WO2001027988A1 - Processing method - Google Patents

Processing method Download PDF

Info

Publication number
WO2001027988A1
WO2001027988A1 PCT/JP2000/007082 JP0007082W WO0127988A1 WO 2001027988 A1 WO2001027988 A1 WO 2001027988A1 JP 0007082 W JP0007082 W JP 0007082W WO 0127988 A1 WO0127988 A1 WO 0127988A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
processing method
film
flow rate
heating
Prior art date
Application number
PCT/JP2000/007082
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuo Kobayashi
Masao Yoshioka
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Publication of WO2001027988A1 publication Critical patent/WO2001027988A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02046Dry cleaning only

Definitions

  • the present invention relates to a processing method for removing an oxide film formed on a surface of an object to be processed.
  • a mixed gas of N 2 gas and H 2 gas is activated by plasma to form an active gas species, and NF 3 gas is added to the down flow of the active gas species to activate the NF 3 gas.
  • the active gas species of the NF 3 gas reacts with the oxide film on the surface of the wafer to form a generated film, and then the wafer is heated to a predetermined temperature to vaporize and remove the generated film.
  • Such a processing method is capable of processing fine holes and narrow portions, and has a good condition after processing.
  • the resistance the resistance of the contact portion between the hole bottom and the conductive material buried in the hole.
  • the present invention has been made in order to solve the above problems, and has as its object to provide a processing method capable of reducing contact resistance and thus improving yield. Disclosure of the invention
  • the object to be treated contains ammonia and hydrogen peroxide.
  • the mixed gas of N 2 gas and H 2 gas is activated by plasma to form an active gas species, and NF 3 gas is added to the down flow of the active gas species to add NF 3 gas.
  • Activated exposing the active gas species of NF 3 gas to the surface of the object to be processed, reacting it with the oxide film to form a formed film, and heating the object to a predetermined temperature to generate it. It is characterized in that the film is vaporized and the object to be processed is washed.
  • the invention described in claim 2 is characterized in that the supply flow rate of the N 2 gas is not less than 300 SCCM and not more than 500 SCCM.
  • the invention described in claim 3 is characterized in that the supply flow rate of the H 2 gas is not less than 200 SCC M and not more than 400 SCC M.
  • the invention described in claim 4 is characterized in that the supply flow rate of the NF 3 gas is 20 SCCM or more and 80 SCCM or less.
  • the invention described in claim 5 is characterized in that the process pressure in the step of forming the formed film is not less than 399 Pa and not more than 665 Pa.
  • the invention described in claim 6 is characterized in that the power for generating plasma is not less than 250 W and not more than 350 W.
  • the invention described in claim 7 is characterized in that the heating temperature when heating the formed product film is 100 ° C. or higher.
  • FIG. 1 is a configuration diagram showing an example of a processing apparatus used in the processing method of the present invention.
  • FIG. 2 is a diagram illustrating the effect of the present invention.
  • FIG. 3 is a diagram illustrating the effect of the present invention.
  • FIG. 4 is a diagram showing the relationship between the N 2 flow rate, the etching rate, and the uniformity.
  • FIG. 5 is a diagram showing the relationship between the H 2 flow rate, the etching rate, and the uniformity.
  • FIG. 6 is a diagram showing the relationship between the flow rate of NF 3 and the etching rate and uniformity.
  • FIG. 7 is a diagram showing the relationship between the process pressure and the etching rate and uniformity.
  • C FIG. 8 is a diagram showing the relationship between the microwave output and the etching rate and uniformity.
  • FIG. 9 is a diagram showing the relationship between the heating temperature after the process and the etching rate.
  • FIG. 1 is a configuration diagram showing an example of a processing apparatus used in a natural oxide film removing step in the processing method according to the present invention.
  • a processing apparatus 12 is provided with an oxide film, particularly a natural gas, for a plasma forming tube 14 for activating a mixed gas of N 2 gas and H 2 gas by plasma and a semiconductor wafer W to be processed.
  • a treatment container 16 for performing a predetermined surface treatment for removing an oxide film (an oxide film formed unintentionally by contact with oxygen in the atmosphere or a cleaning solution).
  • a mounting table 20 on which a wafer to be processed is mounted is provided inside the processing container 16, and an exhaust port 22 is provided at a peripheral edge at the bottom of the processing container 16.
  • the inside of the processing vessel 16 can be evacuated.
  • An irradiation port 26 is formed at the bottom of the processing container 16 below the mounting table 20, and the irradiation port 26 is provided with a transmission window 28.
  • a number of heating lamps 36 are provided for heating the mounting table 20 from the lower surface side, and the heating light emitted from the heating lamps 36 is transmitted therethrough. The light passes through the window 28 and enters the back surface of the wafer W.
  • the plasma forming tube 14 is open at the ceiling of the processing vessel 16 and is attached to the processing vessel 16 in an upright state.
  • An introduction nozzle 46 for introducing a plasma gas composed of N 2 gas and H 2 gas is provided at the upper end of the plasma forming tube 14, and a gas passage 48 is provided in the introduction nozzle 46. Consolidated.
  • An N 2 gas source 52 and an H 2 gas source 54 are connected to the gas passages 48 via flow controllers 50, respectively.
  • the underneath of the introduction nozzle 4 6, c the plasma forming section 5 6 plasma generation unit 5 6 is provided, 2. 4 5 GH z microwave source 5 8 for generating microwaves with A microwave generated by the microwave generation source 58 through the rectangular waveguide 62. 60. Then, plasma is generated in the plasma forming tube 14 by the supplied microwave, and H 2 gas and The N2 gas mixture is activated to form a downhole.
  • An outlet 64 at the lower end of the plasma forming tube 14 is provided with a cover member 66 extending downward in an umbrella shape. The cover member 66 covers an upper portion of the mounting table 20 so that gas can be efficiently removed from the wafer. It is made to flow down to W.
  • An NF 3 gas supply unit 68 for supplying NF 3 gas is provided immediately below the outlet 64.
  • the NF 3 gas supply section 68 has a shower head 70, and the shower head 70 is connected to a NF 3 gas source 8 through a communication pipe 74, a gas passage 76, and a flow controller 78. Connected to 0.
  • a wafer to be processed is cleaned with a cleaning liquid generally called SC-1 solution or APM solution containing ammonia and hydrogen peroxide.
  • the inside of the processing container 16 is sealed, and the inside is evacuated.
  • N 2 gas and H 2 gas are introduced from the N 2 gas source 52 and the H 2 gas source 54 at a predetermined flow rate into the plasma forming tube 14 from the introduction nozzle 46.
  • a microwave of 2.45 GHz is generated from the microwave generating source 58 of the microwave forming section 56 and guided to the Evenson-type waveguide 60, thereby forming the plasma forming tube.
  • the N 2 gas and the H 2 gas are turned into plasma and activated by the microwaves, and active gas species are formed.
  • the active gas species forms a downflow by evacuation in the processing container 16 and flows down the plasma forming tube 14 toward the outlet 64.
  • the NF 3 gas supplied from the NF 3 gas source 80 is supplied from the NF 3 gas source 80 to the N 2 gas from the ring-shaped shower head 70 of the NF 3 gas supply unit 68 disposed outside the plasma forming tube 14.
  • the added NF 3 gas is also activated by the down-flow active gas species.
  • the NF 3 gas is also converted into an active gas, and reacts with the natural oxide film on the surface of the wafer W in combination with the above-mentioned active gas species in the downflow to form a mixed film of Si, N, H, and F. I do. This process promotes the reaction at low temperatures, so it can be produced at room temperature. A film is formed.
  • gas supply flow rates of H2, NF3, and N2 are 300 S CCM, 60 SCCM, and 400 SCCM, respectively.
  • SCCM standard cubic centimeters per minute
  • the process pressure is 532 Pa
  • the plasma power is 350 W
  • the process time is 1 minute.
  • a formed film reacting with the natural oxide film is formed on the wafer surface.
  • the upper part of the mounting table 20 is covered with the umbrella-shaped covering member 66, the dispersion of the active gas species in the downflow is suppressed, and the active gas species flows down onto the wafer surface efficiently.
  • a formation film can be formed on the substrate.
  • the heating lamp 36 is turned on to heat the wafer W to a predetermined temperature, for example, 100 ° C. or higher. By this heating, the above-mentioned generated film is sublimated (vaporized). As a result, the natural oxide film on the wafer W is removed, and the Si surface appears on the wafer surface.
  • the process conditions at this time are a process pressure of 133 Pa and a process time of about 1 minute.
  • Fig. 2 shows the comparison of the contact resistance between the case where this treatment method is adopted and the case where the treatment with SC-1 solution (APM solution) is not performed in advance only in the natural oxide film removal step. It is.
  • graph 1 graph indicated by “1 ⁇ —”
  • graph 2 graph indicated by “1” —
  • the case where only the natural oxide film removing step is not performed beforehand with the SC-1 solution is shown.
  • the contact resistance value when the native oxide film is removed after cleaning with SC-1 solution is significantly reduced compared to the case where only the native oxide film is removed.
  • Figure 3 shows the comparison of the contact resistance between the case where the natural oxide film is removed after the treatment with SC-1 solution and the case where the cleaning with the DHF solution is performed after the cleaning with SC-11 solution. is there.
  • the graph 1 (the graph indicated by “1 ⁇ 1”) similarly shows the case where the natural oxide film is removed after the treatment with the SC-1 solution.
  • Graph 3 (graph indicated by “1x—”) shows the case where washing with DHF solution was performed after treatment with SC-1 solution.
  • the resistance value is lower than when cleaning with DHF solution is performed after cleaning with SC-1 solution. Decrease.
  • the value of the contact resistance can be significantly reduced as compared with the case where only the natural oxide film is removed, and the yield can be improved.
  • the etching rate and the uniformity of the etching are extremely important in the processing steps. Therefore, to improve the etching rate and uniformity, the optimum conditions of the process were investigated based on experiments. The result will be described below.
  • the etching rate is (amount of decrease in film thickness by the above-described processing method) / (time during which an active gas species reacts with an oxide film).
  • FIGS. 4 to 9 are graphs showing experimental results for the process conditions.
  • the graphs plotted with circles indicate the etching rate
  • the graphs plotted with squares indicate the uniformity.
  • Figure 4 shows a flow of H2 of 300 SCCM, a flow of NF3 of 60 SCCM, a microphone output of 350 W, a process pressure of 532 Pa, a process time of 1 min, and post-process heating (140 ° C).
  • the values of the etching rate (angstrom / min) and the uniformity (%) with respect to the flow rate of N2 are shown for 1 min.
  • the N2 flow rate is appropriately 300 SCCM or more from the viewpoint of the etching rate, and considering uniformity, 300 to 500 SCCM is preferable.
  • Figure 5 shows a flow rate of NF 3 of 60 SCCM, a flow rate of N 2 of 400 SCCM, a microphone output of 350 W, a process pressure of 532 Pa, a process time of 1 min, and post-process heating (140 (° C) lmin, the values of etching rate (angstrom / min) and uniformity (%) with respect to the flow rate of H2 are shown.
  • the appropriate H2 flow rate is 200-400 SCCM in terms of etching rate and 300-400 SCCM in terms of uniformity.
  • Figure 6 shows a flow rate of H2 of 300 SCCM, a flow rate of N2 of 400 SCCM, a microphone output of 350 W, a process pressure of 532 Pa, a process time of 1 min, and post-process heating (140 (° C) lmin shows the values of the etching rate (angstrom / min) and the uniformity (%) with respect to the NF3 flow rate.
  • the etching rate is not significantly affected by changing the NF3 flow rate. Therefore, from the viewpoint of uniformity, NF3 is practically 20 to 80 SCCM, and 20 to 60 SCCM is more preferable.
  • Figure 7 shows that the flow rate of H2 was 300 SCCM, the flow rate of NF 3 was 60 SCCM, the flow rate of N2 was 400 SCCM, the microwave output was 350 W, the process time was 2 min, and the post-process heating (140 ° C) was 1 min.
  • the values of the etching rate (Angstrom Zmin) and the uniformity (%) are shown with respect to the process pressure (Pa).
  • the process pressure (Pa) is suitably from 399 to 665 Pa, and more preferably 532 Pa, from the viewpoint of etching rate and uniformity.
  • Figure 8 shows a flow rate of H2 of 300 SCCM, a flow rate of NF3 of 60 SCCM, a flow rate of N2 of 400 SCCM, a process pressure of 532 Pa, a process time of 1 min, and post-process heating (140 ° C).
  • the values of the etching rate (angstrom / min) and the uniformity (%) with respect to the microwave output (W) are shown when 1 min is used.
  • a microwave output (W) of 250 W or more is appropriate from the viewpoint of the etching rate and uniformity.
  • charge-up damage occurs in one of several wafers, so that it is preferably 350 W or less.
  • FIG. 9 shows the value of the etching rate (angstrom / min) with respect to the heating temperature (° C) in the heating after the process of 1 min at 133 Pa.
  • the heating temperature should be 100 ° C or higher from the viewpoint of the etching rate.
  • maximum-min (%) means that the maximum value of the etching rate at a plurality of points on the wafer is max and the minimum value is min. Shows the uniformity expressed as (max—min) / (max + min) ⁇ 100 (%).
  • the H2 flow rate, NF3 flow rate, N2 flow rate, microphone mouth wave output, process pressure, and process time are set to predetermined values, and the etching rate and etching rate can be adjusted. Uniformity can be improved. Therefore, processing efficiency and uniformity can be improved.
  • a natural oxide film removing step that is, The mixed gas of N 2 gas and H 2 gas is activated by plasma to form an active gas species, and NF 3 gas is added to this active gas species to activate the NF 3 gas.
  • the active gas species is exposed to the surface of the object to be processed, and is reacted with a natural oxide film to form a generated film.
  • the processing efficiency and uniformity can be improved.
  • the uniformity of the treatment can be improved.
  • the processing efficiency can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)
  • Weting (AREA)

Abstract

A processing method which comprises washing an organic material and particles adhered to an article to be processed with SC-1 solution, activating a mixture of N2 gas and H2 gas by a plasma to form an active gas species, introducing NF3 gas downstream from the active gas species to thereby activate the NF3 gas, exposing the surface of the article to be processed to the resultant active gas species of NF3 gas to react the active gas species with a film formed by natural oxidation on the article and form a formed film, and heating the article to a predetermined temperature to thereby vaporize the formed film. The method can be employed for reducing the contact resistance defined in the specification even in a fine hole or a narrow portion, while maintaining a good state after processing.

Description

明 細 書 処理方法 技術分野 本発明は、 被処理体表面に形成された酸化膜を除去する処理方法に関する。 背景技術  TECHNICAL FIELD The present invention relates to a processing method for removing an oxide film formed on a surface of an object to be processed. Background art
従来、 半導体デバイス等の製造工程において、 ウェハに形成された微細なホー ル内の酸化膜を有効に除去する方法としては、 例えば、 以下のような処理方法が ある。  Conventionally, as a method of effectively removing an oxide film in a fine hole formed on a wafer in a manufacturing process of a semiconductor device or the like, for example, the following processing methods are available.
まず、 N 2ガスと H 2ガスの混合ガスをプラズマにより活性化して活性ガス種 を形成し、 この活性ガス種のダウンフローに N F 3ガスを添加して N F 3ガスを 活性化する。 この N F 3ガスの活性ガス種をウェハの表面の酸化膜と反応させて 生成膜を形成し、 その後ウェハを所定の温度に加熱することにより前記生成膜を 気化させて除去する。  First, a mixed gas of N 2 gas and H 2 gas is activated by plasma to form an active gas species, and NF 3 gas is added to the down flow of the active gas species to activate the NF 3 gas. The active gas species of the NF 3 gas reacts with the oxide film on the surface of the wafer to form a generated film, and then the wafer is heated to a predetermined temperature to vaporize and remove the generated film.
このような処理方法は、 微細なホールや狭隘な部分であっても、 処理が可能で しかも処理後の状態が良好である。  Such a processing method is capable of processing fine holes and narrow portions, and has a good condition after processing.
しかしながら、 この処理方法にあっては、 ホール底の酸化膜を除去後、 このホ —ルに導電材料を埋め込んだ場合、 ホール底とホールに埋め込まれた導電材料と の接触部の抵抗 (以下、 コンタクト抵抗という。 ) を減少させることができず、 従って歩留まりが悪いという問題点があった。  However, in this processing method, when the conductive material is buried in the hole after removing the oxide film at the bottom of the hole, the resistance of the contact portion between the hole bottom and the conductive material buried in the hole (hereinafter, referred to as “the resistance”) However, there was a problem that the contact resistance could not be reduced, and the yield was poor.
本発明は、 上記課題を解決するために成されたものであって、 コンタクト抵抗 を減少させることができ、 従って歩留まりを向上させることができる処理方法を 提供することを目的としている。 発明の開示  The present invention has been made in order to solve the above problems, and has as its object to provide a processing method capable of reducing contact resistance and thus improving yield. Disclosure of the invention
請求の範囲第 1項に記載の発明は、 被処理体をアンモニアと過酸化水素とを含 む洗浄液で洗浄した後、 N 2ガスと H 2ガスの混合ガスをブラズマにより活性化 して活性ガス種を形成し、 この活性ガス種のダウンフローに N F 3ガスを添加し て N F 3ガスを活性化し、 形成された N F 3ガスの活性ガス種を被処理体の表面 に晒してこれを酸化膜と反応させて生成膜を形成し、 被処理体を所定の温度に加 熱することにより生成膜を気化させ、 被処理体を洗浄することを特徴とする。 請求の範囲第 2項に記載の発明は、 N 2ガスの供給流量は、 3 0 0 S C C M以 上 5 0 0 S C C M以下であることを特徴とする。 In the invention described in claim 1, the object to be treated contains ammonia and hydrogen peroxide. After cleaning with a cleaning solution, the mixed gas of N 2 gas and H 2 gas is activated by plasma to form an active gas species, and NF 3 gas is added to the down flow of the active gas species to add NF 3 gas. Activated, exposing the active gas species of NF 3 gas to the surface of the object to be processed, reacting it with the oxide film to form a formed film, and heating the object to a predetermined temperature to generate it. It is characterized in that the film is vaporized and the object to be processed is washed. The invention described in claim 2 is characterized in that the supply flow rate of the N 2 gas is not less than 300 SCCM and not more than 500 SCCM.
請求の範囲第 3項に記載の発明は、 H 2ガスの供給流量は、 2 0 0 S C C M以 上 4 0 0 S C C M以下であることを特徴とする。  The invention described in claim 3 is characterized in that the supply flow rate of the H 2 gas is not less than 200 SCC M and not more than 400 SCC M.
請求の範囲第 4項に記載の発明は、 N F 3ガスの供給流量は、 2 0 S C C M以 上 8 0 S C C M以下であることを特徴とする。  The invention described in claim 4 is characterized in that the supply flow rate of the NF 3 gas is 20 SCCM or more and 80 SCCM or less.
請求の範囲第 5項に記載の発明は、 生成膜を生成する工程のプロセス圧力は、 3 9 9 P a以上 6 6 5 P a以下であることを特徴とする。  The invention described in claim 5 is characterized in that the process pressure in the step of forming the formed film is not less than 399 Pa and not more than 665 Pa.
請求の範囲第 6項に記載の発明は、 プラズマを発生させる電力は、 2 5 0 W以 上 3 5 0 W以下であることを特徴とする。  The invention described in claim 6 is characterized in that the power for generating plasma is not less than 250 W and not more than 350 W.
請求の範囲第 7項に記載の発明は、 形成された生成膜を加熱するときの加熱温 度は、 1 0 0 °C以上であることを特徴とする。 図面の簡単な説明  The invention described in claim 7 is characterized in that the heating temperature when heating the formed product film is 100 ° C. or higher. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の処理方法に用いられる処理装置の一例を示す構成図である。 図 2は、 本発明の効果を示す図である。  FIG. 1 is a configuration diagram showing an example of a processing apparatus used in the processing method of the present invention. FIG. 2 is a diagram illustrating the effect of the present invention.
図 3は、 本発明の効果を示す図である。  FIG. 3 is a diagram illustrating the effect of the present invention.
図 4は、 N 2流量とエッチングレート及び均一性との関係を示す図である。 図 5は、 H 2流量とエッチングレート及び均一性との関係を示す図である。 図 6は、 N F 3流量とエッチングレート及び均一性との関係を示す図である。 図 7は、 プロセス圧力とエッチングレート及び均一性との関係を示す図である c 図 8は、 マイクロ波出力とエッチングレート及び均一性との関係を示す図であ る。  FIG. 4 is a diagram showing the relationship between the N 2 flow rate, the etching rate, and the uniformity. FIG. 5 is a diagram showing the relationship between the H 2 flow rate, the etching rate, and the uniformity. FIG. 6 is a diagram showing the relationship between the flow rate of NF 3 and the etching rate and uniformity. FIG. 7 is a diagram showing the relationship between the process pressure and the etching rate and uniformity. C FIG. 8 is a diagram showing the relationship between the microwave output and the etching rate and uniformity.
図 9は、 プロセス後の加熱温度とエッチングレートとの関係を示す図である。 発明を実施するための最良の形態 FIG. 9 is a diagram showing the relationship between the heating temperature after the process and the etching rate. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明に係る処理方法の実施の形態を図面を参照して説明する。  Hereinafter, embodiments of a processing method according to the present invention will be described with reference to the drawings.
図 1は、 本発明に係る処理方法のうち自然酸化膜除去工程に使用される処理装 置の一例を示す構成図である。 この図において、 処理装置 1 2は、 N 2ガスと H 2ガスの混合ガスをプラズマにより活性化するプラズマ形成管 1 4と、 被処理 体である半導体ウェハ Wに対して、 酸化膜、 特に自然酸化膜 (大気中の酸素や洗 浄液等との接触により意図しないで形成された酸化膜) を除去するための所定の 表面処理を行なう処理容器 1 6とを有している。  FIG. 1 is a configuration diagram showing an example of a processing apparatus used in a natural oxide film removing step in the processing method according to the present invention. In this figure, a processing apparatus 12 is provided with an oxide film, particularly a natural gas, for a plasma forming tube 14 for activating a mixed gas of N 2 gas and H 2 gas by plasma and a semiconductor wafer W to be processed. A treatment container 16 for performing a predetermined surface treatment for removing an oxide film (an oxide film formed unintentionally by contact with oxygen in the atmosphere or a cleaning solution).
この処理容器 1 6の内部には、 処理されるウェハが載置される載置台 2 0が設 けられ、 またこの処理容器 1 6の底部の周縁部には、 排気口 2 2が設けられ、 処 理容器 1 6内を真空引きできるようになつている。 また、 載置台 2 0の下方の処 理容器 1 6の底部には照射口 2 6が形成されており、 この照射口 2 6には、 透過 窓 2 8が設けられている。 この透過窓 2 8の下方には、 上記載置台 2 0を下面側 から加熱するための多数の加熱ランプ 3 6が設けられており、 この加熱ランプ 3 6から放出される加熱用の光線が透過窓 2 8を透過してウェハ Wの裏面に入射す るようになっている。  A mounting table 20 on which a wafer to be processed is mounted is provided inside the processing container 16, and an exhaust port 22 is provided at a peripheral edge at the bottom of the processing container 16. The inside of the processing vessel 16 can be evacuated. An irradiation port 26 is formed at the bottom of the processing container 16 below the mounting table 20, and the irradiation port 26 is provided with a transmission window 28. Below the transmission window 28, a number of heating lamps 36 are provided for heating the mounting table 20 from the lower surface side, and the heating light emitted from the heating lamps 36 is transmitted therethrough. The light passes through the window 28 and enters the back surface of the wafer W.
一方、 プラズマ形成管 1 4は、 処理容器 1 6の天井部に開口するとともに、 こ の処理容器 1 6に起立させた状態で取り付けられている。 このプラズマ形成管 1 4の上端には、 この管内に N 2ガスと H 2ガスよりなるプラズマガスを導入する 導入ノズル 4 6が設けられており、 この導入ノズル 4 6にはガス通路 4 8が連結 されている。 このガス通路 4 8には、 それそれ流量制御器 5 0を介して N 2ガス 源 5 2及び H 2ガス源 5 4が接続されている。  On the other hand, the plasma forming tube 14 is open at the ceiling of the processing vessel 16 and is attached to the processing vessel 16 in an upright state. An introduction nozzle 46 for introducing a plasma gas composed of N 2 gas and H 2 gas is provided at the upper end of the plasma forming tube 14, and a gas passage 48 is provided in the introduction nozzle 46. Consolidated. An N 2 gas source 52 and an H 2 gas source 54 are connected to the gas passages 48 via flow controllers 50, respectively.
また、 上記導入ノズル 4 6の真下には、 プラズマ形成部 5 6が設けられている c このプラズマ形成部 5 6は、 2 . 4 5 G H zのマイクロ波を発生するマイクロ波 発生源 5 8と、 上記プラズマ形成管 1 4に設けたェベンソン型の導波管 6 0より なり、 上記マイクロ波発生源 5 8で発生したマイクロ波を矩形導波管 6 2を介し て上記ェベンソン型の導波管 6 0へ供給するようになっている。 そして、 この供 給されたマイクロ波によりプラズマ形成管 1 4内にプラズマを立て、 H 2ガスと N 2ガスの混合ガスを活性化し、 ダウンフ口一を形成し得るようになつている。 上記プラズマ形成管 1 4の下端部の流出口 6 4には、 下方へ傘状に広がった覆 ぃ部材 6 6が設けられており、 載置台 2 0の上方を覆ってガスを効率的にウェハ W上に流下させるようになつている。 そして、 この流出口 6 4の直下には、 N F 3ガスを供給するための N F 3ガス供給部 6 8が設けられる。 この N F 3ガ ス供給部 6 8は、 シャワーヘッ ド 7 0を有し、 このシャワーヘッド 7 0は、 連通 管 7 4、 ガス通路 7 6、 流量制御器 7 8を介して N F 3ガス源 8 0に接続されて いる。 In addition, the underneath of the introduction nozzle 4 6, c the plasma forming section 5 6 plasma generation unit 5 6 is provided, 2. 4 5 GH z microwave source 5 8 for generating microwaves with A microwave generated by the microwave generation source 58 through the rectangular waveguide 62. 60. Then, plasma is generated in the plasma forming tube 14 by the supplied microwave, and H 2 gas and The N2 gas mixture is activated to form a downhole. An outlet 64 at the lower end of the plasma forming tube 14 is provided with a cover member 66 extending downward in an umbrella shape. The cover member 66 covers an upper portion of the mounting table 20 so that gas can be efficiently removed from the wafer. It is made to flow down to W. An NF 3 gas supply unit 68 for supplying NF 3 gas is provided immediately below the outlet 64. The NF 3 gas supply section 68 has a shower head 70, and the shower head 70 is connected to a NF 3 gas source 8 through a communication pipe 74, a gas passage 76, and a flow controller 78. Connected to 0.
次に、 本発明に係る処理方法について説明する。  Next, a processing method according to the present invention will be described.
まず、 被処理体であるウェハを一般に S C— 1液又は A P M液と呼ばれるアン モニァと過酸化水素とを含む洗浄液で洗浄する。  First, a wafer to be processed is cleaned with a cleaning liquid generally called SC-1 solution or APM solution containing ammonia and hydrogen peroxide.
次に、 この S C— 1液で洗浄された半導体ウェハ Wを、 図 1に示す処理装置 1 2の載置台 2 0上に載置する。  Next, the semiconductor wafer W washed with the SC-1 solution is mounted on the mounting table 20 of the processing apparatus 12 shown in FIG.
ウェハ Wを載置台 2 0に載置したら、 処理容器 1 6内を密閉し、 内部を真空引 きする。 そして、 N 2ガス源 5 2及び H 2ガス源 5 4より N 2ガス及び H 2ガ スをそれそれ所定の流量で導入ノズル部 4 6よりプラズマ形成管 1 4内へ導入す る。 これと同時に、 マイクロ波形成部 5 6のマイクロ波発生源 5 8より 2 . 4 5 G H zのマイクロ波を発生し、 これをェベンソン型の導波管 6 0へ導いて、 これ よりプラズマ形成管 1 4内へ導入する。 これにより、 N 2ガスと H 2ガスはマイ クロ波によりプラズマ化されると共に活性化され、 活性ガス種が形成される。 こ の活性ガス種は処理容器 1 6内の真空引きによりダウンフローを形成してプラズ マ形成管 1 4内を流出口 6 4に向けて流下することになる。  After the wafer W is mounted on the mounting table 20, the inside of the processing container 16 is sealed, and the inside is evacuated. Then, N 2 gas and H 2 gas are introduced from the N 2 gas source 52 and the H 2 gas source 54 at a predetermined flow rate into the plasma forming tube 14 from the introduction nozzle 46. At the same time, a microwave of 2.45 GHz is generated from the microwave generating source 58 of the microwave forming section 56 and guided to the Evenson-type waveguide 60, thereby forming the plasma forming tube. 1 Introduce into 4. As a result, the N 2 gas and the H 2 gas are turned into plasma and activated by the microwaves, and active gas species are formed. The active gas species forms a downflow by evacuation in the processing container 16 and flows down the plasma forming tube 14 toward the outlet 64.
一方、 プラズマ形成管 1 4の外部に配置された N F 3ガス供給部 6 8のリング 状のシャワーへヅド 7 0からは、 N F 3ガス源 8 0より供給された N F 3ガスが N 2ガスと H 2ガスよりなる混合ガスのダウンフロ一の活性ガス種に添加される c この結果、 添加された N F 3ガスもダウンフローの活性ガス種により活性化され る。 このように N F 3ガスも活性ガス化され、 上記したダウンフローの活性ガス 種と相まってウェハ Wの表面の自然酸化膜と反応し、 S i、 N、 H、 Fの混合し た生成膜を形成する。 この処理は低温で反応が促進されるため、 室温の状態で生 成膜を形成する。 On the other hand, the NF 3 gas supplied from the NF 3 gas source 80 is supplied from the NF 3 gas source 80 to the N 2 gas from the ring-shaped shower head 70 of the NF 3 gas supply unit 68 disposed outside the plasma forming tube 14. As a result, the added NF 3 gas is also activated by the down-flow active gas species. In this way, the NF 3 gas is also converted into an active gas, and reacts with the natural oxide film on the surface of the wafer W in combination with the above-mentioned active gas species in the downflow to form a mixed film of Si, N, H, and F. I do. This process promotes the reaction at low temperatures, so it can be produced at room temperature. A film is formed.
この時のプロセス条件は、 ガスの供給流量に関しては、 H2、 NF3、 N2が、 それそれ 300 S CCM、 60 SCCM、 400 SCCMである。 ここで、 S C CM (standard cubic centimeters per minute) は、 立方センチメートル毎 分 (標 準状態下) を意味する。 プロセス圧力は 532 P a、 プラズマ電力は 350 W、 プロセス時間は 1分である。 このようにして、 ウェハ表面に自然酸化膜と反応し た生成膜を形成する。 この場合、 載置台 20の上方は、 傘状の覆い部材 66によ り覆われているのでダウンフローの活性ガス種の分散が抑制されて、 これが効率 的にウェハ面上に流下し、 効率的に生成膜を形成することができる。  The process conditions at this time are as follows: gas supply flow rates of H2, NF3, and N2 are 300 S CCM, 60 SCCM, and 400 SCCM, respectively. Here, SCCM (standard cubic centimeters per minute) means cubic centimeters per minute (under standard conditions). The process pressure is 532 Pa, the plasma power is 350 W, and the process time is 1 minute. In this way, a formed film reacting with the natural oxide film is formed on the wafer surface. In this case, since the upper part of the mounting table 20 is covered with the umbrella-shaped covering member 66, the dispersion of the active gas species in the downflow is suppressed, and the active gas species flows down onto the wafer surface efficiently. A formation film can be formed on the substrate.
このように生成膜の形成が完了したならば、 H2、 NF3、 N 2のそれそれの ガスの供給を停止すると共に、 マイクロ波発生源 58の駆動も停止し、 処理容器 16内を真空引きして残留ガスを排除する。 その後、 加熱ランプ 36を点灯させ てウェハ Wを所定の温度、 例えば 100°C以上に加熱する。 この加熱により、 上 記生成膜は昇華 (気化) する。 これにより、 ウェハ Wの自然酸化膜が除去されて ウェハ表面に S i面が現れることになる。  When the formation of the generated film is completed in this way, the supply of the gases H2, NF3, and N2 is stopped, the driving of the microwave generation source 58 is also stopped, and the processing chamber 16 is evacuated. To eliminate residual gas. Thereafter, the heating lamp 36 is turned on to heat the wafer W to a predetermined temperature, for example, 100 ° C. or higher. By this heating, the above-mentioned generated film is sublimated (vaporized). As a result, the natural oxide film on the wafer W is removed, and the Si surface appears on the wafer surface.
この時のプロセス条件は、 プロセス圧力が 133 P a、 プロセス時間は 1分程 度である。  The process conditions at this time are a process pressure of 133 Pa and a process time of about 1 minute.
図 2は、 このような処理方法を採用した場合と、 自然酸化膜除去工程のみで前 もって S C— 1液 (APM液) による処理を行わない場合とについて、 コンタク ト抵抗の値を比較したものである。 この図において、 グラフ 1 ( 「一〇—」 で示 すグラフ) は、 S C— 1液による処理後に自然酸化膜除去を行う場合を示し、 グ ラフ 2 ( 「ー厶一」 で示すグラフ) は、 自然酸化膜除去工程のみで前もって S C — 1液による処理を行わない場合を示す。 この図から明らかなように、 SC— 1 液による洗浄後に自然酸化膜除去を行った場合のコンタクト抵抗値は、 自然酸化 膜除去のみの場合に比べて抵抗値が大幅に減少する。  Fig. 2 shows the comparison of the contact resistance between the case where this treatment method is adopted and the case where the treatment with SC-1 solution (APM solution) is not performed in advance only in the natural oxide film removal step. It is. In this figure, graph 1 (graph indicated by “1〇—”) shows the case where the natural oxide film is removed after the treatment with SC-1 solution, and graph 2 (graph indicated by “1” —) Here, the case where only the natural oxide film removing step is not performed beforehand with the SC-1 solution is shown. As is clear from this figure, the contact resistance value when the native oxide film is removed after cleaning with SC-1 solution is significantly reduced compared to the case where only the native oxide film is removed.
また、 図 3は、 S C— 1液による処理後に自然酸化膜除去を行う場合と、 S C 一 1液による洗浄後 DHF液による洗浄を行った場合とについて、 コンタクト抵 抗の値を比較したものである。 この図において、 グラフ 1 ( 「一〇一」 で示すグ ラフ) は、 同様に S C— 1液による処理後に自然酸化膜除去を行う場合を示し、 グラフ 3 ( 「一 x—」 で示すグラフ) は、 S C— 1液による処理後に DHF液に よる洗浄を行った場合を示す。 この図からもわかるように、 SC— 1液による洗 浄後に自然酸化膜除去を行う場合は、 S C— 1液による洗浄後 D H F液による洗 浄を行った場合と比較しても、 抵抗値が減少する。 Figure 3 shows the comparison of the contact resistance between the case where the natural oxide film is removed after the treatment with SC-1 solution and the case where the cleaning with the DHF solution is performed after the cleaning with SC-11 solution. is there. In this figure, the graph 1 (the graph indicated by “1〇1”) similarly shows the case where the natural oxide film is removed after the treatment with the SC-1 solution. Graph 3 (graph indicated by “1x—”) shows the case where washing with DHF solution was performed after treatment with SC-1 solution. As can be seen from this figure, when the natural oxide film is removed after cleaning with SC-1 solution, the resistance value is lower than when cleaning with DHF solution is performed after cleaning with SC-1 solution. Decrease.
このように、 この処理方法にあっては、 自然酸化膜除去のみの場合に比してコ ン夕クト抵抗の値を大幅に減少させることができ、 歩留まりを向上させることが できる。  As described above, in this processing method, the value of the contact resistance can be significantly reduced as compared with the case where only the natural oxide film is removed, and the yield can be improved.
ところで、 上記のような処理方法において、 エッチングレート、 エッチングの 均一性は処理工程上極めて重要である。 そこで、 エッチングレート、 均一性の向 上を図るべく、 プロセスの最適条件を実験に基づき調査した。 この結果について 以下説明する。 ここで、 エッチングレートとは、 (上記の処理方法による膜厚の 減少量) / (活性ガス種と酸化膜とを反応させた時間) である。  By the way, in the above processing method, the etching rate and the uniformity of the etching are extremely important in the processing steps. Therefore, to improve the etching rate and uniformity, the optimum conditions of the process were investigated based on experiments. The result will be described below. Here, the etching rate is (amount of decrease in film thickness by the above-described processing method) / (time during which an active gas species reacts with an oxide film).
図 4ないし図 9は、 プロセス条件についての実験結果を示すグラフである。 な おこれらの図において、 丸印でプロヅ トしているグラフはエッチングレートを、 正方形でプロットしているグラフは均一性を示している。  FIGS. 4 to 9 are graphs showing experimental results for the process conditions. In these figures, the graphs plotted with circles indicate the etching rate, and the graphs plotted with squares indicate the uniformity.
図 4は、 H2の流量を 300 SCCM、 N F 3の流量を 60 S C C M、 マイク 口波出力を 350W、 プロセス圧力を 532 P a、 プロセス時間を 1 mi n、 プ 口セス後加熱 ( 140°C) 1 mi nとした場合において、 N2の流量に対するェ ッチングレート (オングストローム/ mi n) 及び均一性 (%) の値を示したも のである。 このグラフからわかるように、 N2流量は、 エッチングレートの点か ら 300 SCCM以上が適切であり、 均一性も考慮すると、 300〜500 SC CMが好ましい。  Figure 4 shows a flow of H2 of 300 SCCM, a flow of NF3 of 60 SCCM, a microphone output of 350 W, a process pressure of 532 Pa, a process time of 1 min, and post-process heating (140 ° C). The values of the etching rate (angstrom / min) and the uniformity (%) with respect to the flow rate of N2 are shown for 1 min. As can be seen from this graph, the N2 flow rate is appropriately 300 SCCM or more from the viewpoint of the etching rate, and considering uniformity, 300 to 500 SCCM is preferable.
図 5は、 NF 3の流量を 60 S C CM、 N 2の流量を 400 S C C M、 マイク 口波出力を 350 W、 プロセス圧力を 532 P a、 プロセス時間を 1 mi n、 プ 口セス後加熱 ( 140°C) lminとした場合において、 H2の流量に対するェ ヅチングレート (オングストローム/ mi n) 及び均一性 (%) の値を示したも のである。 このグラフからわかるように、 H2流量は、 エッチングレートの点か ら 200〜400 S C CM、 均一性の点から、 300〜400 S CCMが適切で ある。 図 6は、 H 2の流量を 300 S CCM、 N 2の流量を 400 S C CM、 マイク 口波出力を 350W、 プロセス圧力を 532 P a、 プロセス時間を 1 mi n、 プ 口セス後加熱 ( 140°C) lminとした場合において、 NF3の流量に対する エッチングレート (オングストローム/ mi n)及び均一性 (%) の値を示した ものである。 このグラフからわかるように、 エッチングレートは、 NF3流量を 変化させてもあまり影響されない。 従って、 均一性の点から、 NF3が 20〜 80 S CCMが実用的であり、 20〜60 SCCMがより好ましい。 Figure 5 shows a flow rate of NF 3 of 60 SCCM, a flow rate of N 2 of 400 SCCM, a microphone output of 350 W, a process pressure of 532 Pa, a process time of 1 min, and post-process heating (140 (° C) lmin, the values of etching rate (angstrom / min) and uniformity (%) with respect to the flow rate of H2 are shown. As can be seen from this graph, the appropriate H2 flow rate is 200-400 SCCM in terms of etching rate and 300-400 SCCM in terms of uniformity. Figure 6 shows a flow rate of H2 of 300 SCCM, a flow rate of N2 of 400 SCCM, a microphone output of 350 W, a process pressure of 532 Pa, a process time of 1 min, and post-process heating (140 (° C) lmin shows the values of the etching rate (angstrom / min) and the uniformity (%) with respect to the NF3 flow rate. As can be seen from this graph, the etching rate is not significantly affected by changing the NF3 flow rate. Therefore, from the viewpoint of uniformity, NF3 is practically 20 to 80 SCCM, and 20 to 60 SCCM is more preferable.
図 7は、 H2の流量を 300 SCCM、 N F 3の流量を 60 S C C M、 N2の 流量を 400 SCCM、 マイクロ波出力を 350W、 プロセス時間を 2min、 プロセス後加熱 (140°C) 1 mi nとした場合において、 プロセス圧力 (P a) に対するエッチングレート (オングストローム Zmi n) 及び均一性 (%) の値を示したものである。 このグラフからわかるように、 プロセス圧力 (Pa) は、 エッチングレート、 均一性の点から、 399〜665 P aが適切であり、 5 32 P aがより好ましい。  Figure 7 shows that the flow rate of H2 was 300 SCCM, the flow rate of NF 3 was 60 SCCM, the flow rate of N2 was 400 SCCM, the microwave output was 350 W, the process time was 2 min, and the post-process heating (140 ° C) was 1 min. In this case, the values of the etching rate (Angstrom Zmin) and the uniformity (%) are shown with respect to the process pressure (Pa). As can be seen from this graph, the process pressure (Pa) is suitably from 399 to 665 Pa, and more preferably 532 Pa, from the viewpoint of etching rate and uniformity.
図 8は、 H 2の流量を 300 S C CM、 N F 3の流量を 60 S C C M、 N2の 流量を 400 SCCM、 プロセス圧力を 532 P a、 プロセス時間を 1 mi n、 プロセス後加熱 ( 140°C) 1 mi nとした場合において、 マイクロ波出力 (W) に対するエッチングレート (オングストローム/ mi n) 及び均一性 (%) の値を示したものである。 このグラフからわかるように、 マイクロ波出力 (W) は、 ェヅチングレート、 均一性の点から、 250W以上が適切である。 ま た、 マイクロ波出力 350Wで処理を行ったときにウェハ数枚中 1枚にチャージ アップダメージが生じたことから 350W以下が好ましい。  Figure 8 shows a flow rate of H2 of 300 SCCM, a flow rate of NF3 of 60 SCCM, a flow rate of N2 of 400 SCCM, a process pressure of 532 Pa, a process time of 1 min, and post-process heating (140 ° C). The values of the etching rate (angstrom / min) and the uniformity (%) with respect to the microwave output (W) are shown when 1 min is used. As can be seen from this graph, a microwave output (W) of 250 W or more is appropriate from the viewpoint of the etching rate and uniformity. In addition, when the processing is performed with a microwave output of 350 W, charge-up damage occurs in one of several wafers, so that it is preferably 350 W or less.
図 9は、 133 P aで 1 mi nのプロセス後の加熱において、 加熱温度 (°C) に対するエッチングレート (オングストローム/ mi n) の値を示したものであ る。 このグラフにおいて、 80°Cの場合は生成膜の気化が充分になされていない ことを示している。 従って、 加熱温度は、 エッチングレートの点から 100°C以 上が適切である。  FIG. 9 shows the value of the etching rate (angstrom / min) with respect to the heating temperature (° C) in the heating after the process of 1 min at 133 Pa. In this graph, at 80 ° C., it is shown that the formed film is not sufficiently vaporized. Therefore, the heating temperature should be 100 ° C or higher from the viewpoint of the etching rate.
なお、 これらの図において、 「max— min (%)」 とは、 ウェハ上の複数 の点におけるエッチングレートの最大値を max、 最小値を mi nとしたときの (m a x— m i n ) / (m a x +m i n) x 1 0 0 ( % ) で表した均一性を示す。 このように、 この処理方法にあっては、 H 2流量, N F 3流量、 N 2流量、 マ イク口波出力、 プロセス圧力、 プロセス時間を所定の値に設定することにより、 エッチングレート及びェッチングの均一性を向上させることができる。 従って、 処理の効率及び均一性を向上させることができる。 In these figures, “max-min (%)” means that the maximum value of the etching rate at a plurality of points on the wafer is max and the minimum value is min. Shows the uniformity expressed as (max—min) / (max + min) × 100 (%). Thus, in this processing method, the H2 flow rate, NF3 flow rate, N2 flow rate, microphone mouth wave output, process pressure, and process time are set to predetermined values, and the etching rate and etching rate can be adjusted. Uniformity can be improved. Therefore, processing efficiency and uniformity can be improved.
以上説明したように、 請求の範囲第 1項に記載の発明によれば、 被処理体をァ ンモニァと過酸化水素とを含む洗浄液で洗浄した後、 自然酸化膜除去工程、 すな わち、 N 2ガスと H 2ガスの混合ガスをブラズマにより活性化して活性ガス種を 形成し、 この活性ガス種に N F 3ガスを添加して N F 3ガスを活性化し、 形成さ れた N F 3ガスの活性ガス種を被処理体の表面に晒してこれを自然酸化膜と反応 させて生成膜を形成し、 前記被処理体を所定の温度に加熱することにより前記生 成膜を気化させるようにしているから、 自然酸化膜除去工程のみの場合に比して コンタクト抵抗を大幅に減少させることができ、 歩留まりを向上させることがで ぎる。  As described above, according to the invention set forth in claim 1, after the object to be processed is washed with a cleaning solution containing ammonia and hydrogen peroxide, a natural oxide film removing step, that is, The mixed gas of N 2 gas and H 2 gas is activated by plasma to form an active gas species, and NF 3 gas is added to this active gas species to activate the NF 3 gas. The active gas species is exposed to the surface of the object to be processed, and is reacted with a natural oxide film to form a generated film. By heating the object to be processed to a predetermined temperature, the raw film is vaporized. Therefore, the contact resistance can be greatly reduced as compared with the case where only the natural oxide film removing step is performed, and the yield can be improved.
請求の範囲第 2項に記載の発明によれば、 処理の効率及び均一性を向上させる ことができる。  According to the invention described in claim 2, the processing efficiency and uniformity can be improved.
請求の範囲第 3項に記載の発明によれば、 処理の効率を向上させることができ る。  According to the invention set forth in claim 3, processing efficiency can be improved.
請求の範囲第 4項に記載の発明によれば、 処理の均一性を向上させることがで ぎる。  According to the invention set forth in claim 4, the uniformity of the treatment can be improved.
請求の範囲第 5項に記載の発明によれば、 処理の効率及び均一性を向上させる ことができる。  According to the invention set forth in claim 5, processing efficiency and uniformity can be improved.
請求の範囲第 6項に記載の発明によれば、 処理の効率及び均一性を向上させる ことができる。  According to the invention set forth in claim 6, processing efficiency and uniformity can be improved.
請求の範囲第 7項に記載の発明によれば、 処理の効率を向上させることができ る。  According to the invention set forth in claim 7, the processing efficiency can be improved.

Claims

請求の範囲 The scope of the claims
1. 被処理体をアンモニアと過酸化水素とを含む洗浄液で洗浄した後、 N2 ガスと H 2ガスの混合ガスをブラズマにより活性化して活性ガス種を形成し、 こ の活性ガス種に NF 3ガスを添加して NF 3ガスを活性化し、 形成された NF 3 ガスの活性ガス種を被処理体の表面に晒してこれを酸化膜と反応させて生成膜を 形成し、 前記被処理体を所定の温度に加熱することにより前記生成膜を気化させ、 被処理体を洗浄することを特徴とする処理方法。 1. After cleaning the object with a cleaning solution containing ammonia and hydrogen peroxide, a mixed gas of N2 gas and H2 gas is activated by plasma to form an active gas species, and NF3 The gas is added to activate the NF 3 gas, the active gas species of the formed NF 3 gas is exposed to the surface of the object to be processed, and this is reacted with an oxide film to form a generated film. A processing method, wherein the generated film is vaporized by heating to a predetermined temperature, and the object to be processed is washed.
2. 前記 N 2ガスの供給流量は、 300 S C CM以上 500 S C CM以下で あることを特徴とする請求の範囲第 1項に記載の処理方法。 2. The processing method according to claim 1, wherein the supply flow rate of the N 2 gas is not less than 300 SCM and not more than 500 SCM.
3. 前記 H 2ガスの供給流量は、 200 S CCM以上 400 S CCM以下で あることを特徴とする請求の範囲第 1項に記載の処理方法。 3. The processing method according to claim 1, wherein a supply flow rate of the H 2 gas is 200 S CCM or more and 400 S CCM or less.
4. 前記 NF 3ガスの供給流量は、 20 S CCM以上 80 S CCM以下であ ることを特徴とする請求の範囲第 1項に記載の処理方法 4. The processing method according to claim 1, wherein a supply flow rate of the NF 3 gas is 20 S CCM or more and 80 S CCM or less.
5. 前記生成膜を生成する工程のプロセス圧力は、 399 ? &以上665? a以下であることを特徴とする請求の範囲第 1項に記載の処理方法。 5. The process pressure of the process of forming the formed film is 399? & More than 665? The processing method according to claim 1, wherein a is equal to or less than a.
6. 前記プラズマを発生させる電力は、 250W以上 350W以下であるこ とを特徴とする請求の範囲第 1項に記載の処理方法。 6. The processing method according to claim 1, wherein the power for generating the plasma is 250 W or more and 350 W or less.
7. 前記形成された生成膜を加熱するときの加熱温度は、 100°C以上であ ることを特徴とする請求の範囲第 1項に記載の処理方法。 7. The processing method according to claim 1, wherein a heating temperature when heating the formed product film is 100 ° C. or higher.
PCT/JP2000/007082 1999-10-12 2000-10-12 Processing method WO2001027988A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/289693 1999-10-12
JP28969399A JP2001110785A (en) 1999-10-12 1999-10-12 Treatment method

Publications (1)

Publication Number Publication Date
WO2001027988A1 true WO2001027988A1 (en) 2001-04-19

Family

ID=17746535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/007082 WO2001027988A1 (en) 1999-10-12 2000-10-12 Processing method

Country Status (3)

Country Link
JP (1) JP2001110785A (en)
TW (1) TW563166B (en)
WO (1) WO2001027988A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8398813B2 (en) 1999-08-13 2013-03-19 Tokyo Electron Limited Processing apparatus and processing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100573929B1 (en) * 2001-12-14 2006-04-26 (주)에이피엘 Apparatus and method for surface cleaning using plasma
JP5233734B2 (en) * 2008-02-20 2013-07-10 東京エレクトロン株式会社 Gas supply apparatus, film forming apparatus, and film forming method
KR101494995B1 (en) * 2011-02-08 2015-02-23 가부시키가이샤 알박 Radical etching device and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0784337A2 (en) * 1996-01-10 1997-07-16 Nec Corporation Method of removing a carbon-contaminated layer from a silicon substrate surface for subsequent selective silicon epitaxial growth thereon and apparatus for selective silicon epitaxial growth
JPH1098026A (en) * 1996-09-24 1998-04-14 Tokyo Electron Ltd Ashing method
EP0887845A2 (en) * 1997-06-04 1998-12-30 Tokyo Electron Limited Processing method and apparatus for removing oxide film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0784337A2 (en) * 1996-01-10 1997-07-16 Nec Corporation Method of removing a carbon-contaminated layer from a silicon substrate surface for subsequent selective silicon epitaxial growth thereon and apparatus for selective silicon epitaxial growth
JPH1098026A (en) * 1996-09-24 1998-04-14 Tokyo Electron Ltd Ashing method
EP0887845A2 (en) * 1997-06-04 1998-12-30 Tokyo Electron Limited Processing method and apparatus for removing oxide film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8398813B2 (en) 1999-08-13 2013-03-19 Tokyo Electron Limited Processing apparatus and processing method

Also Published As

Publication number Publication date
JP2001110785A (en) 2001-04-20
TW563166B (en) 2003-11-21

Similar Documents

Publication Publication Date Title
TWI493622B (en) Method for improving process control and film conformality of pecvd films
US8187389B2 (en) Method of removing resist and apparatus therefor
JP3954833B2 (en) Batch type vacuum processing equipment
JPH0752718B2 (en) Thin film formation method
WO2004095559A1 (en) Method for removing silicon oxide film and processing apparatus
JPH06338478A (en) Manufacture of semiconductor device manufacturing apparatus and semiconductor device
KR100566472B1 (en) Surface processing method and apparatus, and processing method
JPH06151394A (en) Dry cleaning method for semiconductor substrate surface or thin film surface
JP3709432B2 (en) Exhaust gas treatment device and substrate treatment device
KR20060090305A (en) Method of plasma treatment
JP2005045220A (en) Heat treatment method and heat treatment equipment
KR20020070820A (en) Apparatus and method for semiconductor wafer etching
JPH10326771A (en) Apparatus and method for hydrogen-plasma downstream treatment
JPS62214175A (en) Cleaning method for reduced pressure treatment
WO2001027988A1 (en) Processing method
KR101321155B1 (en) Starting material for use in forming silicone oxide film and method for forming silicone oxide film using same
JP2663583B2 (en) Method for manufacturing heteroepitaxial film on silicon substrate
JP3125280B2 (en) Cleaning method for CVD equipment
JP4196517B2 (en) Semiconductor device manufacturing method
TWI850649B (en) Semiconductor processing method
JP4010307B2 (en) Surface treatment method and apparatus
JPH0474433B2 (en)
JPH04187771A (en) Cleaning method
JPH07335643A (en) Film forming method
JP2532353B2 (en) Vapor phase etching method and apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10110324

Country of ref document: US

122 Ep: pct application non-entry in european phase