WO2001030506A1 - Pistola de proyeccion por detonacion de alta frecuencia de disparo y alta productividad - Google Patents

Pistola de proyeccion por detonacion de alta frecuencia de disparo y alta productividad Download PDF

Info

Publication number
WO2001030506A1
WO2001030506A1 PCT/ES1999/000349 ES9900349W WO0130506A1 WO 2001030506 A1 WO2001030506 A1 WO 2001030506A1 ES 9900349 W ES9900349 W ES 9900349W WO 0130506 A1 WO0130506 A1 WO 0130506A1
Authority
WO
WIPO (PCT)
Prior art keywords
barrel
gun
detonation
projection
chamber
Prior art date
Application number
PCT/ES1999/000349
Other languages
English (en)
French (fr)
Inventor
Georgy Yur'evich Barykin
Iñaki FAGOAGA ALTUNA
Original Assignee
Aerostar Coatings, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aerostar Coatings, S.L. filed Critical Aerostar Coatings, S.L.
Priority to EP99953991A priority Critical patent/EP1228809B9/en
Priority to AU10471/00A priority patent/AU778971B2/en
Priority to JP2001532910A priority patent/JP2003512172A/ja
Priority to DE69926549T priority patent/DE69926549T2/de
Priority to ES99953991T priority patent/ES2247832T3/es
Priority to BR9917530A priority patent/BR9917530A/pt
Priority to PCT/ES1999/000349 priority patent/WO2001030506A1/es
Priority to AT99953991T priority patent/ATE301004T1/de
Priority to CA2388618A priority patent/CA2388618C/en
Publication of WO2001030506A1 publication Critical patent/WO2001030506A1/es
Priority to US10/135,020 priority patent/US6745951B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/0006Spraying by means of explosions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/126Detonation spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying

Definitions

  • PROJECTION GUN FOR HIGH FREQUENCY TRIP DETONATION AND HIGH PRODUCTIVITY
  • the present invention relates to a projection gun, of those used in the industrial field of thermal projection for obtaining i or coatings, and in particular in detonation projection technologies.
  • the object of the invention is to achieve a new detonation gun with greater productivity than those currently existing, maintaining stable and continuous optimum projection conditions in each firing cycle.
  • this gun allows to increase the firing frequency as well as the amount of dust and gases fed and, consequently, the amount of coating powder deposited per unit of time, maintaining the optimum quality levels characteristic of the coatings produced by detonation technologies.
  • a new gas feeding system is proposed, in a new explosion chamber, which allows to increase the working frequency of the gun, making possible the stable and constant maintenance of the optimized characteristics of each explosion, even at high frequencies. and a new feeding system of 25 products in the barrel that allows the distributed injection of products at any point of the barrel, increasing the amount of dust injected into the gun and reducing the limitations associated with the obstruction of the feeding ducts, as well as a great versatility of operation to be able to select the injection point.
  • the feed system in the barrel in addition to coating powder also allows the introduction of other products that condition the thermal projection process, thus allowing great flexibility when modifying the working parameters, being able to modify the characteristics of the explosions generated and thus improve and optimize the coatings obtained.
  • detonation projection technologies are mainly used for the application of coatings to parts that are exposed to severe conditions of wear, heat or corrosion and are based primarily on the
  • Coating materials commonly used in detonation spray processes include metal, ceramic-metal, ceramic, etc. powders.
  • the detonation projection is carried out by means of projection guns 25 basically composed of a tubular explosion chamber with a closed end and an open end to which a tubular barrel is also attached. Explosive gases are injected inside the explosion chamber and, through a spark plug, ignition of the gas mixture that causes an explosion occurs and, as a consequence, a shock wave or pressure that propagates by the interior of the barrel reaches supersonic speeds 3 or until it comes out of the open end of it.
  • Powders of the coating material are generally injected into of the barrel in contact with the explosive mixture so that they are dragged by the propagation of the explosive wave and by the set of gaseous products of the explosion, being ejected by the end of the barrel, being deposited on a substrate or piece arranged in front of said cannon .
  • This impact of the coating powders on a substrate produces a high density coating with high internal cohesion and adhesion to the substrate. This process is repeated cyclically until the part is adequately coated.
  • the gases used in the generation of the explosive process are mixed in a separate chamber and before the explosion chamber, from which it is fed with a homogeneous mixture of gases in each explosive cycle.
  • said premix chamber is isolated from the explosion chamber during the explosive phase of the cycle for safety reasons, using mechanical devices such as valves, in one or more of the gas lines, with and without the introduction of a gas inert between two consecutive explosions.
  • the expansion chamber of each passage is arranged in direct communication with the corresponding supply line, while the distributor ducts are conveniently distributed so that multiple injection points open on the inner surface of the explosion chamber of gases, producing a continuous and separate feeding of gases at multiple points, which ensures that the fuel mixture is produced directly, and homogeneously, throughout the explosion chamber prior to each ignition and with a sufficient flow to fill the chamber in each detonation cycle.
  • PCT application ES98 / 00015 also by the applicant itself, describes a powder injection system for a detonation spray gun composed of a dosing chamber fed directly by a continuous powder feeder of conventional type and communicated with the gun barrel through a direct conduit.
  • the pressure generated by the explosion and advancing through the barrel enters through the communication duct and when reaching the dosing chamber undergoes a sudden expansion that interrupts the feeding of dust from the continuous feeder and produces the complete fluidization of the powder contained in the dosing chamber.
  • the fluidized powder is dragged by suction to the barrel, where the pressure wave generated in a new explosive cycle drags it depositing on the surface of the piece to be coated.
  • Detonation guns of the type described produce coatings of excellent quality but have a limitation as to the amount of dust they can deposit per unit of time. This is because, for a detonation gun with certain dimensions, the optimal amount of processable powder in each explosion is limited by the existence of a maximum volume of processable optimized gas mixture in each explosion, and capable of generating the appropriate characteristics of the explosive process itself. An increase in the gaseous volumes involved in each explosion over said maximum optimized mixing volume does not translate into an improvement in the explosive process of each cycle, so an increase in the amount of dust deposited in the unit of time must be produced not so much by an increase in the dust processed in each explosion but as a consequence of the increase in the firing frequency, ensuring in all cases the optimum explosive characteristics of each cycle.
  • the repetition of the explosive cycle at high frequencies and generating explosions with characteristics equivalent to those obtained at lower frequencies requires in parallel higher gas flows in order to ensure the constancy in the gaseous volumes involved in each explosion.
  • the application of these increases in the gas flows and in the firing frequency in the equipment described above produces an increase in the power regime of the gun and an increase in pressure in the gas lines with an acceleration of the processes of injection and mixing of gases into the explosion chamber, which causes great difficulty in maintaining the cyclical detonation process itself, resulting in continuous combustion processes and making the projection process impossible with said equipment.
  • thermodynamic efficiency of continuous combustion processes results in the amount of gases and power involved in the deposition of the same
  • the amount of dust is higher in HVOF systems, resulting in lower performance in the use of resources and in the introduction of additional operating problems, as a result of the high working powers used in HVOF systems with high process capacity.
  • the gun object of the invention allows working at frequencies higher than those used in currently existing devices and with a large volume of coating powder contribution, achieving a higher dust deposition rate even than those obtained with current equipment HVOF continuous combustion, but maintaining the superior thermodynamic efficiency of explosive processes in the use or use of gases and precursors, resulting globally in greater productivity.
  • the present detonation projection system is based on the formation of explosive gaseous mixtures of different composition according to areas of the explosion chamber, thanks to a specific design of gas injectors and explosion chamber, using dynamic valves and other direct and separate injection of fuel and oxidizer, without premixing of both before the explosion chamber itself.
  • the explosion chamber incorporates, just before the holes used for the supply of oxidizer, an internal perimeter protrusion or protrusion that determines a narrowing of the internal diameter of the explosion chamber, defining an annular volume in which the injection of exclusively fuel through multiple distributor ducts arranged in the most delayed area of the explosion chamber.
  • This volume favors the thermal exchange of the gases produced in the explosion with the refrigerated wall of the chamber, and also allows an increase in the gaseous volume that acts as an insulating barrier between the gases involved in two consecutive explosive cycles, thus facilitating the Pulsed process maintenance under the circumstances imposed by the high gas flows and high frequencies object of this patent.
  • the rest of the oxidizer is introduced into the explosion chamber in more advanced positions and close to the tubular barrel, so that the combustion front produced in each ignition by the spark plug, as it progresses in the explosion chamber towards the barrel finds mixtures richer in oxidizer, increasing its speed and energy, resulting in very energetic explosions suitable for the formation of high quality coatings.
  • the combustion injector is arranged concentrically and internally to the explosion chamber, and has an extreme extension that extends practically until the start of the gun barrel, this extension also incorporating a series of holes arranged obliquely with respect to to the barrel axis, for the injection of the oxidizer in this advanced location of the explosion chamber.
  • a second feature of the gun object of the invention refers to the incorporation of a product injection system at any point of the barrel, a system that when used for the injection of the coating powder allows to increase the amount of powder fed to the gun per unit of time thus increasing the amount of dust deposited on the substrate per unit of time and in consequently the productivity of the gun.
  • annular chamber is established at an intermediate point of the barrel, assisted by one or several material feed inlets, so that the product introduced through them accesses the interior of the barrel with an annular distribution getting a good mixture with the gases present in the barrel and avoiding the formation of high concentrations of material in specific areas, as is the case with traditional injectors formed by radial holes.
  • said annular chamber is materialized in a flange that divides the barrel into two segments, which allows to easily disassemble both the flange itself, to perform the maintenance of the conduits of injection, such as the front part of the barrel, corresponding to the outlet to replace it with another of different characteristics;
  • the same gun can have several configurations, even of different lengths that allow coatings to be made with different materials that require a greater or lesser contribution of thermal and / or kinetic energy, and therefore a larger or smaller dimension barrel.
  • the flange that incorporates the annular injector is Couple the gun by means of a device that allows varying the separation between the aforementioned flange and the barrel, in such a way that between both of them an entry can be established in contact with the air from the outside environment, even becoming independent of both parts of the barrel On certain occasions, you can improve the performance and results obtained with the gun.
  • the possibility of having a second annular chamber, with its corresponding material feed inlets, and which opens inside the barrel, a chamber that allows the injection of a product of the same or different characteristics of the injected through the main chamber is possible.
  • the said annular feeding system for the injection of active gases, so that it is possible to locally modify the nature of the mixture by conditioning the explosive process, so for example, these active gases can influence the energy characteristics of the own projection process, modifying the temperatures and speeds applied to the projected particles or they can also have a thermochemical nature that conditions the reactive interaction between said gases and the particles to be deposited, or even place to the synthesis of materials deposited in the projection process .
  • annular injector can be single, double or multiple, that is, have one or more product feed inlets and one or more injectors of this type distributed along the barrel can be used.
  • the working conditions of the gun can be modified at will as it is possible to inject all kinds of products involved, both in the conditions of the projection process and in the composition of the coating and this injection can be done in any point of the cannon being able as well as mentioned to change the dimensions of this quickly and easily, thus obtaining enormous flexibility in the operation of the gun and consequently its ability to process very different materials.
  • annular injector described for the introduction of an inert gas that reduces heat transfer between the gases produced in the explosion and the cooled wall of the barrel, achieving greater energy use of said gases.
  • the gases produced in the explosion advance through the central area of the canyon, in the exit area of the same, while gases flowing in contact with the canyon wall are injected through said annular chamber, forming a kind of mobile, cylindrical film, which reduces the heat losses of the gases produced in the explosion by contact with the refrigerated tube that constitutes the barrel which determines a greater performance of the gun.
  • the film of envelope gas to the detonation gases configures at the exit of the barrel what could be called a "virtual" barrel, which axially lengthens the dimensions of the barrel itself, by reducing and retarding the mixing of process products explosive with ambient gases, which means that, with a smaller length and weight of the barrel, the dust particles are more molten and a coating with better properties is achieved.
  • Figure 1 Shows a schematic sectional representation of the gun object of the invention and also shows a cross-sectional detail of one of the annular injectors of material incorporated in the barrel.
  • Figure 2 - Shows a sectional detail of the explosion chamber of the detonation gun object of the invention, indicating the new gas injection system to generate mixtures of different composition in different areas of the chamber.
  • Figure 3. It shows a partial detail of an injector of material incorporated in the barrel, corresponding to a variant embodiment in which the annular injector also incorporates an auxiliary product inlet.
  • a variant embodiment of the flange is shown incorporating said injector that allows the connection between two barrel segments of different diameters.
  • Figure 4 - Shows a variant embodiment of the representation of Figure 3 in which one of the material entries has a multiplicity of holes that open into the barrel.
  • Figure 5 - Shows a representation of the flange that houses the annular chamber provided with distance means that allow varying the distance between the flange and a segment of the barrel, determining between them an adjustable separation at will for the entry of ambient air.
  • Figure 6 Shows a variant embodiment of the annular injector in which it has a diametral reduction-expansion.
  • an embodiment variant of said injector with longitudinal grooves is shown.
  • Figure 7 Shows a variant embodiment of the annular injector of material in which the mouth of communication with the barrel is configured with a multiplicity of radial holes and an axial feed ring.
  • the recommended gun is structured based on an explosion chamber (1) and a barrel (2), of appropriate length, opened at one of its ends (3) and closed by the other, and which can be constituted by one or more segments (2) (2 '), joined by flanges (7), (7') that can incorporate material entries.
  • the explosion chamber (1) incorporates the fuel inlet injectors (5), combustion (4), and spark plug (6) for ignition of the fuel-combustion mixture obtained in the explosion chamber.
  • it incorporates the fittings corresponding to a gun cooling circuit (not shown), such as water.
  • the explosion chamber (1) incorporates in a delayed area, just before the holes (17) used for the supply of oxidizer, an internal perimeter protrusion or boss (14) that determines a narrowing that defines an annular volume (11), in which the fuel that is fed exclusively through holes (16) located in a socket concentric to the explosion chamber, or in the walls thereof (5), is introduced, and that they open to said camera in the most delayed position of the same (11), before the highlight (14).
  • One of the main characteristics of the gun of the invention relates to the fact that it incorporates a combustion feeder, eg oxygen, (4), arranged concentrically and internally to the explosion chamber (1), and provided with a extreme extension (15) that extends practically to the area that communicates with the gun barrel (13), incorporating a plurality of oxidizer outlet holes (17, 18), eg oxygen, which allow the feeding of this oxidizer in different locations distributed throughout the explosion chamber (1).
  • a combustion feeder eg oxygen, (4)
  • a first series of oxidizer feed holes (17), eg oxygen, is provided at a first location near the ignition zone (12), with the extreme extension (15) of the feeder being provided ( 4) incorporate along its length other combustion feed ducts (18) that are used to enrich the explosive mixture progressively in its advance towards the chamber area that communicates with the barrel (13).
  • Another important feature of the invention relates to the fact that the barrel (2) of the gun incorporates one or more annular expansion and distribution chambers.
  • the annular chambers (9) are established within flanges (7), independent of the barrel (2), and fixable thereto by any means, so that said flanges (7), together with the segment or segments of the barrel ( 2, 2 '), can be replaced or replaced, with the same gun having several guns, even of different lengths or diameters, which in addition to allowing greater ease in the maintenance operations of the injection ducts, can vary substantially the functional performance of the same gun, using in each case the most suitable barrel configuration.
  • a barrel with a terminal segment (2 ') of equal diameter to the first section (2) is shown while in figures 3 to 5 a barrel whose terminal segment (2') is represented larger in diameter than the first section (2).
  • the flange (7) can incorporate a distance device (19) that allows varying the separation between the flange (7) and the initial sector (2) of the barrel , so that between them a separation can be established, adjustable at will, to allow entry of ambient air.
  • the feeding duct (8) can be used for the injection of the coating powder, thus achieving a good distribution thereof minimizing the volumetric density of dust introduced per unit area, since instead of entering the barrel through a single point they would do it through cameras (9) and openings
  • the annular feeding duct can also be used for the injection of active, reactive or neutral substances, such as e.g. fuels, oxygen, air, nitrogen, etc., thus changing the conditions of the thermal projection process itself and being able to modify its parameters based on the injection of different products at different points of the canyon.
  • active, reactive or neutral substances such as e.g. fuels, oxygen, air, nitrogen, etc.
  • the diameter of the segment (2 ') of the barrel is larger than that of the first segment (2), and more specifically the diameter of the second segment (2') of the barrel is coinciding with the external or maximum diameter of the annular opening (10) of the outlet of the chamber also annular (9), while being larger than the internal diameter of the first segment (2) of said barrel, whereby achieves, as previously stated and according to the objective of the invention, that when injecting a gas through the inlet (8), it emerges from the annular mouth (10) forming a kind of also annular film that is established between the canyon wall (2 ') and the gases produced in the explosion, hindering their contact with said refrigerated barrel and, consequently, allowing to reduce energy losses.
  • the flange 7 allows the connection of two barrel segments (2, 2 ') of the same diameter, this connection being also possible with the embodiment shown in Figure 6, where two sectors (2, 2') of the barrel with the same diameter, they are connected by a progressive reduction of diameter in the terminal area of the first section (2) of the barrel, and a subsequent progressive expansion in correspondence with the outlet opening (10) of the annular chamber ( 9).
  • one of the openings (22 ') of access to the barrel can be materialized, instead of as a continuous annular groove, through a series of holes, arranged by configuring approximately one ring. Also shown in Figures 1 and 6, the presence of longitudinal grooves (23) in the 5 openings (10), with the purpose of increasing the amount of powder processable by said components. These configurations can be realized in any of the openings of any of the material injectors incorporated in the gun.
  • the mouth (10) in addition to presenting an axial communication or annular with the barrel, includes in its length a plurality of holes (24) that open radially to the inside of the barrel and allow the product feed It is done in a more distributed way.
  • This configuration can be realized in any of the mouths of any of the material injectors incorporated in the gun. 5
  • the openings (10) that communicate the annular chambers (9) with the inside of the barrel (2) are configured as ducts formed by the inner wall of the barrel and by an axial shoulder (25) in the flange (7) which, by a on the one hand, they allow a correct distribution of material inside the barrel, and, on the other hand, they regulate the interaction or between the gases produced by the explosions and the contribution materials in the annular chambers (9).
  • the openings can be configured as annular ducts of variable length and section in combination, or not, with radial ducts of the type of represented by the holes (24) and the grooves (23).
  • the geometry of the mouth (10) is determined by the characteristics of the product injected into the barrel and by the properties of the intended coating.
  • the most appropriate mouthpiece will have a configuration similar to the one numbered as (10) in the figure 6.
  • a configuration of the mouth as shown in Figure 7 is more appropriate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nozzles (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Percussion Or Vibration Massage (AREA)

Abstract

Pistola de detonación para proyección térmica formada por una cámara de combustión (1) y un cañón (2), con entradas para combustible (5) y para comburente (4), una o varias bujías (6) para detonación de la mezcla combustible-comburente y uno o varios inyectores (7) para entrada de producto en el cañón, la pistola de la invención centra sus características en la incorporación, de un sistema de inyección directa de gases combustibles y comburentes en la cámara de explosión produciendo mezclas explosivas de diferentes composiciones según zonas distintas de la cámara de explosión, existiendo un volumen constreñido de dicha cámara de explosión en el que se produce exclusivamente la inyección de combustible, de tal forma que se pueden generar explosiones de elevada energía manteniendo el funcionamiento cíclico de la pistola. La pistola incorpora también, en el cañón (2 - 2'), uno o varios inyectores anulares (7) que permiten una alimentación de diversos productos, y en especial polvo de revestimiento en grandes cantidades por lo que es posible aumentar los kilogramos depositados sobre el substrato por unidad de tiempo y en consecuencia la productividad de la pistola.

Description

PISTOLA DE PROYECCIÓN POR DETONACIÓN DE ALTA FRECUENCIA DE DISPARO Y ALTA PRODUCTIVIDAD
D E S C R I P C I Ó N
5
OBJETO DE LA INVENCIÓN
La presente invención se refiere a una pistola de proyección, de las utilizadas en el ámbito industrial de la proyección térmica para obtención de i o recubrimientos, y en particular en tecnologías de proyección por detonación.
El objeto de la invención es conseguir una nueva pistola de detonación con mayor productividad que las actualmente existentes, manteniendo de forma estable y continuada unas óptimas condiciones de proyección en cada ciclo de disparo. En relación 15 con dispositivos de detonación anteriores, esta pistola permite aumentar la frecuencia de disparo así como la cantidad de polvo y gases alimentados y, consecuentemente, la cantidad de polvo de revestimiento depositado por unidad de tiempo, manteniéndose los óptimos niveles de calidad característicos de los recubrimientos producidos por las tecnologías de detonación.
20
Para ello, se propone un nuevo sistema de alimentación de gases, en una nueva cámara de explosión, que permite aumentar la frecuencia de trabajo de la pistola, haciendo posible el mantenimiento estable y constante de las características optimizadas de cada explosión, incluso a elevadas frecuencias y un nuevo sistema de alimentación de 25 productos en el cañón que permite la inyección distribuida de productos en cualquier punto del cañón consiguiendo aumentar la cantidad de polvo inyectado en la pistola y reducir las limitaciones asociadas a la obstrucción de los conductos de alimentación, así como una gran versatilidad de funcionamiento al poder seleccionar el punto de inyección.
30 El sistema de alimentación en el cañón, además de polvo de revestimiento también posibilita la introducción de otros productos que condicionen el proceso de proyección térmica, permitiendo así una gran flexibilidad a la hora de modificar los parámetros de trabajo, pudiendo modificar las características de las explosiones generadas y así mejorar y optimizar los revestimientos obtenidos.
Es también objeto de la invención conseguir un mejor rendimiento de la
5 pistola, en base a aislar térmicamente los gases producidos en el proceso explosivo con respecto a la pared refrigerada del cañón, para obtener un mejor aprovechamiento de la energía de que dichos gases son portadores, con el consecuente incremento en el rendimiento de la pistola y la eficiencia de la misma.
i o ANTECENTES DE LA INVENCIÓN
En la actualidad, las tecnologías de proyección por detonación son utilizadas principalmente para la aplicación de revestimientos a piezas que están expuestas a severas condiciones de desgaste, calor o corrosión y se basan fundamentalmente en el
15 aprovechamiento de la energía térmica y cinética producida por la explosión de una mezcla gaseosa para depositar un polvo de material de revestimiento sobre dichas piezas.
Los materiales de revestimiento utilizados habitualmente en los procesos de proyección por detonación incluyen polvos metálicos, cerámico-metálicos, cerámicos, etc.
20 y son de aplicación para mejorar la resistencia al desgaste, a la erosión, a la corrosión, como aislantes térmicos y como aislantes o conductores eléctricos, entre otras aplicaciones recogidas en la literatura.
La proyección por detonación se realiza mediante pistolas de proyección 25 compuestas básicamente por una cámara de explosión tubular con un extremo cerrado y otro abierto al cuál se acopla un cañón también tubular. Los gases explosivos se inyectan en el interior de la cámara de explosión y, a través de una bujía, se produce la ignición de la mezcla de gases que provoca una explosión y, como consecuencia, una onda de choque o presión que en su propagación por el interior del cañón alcanza velocidades supersónicas 3 o hasta que sale por el extremo abierto de éste.
Los polvos del material de revestimiento se inyectan generalmente dentro del cañón en contacto con la mezcla explosiva de forma que son arrastrados por la propagación de la onda explosiva y por el conjunto de productos gaseosos de la explosión, siendo expulsados por el extremo del cañón, depositándose sobre un substrato o pieza dispuesto frente al citado cañón. Este impacto de los polvos de revestimiento sobre un substrato produce un recubrimiento de alta densidad con elevada cohesión interna y adherencia al substrato. Este proceso se repite de forma cíclica hasta que la pieza se encuentra recubierta adecuadamente.
En los equipos de proyección por detonación tradicionales los gases empleados en la generación del proceso explosivo son mezclados en una cámara separada y anterior a la cámara de explosión, de la cual se alimenta ésta con una mezcla homogénea de gases en cada ciclo explosivo. Tradicionalmente, dicha cámara de premezcla se encuentra aislada de la cámara de explosión durante la fase explosiva del ciclo por motivos de seguridad, empleándose para ello dispositivos mecánicos como válvulas, en una o varias de las líneas de gases, con y sin introducción de un gas inerte entre dos explosiones consecutivas.
En otro tipo de equipos de detonación más avanzados, presentados por el propio solicitante en la PCT US96/20160, dicho aislamiento entre cámara de premezcla y cámara de explosión se realiza mediante válvulas dinámicas, es decir dispositivos sin elementos móviles, con lo que se superan las desventajas inherentes a los sistemas mecánicos anteriormente citados. Sin embargo, en estos dispositivos sigue utilizándose una cámara de premezcla para homogeneizar la composición de los gases con los que se alimenta la cámara de explosión.
Recientemente, el propio solicitante ha desarrollado un tipo de equipo de proyección por detonación, descrito en la PCT ES97/00223, con un sistema de inyección de gases que no incorpora válvulas o sistemas mecánicos de cierre para la alimentación de los gases combustibles y, además, permite que la alimentación de los gases se produzca directa y separadamente a la cámara de explosión a través de una serie de pasajes independientes, estando cada pasaje compuesto por una cámara de expansión y una pluralidad de conductos distribuidores de sección transversal reducida y/o longitud elevada. Esto es, un sistema sin elementos mecánicos móviles para el control de gases y sin utilización de cámara de premezcla alguna. En este dispositivo, la cámara de expansión de cada pasaje se dispone en comunicación directa con la línea de suministro correspondiente, mientras que los conductos distribuidores se encuentran repartidos convenientemente de forma que en la superficie interior de la cámara de explosión se abren múltiples puntos de inyección de gases, produciéndose una alimentación continua y separada de gases en múltiples puntos, lo que permite asegurar que la mezcla combustible se produce directamente, y de forma homogénea, en toda la cámara de explosión previamente a cada ignición y con un flujo suficiente para llenar la cámara en cada ciclo de detonación.
A su vez, en la solicitud PCT ES98/00015, también del propio solicitante, se describe un sistema de inyección de polvo para una pistola de proyección por detonación compuesto por una cámara de dosificación alimentada directamente por un alimentador continuo de polvo de tipo convencional y comunicado con el cañón de la pistola a través de un conducto directo. De esta forma, la presión generada por la explosión y que avanza a través del cañón entra por el conducto de comunicación y al alcanzar la cámara de dosificación sufre una expansión brusca que interrumpe la alimentación de polvo desde el alimentador continuo y produce la fluidificación completa del polvo contenido en la cámara de dosificación. El polvo fluidificado es arrastrado por succión hasta el cañón, donde la onda de presión generada en un nuevo ciclo explosivo lo arrastra depositándose en la superficie de la pieza a revestir.
Las pistolas de detonación del tipo descrito producen recubrimientos de excelente calidad pero presentan una limitación en cuanto a la cantidad de polvo que pueden depositar por unidad de tiempo. Esto es debido a que, para una pistola de detonación con unas dimensiones determinadas, la cantidad óptima de polvo procesable en cada explosión está limitada por la existencia de un volumen máximo de mezcla gaseosa optimizada procesable en cada explosión, y capaz de generar las características adecuadas del propio proceso explosivo. Un aumento de los volúmenes gaseosos involucrados en cada explosión sobre dicho volumen máximo de mezcla optimizada, no se traduce en una mejora del proceso explosivo de cada ciclo, por lo que un aumento en la cantidad de polvo depositado en la unidad de tiempo debe producirse no tanto por un aumento del polvo procesado en cada explosión sino como consecuencia del aumento de la frecuencia de disparo, asegurando en todo caso las óptimas características explosivas de cada ciclo.
Por otra parte, la repetición del ciclo explosivo a frecuencias elevadas y generando explosiones con características equivalentes a las obtenidas a frecuencias inferiores, requiere paralelamente de flujos gaseosos superiores a fin de asegurar la constancia en los volúmenes gaseosos involucrados en cada explosión. La aplicación de estos incrementos en los flujos de gases y en la frecuencia de disparo en los equipos anteriormente descritos, produce un aumento en el régimen de potencia de la pistola y un aumento de presión en las líneas de gases con una aceleración de los procesos de inyección y mezcla de gases dentro de la cámara de explosión lo que provoca una gran dificultad en el mantenimiento del propio proceso cíclico de detonación, dando lugar a procesos de combustión continua e imposibilitando el proceso de proyección con dichos equipos. En particular, un aumento en el régimen de potencia de la pistola y consecuentemente en la temperatura del sistema de inyección de gases dificulta el enfriamiento de los gases producidos en un ciclo explosivo y que, retrocediendo a través de los conductos del sistema de inyección, permiten la interrupción cíclica del suministro de comburente y combustible a la cámara. En el funcionamiento de los equipos de detonación anteriores descritos en la PCT ES97/00223, dichos gases en su retorno a la cámara de explosión actúan como barrera aislante entre los gases producidos en el ciclo explosivo anterior y la nueva mezcla gaseosa formada en la cámara de explosión, evitando la autoignición de la misma. Sin embargo, el funcionamiento de este mecanismo a frecuencias elevadas se ve dificultado por un aumento en la temperatura de la cámara de explosión, una disminución en el volumen de los gases de retomo que actúan de barrera aislante y un rápido retomo de los mismos la cámara de explosión, resultado de la mayor presión en las líneas de alimentación. En los dispositivos de detonación anteriormente descritos, esto da lugar a la autoignición de la mezcla combustible y a la formación de procesos de combustión continua.
En las pistolas de detonación actualmente existentes y descritas en esta sección, también existe una limitación adicional derivada de los alimentadores de polvo utilizados, dado que no permiten garantizar la correcta fluidez del polvo a elevadas velocidades de aportación. En este sentido se observa que, en los diseños actuales, a partir de una cierta cantidad de polvo inyectado, éstos presentan graves problemas de obturación y deposición en las paredes, lo que dificulta la operación del equipo de forma continuada y estable. Esto se debe fundamentalmente a aspectos geométricos de los dispositivos de inyección de polvo y/o a aspectos térmicos relacionados con el proceso explosivo. En el dispositivo de inyección descrito en la solicitud PCT ES98/00015 del propio solicitante, el polvo es introducido en el cañón, a través de un único orificio, arrastrado por los gases calientes generados en un ciclo explosivo. Pues bien, los incrementos en la cantidad de polvo, gases y en la frecuencia de operación requeridos para lograr incrementar la productividad del proceso de proyección, encuentran pronto un límite en dispositivos de alimentación como el anteriormente referido ya que, como consecuencia de la acumulación de material en una zona localizada y del incremento de temperatura de los gases que interaccionan con el polvo en el inyector, se experimentan los problemas de obturación y deposición antes mencionados.
De otro lado, están establecidas en el mercado las tecnologías de proyección conocidas como HNOF en las cuales no se producen explosiones cíclicas sino que una combustión continua es utilizada para la formación de un flujo supersónico de gases calientes propiamente empleado en el proceso de proyección térmica, necesitándose en este caso flujos gaseosos muy elevados para el sostenimiento de dicho flujo supersónico requerido para la obtención de recubrimientos de buena calidad técnica.
Dada la continuidad de los procesos HVOF, los diseños más avanzados de pistolas HVOF presentan una capacidad de procesamiento de polvo por unidad de tiempo superior a la obtenida con los sistemas de proyección por detonación tradicionales, aunque con similares problemáticas en la inyección de polvo, obturación y deposición en el interior de las boquillas de proyección.
Sin embargo, la inferior eficiencia termodinámica, de los procesos de combustión continua frente a los procesos explosivos (combustión pulsada o cíclica) da lugar a que la cantidad de gases y potencia involucrada en la deposición de una misma cantidad de polvo sea superior en los sistemas HVOF, resultando en un menor rendimiento en la utilización de recursos y en la introducción de problemas de operación adicionales, como consecuencia de las elevadas potencias de trabajo empleadas en los sistemas HVOF de alta capacidad de proceso.
5
Por tanto, sería deseable contar con una pistola de proyección que empleando un proceso pulsado de naturaleza explosiva, con elevada eficiencia termodinámica en la utilización de gases y materiales precursores, permitiese aumentar la cantidad de polvo procesado por unidad de tiempo, manteniendo las típicas características 0 de los recubrimientos producidos por las tecnologías de detonación.
DESCRIPCIÓN DE LA INVENCIÓN
5 La pistola objeto de la invención, permite trabajar a frecuencias superiores a las empleadas en los dispositivos actualmente existentes y con un gran volumen de aportación de polvo de revestimiento, consiguiendo una velocidad de deposición de polvo mayor incluso que las obtenidas con los actuales equipos de combustión continua HVOF, pero manteniendo la superior eficiencia termodinámica de los procesos explosivos en la o utilización de gases y precursores, resultando globalmente en una mayor productividad.
El presente sistema de proyección por detonación se fundamenta en la formación de mezclas gaseosas explosivas de distinta composición según zonas de la cámara de explosión, gracias a un diseño específico de inyectores de gases y cámara de 5 explosión, empleando por lo demás válvulas dinámicas y una inyección directa y separada de combustible y comburente, sin premezclado de ambos antes de la propia cámara de explosión.
En primer lugar, para conseguir que la pistola trabaje a frecuencias o elevadas con elevados volúmenes de gas por explosión, se ha previsto que la alimentación de los gases en la cámara de explosión se produzca a través de varios puntos, espacialmente distribuidos por la cámara de explosión, de forma que se generen mezclas gaseosas con composiciones localmente diferentes en zonas diferentes de dicha cámara, permitiendo generar explosiones de elevada energía a elevada frecuencia y manteniendo el régimen cíclico de funcionamiento de forma estable.
La cámara de explosión incorpora, justo antes de los orificios utilizados para la alimentación de comburente, una protuberancia o resalte perimetral interno que determina un estrechamiento del diámetro interno de la cámara de explosión, definiendo un volumen anular en el cual se realiza exclusivamente la inyección de combustible a través de múltiples conductos distribuidores dispuestos en la zona más retrasada de la cámara de explosión. Dicho volumen favorece el intercambio térmico de los gases producidos en la explosión con la pared refrigerada de la cámara, y permite también un aumento en el volumen gaseoso que actúa como barrera aislante entre los gases involucrados en dos ciclos explosivos consecutivos, facilitando de esta forma el mantenimiento del proceso pulsado bajo las circunstancias impuestas por los elevados flujos gaseosos y altas frecuencias objeto de esta patente.
Según este esquema de funcionamiento, tras cada ignición por parte de la bujía, se produce la propagación de una onda de presión y temperatura ligada al proceso explosivo que, en su retroceso hacia dicho volumen anular retrasado, da lugar a la combustión y descomposición del combustible presente en dicho volumen, junto a una sobrepresión que produce la interrupción del flujo de alimentación de combustible e incluso la penetración de productos de combustión a través de los conductos distribuidores. Los elevados flujos de gases requeridos para trabajar a elevadas frecuencias, hacen que este último factor se vea reducido penetrando rápidamente nuevo combustible a la cámara de explosión a través de los conductos distribuidores, sin embargo este efecto es compensado por la presencia de este volumen anular retrasado de la cámara de explosión, cuyo contenido en productos de combustión permite generar una cantidad de gas suficiente como barrera aislante entre los gases calientes originados en la explosión anterior y el nuevo lote de gases suministrado a la cámara de explosión.
En las zonas próximas al punto de ignición (bujía) se inicia la alimentación del comburente, de forma que se genera una mezcla local pobre en oxígeno, con una inyección en esta zona de un máximo del 25 % del volumen total de comburente suministrado en cada ciclo, junto con la inyección local de la totalidad del combustible suministrado a la cámara de explosión.
El resto del comburente se introduce en la cámara de explosión en posiciones más avanzadas y próximas al cañón tubular, de forma que el frente de combustión producido en cada ignición por la bujía, a medida que progresa en la cámara de explosión hacia el cañón encuentra mezclas más ricas en comburente, incrementando su velocidad y energía, dando lugar a explosiones muy energéticas adecuadas para la formación de recubrimientos de alta calidad.
De esta manera es posible generar, dentro del mismo volumen de la cámara y para un mismo ciclo explosivo, zonas de mayor o menor energía. En particular, con el nuevo diseño de la cámara de explosión y el sistema de inyección de gases se favorece el aporte energético en la zona próxima a la inyección de comburente, a la vez que se reduce la energía de la explosión en la zona mas retrasada de la cámara de explosión, lo cual aumenta la eficacia del sistema de inyección para enfriar los gases que acompañan a la onda de presión que retrocede, favoreciendo la continuidad del proceso cíclico de detonación a frecuencias superiores a las alcanzables por los dispositivos anteriores.
Según una realización preferente, el inyector de comburente está dispuesto concéntrica e internamente a la cámara de explosión, y cuenta con una prolongación extrema que se extiende prácticamente hasta el inicio del cañón de la pistola, incorporando también esta prolongación una serie de orificios dispuestos oblicuamente respecto al eje del cañón, para la inyección del comburente en esta localización avanzada de la cámara de explosión.
Una segunda característica de la pistola objeto de la invención, se refiere a la incorporación de un sistema de inyección de productos en cualquier punto del cañón, sistema que cuando se utiliza para la inyección del polvo de revestimiento permite aumentar la cantidad de polvo alimentado a la pistola por unidad de tiempo aumentando así la cantidad de polvo depositado sobre el substrato por unidad de tiempo y en consecuencia la productividad de la pistola.
Para ello, se ha previsto que en un punto intermedio del cañón se establezca una cámara anular, asistida por una o varias entradas de alimentación de material, de tal manera que el producto introducido a través de ellas accede al interior del cañón con una distribución anular consiguiendo una buena mezcla con los gases presentes en el cañón y evitando la formación de concentraciones elevadas de material en zonas específicas, tal y como ocurre con los inyectores tradicionales formados por orificios radiales.
La utilización de este tipo de conducto de alimentación para la inyección del polvo de revestimiento, permite una buena distribución del polvo puesto que en lugar de entrar al cañón a través de un único punto lo hace a través de la cámara anular y consecuentemente de forma más homogénea y distribuida reduciendo la densidad volumétrica de polvo inyectada por unidad de área, reduciendo los problemas de obturación pero, además, posibilitando la introducción en la pistola de una cantidad de polvo mucho mayor, aumentando en consecuencia la alimentación de la misma.
De acuerdo con otra de las características de la invención, se ha previsto que la citada cámara anular se materialice en una brida que divide el cañón en dos segmentos, lo que permite desmontar fácilmente tanto la propia brida, para realizar el mantenimiento de los conductos de inyección, como la parte delantera del cañón, correspondiente a la boca de salida para sustituirla por otra de diferentes características; de esta manera una misma pistola puede disponer de varias configuraciones, incluso de distintas longitudes que permiten realizar revestimientos con distintos materiales que requieren de mayor o menor aportación de energía térmica y/o cinética, y por tanto de un cañón de mayor o menor dimensión.
De forma similar, también es posible conectar segmentos de cañón de diámetros diferentes según requiera el tipo de polvo de revestimiento utilizado o las características especiales del proceso o aplicación en curso.
Se ha previsto también que la brida que incorpora el inyector anular se acople a la pistola mediante un dispositivo que permite variar la separación entre la citada brida y el cañón, de tal manera que entre ambos se pueda establecer una entrada en contacto con el aire del ambiente exterior, llegando incluso a independizar ambas partes del cañón lo que, en ciertas ocasiones, puede mejorar las prestaciones y resultados obtenidos con la pistola.
De acuerdo con otra de las características de la invención se ha previsto también la posibilidad de disponer en la brida una segunda cámara anular, con sus correspondientes entradas de alimentación de material, y que se abre al interior del cañón, cámara que permite la inyección de un producto de las mismas o diferentes características del inyectado a través de la cámara principal. En concreto, es posible la introducción de polvos de diferente naturaleza, o bien repartir a lo largo de la longitud del cañón la alimentación de polvo, lo que permite una mayor versatilidad en la composición del revestimiento obtenido.
También es posible utilizar el citado sistema de alimentación anular para la inyección de gases activos, de tal manera que es posible modificar localmente la naturaleza de la mezcla condicionando el proceso explosivo, así por ejemplo, estos gases activos pueden influir en las características energéticas del propio proceso de proyección, modificando las temperaturas y velocidades aplicadas a las partículas proyectadas o también pueden presentar una naturaleza termoquímica que condicione la interacción reactiva entre dichos gases y las partículas a depositar, o incluso de lugar a la síntesis de materiales depositados en el proceso de proyección.
Por supuesto, el inyector anular descrito puede ser simple, doble o múltiple, es decir, tener una o varias entradas de alimentación de productos y pueden utilizarse uno o varios inyectores de este tipo distribuidos a lo largo el cañón.
Así las cosas, mediante el sistema de alimentación propuesto se pueden modificar las condiciones de trabajo de la pistola a voluntad ya que es posible inyectar todo tipo de productos que intervienen, tanto en las condiciones del proceso de proyección como en la composición del revestimiento y esta inyección se puede hacer en cualquier punto del cañón pudiendo además como se ha mencionado cambiar las dimensiones de éste de forma rápida y sencilla consiguiendo así una enorme flexibilidad en el funcionamiento de la pistola y consecuentemente su capacidad de procesar muy diversos materiales.
También es posible utilizar el inyector anular descrito para la introducción de un gas inerte que reduzca la transferencia de calor entre los gases producidos en la explosión y la pared refrigerada del cañón, consiguiendo un mayor aprovechamiento energético de dichos gases.
De acuerdo con esta estructuración, los gases producidos en la explosión avanzan por la zona central del cañón, en el sector de salida del mismo, mientras que a través de la citada cámara anular se inyectan gases que fluyen en contacto con la pared del cañón, formando una especie de película móvil, cilindrica, que reduce las pérdidas de calor de los gases producidos en la explosión por contacto con el tubo refrigerado que constituye el cañón lo cual determina un mayor rendimiento de la pistola.
Además, la película de gas envolvente a los gases de la detonación configura a la salida del cañón lo que podría denominarse un cañón "virtual", que alarga axialmente las dimensiones del cañón propiamente dicho, al reducir y retardar la mezcla de los productos del proceso explosivo con los gases del ambiente, lo que trae consigo que, con una menor longitud y peso del cañón, las partículas de polvo estén más fundidas y se consiga un revestimiento de mejores propiedades.
Cuando se utilizan polvos sensibles a la oxidación, es posible realizar la inyección con un gas inerte, de tal forma que la envolvente de este gas protege al polvo del aire ambiental y, en consecuencia, se mejora la calidad de la capa o revestimiento obtenido.
DESCRIPCIÓN DE LOS DIBUJOS Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características del invento, de acuerdo con un ejemplo preferente de realización práctica del mismo, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
La figura 1. - Muestra una representación esquemática en sección de la pistola objeto de la invención y también muestra un detalle en sección transversal de uno de los inyectores anulares de material incorporados en el cañón.
La figura 2 - Muestra un detalle en sección de la cámara de explosión de la pistola de detonación objeto de la invención, indicando el nuevo sistema de inyección de gases para generar mezclas de composición diferente en distintas zonas de la cámara.
La figura 3. - Muestra un detalle parcial de un inyector de material incorporado en el cañón, correspondiente a una variante de realización en la que el inyector anular incorpora además una entrada auxiliar de producto. Además, se muestra una variante de realización de la brida que incorpora dicho inyector que permite la conexión entre dos segmentos del cañón de diámetros diferentes.
La figura 4 - Muestra una variante de realización de la representación de la figura 3 en la que una de las entradas de material presenta una multiplicidad de orificios que se abren al interior del cañón.
La figura 5 - Muestra una representación de la brida que aloja la cámara anular dotada de medios distanciadores que permiten variar la distancia entre la brida y un segmento del cañón, determinando entre ambos una separación regulable a voluntad para la entrada del aire del ambiente.
La figura 6 - Muestra una variante de realización del inyector anular en el que éste presenta una reducción-expansión diametral. Además se muestra una variante de realización de dicho inyector con ranuras longitudinales. La figura 7 - Muestra una variante de realización del inyector anular de material en el que la embocadura de comunicación con el cañón se configura con una multiplicidad de orificios radiales y un anillo axial de alimentación.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
A la vista de estas figuras, puede observarse cómo la pistola que se preconiza está estructurada a base a una cámara de explosión (1) y un cañón (2), de longitud apropiada, abierto por uno de sus extremos (3) y cerrado por el otro, y que puede estar constituido por uno o más segmentos (2) (2'), unidos por bridas (7), (7') que pueden incorporar entradas de material.
La cámara de explosión (1) incorpora los inyectores de entrada de combustible (5), de comburente (4), y la bujía (6) para la ignición de la mezcla combustible-comburente obtenida en la cámara de explosión. Además, incorpora los racores correspondientes a un circuito de refrigeración de la pistola (no representado), como por ejemplo por agua.
Tal y como se observa en la figura 2, la cámara de explosión (1) incorpora en una zona retrasada, justo antes de los orificios (17) utilizados para la alimentación de comburente, una protuberancia o resalte perimetral interno (14) que determina un estrechamiento que define un volumen anular (11), en el que se introduce exclusivamente el combustible que es alimentado a través de orificios (16) situados en un casquillo concéntrico a la cámara de explosión, o en las paredes de la misma (5), y que se abren a dicha cámara en la posición más retrasada de la misma (11), anterior al resalte (14).
Una de las principales características de la pistola de la invención se refiere al hecho de que incorpora un alimentador de comburente, p.ej. oxígeno, (4), dispuesto concéntrica e internamente a la cámara de explosión (1), y dotado de una prolongación extrema (15) que se extiende prácticamente hasta la zona que comunica con el cañón de la pistola (13), incorporando una pluralidad de orificios (17, 18) de salida de comburente, p.ej. oxígeno, que permiten la alimentación de este comburente en diferentes localizaciones distribuidas a lo largo de la cámara de explosión (1).
En concreto, se ha previsto una primera serie de orificios (17) de alimentación de comburente, p.ej. oxígeno, en una primera localización próxima la zona de ignición (12), habiéndose previsto que la prolongación extrema (15) del alimentador (4) incorpore a lo largo de su longitud otros conductos (18) de alimentación de comburente que son utilizados para enriquecer la mezcla explosiva progresivamente en su avance hacia la zona de cámara que comunica con el cañón (13).
Otra característica importante de la invención se refiere al hecho de que el cañón (2) de la pistola incorpora una o más cámaras de expansión y distribución anulares
(9), con sus conespondientes entradas de material (8), cámaras (9) que se abren hacia el interior del cañón (2) a través de embocaduras anulares (10) orientadas hacia la salida (3) del cañón.
Las cámaras anulares (9) se establecen en el seno de bridas (7), independientes del cañón (2), y fijables a este por cualquier medio, de manera que dichas bridas (7), conjuntamente con el segmento o segmentos del cañón (2, 2'), pueden ser sustituidos o recambiados, pudiendo disponer una misma pistola de varios cañones, incluso de diferentes longitudes ó diámetros, lo que además de permitir una mayor facilidad en las operaciones de mantenimiento de los conductos de inyección, permite variar sustancialmente las prestaciones funcionales de una misma pistola, utilizando en cada caso la configuración del cañón más idónea. En las figuras 1 y 6, se ha representado un cañón con un segmento terminal (2') de igual diámetro al primer tramo (2) mientras que en las figuras 3 a 5 se ha representado un cañón cuyo segmento terminal (2') es de mayor diámetro que el primer tramo (2).
Según otra característica de la invención, tal y como se observa en la figura 5, la brida (7) puede incorporar un dispositivo distanciador (19) que permite variar la separación entre la brida (7) y el sector inicial (2) del cañón, de tal manera que entre ambos pueda establecerse una separación, graduable a voluntad, para permitir la entrada del aire ambiental.
El conducto de alimentación (8) puede utilizarse para la inyección del polvo de revestimiento, consiguiendo así una buena distribución del mismo minimizando la densidad volumétrica de polvo introducido por unidad de área, puesto que en lugar de entrar al cañón a través de un único punto lo harían a través de cámaras (9) y embocaduras
(10) anulares y consecuentemente de forma más homogénea y distribuida.
También puede utilizarse el conducto de alimentación anular para la inyección de sustancias activas, reactivas o neutras, como por ej. combustibles, oxígeno, aire, nitrógeno, etc., modificándose de esta forma las condiciones del propio proceso de proyección térmica y siendo posible modificar los parámetros de éste en base a la inyección de distintos productos en distintos puntos del cañón.
A partir de esta estructuración básica es factible, de acuerdo con las representaciones de las figuras 3 y 4, que en una misma brida (7) se incorpore, además de la cámara anular (9) a que se ha hecho mención con anterioridad, una segunda cámara anular (20), con sus correspondientes conducto de entrada (21) y embocadura (22), prevista para constituir una alimentación auxiliar de productos que, pueden ser de igual o distinta naturaleza a los inyectados a través de la cámara de alimentación principal (9) y así por ejemplo, se pueden inyectar polvos de diferente naturaleza para constituir revestimientos con dos o más materiales diferenciados.
Además y como se observa perfectamente en las citadas figuras 3 y 4, el diámetro del segmento (2') del cañón es mayor que el del primer segmento (2), y más concretamente el diámetro del segundo segmento (2') del cañón es coincidente con el diámetro externo o máximo de la embocadura anular (10) de salida de la cámara así mismo anular (9), a la vez que es mayor que el diámetro interno del primer segmento (2) de dicho cañón, con lo que se consigue, como anteriormente se ha dicho y de acuerdo con el objetivo de la invención, que al inyectar un gas a través de la entrada (8), éste emerja de la embocadura anular (10) formando una especie de película también anular que se establece entre la propia pared del cañón (2') y los gases producidos en la explosión, dificultando el contacto de los mismos con dicho cañón refrigerado y, consecuentemente, permitiendo reducir las pérdidas de energía.
En la figura 1, la brida 7 permite la conexión de dos segmentos del cañón (2, 2') de igual diámetro, siendo también posible realizar esta conexión con la realización representada en la figura 6, donde dos sectores (2, 2') del cañón con el mismo diámetro, se conectan mediante una reducción progresiva de diámetro en la zona terminal del primer tramo (2) del cañón, y de un a posterior expansión progresiva en correspondencia con la embocadura de salida (10) de la cámara anular (9). 0
Según se observa en la figura 4, una de las embocaduras (22') de acceso al cañón puede materializarse, en lugar de como una ranura anular continua, a través de una serie de orificios, dispuestos configurando aproximadamente un anillo. También se muestra en las figuras 1 y 6, la presencia de ranuras longitudinales (23) en las 5 embocaduras (10), con el propósito de aumentar la cantidad de polvo procesable por dichos componentes. Estas configuraciones puede materializarse en cualquiera de las embocaduras de cualquiera de los inyectores de material incorporados en la pistola.
En la figura 7, la embocadura (10), además de presentar una comunicación o anular axial con el cañón, incluye en su longitud una pluralidad de orificios (24) que se abren radialmente al interior del cañón y que permiten que la alimentación de producto se realice de una manera más distribuida. Esta configuración puede materializarse en cualquiera de las embocaduras de cualquiera de los inyectores de material incorporados en la pistola. 5
Las embocaduras (10) que comunican las cámaras anulares (9) con el interior del cañón (2) se configuran como conductos formados por la pared interna del cañón y por un resalte axial (25) en la brida (7) que, por un lado, permiten una correcta distribución de material en el interior del cañón, y, por otro lado, regulan la interacción o entre los gases producidos por las explosiones y los materiales de aporte en las cámaras anulares (9). Las embocaduras pueden configurarse como conductos anulares de longitud y sección variables en combinación, o no, con conductos radiales del tipo de los representados por los orificios (24) y las ranuras (23). En última instancia, la geometría de la embocadura (10) viene determinada por las características del producto inyectado en el cañón y por las propiedades del recubrimiento que se pretenda. Por ejemplo, si el material alimentado en el cañón es un gas y se pretende utilizarlo para aislar los gases producidos en la explosión de las paredes refrigeradas del cañón, la embocadura más apropiada tendrá una configuración similar a la numerada como (10) en la figura 6. Por otro lado, para la alimentación de un material en forma de polvo una configuración de la embocadura como la representada en la figura 7 es más apropiada.

Claims

R E I V I N D I C A C I O N E S
ld - Pistola de proyección por detonación de alta frecuencia de disparo y alta productividad, del tipo de las que incorporan una cámara de explosión (1) y un cañón (2) a la que se aplican directa y separadamente combustible y comburente que, con la colaboración de un sistema de ignición (6), generan gases producidos en un proceso de explosión que arrastran a un matenal de revestimiento, alimentado en el cañón (2) y que es proyectado hacia la pieza a revestir, caractenzada porque incorpora: a) medios de alimentación de combustible y comburente que producen mezclas explosivas de diferentes composiciones según zonas de la cámara de explosión, de tal manera que puede provocarse la generación, dentro del mismo volumen de la cámara (1) y para un mismo ciclo explosivo, de zonas de mayor o menor energía y b) medios de alimentación distribuida de productos al cañón, para conseguir elevados volúmenes de alimentación y mezclas adecuadas con los gases presentes en el cañón, siendo la posición de estos medios, a lo largo del cañón (2), seleccionable y modificable por el usuario, para la inyección de los productos en cualquier punto del cañón, proporcionado así una gran versatilidad del funcionamiento.
2d - Pistola de proyección por detonación de alta frecuencia de disparo y alta productividad, según reivindicación ld, caractenzada porque los medios de alimentación de comburente (4) presentan múltiples puntos de inyección (17, 18), espacialmente distribuidos a lo largo de la cámara de explosión (1), mientras que los medios de alimentación de combustible (5) presentan múltiples puntos de inyección (16), todos ellos situados en la zona mas retrasada (11) de la cámara de explosión (1), todo ello para generar una mezcla rica en combustible en zonas próximas a la de ignición (12), aumentando progresivamente el porcentaje de comburente en zonas (13) próximas a la conexión con el cañón (2).
3d - Pistola de proyección por detonación de alta frecuencia de disparo y alta productividad, según reivindicaciones Ia y 2a, caractenzada porque la mezcla explosiva generada en la zona de ignición (12) es el resultado de la inyección local en dicha zona (12) de un máximo del 25% del volumen total de comburente y de la totalidad del combustible suministrados a la cámara de explosión (1) en cada ciclo.
4a - Pistola de proyección por detonación de alta frecuencia de disparo y alta productividad, según reivindicaciones anteriores, caracterizada porque la cámara de explosión (1) incorpora, entre los primeros orificios de alimentación de comburente (17) y los orificios de alimentación de combustible (16), una protuberancia interna o resalte perimetral (14) que determina un estrechamiento de la cámara de explosión (1), constituyéndose un volumen constreñido (11) en el que se alimenta exclusivamente el combustible a través de los orificios (16) del inyector (5).
5a - Pistola de proyección por detonación de alta frecuencia de disparo y alta productividad, según reivindicaciones anteriores caracterizada porque los medios de alimentación del comburente están constituidos por un inyector axial (4), dispuesto concéntrica e internamente a la cámara de explosión (1) que presenta una serie de orificios radiales (17) que quedan fuera del volumen (11) e inmediatamente después del resalte perimetral (14), contando el inyector axial (4) con una prolongación extrema (15) que se extiende prácticamente hasta el inicio del cañón (2), y que también presenta unos orificios radiales (18) que quedan distribuidos a lo largo de la cámara de explosión (1).
6a- Pistola de proyección por detonación de alta frecuencia de disparo y alta productividad, según reivindicaciones anteriores, caracterizada porque los orificios radiales (17) y (18) del alimentador de comburente están dispuestos oblicuamente respecto al eje del cañón (2).
7a - Pistola de proyección por detonación de alta frecuencia de disparo y alta productividad, según reivindicación Ia, caracterizada porque los medios de alimentación distribuida de productos en el cañón (2) están constituidos por una o varias cámaras anulares (9) que se establecen en cualquier posición del cañón, y que están asistidas por una o varias entradas de alimentación de producto (8), contando la cámara o cámaras anulares (9) con unas embocaduras (10) o conductos de salida a través de las cuales los productos acceden al cañón (2) de forma distribuida, de manera que cuando estos medios de alimentación se utilizan para la inyección de polvo de revestimiento permiten aumentar la cantidad de polvo alimentado al cañón y reducir las posibles obstrucciones del conducto de inyección, mientras que cuando se utilizan para la inyección de productos activos en la combustión es posible modificar localmente la naturaleza de la mezcla y/o condicionar el proceso de proyección a voluntad.
8a - Pistola de proyección por detonación de alta frecuencia de disparo y alta productividad, según reivindicaciones Ia y 7a, caracterizada porque las embocaduras (10) se configuran como conductos anulares de longitud, sección y onentación variable.
9a - Pistola de proyección por detonación de alta frecuencia de disparo y alta productividad, según reivmdicaciones Ia, 7d y 8a caracterizada porque la cámara o cámaras anulares (9) se establecen en una o varias bridas (7) montadas con carácter movible, en cualquier posición del cañón, determinando dicha brida o bridas (7) segmentos de cañón físicamente independizables, tanto para favorecer el acceso a los inyectores en el mantenimiento de la pistola como para permitir que una pistola única disponga de diferentes segmentos recambiables, determinantes de diferentes características funcionales para la pistola.
10a - Pistola de proyección por detonación de alta frecuencia de disparo y alta productividad, según reivindicaciones Ia, 7a, 8a y 9a caracterizada porque las embocaduras (10) se configuran como conductos determinados por la pared interna del cañón (2) y un resalte axial (25) de la brida (7).
11a - Pistola de proyección por detonación de alta frecuencia de disparo y alta productividad, según reivindicaciones Ia, 7a, 8a, 9a y 10a, caracterizada porque las embocaduras de salida (10) de las cámaras anulares (9) presentan unas acanaladuras longitudinales (23) que permiten aumentar la cantidad de material inyectado, particularmente en el caso de tratarse de polvo de revestimiento.
12a - Pistola de proyección por detonación de alta frecuencia de disparo y alta productividad, según reivindicaciones Ia, 7a, 8a, 9a, 10a y 1 Ia, caracterizada porque las embocaduras (10) de las cámaras anulares (9) presentan, además de una comunicación anular axial con el cañón, una pluralidad de orificios (24) que se abren radialmente al cañón, en cuyo caso las cámaras anulares son especialmente apropiadas para la inyección de polvo de revestimiento, consiguiendo una gran productividad de la pistola y reduciendo las obstrucciones del conducto de inyección.
13a - Pistola de proyección por detonación de alta frecuencia de disparo y alta productividad, según reivindicaciones Ia, 7a, 8a, 9a, 10a, 11a y 12a, caracterizada porque las cámaras anulares (9) desembocan en el interior del cañón (2) a través de ranuras anulares (10) y/o a través de una alineación circunferencial de orificios (22').
14a - Pistola de proyección por detonación de alta frecuencia de disparo y alta productividad, según reivindicaciones Ia, 7a, 8a, 9a, 10a, 11a, 12a y 13a, caracterizada porque el resalte axial (25) presenta una longitud ampliada que se superpone interiormente al cañón (2), de tal forma que al utilizar el inyector para la introducción de un gas inerte, los gases de la explosión avanzan por la zona central del cañón (2) mientras que el gas inerte fluye en contacto con la pared del cañón (2), formando una especie de película móvil, cilindrica, que reduce las pérdidas de calor a través de las paredes del cañón (2) y configura a la salida del mismo una película protectora que reduce y retarda la mezcla de los productos del proceso explosivo con los gases del ambiente.
15a - Pistola de proyección por detonación de alta frecuencia de disparo y alta productividad, según reivindicaciones Ia, 7a, 8a y 9a, 10a, 11a, 12a, 13a y 14a, caracterizada porque las citadas bridas (7) disponen de una segunda cámara anular (20), antepuesta a la cámara anular (9), provista de sus propias conducciones de entrada (21) y que desemboca en el interior del cañón (2), inmediatamente antes de la boca de salida (10) de la cámara anular (9), estando destinada a constituir una segunda entrada de aportación de producto al cañón de la pistola, producto de las mismas o diferentes características que el introducido a través de la primera entrada.
16a - Pistola de proyección por detonación de alta frecuencia de disparo y alta productividad, según reivindicaciones Ia, 7a, 8a, 9a, 10a, 11a, 12a, 13a, 14a y 15a caracterizada porque las bridas (7) incorporan un dispositivo distanciador (19) que permite variar la separación entre cada brida (7) y el segmento de cañón al que se une, de tal manera que entre ambos pueda establecerse una separación, graduable a voluntad, para permitir la entrada de aire ambiental desde el exterior.
17a - Pistola de proyección por detonación de alta frecuencia de disparo y alta productividad, según reivindicaciones Ia, 7a, 8a, 9a, 10a, 11a, 12a, 13a, 14a, 15a y 16a caracterizada porque la brida (7) presenta un primer tramo convergente seguido de un tramo divergente en conespondencia con la embocadura de salida (10) para permitir conectar dos sectores de cañón (2) (2').
PCT/ES1999/000349 1999-10-28 1999-10-28 Pistola de proyeccion por detonacion de alta frecuencia de disparo y alta productividad WO2001030506A1 (es)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP99953991A EP1228809B9 (en) 1999-10-28 1999-10-28 Detonation gun for projection with high frequency shooting and high productivity
AU10471/00A AU778971B2 (en) 1999-10-28 1999-10-28 Detonation gun for projection with high frequency shooting and high productivity
JP2001532910A JP2003512172A (ja) 1999-10-28 1999-10-28 高周波パルス・レートおよび高生産性デトネーション・スプレー・ガン
DE69926549T DE69926549T2 (de) 1999-10-28 1999-10-28 Detonationspistole mit hoher frequenz und hoher effizienz
ES99953991T ES2247832T3 (es) 1999-10-28 1999-10-28 Pistola de proyeccion por detonacion de alta frecuencia de disparo y alta productividad.
BR9917530A BR9917530A (pt) 1999-10-28 1999-10-28 Pistola de pulverização com taxa de pulsos de alta frequêcia e alta produtividade
PCT/ES1999/000349 WO2001030506A1 (es) 1999-10-28 1999-10-28 Pistola de proyeccion por detonacion de alta frecuencia de disparo y alta productividad
AT99953991T ATE301004T1 (de) 1999-10-28 1999-10-28 Detonationspistole mit hoher frequenz und hoher effizienz
CA2388618A CA2388618C (en) 1999-10-28 1999-10-28 High frequency pulse rate and high productivity detonation spray gun
US10/135,020 US6745951B2 (en) 1999-10-28 2002-04-23 High frequency pulse rate and high productivity detonation spray gun

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES1999/000349 WO2001030506A1 (es) 1999-10-28 1999-10-28 Pistola de proyeccion por detonacion de alta frecuencia de disparo y alta productividad

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/135,020 Continuation US6745951B2 (en) 1999-10-28 2002-04-23 High frequency pulse rate and high productivity detonation spray gun

Publications (1)

Publication Number Publication Date
WO2001030506A1 true WO2001030506A1 (es) 2001-05-03

Family

ID=8307396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1999/000349 WO2001030506A1 (es) 1999-10-28 1999-10-28 Pistola de proyeccion por detonacion de alta frecuencia de disparo y alta productividad

Country Status (9)

Country Link
US (1) US6745951B2 (es)
EP (1) EP1228809B9 (es)
JP (1) JP2003512172A (es)
AT (1) ATE301004T1 (es)
AU (1) AU778971B2 (es)
CA (1) CA2388618C (es)
DE (1) DE69926549T2 (es)
ES (1) ES2247832T3 (es)
WO (1) WO2001030506A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007132028A1 (es) 2006-05-12 2007-11-22 Fundacion Inasmet Procedimiento de obtención de recubrimientos cerámicos y recubrimientos cerámicos obtenidos
EP2202328A1 (en) 2008-12-26 2010-06-30 Fundacion Inasmet Process for obtaining protective coatings for high temperature with high roughness and coating obtained
CN113882949A (zh) * 2021-09-29 2022-01-04 中国人民解放军战略支援部队航天工程大学 一种粉末旋转爆震空间发动机

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050199739A1 (en) * 2002-10-09 2005-09-15 Seiji Kuroda Method of forming metal coating with hvof spray gun and thermal spray apparatus
US6948306B1 (en) * 2002-12-24 2005-09-27 The United States Of America As Represented By The Secretary Of The Navy Apparatus and method of using supersonic combustion heater for hypersonic materials and propulsion testing
US20060251821A1 (en) * 2004-10-22 2006-11-09 Science Applications International Corporation Multi-sectioned pulsed detonation coating apparatus and method of using same
US8298612B2 (en) 2005-05-09 2012-10-30 University Of Ottawa Method for depositing particulate material onto a surface
US8465602B2 (en) 2006-12-15 2013-06-18 Praxair S. T. Technology, Inc. Amorphous-nanocrystalline-microcrystalline coatings and methods of production thereof
JP2008272622A (ja) * 2007-04-26 2008-11-13 Tama Tlo Kk 溶射装置
US7763325B1 (en) 2007-09-28 2010-07-27 The United States Of America As Represented By The National Aeronautics And Space Administration Method and apparatus for thermal spraying of metal coatings using pulsejet resonant pulsed combustion
KR101015561B1 (ko) * 2010-08-13 2011-02-16 김병두 용사 코팅을 위한 2중 노즐 캡
US20120318891A1 (en) * 2011-06-14 2012-12-20 Wu-Chiao Chou Siphon nozzle for air blow gun
US20130180248A1 (en) * 2012-01-18 2013-07-18 Nishant Govindbhai Parsania Combustor Nozzle/Premixer with Curved Sections
CN103572193B (zh) * 2013-06-08 2016-03-16 北京君山表面技术工程有限公司 一种使用爆炸喷涂工艺制作汽车板生产线炉辊涂层的方法
CN107653429B (zh) * 2016-07-26 2019-07-26 北京联合涂层技术有限公司 积压式高频爆炸喷枪
GB201614008D0 (en) 2016-08-16 2016-09-28 Seram Coatings As Thermal spraying of ceramic materials
CN114777162A (zh) * 2022-06-15 2022-07-22 清航空天(北京)科技有限公司 一种径向供油供气的连续旋转爆震冲压发动机
CN115233140B (zh) * 2022-07-29 2023-11-03 西安热工研究院有限公司 一种适用于氢气扩散燃烧的爆炸喷涂装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3004822A (en) * 1958-01-31 1961-10-17 Union Carbide Corp Method for utilizing detonation waves to effect chemical reactions
US3910494A (en) * 1974-02-21 1975-10-07 Southwest Res Inst Valveless combustion apparatus
US4004735A (en) * 1974-06-12 1977-12-25 Zverev Anatoly Apparatus for detonating application of coatings
US4231518A (en) * 1977-04-19 1980-11-04 Zverev Anatoly I Apparatus for explosive application of coatings
US4669658A (en) * 1985-12-03 1987-06-02 Institut Problem Materialovedenia An Ussr Gas detonation coating apparatus
WO1999012653A1 (es) * 1997-09-11 1999-03-18 Aerostar Coatings, S.L. Sistema de inyeccion de gases en una pistola de proyeccion por detonacion

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4319715A (en) * 1977-12-20 1982-03-16 Garda Alexandr P Apparatus for explosive application of coatings to articles
GB2190101B (en) * 1986-05-09 1990-10-17 Inst Materialovedenia Akademii Detonation-gas apparatus for applying coatings
DE3620183A1 (de) * 1986-06-16 1987-12-17 Castolin Gmbh Vorrichtung zum thermischen spritzen von auftragsschweisswerkstoffen
US5019686A (en) * 1988-09-20 1991-05-28 Alloy Metals, Inc. High-velocity flame spray apparatus and method of forming materials
JPH02131159A (ja) * 1988-11-10 1990-05-18 Babcock Hitachi Kk 爆発溶射装置
US5542606A (en) * 1994-06-17 1996-08-06 Demeton Usa, Inc. Gas detonation spraying apparatus
JPH11222662A (ja) * 1998-02-03 1999-08-17 Ishikawajima Harima Heavy Ind Co Ltd 溶射装置および溶射方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3004822A (en) * 1958-01-31 1961-10-17 Union Carbide Corp Method for utilizing detonation waves to effect chemical reactions
US3910494A (en) * 1974-02-21 1975-10-07 Southwest Res Inst Valveless combustion apparatus
US4004735A (en) * 1974-06-12 1977-12-25 Zverev Anatoly Apparatus for detonating application of coatings
US4231518A (en) * 1977-04-19 1980-11-04 Zverev Anatoly I Apparatus for explosive application of coatings
US4669658A (en) * 1985-12-03 1987-06-02 Institut Problem Materialovedenia An Ussr Gas detonation coating apparatus
WO1999012653A1 (es) * 1997-09-11 1999-03-18 Aerostar Coatings, S.L. Sistema de inyeccion de gases en una pistola de proyeccion por detonacion

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007132028A1 (es) 2006-05-12 2007-11-22 Fundacion Inasmet Procedimiento de obtención de recubrimientos cerámicos y recubrimientos cerámicos obtenidos
EP2202328A1 (en) 2008-12-26 2010-06-30 Fundacion Inasmet Process for obtaining protective coatings for high temperature with high roughness and coating obtained
CN113882949A (zh) * 2021-09-29 2022-01-04 中国人民解放军战略支援部队航天工程大学 一种粉末旋转爆震空间发动机
CN113882949B (zh) * 2021-09-29 2023-11-10 中国人民解放军战略支援部队航天工程大学 一种粉末旋转爆震空间发动机

Also Published As

Publication number Publication date
US6745951B2 (en) 2004-06-08
AU1047100A (en) 2001-05-08
EP1228809B9 (en) 2005-12-07
EP1228809B1 (en) 2005-08-03
JP2003512172A (ja) 2003-04-02
EP1228809A1 (en) 2002-08-07
ATE301004T1 (de) 2005-08-15
CA2388618C (en) 2010-03-23
CA2388618A1 (en) 2001-05-03
ES2247832T3 (es) 2006-03-01
AU778971B2 (en) 2004-12-23
DE69926549D1 (de) 2005-09-08
DE69926549T2 (de) 2006-08-10
US20020130201A1 (en) 2002-09-19

Similar Documents

Publication Publication Date Title
ES2247832T3 (es) Pistola de proyeccion por detonacion de alta frecuencia de disparo y alta productividad.
JP4155706B2 (ja) デトネーション・スプレー・ガンのガス供給システム
KR950014072B1 (ko) 재료형성을 위한 열 분사재의 고속 용사장치
JP2003512172A5 (es)
BR0205726B1 (pt) lança para injetar um gás que contém oxigênio preaquecido em um vaso que contém um banho de material fundido e aparelho para produzir metal ferroso.
JPH0220304B2 (es)
CN114525464B (zh) 一种基于旋转爆震的喷涂装置
US3092166A (en) Space heating method and apparatus
US4099572A (en) Vapor-gas mixture generating installation for extinguishing underground fires
RU2581756C2 (ru) Камера жидкостного ракетного двигателя малой тяги
CN209081965U (zh) 一种爆炸喷涂装置
US3050112A (en) Radiant gas burner
RU2236910C2 (ru) Высокопроизводительный детонационный пистолет-распылитель с высокой частотой повторения импульсов
RU2178344C2 (ru) Система подачи газов в детонационном распылителе
RU2225947C2 (ru) Смесительная головка камеры жидкостного ракетного двигателя
HU200490B (en) Blast pipe arrangement in metallurgical equipment for flame guniting
RU2002113737A (ru) Высокопроизводительный детонационный пистолет-распылитель с высокой частотой повторения импульсов
RU2613351C1 (ru) Ракетный двигатель твёрдого топлива управляемого снаряда
ES344001A1 (es) Perfeccionamientos en la construccion de quemadores de com-bustible fluido.
SU860774A1 (ru) Газогенератор дл порошковых огнетушителей
RU2059963C1 (ru) Управляемая ракета
RU2404860C2 (ru) Ствол установки детонационного напыления
JPH02131159A (ja) 爆発溶射装置
SU1095018A1 (ru) Газова горелка
UA65194A (en) Detonation gas gun

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10471/00

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 10135020

Country of ref document: US

Ref document number: 2388618

Country of ref document: CA

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 532910

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref country code: RU

Ref document number: 2002 2002113737

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1999953991

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999953991

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 10471/00

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1999953991

Country of ref document: EP