WO2001025776A1 - Glucometre - Google Patents

Glucometre Download PDF

Info

Publication number
WO2001025776A1
WO2001025776A1 PCT/JP2000/006853 JP0006853W WO0125776A1 WO 2001025776 A1 WO2001025776 A1 WO 2001025776A1 JP 0006853 W JP0006853 W JP 0006853W WO 0125776 A1 WO0125776 A1 WO 0125776A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
acid
glucose sensor
reaction layer
glucose
Prior art date
Application number
PCT/JP2000/006853
Other languages
English (en)
French (fr)
Inventor
Motokazu Watanabe
Keiko Yugawa
Toshihiko Yoshioka
Shiro Nankai
Junko Nakayama
Shoji Miyazaki
Hideyuki Baba
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to AT00963053T priority Critical patent/ATE313790T1/de
Priority to DE60024965T priority patent/DE60024965T2/de
Priority to JP2001528689A priority patent/JP3867959B2/ja
Priority to CA002347594A priority patent/CA2347594C/en
Priority to US09/807,692 priority patent/US7005048B1/en
Priority to EP00963053A priority patent/EP1146332B8/en
Publication of WO2001025776A1 publication Critical patent/WO2001025776A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/005Enzyme electrodes involving specific analytes or enzymes
    • C12Q1/006Enzyme electrodes involving specific analytes or enzymes for glucose

Definitions

  • the present invention relates to a glucose sensor capable of quickly and easily quantifying a specific component in a sample with high accuracy. More specifically, the present invention relates to a glucose sensor using glucose dehydrogenase using pyrroloquinoline quinone as a coenzyme.
  • biosensors have been proposed as a method for simply quantifying a specific component in a sample solution without diluting or stirring the sample solution.
  • biosensor include the following. Sensor is known
  • This biosensor forms an electrode system consisting of a working electrode, a counter electrode, and a reference electrode on an insulating substrate by screen printing or the like, and contacts the hydrophilic polymer, oxidoreductase, and electron acceptor on this electrode system. It is produced by forming an enzyme reaction layer containing
  • the enzyme reaction layer dissolves and the enzyme reacts with the substrate, thereby reducing the electron acceptor. Thereafter, the reduced electron acceptor is electrochemically oxidized, and the concentration of the substrate in the sample solution can be determined from the oxidation current value obtained at this time.
  • various substances can be measured in principle by selecting an enzyme based on the substance to be measured: For example, if glucose oxidase is selected as the enzyme, a glucose sensor for measuring the glucose concentration in the sample solution can be manufactured.
  • the enzyme is usually held in a dry state in the sensor. Enzymes contain protein as a main component, and may be denatured if they are indirectly connected to moisture such as air for a long time. In extreme cases, there is a risk that the enzyme will be deactivated.
  • the resulting response current may not be proportional to the concentration of the substrate.
  • glucose dehydrogenase (hereinafter referred to as “enzyme”) was used as an enzyme.
  • P Q Q—G D H It is called “P Q Q—G D H”. ) Is used. Glucose sensors using PQQ-GDH have the property that the enzymatic reaction is completely unaffected by dissolved oxygen, such as in blood, because oxygen does not participate in the catalytic reaction of PQQ-GDH itself. Therefore, the measured value obtained by the glucose sensor does not vary due to the oxygen partial pressure in the sample solution. That is, a high-performance sensor can be obtained.
  • an object of the present invention is to provide a high-performance glucose sensor having excellent storage stability and improved initial responsiveness. Disclosure of the invention
  • a glucose sensor comprises an electrically insulating substrate, an electrode system provided on the substrate and having at least a working electrode and a counter electrode, and formed in contact with or in the vicinity of the electrode system.
  • the reaction layer is at least one selected from the group consisting of dalconic acid and a salt of dalconic acid. It is characterized by containing additives.
  • the reaction layer may further comprise at least one additive selected from the group consisting of fumaric acid, a salt of fumaric acid, maleic acid, a salt of maleic acid, succinic acid, and a salt of succinic acid. It is preferable to include
  • reaction layer further contains calcium ions.
  • the salt of dalconic acid is preferably potassium dalconate, sodium dalconate, calcium dalconate, cobalt dalconate, or copper dalconate.
  • reaction layer further includes an electronic medium.
  • FIG. 1 is a perspective view of a glucose sensor according to an embodiment of the present invention, from which a reaction layer is removed.
  • FIG. 2 is a longitudinal sectional view of a main part of the glucose sensor shown in FIG.
  • FIG. 3 is a response characteristic diagram of the glucose sensor of Comparative Example 1.
  • FIG. 4 is a response characteristic diagram of the glucose sensor according to the first embodiment of the present invention.
  • FIG. 5 is a response characteristic diagram of the glucose sensor of Example 1 and the glucose sensor of Comparative Example 1 before storage.
  • FIG. 6 is a response characteristic diagram of the glucose sensor according to the second embodiment of the present invention.
  • FIG. 7 is a response characteristic diagram of the glucose sensor of Example 2 and the glucose sensor of Comparative Example 1 before storage.
  • FIG. 8 is a response characteristic diagram of the glucose sensor according to the third embodiment of the present invention.
  • FIG. 9 is a response characteristic diagram of the glucose sensor of Example 3 and the glucose sensor of Comparative Example 1 before storage.
  • FIG. 10 is a response characteristic diagram of the Darco sensor of Example 4 of the present invention.
  • FIG. 11 is a response characteristic diagram of the glucose sensor of Example 4 and the glucose sensor of Comparative Example 1 before storage.
  • FIG. 12 is a response characteristic diagram of the glucose sensor according to the fifth embodiment of the present invention.
  • the glucose sensor of the present invention is obtained by adding dalconic acid and Z or a salt thereof to a reaction layer containing PQQ-GDH as an enzyme.
  • the present inventors have found that the addition of dalconic acid and Z or a salt thereof to the reaction layer containing PQQ-GDH can significantly improve the storage stability of the sensor. It appears that dalconic acid and / or its salts protect PQQ-GDH from environmental changes such as temperature, humidity and charge conditions, thereby improving storage stability.
  • a mixed solution of dalconic acid and Z or a salt thereof and PQQ-GDH is applied to the reaction layer. It is preferable to form a reaction layer by a method of dropping and drying on the formation site.If a reaction layer is formed by this method, the enzyme is surrounded by dalconic acid at the molecular level, and the temperature, humidity, charge state, etc. PQQ-GDH can be effectively protected from environmental changes. As a result, the activity of the enzyme can be stabilized for a long time.
  • the present inventors have found that when dalconic acid and Z or a salt thereof are added to the reaction layer containing PQQ-GDH, the response of the sensor before storage, that is, the initial characteristics, is improved. Since dalconic acid or its salt is easily soluble in water, if it is included in the reaction layer, when the sample solution is added to the reaction layer, the reaction layer immediately dissolves in the sample solution and the enzyme reaction and electrode reaction proceed smoothly. It can be convenient.
  • Additives that can be expected to have these effects include, in addition to dalconic acid, potassium dalconate, sodium dalconate, calcium dalconate, cobalt dalconate, copper dalconate, and the like.
  • potassium dalconate when potassium dalconate is used, a glucose sensor having excellent storage stability and response characteristics and an extremely small blank value can be obtained.
  • the blank value is a sensor response value when a sample solution containing no glucose as a substrate, for example, water is used.
  • Furanic acid, maleic acid, succinic acid, and their salts alone are inferior to dalconic acid and its salts, but have the effect of protecting PQQ-GDH. or when added together with a salt thereof, as a synergistic effect, further c it is possible to further improve the storage stability of the sensor, Fuyurusan, maleic acid, succinic acid, and salts thereof are easily dissolve in water Therefore, if it is included in the reaction layer, when the sample solution is added to the reaction layer, the reaction layer immediately dissolves in the sample solution, and the enzyme reaction and electrode reaction can proceed smoothly, improving the initial characteristics. .
  • Furic acid, maleic acid, succinic acid, and their salts are all compounds that can be used as buffering agents, and acids such as hydrochloric acid and acetic acid and Na ⁇ H and KOH
  • the pH may be adjusted to a predetermined value by a manual pressure and added to the reaction layer forming reagent.
  • the preferred pH is between 5.0 and 8.5. Of course, a mixture of these additives in another buffer may be used.
  • Dalconic acid, fumaric acid, maleic acid, succinic acid, and their salts are compounds that are easily absorbed by moisture.
  • Glucose sensor should be added during fabrication.
  • the glucose sensor containing these additives is preferably stored in a sealed state. When storing the glucose sensor, it is better to store it in a sealed container containing a desiccant such as silica gel.
  • a desiccant such as silica gel.
  • the amount of dalconic acid or its salt added to the enzyme is 0.2 to 20 UZ.
  • the sensor may be in the range of the 150 gZ sensor, and is preferably a 15 to 50 gZ sensor from the viewpoint of storage stability and reduction of the blank value.
  • the addition amount of fumaric acid, maleic acid, succinic acid, and salts thereof is preferably from 0.025 to 25 g, more preferably from 0. :! ⁇ 3 gZ sensor is preferred.
  • U represents a unit.
  • Other preferred additives include calcium chloride, which provides calcium ions.
  • calcium ions are required for PQQ-GDH to form a dimer. Therefore, when calcium ions are introduced into the reaction layer forming reagent using calcium chloride or the like, PQQ-GDH is prevented from dissociating into a dimer during or after the production of the sensor, which helps to maintain its activity.
  • the amount of calcium chloride added is 5 ⁇ 70 ng (nanogram) Z sensor is preferred.
  • the reaction layer of the biosensor of the present invention contains an electron medium that is reduced by the enzymatic reaction.
  • this electron mediator potassium ferricyanide, p-benzoquinone and its derivatives, phenazine methosulfate, methylene blue, fuecene and its derivatives can be used.
  • the reaction layer of the biosensor of the present invention may contain a hydrophilic polymer.
  • a hydrophilic polymer By adding a hydrophilic polymer to the reaction layer, the separation of the reaction layer from the electrode system surface or the substrate surface can be prevented. Furthermore, the hydrophilic polymer also has the effect of preventing cracks on the surface of the reaction layer, which is effective in increasing the reliability of the biosensor.
  • hydrophilic polymer examples include carboxymethylcellulose, hydroxycetylcellulose, hydroxypropylcellulose, methylcellulose, ethylcellulose, ethylhydroxylcetylcellulose, dexamethasylcellulose, polyvinylpyrrolidone, and polyvinyl.
  • Polyamino acids such as alcohol and polylysine, polystyrenesulfonic acid, gelatin and its derivatives, polymers of acrylic acid and its salts, polymers of methacrylic acid and its salts, starch and its derivatives, maleic anhydride and its salts Polymers, agarose gels and derivatives thereof are preferably used.
  • the reaction layer in the biosensor can be arranged at various positions in addition to the electrode system formed on the electrically insulating substrate, as long as the effects of the present invention are not impaired. For example, it can be arranged in a place other than on the electrode system of the substrate.
  • the biosensor preferably includes a cover member.
  • the cover member is combined with the substrate to form a sample liquid supply path between the substrate and the substrate for supplying a sample liquid to the electrode system. Sample liquid for this cover member
  • the reaction layer may be disposed on a surface exposed to the supply path.
  • stabilizers may be added to the reaction layer of the biosensor of the present invention, in addition to the additives, as long as the effects of the present invention are not impaired.
  • stabilizers include, for example, metal salts, proteins, amino acids, sugars, organic acids, surfactants and the like.
  • the metal salt examples include halides such as strontium and manganese, and sulfates and nitrates thereof.
  • the protein is preferably one that does not affect enzyme activity, and examples thereof include serum albumin (BSA), egg albumin, and gelatin.
  • amino acid for example, general amino acids such as lysine, histidine, and glutamic acid, as well as glycylglycine and polylysine can be used. Among them, those having high water solubility are preferable.
  • any kind of monosaccharide, disaccharide, oligosaccharide and polysaccharide can be used.
  • these derivatives can also be used.
  • Organic acids include, for example, ⁇ -ketoglutaric acid, lingic acid, fumaric acid, Cholic acid and deoxycholic acid.
  • a nonionic one is preferable.
  • boric acid borax, potassium chloride, sodium chloride, ammonium sulfate, glycerol, polyester, EDTA, EGTA, DTT, DTE, GSH, 2-mercaptoethanol, and the like may be added.
  • the amount of these stabilizers to be added is preferably from 0.01 to 100 parts by weight based on 100 parts by weight of PQQ-GDH.
  • PQQ may be added to the reaction layer in order to prevent the coenzyme pyroquinoline quinone (PQQ) from deviating from PQQ-GDH.
  • the addition amount of PQQ is desirably 0.04 to 20 ng / sensor.
  • the enzyme PQQ-GDH used in the present invention may be of any origin.
  • the glucose sensor using the PQQ-GDH of the present invention containing the above-mentioned additives and, if necessary, the above-mentioned stabilizing agent can maintain its performance at low cost without adversely affecting the basic performance of the enzyme. can do.
  • the present invention will be described with reference to Examples, but the present invention is not limited thereto.
  • FIG. 1 is an exploded perspective view of a biosensor according to one embodiment of the present invention, from which a reaction layer has been removed.
  • Silver paste is printed by screen printing on an electrically insulating substrate 1 made of polyethylene terephthalate to form leads 2 and 3.
  • a working electrode 4 is formed by printing a conductive carbon base containing a resin binder on the substrate 1. This working electrode 4 is in contact with the lead 2.
  • an insulating paste is printed on the substrate 1 to form an insulating layer 6.
  • the insulating layer 6 covers the outer periphery of the working electrode 4, thereby keeping the area of the exposed portion of the working electrode 4 constant.
  • a conductive carbon paste containing a resin binder is connected to the lead 3.
  • a ring-shaped counter electrode 5 is formed by printing on the substrate 1 so as to touch it. After a reaction layer is formed on the insulating substrate 1 as described below, a spacer 8 having a slit 10 and a cover 9 having an air hole 11 are shown by a dashed line in FIG. By bonding with such a positional relationship, a biosensor is produced.
  • a sample liquid supply path is formed in the slit 10 of the spacer 8. The open end of the slit 10 at the end of the sensor serves as a sample supply port to the sample liquid supply path.
  • FIG. 2 is a longitudinal sectional view of the biosensor according to the present invention.
  • a reaction layer 7 containing an enzyme and an electron mediator is formed on a substrate 1 on which an electrode system is formed.
  • the reaction layer 7 is preferably formed on the electrode system, but may be formed on the cover side so as to be exposed in the vicinity of the electrode system, for example, in the sample liquid supply path.
  • the reaction layer 7 is composed of a hydrophilic polymer layer 7a and a layer 7b formed thereon and containing PQQ-GDH and an additive. Comparative Example 1
  • CMC carboxymethylcellulose
  • glucose concentration was 30 to 62 mg Zdl. Then, this sample solution was dropped on the reaction layer 7.
  • glucose in the sample is oxidized by PQQ-GDH.
  • potassium ferricyanide in the reaction layer is reduced to potassium ferrocyanide.
  • a voltage of +0.5 V was applied to the working electrode 4 based on the counter electrode 5 to oxidize potassium ferrosyanide. After 5 seconds, the value of the current flowing between the counter electrode and the working electrode was measured.
  • the current values were measured for blood prepared at various glucose concentrations, and the response characteristics of the sensor were created by plotting the glucose concentration on the horizontal axis and the current value on the vertical axis. The result is shown by the solid line in FIG.
  • the biosensor produced in the same manner was placed in a sealed container containing a silylation gel as a hygroscopic agent, stored at 40 ° C for one week, and a response characteristic diagram of the biosensor was created. The result is shown by the dotted line in FIG.
  • Fig. 4 shows the results. From Fig. 4, it can be seen that there is a certain correlation between the glucose concentration and the response current value.
  • the sensor of this embodiment is Compared with Comparative Example 1, it can be seen that among the responses after storage at 40 ° C. for one week, the decrease in the response current value particularly in the region of 400 mg / d1 or more is reduced. This indicates that the addition of potassium dalconate significantly improves the storage characteristics of the glucose sensor.
  • FIG. 5 shows a comparison of response characteristics before storage of the sensor of Comparative Example 1 not containing potassium dalconate and the sensor of this example containing potassium dalconate.
  • the glucose sensor containing potassium dalconate has a higher response value around 600 mg / dl than the glucose sensor not containing potassium dalconate.
  • the response of the glucose sensor in a high concentration range can be improved.
  • FIG. 7 shows a comparison of response characteristics before storage of the sensor of Comparative Example 1 not containing potassium dalconate and the sensor of this example containing potassium dalconate and potassium hydrogen phthalate.
  • potassium dalconate and The glucose sensor containing potassium hydrogen fluoride has a higher response value near 600 mg Zd1 than the sensor of Comparative Example 1. This indicates that the response of the glucose sensor in a high concentration range can be improved by adding potassium dalconate and potassium hydrogen fluoride.
  • FIG. 9 shows a comparison of response characteristics before storage of the sensor of Comparative Example 1 containing no potassium dalconate and the sensor of this example containing potassium dalconate and maleic acid.
  • the glucose sensor containing potassium dalconate and maleic acid has a high response value near 600 mg / d1. This indicates that the addition of potassium dalconate and maleic acid can improve the responsiveness of the glucose sensor in the high concentration range.
  • FIG. 11 shows a comparison of the response characteristics before storage of the sensor of Comparative Example 1 and the sensor of this example containing potassium dalconate and succinic acid.
  • the glucose sensor containing potassium dalconate and succinic acid has a high response value near 600 mgZd1. This indicates that the response of the glucose sensor in a high concentration range can be improved by adding dalconic acid calcium and succinic acid.
  • Example 5
  • a high-performance glucose sensor having excellent storage stability and improved responsiveness can be obtained.

Description

明 細 書 グルコースセンサ 技術分野
本発明は、 試料中の特定成分を迅速かつ簡便に高精度で定量すること ができるグルコースセンサに関する。 さらに具体的には、 本発明は、 ピ ロロキノ リ ンキノンを補酵素としたグルコースデヒ ドロゲナ一ゼを用い たグルコースセンサに関する。 背景技術
従来から、 試料液の希釈や攪拌などを行うことなく試料液中の特定成 分を簡易に定量する方式として、 様々なバイオセンサが提案されている, バイオセンサの一例として、 例えば次のようなセンサが知られている
(特開平 2 — 0 6 2 9 5 2号公報) 。
このバイォセンサは、 絶縁性基板上にスクリーン印刷などの方法で作 用極、 対極および参照極からなる電極系を形成し、 この電極系上に接し て親水性高分子と酸化還元酵素と電子受容体とを含む酵素反応層を形成 することによって作製される。
このバイオセンサの酵素反応層上に基質を含む試料液を滴下すると、 酵素反応層が溶解して酵素と基質が反応し、 これにともなって電子受容 体が還元される。 その後、 還元された電子受容体を電気化学的に酸化し、 このとき得られる酸化電流値から試料液中の基質濃度を求めることがで さる。
上記のようなバイオセンサによれば、 原理的には、 測定対象物質を基 質とする酵素を選択することによって、 様々な物質の測定が可能である: 例えば、 酵素にグルコースォキシダーゼを選択すると、 試料液中のグ ルコース濃度を測定するグルコースセンサを作製することができる。 上記のような構成のバイオセンサでは、 通常、 酵素は、 乾燥状態でセン サ内に保持されている。 酵素は、 蛋白質を主成分とするため、 空気中な どの水分に長期間接すると、 変性してしまう危険性がある。 また、 極端 な場合、 酵素が失活してしまう危険性がある。
そのため、 センサを長期間保存すると、 酵素の活性が低下して、 基質 と反応する酵素量が不足してしまい、 得られる応答電流値が基質の濃度 に比例しなくなる場合がある。
したがって、 保存安定性に優れたバイオセンサを得るためには、 酵素 の近傍に、 酵素の活性が長期間保持されるような環境を整えることが重 要である。 さらに、 酵素反応時に電子や基質の移動が円滑に行われるよ うにし、 センサの応答性を高めることも必要である。
一方、 高性能なグルコースセンサを作製するため、 酵素として、 ピロ 口キノ リ ンキノンを補酵素としたグルコースデヒ ドロゲナ一ゼ (以下、
「P Q Q— G D H」 という。 ) が用いられている。 P Q Q— G D Hを用 いるグルコースセンサは、 P Q Q— G D Hそのものの触媒反応に酸素が 関与しないため、 酵素反応が血中などの溶存酸素の影響を全く受けない という特性を有する。 そのため、 このグルコースセンサによって得られ る測定値は、 試料液中の酸素分圧によってばらつく ことがない。 すなわ ち、 高性能なセンサを得ることができる。
しかし、 グルコースセンサの酵素として P Q Q— G D Hを用いた場合、 保存することによつて応答値が低下するという問題点があることが明ら かになつた。 このことは、 グルコースセンサの保存期間が長くなると、 応答値が低下するということを意味する。 センサ製造後、 常に一定時間 後にセンサを使用することは不可能である。 従って、 保存することによ つて応答値が低下するセンサでは、 グルコース濃度を正確に定量するこ とができない。
本発明は、 このような問題点に鑑み、 保存安定性に優れ、 かつ初期に おける応答性が向上した高性能なグルコースセンサを提供することを目 的とする。 発明の開示
本発明によるグルコースセンサは、 電気絶縁性基板、 前記基板上に設 けられた少なく とも作用極と対極を有する電極系、 および前記電極系に 接してまたはその近傍に形成され、 少なく とも、 ピロ口キノ リ ンキノン を補酵素としたグルコースデヒ ドロゲナ一ゼを含む反応層を具備するグ ルコースセンサにおいて、 前記反応層が、 ダルコン酸、 およびダルコン 酸の塩からなる群より選択される少なく とも 1種の添加剤を含むことを 特徴とする。
前記反応層は、 さらに、 フ夕ル酸、 フ夕ル酸の塩、 マレイン酸、 マレ イン酸の塩、 コハク酸、 およびコハク酸の塩からなる群より選択される 少なく とも 1種の添加剤を含むことが好ましい。
前記反応層は、 さらにカルシウムイオンを含むことが好ましい。
前記ダルコン酸の塩は、 ダルコン酸カリウム、 ダルコン酸ナトリウム, ダルコン酸カルシウム、 ダルコン酸コバルト、 またはダルコン酸銅であ ることが好ましい。
前記反応層は、 さらに電子メデイエ一夕を含むことが好ましい。 図面の簡単な説明
図 1は本発明の一実施例におけるグルコースセンサの反応層を除いた 斜視図である。 図 2は図 1 に示すグルコースセンサの要部の縦断面図である。
図 3は比較例 1 のグルコースセンサの応答特性図である。
図 4は本発明の実施例 1 のグルコースセンサの応答特性図である。 図 5は実施例 1 のグルコースセンサおよび比較例 1 のグルコースセン ザの保存前の応答特性図である。
図 6は本発明の実施例 2のグルコースセンサの応答特性図である。 図 7は実施例 2のグルコースセンサおよび比較例 1 のグルコースセン ザの保存前の応答特性図である。
図 8は本発明の実施例 3のグルコースセンサの応答特性図である。 図 9は実施例 3のグルコースセンサおよび比較例 1 のグルコースセン ザの保存前の応答特性図である。
図 1 0は本発明の実施例 4のダルコ一センサの応答特性図である。 図 1 1 は実施例 4のグルコースセンサおよび比較例 1のグルコースセ ンサの保存前の応答特性図である。
図 1 2は本発明の実施例 5のグルコースセンサの応答特性図である。 発明を実施するための最良の形態
上記のように、 本発明のグルコースセンサは、 酵素として P Q Q— G D Hを含む反応層に、 ダルコン酸および Zまたはその塩を添加したも のである。
本発明者らは、 P Q Q— G D Hを含む反応層に、 ダルコン酸および Z またはその塩を添加すると、 センサの保存安定性を著しく向上できるこ とを見いだした。 ダルコン酸および/またはその塩が、 温度、 湿度、 電 荷の状態などの環境の変化から P Q Q— G D Hを保護し、 これによつて 保存安定性が向上するものと思われる。 このような効果を高めるには、 ダルコン酸および Zまたはその塩と P Q Q— G D Hの混合溶液を反応層 形成部位に滴下し、 乾燥する方法により反応層を形成するのが好ましい, この方法により反応層を形成すると、 酵素がダルコン酸によって分子レ ベルで取り囲まれるため、 温度、 湿度、 電荷の状態などの環境の変化か ら P Q Q— G D Hを有効に保護することができる。 その結果、 酵素の活 性を長期間安定させることができるのである。
さらに本発明者らは、 P Q Q— G D Hを含む反応層に、 ダルコン酸お よび Zまたはその塩を添加すると、 センサの保存前における応答性、 す なわち初期特性が向上することを見出した。 ダルコン酸またはその塩は 水に溶けやすいので、 反応層に含ませておく と、 試料液を反応層に添加 した際、 反応層は直ちに試料液に溶解し、 酵素反応と電極反応を円滑に 進めることができて都合がよい。
これらの効果が期待できる添加剤は、 ダルコン酸の他、 ダルコン酸カ リウム、 ダルコン酸ナトリウム、 ダルコン酸カルシウム、 ダルコン酸コ バルト、 ダルコン酸銅などがあげられる。 特に、 ダルコン酸カリウムを 用いると、 保存安定性および応答特性に優れ、 ブランク値の非常に小さ いグルコースセンサを得ることができる。 ここで、 ブランク値とは、 基 質であるグルコースを全く含まない試料液、 例えば水を用いた場合のセ ンサ応答値である。
フ夕ル酸、 マレイン酸、 コハク酸、 およびそれらの塩は、 それ単独で は、 ダルコン酸およびその塩には及ばないが、 P Q Q— G D Hを保護す る効果を有しているから、 ダルコン酸またはその塩とともに添加すると, 相乗的な効果として、 センサの保存安定性をより向上することができる c さらに、 フ夕ル酸、 マレイン酸、 コハク酸、 およびそれらの塩は水に溶 解しやすいので、 反応層に含ませておく と、 試料液を反応層に添加した 際、 反応層が直ちに試料液に溶解し、 酵素反応と電極反応を円滑に進め ることができ、 初期特性が向上する。 フ夕ル酸、 マレイン酸、 コハク酸、 およびそれらの塩は、 すべて緩衝 剤として使用することのできる化合物であり、 必要に応じて塩酸、 酢酸 などの酸や N a〇H、 K OHなどのアル力リにより所定の p Hに調製し て反応層形成試薬に添加すればよい。 好適な p Hは、 5. 0〜 8. 5で ある。 もちろん、 ほかの緩衝液にこれらの添加剤を配合したものを用い てもよい。
ダルコン酸、 フ夕ル酸、 マレイン酸、 コハク酸、 およびそれらの塩は. 吸湿しやすい化合物であるので、 前もって酵素に添加するより、 ダルコ —スセンサ作製の際に初めて酵素と接触するように、 グルコースセンサ 作製時に添加すべきである。 これらの添加剤を含むグルコースセンサは. 密封した状態で保存することが好ましい。 グルコースセンサを保存する 際には、 シリカゲル等の吸湿剤を入れた密封容器に保存するのがよい。 試料液として血液 0. 5〜 5 1 を測定対象とする使い捨てタイプの センサでは、 酵素量 0. 2〜 2 0 UZセンサに対して、 上記ダルコン酸 またはその塩の添加量は、 1. 5〜 1 5 0 g Zセンサの範囲であれば よく、 保存安定性とブランク値の低減化という観点から、 1 5〜 5 0 g Zセンサであるのが好ましい。 一方、 フ夕ル酸、 マレイン酸、 コハ ク酸、 およびそれらの塩の添加量は、 前記センサに対して、 0. 0 2 5 〜 2 5 g Zセンサであるのが好ましく、 望ましくは 0. :!〜 3 gZ センサであるのが好ましい。 なお、 Uはユニッ ト (u n i t ) を表す。 他の好ましい添加剤として、 カルシウムイオンを与える塩化カルシゥ ムなどがある。 一般に、 カルシウムイオンは、 P QQ— GDHが二量体 を形成する際に必要となる。 従って、 反応層形成試薬に、 塩化カルシゥ ムなどによりカルシウムイオンを導入すると、 センサの作製中または作 製後において、 P QQ— GDHが二量体へ解離するのを防ぎ、 その活性 保持に役立つ。 塩化カルシウムの添加量は、 上記のセンサに対して、 5 〜 7 0 n g (ナノグラム) Zセンサであるのが好ましい。
本発明のバイオセンサの反応層には、 酵素反応に伴って還元される電 子メディェ一夕を含有させるのが好ましい。 この電子メディエー夕には. フェリシアン化カリウム、 p—べンゾキノンおよびその誘導体、 フエナ ジンメ トサルフェート、 メチレンブルー、 フエ口センおよびその誘導体 などを用いることができる。
本発明のバイォセンサの反応層には、 親水性高分子を含有させてもよ い。 反応層中に親水性高分子を添加することにより、 電極系表面または 基板表面からの反応層の剥離を防ぐことができる。 さらに、 親水性高分 子は、 反応層表面の割れを防ぐ効果も有しており、 バイオセンサの信頼 性を高めるのに効果的である。
このような親水性高分子としては、 カルボキシメチルセルロース、 ヒ ドロキシェチルセルロース、 ヒ ドロキシプロピルセルロース、 メチルセ ルロース、 ェチルセルロース、 ェチルヒ ドロキシェチルセルロース、 力 ルボキシェチルセルロース、 ポリ ビニルピロリ ドン、 ポリビニルアルコ —ル、 ポリ リジンなどのポリアミノ酸、 ポリスチレンスルホン酸、 ゼラ チンおよびその誘導体、 アクリル酸およびその塩の重合体、 メタクリル 酸およびその塩の重合体、 スターチおよびその誘導体、 無水マレイン酸 およびその塩の重合体、 ァガロースゲルおよびその誘導体が好適に用い られる。
バイオセンサ内における反応層は、 電気絶縁性基板上に形成された電 極系上のほか、 本発明の効果を損なわない限り、 種々の位置に配置する ことができる。 例えば、 前記基板の電極系上以外の場所にも配置するこ とができる。 また、 バイオセンサは、 カバ一部材を含むことが好ましい。 このカバー部材は、 前記基板に組み合わされて基板との間に前記電極系 に試料液を供給する試料液供給路を形成する。 このカバー部材の試料液 供給路に露出する面に、 前記反応層を配置することもできる。
酵素反応に伴い還元された電子メディエー夕を酸化する電流の測定方 法としては、 作用極と対極のみの二電極方式と、 参照極を加えた三電極 方式があり、 三電極方式の方がより正確な測定が可能である。
ここで、 本発明のバイオセンサの反応層には、 前記添加剤に加えて、 本発明の効果を損なわない範囲で他の安定化剤を添加してもよい。 その ような安定化剤としては、 例えば金属塩、 蛋白質、 アミノ酸、 糖、 有機 酸、 界面活性剤などをあげることができる。
金属塩としては、 例えば、 ス トロンチウム、 マンガンなどのハロゲン 化物のほか、 これらの硫酸塩、 硝酸塩などでもよい。 蛋白質としては、 酵素活性に影響を与えないものであるのが好ましく、 例えばゥシ血清ァ ルブミン (B S A ) 、 卵アルブミン、 ゼラチンなどをあげることができ る。
アミノ酸としては、 例えばリジン、 ヒスチジン、 グルタミン酸などの 一般的なもののほか、 グリシルグリシン、 ポリ リジンなども用いること ができる。 なかでも、 水溶性の高いものが好ましい。
糖としては、 単糖、 二糖、 オリゴ糖および多糖など、 種類を問わずに 用いることができる。 また、 これらの誘導体も用いることができる。 具 体的には、 例えばグルコース、 フルク トース、 ガラク トース、 マンノー ス、 キシロース、 スクロース、 ラク ト一ス、 マルト一ス、 トレハロース, マルト トリオース、 マルトシルサイクロデキス トリン、 α —サイクロデ キストリ ン、 )3—サイクロデキス トリン、 アーサイクロデキス トリン、 デキス トリ ン、 アミロース、 グリコーゲン、 デンプン、 ィヌ リ ン、 ダル コサミン、 イノシトール、 マンニトール、 ソルビトール、 リ ビトールお よびデォキシグルコースなどをあげることができる。
有機酸としては、 例えば α—ケトグルタル酸、 リ ンゴ酸、 フマール酸、 コール酸およびデォキシコール酸などがあげられる。
界面活性剤としては、 非イオン性のものが好ましい。
その他、 ホウ酸、 ホウ砂、 塩化カリウム、 塩化ナトリウム、 硫酸アン モニゥム、 グリセロール、 フイ コール、 E DTA、 E GTA、 D TT、 D T E、 G S H、 2—メルカプトエタノールなどを添加してもよい。
これらの安定化剤の添加量は、 P QQ— GDHの 1 0 0重量部に対し て、 0. 0 1〜 1 0 0重量部であることが好ましい。
補酵素であるピロ口キノ リ ンキノン (P QQ) が、 P QQ— GDHか ら外れることを阻止するため、 反応層中に、 P QQを添加してもよい。
P QQの添加量は、 0. 0 4〜 2 0 n g/センサであるのが望ましい。 本発明で用いる酵素 P QQ— GDHは、 いずれの起源のものも用いる ことができる。
上述の添加剤を含み、 さらに要すれば前記安定化剤を含む本発明の P QQ— GDHを用いたグルコースセンサは、 安価に、 しかも酵素の基 本性能に悪影響を与えることなくその性能を保持することができる。 以下に、 実施例を用いて本発明を説明するが、 本発明はこれらのみに 限定されるものではない。
図 1は、 本発明の一実施例におけるバイオセンサの反応層を取り除い た分解斜視図である。 ポリエチレンテレフ夕レー卜からなる電気絶縁性 基板 1上に、 スクリーン印刷により銀ペース トを印刷し、 リード 2およ び 3を形成している。 ついで、 樹脂バインダーを含む導電性カーボンべ —ス トを基板 1上に印刷して作用極 4を形成している。 この作用極 4は. リ一ド 2と接触している。 さらに、 この基板 1上に、 絶縁性ペース トを 印刷して絶縁層 6を形成している。 絶縁層 6は、 作用極 4の外周部を覆 つており、 これにより作用極 4の露出部分の面積を一定に保っている。 そして、 樹脂バインダーを含む導電性カーボンペース トをリード 3 と接 触するように基板 1上に印刷してリ ング状の対極 5を形成している。 上記の絶縁性基板 1に、 後述のように反応層を形成した後、 スリ ッ ト 1 0を有するスぺーサ 8および空気孔 1 1を備えたカバ一 9を図 1の一 点鎖線で示すような位置関係をもつて接着することにより、 バイオセン ザが作製される。 スぺーサ 8のスリ ッ ト 1 0の部分に試料液供給路が形 成される。 センサの端部におけるスリ ッ ト 1 0の開放端部は、 試料液供 給路への試料供給口となる。
図 2は、 本発明によるバイオセンサの縦断面図である。 電極系を形成 した基板 1上に、 酵素および電子メディエー夕を含む反応層 7が形成さ れている。 反応層 7は、 電極系上に形成されるのが好ましいが、 電極系 の近傍、 例えば試料液供給路に露出するように、 カバー側に形成されて いてもよい。 反応層 7は、 図示の例では、 親水性高分子層 7 aと、 その 上に形成された P QQ— GDHと添加剤を含む層 7 bからなる。 比較例 1
図 1の基板 1の電極系上に、 親水性高分子であるカルボキシメチルセ ルロースのナトリウム塩 (以下、 「CMC」 と略す。 ) の 0. 5 w t % 水溶液を 5 a 1滴下し、 5 0 °Cの温風乾燥器中で 1 0分間乾燥させ、 CMC層 7 aを形成した。 続いて、 l O O O UZm l の P QQ— GDH および 5 0 mMのフェリシアン化カリゥムを含む混合水溶液を C M C層 7上に 5 1滴下し、 乾燥して、 層 7 bを形成した。 このようにしてグ ルコースセンサを作製した。
つぎに、 試料液として、 グルコース濃度が 3 0〜 6 2 0 mgZd l と なるように調製した血液を用意した。 そして、 この試料液を反応層 7上 に滴下した。 グルコースを含む試料液が反応層に供給されると、 試料内 のグルコースは P Q Q— G D Hにより酸化される。 そして、 これと同時 に反応層中のフェリ シアン化カリウムがフエロシアン化カリウムに還元 される。 ここで、 試料液を滴下してから 3 0秒後に、 対極 5を基準にし て作用極 4に + 0. 5 Vの電圧を印加して、 フエロシアン化カリウムを 酸化した。 そして、 5秒後に対極と作用極の間を流れる電流値を測定し た。
種々のグルコース濃度に調製された血液に対して電流値を測定し、 横 軸にグルコース濃度、 縦軸に電流値をプロッ トしてセンサの応答特性図 を作成した。 その結果を図 3に実線で示す。
同様にして作製したバイオセンサを、 吸湿剤であるシリ力ゲルの入つ た密封容器に入れ、 4 0 °Cにおいて 1週間保存した後、 このバイオセン ザの応答特性図を作成した。 その結果を図 3に点線で示す。
図 3より、 グルコース濃度と応答電流値との間には一定の相関性があ ることがわかる。 しかし、 作製直後、 すなわち保存前のセンサに比較し て、 4 0 °Cで 1週間保存後のセンサの応答性が低下していることがわか る。 実施例 1
比較例 1 と同様にして CMC層 7 aを形成した後、 1 0 0 O UZm 1 の P QQ— GDH、 5 O mMのフェリシアン化カリウムおよび 4 0 mM のダルコン酸カリゥムを含む混合水溶液を、 CMC層 7 a上に 5 1滴 下後乾燥して、 層 7 bを形成した。 このようにしてグルコースセンサを 作製した。
比較例 1 と同様にして、 作製直後のセンサおよびシリカゲルの入った 密封容器内で 4 0 °Cで 1週間保存した後のセンサについて応答特性図を 作成した。 その結果を図 4に示す。 図 4より、 グルコース濃度と応答電 流値との間には一定の相関性があることがわかる。 本実施例のセンサは、 比較例 1 と比較すると、 4 0°Cで 1週間保存後の応答のうち、 特に 4 0 0 m g / d 1以上の領域における応答電流値の低下が小さくなつて いることがわかる。 これにより、 ダルコン酸カリウムを添加することで グルコースセンサの保存特性が大幅に改善されることがわかる。
ダルコン酸カリゥムを含まない比較例 1のセンサと、 ダルコン酸カリ ゥムを含む本実施例のセンサの保存前の応答特性の比較を図 5に示す。 図 5を見ると、 ダルコン酸カリウムを含むグルコースセンサは、 ダルコ ン酸カリゥムを含まないグルコースセンサより、 6 0 0 mg/d l付近 の応答値が高い。 これにより、 ダルコン酸カリウムを添加することで、 高濃度域におけるグルコースセンサの応答性を改善できることがわかる t 実施例 2
比較例 1 と同様にして CMC層 7 aを形成した後、 1 0 0 O UZm l の P QQ— GDH、 5 0 mMのフェリシアン化カリウム、 4 0 mMのグ ルコン酸カリウムおよび 0. 5 mMのフ夕ル酸水素カリウムを含む混合 水溶液を、 CMC層 7 a上に 5 1滴下し乾燥して、 層 7 bを形成した t このようにしてグルコースセンサを作製した。
比較例 1 と同様にして、 作製直後のセンサおよびシリカゲルの入った 密封容器内で 4 0 °Cで 1週間保存した後のセンサについて応答特性図を 作成した。 その結果を図 6に示す。 図 6より、 作製直後のセンサと 4 0 で 1週間保存後のセンサの応答特性にはほとんど差はなく、 比較例 1 と比較すると、 本実施例のセンサの保存特性が大幅に改善されているこ とがわかる。
ダルコン酸カリゥムを含まない比較例 1のセンサと、 ダルコン酸カリ ゥムおよびフタル酸水素カリゥムを含む本実施例のセンサの保存前の応 答特性の比較を図 7に示す。 図 7を見ると、 ダルコン酸カリウムおよび フ夕ル酸水素力リウムを含むグルコースセンサは、 比較例 1 のセンサに 比べて、 6 0 0 m g Z d 1 付近の応答値が高い。 これにより、 ダルコン 酸カリウムおよびフ夕ル酸水素カリゥムを添加することで、 高濃度域に おけるグルコースセンサの応答性を改善できることがわかる。 実施例 3
比較例 1 と同様にして CMC層 7 aを形成した後、 1 0 0 O UZm 1 の P QQ— GDH、 5 O mMのフェリ シアン化カリウム、 4 0 mMのグ ルコン酸カリウムおよび 0. 5 mMのマレイン酸を含む混合水溶液を、 CMC層 7 a上に 5 1滴下し乾燥して、 層 7 bを形成した。 このよう にしてグルコースセンサを作製した。
比較例 1 と同様にして、 作製直後のセンサおよびシリカゲルの入った 密封容器内で 4 0 °Cで 1週間保存した後のセンサについて応答特性図を 作成した。 その結果を図 8に示す。 図 8より、 作製直後のセンサと 4 0 °Cで 1週間保存後のセンサの応答特性にはほとんど差はなく、 比較例 1 と比較すると、 本実施例のセンサの保存特性が改善されていることがわ かる。
ダルコン酸カリウムを含まない比較例 1 のセンサと、 ダルコン酸カリ ゥムおよびマレイン酸を含む本実施例のセンサの保存前の応答特性の比 較を図 9に示す。 図 9を見ると、 ダルコン酸カリウムおよびマレイン酸 を含むグルコースセンサは、 6 0 0 m g / d 1付近の応答値が高い。 こ れにより、 ダルコン酸カリウムおよびマレイン酸を添加することで、 高 濃度域におけるグルコースセンサの応答性を改善できることがわかる。 実施例 4
比較例 1 と同様にして C M C層 Ί aを形成した後、 1 0 0 0 UZm 1 の P QQ_ GDH、 5 O mMのフェリシアン化カリウム、 4 0 mMのグ ルコン酸カリウムおよび 0. 5 m Mのこはく酸を含む混合水溶液を、 CMC層 7 a上に 5 1滴下し乾燥して、 層 7 bを形成した。 このよう にしてグルコースセンサを作製した。
比較例 1 と同様にして、 作製直後のセンサおよびシリ力ゲルの入った 密封容器内で 4 0 °Cで 1週間保存した後のセンサについて応答特性図を 作成した。 その結果を図 1 0に示す。 図 1 0より、 作製直後のセンサと 4 0°Cで 1週間保存後のセンサの応答特性にはほとんど差はなく、 比較 例 1 と比較すると、 本実施例のセンサの保存特性が改善されていること がわかる。
比較例 1のセンサと、 ダルコン酸カリウムおよびこはく酸を含む本実 施例のセンサの保存前の応答特性の比較を図 1 1に示す。 図 1 1 を見る と、 ダルコン酸カリウムおよびこはく酸を含むグルコースセンサは、 6 0 0 mgZd 1付近おける応答値が高い。 これにより、 ダルコン酸カ リゥムおよびこはく酸を添加することで、 高濃度域におけるグルコース センサの応答性を改善できることがわかる。 実施例 5
比較例 1 と同様にして CMC層 7 aを形成した後、 1 0 0 0 UZm 1 の P QQ— GDH、 5 O mMのフェリシアン化カリウム、 4 O mMのグ ルコン酸カリウム、 0. 5 mMのフ夕ル酸水素カリウムおよび 7 5 /M の塩化カルシウムを含む混合水溶液を、 CMC層 7 a上に 5 1滴下し 乾燥して、 層 7 bを形成した。 このようにしてグルコースセンサを作製 した。
比較例 1 と同様にして、 作製直後のセンサおよびシリ力ゲルの入った 密封容器内で 4 0でで 1週間保存した後のセンサについて応答特性図を 作成した。 その結果を図 1 2に示す。 図 1 2より、 作製直後のセンサと 4 5 °Cで 1週間保存後のセンサの応答特性にはほとんど差はなく、 4 5 で 1週間という高温保存条件において、 本実施例のセンサの保存特性 が優れていることがわかる。 産業上の利用の可能性
以上のように本発明によれば、 保存安定性に優れ、 かつ応答性が向上 した、 高性能なグルコースセンサを得ることができる。

Claims

請 求 の 範 囲
1 . 電気絶縁性基板、 前記基板上に設けられた少なく とも作用極と対極 を有する電極系、 および前記電極系に接してまたはその近傍に形成され 少なく ともピロ口キノ リンキノンを補酵素としたグルコースデヒ ドロゲ ナーゼを含む反応層を具備するグルコースセンサであって、 前記反応層 が、 ダルコン酸およびその塩からなる群より選択される少なく とも 1種 の添加剤を含むグルコースセンサ。
2 . 前記反応層が、 さらに、 フタル酸、 フ夕ル酸の塩、 マレイン酸、 マ レイン酸の塩、 コハク酸、 およびコハク酸の塩からなる群より選択され る少なく とも 1種の添加剤を含む請求の範囲第 1項に記載のグルコース センサ。
3 . 前記反応層が、 さらにカルシウムイオンを含む請求の範囲第 1項ま たは 2項記載のグルコースセンサ。
4 . 前記ダルコン酸の塩が、 ダルコン酸カリウム、 ダルコン酸ナトリウ ム、 ダルコン酸カルシウム、 ダルコン酸コバルト、 またはダルコン酸銅 である請求の範囲第 1〜 3項のいずれかに記載のグルコースセンサ。
5 . 前記反応層が、 さらに電子メデイエ一夕を含む請求の範囲第 1〜 4 項のいずれかに記載のグルコースセンサ。
PCT/JP2000/006853 1999-10-05 2000-10-02 Glucometre WO2001025776A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AT00963053T ATE313790T1 (de) 1999-10-05 2000-10-02 Glukosesensor
DE60024965T DE60024965T2 (de) 1999-10-05 2000-10-02 Glukosesensor
JP2001528689A JP3867959B2 (ja) 1999-10-05 2000-10-02 グルコースセンサ
CA002347594A CA2347594C (en) 1999-10-05 2000-10-02 Glucose sensor
US09/807,692 US7005048B1 (en) 1999-10-05 2000-10-02 Glucose sensor
EP00963053A EP1146332B8 (en) 1999-10-05 2000-10-02 Glucose sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/284871 1999-10-05
JP28487199 1999-10-05

Publications (1)

Publication Number Publication Date
WO2001025776A1 true WO2001025776A1 (fr) 2001-04-12

Family

ID=17684126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006853 WO2001025776A1 (fr) 1999-10-05 2000-10-02 Glucometre

Country Status (8)

Country Link
US (1) US7005048B1 (ja)
EP (1) EP1146332B8 (ja)
JP (1) JP3867959B2 (ja)
CN (1) CN1184472C (ja)
AT (1) ATE313790T1 (ja)
CA (1) CA2347594C (ja)
DE (1) DE60024965T2 (ja)
WO (1) WO2001025776A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1197749A1 (en) * 2000-03-29 2002-04-17 Matsushita Electric Industrial Co., Ltd. Biosensor
WO2005088288A1 (ja) * 2004-03-10 2005-09-22 National Institute Of Advanced Industrial Science And Technology カーボンナノチューブバイオセンサ
JP2006504096A (ja) * 2002-10-23 2006-02-02 アボット・ラボラトリーズ ヘマトクリット及び酸素バイアスを有するバイオセンサ
JP2008532047A (ja) * 2005-03-04 2008-08-14 バイエル・ヘルスケア・エルエルシー 電気化学的バイオセンサでの酵素活性の安定化
US7727467B2 (en) 2003-06-20 2010-06-01 Roche Diagnostics Operations, Inc. Reagent stripe for test strip
JP2010237140A (ja) * 2009-03-31 2010-10-21 Cci Corp バイオセンサ
WO2011087033A1 (ja) * 2010-01-14 2011-07-21 グンゼ株式会社 バイオセンサー
US8071030B2 (en) 2003-06-20 2011-12-06 Roche Diagnostics Operations, Inc. Test strip with flared sample receiving chamber
US8287703B2 (en) 1999-10-04 2012-10-16 Roche Diagnostics Operations, Inc. Biosensor and method of making
US8298828B2 (en) 2003-06-20 2012-10-30 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
JP2012211810A (ja) * 2011-03-31 2012-11-01 Cci Corp 測定精度を向上させたバイオセンサ
JP2013024879A (ja) * 2011-07-22 2013-02-04 Bayer Healthcare Llc 向上された計測性能を有するバイオセンサ乾燥剤系
JP2013518255A (ja) * 2010-01-22 2013-05-20 バイエル・ヘルスケア・エルエルシー 確度改善性乾燥剤
JP2013145243A (ja) * 2006-09-22 2013-07-25 Bayer Healthcare Llc 改善された安定性およびヘマトクリット性能(performance)を有するバイオセンサー系
US8507289B1 (en) 2003-06-20 2013-08-13 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
JPWO2012042903A1 (ja) * 2010-09-30 2014-02-06 パナソニック株式会社 試薬組成物、センサ、センサシステム及びセンサの製造方法
US8663442B2 (en) 2003-06-20 2014-03-04 Roche Diagnostics Operations, Inc. System and method for analyte measurement using dose sufficiency electrodes
JP2015514996A (ja) * 2012-04-19 2015-05-21 ルオクシス ダイアグノスティクス インコーポレイテッドLuoxis Diagnostics,Inc. 多層ゲル
JP2015139376A (ja) * 2014-01-27 2015-08-03 東洋紡株式会社 グルコースデヒドロゲナーゼ組成物
US9410915B2 (en) 2004-06-18 2016-08-09 Roche Operations Ltd. System and method for quality assurance of a biosensor test strip
US9410913B2 (en) 2012-10-23 2016-08-09 Aytu Bioscience, Inc. Methods and systems for measuring and using the oxidation-reduction potential of a biological sample
US9664638B2 (en) 2010-01-22 2017-05-30 Ascensia Diabetes Care Holdings Ag Biosensor desiccant system having enhanced measurement performance

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6036924A (en) 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6949816B2 (en) * 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
JP4627911B2 (ja) * 2000-03-29 2011-02-09 パナソニック株式会社 バイオセンサ
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
CA2448902C (en) 2001-06-12 2010-09-07 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
ES2352998T3 (es) 2001-06-12 2011-02-24 Pelikan Technologies Inc. Accionador eléctrico de lanceta.
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
CA2448905C (en) 2001-06-12 2010-09-07 Pelikan Technologies, Inc. Blood sampling apparatus and method
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
AU2002344825A1 (en) 2001-06-12 2002-12-23 Pelikan Technologies, Inc. Method and apparatus for improving success rate of blood yield from a fingerstick
US7025774B2 (en) 2001-06-12 2006-04-11 Pelikan Technologies, Inc. Tissue penetration device
WO2002100254A2 (en) 2001-06-12 2002-12-19 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7291117B2 (en) 2002-04-19 2007-11-06 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US7491178B2 (en) 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7713214B2 (en) 2002-04-19 2010-05-11 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7371247B2 (en) 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7175642B2 (en) 2002-04-19 2007-02-13 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7291256B2 (en) * 2002-09-12 2007-11-06 Lifescan, Inc. Mediator stabilized reagent compositions and methods for their use in electrochemical analyte detection assays
CN100415877C (zh) * 2002-12-24 2008-09-03 池田食研株式会社 辅酶结合型葡萄糖脱氢酶
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US7850621B2 (en) 2003-06-06 2010-12-14 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
WO2005033659A2 (en) 2003-09-29 2005-04-14 Pelikan Technologies, Inc. Method and apparatus for an improved sample capture device
WO2005037095A1 (en) 2003-10-14 2005-04-28 Pelikan Technologies, Inc. Method and apparatus for a variable user interface
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
US8668656B2 (en) 2003-12-31 2014-03-11 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
JPWO2005075979A1 (ja) 2004-02-04 2007-10-11 松下電器産業株式会社 バイオセンサおよびバイオセンサ測定装置、並びに測定方法
EP1751546A2 (en) 2004-05-20 2007-02-14 Albatros Technologies GmbH & Co. KG Printable hydrogel for biosensors
WO2005120365A1 (en) 2004-06-03 2005-12-22 Pelikan Technologies, Inc. Method and apparatus for a fluid sampling device
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
CA2604507C (en) 2005-03-25 2015-11-10 Ikeda Food Research Co., Ltd. Coenzyme-linked glucose dehydrogenase and polynucleotide encoding the same
JP2007121060A (ja) * 2005-10-27 2007-05-17 Sumitomo Electric Ind Ltd センサチップおよびセンサシステム
TW200718785A (en) * 2005-11-10 2007-05-16 Toyo Boseki A process for improving the thermal stability of a composition containing a soluble coenzyme conjugated glucose dehydrogenase (GDH)
US7955484B2 (en) 2005-12-14 2011-06-07 Nova Biomedical Corporation Glucose biosensor and method
DE102006014715B3 (de) * 2006-03-30 2007-06-06 Drägerwerk AG Elektrochemischer Sensor aufweisend eine Mediator-Verbindung mit einem Festkörper
DE102006014714B3 (de) * 2006-03-30 2007-05-16 Draegerwerk Ag Elektrochemischer Sensor aufweisend eine Mediator-Verbindung
EP2017607B1 (en) * 2006-04-19 2012-10-03 Panasonic Corporation Biosensor
EP2230301B1 (en) * 2008-01-07 2013-03-20 Toyobo Co., Ltd. Novel glucose dehydrogenase
US9386944B2 (en) 2008-04-11 2016-07-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte detecting device
DE102008030435A1 (de) 2008-06-26 2010-01-07 Bayer Technology Services Gmbh Neuartige Varianten PQQ-abhängiger Glukosehydrogenase mit verbesserter Substratspezifität
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
WO2011111604A1 (ja) * 2010-03-09 2011-09-15 アークレイ株式会社 電気化学センサ
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US10317359B2 (en) 2016-01-05 2019-06-11 Ravi Kumar Meruva Differential carbon dioxide sensor
US10213144B2 (en) 2016-01-25 2019-02-26 International Business Machines Corporation Nanopatterned biosensor electrode for enhanced sensor signal and sensitivity
US10376193B2 (en) 2016-07-25 2019-08-13 International Business Machines Corporation Embedded sacrificial layer to enhance biosensor stability and lifetime for nanopatterned electrodes
US10161898B2 (en) 2017-01-30 2018-12-25 International Business Machines Corporation Nanopatterned biosensor electrode for enhanced sensor signal and sensitivity
US10548530B2 (en) 2017-03-01 2020-02-04 International Business Machines Corporation Biosensor calibration structure containing different sensing surface area
US11562907B2 (en) 2018-11-29 2023-01-24 International Business Machines Corporation Nanostructure featuring nano-topography with optimized electrical and biochemical properties
CN110806437B (zh) * 2019-11-15 2020-08-04 中南大学 黑磷纳米片/麦芽糖基-β-环糊精修饰玻碳电极及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10227755A (ja) * 1997-02-14 1998-08-25 Matsushita Electric Ind Co Ltd バイオセンサ

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1077197A (en) 1975-03-24 1980-05-06 Kazuhiko Kurimoto Method for bulk polymerization of vinyl chloride
DE3278334D1 (en) 1981-10-23 1988-05-19 Genetics Int Inc Sensor for components of a liquid mixture
US5682884A (en) 1983-05-05 1997-11-04 Medisense, Inc. Strip electrode with screen printing
CA1219040A (en) 1983-05-05 1987-03-10 Elliot V. Plotkin Measurement of enzyme-catalysed reactions
JP2502666B2 (ja) 1988-01-29 1996-05-29 松下電器産業株式会社 バイオセンサ及びその製造方法
DE3826922A1 (de) 1988-08-09 1990-02-22 Boehringer Mannheim Gmbh Verfahren zur kolorimetrischen bestimmung eines analyten mittels enzymatischer oxidation
US5081015A (en) 1988-08-30 1992-01-14 Kanzaki Paper Mfg. Co., Ltd. Enzyme electrode and method for determination of alcohol content using the same
US5200051A (en) 1988-11-14 1993-04-06 I-Stat Corporation Wholly microfabricated biosensors and process for the manufacture and use thereof
FR2673289B1 (fr) 1991-02-21 1994-06-17 Asulab Sa Capteur de mesure de la quantite d'un composant en solution.
JP2671693B2 (ja) 1991-03-04 1997-10-29 松下電器産業株式会社 バイオセンサおよびその製造法
DE69219686T2 (de) * 1991-07-29 1997-09-11 Mochida Pharm Co Ltd Verfahren und Vorrichtung zur Verwendung in spezifischen Bindungstests
US5264103A (en) 1991-10-18 1993-11-23 Matsushita Electric Industrial Co., Ltd. Biosensor and a method for measuring a concentration of a substrate in a sample
DE69319771T2 (de) 1992-03-31 1999-04-22 Dainippon Printing Co Ltd Immobilisierte Enzym-Elektrode, Zusammensetzung zu ihrer Herstellung und elektrisch leitfähige Enzyme
US5658443A (en) 1993-07-23 1997-08-19 Matsushita Electric Industrial Co., Ltd. Biosensor and method for producing the same
JP3203108B2 (ja) 1993-08-26 2001-08-27 協和メデックス株式会社 グルコース−6−リン酸デヒドロゲナーゼの安定化方法
US5762770A (en) 1994-02-21 1998-06-09 Boehringer Mannheim Corporation Electrochemical biosensor test strip
US5897995A (en) 1995-05-12 1999-04-27 Gist-Brocades, B.V. Enzymatic production of gluconic acid or its salts
IT1279043B1 (it) 1995-05-24 1997-12-04 Co Ri Al Scpa Metodo per la determinazione di acido lattico in materiali organici di interesse alimentare e biosensore per l'esecuzione di tale metodo
JP3775518B2 (ja) 1995-11-22 2006-05-17 東洋紡績株式会社 Pqq依存性グルコースデヒドロゲナーゼ組成物およびグルコース測定用試薬組成物
JPH09262086A (ja) * 1996-03-28 1997-10-07 Oji Paper Co Ltd 固定化酵素の保存方法
DE19629655A1 (de) 1996-07-23 1998-01-29 Boehringer Mannheim Gmbh Diagnostischer Testträger und Verfahren zur Bestimmung eines Analyts mit dessen Hilfe
JP3394262B2 (ja) * 1997-02-06 2003-04-07 セラセンス、インク. 小体積インビトロ被検体センサー
US6059946A (en) 1997-04-14 2000-05-09 Matsushita Electric Industrial Co., Ltd. Biosensor
US5942424A (en) * 1997-06-19 1999-08-24 Lockheed Martin Energy Research Corporation Method for the enzymatic production of hydrogen
US6071391A (en) 1997-09-12 2000-06-06 Nok Corporation Enzyme electrode structure
US5997817A (en) 1997-12-05 1999-12-07 Roche Diagnostics Corporation Electrochemical biosensor test strip
JPH11243949A (ja) 1998-03-03 1999-09-14 Toyobo Co Ltd Pqqを補欠分子族とするグルコースデヒドロゲナーゼおよびその製造方法
US6077660A (en) 1998-06-10 2000-06-20 Abbott Laboratories Diagnostic assay requiring a small sample of biological fluid
JP3694424B2 (ja) * 1998-09-29 2005-09-14 松下電器産業株式会社 グルコースセンサ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10227755A (ja) * 1997-02-14 1998-08-25 Matsushita Electric Ind Co Ltd バイオセンサ

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8551308B2 (en) 1999-10-04 2013-10-08 Roche Diagnostics Operations, Inc. Biosensor and method of making
US8287703B2 (en) 1999-10-04 2012-10-16 Roche Diagnostics Operations, Inc. Biosensor and method of making
EP1197749A1 (en) * 2000-03-29 2002-04-17 Matsushita Electric Industrial Co., Ltd. Biosensor
EP1197749B1 (en) * 2000-03-29 2016-07-20 Panasonic Healthcare Holdings Co., Ltd. Biosensor
JP4695879B2 (ja) * 2002-10-23 2011-06-08 アボット・ラボラトリーズ ヘマトクリット及び酸素バイアスを有するバイオセンサ
JP2006504096A (ja) * 2002-10-23 2006-02-02 アボット・ラボラトリーズ ヘマトクリット及び酸素バイアスを有するバイオセンサ
US8222044B2 (en) 2003-06-20 2012-07-17 Roche Diagnostics Operations, Inc. Test strip with flared sample receiving chamber
US8298828B2 (en) 2003-06-20 2012-10-30 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
US7829023B2 (en) 2003-06-20 2010-11-09 Roche Diagnostics Operations, Inc. Test strip with vent opening
US7879618B2 (en) 2003-06-20 2011-02-01 Roche Diagnostics Operations, Inc. Method and reagent for producing narrow, homogenous reagent strips
US7749437B2 (en) 2003-06-20 2010-07-06 Roche Diagnostics Operations, Inc. Method and reagent for producing narrow, homogenous reagent stripes
US8663442B2 (en) 2003-06-20 2014-03-04 Roche Diagnostics Operations, Inc. System and method for analyte measurement using dose sufficiency electrodes
US8071030B2 (en) 2003-06-20 2011-12-06 Roche Diagnostics Operations, Inc. Test strip with flared sample receiving chamber
US8119414B2 (en) 2003-06-20 2012-02-21 Roche Diagnostics Operations, Inc. Test strip with slot vent opening
US8142721B2 (en) 2003-06-20 2012-03-27 Roche Diagnostics Operations, Inc. Test strip with slot vent opening
US8211379B2 (en) 2003-06-20 2012-07-03 Roche Diagnostics Operations, Inc. Test strip with slot vent opening
US7727467B2 (en) 2003-06-20 2010-06-01 Roche Diagnostics Operations, Inc. Reagent stripe for test strip
US8586373B2 (en) 2003-06-20 2013-11-19 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
US8507289B1 (en) 2003-06-20 2013-08-13 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
JPWO2005088288A1 (ja) * 2004-03-10 2008-01-31 独立行政法人産業技術総合研究所 カーボンナノチューブバイオセンサ
WO2005088288A1 (ja) * 2004-03-10 2005-09-22 National Institute Of Advanced Industrial Science And Technology カーボンナノチューブバイオセンサ
US9410915B2 (en) 2004-06-18 2016-08-09 Roche Operations Ltd. System and method for quality assurance of a biosensor test strip
JP2008532047A (ja) * 2005-03-04 2008-08-14 バイエル・ヘルスケア・エルエルシー 電気化学的バイオセンサでの酵素活性の安定化
JP2012198218A (ja) * 2005-03-04 2012-10-18 Bayer Healthcare Llc 電気化学的バイオセンサでの酵素活性の安定化
JP2013145243A (ja) * 2006-09-22 2013-07-25 Bayer Healthcare Llc 改善された安定性およびヘマトクリット性能(performance)を有するバイオセンサー系
JP2010237140A (ja) * 2009-03-31 2010-10-21 Cci Corp バイオセンサ
WO2011087033A1 (ja) * 2010-01-14 2011-07-21 グンゼ株式会社 バイオセンサー
JP5798044B2 (ja) * 2010-01-14 2015-10-21 グンゼ株式会社 バイオセンサー
JP2013518255A (ja) * 2010-01-22 2013-05-20 バイエル・ヘルスケア・エルエルシー 確度改善性乾燥剤
KR101783067B1 (ko) * 2010-01-22 2017-09-28 바이엘 헬쓰케어 엘엘씨 정확도 향상용 건조제
US9664638B2 (en) 2010-01-22 2017-05-30 Ascensia Diabetes Care Holdings Ag Biosensor desiccant system having enhanced measurement performance
JP2018031788A (ja) * 2010-01-22 2018-03-01 バイエル・ヘルスケア・エルエルシーBayer HealthCare LLC 確度改善性乾燥剤
JPWO2012042903A1 (ja) * 2010-09-30 2014-02-06 パナソニック株式会社 試薬組成物、センサ、センサシステム及びセンサの製造方法
JP2012211810A (ja) * 2011-03-31 2012-11-01 Cci Corp 測定精度を向上させたバイオセンサ
JP2013024879A (ja) * 2011-07-22 2013-02-04 Bayer Healthcare Llc 向上された計測性能を有するバイオセンサ乾燥剤系
US9372167B2 (en) 2012-04-19 2016-06-21 Aytu Bioscience, Inc. Oxidation-reduction potential test device including a multiple layer gel
JP2015514996A (ja) * 2012-04-19 2015-05-21 ルオクシス ダイアグノスティクス インコーポレイテッドLuoxis Diagnostics,Inc. 多層ゲル
US10281425B2 (en) 2012-04-19 2019-05-07 Aytu Bioscience, Inc. Multiple layer gel
US9410913B2 (en) 2012-10-23 2016-08-09 Aytu Bioscience, Inc. Methods and systems for measuring and using the oxidation-reduction potential of a biological sample
JP2015139376A (ja) * 2014-01-27 2015-08-03 東洋紡株式会社 グルコースデヒドロゲナーゼ組成物

Also Published As

Publication number Publication date
DE60024965T2 (de) 2006-07-13
US7005048B1 (en) 2006-02-28
CA2347594C (en) 2006-11-28
DE60024965D1 (de) 2006-01-26
CN1327536A (zh) 2001-12-19
EP1146332A1 (en) 2001-10-17
EP1146332B1 (en) 2005-12-21
JP3867959B2 (ja) 2007-01-17
EP1146332B8 (en) 2006-06-07
CA2347594A1 (en) 2001-04-12
EP1146332A4 (en) 2004-05-12
CN1184472C (zh) 2005-01-12
ATE313790T1 (de) 2006-01-15

Similar Documents

Publication Publication Date Title
WO2001025776A1 (fr) Glucometre
EP0992589B1 (en) Glucose sensor
JP2760234B2 (ja) 基質濃度測定方法
US6656702B1 (en) Biosensor containing glucose dehydrogenase
US5906921A (en) Biosensor and method for quantitative measurement of a substrate using the same
JP3297630B2 (ja) バイオセンサ
US6225078B1 (en) Method for quantitative measurement of a substrate
JP3370504B2 (ja) バイオセンサ
JP3102613B2 (ja) バイオセンサ
JP2960265B2 (ja) バイオセンサおよびそれを用いた測定方法
JP3024394B2 (ja) バイオセンサおよびそれを用いた測定方法
JPWO2003048756A1 (ja) バイオセンサ
US6071392A (en) Cholesterol sensor
JP3770757B2 (ja) バイオセンサ
JPH10232219A (ja) コレステロールセンサおよびその製造方法
JP3494398B2 (ja) バイオセンサ
JPH09297121A (ja) コレステロールセンサ
JP3611268B2 (ja) バイオセンサおよびその製造方法
JP3163218B2 (ja) バイオセンサの製造法
JP3297623B2 (ja) バイオセンサ
JP3115167B2 (ja) バイオセンサ
JP3222985B2 (ja) バイオセンサ
JP2002333420A (ja) バイオセンサおよび基質の定量方法
JP3063442B2 (ja) バイオセンサおよびその製造方法
JP2001174432A (ja) バイオセンサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00802139.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2001 528689

Country of ref document: JP

Kind code of ref document: A

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09807692

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2347594

Country of ref document: CA

Ref document number: 2347594

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2000963053

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2000963053

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000963053

Country of ref document: EP