve for controlling an injection valve of an internal combustion engine
EP2307697B1 (en) Fuel injector with two-piece armature
WO2008049669A1 (en) Injector with an axial pressure-compensating control valve
DE102008001597A1 (en) Fuel injector
EP1805409B1 (en) Fuel injector actuated by an electromagnetic valve, with a hydraulic overtravel stop
DE19701288C2 (en) Valve for dispensing fluids
EP1902212A1 (en) Fuel injection valves in combustion engines
WO2002033246A1 (en) Magnetic valve for controlling an injection valve of an internal combustion engine
DE19716226C2 (en) Fuel injection valve for internal combustion engines
WO2001038723A1 (en) Fuel injection valve for internal combustion engines
EP2458194B1 (en) Fuel injector valve for combustion engines
DE10019153A1 (en) Fuel injection valve for IC engines has valve bore with valve member and valve piston loaded by hydraulic closing force to engage on valve member
DE19642440A1 (en) Fuel injection valve for internal combustion engines
DE10113008A1 (en) Solenoid valve for controlling an injection valve of an internal combustion engine
EP1328726B1 (en) Fuel injection system for internal combustion engines
EP3095998B1 (en) Fuel injector
EP1036271B1 (en) Injection valve for intermittent fuel injection

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN CZ JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP