WO2001037364A1 - Lithium secondary cell - Google Patents

Lithium secondary cell Download PDF

Info

Publication number
WO2001037364A1
WO2001037364A1 PCT/JP2000/007650 JP0007650W WO0137364A1 WO 2001037364 A1 WO2001037364 A1 WO 2001037364A1 JP 0007650 W JP0007650 W JP 0007650W WO 0137364 A1 WO0137364 A1 WO 0137364A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium secondary
negative electrode
secondary battery
active material
battery
Prior art date
Application number
PCT/JP2000/007650
Other languages
French (fr)
Japanese (ja)
Inventor
Toshikazu Yoshida
Ryuji Ohshita
Maruo Kamino
Shin Fujitani
Original Assignee
Sanyo Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co., Ltd. filed Critical Sanyo Electric Co., Ltd.
Priority to AU79644/00A priority Critical patent/AU7964400A/en
Publication of WO2001037364A1 publication Critical patent/WO2001037364A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/164Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium secondary battery including a positive electrode, a negative electrode, and a nonaqueous electrolyte, and more particularly, to a lithium secondary battery using graphite as an active material of a negative electrode.
  • lithium secondary batteries battery characteristics such as charge / discharge voltage, charge / discharge cycle life characteristics, and storage characteristics are greatly affected by the electrodes used.Thus, by improving the electrode active material, battery characteristics can be improved. Have been. When lithium metal is used as the negative electrode active material, a battery having a high energy density per weight and per volume can be constructed, and a high discharge capacity can be obtained.However, lithium is deposited in a dendritic state during charging. However, there were problems such as causing an internal short-circuit and a problem that care must be taken when handling lithium because it is an active metal.
  • graphite Since graphite can occlude and release lithium between its layers, it can be used as a negative electrode active material of a lithium secondary battery. Graphite is widely used as a negative electrode active material for lithium secondary batteries because it does not have the dangers of lithium metal.
  • An object of the present invention is to provide a lithium secondary battery that can increase the charge / discharge capacity and has excellent charge storage characteristics.
  • a lithium secondary battery using graphite as a negative electrode active material is usually designed so that the negative electrode capacity is larger than the positive electrode capacity in order to prevent lithium from being deposited on the surface of the negative electrode.
  • the present inventors have conducted various studies on batteries in which the negative electrode capacity was smaller than the positive electrode capacity.As a result, the peak intensity around 43 ppm in the 7 Li-NMR measurement of the negative electrode active material in the fully charged state was 2 times smaller than the peak intensity I 1. 6 When the peak intensity I 2 ratio (I 2 I 1) force around 6 ppm is within the range of 0 ⁇ I 2, I 1 ⁇ 0.5, the charge / discharge capacity can be increased and the charge is stored. They have found that the characteristics are good, and have completed the present invention.
  • the present invention relates to a lithium secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein graphite is used as a negative electrode active material, and 43 pm in 7 L i-NMR measurement of the negative electrode active material in a fully charged state.
  • the ratio of the peak intensity I 2 around 266 ppm to the peak intensity I 1 around I 2 (I 2/1 1) is within the range of 0 to I 2Z I 10.5.
  • the peak around 43 ppm corresponds to L 1, which has relatively high ionic bondability, and specifically, corresponds to the bonding state of L i in C 6 L 1. And corresponds to Li inserted between graphite layers.
  • the peak around 266 ppm corresponds to Li having relatively low ionic bondability, specifically, the bonding state of Li in metal Li. This corresponds to the metal Li deposited on the graphite surface.
  • the fully charged state refers to a state in which the battery has been charged up to a charging end voltage of 4.1 V to 4.2 V. This is because the end-of-charge voltage of a commercially available lithium secondary battery is set to 4. IV or 4.2 V.
  • non-aqueous electrolyte other battery members such as a non-aqueous electrolyte are not particularly limited, and for example, a conventionally known material can be used.
  • the positive electrode active materials include manganese dioxide, lithium-containing manganese oxide, lithium-containing cobalt oxide, lithium-containing vanadium oxide, lithium-containing nickel oxide, lithium-containing iron oxide, lithium-containing chromium oxide, and lithium-containing titanium-iron. An oxide or the like can be used.
  • the solvent for the non-aqueous electrolyte examples include a mixed solvent of a cyclic carbonate such as ethylene carbonate, propylene carbonate, and butylene carbonate and a chain carbonate such as dimethyl carbonate, methylethyl carbonate, and getyl carbonate, and a cyclic solvent.
  • a mixed solvent of a carbonate ester and an ether such as 1,2-dimethoxetane or 1,2-diethoxyxetane is shown.
  • a mixed solvent in which the volume ratio of cyclic carbonate to chain carbonate is 1: 4 to 4 : 1 is particularly preferably used.
  • the solutes of the non-aqueous electrolyte include L i PF 6 , L i BF 4 , L i CF 3 S 0 3 , L i N (CF 3 S 0 2 ) 2 , L i N (C 2 F 5 S 0 2 ) 2 , L i N (CF 3 S 0 2 ) (C 4 F 9 S 0 2 ), L i C (CF 3 S 0 2 ) 3 , L i C (C 2 F 5 S 0 2 ) 3 and mixtures thereof. Is exemplified.
  • the non-aqueous electrolyte in the present invention As quality in L i XF p (wherein, X is P, A s, S b, A l, B, B i, G a or I n,, when X is P, the A s and S b, p is 6, and when X is A1, B, Bi, G a, or In, p is 4.), L i N (C m F 2m + 1 S 0 2 ) (C n F 2n + 1 S 0 2 ) (where m is 1, 2, 3, or 4 and n is 1, 2, 3, or 4), or L i C (C ⁇ + ⁇ O ⁇ (C m F 2m + 1 S 0 2 ) (C n F 2n + 1 S 0 2 ) (where 1 is 1, 2, 3, or 4 and m is 1, 2, 3, or 4, and n is 1, 2, 3, or 4.) Further, Li XF p (where X is P, As, Sb, A l,
  • non-aqueous electrolyte polyethylene O wherein de, polymer in the nonaqueous electrolytic solution gelled polymeric electrolyte impregnated with the polyacrylonitrile, L i I, inorganic fixed such L i 3 N An electrolyte may be used.
  • FIG. 1 is a cross-sectional view showing a lithium secondary battery produced in an example of the present invention.
  • the slurry is applied to one surface of a 20-m-thick aluminum foil as a current collector by a doctor-blade method to form an active material layer (thickness 7). After forming 2.5 ⁇ ), it was dried at 150 ° C. to produce a positive electrode having a diameter of 10 mm.
  • a slurry was prepared by mixing 95 parts by weight of natural graphite powder and 5 parts by weight of polyvinylidene fluoride powder with an NMP solution, and this slurry was used as a current collector on one side of a 20 // m thick copper foil. After coating by a doctor blade method to form a carbon layer (47.5 ⁇ m in thickness), it was dried at 150 ° C. to produce a negative electrode having a diameter of 10 mm.
  • a flat lithium secondary battery A1 (battery of the present invention) was produced using each of the above positive electrode, negative electrode and non-aqueous electrolyte.
  • the capacity ratio of the negative electrode to the capacity of the positive electrode of battery A1 (hereinafter, referred to as “negative electrode positive electrode capacity ratio”) was 0.75.
  • the theoretical capacity of graphite and 3 70 mAhZg has a 155mAhZg the theoretical capacity of L i C o O 2.
  • As the separator a microporous membrane made of polypropylene was used.
  • FIG. 1 is a sectional view showing the lithium secondary battery fabricated here.
  • the lithium secondary battery includes a positive electrode 1, a negative electrode 2, a separator 3, a positive electrode can 4, a negative electrode can 5, a positive current collector 6, a negative current collector 7, an insulating packing 8, and the like.
  • the positive electrode 1 and the negative electrode 2 face each other with a separator 3 interposed therebetween, and are housed in a battery can including a positive electrode can 4 and a negative electrode can 5.
  • the positive electrode 1 is connected to the positive electrode can 4 via the positive electrode current collector 6, and the negative electrode 2 is connected to the negative electrode can 5 via the negative electrode current collector 7, so that the chemical energy generated inside the battery can be taken out as electric energy. It has become.
  • the negative electrode positive electrode capacity ratio was 0.6, 0.7, 1.1, and 1.2.
  • Batteries B1 to B4 were produced in the same manner as in Example 1 except for performing the above.
  • L i PF 6, L i A s F 6, L i S b F 6, L i A l F 4, L i BF 4, L i B i F 4, L i G a F 4, L i I n F 4 and Li C (CF 3 S 0 2 ) 3 were dissolved at a molar ratio of 1: 1 in 1 mo 1 m 3 to prepare an electrolytic solution. Further, the L i PF 6 and L i N (CF 3 S 0 2) 2 and L i CF 3 S 0 3 molar ratio of 0.5: Electrolytic 0.25 in 1 mo 1 dm 3 Dissolve: 0. 2 5 A liquid was prepared.
  • Batteries A4 to A23 as shown in Table 3 were produced in the same manner as in Example 2 (battery A2) except that the above nonaqueous electrolyte was used.
  • the discharge capacities before and after storage were determined in the same manner as in the above example, and the remaining capacity ratio was calculated. Table 3 shows the results. Table 3 also shows the results for battery A2.
  • the batteries A2 and A4 to A23 of the present invention have large residual capacity ratios of 65.1% to 84.1%, and have good charge storage characteristics.
  • the batteries A2 and A5 to A23 of the present invention have large residual capacity ratios of 69.8% to 84.1%, indicating that they have good charge storage characteristics.
  • the batteries A7 to A23 of the present invention have an extremely large remaining capacity ratio of 76.7% to 84.1%, and have excellent charge storage characteristics.
  • the solution was dissolved to dm 3 to prepare an electrolytic solution.
  • L i N (C 2 F 5 S 0 2 ) 2 L i N (CF 3 S 0 2 ) (C 4 F 9 S 0 2 ), L i N (C 3 F 7 S 0 2) ) 2 , L i N (C 4 F 9 S 0 2 ) 2 , L i C (CF 3 SO) 2 (C 4 F 9 S0 2 ), L i C (C 2 F 5 S 0 2 ) 3 , L i C (CF 3 S 0 2 ) 2 (C 4 F 9 S 0 2 ) 2 , L i C (C 3 F 7 S 0 2 ) 3 , L i C (C 4 F 9 S 0 2 ) 3 and L i the PF 6 molar ratio of 1: an electrolytic solution was prepared by dissolve such that l mo 1 / dm 3 at a ratio of 1.
  • Batteries A24 to A32 were produced in the same manner as in Example 2 (battery A2) except that the above nonaqueous electrolyte was used. For each of the obtained batteries, the discharge capacity before and after storage was determined in the same manner as in the above example, and the remaining capacity ratio was calculated. Table 4 shows the results. Table 4 also shows the results for batteries A7 and A15.
  • Table 4 shows As apparent from the results, the present invention battery A 7 A 1 5, and A 24 A 3 2 is residual capacity ratio is 79.1 / 0 86.7% extremely rather large, charged storage properties It turns out to be good. Among them, L i PF 6 and L i N (C 2 F 5 S 0 2) is the largest residual capacity of the battery A 24 using two mixed solute, it can be seen that the charge storage characteristics good.
  • An electrolyte was prepared by dissolving 1 0 7 5: 25 25: 75 1 0: 90 5 9 5 1: 9 0 9: 100 to lmo 1 / dm 3 .
  • Batteries A33A41 were produced in the same manner as in Example 2 (Battery A2) except that the above nonaqueous electrolyte was used. Perform the above for each battery obtained.
  • the batteries A2, A24, and A33 to A41 of the present invention have a large residual capacity ratio of 70.5% to 86.7%, and have good charge storage characteristics.
  • the mixing ratio of L i PF 6 and L i N (C 2 F 5 S 0 2) 2 is 5: 9 5-9 5: When 5 (molar ratio), 84.1% 1-8 6.7% It is clear that the charge storage characteristics are good.
  • vinylene carbonate was added to the electrolytic solution so as to have a concentration of 1.5 mol / dm 3 to prepare an electrolytic solution.
  • an electrolytic solution was prepared using 1,3-prononorenorethone, snoreholane, butadiene snorehon, isoxazoinole, N-methinolemorpholin, and N-methinole-12-pyrrolidone.
  • Batteries A42 to A48 were produced in the same manner as in Example 2 (battery A2) except that the above nonaqueous electrolyte was used. For each of the obtained batteries, the discharge capacity before and after storage was determined in the same manner as in the above example, and the remaining capacity ratio was calculated. Table 6 shows the results. Table 6 also shows the results for battery A24.
  • the batteries A42 to A48 of the present invention have large residual capacity ratios of 88.6% to 93.5%, and thus have good charge storage characteristics.
  • batteries A42, A45, and A46 using a heterocyclic compound having an unsaturated bond in the ring structure have a remaining capacity of 91.1. /. It is extremely large, up to 93.5%, indicating good charge storage characteristics. This is because a stable film is formed on the electrode surface by the reaction between the cyclic compound and the electrode. It is presumed that unsaturated bonds promoted film formation. Further, in the battery A 4 2 with Binire emissions carbonate, residual capacity ratio is Ru greatest this and force S I force.
  • an electrolyte solution was prepared.
  • the concentration of the vinylene carbonate as the heterocyclic compounds added pressure to the electrolytic solution, 0. 0 1 mo l Zd m 3, 0. 0 5 mo 1 Z dm 3, 0. 5mo l dm 3, 2. 0 mol / dm 3, 3. 0 mo 1 Z dm 3, 4. was prepared way electrolyte becomes Omo l Zdm 3.
  • Batteries A49 to A54 were produced in the same manner as in Example 2 (battery A2) except that the above nonaqueous electrolyte was used. For each of the obtained batteries, the discharge capacity before and after storage was determined in the same manner as in the above example, and the remaining capacity ratio was calculated. Table 7 shows the results. Table 7 also shows the results of battery A42.
  • the batteries A42 and A49 to A54 of the present invention have a large residual capacity ratio of 86.7% to 93.5% and good charge / discharge characteristics. Understand. Among them, the amount of vinylene carbonate, 0. 0 5 to 3. O residual capacity when the mo 1 m 3 9 1.1% to 9 3.5% and very large, be charged storage characteristics good Understand.
  • the flat lithium secondary battery has been described as an example.
  • the shape of the battery is not particularly limited, and the present invention can be applied to lithium secondary batteries having various shapes such as a cylindrical shape.
  • a charge / discharge capacity can be improved and it can be set as the lithium secondary battery excellent in the charge storage characteristics.

Abstract

A lithium secondary cell having a positive electrode (1), a negative electrode (2) containing graphite as a negative electrode active material, and a non-aqueous electrolytic solution, characterized in that in 7Li-NMR measurement of the negative electrode active material in the state of being fully charged, the ratio (I2/I1) of the peak intensity (I2) at about 266 ppm (corresponding to the Li deposited on the surface of the graphite) to the peak intensity (I1) at about 43 ppm (corresponding to the Li inserted between layers of graphite) is in the range of 0 < I2/I1 < 0.5. It is preferred that the solute of the non-aqueous electrolytic solution contains LiPF¿6? and LiN(C2F5SO2)2, and that the solvent of the solution contains a 5- or 6-membered heterocyclic compound having at least one of O, S and N. The lithium secondary cell exhibits enhanced charge and discharge capacities and improved charge storing characteristics.

Description

明 細 書 リチウム二次電池 技術分野  Description Lithium secondary battery technology
本発明は、 正極と負極と非水電解質とを備えるリチウム二次電池に関 するものであり、 より詳細には負極の活物質として黒鉛を用いたリチウ ムニ次電池に関するものである。 背景技術  The present invention relates to a lithium secondary battery including a positive electrode, a negative electrode, and a nonaqueous electrolyte, and more particularly, to a lithium secondary battery using graphite as an active material of a negative electrode. Background art
リチウム二次電池は、 用いられる電極により充放電電圧、 充放電サイ クル寿命特性、 保存特性などの電池特性が大きく左右されることから、 電極活物質を改善することにより、 電池特性の向上が図られている。 負極活物質としてリチウム金属を用いると、 重量あたり及び体積あた り共に高いエネルギー密度の電池を構成することができ、 高い放電容量 を得ることができるが、 充電時にリチウムがデンドライ ト状に析出し、 内部短絡を引き起こすという問題や、リチウムが活性な金属であるため、 その取り扱いに注意を要するという問題等があった。  In lithium secondary batteries, battery characteristics such as charge / discharge voltage, charge / discharge cycle life characteristics, and storage characteristics are greatly affected by the electrodes used.Thus, by improving the electrode active material, battery characteristics can be improved. Have been. When lithium metal is used as the negative electrode active material, a battery having a high energy density per weight and per volume can be constructed, and a high discharge capacity can be obtained.However, lithium is deposited in a dendritic state during charging. However, there were problems such as causing an internal short-circuit and a problem that care must be taken when handling lithium because it is an active metal.
黒鉛は、 その層間にリチウムを吸蔵し、 これを放出することができる ので、 リチウム二次電池の負極活物質として用いることができる。 リチ ゥム金属のような危険性を有しないため、 黒鉛はリチウム二次電池の負 極活物質として広く用いられている。  Since graphite can occlude and release lithium between its layers, it can be used as a negative electrode active material of a lithium secondary battery. Graphite is widely used as a negative electrode active material for lithium secondary batteries because it does not have the dangers of lithium metal.
しかしながら、 負極活物質として黒鉛を用いた場合、 充放電容量が小 さいという問題がある。 このような問題を解決する方法として、 リチウ ムと合金可能な金属を担持した黒鉛を用いる方法が提案されている (特 開平 8— 2 7 3 7 0 2号公報) 。 しかしながら、 このような方法では、 充放電容量の増加の効果は小さく、 また黒鉛表面のリチウムと金属の合 金化物が、 充電保存時に電解液と反応するため、 充電保存特性が悪いと いう問題があった。 発明の開示 However, when graphite is used as the negative electrode active material, there is a problem that the charge / discharge capacity is small. As a method for solving such a problem, a method using graphite carrying a metal that can be alloyed with lithium has been proposed (Japanese Patent Application Laid-Open No. Hei 8-27372). However, in such a method, The effect of increasing the charge / discharge capacity is small, and the compound of lithium and metal on the graphite surface reacts with the electrolytic solution during charge storage, thus causing a problem of poor charge storage characteristics. Disclosure of the invention
本発明の目的は、 充放電容量を高めることができ、 かつ充電保存特性 に優れたリチウムニ次電池を提供することにある。  An object of the present invention is to provide a lithium secondary battery that can increase the charge / discharge capacity and has excellent charge storage characteristics.
黒鉛を負極活物質として用いたリチウム二次電池においては、 通常、 負極の表面にリチウムが析出するのを防止するため、 負極容量が正極容 量よりも大きくなるように設計されている。 本発明者らは、 負極容量を 正極容量よりも小さく した電池において種々検討した結果、 満充電状態 における負極活物質の 7L i 一 NMR測定における 4 3 p p m付近のピ ーク強度 I 1に対する 2 6 6 p p m付近のピーク強度 I 2の比 ( I 2 I 1 ) 力 、 0 < I 2ノ I 1≤ 0. 5の範囲内であるときに、 充放電容量 を高めることができ、 かつ充電保存特性が良好になることを見出し、 本 発明を完成するに至った。 A lithium secondary battery using graphite as a negative electrode active material is usually designed so that the negative electrode capacity is larger than the positive electrode capacity in order to prevent lithium from being deposited on the surface of the negative electrode. The present inventors have conducted various studies on batteries in which the negative electrode capacity was smaller than the positive electrode capacity.As a result, the peak intensity around 43 ppm in the 7 Li-NMR measurement of the negative electrode active material in the fully charged state was 2 times smaller than the peak intensity I 1. 6 When the peak intensity I 2 ratio (I 2 I 1) force around 6 ppm is within the range of 0 <I 2, I 1 ≤ 0.5, the charge / discharge capacity can be increased and the charge is stored. They have found that the characteristics are good, and have completed the present invention.
すなわち、 本発明は、 正極と負極と非水電解質とを備えるリチウム二 次電池において、 負極活物質として黒鉛が用いられ、 かつ満充電状態に おける負極活物質の 7L i 一 NMR測定における 43 p m付近のピー ク強度 I 1に対する 26 6 p p m付近のピーク強度 I 2の比 ( I 2/ 1 1 ) 力 0く I 2Z I 1 0. 5の範囲内であることを特徴としている。 That is, the present invention relates to a lithium secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein graphite is used as a negative electrode active material, and 43 pm in 7 L i-NMR measurement of the negative electrode active material in a fully charged state. The ratio of the peak intensity I 2 around 266 ppm to the peak intensity I 1 around I 2 (I 2/1 1) is within the range of 0 to I 2Z I 10.5.
7L i — NMR測定において、 4 3 p p m付近のピークは、 相対的に イオン結合性の高い L 1 に対応しており、 具体的には C6L 1における L iの結合状態に対応しており、 黒鉛の層間に挿入された L iに対応し ている。 また、 26 6 p p m付近のピークは、 相対的にイオン結合性が 低い L i に対応しており、 具体的には金属 L iにおける L iの結合状態 に対応しており、 黒鉛の表面に析出した金属 L iに対応している。 In 7 L i — NMR measurements, the peak around 43 ppm corresponds to L 1, which has relatively high ionic bondability, and specifically, corresponds to the bonding state of L i in C 6 L 1. And corresponds to Li inserted between graphite layers. The peak around 266 ppm corresponds to Li having relatively low ionic bondability, specifically, the bonding state of Li in metal Li. This corresponds to the metal Li deposited on the graphite surface.
本発明においては、 0く I 2/ I 1であるので、 26 6 p p m付近の ピークが必ず観察される。 すなわち、 本発明においては、 電池の満充電 状態において、 L i金属が析出した状態となっている。  In the present invention, since it is 0 / I2 / I1, a peak near 266 ppm is always observed. That is, in the present invention, when the battery is fully charged, Li metal is deposited.
本発明において、 満充電状態とは、 充電終止電圧 4. 1 V〜4. 2 V の範囲となるまで充電した状態を意味する。 これは、 一般に市販されて いるリチウム二次電池における充電終止電圧が、 4. I Vまたは 4. 2 Vに設定されていることによる。  In the present invention, the fully charged state refers to a state in which the battery has been charged up to a charging end voltage of 4.1 V to 4.2 V. This is because the end-of-charge voltage of a commercially available lithium secondary battery is set to 4. IV or 4.2 V.
本発明のリチウム二次電池において、非水電解質等の他の電池部材は、 特に限定されるものではなく、 例えば従来公知の材料を用いることがで きる。  In the lithium secondary battery of the present invention, other battery members such as a non-aqueous electrolyte are not particularly limited, and for example, a conventionally known material can be used.
正極活物質としては、二酸化マンガン、 リチウム含有マンガン酸化物、 リチウム含有コバルト酸化物、 リチウム含有バナジウム酸化物、 リチウ ム含有ニッケル酸化物、 リチウム含有鉄酸化物、 リチウム含有クロム酸 化物、 リチウム含有チタン鉄酸化物等を使用することができる。  The positive electrode active materials include manganese dioxide, lithium-containing manganese oxide, lithium-containing cobalt oxide, lithium-containing vanadium oxide, lithium-containing nickel oxide, lithium-containing iron oxide, lithium-containing chromium oxide, and lithium-containing titanium-iron. An oxide or the like can be used.
非水電解質の溶媒としては、 エチレンカーボネート、 プロピレンカー ボネート、 ブチレンカーボネート等の環状炭酸エステルと、 ジメチルカ 一ボネ一ト、 メチルェチルカ一ボネート、 ジェチルカーボネート等の鎖 状炭酸エステルとの混合溶媒、 及び環状炭酸エステルと 1, 2—ジメ ト キシェタン、 1, 2—ジエトキシェタン等のエーテルとの混合溶媒が例 示される。 これらの中でも、 環状炭酸エステルと鎖状炭酸エステルとの 体積比が 1 : 4〜4 : 1の混合溶媒が特に好ましく用いられる。 Examples of the solvent for the non-aqueous electrolyte include a mixed solvent of a cyclic carbonate such as ethylene carbonate, propylene carbonate, and butylene carbonate and a chain carbonate such as dimethyl carbonate, methylethyl carbonate, and getyl carbonate, and a cyclic solvent. A mixed solvent of a carbonate ester and an ether such as 1,2-dimethoxetane or 1,2-diethoxyxetane is shown. Among these, a mixed solvent in which the volume ratio of cyclic carbonate to chain carbonate is 1: 4 to 4 : 1 is particularly preferably used.
非水電解質の溶質としては、 L i P F6、 L i B F4、 L i C F3S 03、 L i N (CF3S02) 2、 L i N (C2F5S 02) 2、 L i N (C F3S 02) (C4F9S 02) 、 L i C (CF3S02) 3、 L i C (C2F5S 02) 3及び これらの混合物が例示される。 特に、 本発明における非水電解質は、 溶 質として、 L i XFp (式中、 Xは P、 A s、 S b、 A l 、 B、 B i、 G a、 または I nであり、 Xが P、 A s、 または S bのとき pは 6であ り、 Xが A 1、 B、 B i、 G a、 または I nのとき pは 4である。 ) 、 L i N (CmF2m+1S 02) (CnF2n+1S 02) (式中、 mは 1、 2、 3、 または 4であり、 nは 1、 2、 3、 または 4である。 ) 、 または L i C (C^^+^ O^ (CmF2m+1S 02) (CnF2n+1S 02) (式中、 1 は 1、 2、 3、 または 4であり、 mは 1、 2、 3、 または 4であり、 nは 1、 2、 3、 または 4である。 ) を含有していることが好ましい。 さら には、 L i X Fp (式中、 Xは P、 A s、 S b、 A l、 B、 B i、 G a、 または I nであり、 Xが P、 A s、 または S bのとき pは 6であり、 X が A 1、 B、 B i、 G a、 または I nのとき pは 4である。 ;) と、 L i N (CmF2m+1S 02) (CnF2n+1S 02) (式中、 mは 1、 2、 3、 また は 4であり、 nは 1、 2、 3、 または 4である。 ) 、 または L i C (C ^21+1302) (C^F^S O^ (CnF2n+1S 02) (式中、 1は 1、 2、 3、 または 4であり、 mは 1、 2、 3、 または 4であり、 nは 1、 2、 3、 または 4である。 ) を含有していることが好ましい。 さらには、 L i P F6 と L i N (C2F5S 02) 2を含有していることが好ましく、 そ のモ /レ比は L i P F6 : L i N (C2F5S 02) 2= 5 : 9 5〜9 5 : 5で あることが好ましい。 The solutes of the non-aqueous electrolyte include L i PF 6 , L i BF 4 , L i CF 3 S 0 3 , L i N (CF 3 S 0 2 ) 2 , L i N (C 2 F 5 S 0 2 ) 2 , L i N (CF 3 S 0 2 ) (C 4 F 9 S 0 2 ), L i C (CF 3 S 0 2 ) 3 , L i C (C 2 F 5 S 0 2 ) 3 and mixtures thereof. Is exemplified. In particular, the non-aqueous electrolyte in the present invention As quality in L i XF p (wherein, X is P, A s, S b, A l, B, B i, G a or I n,, when X is P, the A s and S b, p is 6, and when X is A1, B, Bi, G a, or In, p is 4.), L i N (C m F 2m + 1 S 0 2 ) (C n F 2n + 1 S 0 2 ) (where m is 1, 2, 3, or 4 and n is 1, 2, 3, or 4), or L i C (C ^^ + ^ O ^ (C m F 2m + 1 S 0 2 ) (C n F 2n + 1 S 0 2 ) (where 1 is 1, 2, 3, or 4 and m is 1, 2, 3, or 4, and n is 1, 2, 3, or 4.) Further, Li XF p (where X is P, As, Sb, A l, B, B i, G a, or In n, and when X is P, As, or S b, p is 6, and X is A 1, B, B i, G a, or In , P is 4.;), and L i N (C m F 2m + 1 S 0 2 ) (C n F 2n + 1 S 0 2 ) (where m is 1, 2, 3 , Or 4 and n is 1, 2, 3, or 4.), or L i C (C ^ 21 + 1 30 2 ) (C ^ F ^ SO ^ (C n F 2n + 1 S 0 2 ), wherein 1 is 1, 2, 3, or 4, m is 1, 2, 3, or 4, and n is 1, 2, 3, or 4. Further, it is preferable that the composition contains L i PF 6 and L i N (C 2 F 5 S 0 2 ) 2, and the molar ratio thereof is L i PF 6 : L i N (C 2 F 5 S 0 2) 2 = 5: 9 5~9 5: is preferably 5.
また、 本発明においては、 非水電解質として、 ポリエチレンォキサイ ド、 ポリアクリロニトリルなどの高分子に非水電解液を含浸させたゲル 状高分子電解質、 L i I、 L i 3N等の無機固定電解質を用いてもよい。 図面の簡単な説明 In the present invention, as the non-aqueous electrolyte, polyethylene O wherein de, polymer in the nonaqueous electrolytic solution gelled polymeric electrolyte impregnated with the polyacrylonitrile, L i I, inorganic fixed such L i 3 N An electrolyte may be used. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施例において作製したリチウム二次電池を示す断 面図である。 発明を実施するための最良の形態 FIG. 1 is a cross-sectional view showing a lithium secondary battery produced in an example of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を実施例に基づいてさらに詳細に説明するが、 本発明は 以下の実施例に何ら限定されるものではなく、 その要旨を変更しない範 囲において適宜変更して実施することが可能なものである。  Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to the following Examples at all, and can be implemented with appropriate changes without departing from the scope of the present invention. It is something.
(実施例 1 )  (Example 1)
〔正極の作製〕  (Preparation of positive electrode)
正極活物質としての L i C o 02粉末 8 5重量部と、 導電剤としての 炭素粉末 1 0重量部と、 結着剤としてのポリフッ化ビニリデン粉末 5重 量部の N M P ( N—メチルー 2—ピロリ ドン) 溶液とを混合してスラリ —を調製し、 このスラリーを集電体としての厚さ 2 0 mのアルミニゥ ム箔の片面にドクタ一ブレード法により塗布して活物質層 (厚み 7 2 . 5 μ χη ) を形成した後、 1 5 0 °Cで乾燥して直径 1 0 m mの正極を作製 した。 And L i C o 0 2 powder 8 5 parts by weight of the positive electrode active material, a carbon powder 1 0 part by weight as a conductive agent, polyvinylidene fluoride powder 5 by weight parts as a binder NMP (N-methyl-2 -Pyrrolidone) solution to prepare a slurry. The slurry is applied to one surface of a 20-m-thick aluminum foil as a current collector by a doctor-blade method to form an active material layer (thickness 7). After forming 2.5 μχη), it was dried at 150 ° C. to produce a positive electrode having a diameter of 10 mm.
〔負極の作製〕  (Preparation of negative electrode)
天然黒鉛粉末 9 5重量部と、 ポリフッ化ビニリデン粉末 5重量部の N M P溶液とを混合してスラリーを調製し、 このスラリーを集電体として の厚さ 2 0 // mの銅箔の片面にドクターブレ一ド法により塗布して炭素 層 (厚み 4 7 . 5 μ m ) を形成した後、 1 5 0 °Cで乾燥して直径 1 0 m mの負極を作製した。  A slurry was prepared by mixing 95 parts by weight of natural graphite powder and 5 parts by weight of polyvinylidene fluoride powder with an NMP solution, and this slurry was used as a current collector on one side of a 20 // m thick copper foil. After coating by a doctor blade method to form a carbon layer (47.5 μm in thickness), it was dried at 150 ° C. to produce a negative electrode having a diameter of 10 mm.
〔電解液の調製〕  (Preparation of electrolyte solution)
エチレンカーボネートとジェチルカーボネートとの体積比 1 : 1の混 合溶媒に、 L i P F 6を 1 m o 1 d m3溶かして、 電解液を調製した。 The volume ratio of ethylene carbonate and Jefferies chill carbonate 1: 1 mixed-solvent, the L i PF 6 dissolved 1 mo 1 dm 3, thereby preparing an electrolytic solution.
〔リチウム二次電池の作製〕  [Production of lithium secondary battery]
上記各正極、 負極及び非水電解液を使用して扁平型のリチウム二次電 池 A 1 (本発明電池) を作製した。 電池 A 1の正極の容量に対する負極 の容量比 (以下、 「負極 正極容量比」 という) は 0 . 7 5であった。 なお、 ここでは、 黒鉛の理論容量を 3 70 mAhZgとし、 L i C o O 2の理論容量を 155mAhZgとしている。 セパレータとしては、 ポ リプロピレン製の微多孔膜を使用した。 A flat lithium secondary battery A1 (battery of the present invention) was produced using each of the above positive electrode, negative electrode and non-aqueous electrolyte. The capacity ratio of the negative electrode to the capacity of the positive electrode of battery A1 (hereinafter, referred to as “negative electrode positive electrode capacity ratio”) was 0.75. Here, the theoretical capacity of graphite and 3 70 mAhZg, has a 155mAhZg the theoretical capacity of L i C o O 2. As the separator, a microporous membrane made of polypropylene was used.
図 1は、 ここで作製したリチウム二次電池を示す断面図である。 リチ ゥム二次電池は、 正極 1、 負極 2、 セパレ一タ 3、 正極缶 4、負極缶 5、 正極集電体 6、 負極集電体 7、 絶縁パッキング 8などからなる。 正極 1 及び負極 2は、 セパレータ 3を介して対向しており、 正極缶 4及び負極 缶 5からなる電池缶内に収容されている。 正極 1は正極集電体 6を介し て正極缶 4に、 負極 2は負極集電体 7を介して負極缶 5にそれぞれ接続 され、 電池内部に生じた化学エネルギーを電気エネルギーとして外部へ 取り出し得るようになっている。  FIG. 1 is a sectional view showing the lithium secondary battery fabricated here. The lithium secondary battery includes a positive electrode 1, a negative electrode 2, a separator 3, a positive electrode can 4, a negative electrode can 5, a positive current collector 6, a negative current collector 7, an insulating packing 8, and the like. The positive electrode 1 and the negative electrode 2 face each other with a separator 3 interposed therebetween, and are housed in a battery can including a positive electrode can 4 and a negative electrode can 5. The positive electrode 1 is connected to the positive electrode can 4 via the positive electrode current collector 6, and the negative electrode 2 is connected to the negative electrode can 5 via the negative electrode current collector 7, so that the chemical energy generated inside the battery can be taken out as electric energy. It has become.
(実施例 2及び 3)  (Examples 2 and 3)
集電体上に形成する正極活物質及び負極活物質の厚みを、 表 1に示す 厚みとすることにより負極 Z正極容量比を、 0. 9及び 1. 0とする以 外は、 上記実施例 1と同様にして電池 A 2及び A 3を作製した。  The above examples were performed except that the positive electrode active material and the negative electrode active material formed on the current collector had the thicknesses shown in Table 1 so that the negative electrode Z positive electrode capacity ratio was 0.9 and 1.0. Batteries A2 and A3 were produced in the same manner as in 1.
(比較例:!〜 4 )  (Comparative example:! ~ 4)
集電体上に形成する正極活物質及び負極活物質の厚みを、 表 1に示す 厚みとすることにより負極 正極容量比を、 0. 6、 0. 7、 1. 1、 及び 1. 2とする以外は、 上記実施例 1 と同様にして電池 B 1〜B 4を 作製した。 By setting the thickness of the positive electrode active material and the negative electrode active material formed on the current collector to the thickness shown in Table 1, the negative electrode positive electrode capacity ratio was 0.6, 0.7, 1.1, and 1.2. Batteries B1 to B4 were produced in the same manner as in Example 1 except for performing the above.
電池 負極 Z正極 正極活物質 負極活物質 Battery Negative electrode Z Positive electrode Positive electrode active material Negative electrode active material
容 ftt 厚 h み (a m) み ( if τη")  Ftt thickness h only (a m) only (if τη ")
B 1 0. 6 8 0. 0  B 1 0.6 6 0 0
B 2 0. 7 7 5. 0 4 5. 0  B 2 0.7 7 5. 0 45.0
A 1 0. 7 5 7 2. 5 4 7. 5  A 1 0.7 5 7 2.5 47.5
A 2 0. 9 6 5. 0 5 5. 0  A 2 0.9 6 5.05 55.0
A 3 1. 0 6 2. 5 5 7. 5  A 3 1. 0 6 2. 5 5 7.5
B 3 1. 1 6 0. 0 60. 0  B 3 1.1 6 0.0 60.0
B 4 1. 2 5 7. 5 6 2. 5  B 4 1.2 5 7.5 6 2.5
(比較例 5) (Comparative Example 5)
天然黒鉛 9. 0 gを 2 5 m 1のエチルアルコールを含む水 4 50m l に懸濁させた。 これを 6 0°Cに加温し、 撹拌しながら 1. 73 gの硝酸 銀を添加し溶解させた。 これに 0. 5重量%のテトラヒ ドリ ドホウ酸ナ トリウム水溶液を添加し、 還元した。 その後、 ろ過、 水洗して 3 00°C で 6時間真空乾燥した。 得られた A g担持量は 1 0重量%であった。 こ の負極活物質を用い、 負極ノ正極容量比が 1. 1になるようにする以外 は、 上記実施例 1 と同様にして電池 B 5を作製した。  9.0 g of natural graphite was suspended in 450 ml of water containing 25 ml of ethyl alcohol. This was heated to 60 ° C, and 1.73 g of silver nitrate was added and dissolved with stirring. To this was added a 0.5% by weight aqueous solution of sodium tetrahydride borate for reduction. Then, it was filtered, washed with water, and dried in vacuum at 300 ° C for 6 hours. The obtained Ag carrying amount was 10% by weight. Using this anode active material, a battery B5 was produced in the same manner as in Example 1 except that the anode / cathode capacity ratio was 1.1.
〔充電保存試験〕  (Charge storage test)
各電池を、 25°Cにて、 1 mA/ c m2で 4. 2 Vまで充電した後、 1 mA/ c m2で 2. 7 5 Vまで放電し、 保存前の放電容量 Q 1を求め た。 その後、 25°Cにて、 I mAZc m2で 4 · 2 Vまで充電した後、 6 0°Cにて 20日間保存した。 その後、 電池を室温に戻し、 I mA/c m2で 2. 7 5 Vまで放電し保存後における放電容量 Q 2を求めた。 ま た、 下式で定義される容量残存率 (%) を求めた。 後出の容量残存率も 全て下式で定義される容量残存率である。 各電池の保存前及び保存後の 放電容量並びに容量残存率 (%) を表 2に示す。 容量残存率(%) = (保存後の放電容量 Q 2 保存前の放電容量 Q 1 ) X 1 00 Each battery at 25 ° C, was charged to 4. 2 V at 1 mA / cm 2, and discharged to 2. 7 5 V at 1 mA / cm 2, from which a discharge capacity was determined to Q 1 before storage . Then, at 25 ° C, was charged with I mAZc m 2 up to 4 · 2 V, and stored 20 days at 6 0 ° C. Thereafter, the battery was returned to room temperature, discharged at 2.75 V at I mA / cm 2 , and the discharge capacity Q 2 after storage was determined. In addition, the remaining capacity rate (%) defined by the following equation was calculated. The remaining capacity ratios described below are all the remaining capacity ratios defined by the following formula. Table 2 shows the discharge capacity and the remaining capacity ratio (%) before and after storage of each battery. Residual capacity (%) = (discharge capacity after storage Q 2 discharge capacity before storage Q 1) X 100
7L i— NMR測定〕 [7 L i- NMR measurement]
各電池を 2 5 °Cにて、 l mA/c in2で 4. 2 Vまで充電した後、 各 電池の負極活物質を取り出し、 マジックアングルスピニング法により負 極活物質の 7L i— NMR測定を行なった。 266 p p m付近のピーク 強度 Z43 p p m付近のピーク強度の比 ( I 2/ 1 1) を表 2に示す。 After charging each battery to 4.2 V at lmA / c in 2 at 25 ° C, the negative electrode active material of each battery was taken out and 7 Li-NMR of the negative electrode active material was performed by the magic angle spinning method. A measurement was made. Table 2 shows the ratio (I 2/11) of the peak intensity near 266 ppm Z43 ppm.
表 2  Table 2
表 2に示す結果から明らかなように、 負極/正極容量比が 0' 7 5以 上 1. 0以下で、 満充電状態における 7L i — NMRでのピーク強度比 I I 1 2が、 0く I 2Z l l≤ 0. 5の範囲内であるときに、 保存前 の放電容量が大きいことがわかる。 As apparent from the results shown in Table 2, a negative electrode / positive electrode capacity ratio is 0 '7 on 5 or more 1. 0 or less, 7 L i in a fully charged state - peak at NMR intensity ratio II 1 2 is 0 ° It can be seen that the discharge capacity before storage is large when I 2Z ll ≤ 0.5.
(実施例 4〜 23 )  (Examples 4 to 23)
〔リチウム二次電池の作製〕  [Production of lithium secondary battery]
エチレンカーボネートとジエチ^^カーボネートの体積比 1 : 1の混合 溶媒に、 L i CF3S03、 L i N (C F3S02) 2、 L i C (CF3S 02) 3をそれぞれ 1 mo 1 Zd m3溶かして電解液を調製した。 また、 L i P F6、 L i A s F6、 L i S b F6、 L i A l F4、 L i B F4、 L i B i F4、 L i G a F4、 L i I n F4と L i N (C F3S 02) 2をそれぞれモ ル比 1 : 1で l mo 1 /d m3溶かして、 電解液を調製した。 また、 L i P F6、 L i A s F6、 L i S b F6、 L i A l F4、 L i B F4、 L i B i F4、 L i G a F4、 L i I n F4 と L i C (CF3S 02) 3をそれぞれ モル比 1 : 1で 1 m o 1 m3溶かして、 電解液を調製した。 また、 L i P F6と L i N (C F3S 02) 2と L i CF3S 03をモル比 0. 5 : 0. 2 5 : 0. 25で 1 mo 1 dm3溶かして電解液を調製した。 上記非水電解液を使用する以外は、 実施例 2 (電池 A 2) と同様にし て、 表 3に示すように電池 A 4〜A 23を作製した。 得られた各電池に ついて、 上記実施例と同様にして保存前及び保存後の放電容量を求め、 容量残存率を算出した。 結果を表 3に示す。 なお、 表 3には電池 A 2の 結果を併せて示している。 The volume ratio of ethylene carbonate and diethyl ^^ carbonate 1: in a mixed solvent of 1, L i CF 3 S0 3 , L i N (CF 3 S0 2) 2, L i C (CF 3 S 0 2) 3 , respectively 1 mo 1 Zdm 3 was dissolved to prepare an electrolyte solution. Also, L i And PF 6, L i A s F 6, L i S b F 6, L i A l F 4, L i BF 4, L i B i F 4, L i G a F 4, L i I n F 4 L i N (CF 3 S 0 2) 2 , respectively molar ratio of 1: dissolve l mo 1 / dm 3 in 1, thereby preparing an electrolytic solution. Also, L i PF 6, L i A s F 6, L i S b F 6, L i A l F 4, L i BF 4, L i B i F 4, L i G a F 4, L i I n F 4 and Li C (CF 3 S 0 2 ) 3 were dissolved at a molar ratio of 1: 1 in 1 mo 1 m 3 to prepare an electrolytic solution. Further, the L i PF 6 and L i N (CF 3 S 0 2) 2 and L i CF 3 S 0 3 molar ratio of 0.5: Electrolytic 0.25 in 1 mo 1 dm 3 Dissolve: 0. 2 5 A liquid was prepared. Batteries A4 to A23 as shown in Table 3 were produced in the same manner as in Example 2 (battery A2) except that the above nonaqueous electrolyte was used. For each of the obtained batteries, the discharge capacities before and after storage were determined in the same manner as in the above example, and the remaining capacity ratio was calculated. Table 3 shows the results. Table 3 also shows the results for battery A2.
表 3 Table 3
表 3に示す結果から明らかなように、 本発明電池 A 2及び A 4〜 A 2 3は、 容量残存率が 6 5. 1 %〜 84. 1 %と大きく、 充電保存特性が 良いことがわかる。 中でも、 本発明電池 A2及び A 5〜A23は、 容量 残存率が 6 9. 8%〜84. 1 %と大きく、 充電保存特性が良いことが わかる。 さらに、 本発明電池 A 7〜A 23は、 容量残存率が 76. 7% 〜84. 1 %と極めて大きく、 充電保存特性が良いことがわかる。 これ  As is evident from the results shown in Table 3, the batteries A2 and A4 to A23 of the present invention have large residual capacity ratios of 65.1% to 84.1%, and have good charge storage characteristics. . Above all, the batteries A2 and A5 to A23 of the present invention have large residual capacity ratios of 69.8% to 84.1%, indicating that they have good charge storage characteristics. Furthermore, it can be seen that the batteries A7 to A23 of the present invention have an extremely large remaining capacity ratio of 76.7% to 84.1%, and have excellent charge storage characteristics. this
0 は、 非水電解質中の電解質塩、 すなわち溶質と電極との反応により、 電 極の表面に充電状態でも安定に存在するフッ素含有被膜が形成され、 こ のフッ素含有被膜が、 充電状態で保存中の電極と非水電解液との反応に より非水電解液の溶媒の分解を伴って自己放電するのを抑制するためで あると推測される。 0 The reaction between the electrolyte salt in the non-aqueous electrolyte, that is, the solute, and the electrode forms a fluorine-containing film that is stably present even in the charged state on the surface of the electrode, and this fluorine-containing film is stored in the charged state. It is presumed that this is to suppress the self-discharge accompanying the decomposition of the solvent of the nonaqueous electrolyte due to the reaction between the electrode and the nonaqueous electrolyte.
(実施例 24〜 3 2)  (Examples 24 to 32)
〔リチウム二次電池の作製〕  [Production of lithium secondary battery]
エチレンカーボネートとジェチルカーボネートとの体積比 1 : 1の混 合溶媒に、 L i P F6 と L i N (C2F5S 02) 2をモル比 1 : 1の割合 で 1 mo 1 /dm3 となるように溶かして、 電解液を調製した。 また、 L i N (C2F5S 02) 2の代わりに、 L i N (C F3S 02) (C4F9S 02) 、 L i N (C3F7S 02) 2、 L i N (C4F9S 02) 2、 L i C (C F3S O) 2 (C4F9S02) 、 L i C (C2F5S 02) 3、 L i C (C F3S 02) (C4F9S 02) 2、 L i C (C3F7S 02) 3、 L i C (C4F9S 02) 3 と L i P F6をモル比 1 : 1の割合で l mo 1 / d m3となるように溶 かして電解液を調製した。 The volume ratio of ethylene carbonate and Jefferies chill carbonate 1: 1 mixed-solvent, L i PF 6 and L i N (C 2 F 5 S 0 2) 2 in a molar ratio of 1: 1 at a ratio of 1 mo 1 / The solution was dissolved to dm 3 to prepare an electrolytic solution. Also, instead of L i N (C 2 F 5 S 0 2 ) 2, L i N (CF 3 S 0 2 ) (C 4 F 9 S 0 2 ), L i N (C 3 F 7 S 0 2) ) 2 , L i N (C 4 F 9 S 0 2 ) 2 , L i C (CF 3 SO) 2 (C 4 F 9 S0 2 ), L i C (C 2 F 5 S 0 2 ) 3 , L i C (CF 3 S 0 2 ) 2 (C 4 F 9 S 0 2 ) 2 , L i C (C 3 F 7 S 0 2 ) 3 , L i C (C 4 F 9 S 0 2 ) 3 and L i the PF 6 molar ratio of 1: an electrolytic solution was prepared by dissolve such that l mo 1 / dm 3 at a ratio of 1.
上記非水電解質を使用する以外は、 実施例 2 (電池 A 2) と同様にし て電池 A 24〜A 3 2を作製した。 得られた各電池について、 上記実施 例と同様にして、 保存前及び保存後の放電容量を求め、 容量残存率を算 出した。 結果を表 4に示す。 なお、 表 4には電池 A7, A 1 5の結果も 併せて示している。 Batteries A24 to A32 were produced in the same manner as in Example 2 (battery A2) except that the above nonaqueous electrolyte was used. For each of the obtained batteries, the discharge capacity before and after storage was determined in the same manner as in the above example, and the remaining capacity ratio was calculated. Table 4 shows the results. Table 4 also shows the results for batteries A7 and A15.
表 4 Table 4
表 4に示す結果から明らかなように、 本発明電池 A 7 A 1 5、 及び A 24 A 3 2は、 容量残存率が 79. 1 /0 86. 7%と極めて大き く、 充電保存特性が良いことがわかる。 中でも、 L i P F6と L i N (C 2F5S 02) 2の混合溶質を用いた電池 A 24の容量残存率が最も大きく、 充電保存特性が良いことがわかる。 Table 4 shows As apparent from the results, the present invention battery A 7 A 1 5, and A 24 A 3 2 is residual capacity ratio is 79.1 / 0 86.7% extremely rather large, charged storage properties It turns out to be good. Among them, L i PF 6 and L i N (C 2 F 5 S 0 2) is the largest residual capacity of the battery A 24 using two mixed solute, it can be seen that the charge storage characteristics good.
(実施例 3 3 4 1)  (Example 3 3 4 1)
〔リチウム二次電池の作製〕  [Production of lithium secondary battery]
エチレンカーボネートとジェチルカーボネートとの体積比 1 1の混 合溶媒に、 L i P F6と L i N (C2F5S 02) 2をモル比で、 99 : 1 9 5 : 5 90 : 1 0 7 5 : 25 25 : 75 1 0 : 90 5 9 5 1 : 9 9 0 : 1 0 0の割合で l mo 1 /dm3となるように溶か して、 電解液を調製した。 The volume ratio of ethylene carbonate and Jefferies chill carbonate 1 1 of mixed-solvent, the L i PF 6 and L i N (C 2 F 5 S 0 2) 2 at a molar ratio of 99: 1 9 5: 5 90: An electrolyte was prepared by dissolving 1 0 7 5: 25 25: 75 1 0: 90 5 9 5 1: 9 0 9: 100 to lmo 1 / dm 3 .
上記非水電解液を使用する以外は、 実施例 2 (電池 A 2) と同様にし て電池 A 3 3 A4 1を作製した。 得られた各電池について、 上記実施  Batteries A33A41 were produced in the same manner as in Example 2 (Battery A2) except that the above nonaqueous electrolyte was used. Perform the above for each battery obtained.
2 例と同様にして保存前及び保存後の放電容量を求め、 容量残存率を算出 した。 結果を表 5に示す。 なお、 表 5には電池 A 2, A 24の結果も併 せて示している。 Two The discharge capacity before and after storage was determined in the same manner as in the example, and the remaining capacity ratio was calculated. Table 5 shows the results. Table 5 also shows the results for batteries A2 and A24.
表 5  Table 5
表 5に示す結果から明らかなように、 本発明電池 A 2、 A 24、 及び A 3 3〜A 4 1は容量残存率が 70. 5%〜86. 7%と大きく、 充電 保存特性が良いことがわかる。 中でも、 L i P F6と L i N (C2F5S 02) 2の混合比が 5 : 9 5〜 9 5 : 5 (モル比) のとき、 84. 1 %〜 8 6. 7%と極めて大きく、 充電保存特性が良いことがわかる。 As is clear from the results shown in Table 5, the batteries A2, A24, and A33 to A41 of the present invention have a large residual capacity ratio of 70.5% to 86.7%, and have good charge storage characteristics. You can see that. Among them, the mixing ratio of L i PF 6 and L i N (C 2 F 5 S 0 2) 2 is 5: 9 5-9 5: When 5 (molar ratio), 84.1% 1-8 6.7% It is clear that the charge storage characteristics are good.
(実施例 42〜48)  (Examples 42 to 48)
〔リチウム二次電池の作製〕  [Production of lithium secondary battery]
エチレンカーボネートとジェチルカーボネートとの体積比 1 : 1の混 合溶媒に、 L i P F6 と L i N (C2F5S 02) 2をモル比 1 : 1で、 1 mo l _ dm3溶かして、 電解液を調製した。 さらに、 複素環化合物と The volume ratio of ethylene carbonate and Jefferies chill carbonate 1: 1 mixed-solvent, L i PF 6 and L i N (C 2 F 5 S 0 2) 2 molar ratio of 1: 1, 1 mo l _ dm 3 was dissolved to prepare an electrolytic solution. Furthermore, with heterocyclic compounds
3 してビニレンカーボネ一トをこの電解液に対して 1. 5 m o 1ノ d m3 となるように添加して電解液を調製した。 また、 ビニレンカーボネート に代えて、 1, 3—プロノ ンスノレトン、 スノレホラン、 ブタジエンスノレホ ン、 イソキサゾ一ノレ、 N—メチノレモルホリ ン、 N—メチノレ一 2—ピロリ ドンを用いて電解液を調製した。 Three Then, vinylene carbonate was added to the electrolytic solution so as to have a concentration of 1.5 mol / dm 3 to prepare an electrolytic solution. Also, instead of vinylene carbonate, an electrolytic solution was prepared using 1,3-prononorenorethone, snoreholane, butadiene snorehon, isoxazoinole, N-methinolemorpholin, and N-methinole-12-pyrrolidone.
上記非水電解液を使用する以外は、 実施例 2 (電池 A 2) と同様にし て電池 A4 2〜A48を作製した。 得られた各電池について、 上記実施 例と同様にして、 保存前及び保存後の放電容量を求め、 容量残存率を算 出した。 結果を表 6に示す。 なお、 表 6には電池 A 24の結果も併せて 示している。  Batteries A42 to A48 were produced in the same manner as in Example 2 (battery A2) except that the above nonaqueous electrolyte was used. For each of the obtained batteries, the discharge capacity before and after storage was determined in the same manner as in the above example, and the remaining capacity ratio was calculated. Table 6 shows the results. Table 6 also shows the results for battery A24.
表 6  Table 6
表 6に示す結果から明らかなように、 本発明電池 A 4 2〜A48は容 量残存率が 88. 6%〜93. 5%と大きく、 充電保存特性が良いこと がわかる。 中でも、 環構造に不飽和結合を有する複素環化合物を用いた 電池 A 4 2、 A 4 5、 及び A 4 6は、 容量残存率が 9 1. 1。/。〜 93. 5%と極めて大きく、 充電保存特性が良いことがわかる。 これは、 環状 化合物と電極との反応により、 電極表面に安定な被膜が形成され、 特に 不飽和結合が被膜形成を促進しているものと推測される。 また、 ビニレ ンカーボネートを用いた電池 A 4 2において、 容量残存率が最も大きい こと力 Sわ力 る。 As is clear from the results shown in Table 6, the batteries A42 to A48 of the present invention have large residual capacity ratios of 88.6% to 93.5%, and thus have good charge storage characteristics. Among them, batteries A42, A45, and A46 using a heterocyclic compound having an unsaturated bond in the ring structure have a remaining capacity of 91.1. /. It is extremely large, up to 93.5%, indicating good charge storage characteristics. This is because a stable film is formed on the electrode surface by the reaction between the cyclic compound and the electrode. It is presumed that unsaturated bonds promoted film formation. Further, in the battery A 4 2 with Binire emissions carbonate, residual capacity ratio is Ru greatest this and force S I force.
(実施例 4 9〜 54)  (Example 4 9-54)
〔リチウム二次電池の作製〕  [Production of lithium secondary battery]
エチレンカーボネートとジェチルカーボネートとの体積比 1 : 1の混 合溶媒に、 L i P F6と L i N (C2F5S 02) 2をモル比 1 : 1で、 1 mo l Zdm3溶かして、 電解液を調製した。 さらに、 この電解液に添 加する複素環化合物としてのビニレンカーボネートの濃度を、 0. 0 1 mo l Zd m3、 0. 0 5 m o 1 Z d m3、 0. 5mo l dm3、 2. 0 m o l /dm3、 3. 0 m o 1 Z d m3、 4. Omo l Zdm3となる ようにして電解液を調製した。 The volume ratio of ethylene carbonate and Jefferies chill carbonate 1: 1 mixed-solvent, L i PF 6 and L i N (C 2 F 5 S 0 2) 2 molar ratio of 1: 1, 1 mo l Zdm 3 After dissolution, an electrolyte solution was prepared. Furthermore, the concentration of the vinylene carbonate as the heterocyclic compounds added pressure to the electrolytic solution, 0. 0 1 mo l Zd m 3, 0. 0 5 mo 1 Z dm 3, 0. 5mo l dm 3, 2. 0 mol / dm 3, 3. 0 mo 1 Z dm 3, 4. was prepared way electrolyte becomes Omo l Zdm 3.
上記非水電解液を使用する以外は、 実施例 2 (電池 A 2) と同様にし て電池 A 4 9〜A 54を作製した。 得られた各電池について、 上記実施 例と同様にして、 保存前及び保存後の放電容量を求め、 容量残存率を算 出した。 結果を表 7に示す。 なお、 表 7には電池 A 4 2の結果を併せて 示している。  Batteries A49 to A54 were produced in the same manner as in Example 2 (battery A2) except that the above nonaqueous electrolyte was used. For each of the obtained batteries, the discharge capacity before and after storage was determined in the same manner as in the above example, and the remaining capacity ratio was calculated. Table 7 shows the results. Table 7 also shows the results of battery A42.
表 7  Table 7
5 表 7に示す結果から明らかなように、 本発明電池 A4 2、 及び A 4 9 〜 A 54は容量残存率が 8 6. 7 %〜 9 3. 5 %と大きく、 充放電特性 が良いことがわかる。 中でも、 ビニレンカーボネートの添加量が、 0. 0 5〜3. O mo 1 m3のときに容量残存率が 9 1. 1 %〜9 3. 5%と極めて大きく、 充電保存特性が良いことがわかる。 Five As is evident from the results shown in Table 7, the batteries A42 and A49 to A54 of the present invention have a large residual capacity ratio of 86.7% to 93.5% and good charge / discharge characteristics. Understand. Among them, the amount of vinylene carbonate, 0. 0 5 to 3. O residual capacity when the mo 1 m 3 9 1.1% to 9 3.5% and very large, be charged storage characteristics good Understand.
以上の実施例では、 扁平型のリチウムニ次電池を例に挙げて説明した 力 本発明において電池形状に特に制限はなく、 円筒型等の種々の形状 のリチウム二次電池に適用可能である。 産業上の利用可能性  In the above embodiments, the flat lithium secondary battery has been described as an example. In the present invention, the shape of the battery is not particularly limited, and the present invention can be applied to lithium secondary batteries having various shapes such as a cylindrical shape. Industrial applicability
本発明によれば、 充放電容量を高めることができ、 かつ充電保存特性 に優れたリチウム二次電池とすることができる。  ADVANTAGE OF THE INVENTION According to this invention, a charge / discharge capacity can be improved and it can be set as the lithium secondary battery excellent in the charge storage characteristics.
6 6

Claims

請 求 の 範 囲 The scope of the claims
1. 正極と負極と非水電解質とを備えるリチウム二次電池において、 前記負極の活物質として黒鉛が用いられ、 かつ満充電状態における負極 活物質の 7L i — NMR測定における 4 3 p p m付近のピーク強度 I 1 に対する 2 6 6 p p m付近のピーク強度 I 2の比 ( 1 2/ 1 1 ) 、 0 < I 2/ I 1 ≤ 0. 5の範囲内であることを特徴とするリチウム二次電 池。 1. In a lithium secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, graphite is used as an active material of the negative electrode, and a negative electrode active material in a fully charged state of about 7 L i —about 43 ppm in NMR measurement. The ratio of the peak intensity I 2 around 2666 ppm to the peak intensity I 1 (1 2/1 1) is within the range of 0 <I 2 / I 1 ≤ 0.5. pond.
2. 前記非水電解質が、 溶質として、 L i X Fp (式中、 Xは P、 A s、 S b、 A l、 B、 B i、 G a、 または I nであり、 Xが P、 A s、 または S bのとき pは 6であり、 Xが A l、 B、 B i、 G a、 または I nのとき pは 4である。 ;) 、 L i N (CmF2m+1S 02) (CnF2n+1S 02) (式中、 mは 1、 2、 3、 または 4であり、 nは 1、 2、 3、 または 4 である。 ) 、 または L i C (C^^S O^ (CmF2m+1S 02) (CnF 2n+1S 02) (式中、 1は 1、 2、 3、 または 4であり、 mは 1、 2、 3、 または 4であり、 nは 1、 2、 3、 または 4である。 ) を含有している ことを特徴とする請求項 1に記載のリチゥム二次電池。 2. The non-aqueous electrolyte is a solute represented by L i XF p (where X is P, As, S b, Al, B, B i, G a, or In, and X is P, P is 6 when As or Sb, and p is 4 when X is Al, B, Bi, G a or In;;), L i N (C m F 2m + 1 S 0 2 ) (C n F 2n + 1 S 0 2 ) (where m is 1, 2, 3, or 4 and n is 1, 2, 3, or 4), or L i C (C ^^ SO ^ (C m F 2m + 1 S 0 2 ) (C n F 2n + 1 S 0 2 ) (where 1 is 1, 2, 3, or 4 and m is 1 , 2, 3, or 4, and n is 1, 2, 3, or 4.). The lithium secondary battery according to claim 1, wherein:
3. 前記非水電解質が、 溶質として、 L i X Fp (式中、 Xは P、 A s、 S b、 A l、 B、 B i、 G a、 または I nであり、 Xが P、 A s、 または S bのとき pは 6であり、 Xが A 1、 B、 B i、 G a、 または I nのとき pは 4である。 ;) と、 L i N (CmF2m+1S 02) (CnF2n+1S 02) (式中、 mは 1、 2、 3、 または 4であり、 nは 1、 2、 3、 ま たは 4である。 ) 、 または L i C (C^^S O (CmF2m+1S 02) (CnF2n+1S 02) (式中、 1は 1、 2、 3、 または 4であり、 mは 1、 2、 3、 または 4であり、 nは 1、 2、 3、 または 4である。 ) を含有 していることを特徴とする請求項 1に記載のリチウム二次電池。 3. The non-aqueous electrolyte is a solute represented by L i XF p (where X is P, As, S b, Al, B, B i, G a, or In, and X is P, When As or Sb, p is 6, and when X is A1, B, Bi, Ga, or In, p is 4.;) and L i N (C m F 2m +1 S 0 2 ) (C n F 2n + 1 S 0 2 ) (where m is 1, 2, 3, or 4 and n is 1, 2, 3, or 4) , Or L i C (C ^^ SO (C m F 2m + 1 S 0 2 ) (C n F 2n + 1 S 0 2 ) (where 1 is 1, 2, 3, or 4 and m Is 1, 2, 3, or 4, and n is 1, 2, 3, or 4.). The lithium secondary battery according to claim 1, wherein
7 7
4. 前記非水電解質が、 溶質として、 L i P F6 と L i N (C2F5S 02) 2を含有していることを特徴とする請求項 3に記載のリチウム二次 電池。 4. The non-aqueous electrolyte, as a solute, lithium secondary battery according to L i PF 6 and L i N (C 2 F 5 S 0 2) according to claim 3, characterized in that it contains 2.
5. 前記非水電解質の溶質のモル比が、 L i P F6 : L i N (C2F5S 02) 2= 5 : 9 5〜9 5 : 5であることを特徴とする請求項 4に記載の リチウム二次電池。 5. The molar ratio of solute of the nonaqueous electrolyte, L i PF 6: L i N (C 2 F 5 S 0 2) 2 = 5: 9 5~9 5: claims, characterized in that a 5 4. The lithium secondary battery according to 4.
6. 前記非水電解質が、 溶媒として、 酸素、 硫黄、 及び窒素のうちの 少なく とも 1つを含む 5員または 6員の複素環化合物を含有しているこ とを特徴とする請求項 1〜 5のいずれか 1項に記載のリチウム二次電池。  6. The non-aqueous electrolyte contains, as a solvent, a 5- or 6-membered heterocyclic compound containing at least one of oxygen, sulfur, and nitrogen. 6. The lithium secondary battery according to any one of 5.
7. 前記複素環化合物がビニレンカーボネートであることを特徴とす る請求項 6に記載のリチウム二次電池。 7. The lithium secondary battery according to claim 6, wherein the heterocyclic compound is vinylene carbonate.
8. 前記複素環化合物を、 前記非水電解質に対して 0. 0 1〜3. 0 m o \ / d m3含有していることを特徴とする請求項 6または 7に記載 のリチウム二次電池。 8. The heterocyclic compound, 0.0 1 to 3.0 lithium secondary battery according to claim 6 or 7, characterized in that mo \ / dm 3 contains with respect to the non-aqueous electrolyte.
8 8
PCT/JP2000/007650 1999-11-18 2000-10-30 Lithium secondary cell WO2001037364A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU79644/00A AU7964400A (en) 1999-11-18 2000-10-30 Lithium secondary cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/328048 1999-11-18
JP32804899A JP4159215B2 (en) 1999-11-18 1999-11-18 Lithium secondary battery

Publications (1)

Publication Number Publication Date
WO2001037364A1 true WO2001037364A1 (en) 2001-05-25

Family

ID=18205940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/007650 WO2001037364A1 (en) 1999-11-18 2000-10-30 Lithium secondary cell

Country Status (3)

Country Link
JP (1) JP4159215B2 (en)
AU (1) AU7964400A (en)
WO (1) WO2001037364A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7297447B2 (en) * 2001-12-11 2007-11-20 Hitachi Maxell, Ltd. Non-aqueous electrolyte battery
CN109286043A (en) * 2017-07-20 2019-01-29 罗伯特·博世有限公司 Battery cell for Li-ion batteries piles

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4626021B2 (en) * 2000-07-07 2011-02-02 パナソニック株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP4046979B2 (en) * 2001-11-09 2008-02-13 トヨタ自動車株式会社 Novel lithium salts and ion conducting materials and liquid electrolytes
JP2003229172A (en) 2002-01-31 2003-08-15 Sony Corp Nonaqueous electrolyte battery
JP4984373B2 (en) * 2003-02-18 2012-07-25 三菱化学株式会社 Non-aqueous electrolyte and lithium secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0573266A1 (en) * 1992-06-01 1993-12-08 Kabushiki Kaisha Toshiba Lithium secondary battery and method of manufacturing carbonaceous material for negative electrode of the battery
JPH09312171A (en) * 1996-05-22 1997-12-02 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
EP0886334A1 (en) * 1997-06-19 1998-12-23 Sanyo Electric Co., Ltd. Lithium secondary battery
JPH11111332A (en) * 1997-09-30 1999-04-23 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH11283667A (en) * 1998-03-30 1999-10-15 Sanyo Electric Co Ltd Lithium ion battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0573266A1 (en) * 1992-06-01 1993-12-08 Kabushiki Kaisha Toshiba Lithium secondary battery and method of manufacturing carbonaceous material for negative electrode of the battery
JPH09312171A (en) * 1996-05-22 1997-12-02 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
EP0886334A1 (en) * 1997-06-19 1998-12-23 Sanyo Electric Co., Ltd. Lithium secondary battery
JPH11111332A (en) * 1997-09-30 1999-04-23 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH11283667A (en) * 1998-03-30 1999-10-15 Sanyo Electric Co Ltd Lithium ion battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7297447B2 (en) * 2001-12-11 2007-11-20 Hitachi Maxell, Ltd. Non-aqueous electrolyte battery
CN109286043A (en) * 2017-07-20 2019-01-29 罗伯特·博世有限公司 Battery cell for Li-ion batteries piles

Also Published As

Publication number Publication date
JP2001143764A (en) 2001-05-25
JP4159215B2 (en) 2008-10-01
AU7964400A (en) 2001-05-30

Similar Documents

Publication Publication Date Title
KR101280122B1 (en) Method for producing lithium secondary battery
JP3737729B2 (en) Non-aqueous electrolyte battery and non-aqueous electrolyte
JP3213459B2 (en) Non-aqueous electrolyte secondary battery
JP2006196250A (en) Lithium secondary battery
US20160276652A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
JP6394253B2 (en) Non-aqueous secondary battery electrode, method for producing the same, and non-aqueous secondary battery
JP3525553B2 (en) Non-aqueous polymer battery
JP6771145B2 (en) Battery electrolyte and batteries
JP2005294013A (en) Precursor battery and nonaqueous electrolyte secondary battery
JP2002042812A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JP2013062164A (en) Nonaqueous electrolyte for electrochemical element, and electrochemical element
JP4159215B2 (en) Lithium secondary battery
JPH10188977A (en) Lithium secondary battery
JP3836691B2 (en) Non-aqueous electrolyte battery
JP5360860B2 (en) Non-aqueous electrolyte secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP3363585B2 (en) Non-aqueous electrolyte battery
JP3462722B2 (en) Polymer electrolyte battery
JP5448175B2 (en) Non-aqueous electrolyte for electrochemical element and electrochemical element
JPH08124597A (en) Solid electrolytic secondary cell
JPH07296795A (en) Negative electrode for lithium secondary battery, and lithium secondary battery using it
JP2006344395A (en) Cathode for lithium secondary battery and utilization and manufacturing method of the same
JP3273569B2 (en) Lithium battery
JP3433079B2 (en) Lithium secondary battery
JP3048953B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10130665

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase