Connect public, paid and private patent data with Google Patents Public Datasets

Use of combination of polyoxyethylene sorbitan ester and octoxynol as adjuvant and its use in vaccines

Info

Publication number
WO2001021207A2
WO2001021207A2 PCT/EP2000/009366 EP0009366W WO2001021207A2 WO 2001021207 A2 WO2001021207 A2 WO 2001021207A2 EP 0009366 W EP0009366 W EP 0009366W WO 2001021207 A2 WO2001021207 A2 WO 2001021207A2
Authority
WO
Grant status
Application
Patent type
Prior art keywords
vaccine
invention
virus
example
influenza
Prior art date
Application number
PCT/EP2000/009366
Other languages
French (fr)
Other versions
WO2001021207A3 (en )
Inventor
Martin Friede
Philippe Hermand
Veronique Henerickx
Original Assignee
Smithkline Beecham Biologicals S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0043Nose

Abstract

The invention relates to a novel adjuvant system comprising a polyoxyethylene sorbitan ester surfactant in combination with an octoxynol and vaccines comprising the adjuvant system together with an antigen. Further provided are methods of manufacturing the adjuvants and vaccines and the use of the adjuvants and vaccines in the prophylaxis or therapy of disease.

Description

Vaccines

The present invention relates to a novel adjuvant system comprising a polyoxyethylene sorbitan ester surfactant in combination with an octoxynol. The present invention provides said novel adjuvants, vaccines comprising them, and methods for their manufacture and for their formulation into vaccines. The use of the adjuvants or vaccines of the present invention in the prophylaxis or therapy of disease is also provided. The adjuvants are particularly useful as mucosal adjuvants, but are also effective systemically. The adjuvants are especially useful in the context of influenza vaccines.

Apart from bypassing the requirement for painful injections and the associated negative affect on patient compliance because of "needle fear", mucosal vaccination is attractive since it has been shown in animals that mucosal administration of antigens has a greater efficiency in inducing protective responses at mucosal surfaces, which is the route of entry of many pathogens. In addition, it has been suggested that mucosal vaccination, such as intranasal vaccination, may induce mucosal immunity not only in the nasal mucosa, but also in distant mucosal sites such as the genital mucosa (Mestecky, 1987, Journal of Clinical Immunology, 7, 265-276; McGhee and Kiyono, Infectious Agents and Disease, 1993, 2, 55-73). Despite much research in the field, safe and effective adjuvants which are suitable for use in humans, remain to be identified. The present invention provides a solution to this problem.

Medical uses of certain non-ionic surfactants have been described. For example, intranasal administration of polyoxyethylene sorbitan esters, polyoxyethylene ethers, bile salts, and other permeation enhancers, for the enhancement of insulin uptake in the nasal cavity has been described (Hirai et al. 1981, International Journal of Pharmaceutics, 9, 165-172; Hirai et al. 1981, International Journal of Pharmaceutics, 9, 173-184).

Other non-ionic surfactant formulations have been utilised. For example, vaccine preparations comprising an admixture of either polyoxyethylene castor oil or caprylic/capric acid glycerides, with polyoxyethylene sorbitan monoesters, and an antigen, are capable of inducing systemic immune responses after topical administration to a mucosal membrane (WO 94/17827). This patent application discloses the combination of the non-ionic surfactant TWEEN20™ (polyoxyethylene sorbitan monoester) and Imwitor742™ (caprylic/capric acid glycerides), or a combination of TWEEN20™ and polyoxyethylene castor oil is able to enhance the systemic immune response following intranasal immunisation. Details of the effect of this formulation on the enhancement of the immune response towards intranasally administered antigens have also been described in the literature (Gizurarson et al. 1996. Vaccine Research, 5, 69-75; Aggerbeck et al. 1997, Vaccine, 15, 307-316; Tebbey et al., Viral Immunol 1999;12(l):41-5). In the examples shown in WO 94/17827, (in particular example 4) the concentration of TWEEN20™ that is required to enhance the immune response is very high (36%), whereas at 28% even in the presence of the caprylic/capric acid glyceride no enhancement of the immune response occurs.

Non-ionic surfactants have also been formulated in such a way as to form non-ionic surfactant vesicles (commonly known as NISV; US 5,679,355). Such formulations of non-ionic surfactants, often in the presence of cholesterol, form lipid-bilayer vesicles which entrap antigen within the inner aqueous phase or within the bilayer itself.

WO 96/36352 and US 5,653,987 describe a liquid pharmaceutical agent comprising at least two absorption enhancers and water, primarily for oral insulin delivery, wherein the amount of each absorption enhancing agent is present in a concentration of from 1 to 10 % w/w of the total formulation.

Surfactants are commonly used in the formulation of oil emulsion adjuvants for systemic administration, and function to stabilise the oil droplets. For example, polyoxyethylene sorbitan esters (TWEEN™) and sorbitan fatty acid esters (SPAN™) are used to stabilise oil in water emulsions (EP 0 399 843, WO 95/17210).

Influenza virus vaccines have been prepared in the past by the use of Triton X-100 or a mixture of Tween and ether to split influenza virus. A clinical comparison of the systemic immunogenicity of the two splits shows that they are comparable (Gross et al. 1981. J. Clin Microbiol 14, 534-8). Other surfactants have also been investigated for their effect on the immunogenicity of the resulting split vaccine. In a comparative study of parenteral administration Mukhlis et al. (1984 Vaccine 2, 199-203) showed that whole virus was more immunogenic than detergent disrupted virus, but that between different detergents Triton X-100 and cetyl trimethyl ammonium bromide (CTAB) gave marginally more immunogenic splits than the detergent empigen.

The applicant presents here the surprising finding that polyoxyethylene sorbitan esters in combination with an octoxynol together act as a potent adjuvant for vaccines. Advantageously, such compositions may be administered systemically, but are sufficient to induce systemic immune responses when administered mucosally. The immune responses induced by mucosal administration of vaccines of the present invention may be at least as high as or at least comparable to those observed after a systemic injection of conventional vaccine.

The present invention provides safe and potent adjuvants which are easy to manufacture, which may be administered either through mucosal or systemic routes.

In a first aspect the invention provides an adjuvant which comprises a polyoxyethylene sorbitan ester and an octoxynol.

In another aspect the invention provides a vaccine comprising an adjuvant according to the invention, together with an antigen.

Particularly preferred is a vaccine composition comprising an adjuvant according to the invention together with influenza virus antigen for administration to a mucosal surface, in particularly to the nasal mucosa. However, there are alternative routes of administration and other possible antigens for use in a vaccine according to the invention which will be described below.

Octoxynols and polyoxyethylene sorbitan esters are described in "Surfactant systems" Eds: Attwood and Florence (1983, Chapman and Hall). The octoxynol series, including t-octylphenoxypolyethoxyethanol (TRITON X-100™) is also described in Merck Index Entry 6858 (Page 1162, 12th Edition, Merck & Co. Inc., Whitehouse Station, N.J., USA; ISBN 0911910-12-3). The polyoxyethylene sorbitan esters, including polyoxyethylene sorbitan monooleate (TWEEN80™) are described in Merck Index Entry 7742 (Page 1308, 12th Edition, Merck & Co. Inc., Whitehouse Station, N.J., USA; ISBN 0911910-12-3). Both may be manufactured using methods described therein, or purchased from commercial sources such as Sigma Inc.

Preferred octoxynols for use in the adjuvants according to the invention include other non-ionic surfactants from the Triton series, such as Triton X-45, Triton X-102, Triton X-l 14, Triton X-165, Triton X-205, Triton X-305, Triton N-57, Triton N-101 and Triton N-128, but t-octylphenoxypolyethoxyethanol (Triton X-100) is particularly preferred.

The adjuvants of the present invention comprise a polyoxyethylene sorbitan ester and an octoxynol. Preferably the octoxynol is t-octylphenoxypolyethoxyethanol (TRITON -X-100™). Preferably the polyoxyethylene sorbitan ester is polyoxyethylene sorbitan monooleate (TWEEN80™).

The adjuvant according to the invention may advantageously further comprise a bile salt or a cholic acid derivative.

Accordingly the adjuvant may comprise a polyoxyethylene sorbitan ester such as polyoxyethylene sorbitan monooleate (Tween 80), an octoxynol such as t- octylphenoxy polyethoxyethanol (Triton X-100) and a bile salt or cholic acid derivative such as sodium deoxycholate or taurodeoxycholate. In a preferred embodiment, the invention provides an adjuvant formulation comprising polyoxyethylene sorbitan monooleate (Tween 80), t-octylphenoxy polyethoxyethanol (Triton X-100) and sodium deoxycholate.

Preferably, the total concentration of non-ionic surfactants present in the adjuvant formulation is less than 40%, more preferably up to about 20%. A preferred range is between about 0.001% to 20%, more preferably 0.01 to 10% and most preferably up to about 2% (w/v).

The individual non-ionic surfactants have preferred concentrations in the final vaccine composition as follows: octyl-or nonylphenoxy polyethoxyethanols such as Triton X- 100 or other detergents in the Triton series: from 0.001% to 20%, preferably 0.001% to 10%), more preferably from 0.001 to 1% and most preferably 0.005 to 0.1% (w/v); polyoxyethylene sorbitan esters such as Tween 80: 0.01 to 1%, most preferably about 0.0% (w/v).

Particularly prefered ranges for the concentrations of the non-ionic surfactants are:

Tween 80™: 0.01 to 1%, most preferably about 0.1% (v/v);

Triton X-100™: 0.001 to 0.1, most preferably 0.005 to 0.02 % (w/v).

One aspect of the present invention is a vaccine formulation comprising a polyoxyethylene sorbitan ester surfactant in combination with an octoxynol, wherein the antigen present in the vaccine is not entrapped within a non-ionic surfactant vesicle.

Inflluenza virus antigens for use in the vaccine according to the invention may be any form of influenza antigens suitable for raising an immune response, including live or inactivated whole virus, split virus, or subunit antigens prepared from whole virus or by recombinant means. Influenza virus for production of the antigen may be grown in embryonated eggs in a conventional process or the virus may be grown in tissue culture. Suitable cell substrates for tissue culture of influenza include for example dog kidney cells such as MDCK cells, cells from a clone of MDCK, or MDCK-like cells, monkey kidney cells such as AGMK cells including Vero cells, or any other cell type suitable for the production of influenza virus for vaccine purposes. Suitable cell substrates also include human cells e.g. MRC-5 cells. Suitable cell substrates are not limited to cell lines; for example primary cells such as chicken embryo fibroblasts are also included.

Preferred is an influenza virus antigen preparation which comprises split virus which has undergone a series of purification steps. Thus the antigen preparation may be produced by a number of different commercially applicable processes, for example the split flu process described in patent no. DD 300 833 and DD 21 1 444, incorporated herein by reference. Commercially available split influenza vaccine includes Fluarix™ which is sold by SmithKline Beecham. Accordingly a preferred vaccine formulation according to the invention comprises egg or tissue culture derived influenza antigen, preferably split influenza antigen, together with a polyoxyethylene sorbitan ester and an octoxynol, optionally further comprising a bile salt or derivative of cholic acid. Most preferably such a formulation comprises split influenza virus antigen, polyoxyethylene sorbitan monooleate (Tween 80), t- octylphenoxypolyethoxyethanol (Triton X-100) and sodium deoxycholate.

The influenza vaccine according to the invention is preferably a multivalent influenza vaccine comprising two or more strains of influenza. Most preferably it is a trivalent vaccine comprising three strains. Conventional influenza vaccines comprise three strains of influenza, two A strains and one B strain. However, monovalent vaccines, which may be useful for example in a pandemic situation, are not excluded from the invention. A monovalent, pandemic flu vaccine will most likely contain influenza antigen from a single A strain.

The vaccine preparations of the present invention are preferably used to protect or treat a mammal susceptible to, or suffering from disease, by means of administering said vaccine via a mucosal route, such as the oral/bucal intestinal/vaginal/rectal or nasal route. Such administration may be in a droplet, spray, or dry powdered form. Nebulised or aerosolised vaccine formulations also form part of this invention. Enteric formulations such as gastro resistant capsules and granules for oral administration, suppositories for rectal or vaginal administration also form part of this invention. The present invention may also be used to enhance the immunogenicity of antigens applied to the skin (transdermal or transcutaneous delivery). In addition, the adjuvants of the present invention may be parentally delivered, for example intramuscular, or subcutaneous administration. When used for intranasal vaccination, the vaccines of the present invention are preferably haemolytic in nature.

Depending on the route of administration, a variety of administration devices may be used. For example, for the preferred, intranasal route of administration, a spray device such as the commercially available Accuspray™ (Becton Dickinson) may be used. Preferred spray devices for intranasal use are devices for which the performance of the device is not dependent upon the pressure applied by the user. These devices are known as pressure threshold devices. Liquid is released from the nozzle only when a threshold pressure is attained. These devices make it easier to achieve a consistent spray with a regular droplet size. Pressure threshold devices suitable for use with the present invention are known in the art and are described for example in WO 91/13281, EP 311 863 B and EP 516 636 B, incorporated herein by reference. Such devices are commercially available from Pfeiffer GmbH.

Preferred intranasal devices produce droplets (measured using water as the liquid) in the range 1 to 200μm, preferably 10 to 120μm. Below lOμm there is a risk of inhalation, therefore it is desirable to have no more than about 5% of droplets below lOμm. Droplets above 120μm do not spread as well as smaller droplets, so it is desirable to have no more than about 5% of droplets exceeding 120μm.

Bi-dose delivery is a further preferred feature of an intranasal delivery device for use with the vaccines according to the invention. Bi-dose devices contain two subdoses of a single vaccine dose, one sub-dose for administration to each nostril. Generally the two sub-doses are in a single chamber and the construction of the device allows the efficient delivery of a single sub-dose at a time.

The invention provides in a further aspect a kit comprising an intranasal administration device as described herein containing a vaccine formulation according to the invention. In a preferred embodiment of this aspect of the invention, the intranasal administration device is filled with an influenza vaccine.

For certain vaccine formulations, other vaccine components may be included in the formulation. As such the adjuvant formulations of the present invention may also comprise a bile acid or a derivative thereof, particular in the form of a salt. These include derivatives of cholic acid and salts thereof, in particular sodium salts of cholic acid or cholic acid derivatives. Examples of bile acids and derivatives thereof include cholic acid, deoxycholic acid, chenodeoxycholic acid, lithocholic acid, ursodeoxycholic acid, hyodeoxycholic acid and derivatives such as glyco-, tauro-, amidopropyl- 1 -propanesulfonic-, amidopropyl-2-hydroxy- 1 -propanesulfonic derivatives of the aforementioned bile acids, or N,N-bis (3Dgluconoamidopropyl) deoxycholamide. A particularly preferred example is sodium deoxycholate (NaDOC) which may be present in the final vaccine dose.

Preferably, the adjuvant formulations of the present invention are advantageous when in the form of an aqueous solution or a suspension of non-vesicular forms. Such formulations are easy to manufacture reproducibly, and also to sterilise (terminal filtration through a 450 or 220 nm pore membrane) and are easy to administer to the nasal mucosa in the form of a spray without degradation of the complex physical structure of the adjuvant.

In a further aspect of the present invention, there is provided a method of preparing a vaccine which method comprises admixing an adjuvant according to the invention with an antigen.

In a still further aspect, there is provided a method of inducing or enhancing an immune response in a subject, comprising admixing the antigen and the adjuvant according to the invention, and administering said admixture to the subject.

Preferably, the route of administration to the subject is via a mucosal surface and more preferably via the nasal mucosa. When the vaccine is administered via the nasal mucosa, the vaccine is preferably administered as a spray. In a preferred method of inducing or enhancing an immune response, a systemic response is induced by a nasal administration of the vaccine. Thus, a mucosal vaccine according to the invention is preferably capable of inducing a systemic immune response when administered via a mucosal route.

The present invention further provides the use of a polyoxyethylene sorbitan ester, and an octoxynol in the manufacture of an adjuvant formulation, in particular an adjuvant formulation for application to the mucosa of a patient. The present invention also relates to the use of a polyoxyethylene sorbitan ester, an octoxynol and an antigen, in the manufacture of a vaccine formulation, especially a vaccine formulation for application to the mucosa. Preferably the antigen is influenza virus antigen. Particularly preferred are adjuvants and vaccines for administration to the nasal mucosa.

Preferably the administering of a vaccine according to the invention comprises the administration of a priming or a boosting dose of the vaccine, such as a priming or a boosting dose of influenza vaccine comprising an influenza antigen preparation.

It is foreseen that compositions of the present invention will be used to formulate vaccines containing antigens derived from a wide variety of sources. For example, antigens may include human, bacterial, or viral nucleic acid, pathogen derived antigen or antigenic preparations, tumour derived antigen or antigenic preparations, host- derived antigens, including GnRH and IgE peptides, recombinantly produced protein or peptides, and chimeric fusion proteins.

Preferably the vaccine formulations of the present invention contain an antigen or antigenic composition capable of eliciting an immune response against a human pathogen, which antigen or antigenic composition is derived from HIV-1, (such as tat, nef, gpl 20 or gpl 60), human herpes viruses, such as gD or derivatives thereof or Immediate Early protein such as ICP27 from HSV1 or HSV2, cytomegalovirus ((esp Human)(such as gB or derivatives thereof), Rotavirus (including live-attenuated viruses), Epstein Barr virus (such as gp350 or derivatives thereof), Varicella Zoster Virus (such as gpl, II and IE63), or from a hepatitis virus such as hepatitis B virus (for example Hepatitis B Surface antigen or a derivative thereof), hepatitis A virus, hepatitis C virus and hepatitis E virus, or from other viral pathogens, such as paramyxoviruses: Respiratory Syncytial virus (such as F and G proteins or derivatives thereof), parainfluenza virus, measles virus, mumps virus, human papilloma viruses (for example HPV6, 1 1, 16, 18, ..), flaviviruses (e.g. Yellow Fever Virus, Dengue Virus, Tick-borne encephalitis virus, Japanese Encephalitis Virus) or Influenza virus (whole live or inactivated virus, split influenza virus, grown in eggs or MDCK cells, or Vero cells or whole flu virosomes (as described by R. Gluck, Vaccine, 1992, 10, 915-920) or purified or recombinant proteins thereof, such as HA, NP, NA, or M proteins, or combinations thereof), or derived from bacterial pathogens such as Neisseria spp, including N gonorrhea and N meningitidis (for example capsular polysaccharides and conjugates thereof, transferrin-binding proteins, lactoferrin binding proteins, PilC, adhesins); S. pyogenes (for example M proteins or fragments thereof, C5A protease, lipoteichoic acids), S. agalactiae, S. mutans; H. ducreyi; Moraxella spp, including M catarrhalis, also known as Branhamella catarrhalis (for example high and low molecular weight adhesins and invasins); Bordetella spp, including B. pertussis (for example pertactin, pertussis toxin or derivatives thereof, filamenteous hemagglutinin, adenylate cyclase, fimbriae), B. parapertussis and B. bronchiseptica; Mycobacterium spp., including M. tuberculosis (for example ESAT6, Antigen 85A, -B or -C), M. bovis, M. leprae, M. avium, M. paratuberculosis, M. smegmatis; Legionella spp, including L. pneumophila; Escherichia spp, including enterotoxic E. coli (for example colonization factors, heat-labile toxin or derivatives thereof, heat-stable toxin or derivatives thereof), enterohemorragic E. coli, enteropathogenic E. coli (for example shiga toxin-like toxin or derivatives thereof); Vibrio spp, including V. cholera (for example cholera toxin or derivatives thereof); Shigella spp, including S. sonnei, S. dysenteriae, S. flexnerii; Yersinia spp, including Y. enterocolitica (for example a Yop protein) , Y. pestis, Y. pseudotuberculosis; Campylobacter spp, including C. jejuni (for example toxins, adhesins and invasins) and C. coli; Salmonella spp, including S. typhi, S. paratyphi, S. choleraesuis, S. enteritidis; Listeria spp., including L. monocytogenes; Helicobacter spp, including H. pylori (for example urease, catalase, vacuolating toxin); Pseudomonas spp, including P. aeruginosa; Staphylococcus spp., including S. aureus, S. epidermidis; Enter ococcus spp., including E.faecalis, E.faecium; Clostridium spp., including C. tetani (for example tetanus toxin and derivative thereof), C. botulinum (for example botulinum toxin and derivative thereof), C. difficile (for example clostridium toxins A or B and derivatives thereof); Bacillus spp., including B. anthracis (for example botulinum toxin and derivatives thereof); Corynebacterium spp., including C. diphtheriae (for example diphtheria toxin and derivatives thereof); Borrelia spp., including B. burgdorferi (for example OspA, OspC, DbpA, DbpB), B. garinii (for example OspA, OspC, DbpA, DbpB), B. afzelii (for example OspA, OspC, DbpA, DbpB), B. andersonii (for example OspA, OspC, DbpA, DbpB), B. hermsii; Ehrlichia spp., including E. equi and the agent of the Human Granulocytic Ehrlichiosis; Rickettsia spp, including R. rickettsii; Chlamydia spp., including C. trachomatis (for example MOMP, heparin-binding proteins), C. pneumoniae (for example MOMP, heparin-binding proteins,), C. psittaci; Leptospira spp., including L. interrogans; Treponema spp., including T. pallidum (for example the rare outer membrane proteins), T. denticola, T. hyodysenteriae; or derived from parasites such as Plasmodium spp., including P.falciparum; Toxoplasma spp., including T. gondii (for example SAG2, SAG3, Tg34); Entamoeba spp., including E. histolytica; Babesia spp., including B. microti; Trypanosoma spp., including T. cruzi; Giardia spp., including G. lamblia; Leshmania spp., including E major; Pneumocystis spp., including P. carinii; Trichomonas spp., including T. vaginalis; Schisostoma spp., including S. mansoni, or derived from yeast such as Candida spp., including C. albicans; Cryptococcus spp., including C. neoformans.

Preferred bacterial vaccines comprise antigens derived from Streptococcus spp, including S. pneumoniae (for example capsular polysaccharides and conjugates thereof, PsaA, PspA, streptolysin, choline-binding proteins) and the protein antigen Pneumolysin (Biochem Biophys Acta, 1989, 67, 1007; Rubins et al., Microbial Pathogenesis, 25, 337-342), and mutant detoxified derivatives thereof (WO 90/06951; WO 99/03884). Other preferred bacterial vaccines comprise antigens derived from Haemophilus spp., including H. inβuenzae type B (for example PRP and conjugates thereof), non typeable H. inβuenzae, for example OMP26, high molecular weight adhesins, P5, P6, protein D and lipoprotein D, and fimbrin and fimbrin derived peptides (US 5,843,464) or multiple copy varients or fusion proteins thereof. Other preferred bacterial vaccines comprise antigens derived from Moraxella Catarrhalis (including outer membrane vesicles thereof, and OMP106 (WO97/41731)) and from Neisseria mengitidis B (including outer membrane vesicles thereof), and NspA (WO 96/29412).

Derivatives of Hepatitis B Surface antigen are well known in the art and include, inter alia, those PreS 1 , PreS2 S antigens set forth described in European Patent applications EP-A-414 374; EP-A-0304 578, and EP 198-474. In one preferred aspect the vaccine formulation of the invention comprises the HIV-1 antigen, gpl 20, especially when expressed in CHO cells. In a further embodiment, the vaccine formulation of the invention comprises gD2t as hereinabove defined.

In a particular embodiment of the present invention vaccines containing the claimed adjuvant comprise antigen derived from the Human Papilloma Virus (HPV) considered to be responsible for genital warts, (ΗPV 6 or HPV 1 1 and others), and the HPV viruses responsible for cervical cancer (HPV16, HPV18 and others).

Particularly preferred forms of genital wart prophylactic, or therapeutic, vaccine comprise LI particles or capsomers, and fusion proteins comprising one or more antigens selected from the HPV 6 and HPV 11 proteins E6, E7, LI, and L2.

The most preferred forms of fusion protein are: L2E7 as disclosed in WO 96/26277, and protein D(l/3)-E7 disclosed in GB 9717953.5 (PCT/EP98/05285).

A preferred HPV cervical infection or cancer, prophylaxis or therapeutic vaccine composition may comprise HPV 16 or 18 antigens. For example, LI or L2 antigen monomers, or LI or L2 antigens presented together as a virus like particle (VLP) or the LI alone protein presented alone in a VLP or capsomer structure. Such antigens, virus like particles and capsomer are per se known. See for example WO94/00152, WO94/20137, WO94/05792, and WO93/02184.

Additional early proteins may be included alone or as fusion proteins such as preferably E7, E2 or E5 for example; particularly preferred embodiments of this includes a VLP comprising L1E7 fusion proteins (WO 96/11272).

Particularly preferred HPV 16 antigens comprise the early proteins E6 or E7 in fusion with a protein D carrier to form Protein D - E6 or E7 fusions from HPV 16, or combinations thereof; or combinations of E6 or E7 with L2 (WO 96/26277).

Alternatively the HPV 16 or 18 early proteins E6 and E7, may be presented in a single molecule, preferably a Protein D- E6/E7 fusion. Such vaccine may optionally contain either or both E6 and E7 proteins from HPV 18, preferably in the form of a Protein D - E6 or Protein D - E7 fusion protein or Protein D E6/E7 fusion protein.

The vaccine of the present invention may additionally comprise antigens from other HPV strains, preferably from strains HPV 6, 11, 31, 33, or 45. Vaccines of the present invention may comprise antigens derived from parasites that cause Malaria. For example, preferred antigens from Plasmodia falciparum include RTS,S and TRAP. RTS is a hybrid protein comprising substantially all the C-terminal portion of the circumsporozoite (CS) protein of P. falciparum linked via four amino acids of the preS2 portion of Hepatitis B surface antigen to the surface (S) antigen of hepatitis B virus. Its full structure is disclosed in the International Patent Application No. PCT/EP92/02591, published under Number WO 93/10152 claiming priority from UK patent application No.9124390.7. When expressed in yeast RTS is produced as a lipoprotein particle, and when it is co-expressed with the S antigen from HBV it produces a mixed particle known as RTS,S. TRAP antigens are described in the International Patent Application No. PCT/GB89/00895, published under WO 90/01496. A preferred embodiment of the present invention is a Malaria vaccine wherein the antigenic preparation comprises a combination of the RTS,S and TRAP antigens. Other plasmodia antigens that are likely candidates to be components of a multistage Malaria vaccine are P.faciparum MSP1, AMA1, MSP3, EBA, GLURP, RAP1, RAP2, Sequestrin, PfEMPl, Pf332, LSA1, LSA3, STARP, SALSA, PfEXPl, Pfs25, Pfs28, PFS27/25, Pfsl6, Pfs48/45, Pfs230 and their analogues in Plasmodium spp.

The formulations may alternatively contain an anti-tumour antigen and be useful for the immunotherapeutic treatment of cancers. For example, the adjuvant formulation finds utility with tumour rejection antigens such as those for prostrate, breast, colorectal, lung, pancreatic, renal or melanoma cancers. Exemplary antigens include MAGE 1 and MAGE 3 or other MAGE antigens for the treatment of melanoma, PRAME, BAGE or GAGE (Robbins and Kawakami, 1996, Current Opinions in Immunology 8, pps 628-636; Van den Eynde et al., International Journal of Clinical & Laboratory Research (submitted 1997); Correale et al. (1997), Journal of the National Cancer Institute 89, p293. Indeed these antigens are expressed in a wide range of tumour types such as melanoma, lung carcinoma, sarcoma and bladder carcinoma. Other Tumor-Specific antigens are suitable for use with adjuvant of the present invention and include, but are not restricted to Prostate specific antigen (PSA) or Her- 2/neu, KSA (GA733), MUC-1 and carcinoembryonic antigen (CEA). Accordingly in one aspect of the present invention there is provided a vaccine comprising an adjuvant composition according to the invention and a tumour rejection antigen. Additionally said antigen may be a self peptide hormone such as whole length Gonadotrophin hormone releasing hormone (GnRH, WO 95/20600), a short 10 amino acid long peptide, in the treatment of many cancers, or in immunocastration.

It is foreseen that compositions of the present invention will be used to formulate vaccines containing antigens derived from Borrelia sp.. For example, antigens may include nucleic acid, pathogen derived antigen or antigenic preparations, recombinantly produced protein or peptides, and chimeric fusion proteins. In particular the antigen is OspA. The OspA may be a full mature protein in a lipidated form virtue of the host cell (E.Coli) termed (Lipo-OspA) or a non-lipidated derivative. Such non-lipidated derivatives include the non-lipidated NSl-OspA fusion protein which has the first 81 N-terminal amino acids of the non-structural protein (NS1) of the influenza virus, and the complete OspA protein, and another, MDP-OspA is a non-lipidated form of OspA carrying 3 additional N-terminal amino acids.

Vaccines of the present invention may be used for the prophylaxis or therapy of allergy. Such vaccines would comprise allergen specific (for example Der pi) and allergen non-specific antigens (for example peptides derived from human IgE, including but not restricted to the stanworth decapeptide (EP 0 477 231 Bl)).

The amount of protein in each vaccine dose is selected as an amount which induces an immunoprotective response without significant, adverse side effects in typical vaccinees. Such amount will vary depending upon which specific immunogen is employed and how it is presented. Generally, it is expected that each dose will comprise 1-1000 μg of protein, preferably 1-500 μg, preferably l-100μg, most preferably 1 to 50μg. An optimal amount for a particular vaccine can be ascertained by standard studies involving observation of appropriate immune responses in subjects. Following an initial vaccination, subjects may receive one or several booster immunisation adequately spaced.

The vaccines of the present invention may also be administered via the oral route. In such cases the pharmaceutically acceptable excipient may also include antacid buffers, or enteric capsules or microgranules. The vaccines of the present invention may also be administered by the vaginal route. In such cases, the pharmaceutically acceptable excipients may also include emulsifiers, polymers such as CARBOPOL®, and other known stablilisers of vaginal creams and suppositories. The vaccines of the present invention may also be administered by the rectal route. In such cases the excipients may also include waxes and polymers known in the art for forming rectal suppositories.

The formulations of the present invention may be used for both prophylactic and therapeutic purposes. Accordingly, the present invention provides for a method of treating a mammal susceptible to or suffering from an infectious disease or cancer, or allergy, or auto-immune disease. In a further aspect of the present invention there is provided an adjuvant combination and a vaccine as herein described for use in medicine. Vaccine preparation is generally described in New Trends and Developments in Vaccines, edited by Voller et al, University Park Press, Baltimore, Maryland, U.S.A. 1978.

In an alternative, related embodiment of the present invention the adjuvant of the present invention may further be combined with other adjuvants including Cholera toxin and its B subunit, Monophosphoryl Lipid A and its non-toxic derivative 3-de-O- acylated monophosphoryl lipid A (as described in UK patent no. GB 2,220,211), immunologically active saponin fractions e.g. Quil A derived from the bark of the South American tree Quillaja Saponaria Molina and derivatives thereof (for example QS21, US Patent No.5,057,540), and the oligonucleotide adjuvant system CpG (as described in WO 96/02555), especially 5 TCG TCG TTT TGT CGT TTT GTC GTT3' (SEQ ID NO. 1).

The present invention is illustrated by, but not limited to, the following examples. In the examples below we used whole egg-grown flu virus inactivated with formaldehyde, or TWEEN-ether split virus or NaDOC split egg-grown virus supplemented with Triton X-100. The concentrations of the Tween-80 and Triton X- 100 are shown in the examples. Example 1, Methods used to measure antibody (Ab) responses in sera

ELISA for the measurement of influenza-specific serum Ig Abs: Maxisorp Nunc immunoplates are coated overnight at 4°C with 50 μl/well of 1 μg/ml HA of β-propiolactone (BPL) inactivated influenza virus (supplied by SSD GmBH manufacturer, Dresden, Germany) diluted in PBS. Free sites on the plates are blocked (1 hour, 37°C) using saturation buffer: PBS containing 1%BSA, 0.1% polyoxyethylene sorbitan monolaurate (TWEEN 20). Then, serial 2-fold dilutions (in saturation buffer, 50 μl per well) of a reference serum added as a standard curve (serum having a mid-point titer expressed as ELISA Unit/ml, and put in row A ) and serum samples (starting at a 1/100 dilution and put in rows B to H) are incubated for lhr 30mins at 37°C. The plates are then washed (χ3) with washing buffer (PBS, 0.1% polyoxyethylene sorbitan monolaurate (TWEEN 20)). Then, biotinylated goat anti- human Ig (Amersham) diluted 1/3000 in saturation buffer are incubated (50 μl/well) for lhr 30mins, at 37°C. After 3 washings, and subsequent addition of streptavidin- horseradish peroxidase conjugate (Amersham), plates are washed 5 times and incubated for 20 min at room temperature with 50 μl/well of revelation buffer (OPDA 0.4 mg/ml (Sigma) and H2O2 0.03% in 50mM pH 4.5 citrate buffer). Revelation is stopped by adding 50 μl/well H SO42N. Optical densities are read at 492 and 630 nm by using Biorad 3550 immunoreader. Antibody titre are calculated by the 4 parameter mathematical method using SoftMaxPro software.

Hemagglutination Inhibition (HAD activity of Flu-specific serum Abs in mice Sera (25 μl) are first treated for 20 minutes at room temperature (RT) with 100 μl borate 0.5M buffer (pH 9) and 125 μl Dade Behring-purchased kaolin. After centrifugation (30 minutes, 3000 RPM or 860 g), 100 μl supernatant (corresponding to a 1/10 dilution of the serum) are taken and incubated for 1 hour at 4°C with 0.5% chicken red blood cells. Supernatant is collected after centrifugation for 10 minutes at 3200 RPM (970 g). Both operations are done for eliminating the natural hemagglutinating factors contained in the sera. Then, 25 μl treated-sera are diluted in 25 μl PBS (serial 2-fold dilutions starting at 1/20) in 96 well Greiner plates. BPL inactivated whole virus is added (25 μl / well) at a concentration of 4 Hemagglutination Units (i.e. at a dilution which is 4-fold lower than the last one provoking an agglutination of red blood cells) for 30 minutes at RT under agitation. Chicken red blood cells are then added (25 μl / well) for 1 hour at RT. Plates are finally kept overnight at 4°C before to be read. The HAI titer corresponds to the inverse of the last serum dilution inhibiting the virus-induced hemagglutination.

ExampleZ, Effect ofTWEEN80 and Triton on the intranasal immunogenicity of inactivated whole influenza virus in mice

In the past, the pre-clinical evaluations of alternative influenza vaccines (e.g. adjuvanted parenteral vaccines, DNA-based vaccines or mucosally delivered vaccines) have mainly been performed in naϊve animals. In general, the promising results obtained from these studies were not confirmed in humans. This was probably due to the fact that the majority of adults have been immunologically "primed" through natural infections before vaccination, unlike the naϊve animals. Therefore, the best way to evaluate intranasal influenza vaccines in animal models would be to test their ability to boost pre-established immune responses in nasally primed animals. We assess in the present example the effect of TWEEN-80 and Triton X-100 on such responses.

The priming was done in female Balb/c mice (8 weeks old) at day 0 by administering with a pipette (under anesthesia) in each nostril 2.5 μg HA of BPL-inactivated A/Beijing/262/95 influenza virus contained in 10 μl PBS. After 28 days, mice (6 animals/group) were boosted intranasally (under anesthesia) with 20 μl of solution (10 μl per nostril, delivered as droplets by pipette) containing 5 μg HA of BPL- inactivated A/Beijing 262/95 influenza virus in either A: PBS; B: TWEEN80 (0.11%) plus Triton X-100 (0.074%) ; or by C: intramuscular injection of 1.5 μg HA of influenza vaccine. Antigens were supplied by SSD GmBH manufacturer (Dresden, Germany). HAI Ab responses were measured in sera as described in Example 1. As shown in the Figure 1, when formulated with TWEEN80 and Triton, inactivated influenza virus delivered intranasally is capable of boosting pre-established systemic HAI Ab responses as efficiently as the classical parenteral influenza vaccine. However, the same antigen given intranasally in the absence of TWEEN80 and Triton is significantly less immunogenic. Example 3: A comparison of the immunogenicity of an intranasal split influenza vaccine with TWEEN 80 & TRITON X-100 compared to a licensed conventional parenteral vaccine

in healthy adult subjects.

Formulations used in the study

Two formulations (A,B) of egg-derived split influenza antigens have been evaluated. A is an intranasal formulation and B is the Fluarix™/α-Rix® given intramuscularly. The formulations contain three inactivated split virion antigens prepared from the WHO recommended strains of the 1998/1999 season.

The device used for intranasal delivery is the Accuspray™ intranasal syringes from Becton Dickinson. lOOμl of the A formulation is sprayed in each nostril.

Composition of the formulations.

The intranasal formulation (A) contains the following inactivated split virions:

1. 30μg HA A/Beijing/262/95 (H1N1)

2. 30μg HA A/Sydney/5/97 (H3N2)

3. 30μg HA ofB/Harbin/7/94 and phosphate buffered saline pH 7.4± 0.1, Tween 80 0.1%, Triton X-100 0.015%, Na deoxycholate 0.0045% and thiomersal below 35μg/ml.

The volume of one dose is 200μl (lOOμl sub-doses for each nostril).

The comparator Fluarix™/α-Rix® is the SmithKline Beecham Biologicals' commercial inactivated trivalent split influenza vaccine. The dose of 500μl is administered intramuscularly.

This dose contains;

15μg HA of the three strains mentioned above, Tween 80 between 500 and 1000 μg per ml (0.05%-0.1%), Triton X-100 between 50 and 170μg/ml (0.005%-0.017%), sodium deoxycholate maximum lOOμg/ml, thiomersal lOOμg/ml and phosphate buffered saline pH between 6.8 and 7.5. Immunogenicity Study

An open, controlled and randomised study evaluated the immunogenicity of an intranasal split influenza vaccine formulated with Tween 80 & Triton X-100 compared to the conventional parenteral vaccine (i.e. Fluarix™). Twenty healthy adult subjects (aged 18-40 years) received one dose of Fluarix™ and ten subjects received one dose of the intranasal influenza vaccine. The intranasal formulation (200μl) contained the following inactivated virions: 30μg of haemagglutinin A/Beijing/262/95 (H1N1), 30μg of haemagglutinin A/Sydney/5/97 (H3N2), 30μg of haemagglutinin B/Harbin/7/94 with phosphate buffered saline (pH 7.4 ± 0.1), Tween 80 (0.1%), Triton X-100 (0.015%), sodium deoxycholate (0.0045%) and thiomersal (<35μg/ml).

There was an eight-day follow-up period for solicited local and general symptoms and both vaccines were well-tolerated regarding safety and reactogenicity. No serious adverse events related to vaccination were reported.

The immunogenicity of the vaccines was examined by assessing the serum haemagglutination inhibition (HI) titres to determine the seroconversion rate (defined as the percentage of vaccinees who have at least a 4- fold increase in serum HI titres on day 21 compared to day 0, for each vaccine strain), conversion factor (defined as the fold increase in serum HI Geometric Mean Titres (GMTs) on day 21 compared to day 0, for each vaccine strain) and seroprotection rate (defined as the percentage of vaccinees with a serum HI titre >40 after vaccination (for each vaccine strain) that is accepted as indicating protection). Generally, an influenza vaccine needs to have > or equal to 40% seroconversion rate, > or equal to 70% seroprotection rate and a conversion factor of > or equal to 2.5, for each strain, in order to meet the international regulatory requirements. This applies for adults between 18-60 years; different criteria apply for the elderly.

In addition, the mucosal IgA antibody response was assessed by Enzyme Linked Immunosorbent Assay (ELISA). HI seropositivity, serconversion and seroprotection rates twenty-one days after one dose of Fluarix™ or the intranasal formulation can be seen in Table 1.

Table 1:

HI seropositivity, seronversion and seroprotection rates at 21 days post dose 1

Seropositivity Seroprotection Seroconversion

Strain Group Timing N n % n % n %

A/Beijing Intranasal vaccine plus Day O 20 4 20.0 0 0.0

Tween 80 & Titron XI 00 Day 21 20 17 85.0 15 75.0 15 75.0

Fluarix™ Day O 19 4 21.1 3 15.8

Day 21 19 19 100.0 18 94.7 19 100.0

A/Sydney Intranasal vaccine plus Day O 20 13 65.0 3 15.0

Tween 80 & Titron XI 00 Day 21 20 20 100.0 19 95.0 15 75.0

Fluarix™ Day O 19 14 73.7 1 5.3

Day 21 19 19 100.0 18 94.7 16 84.2

B/Harbin Intranasal vaccine plus Day O 20 10 50.0 7 35.0

Tween 80 & Titron XI 00 Day 21 20 20 100.0 18 90.0 14 70.0

Fluarix™ Day O 19 17 89.5 11 57.9

Day 21 19 19 100.0 19 100.0 15 78.9

Seropositivity (n,%) : number and percentage of subjects with titer > 10

Seroprotection (n,%) : number and percentage of subjects with titer > 40

Seroconversion (n,%) : number and percentage of subjects with at least a 4-fold increase in titres from day 0 to day 21

In all cases, the conversion factor (fold increase in serum HI GMTs after vaccination) was greater than 2.5, the level required for a successful influenza vaccine.

The percentage of subjects with a two-fold or a four- fold increase in the specific/total mucosal IgA antibody ratio between day 21 and day 0 (1 dose) can be seen in Table 2. Table 2:

Percentages of subjects with a two-fold or a four- fold increase in the specific/total IgA ratio between day 21 and day 0 (I dose).

Summary

The immunogenicity results tabulated above show that the intranasal formulation produced similar levels of seropositivity, seroconversion and seroprotection to those produced by the conventional parenteral vaccine (Fluarix™) twenty-one days after one dose. The intranasal formulation produced a better mucosal IgA response after one dose than the conventional parenteral vaccine (Fluarix™).

Claims

1. The use of a combination of a polyoxyethylene sorbitan ester and an octoxynol in the preparation of an adjuvant for application to a mucosal surface of a patient
2. The use according to claim 1, wherein said polyoxyethylene sorbitan ester is polyoxyethylene sorbitan monooleate (TWEEN80™).
3. The use according to claim 1 or claim 2, wherein said octoxynol is t- octylphenoxypolyethoxyethanol (TRITON X-100™).
4. The use according to any one of claims 1 to 3, further comprising a bile salt or a cholic acid derivative.
5. The use of an adjuvant according to any one of claims 1 to 4, together with an antigen, in the manufacture of a vaccine for mucosal administration.
6. The use according to claim 5 wherein said antigen is selected from the group comprising: Human Immunodeficiency Virus, Varicella Zoster virus, Herpes Simplex Virus type 1, Herpes Simplex virus type 2, Human cytomegalovirus, Dengue virus, Hepatitis A, B, C or E, Respiratory Syncytial virus, human papilloma virus, Influenza virus, Hib, Meningitis virus, Salmonella, Neisseria, Borrelia, Chlamydia, Bordetella, Streptococcus, Mycoplasma, Mycobacteria, Haemophilus, Plasmodium or Toxoplasma, stanworth decapeptide; or Tumour associated antigens (TMA), MAGE, BAGE, GAGE, MUC-1, Her-2 neu, LnRH, CEA, PSA, KSA, or PRAME.
7. The use according to claim 6, wherein said antigen is an antigen or antigenic preparation from influenza virus.
8. The use according to claim 7, wherein the antigenic preparation is a split influenza virus preparation.
9. The use according to claim 7 or claim 8, for the manufacture of a vaccine for prophylaxis against influenza.
10. The use according to any one of claims 5 to 9, for the manufacture of a vaccine for use in medicine.
1 1. A method of producing a vaccine which method comprises admixing (a) a polyoxyethylene sorbitan ester, (b) an octoxynol and (c) an antigen, and providing the vaccine in the form of a vaccine dose for mucosal administration.
12. The method according to claim 1 1, wherein the vaccine is provided in an intranasal aerosol or spray device.
13. A spray or aerosol device, more particularly a bi-dose device, filled with a vaccine comprising a polyoxyethylene sorbitan ester, an octoxynol and an antigen.
14. The spray or aerosol device according to claim 13, wherein the antigen is an influenza antigen or antigenic preparation.
15. The spray or aerosol device according to claim 14, wherein the antigenic preparation is a split influenza virus preparation.
16. A method of treating a mammal suffering from or susceptible to a pathogenic infection, or cancer, or allergy, which method comprises administering to the mucosa of the mammal a safe and effective amount of a vaccine composition comprising a polyoxyethylene sorbitan ester, an octoxynol and an antigen.
17. The method according to claim 16 wherein the vaccine is administered intranasally.
18. The method according to claim 16 or claim 17 wherein the vaccine is an influenza virus vaccine comprising an influenza antigen or antigenic preparation, such as a split influenza virus preparation.
PCT/EP2000/009366 1999-09-24 2000-09-22 Use of combination of polyoxyethylene sorbitan ester and octoxynol as adjuvant and its use in vaccines WO2001021207A3 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB9922703A GB9922703D0 (en) 1999-09-24 1999-09-24 Vaccine
GB9922703.5 1999-09-24
GB0016685A GB0016685D0 (en) 2000-07-06 2000-07-06 Novel compounds
GB0016685.0 2000-07-06

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP20000969296 EP1221971A2 (en) 1999-09-24 2000-09-22 Use of the combination of polyoxyethylene sorbitan ester and octoxynol as adjuvant and its use in vaccines
CA 2383413 CA2383413A1 (en) 1999-09-24 2000-09-22 Use of combination of polyoxyethylene sorbitan ester and octoxynol as adjuvant and its use in vaccines
JP2001524631A JP2003509473A (en) 1999-09-24 2000-09-22 vaccine

Publications (2)

Publication Number Publication Date
WO2001021207A2 true true WO2001021207A2 (en) 2001-03-29
WO2001021207A3 true WO2001021207A3 (en) 2001-09-27

Family

ID=26244613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/009366 WO2001021207A3 (en) 1999-09-24 2000-09-22 Use of combination of polyoxyethylene sorbitan ester and octoxynol as adjuvant and its use in vaccines

Country Status (5)

Country Link
JP (1) JP2003509473A (en)
CN (1) CN1391483A (en)
CA (1) CA2383413A1 (en)
EP (1) EP1221971A2 (en)
WO (1) WO2001021207A3 (en)

Cited By (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003028656A2 (en) 2001-10-03 2003-04-10 Chiron Corporation Adjuvant compositions
WO2003070909A2 (en) 2002-02-20 2003-08-28 Chiron Corporation Microparticles with adsorbed polypeptide-containing molecules
WO2004092360A2 (en) 2003-04-10 2004-10-28 Chiron Corporation The severe acute respiratory syndrome coronavirus
WO2006086799A2 (en) 2005-02-11 2006-08-17 Novartis Vaccines And Diagnostics Inc. Prion-specific peptide reagents
WO2007110776A1 (en) * 2006-03-24 2007-10-04 Novartis Vaccines And Diagnostics Gmbh & Co Kg Storage of influenza vaccines without refrigeration
WO2008020335A2 (en) 2006-06-09 2008-02-21 Novartis Ag Immunogenic compositions for streptococcus agalactiae
EP2108374A1 (en) 2004-04-30 2009-10-14 Novartis Vaccines and Diagnostics S.r.l. Combined meningococcal conjugates with common carrier protein
EP2168597A1 (en) 2001-07-26 2010-03-31 Novartis Vaccines and Diagnostics S.r.l. Vaccines comprising aluminium adjuvants and histidine
EP2179729A1 (en) 2003-06-02 2010-04-28 Novartis Vaccines and Diagnostics, Inc. Immunogenic compositions based on microparticles comprising adsorbed toxoid and a polysaccharide-containing antigen
WO2010067286A2 (en) 2008-12-09 2010-06-17 Pfizer Vaccines Llc IgE CH3 PEPTIDE VACCINE
US7749518B2 (en) 2004-05-14 2010-07-06 Novartis Vaccines And Diagnostics Srl Polypeptides from non-typeable Haemophilus influenzae
WO2010079464A1 (en) 2009-01-12 2010-07-15 Novartis Ag Cna_b domain antigens in vaccines against gram positive bacteria
US7776523B2 (en) 2000-12-07 2010-08-17 Novartis Vaccines And Diagnostics, Inc. Endogenous retroviruses up-regulated in prostate cancer
WO2010100632A2 (en) 2009-03-06 2010-09-10 Novartis Ag Chlamydia antigens
WO2010125480A1 (en) 2009-04-30 2010-11-04 Coley Pharmaceutical Group, Inc. Pneumococcal vaccine and uses thereof
EP2258388A1 (en) 2002-08-30 2010-12-08 Novartis Vaccines and Diagnostics S.r.l. Improved bacterial outer membrane vesicles
EP2258717A2 (en) 2002-11-22 2010-12-08 Novartis Vaccines and Diagnostics S.r.l. Variant form of meningococcal NadA
EP2263687A1 (en) 2002-12-27 2010-12-22 Novartis Vaccines&Diagnostics, Inc. Immunogenic compositions containing phospholipid
EP2263688A1 (en) 2001-06-20 2010-12-22 Novartis AG Neisseria meningitidis combination vaccines
WO2010146414A1 (en) 2009-06-15 2010-12-23 National University Of Singapore Influenza vaccine, composition, and methods of use
EP2267005A1 (en) 2003-04-09 2010-12-29 Novartis Vaccines and Diagnostics S.r.l. ADP-ribosylating toxin from Listeria monocytogenes
EP2267036A1 (en) 2003-10-02 2010-12-29 Novartis Vaccines and Diagnostics S.r.l. Hypo- and Hyper-Acetylated Meningococcal Capsular Saccharides
EP2272531A2 (en) 2004-04-30 2011-01-12 Novartis Vaccines and Diagnostics S.r.l. Integration of meningococcal conjugate vaccination
WO2011004263A2 (en) 2009-07-07 2011-01-13 Novartis Ag Conserved escherichia coli immunogens
WO2011007257A1 (en) 2009-07-16 2011-01-20 Novartis Ag Detoxified escherichia coli immunogens
WO2011008974A2 (en) 2009-07-15 2011-01-20 Novartis Ag Rsv f protein compositions and methods for making same
EP2277595A2 (en) 2004-06-24 2011-01-26 Novartis Vaccines and Diagnostics, Inc. Compounds for immunopotentiation
EP2277896A1 (en) 2000-10-27 2011-01-26 Novartis Vaccines and Diagnostics S.r.l. Nucleic acids and proteins from streptococcus groups A & B
EP2277538A1 (en) 2003-10-02 2011-01-26 Novartis Vaccines and Diagnostics S.r.l. Combined meningitis vaccines
EP2279746A2 (en) 2002-11-15 2011-02-02 Novartis Vaccines and Diagnostics S.r.l. Surface proteins in neisseria meningitidis
EP2279747A1 (en) 2004-10-29 2011-02-02 Novartis Vaccines and Diagnostics S.r.l. Immunogenic bacterial vesicles with outer membrane proteins
WO2011013034A1 (en) 2009-07-30 2011-02-03 Pfizer Vaccines Llc Antigenic tau peptides and uses thereof
EP2289546A2 (en) 2003-01-30 2011-03-02 Novartis Vaccines and Diagnostics S.r.l. Injectable vaccines against multiple meningococcal serogroups
WO2011024072A2 (en) 2009-08-27 2011-03-03 Novartis Ag Hybrid polypeptides including meningococcal fhbp sequences
US7901907B2 (en) 1996-01-04 2011-03-08 The Provost Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin Process for production of Helicobacter pylori bacterioferritin
WO2011027257A2 (en) 2009-09-03 2011-03-10 Pfizer Vaccines Llc Pcsk9 vaccine
EP2298795A1 (en) 2005-02-18 2011-03-23 Novartis Vaccines and Diagnostics, Inc. Immunogens from uropathogenic escherichia coli
EP2302039A1 (en) 2002-06-13 2011-03-30 Novartis Vaccines and Diagnostics, Inc. Virus-like particles comprising HML-2 gag polypeptide
WO2011048561A1 (en) 2009-10-20 2011-04-28 Novartis Ag Diagnostic and therapeutic methods for rheumatic heart disease based upon group a streptococcus markers
WO2011051893A1 (en) 2009-10-27 2011-05-05 Novartis Ag Modified meningococcal fhbp polypeptides
WO2011058302A1 (en) 2009-11-10 2011-05-19 Guy's And St Thomas's Nhs Foundation Trust Bacteremia-associated antigen from staphylococcus aureus
EP2327719A1 (en) 2001-09-06 2011-06-01 Novartis Vaccines and Diagnostics S.r.l. Hybrid and tandem expression of neisserial proteins
WO2011077309A2 (en) 2009-12-22 2011-06-30 Pfizer Vaccines Llc Vaccine compositions
WO2011080595A2 (en) 2009-12-30 2011-07-07 Novartis Ag Polysaccharide immunogens conjugated to e. coli carrier proteins
EP2351579A1 (en) 2002-10-11 2011-08-03 Novartis Vaccines and Diagnostics S.r.l. Polypeptide vaccines for broad protection against hypervirulent meningococcal lineages
EP2351772A1 (en) 2005-02-18 2011-08-03 Novartis Vaccines and Diagnostics, Inc. Proteins and nucleic acids from meningitis/sepsis-associated Escherichia coli
EP2357184A1 (en) 2006-03-23 2011-08-17 Novartis AG Imidazoquinoxaline compounds as immunomodulators
EP2357000A1 (en) 2005-10-18 2011-08-17 Novartis Vaccines and Diagnostics, Inc. Mucosal and systemic immunizations with alphavirus replicon particles
EP2360175A2 (en) 2005-11-22 2011-08-24 Novartis Vaccines and Diagnostics, Inc. Norovirus and Sapovirus virus-like particles (VLPs)
WO2011104632A1 (en) 2010-02-26 2011-09-01 Novartis Ag Immunogenic proteins and compositions
EP2368572A2 (en) 2005-11-04 2011-09-28 Novartis Vaccines and Diagnostics S.r.l. Adjuvanted vaccines with non-virion antigens prepared from influenza viruses grown in cell culture
WO2011121576A2 (en) 2010-04-01 2011-10-06 Novartis Ag Immunogenic proteins and compositions
WO2011130379A1 (en) 2010-04-13 2011-10-20 Novartis Ag Benzonapthyridine compositions and uses thereof
EP2382988A1 (en) 2006-03-31 2011-11-02 Novartis AG Combined mucosal and parenteral immunization against HIV
EP2385127A1 (en) 2005-11-25 2011-11-09 Novartis Vaccines and Diagnostics S.r.l. Chimeric, hybrid and tandem polypeptides of meningococcal NMB1870
WO2011138636A1 (en) 2009-09-30 2011-11-10 Novartis Ag Conjugation of staphylococcus aureus type 5 and type 8 capsular polysaccharides
WO2011149564A1 (en) 2010-05-28 2011-12-01 Tetris Online, Inc. Interactive hybrid asynchronous computer game infrastructure
WO2011154863A1 (en) 2010-06-07 2011-12-15 Pfizer Inc. Her-2 peptides and vaccines
WO2011154878A1 (en) 2010-06-07 2011-12-15 Pfizer Vaccines Llc Ige ch3 peptide vaccine
WO2011161551A2 (en) 2010-06-11 2011-12-29 Novartis Ag Omv vaccines
WO2012006359A1 (en) 2010-07-06 2012-01-12 Novartis Ag Delivery of self-replicating rna using biodegradable polymer particles
WO2012006293A1 (en) 2010-07-06 2012-01-12 Novartis Ag Norovirus derived immunogenic compositions and methods
WO2012035519A1 (en) 2010-09-16 2012-03-22 Novartis Ag Immunogenic compositions
EP2433647A2 (en) 2005-01-27 2012-03-28 Children's Hospital & Research Center at Oakland GNA1870-based vesicle vaccines for broad spectrum protection against diseases caused by Neisseria meningitidis
WO2012072769A1 (en) 2010-12-01 2012-06-07 Novartis Ag Pneumococcal rrgb epitopes and clade combinations
WO2012085668A2 (en) 2010-12-24 2012-06-28 Novartis Ag Compounds
EP2478916A1 (en) 2006-01-27 2012-07-25 Novartis Vaccines and Diagnostics GmbH Influenza vaccines containing hemagglutinin and matrix proteins
WO2012103361A1 (en) 2011-01-26 2012-08-02 Novartis Ag Rsv immunization regimen
EP2484377A1 (en) 2007-06-27 2012-08-08 Novartis AG Low-additive influenza vaccines
EP2495314A1 (en) * 2001-05-30 2012-09-05 GlaxoSmithKline Biologicals, Niederlassung der SmithKline Beecham Pharma GmbH & Co. KG Novel vaccine composition
EP2497495A2 (en) 2006-09-11 2012-09-12 Novartis AG Making influenza virus vaccines without using eggs
WO2012131504A1 (en) 2011-03-02 2012-10-04 Pfizer Inc. Pcsk9 vaccine
EP2510947A1 (en) 2009-04-14 2012-10-17 Novartis AG Compositions for immunising against Staphylococcus aureus
EP2514437A1 (en) 2006-07-20 2012-10-24 Novartis AG Frozen stockpiling of influenza vaccines
WO2012158613A1 (en) 2011-05-13 2012-11-22 Novartis Ag Pre-fusion rsv f antigens
EP2532362A1 (en) 2006-12-06 2012-12-12 Novartis AG Vaccines including antigen from four strains of influenza virus
EP2537857A2 (en) 2007-12-21 2012-12-26 Novartis AG Mutant forms of streptolysin O
WO2013006838A1 (en) 2011-07-06 2013-01-10 Novartis Ag Immunogenic combination compositions and uses thereof
WO2013006842A2 (en) 2011-07-06 2013-01-10 Novartis Ag Immunogenic compositions and uses thereof
EP2548895A1 (en) 2007-01-11 2013-01-23 Novartis AG Modified saccharides
WO2013016460A1 (en) 2011-07-25 2013-01-31 Novartis Ag Compositions and methods for assessing functional immunogenicity of parvovirus vaccines
EP2572726A1 (en) 2007-08-01 2013-03-27 Novartis AG Compositions comprising pneumococcal antigens
EP2586790A2 (en) 2006-08-16 2013-05-01 Novartis AG Immunogens from uropathogenic Escherichia coli
US8481043B2 (en) 2001-06-22 2013-07-09 Cpex Pharmaceuticals, Inc. Nasal immunization
EP2612679A1 (en) 2004-07-29 2013-07-10 Novartis Vaccines and Diagnostics, Inc. Immunogenic compositions for gram positive bacteria such as streptococcus agalactiae
EP2614835A1 (en) 2007-11-26 2013-07-17 Novartis AG Vaccination with multiple clades of H5 influenza A virus
EP2631245A1 (en) 2008-03-10 2013-08-28 Children's Hospital & Research Center at Oakland Chimeric factor H binding proteins (fHBP) containing a heterologous B domain and methods of use
US8535683B2 (en) 2006-03-22 2013-09-17 Abbott Biologicals B.V. Intranasal or inhalational administration of virosomes
EP2659908A1 (en) 2012-05-01 2013-11-06 Affiris AG Compositions
EP2659912A2 (en) 2007-07-17 2013-11-06 Novartis AG Conjugate purification
EP2659906A1 (en) 2012-05-01 2013-11-06 Affiris AG Compositions
EP2659907A1 (en) 2012-05-01 2013-11-06 Affiris AG Compositions
WO2013164754A2 (en) 2012-05-04 2013-11-07 Pfizer Inc. Prostate-associated antigens and vaccine-based immunotherapy regimens
DE202005022108U1 (en) 2004-03-09 2013-11-12 Novartis Vaccines And Diagnostics, Inc. Influenza virus vaccines
WO2013174832A1 (en) 2012-05-22 2013-11-28 Novartis Ag Meningococcus serogroup x conjugate
WO2014005958A1 (en) 2012-07-06 2014-01-09 Novartis Ag Immunogenic compositions and uses thereof
WO2014053521A2 (en) 2012-10-02 2014-04-10 Novartis Ag Nonlinear saccharide conjugates
WO2014053612A1 (en) 2012-10-03 2014-04-10 Novartis Ag Immunogenic composition
US8858962B2 (en) 2005-08-01 2014-10-14 Hisamitsu Pharmaceutical Co., Inc. Adjuvant or pharmaceutical preparation for transdermal or transmucosal administration
EP2811027A1 (en) 2004-05-21 2014-12-10 Novartis Vaccines and Diagnostics, Inc. Alphavirus vectors for RSV and PIV vaccines
EP2886551A2 (en) 2008-02-21 2015-06-24 Novartis AG Meningococcal fhbp polypeptides
EP2891498A1 (en) 2007-12-20 2015-07-08 Novartis AG Fermentation processes for cultivating streptococci and purification processes for obtaining CPS therefrom
WO2015110941A2 (en) 2014-01-21 2015-07-30 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
WO2015123291A1 (en) 2014-02-11 2015-08-20 The Usa, As Represented By The Secretary, Dept. Of Health And Human Services Pcsk9 vaccine and methods of using the same
WO2016113644A1 (en) 2015-01-15 2016-07-21 Pfizer Inc. Immunogenic compositions for use in pneumococcal vaccines
EP3067048A1 (en) 2007-12-07 2016-09-14 Novartis Ag Compositions for inducing immune responses
WO2016193405A1 (en) 2015-06-03 2016-12-08 Affiris Ag Il-23-p19 vaccines
WO2017005851A1 (en) 2015-07-07 2017-01-12 Affiris Ag Vaccines for the treatment and prevention of ige mediated diseases
WO2017013548A1 (en) 2015-07-21 2017-01-26 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens, kits comprising the same and uses thereof
WO2017085586A1 (en) 2015-11-20 2017-05-26 Pfizer Inc. Immunogenic compositions for use in pneumococcal vaccines
WO2017125844A1 (en) 2016-01-19 2017-07-27 Pfizer Inc. Cancer vaccines

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052057A3 (en) * 2005-11-04 2007-07-12 Novartis Vaccines & Diagnostic Adminstration routes for priming/boosting with influenza vaccines
JP5275047B2 (en) * 2007-01-31 2013-08-28 久光製薬株式会社 Adjuvants and pharmaceutical formulations containing them for transdermal or transmucosal administration

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0182401A1 (en) * 1984-10-19 1986-05-28 De Staat Der Nederlanden Vertegenwoordigd Door De Minister Van Welzijn, Volksgezondheid En Cultuur Vaccines comprising immunogenic protein or peptide complexes
EP0242643A2 (en) * 1986-04-23 1987-10-28 Fisons Corporation Nasal administration of drugs
US4772466A (en) * 1983-08-22 1988-09-20 Syntex (U.S.A.) Inc. Vaccines comprising polyoxypropylene-polyoxyethylene block polymer based adjuvants
US5653987A (en) * 1995-05-16 1997-08-05 Modi; Pankaj Liquid formulations for proteinic pharmaceuticals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4772466A (en) * 1983-08-22 1988-09-20 Syntex (U.S.A.) Inc. Vaccines comprising polyoxypropylene-polyoxyethylene block polymer based adjuvants
EP0182401A1 (en) * 1984-10-19 1986-05-28 De Staat Der Nederlanden Vertegenwoordigd Door De Minister Van Welzijn, Volksgezondheid En Cultuur Vaccines comprising immunogenic protein or peptide complexes
EP0242643A2 (en) * 1986-04-23 1987-10-28 Fisons Corporation Nasal administration of drugs
US5653987A (en) * 1995-05-16 1997-08-05 Modi; Pankaj Liquid formulations for proteinic pharmaceuticals

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BELSHE R B ET AL: "THE EFFICACY OF LIVE ATTENUATED, COLD-ADAPTED, TRIVALENT, INTRANASAL INFLUENZAVIRUS VACCINE IN CHILDREN" NEW ENGLAND JOURNAL OF MEDICINE, THE,US,MASSACHUSETTS MEDICAL SOCIETY, WALTHAM, MA, vol. 338, no. 20, 1998, pages 1405-1412, XP000914636 ISSN: 0028-4793 *
GROSS P A ET AL: "COMPARISON OF NEW TRITON X-100 TREATED AND TWEEN ETHER TREATED SPLIT PRODUCT VACCINES IN CHILDREN" JOURNAL OF CLINICAL MICROBIOLOGY, vol. 14, no. 5, 1981, pages 534-538, XP000990520 ISSN: 0095-1137 *

Cited By (161)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7901907B2 (en) 1996-01-04 2011-03-08 The Provost Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin Process for production of Helicobacter pylori bacterioferritin
EP2277895A1 (en) 2000-10-27 2011-01-26 Novartis Vaccines and Diagnostics S.r.l. Nucleic acids and proteins from streptococcus groups A & B
EP2277896A1 (en) 2000-10-27 2011-01-26 Novartis Vaccines and Diagnostics S.r.l. Nucleic acids and proteins from streptococcus groups A & B
EP2284182A1 (en) 2000-10-27 2011-02-16 Novartis Vaccines and Diagnostics S.r.l. Nucleic acids and proteins from streptococcus groups A and B
EP2277894A1 (en) 2000-10-27 2011-01-26 Novartis Vaccines and Diagnostics S.r.l. Nucleic acids and proteins from streptococcus groups A & B
EP2284183A1 (en) 2000-10-27 2011-02-16 Novartis Vaccines and Diagnostics S.r.l. Nucleic acids and proteins from streptococcus groups A and B
EP2896629A1 (en) 2000-10-27 2015-07-22 Novartis Vaccines and Diagnostics S.r.l. Nucleic acids and proteins from streptococcus group A & B
EP2284181A1 (en) 2000-10-27 2011-02-16 Novartis Vaccines and Diagnostics S.r.l. Nucleic acids and proteins from streptococcus groups A and B
EP2339035A1 (en) 2000-12-07 2011-06-29 Novartis Vaccines and Diagnostics, Inc. Endogenous retroviruses up-regulated in prostate cancer
US7776523B2 (en) 2000-12-07 2010-08-17 Novartis Vaccines And Diagnostics, Inc. Endogenous retroviruses up-regulated in prostate cancer
EP2336368A1 (en) 2000-12-07 2011-06-22 Novartis Vaccines and Diagnostics, Inc. Endogenous retroviruses up-regulated in prostate cancer
EP2495314A1 (en) * 2001-05-30 2012-09-05 GlaxoSmithKline Biologicals, Niederlassung der SmithKline Beecham Pharma GmbH & Co. KG Novel vaccine composition
EP2277539A2 (en) 2001-06-20 2011-01-26 Novartis AG Neisseria meningitidis conjugate combination vaccine
EP2263688A1 (en) 2001-06-20 2010-12-22 Novartis AG Neisseria meningitidis combination vaccines
EP2277537A2 (en) 2001-06-20 2011-01-26 Novartis AG Neisseria meningitidis conjugate combination vaccine
EP2277536A2 (en) 2001-06-20 2011-01-26 Novartis AG Purification of bacterial capsular polysaccharides
US8481043B2 (en) 2001-06-22 2013-07-09 Cpex Pharmaceuticals, Inc. Nasal immunization
EP2168597A1 (en) 2001-07-26 2010-03-31 Novartis Vaccines and Diagnostics S.r.l. Vaccines comprising aluminium adjuvants and histidine
EP2266605A1 (en) 2001-07-26 2010-12-29 Novartis Vaccines and Diagnostics S.r.l. Vaccines comprising aluminium adjuvants and histidine
EP2255827A1 (en) 2001-07-26 2010-12-01 Novartis Vaccines and Diagnostics S.r.l. Vaccines comprising aluminium adjuvants and histidine
EP2327719A1 (en) 2001-09-06 2011-06-01 Novartis Vaccines and Diagnostics S.r.l. Hybrid and tandem expression of neisserial proteins
EP2829549A2 (en) 2001-09-06 2015-01-28 Novartis Vaccines and Diagnostics S.r.l. Hybrid and tandem expression of neisserial derived proteins
EP2360176A2 (en) 2001-09-06 2011-08-24 Novartis Vaccines and Diagnostics S.r.l. Hybrid and tandem expression of neisserial derived proteins
WO2003028656A2 (en) 2001-10-03 2003-04-10 Chiron Corporation Adjuvant compositions
EP2572707A2 (en) 2002-02-20 2013-03-27 Novartis Vaccines and Diagnostics, Inc. Microparticles with adsorbed polypeptide-containing molecules
WO2003070909A2 (en) 2002-02-20 2003-08-28 Chiron Corporation Microparticles with adsorbed polypeptide-containing molecules
EP2302039A1 (en) 2002-06-13 2011-03-30 Novartis Vaccines and Diagnostics, Inc. Virus-like particles comprising HML-2 gag polypeptide
US8518694B2 (en) 2002-06-13 2013-08-27 Novartis Vaccines And Diagnostics, Inc. Nucleic acid vector comprising a promoter and a sequence encoding a polypeptide from the endogenous retrovirus PCAV
EP2258390A1 (en) 2002-08-30 2010-12-08 Novartis Vaccines and Diagnostics S.r.l. Improved bacterial outer membrane vesicles
EP2258388A1 (en) 2002-08-30 2010-12-08 Novartis Vaccines and Diagnostics S.r.l. Improved bacterial outer membrane vesicles
EP2258389A1 (en) 2002-08-30 2010-12-08 Novartis Vaccines and Diagnostics S.r.l. Improved bacterial outer membrane vesicles
EP2351579A1 (en) 2002-10-11 2011-08-03 Novartis Vaccines and Diagnostics S.r.l. Polypeptide vaccines for broad protection against hypervirulent meningococcal lineages
EP2353608A1 (en) 2002-10-11 2011-08-10 Novartis Vaccines and Diagnostics S.r.l. Polypeptide-vaccines for broad protection against hypervirulent meningococcal lineages
EP2279746A2 (en) 2002-11-15 2011-02-02 Novartis Vaccines and Diagnostics S.r.l. Surface proteins in neisseria meningitidis
EP2258717A2 (en) 2002-11-22 2010-12-08 Novartis Vaccines and Diagnostics S.r.l. Variant form of meningococcal NadA
EP2261239A2 (en) 2002-11-22 2010-12-15 Novartis Vaccines and Diagnostics S.r.l. Multiple variants of meningococcal protein NMB1870
EP2258716A2 (en) 2002-11-22 2010-12-08 Novartis Vaccines and Diagnostics S.r.l. Multiple variants of meningococcal protein NMB1870
EP2263687A1 (en) 2002-12-27 2010-12-22 Novartis Vaccines&Diagnostics, Inc. Immunogenic compositions containing phospholipid
EP2289546A2 (en) 2003-01-30 2011-03-02 Novartis Vaccines and Diagnostics S.r.l. Injectable vaccines against multiple meningococcal serogroups
EP2267005A1 (en) 2003-04-09 2010-12-29 Novartis Vaccines and Diagnostics S.r.l. ADP-ribosylating toxin from Listeria monocytogenes
WO2004092360A2 (en) 2003-04-10 2004-10-28 Chiron Corporation The severe acute respiratory syndrome coronavirus
EP2179729A1 (en) 2003-06-02 2010-04-28 Novartis Vaccines and Diagnostics, Inc. Immunogenic compositions based on microparticles comprising adsorbed toxoid and a polysaccharide-containing antigen
EP2267036A1 (en) 2003-10-02 2010-12-29 Novartis Vaccines and Diagnostics S.r.l. Hypo- and Hyper-Acetylated Meningococcal Capsular Saccharides
EP2277538A1 (en) 2003-10-02 2011-01-26 Novartis Vaccines and Diagnostics S.r.l. Combined meningitis vaccines
DE202005022108U1 (en) 2004-03-09 2013-11-12 Novartis Vaccines And Diagnostics, Inc. Influenza virus vaccines
EP2272531A2 (en) 2004-04-30 2011-01-12 Novartis Vaccines and Diagnostics S.r.l. Integration of meningococcal conjugate vaccination
EP2108374A1 (en) 2004-04-30 2009-10-14 Novartis Vaccines and Diagnostics S.r.l. Combined meningococcal conjugates with common carrier protein
EP2351773A1 (en) 2004-05-14 2011-08-03 Novartis Vaccines and Diagnostics S.r.l. Polypeptides from non-typeable haemophilus influenzae
EP2343313A1 (en) 2004-05-14 2011-07-13 Novartis Vaccines and Diagnostics S.r.l. Polypeptides from non-typeable haemophilus influenzae
EP2351774A1 (en) 2004-05-14 2011-08-03 Novartis Vaccines and Diagnostics S.r.l. Polypeptides from non-typeable haemophilus influenzae
US9102729B2 (en) 2004-05-14 2015-08-11 Novartis Vaccines And Diagnostics Srl Polypeptides from non-typeable Haemophilus influenzae
EP2341069A1 (en) 2004-05-14 2011-07-06 Novartis Vaccines and Diagnostics S.r.l. Polypeptides from non-typeable haemophilus influenzae
US7749518B2 (en) 2004-05-14 2010-07-06 Novartis Vaccines And Diagnostics Srl Polypeptides from non-typeable Haemophilus influenzae
US8124098B2 (en) 2004-05-14 2012-02-28 Novartis Vaccines And Diagnostics Srl Polypeptides from non-typeable Haemophilus influenzae
EP2811027A1 (en) 2004-05-21 2014-12-10 Novartis Vaccines and Diagnostics, Inc. Alphavirus vectors for RSV and PIV vaccines
EP2848692A1 (en) 2004-05-21 2015-03-18 Novartis Vaccines and Diagnostics, Inc. Alphavirus vectors for influenza virus vaccines
EP2277595A2 (en) 2004-06-24 2011-01-26 Novartis Vaccines and Diagnostics, Inc. Compounds for immunopotentiation
EP2612679A1 (en) 2004-07-29 2013-07-10 Novartis Vaccines and Diagnostics, Inc. Immunogenic compositions for gram positive bacteria such as streptococcus agalactiae
EP2279747A1 (en) 2004-10-29 2011-02-02 Novartis Vaccines and Diagnostics S.r.l. Immunogenic bacterial vesicles with outer membrane proteins
EP2433647A2 (en) 2005-01-27 2012-03-28 Children's Hospital & Research Center at Oakland GNA1870-based vesicle vaccines for broad spectrum protection against diseases caused by Neisseria meningitidis
WO2006086799A2 (en) 2005-02-11 2006-08-17 Novartis Vaccines And Diagnostics Inc. Prion-specific peptide reagents
EP2298795A1 (en) 2005-02-18 2011-03-23 Novartis Vaccines and Diagnostics, Inc. Immunogens from uropathogenic escherichia coli
EP2351772A1 (en) 2005-02-18 2011-08-03 Novartis Vaccines and Diagnostics, Inc. Proteins and nucleic acids from meningitis/sepsis-associated Escherichia coli
US8858962B2 (en) 2005-08-01 2014-10-14 Hisamitsu Pharmaceutical Co., Inc. Adjuvant or pharmaceutical preparation for transdermal or transmucosal administration
EP2357000A1 (en) 2005-10-18 2011-08-17 Novartis Vaccines and Diagnostics, Inc. Mucosal and systemic immunizations with alphavirus replicon particles
EP2368572A2 (en) 2005-11-04 2011-09-28 Novartis Vaccines and Diagnostics S.r.l. Adjuvanted vaccines with non-virion antigens prepared from influenza viruses grown in cell culture
EP2360175A2 (en) 2005-11-22 2011-08-24 Novartis Vaccines and Diagnostics, Inc. Norovirus and Sapovirus virus-like particles (VLPs)
EP2385126A1 (en) 2005-11-25 2011-11-09 Novartis Vaccines and Diagnostics S.r.l. Chimeric, hybrid and tandem polypeptides of meningococcal NMB1870
EP2385127A1 (en) 2005-11-25 2011-11-09 Novartis Vaccines and Diagnostics S.r.l. Chimeric, hybrid and tandem polypeptides of meningococcal NMB1870
EP2478916A1 (en) 2006-01-27 2012-07-25 Novartis Vaccines and Diagnostics GmbH Influenza vaccines containing hemagglutinin and matrix proteins
US8535683B2 (en) 2006-03-22 2013-09-17 Abbott Biologicals B.V. Intranasal or inhalational administration of virosomes
EP2357184A1 (en) 2006-03-23 2011-08-17 Novartis AG Imidazoquinoxaline compounds as immunomodulators
WO2007110776A1 (en) * 2006-03-24 2007-10-04 Novartis Vaccines And Diagnostics Gmbh & Co Kg Storage of influenza vaccines without refrigeration
EP2382987A1 (en) 2006-03-24 2011-11-02 Novartis Vaccines and Diagnostics GmbH Storage of influenza vaccines without refrigeration
EP2382988A1 (en) 2006-03-31 2011-11-02 Novartis AG Combined mucosal and parenteral immunization against HIV
WO2008020335A2 (en) 2006-06-09 2008-02-21 Novartis Ag Immunogenic compositions for streptococcus agalactiae
EP2514437A1 (en) 2006-07-20 2012-10-24 Novartis AG Frozen stockpiling of influenza vaccines
EP2586790A2 (en) 2006-08-16 2013-05-01 Novartis AG Immunogens from uropathogenic Escherichia coli
EP2497495A2 (en) 2006-09-11 2012-09-12 Novartis AG Making influenza virus vaccines without using eggs
EP2532362A1 (en) 2006-12-06 2012-12-12 Novartis AG Vaccines including antigen from four strains of influenza virus
EP2679240A1 (en) 2006-12-06 2014-01-01 Novartis AG Vaccines including antigen from four strains of influenza virus
EP2548895A1 (en) 2007-01-11 2013-01-23 Novartis AG Modified saccharides
EP2484377A1 (en) 2007-06-27 2012-08-08 Novartis AG Low-additive influenza vaccines
US9463250B2 (en) 2007-07-17 2016-10-11 Glaxosmithkline Biologicals Sa Conjugate purification
EP2659912A2 (en) 2007-07-17 2013-11-06 Novartis AG Conjugate purification
EP2572726A1 (en) 2007-08-01 2013-03-27 Novartis AG Compositions comprising pneumococcal antigens
EP2614835A1 (en) 2007-11-26 2013-07-17 Novartis AG Vaccination with multiple clades of H5 influenza A virus
EP3067048A1 (en) 2007-12-07 2016-09-14 Novartis Ag Compositions for inducing immune responses
EP2891498A1 (en) 2007-12-20 2015-07-08 Novartis AG Fermentation processes for cultivating streptococci and purification processes for obtaining CPS therefrom
EP2537857A2 (en) 2007-12-21 2012-12-26 Novartis AG Mutant forms of streptolysin O
EP2886551A2 (en) 2008-02-21 2015-06-24 Novartis AG Meningococcal fhbp polypeptides
EP2631245A1 (en) 2008-03-10 2013-08-28 Children's Hospital & Research Center at Oakland Chimeric factor H binding proteins (fHBP) containing a heterologous B domain and methods of use
WO2010067286A2 (en) 2008-12-09 2010-06-17 Pfizer Vaccines Llc IgE CH3 PEPTIDE VACCINE
US8298547B2 (en) 2008-12-09 2012-10-30 Pfizer Vaccines, LLC IgE CH3 peptide vaccine
US9216229B2 (en) 2008-12-09 2015-12-22 Pfizer Vaccines Llc IgE CH3 peptide vaccine
EP2865389A1 (en) 2008-12-09 2015-04-29 Pfizer Vaccines LLC IgE CH3 peptide vaccine
US8475801B2 (en) 2008-12-09 2013-07-02 Pfizer Vaccines, LCC IgE CH3 peptide vaccine
WO2010079464A1 (en) 2009-01-12 2010-07-15 Novartis Ag Cna_b domain antigens in vaccines against gram positive bacteria
WO2010100632A2 (en) 2009-03-06 2010-09-10 Novartis Ag Chlamydia antigens
EP2510947A1 (en) 2009-04-14 2012-10-17 Novartis AG Compositions for immunising against Staphylococcus aureus
US9205143B2 (en) 2009-04-30 2015-12-08 Coley Pharmaceutical Group Inc. Pneumococcal vaccine and uses thereof
WO2010125480A1 (en) 2009-04-30 2010-11-04 Coley Pharmaceutical Group, Inc. Pneumococcal vaccine and uses thereof
WO2010146414A1 (en) 2009-06-15 2010-12-23 National University Of Singapore Influenza vaccine, composition, and methods of use
EP2944320A1 (en) 2009-06-15 2015-11-18 National University of Singapore Influenza vaccine, composition, and methods of use
WO2011004263A2 (en) 2009-07-07 2011-01-13 Novartis Ag Conserved escherichia coli immunogens
WO2011008974A2 (en) 2009-07-15 2011-01-20 Novartis Ag Rsv f protein compositions and methods for making same
EP3178490A2 (en) 2009-07-15 2017-06-14 GlaxoSmithKline Biologicals S.A. Rsv f protein compositions and methods for making same
EP2837386A1 (en) 2009-07-16 2015-02-18 Novartis AG Detoxified Escherichia coli immunogens
WO2011007257A1 (en) 2009-07-16 2011-01-20 Novartis Ag Detoxified escherichia coli immunogens
WO2011013034A1 (en) 2009-07-30 2011-02-03 Pfizer Vaccines Llc Antigenic tau peptides and uses thereof
EP3017828A1 (en) 2009-08-27 2016-05-11 GlaxoSmithKline Biologicals SA Hybrid polypeptides including meningococcal fhbp sequences
WO2011024072A2 (en) 2009-08-27 2011-03-03 Novartis Ag Hybrid polypeptides including meningococcal fhbp sequences
WO2011027257A2 (en) 2009-09-03 2011-03-10 Pfizer Vaccines Llc Pcsk9 vaccine
EP2865752A1 (en) 2009-09-03 2015-04-29 Pfizer Vaccines LLC PCSK9 vaccine
WO2011138636A1 (en) 2009-09-30 2011-11-10 Novartis Ag Conjugation of staphylococcus aureus type 5 and type 8 capsular polysaccharides
WO2011048561A1 (en) 2009-10-20 2011-04-28 Novartis Ag Diagnostic and therapeutic methods for rheumatic heart disease based upon group a streptococcus markers
WO2011051893A1 (en) 2009-10-27 2011-05-05 Novartis Ag Modified meningococcal fhbp polypeptides
WO2011058302A1 (en) 2009-11-10 2011-05-19 Guy's And St Thomas's Nhs Foundation Trust Bacteremia-associated antigen from staphylococcus aureus
WO2011077309A2 (en) 2009-12-22 2011-06-30 Pfizer Vaccines Llc Vaccine compositions
EP3257525A2 (en) 2009-12-22 2017-12-20 Celldex Therapeutics, Inc. Vaccine compositions
WO2011080595A2 (en) 2009-12-30 2011-07-07 Novartis Ag Polysaccharide immunogens conjugated to e. coli carrier proteins
WO2011104632A1 (en) 2010-02-26 2011-09-01 Novartis Ag Immunogenic proteins and compositions
WO2011121576A2 (en) 2010-04-01 2011-10-06 Novartis Ag Immunogenic proteins and compositions
WO2011130379A1 (en) 2010-04-13 2011-10-20 Novartis Ag Benzonapthyridine compositions and uses thereof
WO2011149564A1 (en) 2010-05-28 2011-12-01 Tetris Online, Inc. Interactive hybrid asynchronous computer game infrastructure
WO2011154863A1 (en) 2010-06-07 2011-12-15 Pfizer Inc. Her-2 peptides and vaccines
EP2942061A2 (en) 2010-06-07 2015-11-11 Pfizer Vaccines LLC Ige ch3 peptide vaccine
WO2011154878A1 (en) 2010-06-07 2011-12-15 Pfizer Vaccines Llc Ige ch3 peptide vaccine
US8722053B2 (en) 2010-06-07 2014-05-13 Pfizer Vaccines Llc IgE CH3 peptide vaccine
US9249233B2 (en) 2010-06-07 2016-02-02 Pfizer Vaccines Llc IgE CH3 peptide vaccine
WO2011161551A2 (en) 2010-06-11 2011-12-29 Novartis Ag Omv vaccines
WO2012006359A1 (en) 2010-07-06 2012-01-12 Novartis Ag Delivery of self-replicating rna using biodegradable polymer particles
EP3153578A1 (en) 2010-07-06 2017-04-12 Novartis Ag Norovirus derived immunogenic compositions and methods
WO2012006293A1 (en) 2010-07-06 2012-01-12 Novartis Ag Norovirus derived immunogenic compositions and methods
WO2012035519A1 (en) 2010-09-16 2012-03-22 Novartis Ag Immunogenic compositions
WO2012072769A1 (en) 2010-12-01 2012-06-07 Novartis Ag Pneumococcal rrgb epitopes and clade combinations
WO2012085668A2 (en) 2010-12-24 2012-06-28 Novartis Ag Compounds
WO2012103361A1 (en) 2011-01-26 2012-08-02 Novartis Ag Rsv immunization regimen
WO2012131504A1 (en) 2011-03-02 2012-10-04 Pfizer Inc. Pcsk9 vaccine
WO2012158613A1 (en) 2011-05-13 2012-11-22 Novartis Ag Pre-fusion rsv f antigens
WO2013006842A2 (en) 2011-07-06 2013-01-10 Novartis Ag Immunogenic compositions and uses thereof
WO2013006838A1 (en) 2011-07-06 2013-01-10 Novartis Ag Immunogenic combination compositions and uses thereof
WO2013016460A1 (en) 2011-07-25 2013-01-31 Novartis Ag Compositions and methods for assessing functional immunogenicity of parvovirus vaccines
EP2659908A1 (en) 2012-05-01 2013-11-06 Affiris AG Compositions
EP2659906A1 (en) 2012-05-01 2013-11-06 Affiris AG Compositions
EP2659907A1 (en) 2012-05-01 2013-11-06 Affiris AG Compositions
WO2013164754A2 (en) 2012-05-04 2013-11-07 Pfizer Inc. Prostate-associated antigens and vaccine-based immunotherapy regimens
WO2013174832A1 (en) 2012-05-22 2013-11-28 Novartis Ag Meningococcus serogroup x conjugate
WO2014005958A1 (en) 2012-07-06 2014-01-09 Novartis Ag Immunogenic compositions and uses thereof
WO2014053521A2 (en) 2012-10-02 2014-04-10 Novartis Ag Nonlinear saccharide conjugates
WO2014053612A1 (en) 2012-10-03 2014-04-10 Novartis Ag Immunogenic composition
WO2014053607A1 (en) 2012-10-03 2014-04-10 Novartis Ag Immunogenic compositions
US9492559B2 (en) 2014-01-21 2016-11-15 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
WO2015110941A2 (en) 2014-01-21 2015-07-30 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof
WO2015123291A1 (en) 2014-02-11 2015-08-20 The Usa, As Represented By The Secretary, Dept. Of Health And Human Services Pcsk9 vaccine and methods of using the same
WO2016113644A1 (en) 2015-01-15 2016-07-21 Pfizer Inc. Immunogenic compositions for use in pneumococcal vaccines
WO2016193405A1 (en) 2015-06-03 2016-12-08 Affiris Ag Il-23-p19 vaccines
WO2017005851A1 (en) 2015-07-07 2017-01-12 Affiris Ag Vaccines for the treatment and prevention of ige mediated diseases
WO2017013548A1 (en) 2015-07-21 2017-01-26 Pfizer Inc. Immunogenic compositions comprising conjugated capsular saccharide antigens, kits comprising the same and uses thereof
WO2017085586A1 (en) 2015-11-20 2017-05-26 Pfizer Inc. Immunogenic compositions for use in pneumococcal vaccines
WO2017125844A1 (en) 2016-01-19 2017-07-27 Pfizer Inc. Cancer vaccines

Also Published As

Publication number Publication date Type
JP2003509473A (en) 2003-03-11 application
CA2383413A1 (en) 2001-03-29 application
CN1391483A (en) 2003-01-15 application
WO2001021207A3 (en) 2001-09-27 application
EP1221971A2 (en) 2002-07-17 application

Similar Documents

Publication Publication Date Title
Read et al. Effective nasal influenza vaccine delivery using chitosan
EP0689454B1 (en) Vaccine compositions containing 3-o deacylated monophosphoryl lipid a
Illum et al. Chitosan as a novel nasal delivery system for vaccines
US6514503B1 (en) Antigen delivery system
US7357936B1 (en) Adjuvant systems and vaccines
Almeida et al. Nasal delivery of vaccines
US6544518B1 (en) Vaccines
US6623739B1 (en) Vaccines
US6506386B1 (en) Vaccine comprising an iscom consisting of sterol and saponin which is free of additional detergent
US20030119774A1 (en) Compositions and methods for stimulating an immune response
WO1996033739A1 (en) Vaccines containing a saponin and a sterol
WO1998015287A1 (en) Vaccines
WO2005112991A2 (en) Vaccines
O'HAGAN Conference Science Medal Lecture: Recent Advances in Vaccine Adjuvants for Systemic and Mucosal Administration
US6372227B1 (en) Vaccines
US20020068090A1 (en) Calcium phosphate particles as mucosal adjuvants
US6558670B1 (en) Vaccine adjuvants
WO1994019013A1 (en) Influenza vaccine compositions containing 3-o-deacylated monophosphoryl lipid a
WO1999011241A1 (en) Oil in water emulsions containing saponins
WO1998056414A1 (en) Oil in water vaccine compositions
WO2008043774A1 (en) Vaccine comprising an oil in water emulsion adjuvant
US20010053368A1 (en) Proteosome influenza vaccine
Velasquez et al. Intranasal delivery of Norwalk virus-like particles formulated in an in situ gelling, dry powder vaccine
US20090081253A1 (en) Composition
US5643574A (en) Protein- or peptide-cochleate vaccines and methods of immunizing using the same

Legal Events

Date Code Title Description
AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 148672

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 79070/00

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 517902

Country of ref document: NZ

Ref document number: 200202270

Country of ref document: ZA

Ref document number: 2002/02270

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: PA/a/2002/003067

Country of ref document: MX

Ref document number: PV2002-1043

Country of ref document: CZ

Ref document number: 2383413

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020027003832

Country of ref document: KR

ENP Entry into the national phase in:

Ref country code: JP

Ref document number: 2001 524631

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2000969296

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 008160147

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020027003832

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000969296

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10110286

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: PV2002-1043

Country of ref document: CZ

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWR Wipo information: refused in national office

Ref document number: PV2002-1043

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 79070/00

Country of ref document: AU

WWW Wipo information: withdrawn in national office

Ref document number: 2000969296

Country of ref document: EP