WO2001022482A1 - Procede de production de couches de silicium-germanium decontractees - Google Patents

Procede de production de couches de silicium-germanium decontractees Download PDF

Info

Publication number
WO2001022482A1
WO2001022482A1 PCT/US2000/040938 US0040938W WO0122482A1 WO 2001022482 A1 WO2001022482 A1 WO 2001022482A1 US 0040938 W US0040938 W US 0040938W WO 0122482 A1 WO0122482 A1 WO 0122482A1
Authority
WO
WIPO (PCT)
Prior art keywords
germanium
layer
source gas
gas
component
Prior art date
Application number
PCT/US2000/040938
Other languages
English (en)
Other versions
WO2001022482A9 (fr
Inventor
Eugene A. Fitzgerald
Original Assignee
Amberwave Systems Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amberwave Systems Corporation filed Critical Amberwave Systems Corporation
Priority to EP00974128A priority Critical patent/EP1214735A1/fr
Priority to JP2001525758A priority patent/JP2003517726A/ja
Publication of WO2001022482A1 publication Critical patent/WO2001022482A1/fr
Publication of WO2001022482A9 publication Critical patent/WO2001022482A9/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/0251Graded layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Definitions

  • the invention relates to the field of relaxed SiGe layers.
  • CVD is, under most conditions and products, the most economical method of depositing thin layers of crystalline semiconductors.
  • High thin-film growth rates are essential in producing economical relaxed SiGe materials on Si substrates, since the SiGe layers are relatively thick.
  • the highest growth rates known to date, which have been deposited in non-commercial equipment, have been achieved with CVD, with a maximum growth rate of about 6 micrometers per hour.
  • CVD deposition equipment can become too coated with thin film deposit in areas other than the substrate area. If this deposition is too great, it may prevent a large number of consecutive wafer deposition processes, leading to greater cost.
  • An additional problem is that in attempting to deposit films at high growth rates, gas-phase nucleation can occur, in which particles of SiGe, Si, or Ge form in the gas stream and subsequently deposit on the wafer surface.
  • FIG. 1 is a graph showing the growth rate of epitaxial silicon as a function of growth temperature for a variety of Si source gases;
  • FIG. 2 is a graph of the threading dislocation density at the surface of a relaxed
  • FIGs. 3A and 3B are schematic block diagrams of exemplary structures with a uniform cap layer of Si,. x Ge x (0 ⁇ x ⁇ l) and Si 07 Ge 03 , respectively, on a silicon substrate using a relaxed SiGe graded buffer layer in accordance with the invention.
  • FIG. 1 is a graph showing the growth rate of silicon versus temperature for various source gases. Two distinct growth regimes are evident. For low temperatures, the growth rate has an exponential dependence on temperature, indicating that the growth is reaction rate or kinetically limited. For high temperatures, the growth rate has a weak dependence on temperature, indicating that the growth is mass transport or diffusion limited. Epitaxial layers are formed in the mass transport limited regime to minimize the effects of temperature variations during growth.
  • germane-chlorine-based gas used to increase the decomposition temperature.
  • chlorogermanes can be used to extend growth temperatures to more than 200°C over germane growth temperatures without increasing gas phase nucleation. In this way, the decomposition temperatures of the gases can be optimally chosen such that very high growth rates can be achieved at high temperatures.
  • the most readily available germanium-chlorine source gas is germanium tetrachloride, (GeCl 4 ). This gas, unlike germane, can be used at growth temperatures in excess of 800°C to grow thick, relaxed SiGe layers without excessive equipment coating and particle formation. It can be combined with any of the source gases for silicon, such as silane, dichlorosilane, trichlorosilane, and silicon tetrachloride to form high quality SiGe layers.
  • FIG. 2 is a graph showing experimental data of dislocation density versus growth temperature for SiGe graded layers.
  • SiGe relaxed buffers with a 30% Ge final composition cannot be grown much above 800°C without experiencing severe gas phase nucleation.
  • FIGs. 3A and 3B are schematic block diagrams of exemplary structures with a uniform cap layer of Si !.x Ge x (0 ⁇ x ⁇ 1) and Si 07 Ge 03 , respectively, on a silicon substrate using a relaxed SiGe graded buffer layer in accordance with the invention.
  • the structures include a monocrystalline silicon substrate 300, a SiGe graded buffer layer 302, and a uniform concentration SiGe cap layer 304, 306.
  • the SiGe buffer layer 302 is a series of SiGe layers with increasing Ge concentration, usually with a gradient of less than 25% Ge per micron. By increasing the Ge concentration gradually, the strain due to the lattice mismatch between Si and Ge is relieved and the threading dislocation density is minimized.
  • the cap layers are high quality
  • SiGe layer with uniform Ge concentration that can be used as a platform for device fabrication.
  • FIG. 3 A shows a generic structure where the cap layer 304 Ge concentration can vary from 0 ⁇ x ⁇ l.
  • FIG. 3B shows a structure where the cap layer 306 is Si 07 Ge 03 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

L'invention concerne un procédé de fabrication d'un matériau semiconducteur et d'une structure subséquente, qui consiste à mettre en place un substrat de silicium monocristallin. Le procédé consiste ensuite à utiliser une source gazeuse de GexHyClz pour l'élément germanium pour déposer, par croissance épitaxiale, une couche Si1-xGex calibrée sur le substrat de silicium, à une température supérieure à 850 °C, la teneur en germanium augmentant à un gradient inférieur à 25 % Ge par micron, ce qui donne une composition finale de l'ordre de 0,1<=x<=1. Le procédé consiste enfin à déposer, par croissance épitaxiale, une couche de matériau semiconducteur sur la couche calibrée.
PCT/US2000/040938 1999-09-20 2000-09-19 Procede de production de couches de silicium-germanium decontractees WO2001022482A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP00974128A EP1214735A1 (fr) 1999-09-20 2000-09-19 Procede de production de couches de silicium-germanium decontractees
JP2001525758A JP2003517726A (ja) 1999-09-20 2000-09-19 緩和シリコンゲルマニウム層の作製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15485199P 1999-09-20 1999-09-20
US60/154,851 1999-09-20

Publications (2)

Publication Number Publication Date
WO2001022482A1 true WO2001022482A1 (fr) 2001-03-29
WO2001022482A9 WO2001022482A9 (fr) 2002-08-08

Family

ID=22553074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/040938 WO2001022482A1 (fr) 1999-09-20 2000-09-19 Procede de production de couches de silicium-germanium decontractees

Country Status (3)

Country Link
EP (1) EP1214735A1 (fr)
JP (1) JP2003517726A (fr)
WO (1) WO2001022482A1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003069657A1 (fr) * 2002-02-15 2003-08-21 Centre National De La Recherche Scientifique Procede de formation de couche de carbure de silicium ou de nitrure d'element iii sur un substrat adapte
WO2003079415A2 (fr) * 2002-03-14 2003-09-25 Amberwave Systems Corporation Procedes de fabrication de couches contraintes sur des substrats semiconducteurs
WO2004019391A2 (fr) 2002-08-23 2004-03-04 Amberwave Systems Corporation Heterostructures semi-conductrices possedant des empilements de dislocations reduits et procedes associes
WO2004086473A1 (fr) 2003-03-19 2004-10-07 Amberwave Systems Corporation Procede de production de couches de silicium-germanium relaxees de haute qualite
US6946371B2 (en) 2002-06-10 2005-09-20 Amberwave Systems Corporation Methods of fabricating semiconductor structures having epitaxially grown source and drain elements
US7071014B2 (en) 2002-10-30 2006-07-04 Amberwave Systems Corporation Methods for preserving strained semiconductor substrate layers during CMOS processing
EP1681711A1 (fr) * 2005-01-05 2006-07-19 Siltronic AG Plaquette de semi-conducteur avec une couche de silicium-germanium et procédé pour sa fabrication
US7214598B2 (en) 2002-05-31 2007-05-08 Advancesis Limited Formation of lattice-tuning semiconductor substrates
US7288430B2 (en) 2000-11-27 2007-10-30 S.O.I.Tec Silicon On Insulator Technolgoies Method of fabricating heteroepitaxial microstructures
US7594967B2 (en) * 2002-08-30 2009-09-29 Amberwave Systems Corporation Reduction of dislocation pile-up formation during relaxed lattice-mismatched epitaxy
US7709828B2 (en) 2001-09-24 2010-05-04 Taiwan Semiconductor Manufacturing Company, Ltd. RF circuits including transistors having strained material layers
EP4220686A1 (fr) * 2022-01-31 2023-08-02 Siltronic AG Procédé de dépôt d'une couche tampon à gradient de contrainte relaxé en silicium-germanium sur une surface d'un substrat

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4894390B2 (ja) * 2006-07-25 2012-03-14 信越半導体株式会社 半導体基板の製造方法
EP2104135B1 (fr) * 2008-03-20 2013-06-12 Siltronic AG Plaquette semiconductrice dotée d'une couche hétéroépitaxiale et procédé pour la fabrication de la plaquette

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3935040A (en) * 1971-10-20 1976-01-27 Harris Corporation Process for forming monolithic semiconductor display
EP0514018A2 (fr) * 1991-04-24 1992-11-19 AT&T Corp. Procédé de fabrication d'une hétéro-structure semi-conductrice à faible taux de défauts et composants obtenus par ledit procédé

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3935040A (en) * 1971-10-20 1976-01-27 Harris Corporation Process for forming monolithic semiconductor display
EP0514018A2 (fr) * 1991-04-24 1992-11-19 AT&T Corp. Procédé de fabrication d'une hétéro-structure semi-conductrice à faible taux de défauts et composants obtenus par ledit procédé

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7955435B2 (en) 1999-09-20 2011-06-07 Taiwan Semiconductor Manufacturing Company, Ltd. Method of producing high quality relaxed silicon germanium layers
US7041170B2 (en) 1999-09-20 2006-05-09 Amberwave Systems Corporation Method of producing high quality relaxed silicon germanium layers
US7674335B2 (en) 1999-09-20 2010-03-09 Taiwan Semiconductor Manufacturing Company, Ltd. Method of producing high quality relaxed silicon germanium layers
US7646038B2 (en) 2000-11-27 2010-01-12 S.O.I.Tec Silicon On Insulator Technologies Method of fabricating heteroepitaxial microstructures
US7288430B2 (en) 2000-11-27 2007-10-30 S.O.I.Tec Silicon On Insulator Technolgoies Method of fabricating heteroepitaxial microstructures
US7906776B2 (en) 2001-09-24 2011-03-15 Taiwan Semiconductor Manufacturing Company, Ltd. RF circuits including transistors having strained material layers
US7709828B2 (en) 2001-09-24 2010-05-04 Taiwan Semiconductor Manufacturing Company, Ltd. RF circuits including transistors having strained material layers
FR2836159A1 (fr) * 2002-02-15 2003-08-22 Centre Nat Rech Scient Procede de formation de couche de carbure de silicium ou de nitrure d'element iii sur un substrat adapte
WO2003069657A1 (fr) * 2002-02-15 2003-08-21 Centre National De La Recherche Scientifique Procede de formation de couche de carbure de silicium ou de nitrure d'element iii sur un substrat adapte
WO2003079415A2 (fr) * 2002-03-14 2003-09-25 Amberwave Systems Corporation Procedes de fabrication de couches contraintes sur des substrats semiconducteurs
WO2003079415A3 (fr) * 2002-03-14 2004-01-15 Amberwave Systems Corp Procedes de fabrication de couches contraintes sur des substrats semiconducteurs
US7214598B2 (en) 2002-05-31 2007-05-08 Advancesis Limited Formation of lattice-tuning semiconductor substrates
US6946371B2 (en) 2002-06-10 2005-09-20 Amberwave Systems Corporation Methods of fabricating semiconductor structures having epitaxially grown source and drain elements
EP2267762A2 (fr) 2002-08-23 2010-12-29 Taiwan Semiconductor Manufacturing Co., Ltd. Hétérostructures semi-conductrices dotées d'une accumulation de dislocation réduite et procédés connexes
WO2004019391A2 (fr) 2002-08-23 2004-03-04 Amberwave Systems Corporation Heterostructures semi-conductrices possedant des empilements de dislocations reduits et procedes associes
US7594967B2 (en) * 2002-08-30 2009-09-29 Amberwave Systems Corporation Reduction of dislocation pile-up formation during relaxed lattice-mismatched epitaxy
US7202121B2 (en) 2002-10-30 2007-04-10 Amberwave Systems Corporation Methods for preserving strained semiconductor substrate layers during CMOS processing
US7416909B2 (en) 2002-10-30 2008-08-26 Amberwave Systems Corporation Methods for preserving strained semiconductor substrate layers during CMOS processing
US7541208B2 (en) 2002-10-30 2009-06-02 Amberwave Systems Corporation Methods for preserving strained semiconductor substrate layers during CMOS processing
US7208332B2 (en) 2002-10-30 2007-04-24 Amberwave Systems Corporation Methods for preserving strained semiconductor substrate layers during CMOS processing
US7071014B2 (en) 2002-10-30 2006-07-04 Amberwave Systems Corporation Methods for preserving strained semiconductor substrate layers during CMOS processing
WO2004086473A1 (fr) 2003-03-19 2004-10-07 Amberwave Systems Corporation Procede de production de couches de silicium-germanium relaxees de haute qualite
JP2006523380A (ja) * 2003-03-19 2006-10-12 アンバーウェーブ システムズ コーポレイション 高品質の緩和シリコンゲルマニウム層の製造方法
JP2011223020A (ja) * 2003-03-19 2011-11-04 Taiwan Semiconductor Manufactuaring Co Ltd 高品質の緩和シリコンゲルマニウム層の製造方法
EP1681711A1 (fr) * 2005-01-05 2006-07-19 Siltronic AG Plaquette de semi-conducteur avec une couche de silicium-germanium et procédé pour sa fabrication
EP4220686A1 (fr) * 2022-01-31 2023-08-02 Siltronic AG Procédé de dépôt d'une couche tampon à gradient de contrainte relaxé en silicium-germanium sur une surface d'un substrat
WO2023143804A1 (fr) * 2022-01-31 2023-08-03 Siltronic Ag Procédé de dépôt d'une couche tampon à gradient et à relaxation de contrainte de silicium-germanium sur une surface d'un substrat

Also Published As

Publication number Publication date
WO2001022482A9 (fr) 2002-08-08
EP1214735A1 (fr) 2002-06-19
JP2003517726A (ja) 2003-05-27

Similar Documents

Publication Publication Date Title
JP4417625B2 (ja) トリシランを用いる混合基板への成膜方法、および、ベース構造の製造方法
US4891091A (en) Method of epitaxially growing compound semiconductor materials
US7674335B2 (en) Method of producing high quality relaxed silicon germanium layers
TWI405248B (zh) 沉積摻雜碳之磊晶半導體層之方法、沉積半導體材料的方法與裝置及在反應腔室中之基板上形成電晶體設備之方法
US7785995B2 (en) Semiconductor buffer structures
WO2001054175A1 (fr) Couches epitaxiales desadaptees detendues a faible densite de dislocations traversantes exemptes de forte augmentation thermique
CN103228827A (zh) 外延碳化硅单晶基板的制造方法
EP1214735A1 (fr) Procede de production de couches de silicium-germanium decontractees
WO2004081986A2 (fr) Procede de planarisation et de reduction de la densite des defauts du silicium germanium
US7723214B2 (en) Multilayer structure comprising a substrate and a layer of silicon and germanium deposited heteroepitaxially thereon, and a process for producing it
AU651568B2 (en) Method for forming crystalline deposited film
JPH0952798A (ja) 炭化珪素薄膜製造方法並びに炭化珪素薄膜および積層基板
JP4158607B2 (ja) 半導体基板の製造方法
EP0114876B1 (fr) Silicium epitaxial ultra-pur et procede de fabrication
WO2018078385A1 (fr) Plaquette revêtue
Yakimova et al. On the morphology of Sb-doped GaAs layers grown by MOVPE
Sivaram CVD of Semiconductors
JPH01172295A (ja) エピタキシャル成長によるシリコン結晶薄膜の製造方法
JPH02202017A (ja) シリコン単結晶薄膜の製造方法
JPH084073B2 (ja) 半導体素子の製法
JPH05136065A (ja) 半導体の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 525758

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2000974128

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000974128

Country of ref document: EP

AK Designated states

Kind code of ref document: C2

Designated state(s): CA JP

AL Designated countries for regional patents

Kind code of ref document: C2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

COP Corrected version of pamphlet

Free format text: PAGES 1/3-3/3, DRAWINGS, REPLACED BY NEW PAGES 1/2-2/2; DUE TO LATE TRANSMITTAL BY THE RECEIVING OFFICE

WWW Wipo information: withdrawn in national office

Ref document number: 2000974128

Country of ref document: EP