WO2001019949A1 - Liquid cleansing composition comprising lamellar phase having low salt level - Google Patents

Liquid cleansing composition comprising lamellar phase having low salt level Download PDF

Info

Publication number
WO2001019949A1
WO2001019949A1 PCT/EP2000/008266 EP0008266W WO0119949A1 WO 2001019949 A1 WO2001019949 A1 WO 2001019949A1 EP 0008266 W EP0008266 W EP 0008266W WO 0119949 A1 WO0119949 A1 WO 0119949A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
surfactant
weight percent
amphoteric
viscosity
Prior art date
Application number
PCT/EP2000/008266
Other languages
French (fr)
Inventor
Shuman Mitra
Sudhakar Puvvada
Original Assignee
Unilever Plc
Unilever N.V.
Hindustan Lever Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22550669&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2001019949(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Unilever Plc, Unilever N.V., Hindustan Lever Limited filed Critical Unilever Plc
Priority to CA002384793A priority Critical patent/CA2384793C/en
Priority to JP2001523721A priority patent/JP4980531B2/en
Priority to AU75105/00A priority patent/AU768792B2/en
Priority to EP00964035.0A priority patent/EP1220886B1/en
Priority to BRPI0014025-2A priority patent/BR0014025B1/en
Publication of WO2001019949A1 publication Critical patent/WO2001019949A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/0026Structured liquid compositions, e.g. liquid crystalline phases or network containing non-Newtonian phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0295Liquid crystals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/36Carboxylic acids; Salts or anhydrides thereof
    • A61K8/361Carboxylic acids having more than seven carbon atoms in an unbroken chain; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/44Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
    • A61K8/442Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof substituted by amido group(s)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/46Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur
    • A61K8/463Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur containing sulfuric acid derivatives, e.g. sodium lauryl sulfate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/88Ampholytes; Electroneutral compounds
    • C11D1/94Mixtures with anionic, cationic or non-ionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2003Alcohols; Phenols
    • C11D3/2006Monohydric alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2079Monocarboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2093Esters; Carbonates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/59Mixtures
    • A61K2800/596Mixtures of surface active compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/04Carboxylic acids or salts thereof
    • C11D1/10Amino carboxylic acids; Imino carboxylic acids; Fatty acid condensates thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/123Sulfonic acids or sulfuric acid esters; Salts thereof derived from carboxylic acids, e.g. sulfosuccinates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/146Sulfuric acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/88Ampholytes; Electroneutral compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/88Ampholytes; Electroneutral compounds
    • C11D1/90Betaines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/88Ampholytes; Electroneutral compounds
    • C11D1/92Sulfobetaines ; Sulfitobetaines

Definitions

  • the present invention relates to liquid cleansing compositions of the type typically used in skin cleansing or shower gel compositions which compositions are "structured" lamellar phase compositions.
  • spherical, cylindrical (rod-like) or discoidal micelles may form.
  • ordered liquid crystalline phases such as lamellar phase, hexagonal phase or cubic phase may form.
  • the lamellar phase for example, consists of alternating surfactant bilayers and water layers. These layers are not generally flat but fold to form submicron spherical onion like structures called vesicles or liposomes.
  • the hexagonal phase on the other hand, consists of long cylindrical micelles arranged in a hexagonal lattice. In general, the microstructure of most personal care products consist of either spherical micelles; rod micelles; or a lamellar dispersion.
  • micelles may be spherical or rod- like.
  • Formulations having spherical micelles tend to have a low viscosity and exhibit Newtonian shear behaviour (i.e., viscosity stays constant as a function of shear rate; thus, if easy pouring of product is desired, the solution is less viscous and, as a consequence, it doesn't suspend as well) .
  • the viscosity increases linearly with surfactant concentration.
  • Rod micellar solutions are more viscous because movement of the longer micelles is restricted. At a critical shear rate, the micelles align and the solution becomes shear thinning. Addition of salts increases the size of the rod micelles thereof increasing zero shear viscosity (i.e., viscosity when sitting in bottle) which helps suspend particles but also increases critical shear rate (point at which product becomes shear thinning; higher critical shear rates means product is more difficult to pour) .
  • Lamellar dispersions differ from both spherical and rod-like micelles because they can have high zero shear viscosity (because of the close packed arrangement of constituent lamellar droplets) , yet these solutions are very shear thinning (readily dispense on pouring) . That is, the solutions can become thinner than rod micellar solutions at moderate shear rates . In formulating liquid cleansing compositions, therefore, there is the choice of using rod-micellar solutions (whose zero shear viscosity, e.g., suspending ability, is not very good and/or are not very shear thinning) ; or lamellar dispersions (with higher zero shear viscosity, e.g.
  • Such lamellar compositions are characterised by high zero shear viscosity (good for suspending and/or structuring) whilst simultaneously being very shear thinning such that they readily dispense in pouring.
  • Such compositions possess a "heaping", lotion-like appearance which conveys signals of enhanced moisturisation.
  • lamellar compositions are generally more desirable (especially for suspending emollient and for providing consumer aesthetics) , but more expensive in that they generally require more surfactant and are more restricted in the range of surfactants that can be used.
  • rod-micellar solutions When rod-micellar solutions are used, they also often require the use of external structurants to enhance viscosity and to suspend particles (again, because they have lower zero shear viscosity than lamellar phase solutions) . For this, carbomers and clays are often used. At higher shear rates (as in product dispensing, application of product to body, or rubbing with hands) , since the rod- micellar solutions are less shear thinning, the viscosity of the solution stays high and the product can be stringy and thick. Lamellar dispersion based products, having higher zero shear viscosity, can more readily suspend emollients and are typically more creamy. Again, however, they are generally more expensive to make (e.g., they are restricted as to which surfactants can be used and often require greater concentration of surfactants) .
  • micellar phases are optically isotropic .
  • lamellar phases may be formed in a wide variety of surfactant systems using a wide variety of lamellar phase "inducers” as described, for example, in USP No. 5,952,286 entitled “Liquid Cleansing Composition Comprising Soluble, Lamellar Phase Inducing Structurant” by Sudhakar Puwada, et al . , issued September, 14, 1999.
  • the transition from micelle to lamellar phase is a function of effective average area of headgroup of the surfactant, the length of the extended tail, and the volume of tail .
  • branched surfactants or surfactants with smaller headgroups or bulky tails are also effective ways of inducing transitions from rod micellar to lamellar.
  • One way of characterising lamellar dispersions includes measuring viscosity at low shear rate (using for example a Stress Rheometer) when additional inducer (e.g., oleic acid or isostearic acid) is used. At higher amounts of inducer, the low shear viscosity will significantly increase.
  • Micrographs generally will show lamellar microstructure and close packed organisation of the lamellar droplets (generally in size range of about 2 microns) .
  • lamellar phase compositions tend to lose their lamellar stability in colder temperatures (e.g., -17.8°C to 7.2°C (0 to 45°F) ) . Whilst not wishing to be bound by theory, this may be because, in cold conditions, the oil droplets become less flexible and the spherical structure characterising the lamellar interaction breaks into lamellar sheets instead.
  • the applicants have discovered that the use of surfactants containing low salt levels enhances freeze/thaw stability in personal wash structured liquid formulations.
  • the ability of a structured liquid to maintain viscosity under freeze/thaw conditions is extremely desirable to demonstrate moisturisation and aesthetics.
  • the applicants have found that the combination of amphoteric and anionic surfactants, and either soluble or insoluble lamellar structurants, with oil creates a stable structured liquid with excellent freeze/thaw viscosity stability in conjunction with low overall salt content .
  • low salt cocamidopropyl betaine when added to a liquid formulation containing the following compounds: an anionic surfactant like sodium lauryl ether sulfate, high levels of an emollient such as sunflower seed oil, and a lamellar structurant fatty acid like lauric or isostearic acid; a structured liquid with excellent freeze/thaw viscosity is produced.
  • an anionic surfactant like sodium lauryl ether sulfate
  • an emollient such as sunflower seed oil
  • a lamellar structurant fatty acid like lauric or isostearic acid
  • the structured liquids containing surfactants with low salt levels are stable after being subjected to low temperatures, especially with regard to their viscosity.
  • anionic surfactants comprise about 50% to 100% of the anionic surfactant in the structured formulation.
  • anionic surfactants include branched C 0 -C 22 / preferably branched Cio-Cig alkyl, alkali metal ether sulfates (i.e., having at least one branch from the alkyl portion of the alkyl ether sulfate) .
  • anionic surfactants already provide enhanced freeze thaw stability in structured liquid compositions relative to compositions not comprising the branched C 10 -C 22 alkyl, alkali metal ether sulfate as disclosed by the Applicant in co-pending U.S. Patent Application S/N 09/286042.
  • the invention comprises a liquid cleansing composition, wherein the liquid is in a lamellar phase, comprising a surfactant system, preferably a system which contains at least about 5 weight percent of surface active compounds.
  • a surfactant system preferably a system which contains at least about 5 weight percent of surface active compounds.
  • the inventive composition also includes an amphoteric and/or zwitterionic surfactant present at about 3 to 30 weight percent.
  • the inventive composition also contains at least one or more anionic surfactants present at about 2 to 40 weight percent.
  • the inventive composition also contains a lamellar structurant compound present at about 0.5 to 10 weight percent.
  • the inventive composition has a initial viscosity in the range of about 15,000 to 300,000 centipoises (cps) measured at 0.5 RPM using T-bar spindle A using the procedure described below.
  • the inventive composition also has a freeze thaw viscosity (measured after at least one cycle of -17.8°C to 21.1°C (0°F to 70°F) ) having a percent drop (if any) relative to initial viscosity of no more than about 35 percent.
  • Initial viscosity is here defined as that obtained at 21.1°C (70°F) for the inventive composition which has never been frozen.
  • Freeze thaw viscosity is likewise defined as the viscosity obtained after at least one freeze thaw cycle.
  • the inventive composition also preferably has a strong electrolyte concentration of about 1.1 weight percent or less.
  • the inventive composition preferably has a weight percent ratio of anionic surfactant to strong electrolyte in the range of 8:1 to 100:1, preferably 10:1 to 50:1.
  • the inventive composition preferably has a weight percent ratio of amphoteric surfactant to strong electrolyte in the range of 3:1 to 100:1, preferably 5:1 to 50:1.
  • Strong electrolytes are those salts which are completely dissociated in a liquid cleansing composition. Such salts include ammonium, alkali and alkaline earth chlorides and sulfates.
  • strong electrolyte is defined as the total amount of chloride and sulfate in the inventive composition derived from any source, expressed as a weight percent.
  • the strong electrolyte content is minimized by the use of either a low salt amphoteric, zwitterionic, or anionic surfactant, or a blend thereof in the inventive composition.
  • R [% salt in surfactant] / [% active in surfactant] .
  • Percent active in a surfactant raw material is defined as the concentration of the desired ingredients in the raw material, as is well known in the art .
  • the present invention relates to liquid lamellar cleansing compositions, wherein the liquid is in a lamellar phase, comprising a surfactant system, preferably a system which contains at least about 5 weight percent, preferably at least about 10 weight percent of surface active compounds.
  • the inventive composition also includes an amphoteric and/or zwitterionic surfactant.
  • the amphoteric or zwitterionic surfactant, or a blend thereof is present at about 3 to 30 weight percent, more preferably at about 5 to 20 weight percent.
  • the inventive composition also contains at least one anionic surfactant .
  • the anionic surfactant is present at about 2 to 40 weight percent, more preferably at about 5 to 20 weight percent.
  • the inventive composition also contains a lamellar structurant .
  • the lamellar structurant is present at about 0.5 to 10 weight percent, more preferably at about 0.5 to 5 weight percent .
  • the inventive composition preferably has a initial viscosity in the range of about 15,000 to 300,000 centipoises (cps) measured at 0.5 RPM using T-bar spindle A using the procedure described below.
  • the initial viscosity is preferably 30,000 to 150,000 cps, more preferably from about 60,000 to about 140,000 cps.
  • the inventive composition also has a freeze thaw viscosity (measured after at least one cycle, preferably after at least 2 cycles, more preferably after 3 cycles of -17.8°C to 21.1°C (0°F to 70°F) freeze thaw cycles) having a percent drop (if any) relative to initial viscosity of no more than about 35 percent.
  • the inventive composition also has a strong electrolyte concentration of about 1.1 weight percent or less.
  • the inventive composition has a weight percent ratio of anionic surfactant to strong electrolyte in the range of 8:1 to 100:1, preferably 10:1 to 50:1.
  • the inventive composition has a weight percent ratio of amphoteric surfactant to strong electrolyte is in the range of 3:1 to 100:1, preferably 5:1 to 50:1.
  • the strong electrolyte content is controlled by the use of either a low salt amphoteric, zwitterionic, or anionic surfactant, or a blend thereof in the inventive composition.
  • the surfactant system of the subject invention preferably comprises 5 to 70% by weight, more preferably 10 to 30% by wt . of the composition and comprises:
  • the anionic surfactant (which may comprise 2 to 40 % by wt . of total composition) may be, for example, an aliphatic sulfonate, such as a primary alkane (e.g., C 8 - 22) sulfonate, primary alkane (e.g., C 8 -C 2 2) disulfonate, C8-C22 alkene sulfonate, 8 -C 22 hydroxyalkane sulfonate or alkyl glyceryl ether sulfonate (AGS) ; or an aromatic sulfonate such as alkyl benzene sulfonate, and the like.
  • a primary alkane e.g., C 8 - 22
  • primary alkane e.g., C 8 -C 2 2 2 2
  • disulfonate C8-C22 alkene sulfonate
  • the anionic may also be an alkyl sulfate (e.g., C 12 -C 18 alkyl sulfate) or alkyl ether sulfate (including alkyl glyceryl ether sulfates) , and the like.
  • alkyl ether sulfates are those having the formula:
  • R is an alkyl or alkenyl having 8 to 18 carbons, preferably 12 to 18 carbons, n has an average value of greater than 1.0, preferably between 2 and 3; and M is a solubilizing cation such as sodium, potassium, ammonium or substituted ammonium. Ammonium and sodium lauryl ether sulfates are preferred.
  • the anionic may also be alkyl sulfosuccinates (including mono- and dialkyl, e.g., C 6 -C 22 sulfosuccinates) ; alkyl and acyl taurates, alkyl and acyl sarcosinates, sulfoacetates, C 8 -C 22 alkyl phosphates and phosphates, alkyl phosphate esters and alkoxyl alkyl phosphate esters, acyl lactates, C 8 -C 22 monoalkyl succinates and maleates, sulphoacetates, and acyl isethionates , and the like.
  • alkyl sulfosuccinates including mono- and dialkyl, e.g., C 6 -C 22 sulfosuccinates
  • alkyl and acyl taurates alkyl and acyl sarcosinates, sulfoacetates
  • Sulfosuccinates may be monoalkyl sulfosuccinates having the formula : R 4 0 2 CCH 2 CH ( SO 3 M) C0 2 M ;
  • amido-MEA sul fosuccinates of the formula
  • R ranges from C 8 -C22 alkyl and M is a solubil ismg cation ;
  • alkoxylated citrate sulfosuccinates alkoxylated citrate sulfosuccinates
  • alkoxylated sulfosuccinates such as the following:
  • Taurates are generally identified by formula R 2 C0NR 3 CH 2 CH 2 S0 3 M
  • R ranges from C 8 -C 20 alkyl
  • R ranges from C 1 -C4 alkyl
  • M is a solubilizing cation.
  • R is C ⁇ to C 20 alkyl; n is 0 to 20; and M is as defined above.
  • amido alkyl polypeptide carboxylates such as, for example, Monteine LCQ (R) by Seppic .
  • Cs-Cis acyl isethionates Another surfactant which may be used are the Cs-Cis acyl isethionates. These esters are prepared by reaction between alkali metal isethionate with mixed aliphatic fatty acids having from 6 to 18 carbon atoms and an iodine value of less than 20. At least 75% of the mixed fatty acids have from 12 to 18 carbon atoms and up to 25% have from 6 to 10 carbon atoms .
  • Acyl isethionates when present, will generally range from about 0.5-15% by weight of the total composition. Preferably, this component is present from about 1 to about 10%.
  • the acyl isethionate may be an alkoxylated isethionate such as is described in U.S. Patent No. 5,393,466, Titled "Fatty Acid Esters Of Polyalkoxylated Isethionic Acid” issued Feb. 28, 1995 to Ilardi et al . , hereby incorporated by reference into the subject application. This compound has the general formula :
  • R is an alkyl group having 8 to 18 carbons
  • m is an integer from 1 to 4
  • X and Y are hydrogen or an alkyl group having 1 to 4 carbons
  • M + is a monovalent cation such as, for example, sodium, potassium or ammonium.
  • Suitable zwitterionic surfactants are exemplified by those which can be broadly described as derivatives of aliphatic quaternary ammonium, phosphonium, and sulfonium compounds, in which the aliphatic radicals can be straight or branched chain, and wherein one of the aliphatic substituents contains from about 8 to about 18 carbon atoms and one contains an anionic group, e.g., carboxy, sulfonate, sulfate, phosphate, or phosphonate.
  • a general formula for these compounds is:
  • R contains an alkyl, alkenyl, or hydroxy alkyl radical of from about 8 to about 18 carbon atoms, from 0 to about 10 ethylene oxide moieties and from 0 to about 1 glyceryl moiety;
  • Y is selected from the group consisting of nitrogen, phosphorus, and sulfur atoms;
  • R is an alkyl or monohydroxyalkyl group containing about 1 to about 3 carbon atoms;
  • X is 1 when Y is a sulfur atom, and 2 when Y is a
  • R is an alkylene or hydroxyalkylene of from about 1 to about 4 carbon atoms and
  • Z is a radical selected from the group consisting of carboxylate, sulfonate, sulfate, phosphonate, and phosphate groups.
  • surfactants examples include:
  • Amphoteric detergents which may be used in this invention include at least one acid group. This may be a carboxylic or a sulphonic acid group. They include quaternary nitrogen and therefore are quaternary amido acids. They should generally include an alkyl or alkenyl group of 7 to 18 carbon atoms. They will usually comply with an overall structural formula:
  • R is alkyl or alkenyl of 7 to 18 carbon atoms
  • R and R are each independently alkyl, hydroxyalkyl or carboxyalkyl of 1 to 3 carbon atoms ;
  • n 2 to 4 ;
  • n 0 to 1;
  • X is alkylene of 1 to 3 carbon atoms optionally substituted with hydroxyl
  • Y is -C0 2 - or -SO 3 -
  • Suitable amphoteric detergents within the above general formula include simple betaines of formula:
  • R may in particular be a mixture of C 12 and C 14 alkyl groups derived from coconut so that at least half, preferably at least three quarters of the groups R have 10 to 14 carbon
  • R and R are preferably methyl .
  • a suitable betaine is cocoamidopropyl betaine.
  • amphoteric detergent is a sulphobetaine of formula: - 1.
  • Amphoacetates and diamphoacetates are also intended to be covered in possible zwitterionic and/or amphoteric compounds which may be used, especially C8 - C20 amphoacetates or mixtures thereof, and the like.
  • a suitable amphoacetate is sodium laurylamphoacetate .
  • amphoteric/zwitterionic surfactant when used, generally comprises 3 to 30%, preferably 5 to 20% by weight, more preferably lOto 20% of the composition.
  • a preferred surfactant system of the invention comprises the following :
  • anionic surfactant e.g. alkali metal alkyl ethersulfate
  • amphoteric surfactant e.g. alkyl betaine or alkyl amphoacetate
  • the surfactant system may also optionally comprise a nonionic surfactant.
  • the nonionic which may be used includes in particular the reaction products of compounds having a hydrophobic group and a reactive hydrogen atom, for example aliphatic alcohols, acids, amides or alkyl phenols with alkylene oxides, especially ethylene oxide either alone or with propylene oxide.
  • Specific nonionic detergent compounds are alkyl (C S -C 22 ) phenols-ethylene oxide condensates, the condensation products of aliphatic (C ⁇ -Cis) primary or secondary linear or branched alcohols with ethylene oxide, and products made by condensation of ethylene oxide with the reaction products of propylene oxide and ethylenediamine .
  • Other so-called nonionic detergent compounds include long chain tertiary a ine oxides, long chain tertiary phosphine oxides and dialkyl sulphoxides, and the like.
  • the nonionic may also be a sugar amide, such as a polysaccharide amide.
  • the surfactant may be one of the lactobionamides described in U.S. Patent No. 5,389,279 titled "Compositions comprising nonionic glycolipid surfactants” issued on Feb. 14, 1995 to Au et al . which is hereby incorporated by reference or it may be one of the sugar amides described in Patent No. 5,009,814 titled "Use of n-polyhydroxyalkyl fatty acid amides as thickening agents for liquid aqueous surfactant systems" issued on Apr. 23, 1991 to Kelkenberg, hereby incorporated into the subject application by reference.
  • alkyl polysaccharides are alkylpolyglycosides of the formula:
  • R is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkylphenyl , and mixtures thereof in which alkyl groups contain from about 10 to about 18, preferably from about 12 to about 14, carbon atoms; n is 0 to 3, preferably 2; t is from 0 to about 10, preferably 0; and x is from 1.3 to about 10, preferably from 1.3 to about 2.7.
  • the glycosyl is preferably derived from glucose. To prepare these compounds, the alcohol or alkylpolyethoxy alcohol is formed first and then reacted with glucose, or a source of glucose, to form the glucoside (attachment at the 1-position) . The additional glycosyl units can then be attached between their 1 -position and the preceding glycosyl units 2-, 3-, 4- and/or 6-position, preferably predominantly the 2-position.
  • the nonionic preferably comprises 0 to 10% by wt . of the composition.
  • compositions of the invention utilise about 0.5% to 10% by wt . , preferably 0.5 to 5% by wt . of a structuring agent which works in the compositions to form a lamellar phase.
  • a structuring agent which works in the compositions to form a lamellar phase.
  • Such lamellar phase enables the compositions to suspend particles more readily (e.g., emollient particles) while still maintaining good shear thinning properties.
  • the lamellar phase also provides consumers with desired rheology ( "heaping" ) .
  • the structurant is preferably a fatty acid or ester derivative thereof, a fatty alcohol, or trihydroxystearin, and the like. More preferably the structurant is selected from the group consisting of lauric or isostearic acid, or trihydroxystearin.
  • fatty acids which may be used are C 10 -C 22 acids such as the following: lauric acid, oleic acid, isostearic acid, linoleic acid, linolenic acid, ricinoleic acid, elaidic acid, arichidonic acid, myristoleic acid and palmitoleic acid, and the like.
  • Ester derivatives include propylene glycol isostearate, propylene glycol oleate, glyceryl isostearate, glyceryl oleate and polyglyceryl diisostearate, and the like.
  • One of the principle benefits of the invention is the ability to suspend oil/emollient particles in a lamellar phase composition. The following oil/emollients may optionally be suspended in the compositions of the invention.
  • Vegetable oils Arachis oil, castor oil, cocoa butter, coconut oil, corn oil, cotton seed oil, olive oil, palm kernel oil, rapeseed oil, safflower seed oil, sesame seed oil and soybean oil, and the like.
  • Esters Butyl myristate, cetyl palmitate, decyloleate, glyceryl laurate, glyceryl ricinoleate, glyceryl stearate, glyceryl isostearate, hexyl laurate, isobutyl palmitate, isocetyl stearate, isopropyl isostearate, isopropyl laurate, isopropyl linoleate, isopropyl myristate, isopropyl palmitate, isopropyl stearate, propylene glycol monolaurate, propylene glycol ricinoleate, propylene glycol stearate, and propylene glycol isostearate, and the like.
  • Animal Fats acetylated lanolin alcohols, lanolin, lard, mink oil and tallow, and the like.
  • oil/emollients include mineral oil, petrolatum, silicone oil such as dimethyl polysiloxane, lauryl and myristyl lactate, and the like.
  • the emollient/oil is generally used in an amount from about 0 to 70%, preferably 5 to 40% by wt . of the composition. Generally, it should comprise no more than 70% of the composition.
  • compositions of the invention may include optional ingredients as follows:
  • Organic solvents such as ethanol ; auxiliary thickeners, sequestering agents, such as tetrasodium ethylenediaminetetraacetate (EDTA) , EHDP or mixtures in an amount of 0.01 to 1%, preferably 0.01 to 0.05%; and coloring agents, opacifiers and pearlizers such as zinc stearate, magnesium stearate, Ti ⁇ 2 , EGMS (ethylene glycol monostearate) or Lytron 621 (Styrene/Acrylate copolymer) ; all of which are useful in enhancing the appearance or cosmetic properties of the product.
  • auxiliary thickeners such as tetrasodium ethylenediaminetetraacetate (EDTA) , EHDP or mixtures in an amount of 0.01 to 1%, preferably 0.01 to 0.05%
  • coloring agents, opacifiers and pearlizers such as zinc stearate, magnesium stearate, Ti ⁇ 2 , EGMS (ethylene glycol monostea
  • compositions may further comprise antimicrobials such as 2-hydroxy-4, 2 '4 ' trichlorodiphenylether (DP300) ; preservatives such as dimethyloldimethylhydantoin (Glydant XL1000), parabens, sorbic acid etc.
  • antimicrobials such as 2-hydroxy-4, 2 '4 ' trichlorodiphenylether (DP300)
  • preservatives such as dimethyloldimethylhydantoin (Glydant XL1000), parabens, sorbic acid etc.
  • compositions may also comprise coconut acyl mono- or diethanol amides as suds boosters.
  • Antioxidants such as, for example, butylated hydroxytoluene (BHT) may be used advantageously in amounts of about 0.01% or higher if appropriate.
  • Cationic conditioners which may be used include Quatrisoft LM-200 Polyquaternium-24 , Merquat Plus 3330 - Polyquaternium 39; and Jaguar (R) type conditioners.
  • deflocculating polymers such as are taught in U.S. Patent No. 5,147,576 titled "Liquid Detergent Composition In The Form Of Lamellar Droplets Containing A Deflocculating Polymer", issued on Sept. 15, 1992 to Montague, hereby incorporated by reference.
  • exfoliants such as polyoxyethylene beads, walnut sheets and apricot seeds, and the like.
  • compositions of the invention are lamellar compositions.
  • the lamellar phase comprises 20 to 80%, preferably 30 to 65% of the total phase volume.
  • the phase volume may be measured, for example, by conductivity measurements or other measurements which are well known to those skilled in the art. While not wishing to be bound by theory, higher phase volume is believed to provide better suspension of emollients.
  • R % salt in surfactant / % active in surfactant.
  • the following table depicts formulations with betaine with different amounts of salt.
  • Example #7 using low salt betaine there is a 5% increase in the freeze thaw viscosity whereas, in example #8 which used regular betaine, there is a 43% decrease in the freeze thaw viscosity which is related to the salt in the betaine.
  • Plastic cups diameter greater than 6.35 cm (2.5 inches)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dermatology (AREA)
  • Cosmetics (AREA)
  • Detergent Compositions (AREA)

Abstract

The invention relates to liquid cleansing compositions in lamellar phase which possess a lotion-like appearance conveying signals of enhanced moisturization. However, these liquids often undergo an irreversible decrease in viscosity under freeze/thaw conditions, losing their moisturization signals. The use of low salt levels in amphoteric and anionic surfactants in a structured liquid product has been found to improve its freeze/thaw stability.

Description

- IL ¬
LIQUID CLEANSING COMPOSITION COMPRISING LAMELLAR PHASE HAVING LOW SALT LEVEL
This application claims the benefit of U.S. Provisional Application No. 60/154,265, filed September 16, 1999.
The present invention relates to liquid cleansing compositions of the type typically used in skin cleansing or shower gel compositions which compositions are "structured" lamellar phase compositions.
The rheological behaviour of all surfactant solutions, including liquid cleansing solutions, is strongly dependent on the microstructure, i.e., the shape and concentration of micelles or other self-assembled structures in solution.
When there is sufficient surfactant to form micelles (concentrations above the critical micelle concentration or CMC), for example, spherical, cylindrical (rod-like) or discoidal micelles may form. As surfactant concentration increases, ordered liquid crystalline phases such as lamellar phase, hexagonal phase or cubic phase may form. The lamellar phase, for example, consists of alternating surfactant bilayers and water layers. These layers are not generally flat but fold to form submicron spherical onion like structures called vesicles or liposomes. The hexagonal phase, on the other hand, consists of long cylindrical micelles arranged in a hexagonal lattice. In general, the microstructure of most personal care products consist of either spherical micelles; rod micelles; or a lamellar dispersion.
As noted above, micelles may be spherical or rod- like. Formulations having spherical micelles tend to have a low viscosity and exhibit Newtonian shear behaviour (i.e., viscosity stays constant as a function of shear rate; thus, if easy pouring of product is desired, the solution is less viscous and, as a consequence, it doesn't suspend as well) . In these systems, the viscosity increases linearly with surfactant concentration.
Rod micellar solutions are more viscous because movement of the longer micelles is restricted. At a critical shear rate, the micelles align and the solution becomes shear thinning. Addition of salts increases the size of the rod micelles thereof increasing zero shear viscosity (i.e., viscosity when sitting in bottle) which helps suspend particles but also increases critical shear rate (point at which product becomes shear thinning; higher critical shear rates means product is more difficult to pour) .
Lamellar dispersions differ from both spherical and rod-like micelles because they can have high zero shear viscosity (because of the close packed arrangement of constituent lamellar droplets) , yet these solutions are very shear thinning (readily dispense on pouring) . That is, the solutions can become thinner than rod micellar solutions at moderate shear rates . In formulating liquid cleansing compositions, therefore, there is the choice of using rod-micellar solutions (whose zero shear viscosity, e.g., suspending ability, is not very good and/or are not very shear thinning) ; or lamellar dispersions (with higher zero shear viscosity, e.g. better suspending, and yet are very shear thinning) . Such lamellar compositions are characterised by high zero shear viscosity (good for suspending and/or structuring) whilst simultaneously being very shear thinning such that they readily dispense in pouring. Such compositions possess a "heaping", lotion-like appearance which conveys signals of enhanced moisturisation.
To form such lamellar compositions, however, some compromises have to be made. First, generally higher amounts of surfactant are required to form the lamellar phase. Thus, it is often needed to add auxiliary surfactants and/or salts which are neither desirable nor needed. Second, only certain surfactants will form this phase and, therefore, the choice of surfactants is restricted.
In short, lamellar compositions are generally more desirable (especially for suspending emollient and for providing consumer aesthetics) , but more expensive in that they generally require more surfactant and are more restricted in the range of surfactants that can be used.
When rod-micellar solutions are used, they also often require the use of external structurants to enhance viscosity and to suspend particles (again, because they have lower zero shear viscosity than lamellar phase solutions) . For this, carbomers and clays are often used. At higher shear rates (as in product dispensing, application of product to body, or rubbing with hands) , since the rod- micellar solutions are less shear thinning, the viscosity of the solution stays high and the product can be stringy and thick. Lamellar dispersion based products, having higher zero shear viscosity, can more readily suspend emollients and are typically more creamy. Again, however, they are generally more expensive to make (e.g., they are restricted as to which surfactants can be used and often require greater concentration of surfactants) .
In general, lamellar phase compositions are easy to identify by their characteristic focal conic shape and oily streak texture while hexagonal phase exhibits angular fan- like texture. In contrast, micellar phases are optically isotropic .
It should be understood that lamellar phases may be formed in a wide variety of surfactant systems using a wide variety of lamellar phase "inducers" as described, for example, in USP No. 5,952,286 entitled "Liquid Cleansing Composition Comprising Soluble, Lamellar Phase Inducing Structurant" by Sudhakar Puwada, et al . , issued September, 14, 1999.
Generally, the transition from micelle to lamellar phase is a function of effective average area of headgroup of the surfactant, the length of the extended tail, and the volume of tail . Using branched surfactants or surfactants with smaller headgroups or bulky tails are also effective ways of inducing transitions from rod micellar to lamellar. One way of characterising lamellar dispersions includes measuring viscosity at low shear rate (using for example a Stress Rheometer) when additional inducer (e.g., oleic acid or isostearic acid) is used. At higher amounts of inducer, the low shear viscosity will significantly increase.
Another way of measuring lamellar dispersions is using freeze fracture electron microscopy. Micrographs generally will show lamellar microstructure and close packed organisation of the lamellar droplets (generally in size range of about 2 microns) .
One problem with certain lamellar phase compositions is that they tend to lose their lamellar stability in colder temperatures (e.g., -17.8°C to 7.2°C (0 to 45°F) ) . Whilst not wishing to be bound by theory, this may be because, in cold conditions, the oil droplets become less flexible and the spherical structure characterising the lamellar interaction breaks into lamellar sheets instead.
The applicants have discovered that the use of surfactants containing low salt levels enhances freeze/thaw stability in personal wash structured liquid formulations. The ability of a structured liquid to maintain viscosity under freeze/thaw conditions is extremely desirable to demonstrate moisturisation and aesthetics. The applicants have found that the combination of amphoteric and anionic surfactants, and either soluble or insoluble lamellar structurants, with oil creates a stable structured liquid with excellent freeze/thaw viscosity stability in conjunction with low overall salt content .
For example, when low salt cocamidopropyl betaine is added to a liquid formulation containing the following compounds: an anionic surfactant like sodium lauryl ether sulfate, high levels of an emollient such as sunflower seed oil, and a lamellar structurant fatty acid like lauric or isostearic acid; a structured liquid with excellent freeze/thaw viscosity is produced. The role of salt (e.g. NaCl) in the cocamidopropyl betaine to affect this stability is clearly seen by the poor freeze/thaw stability of the structured liquids containing higher salt containing cocamidopropyl betaine .
Likewise, when low salt sodium lauryl ether sulfate is added to a similar liquid formulation with sodium lauroamphoacetate, the formulation exhibits improved freeze thaw stability. Furthermore, the presence of salt separately added to the lamellar formula also worsens the freeze thaw stability. Therefore, the structured liquids containing surfactants with low salt levels, preferably under about 1.1 weight %, are stable after being subjected to low temperatures, especially with regard to their viscosity.
It has further been found that this generally inverse relationship with salt and freeze thaw viscosity stability is not applicable where branched anionic surfactants comprise about 50% to 100% of the anionic surfactant in the structured formulation. These anionic surfactants include branched C 0-C22/ preferably branched Cio-Cig alkyl, alkali metal ether sulfates (i.e., having at least one branch from the alkyl portion of the alkyl ether sulfate) . Such anionic surfactants already provide enhanced freeze thaw stability in structured liquid compositions relative to compositions not comprising the branched C10-C22 alkyl, alkali metal ether sulfate as disclosed by the Applicant in co-pending U.S. Patent Application S/N 09/286042.
More specifically, the invention comprises a liquid cleansing composition, wherein the liquid is in a lamellar phase, comprising a surfactant system, preferably a system which contains at least about 5 weight percent of surface active compounds. The inventive composition also includes an amphoteric and/or zwitterionic surfactant present at about 3 to 30 weight percent. The inventive composition also contains at least one or more anionic surfactants present at about 2 to 40 weight percent. The inventive composition also contains a lamellar structurant compound present at about 0.5 to 10 weight percent. The inventive composition has a initial viscosity in the range of about 15,000 to 300,000 centipoises (cps) measured at 0.5 RPM using T-bar spindle A using the procedure described below. The inventive composition also has a freeze thaw viscosity (measured after at least one cycle of -17.8°C to 21.1°C (0°F to 70°F) ) having a percent drop (if any) relative to initial viscosity of no more than about 35 percent. Initial viscosity is here defined as that obtained at 21.1°C (70°F) for the inventive composition which has never been frozen. Freeze thaw viscosity is likewise defined as the viscosity obtained after at least one freeze thaw cycle.
The inventive composition also preferably has a strong electrolyte concentration of about 1.1 weight percent or less. Alternatively the inventive composition preferably has a weight percent ratio of anionic surfactant to strong electrolyte in the range of 8:1 to 100:1, preferably 10:1 to 50:1. Similarly, the inventive composition preferably has a weight percent ratio of amphoteric surfactant to strong electrolyte in the range of 3:1 to 100:1, preferably 5:1 to 50:1. Strong electrolytes are those salts which are completely dissociated in a liquid cleansing composition. Such salts include ammonium, alkali and alkaline earth chlorides and sulfates. As the term is used here, strong electrolyte is defined as the total amount of chloride and sulfate in the inventive composition derived from any source, expressed as a weight percent.
Preferably, the strong electrolyte content is minimized by the use of either a low salt amphoteric, zwitterionic, or anionic surfactant, or a blend thereof in the inventive composition. A low salt surfactant in the inventive formula is alternatively here defined by R being less than or equal to 0.15, where R = [% salt in surfactant] / [% active in surfactant] . For example, if a surfactant is 50% active which contains 1% salt, then the value of R for that surfactant is 0.02, and the surfactant is classified as a low salt surfactant. Percent active in a surfactant raw material is defined as the concentration of the desired ingredients in the raw material, as is well known in the art .
The present invention relates to liquid lamellar cleansing compositions, wherein the liquid is in a lamellar phase, comprising a surfactant system, preferably a system which contains at least about 5 weight percent, preferably at least about 10 weight percent of surface active compounds. The inventive composition also includes an amphoteric and/or zwitterionic surfactant. Preferably the amphoteric or zwitterionic surfactant, or a blend thereof is present at about 3 to 30 weight percent, more preferably at about 5 to 20 weight percent. The inventive composition also contains at least one anionic surfactant . Preferably the anionic surfactant is present at about 2 to 40 weight percent, more preferably at about 5 to 20 weight percent. The inventive composition also contains a lamellar structurant .
Preferably the lamellar structurant is present at about 0.5 to 10 weight percent, more preferably at about 0.5 to 5 weight percent .
The inventive composition preferably has a initial viscosity in the range of about 15,000 to 300,000 centipoises (cps) measured at 0.5 RPM using T-bar spindle A using the procedure described below. The initial viscosity is preferably 30,000 to 150,000 cps, more preferably from about 60,000 to about 140,000 cps. The inventive composition also has a freeze thaw viscosity (measured after at least one cycle, preferably after at least 2 cycles, more preferably after 3 cycles of -17.8°C to 21.1°C (0°F to 70°F) freeze thaw cycles) having a percent drop (if any) relative to initial viscosity of no more than about 35 percent.
The inventive composition also has a strong electrolyte concentration of about 1.1 weight percent or less.
Alternatively the inventive composition has a weight percent ratio of anionic surfactant to strong electrolyte in the range of 8:1 to 100:1, preferably 10:1 to 50:1. Similarly, the inventive composition has a weight percent ratio of amphoteric surfactant to strong electrolyte is in the range of 3:1 to 100:1, preferably 5:1 to 50:1. Preferably, the strong electrolyte content is controlled by the use of either a low salt amphoteric, zwitterionic, or anionic surfactant, or a blend thereof in the inventive composition.
The surfactant system of the subject invention preferably comprises 5 to 70% by weight, more preferably 10 to 30% by wt . of the composition and comprises:
(a) at least one anionic surfactant;
(b) at least one amphoteric and/or zwitterionic surfactant ;
(c) at least one lamellar structurant compound; and
(d) optionally one or more nonionic surfactants, cationic surfactants, or blends thereof.
The anionic surfactant (which may comprise 2 to 40 % by wt . of total composition) may be, for example, an aliphatic sulfonate, such as a primary alkane (e.g., C8- 22) sulfonate, primary alkane (e.g., C8-C22) disulfonate, C8-C22 alkene sulfonate, 8-C22 hydroxyalkane sulfonate or alkyl glyceryl ether sulfonate (AGS) ; or an aromatic sulfonate such as alkyl benzene sulfonate, and the like.
The anionic may also be an alkyl sulfate (e.g., C12-C18 alkyl sulfate) or alkyl ether sulfate (including alkyl glyceryl ether sulfates) , and the like. Among the alkyl ether sulfates are those having the formula:
RO(CH2CH20)nS03M
wherein R is an alkyl or alkenyl having 8 to 18 carbons, preferably 12 to 18 carbons, n has an average value of greater than 1.0, preferably between 2 and 3; and M is a solubilizing cation such as sodium, potassium, ammonium or substituted ammonium. Ammonium and sodium lauryl ether sulfates are preferred.
The anionic may also be alkyl sulfosuccinates (including mono- and dialkyl, e.g., C6-C22 sulfosuccinates) ; alkyl and acyl taurates, alkyl and acyl sarcosinates, sulfoacetates, C8-C22 alkyl phosphates and phosphates, alkyl phosphate esters and alkoxyl alkyl phosphate esters, acyl lactates, C8-C22 monoalkyl succinates and maleates, sulphoacetates, and acyl isethionates , and the like.
Sulfosuccinates may be monoalkyl sulfosuccinates having the formula : R402CCH2CH ( SO3M) C02M ;
amido-MEA sul fosuccinates of the formula
R4CONHCH2CH202CCH2CH ( SO3M) C02M
4 wherein R ranges from C8 -C22 alkyl and M is a solubil ismg cation ;
amido-MIPA sulfosuccinates of formula
RC0NH(CH2)CH(CH3) (SO3M) C02M
where M is as defined above.
Also included are the alkoxylated citrate sulfosuccinates; and alkoxylated sulfosuccinates such as the following:
O II
R-O- (CH2CH20) nCCH2CH (SO3M) C02M
wherein n = 1 to 20; and M is as defined above.
Sarcosinates are generally indicated by the formula
RC0N(CH3) CH2C0 M, wherein R ranges from C8 to C2o alkyl and M is a solubilizing cation.
Taurates are generally identified by formula R2C0NR3CH2CH2S03M
2 3 wherein R ranges from C8-C20 alkyl, R ranges from C1-C4 alkyl and M is a solubilizing cation.
Another class of anionics are carboxylates such as follows
R- (CH2CH20)nC02M
wherein R is Cβ to C20 alkyl; n is 0 to 20; and M is as defined above.
Another carboxylate which can be used is amido alkyl polypeptide carboxylates such as, for example, Monteine LCQ(R) by Seppic .
Another surfactant which may be used are the Cs-Cis acyl isethionates. These esters are prepared by reaction between alkali metal isethionate with mixed aliphatic fatty acids having from 6 to 18 carbon atoms and an iodine value of less than 20. At least 75% of the mixed fatty acids have from 12 to 18 carbon atoms and up to 25% have from 6 to 10 carbon atoms .
Acyl isethionates, when present, will generally range from about 0.5-15% by weight of the total composition. Preferably, this component is present from about 1 to about 10%. The acyl isethionate may be an alkoxylated isethionate such as is described in U.S. Patent No. 5,393,466, Titled "Fatty Acid Esters Of Polyalkoxylated Isethionic Acid" issued Feb. 28, 1995 to Ilardi et al . , hereby incorporated by reference into the subject application. This compound has the general formula :
O X Y
II I I R C-O-CH-CH2- (OCH-CH2)m-Sθ" 3M+
wherein R is an alkyl group having 8 to 18 carbons, m is an integer from 1 to 4 , X and Y are hydrogen or an alkyl group having 1 to 4 carbons and M+ is a monovalent cation such as, for example, sodium, potassium or ammonium.
Suitable zwitterionic surfactants are exemplified by those which can be broadly described as derivatives of aliphatic quaternary ammonium, phosphonium, and sulfonium compounds, in which the aliphatic radicals can be straight or branched chain, and wherein one of the aliphatic substituents contains from about 8 to about 18 carbon atoms and one contains an anionic group, e.g., carboxy, sulfonate, sulfate, phosphate, or phosphonate. A general formula for these compounds is:
(R~
R2-Y{ + )-CH2-R4Z(-)
2 wherein R contains an alkyl, alkenyl, or hydroxy alkyl radical of from about 8 to about 18 carbon atoms, from 0 to about 10 ethylene oxide moieties and from 0 to about 1 glyceryl moiety; Y is selected from the group consisting of nitrogen, phosphorus, and sulfur atoms; R is an alkyl or monohydroxyalkyl group containing about 1 to about 3 carbon atoms; X is 1 when Y is a sulfur atom, and 2 when Y is a
4 nitrogen or phosphorus atom; R is an alkylene or hydroxyalkylene of from about 1 to about 4 carbon atoms and
Z is a radical selected from the group consisting of carboxylate, sulfonate, sulfate, phosphonate, and phosphate groups.
Examples of such surfactants include:
4- [N,N-di (2-hydroxyethyl) -N-octadecylammonio] -butane- 1- carboxylate;
5- [S-3-hydroxypropyl-S-hexadecylsulfonio] -3- hydroxypentane- 1- sulfate ;
3- [P, P-diethyl-P-3 , 6, 9-trioxatetradexocylphosphonio] -2- hydroxypropane-1 -phosphate ; 3- [N,N-dipropyl-N-3-dodecoxy-2-hydroxypropylammonio] - propane-1 -phosphonate ;
3 - (N, N-dimethyl -N-hexadecylammonio) propane- 1 -sulfonate ;
3- (N,N-dimethyl -N-hexadecylammonio) -2-hydroxypropane-l- sulfonate; 4- [N,N-di (2-hydroxyethyl) -N- (2-hydroxydodecyl) ammonio] - butane- 1 -carboxylate ;
3- [S-ethyl-S- (3-dodecoxy-2-hydroxypropyl) sulfonio] - propane- 1 -phosphate ;
3- [P, P-dimethyl-P-dodecylphosphonio] -propane-1- phosphonate; and 5- [N,N-di (3-hydroxypropyl) -N-hexadecylammonio] -2- hydroxy-pentane-1-sulfate .
Amphoteric detergents which may be used in this invention include at least one acid group. This may be a carboxylic or a sulphonic acid group. They include quaternary nitrogen and therefore are quaternary amido acids. They should generally include an alkyl or alkenyl group of 7 to 18 carbon atoms. They will usually comply with an overall structural formula:
0 R
R1 - [-C-NH(CH2)n-]m-N+- X-Y
R"
where R is alkyl or alkenyl of 7 to 18 carbon atoms;
2 3 R and R are each independently alkyl, hydroxyalkyl or carboxyalkyl of 1 to 3 carbon atoms ;
n is 2 to 4 ;
m is 0 to 1;
X is alkylene of 1 to 3 carbon atoms optionally substituted with hydroxyl , and
Y is -C02- or -SO3- Suitable amphoteric detergents within the above general formula include simple betaines of formula:
R
R1—N+—CH2C02 "
R"
and amido betaines of formula:
R
R1 - CONH (CH2)m—N+—CH2C02 "
R"
where m is 2 or 3
1 2 3 1 In both formulae R , R and R are as defined previously. R may in particular be a mixture of C12 and C14 alkyl groups derived from coconut so that at least half, preferably at least three quarters of the groups R have 10 to 14 carbon
2 3 atoms . R and R are preferably methyl . A suitable betaine is cocoamidopropyl betaine.
A further possibility is that the amphoteric detergent is a sulphobetaine of formula: - 1.
R
R1-N+-(CH2)3S03-
R"
or
R2 I
R1 - CONH (CH2)m— N+— (CH2)3S03 '
R"
where m is 2 or 3, or variants of these in which -(CH2)3S0 3 is replaced by:
OH
-CH2CHCH2 S03 "
1 2 3
In these formulae R , R and R are as discussed previously.
Amphoacetates and diamphoacetates are also intended to be covered in possible zwitterionic and/or amphoteric compounds which may be used, especially C8 - C20 amphoacetates or mixtures thereof, and the like. A suitable amphoacetate is sodium laurylamphoacetate .
The amphoteric/zwitterionic surfactant, when used, generally comprises 3 to 30%, preferably 5 to 20% by weight, more preferably lOto 20% of the composition. A preferred surfactant system of the invention comprises the following :
anionic surfactant (e.g. alkali metal alkyl ethersulfate) , 2-50%, and amphoteric surfactant (e.g. alkyl betaine or alkyl amphoacetate) , 3-20%.
The surfactant system may also optionally comprise a nonionic surfactant.
The nonionic which may be used includes in particular the reaction products of compounds having a hydrophobic group and a reactive hydrogen atom, for example aliphatic alcohols, acids, amides or alkyl phenols with alkylene oxides, especially ethylene oxide either alone or with propylene oxide. Specific nonionic detergent compounds are alkyl (CS-C22) phenols-ethylene oxide condensates, the condensation products of aliphatic (Cβ-Cis) primary or secondary linear or branched alcohols with ethylene oxide, and products made by condensation of ethylene oxide with the reaction products of propylene oxide and ethylenediamine . Other so-called nonionic detergent compounds include long chain tertiary a ine oxides, long chain tertiary phosphine oxides and dialkyl sulphoxides, and the like.
The nonionic may also be a sugar amide, such as a polysaccharide amide. Specifically, the surfactant may be one of the lactobionamides described in U.S. Patent No. 5,389,279 titled "Compositions comprising nonionic glycolipid surfactants" issued on Feb. 14, 1995 to Au et al . which is hereby incorporated by reference or it may be one of the sugar amides described in Patent No. 5,009,814 titled "Use of n-polyhydroxyalkyl fatty acid amides as thickening agents for liquid aqueous surfactant systems" issued on Apr. 23, 1991 to Kelkenberg, hereby incorporated into the subject application by reference.
Other surfactants which may be used are described in U.S. Patent No. 3,723,325 to Parran Jr. and alkyl polysaccharide nonionic surfactants as disclosed in U.S. Patent No. 4,565,647 titled "Foaming surfactant compositions", issued on Jan. 21, 1986 to Llenado, both of which are also incorporated into the subject application by reference.
Preferred alkyl polysaccharides are alkylpolyglycosides of the formula:
R 0(CnH2nO)t(glycosyl)x
2 wherein R is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkylphenyl , and mixtures thereof in which alkyl groups contain from about 10 to about 18, preferably from about 12 to about 14, carbon atoms; n is 0 to 3, preferably 2; t is from 0 to about 10, preferably 0; and x is from 1.3 to about 10, preferably from 1.3 to about 2.7. The glycosyl is preferably derived from glucose. To prepare these compounds, the alcohol or alkylpolyethoxy alcohol is formed first and then reacted with glucose, or a source of glucose, to form the glucoside (attachment at the 1-position) . The additional glycosyl units can then be attached between their 1 -position and the preceding glycosyl units 2-, 3-, 4- and/or 6-position, preferably predominantly the 2-position.
The nonionic preferably comprises 0 to 10% by wt . of the composition.
The compositions of the invention utilise about 0.5% to 10% by wt . , preferably 0.5 to 5% by wt . of a structuring agent which works in the compositions to form a lamellar phase. Such lamellar phase enables the compositions to suspend particles more readily (e.g., emollient particles) while still maintaining good shear thinning properties. The lamellar phase also provides consumers with desired rheology ( "heaping" ) .
The structurant is preferably a fatty acid or ester derivative thereof, a fatty alcohol, or trihydroxystearin, and the like. More preferably the structurant is selected from the group consisting of lauric or isostearic acid, or trihydroxystearin.
Examples of fatty acids which may be used are C10-C22 acids such as the following: lauric acid, oleic acid, isostearic acid, linoleic acid, linolenic acid, ricinoleic acid, elaidic acid, arichidonic acid, myristoleic acid and palmitoleic acid, and the like. Ester derivatives include propylene glycol isostearate, propylene glycol oleate, glyceryl isostearate, glyceryl oleate and polyglyceryl diisostearate, and the like. One of the principle benefits of the invention is the ability to suspend oil/emollient particles in a lamellar phase composition. The following oil/emollients may optionally be suspended in the compositions of the invention.
Various classes of oils are set forth below:
Vegetable oils: Arachis oil, castor oil, cocoa butter, coconut oil, corn oil, cotton seed oil, olive oil, palm kernel oil, rapeseed oil, safflower seed oil, sesame seed oil and soybean oil, and the like.
Esters: Butyl myristate, cetyl palmitate, decyloleate, glyceryl laurate, glyceryl ricinoleate, glyceryl stearate, glyceryl isostearate, hexyl laurate, isobutyl palmitate, isocetyl stearate, isopropyl isostearate, isopropyl laurate, isopropyl linoleate, isopropyl myristate, isopropyl palmitate, isopropyl stearate, propylene glycol monolaurate, propylene glycol ricinoleate, propylene glycol stearate, and propylene glycol isostearate, and the like.
Animal Fats: acetylated lanolin alcohols, lanolin, lard, mink oil and tallow, and the like.
Other examples of oil/emollients include mineral oil, petrolatum, silicone oil such as dimethyl polysiloxane, lauryl and myristyl lactate, and the like. The emollient/oil is generally used in an amount from about 0 to 70%, preferably 5 to 40% by wt . of the composition. Generally, it should comprise no more than 70% of the composition.
In addition, the compositions of the invention may include optional ingredients as follows:
Organic solvents, such as ethanol ; auxiliary thickeners, sequestering agents, such as tetrasodium ethylenediaminetetraacetate (EDTA) , EHDP or mixtures in an amount of 0.01 to 1%, preferably 0.01 to 0.05%; and coloring agents, opacifiers and pearlizers such as zinc stearate, magnesium stearate, Tiθ2, EGMS (ethylene glycol monostearate) or Lytron 621 (Styrene/Acrylate copolymer) ; all of which are useful in enhancing the appearance or cosmetic properties of the product.
The compositions may further comprise antimicrobials such as 2-hydroxy-4, 2 '4 ' trichlorodiphenylether (DP300) ; preservatives such as dimethyloldimethylhydantoin (Glydant XL1000), parabens, sorbic acid etc.
The compositions may also comprise coconut acyl mono- or diethanol amides as suds boosters.
Antioxidants such as, for example, butylated hydroxytoluene (BHT) may be used advantageously in amounts of about 0.01% or higher if appropriate. Cationic conditioners which may be used include Quatrisoft LM-200 Polyquaternium-24 , Merquat Plus 3330 - Polyquaternium 39; and Jaguar (R) type conditioners.
Another optional ingredient which may be added are the deflocculating polymers such as are taught in U.S. Patent No. 5,147,576 titled "Liquid Detergent Composition In The Form Of Lamellar Droplets Containing A Deflocculating Polymer", issued on Sept. 15, 1992 to Montague, hereby incorporated by reference.
Other ingredients which may be included are exfoliants such as polyoxyethylene beads, walnut sheets and apricot seeds, and the like.
The compositions of the invention, as noted, are lamellar compositions. In particular, the lamellar phase comprises 20 to 80%, preferably 30 to 65% of the total phase volume. The phase volume may be measured, for example, by conductivity measurements or other measurements which are well known to those skilled in the art. While not wishing to be bound by theory, higher phase volume is believed to provide better suspension of emollients.
The invention will now be described in greater detail by way of the following non-limiting examples. The examples are for illustrative purposes only and not intended to limit the invention in any way.
Except in the operating and comparative examples, or where otherwise explicitly indicated, all numbers in this description indicating amounts or ratios of materials or conditions or reaction, physical properties of materials and/or use are to be understood as modified by the word "about" .
Where used in the specification, the term "comprising" is intended to include the presence of stated features, integers, steps, components, but not to preclude the presence or addition of one or more features, integers, steps, components or groups thereof.
All percentages in the specification and examples are intended to be by weight unless stated otherwise.
EXAMPLES
EXAMPLES 1-2
The following table clearly shows the effect of low salt cocamidopropyl betaine (containing approx 0.8% NaCl) in enhancing freeze thaw viscosity stability of a lamellar structured liquid formulation using lauric acid as the lamellar structurant, compared to the same formulation using a conventional, commercially available cocamidopropyl betaine with a residual salt level of 5-6%. Comparing Examples 1 and 2, we find a 50% drop in viscosity in the formulations with high salt versus an 8.3% drop in viscosity in the formulations with low salt under freeze thaw conditions.
R= % salt in surfactant / % active in surfactant.
Weight Percent
Figure imgf000027_0001
EXAMPLES 3-4
The following table clearly shows the effect of low salt cocamidopropyl betaine in enhancing freeze thaw viscosity stability of a lamellar structured liquid formulation using isostearic acid as the lamellar structurant, compared to the same formulation with a conventional, commercially available cocamidopropyl betaine with a residual salt level of 5-6%: In this example, an increase in freeze thaw viscosity is obtained with the low salt betaine, whereas the regular betaine provides a freeze thaw product which is unstable with respect to viscosity, etc.
Weight Percent
Figure imgf000028_0001
EXAMPLES 5-6
The following table depicts formulations where the level of oil was decreased 5%, with the structurant being lauric acid. Again, the formula with the regular betaine is freeze thaw unstable, whereas the one using the low salt betaine undergoes a freeze thaw viscosity loss of 22.2%:
Weight Percent
Figure imgf000029_0001
EXAMPLES 7-8
The following table depicts formulations with betaine with different amounts of salt. In the first example (#7) using low salt betaine there is a 5% increase in the freeze thaw viscosity whereas, in example #8 which used regular betaine, there is a 43% decrease in the freeze thaw viscosity which is related to the salt in the betaine.
Weight Percent
Figure imgf000030_0001
Viscosity measurements were made in accordance with the following protocol:
Viscosity Measurement
Scope :
This method covers the measurement of the viscosity of the finished product. Apparatus :
Brookfield RVT Viscometer with Helipath Accessory; Chuck, weight and closer assembly for T-bar attachment; T-bar Spindle A;
Plastic cups diameter greater than 6.35 cm (2.5 inches)
Procedure :
1. Verify that the viscometer and the helipath stand are level by referring to the bubble levels on the back of the instrument .
2. Connect the chuck/closer/weight assembly to the Viscometer (Note the left-hand coupling threads) .
3. Clean Spindle A with deionized water and pat dry with a Kimwipe sheet. Slide the spindle in the closer and tighten.
4. Set the rotational speed at 0.5 RPM. In case of a digital viscometer (DV) select the % mode and press autozero with the motor switch on.
5. Place the product in a plastic cup with inner diameter of greater than 6.35 cm (2.5 inches) . The height of the product in the cup should be at least 7.5 cm (3 inches) . The temperature of the product should be 25°C.
6. Lower the spindle into the product approx. 0.64 cm (~l/4 inches) . Set the adjustable stops of the helipath stand so that the spindle does not touch the bottom of the plastic cup or come out of the sample.
7. Start the viscometer and allow the dial to make one or two revolutions before turning on the Helipath stand.
Note the dial reading as the helipath stand passes the middle of its downward traverse.
8. Multiply the dial reading by a factor of 4,000 and report the viscosity reading in cps.

Claims

1. An aqueous lamellar structured liquid composition, comprising:
a surfactant selected from amphoteric, zwitterionic, or a mixture thereof;
an anionic surfactant;
a lamellar structurant selected from fatty acids, fatty esters, trihydroxystearin, fatty alcohols, or mixtures thereof; and
a strong electrolyte present in a concentration below a predetermined amount, the amount being sufficient to maintain 65% or greater of the liquid composition's initial viscosity after freeze thawing.
The composition of claim 1 wherein the strong electrolyte is present at a level equal to or below 1.1 weight percent .
3. The composition of claim 1 or claim 2 wherein the weight percent ratio of anionic surfactant to strong electrolyte is in the range of 8:1 to 100:1.
4. The composition of any of the preceding claims wherein the weight percent ratio of anionic surfactant to strong electrolyte is in the range of 10:1 to 50:1.
5. The composition of any of the preceding claims wherein the weight percent ratio of amphoteric surfactant to strong electrolyte is in the range of 3:1 to 100:1.
6. The composition of any of the preceding claims wherein the weight percent ratio of amphoteric surfactant to strong electrolyte is in the range of 5:1 to 50:1.
7. The composition of any of the preceding claims wherein the amphoteric or zwitterionic surfactant is selected from either cocamidopropyl betaine, or an alkali metal salt of alkyl amphoacetate .
8. The composition of any of the preceding claims wherein the total concentration of the amphoteric or zwitterionic surfactant is in the range of 3 to 30 weight percent of the total composition.
9. The composition of any of the preceding claims wherein the anionic surfactant is selected from alkali metal or ammonium alkyl ether sulfate, alkali metal or ammonium alkyl sarcosinate, alkali metal or ammonium alkyl sulfosuccinate, and alkali metal or ammonium alkyl sulfate, or mixtures thereof.
10. The composition of any of the preceding claims wherein at least one surfactant is selected from an amphoteric, zwitterionic, or anionic surfactant ; and the at least one surfactant has an R value less than or equal to 0.15 where
R = [% salt in surfactant] [% active in surfactant] .
11. The composition of any of the preceding claims wherein at least one surfactant is selected from sodium lauroamphoacetate or cocamidopropyl betaine; and the at least one surfactant has an R value less than or equal to 0.15 where
R = [% salt in surfactant]
[% active in surfactant] .
12. The composition of any of the preceding claims wherein the concentration of anionic surfactant is in the range of 2 to 40 weight percent.
13. The composition of any of the preceding claims wherein the lamellar structurant is selected from lauric acid, isostearic acid, trihydroxystearin, palm kernel acid, capric acid, oleic acid and caprylic acid, and mixtures thereof .
14. The composition of any of the preceding claims wherein the concentration of lamellar structurant is in the range of 0.5 to 10 weight percent.
15. The composition of any of the preceding claims wherein the composition has an initial viscosity in the range of 15,000 to 300,000 (cps) .
16. The composition of claim 15 wherein the composition has an initial viscosity in the range of 30,000 to 150,000 (cps) .
17. The composition of claim 16 wherein the composition has an initial viscosity in the range of 60,000 to 140,000 (cps) .
18. The composition of any of the preceding claims wherein its freeze thaw viscosity is not less than 65% of the composition's initial viscosity after one freeze thaw cycle .
19. The composition of any of the preceding claims wherein its freeze thaw viscosity is not less than 65 % of the composition's initial viscosity after two freeze thaw cycle .
20. The composition of any of the preceding claims wherein its freeze thaw viscosity is not less than 65 % of the composition' s initial viscosity after three freeze thaw cycles .
21. The composition of any of the preceding claims wherein its freeze thaw viscosity is not less than 80 % of the composition's initial viscosity after one freeze thaw cycle .
22. An aqueous lamellar structured liquid composition, comprising :
at least 5 weight percent of surface active material; 3 to 30 weight percent of one or more amphoteric, or zwiterionic surfactants or a blend thereof;
2 to 40 weight percent of an anionic surfactant;
0.5 to 10 weight percent of a lamellar structurant selected from fatty acids, fatty esters, fatty alcohols, or trihydroxystearin; and
less than 1.1 weight percent of a strong electrolyte.
23. The composition of claim 22 wherein the amphoteric surfactant is sodium lauroamphoacetate .
24. The composition of claim 22 or claim 23 wherein the zwitterionic surfactant is cocamidopropyl betaine.
25. The composition of any of claims 22 to 24 wherein the anionic surfactant is selected from alkali metal or ammonium alkyl ether sulfate, alkali metal or ammonium alkyl sarcosinate, alkali metal or ammonium alkyl sulfate, and alkali metal or ammonium alkyl sulfosuccinate .
26. The composition of any of claims 22 to 25 wherein at least one surfactant is selected from an amphoteric, zwitterionic, or anionic surfactant; and the at least one surfactant has an R value less than or equal to 0.15 where R = [% salt in surfactant]
[% active in surfactant] .
7. The composition of any of claims 22 to 26 wherein at least one surfactant is selected from sodium lauroamphoacetate or cocamidopropyl betaine; and the at least one surfactant has an R value less than or equal to 0.15 where
R = [% salt in surfactant]
[% active in surfactant] .
PCT/EP2000/008266 1999-09-16 2000-08-23 Liquid cleansing composition comprising lamellar phase having low salt level WO2001019949A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002384793A CA2384793C (en) 1999-09-16 2000-08-23 Liquid cleansing composition comprising lamellar phase having low salt level
JP2001523721A JP4980531B2 (en) 1999-09-16 2000-08-23 Liquid cleansing composition comprising lamellar phase with low salt level
AU75105/00A AU768792B2 (en) 1999-09-16 2000-08-23 Liquid cleansing composition comprising lamellar phase having low salt level
EP00964035.0A EP1220886B1 (en) 1999-09-16 2000-08-23 Liquid cleansing composition comprising lamellar phase having low salt level
BRPI0014025-2A BR0014025B1 (en) 1999-09-16 2000-08-23 aqueous lamellar structured liquid composition.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15426599P 1999-09-16 1999-09-16
US60/154,265 1999-09-16

Publications (1)

Publication Number Publication Date
WO2001019949A1 true WO2001019949A1 (en) 2001-03-22

Family

ID=22550669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/008266 WO2001019949A1 (en) 1999-09-16 2000-08-23 Liquid cleansing composition comprising lamellar phase having low salt level

Country Status (9)

Country Link
US (1) US6426326B1 (en)
EP (1) EP1220886B1 (en)
JP (1) JP4980531B2 (en)
CN (1) CN1183242C (en)
AU (1) AU768792B2 (en)
BR (1) BR0014025B1 (en)
CA (1) CA2384793C (en)
WO (1) WO2001019949A1 (en)
ZA (1) ZA200201995B (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004041218A1 (en) * 2002-11-08 2004-05-21 Unilever Plc Liquid cleansing composition having simultaneous exfoliating and moisturizing properties
WO2005107691A1 (en) * 2004-04-22 2005-11-17 Kimberly-Clark Worldwide, Inc. Lamellar structured liquid cleanser compositions
WO2010026073A1 (en) * 2008-09-05 2010-03-11 Unilever Plc Good foaming creamy or paste-like cleansers comprising floor levels of lipids or lipid mimics
EP2216010A1 (en) 2009-02-05 2010-08-11 Rhodia Opérations Aqueous composition suitable as shampoo
WO2010130543A3 (en) * 2009-05-13 2011-01-27 Unilever Plc High emollient lamellar compositions resistant to viscosity and phase structure deterioration after low temp storage and/or freeze-thaw cycle
US8420588B2 (en) 2009-09-10 2013-04-16 Cognis Ip Management Gmbh Isosorbide glyceryl ether derivatives and their use in household applications
WO2015071298A2 (en) 2013-11-13 2015-05-21 L'oreal Foaming composition comprising at least one glycinate type surfactant
WO2019008937A1 (en) 2017-07-04 2019-01-10 L'oreal Foaming cleanser
EP3694482B1 (en) 2017-10-10 2022-04-13 The Procter & Gamble Company Sulfate free personal cleansing composition comprising low inorganic salt
US11679065B2 (en) 2020-02-27 2023-06-20 The Procter & Gamble Company Compositions with sulfur having enhanced efficacy and aesthetics
US11771635B2 (en) 2021-05-14 2023-10-03 The Procter & Gamble Company Shampoo composition
US11819474B2 (en) 2020-12-04 2023-11-21 The Procter & Gamble Company Hair care compositions comprising malodor reduction materials
US11980679B2 (en) 2019-12-06 2024-05-14 The Procter & Gamble Company Sulfate free composition with enhanced deposition of scalp active
US11986543B2 (en) 2021-06-01 2024-05-21 The Procter & Gamble Company Rinse-off compositions with a surfactant system that is substantially free of sulfate-based surfactants
WO2024218249A1 (en) * 2023-04-21 2024-10-24 Unilever Ip Holdings B.V. A transparent liquid cleansing composition

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005515215A (en) 2001-12-21 2005-05-26 ローディア インコーポレイティド Stable surfactant composition for suspending ingredients
US20030190302A1 (en) * 2001-12-21 2003-10-09 Seren Frantz Combined stable cationic and anionic surfactant compositions
US6770607B2 (en) * 2002-09-12 2004-08-03 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Viscoelastic cleansing gel with micellar surfactant solutions
CN1681475B (en) * 2002-09-20 2010-05-26 宝洁公司 Striped liquid personal cleansing compositions containing a cleansing phase and a separate benefit phase
EP1558208A1 (en) * 2002-11-04 2005-08-03 The Procter & Gamble Company Striped liquid personal cleansing compositions containing a cleansing phase and a separate benefit phase with improved stability
US20040097385A1 (en) * 2002-11-18 2004-05-20 Unilever Home & Personal Products Usa, Division Of Conopco, Inc. Viscoelastic cleansing gel with surfactant solutions containing polysaccharides and their derivatives polysaccharide hydrocolloids
CN100558338C (en) 2003-05-01 2009-11-11 宝洁公司 By cleansing phase and the striped liquid personal cleansing compositions that comprises the separate benefit phase composition of High Internal Phase Emulsion
CN1780601B (en) 2003-05-01 2010-05-12 宝洁公司 Visually distinctive multiple liquid phase compositions
US20040223991A1 (en) * 2003-05-08 2004-11-11 The Procter & Gamble Company Multi-phase personal care composition
US20050100570A1 (en) * 2003-05-08 2005-05-12 The Procter & Gamble Company Multi-phase personal care composition
US20050020468A1 (en) * 2003-07-22 2005-01-27 Seren Frantz New branched sulfates for use in personal care formulations
CA2549240A1 (en) * 2003-12-03 2005-06-23 Rhodia, Inc. Branched sulfates with improved odor properties and their use in personal care compositions
US7919441B2 (en) * 2003-12-23 2011-04-05 Unilever Home & Personal Care, Division Of Conopco, Inc. Ordered liquid crystalline cleansing composition with suspended air
US20050136026A1 (en) * 2003-12-23 2005-06-23 Qiang Qiu Ordered liquid crystalline cleansing composition with C16-24 normal monoalkylsulfosuccinates and C16-24 normal alkyl carboxylic acids
US8951947B2 (en) * 2003-12-24 2015-02-10 The Procter & Gamble Company Multi-phase personal cleansing compositions comprising a lathering cleansing phase and a non-lathering structured aqueous phase
US7268104B2 (en) * 2003-12-31 2007-09-11 Kimberly-Clark Worldwide, Inc. Color changing liquid cleansing products
EP1722742A1 (en) * 2004-02-27 2006-11-22 The Procter and Gamble Company A mild body wash
CN1921819B (en) * 2004-02-27 2011-11-30 宝洁公司 Mild multi-phased personal care composition
JP2007523948A (en) * 2004-02-27 2007-08-23 ザ プロクター アンド ギャンブル カンパニー Hypoallergenic body wash
BRPI0509906A (en) * 2004-04-15 2007-09-18 Rhodia optically clear aqueous structured surfactant composition, method for producing an optically clear structured surfactant composition, method for enhancing the optical clarity of an aqueous structured surfactant composition and personal care composition
CN1984635A (en) * 2004-07-09 2007-06-20 宝洁公司 Multi-phased personal care composition
US20060040837A1 (en) * 2004-08-17 2006-02-23 Seren Frantz Low pH structured surfactant compositions
US20060135627A1 (en) * 2004-08-17 2006-06-22 Seren Frantz Structured surfactant compositions
US7666825B2 (en) * 2004-10-08 2010-02-23 The Procter & Gamble Company Stable, patterned multi-phased personal care composition
US20060079418A1 (en) * 2004-10-08 2006-04-13 Wagner Julie A Stable multi-phased personal care composition
US20060079419A1 (en) * 2004-10-08 2006-04-13 Julie Ann Wagner Depositable solids
US8147853B2 (en) 2005-02-15 2012-04-03 The Procter & Gamble Company Personal care compositions containing hydrophobically modified non-platelet particles
JP2008523110A (en) * 2005-03-21 2008-07-03 ザ プロクター アンド ギャンブル カンパニー Multiphase personal care composition comprising visually distinct phases
US7820609B2 (en) * 2005-04-13 2010-10-26 The Procter & Gamble Company Mild, structured, multi-phase personal cleansing compositions comprising density modifiers
WO2006113118A1 (en) * 2005-04-13 2006-10-26 The Procter & Gamble Company Structured multi-phased personal care composition comprising branched anionic surfactants
RU2393210C2 (en) * 2005-05-20 2010-06-27 Родиа Инк. Structured surfactant compositions
US20120015009A9 (en) * 2005-06-07 2012-01-19 The Procter & Gamble Company Multi-phased personal care composition comprising a blooming perfume composition
US20070141001A1 (en) * 2005-12-15 2007-06-21 The Procter & Gamble Company Non-migrating colorants in multi-phase personal cleansing compositions
US8104616B2 (en) * 2006-02-11 2012-01-31 The Procter & Gamble Company Clamshell package for holding and displaying consumer products
US8153144B2 (en) 2006-02-28 2012-04-10 The Proctor & Gamble Company Stable multiphase composition comprising alkylamphoacetate
BRPI0717226A2 (en) * 2006-09-26 2013-09-24 Rhodia structured surfactant system
WO2008045451A1 (en) 2006-10-10 2008-04-17 Applechem Inc Novel natural oil gels and their applications
US20100119562A1 (en) * 2007-03-21 2010-05-13 Colgate Palmolive Company Structured Personal Care Compositions Comprising A Clay
RU2493819C2 (en) * 2007-03-23 2013-09-27 Родиа Инк. Compositions of structured surface-active substance
US8105996B2 (en) * 2007-03-30 2012-01-31 The Procter & Gamble Company Multiphase personal care composition comprising a structuring
US8158566B2 (en) * 2007-03-30 2012-04-17 The Procter & Gamble Company Multiphase personal care composition comprising a structuring system that comprises an associative polymer, a low HLB emulsifier and an electrolyte
US8518991B2 (en) * 2007-06-29 2013-08-27 Johnson & Johnson Consumer Companies, Inc. Structured compositions comprising betaine
US20090005460A1 (en) * 2007-06-29 2009-01-01 Gunn Euen T Methods of making and using structured compositions comprising betaine
US8623344B2 (en) 2007-06-29 2014-01-07 Mcneil-Ppc, Inc. Structured depilatory compositions
CA2827133A1 (en) * 2009-01-13 2010-07-22 The Procter & Gamble Company Rinse-off personal care compositions
WO2011079160A2 (en) 2009-12-23 2011-06-30 Colgate-Palmolive Company Visually patterned and oriented compositions
DE102014207421A1 (en) * 2014-04-17 2015-10-22 Evonik Degussa Gmbh Surfactant compositions and high oily formulations containing these
WO2016034635A1 (en) * 2014-09-03 2016-03-10 Henkel Ag & Co. Kgaa Liquid detergent composition with pearly luster
EP3217948B1 (en) 2014-11-10 2020-09-16 The Procter and Gamble Company Personal care compositions with two benefit phases
EP3217949B1 (en) 2014-11-10 2020-06-17 The Procter and Gamble Company Personal care compositions with two benefit phases
US10966916B2 (en) 2014-11-10 2021-04-06 The Procter And Gamble Company Personal care compositions
US10952950B2 (en) * 2015-04-23 2021-03-23 The Procter And Gamble Company Concentrated personal cleansing compositions and methods
EP3285725B1 (en) * 2015-04-23 2019-12-04 The Procter and Gamble Company Concentrated personal cleansing compositions
EP4450606A2 (en) 2015-06-22 2024-10-23 The Procter & Gamble Company Processes for making liquid detergent compositions comprising a liquid crystalline phase
EP3109306A1 (en) 2015-06-22 2016-12-28 The Procter and Gamble Company Low solvent liquid detergent compositions
EP3184619A1 (en) 2015-12-22 2017-06-28 The Procter & Gamble Company Structured detergent compositions
CN105754752B (en) * 2016-04-11 2018-03-27 广州立白企业集团有限公司 Assign the method and high water content gel-type detergent composition of detergent composition gel characteristic
EP3697375B1 (en) 2017-10-20 2021-12-01 The Procter & Gamble Company Aerosol foam skin cleanser
EP3697374B1 (en) 2017-10-20 2022-02-16 The Procter & Gamble Company Aerosol foam skin cleanser
US20210290517A1 (en) 2018-07-30 2021-09-23 Conopco, Inc., D/B/A Unilever Enhanced moisturizer deposition in cleansing liquids containing hydrophobically or non-hydrophobically modified anionic polymers
WO2020112486A1 (en) 2018-11-29 2020-06-04 The Procter & Gamble Company Methods for screening personal care products
WO2021104844A1 (en) 2019-11-26 2021-06-03 Unilever Ip Holdings B.V. Cleansing composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4243549A (en) * 1977-07-26 1981-01-06 Albright & Wilson Ltd. Concentrated aqueous surfactant compositions
US4375421A (en) * 1981-10-19 1983-03-01 Lever Brothers Company Viscous compositions containing amido betaines and salts
WO1996031187A2 (en) * 1995-04-04 1996-10-10 Imperial Chemical Industries Plc Surfactant compositions
WO1997005857A1 (en) * 1995-08-07 1997-02-20 Unilever Plc Liquid cleansing composition comprising soluble, lamellar phase inducing structurant
WO1998013022A1 (en) * 1996-09-24 1998-04-02 Unilever Plc Liquid compositions comprising stability enhancing surfactants and a method of enhancing low temperature stability thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8813978D0 (en) * 1988-06-13 1988-07-20 Unilever Plc Liquid detergents
GB9216854D0 (en) * 1992-08-07 1992-09-23 Unilever Plc Detergent composition
US6174846B1 (en) 1997-12-18 2001-01-16 Lever Brothers Company, A Division Of Conopco, Inc. Liquid composition with enhanced low temperature stability
US6150312A (en) * 1999-04-05 2000-11-21 Unilever Home & Personal Care Usa, A Division Of Conopco, Inc. Liquid composition with enhanced low temperature stability comprising sodium tricedeth sulfate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4243549A (en) * 1977-07-26 1981-01-06 Albright & Wilson Ltd. Concentrated aqueous surfactant compositions
US4375421A (en) * 1981-10-19 1983-03-01 Lever Brothers Company Viscous compositions containing amido betaines and salts
WO1996031187A2 (en) * 1995-04-04 1996-10-10 Imperial Chemical Industries Plc Surfactant compositions
WO1997005857A1 (en) * 1995-08-07 1997-02-20 Unilever Plc Liquid cleansing composition comprising soluble, lamellar phase inducing structurant
WO1998013022A1 (en) * 1996-09-24 1998-04-02 Unilever Plc Liquid compositions comprising stability enhancing surfactants and a method of enhancing low temperature stability thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1220886A1 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004041218A1 (en) * 2002-11-08 2004-05-21 Unilever Plc Liquid cleansing composition having simultaneous exfoliating and moisturizing properties
US6924256B2 (en) 2002-11-08 2005-08-02 Unilever Home & Personal Care Usa Division Of Conopco, Inc. Liquid cleansing composition having simultaneous exfoliating and moisturizing properties
WO2005107691A1 (en) * 2004-04-22 2005-11-17 Kimberly-Clark Worldwide, Inc. Lamellar structured liquid cleanser compositions
GB2431345A (en) * 2004-04-22 2007-04-25 Kimberly Clark Co Lamellar structured liquid cleanser compositions
GB2431345B (en) * 2004-04-22 2009-05-13 Kimberly Clark Co Lamellar structured liquid cleanser compositions
US7666824B2 (en) 2004-04-22 2010-02-23 Kimberly-Clark Worldwide, Inc. Liquid cleanser compositions
WO2010026073A1 (en) * 2008-09-05 2010-03-11 Unilever Plc Good foaming creamy or paste-like cleansers comprising floor levels of lipids or lipid mimics
EP2216010A1 (en) 2009-02-05 2010-08-11 Rhodia Opérations Aqueous composition suitable as shampoo
WO2010089228A1 (en) 2009-02-05 2010-08-12 Rhodia Operations Aqueous composition suitable as shampoo
WO2010130543A3 (en) * 2009-05-13 2011-01-27 Unilever Plc High emollient lamellar compositions resistant to viscosity and phase structure deterioration after low temp storage and/or freeze-thaw cycle
US8420588B2 (en) 2009-09-10 2013-04-16 Cognis Ip Management Gmbh Isosorbide glyceryl ether derivatives and their use in household applications
WO2015071298A2 (en) 2013-11-13 2015-05-21 L'oreal Foaming composition comprising at least one glycinate type surfactant
WO2019008937A1 (en) 2017-07-04 2019-01-10 L'oreal Foaming cleanser
EP3694482B1 (en) 2017-10-10 2022-04-13 The Procter & Gamble Company Sulfate free personal cleansing composition comprising low inorganic salt
EP3694483B1 (en) 2017-10-10 2022-09-07 The Procter & Gamble Company Sulfate free clear personal cleansing composition comprising low inorganic salt
US11904036B2 (en) 2017-10-10 2024-02-20 The Procter & Gamble Company Sulfate free clear personal cleansing composition comprising low inorganic salt
US11992540B2 (en) 2017-10-10 2024-05-28 The Procter & Gamble Company Sulfate free personal cleansing composition comprising low inorganic salt
US11980679B2 (en) 2019-12-06 2024-05-14 The Procter & Gamble Company Sulfate free composition with enhanced deposition of scalp active
US11679065B2 (en) 2020-02-27 2023-06-20 The Procter & Gamble Company Compositions with sulfur having enhanced efficacy and aesthetics
US11819474B2 (en) 2020-12-04 2023-11-21 The Procter & Gamble Company Hair care compositions comprising malodor reduction materials
US11771635B2 (en) 2021-05-14 2023-10-03 The Procter & Gamble Company Shampoo composition
US11986543B2 (en) 2021-06-01 2024-05-21 The Procter & Gamble Company Rinse-off compositions with a surfactant system that is substantially free of sulfate-based surfactants
WO2024218249A1 (en) * 2023-04-21 2024-10-24 Unilever Ip Holdings B.V. A transparent liquid cleansing composition

Also Published As

Publication number Publication date
CA2384793A1 (en) 2001-03-22
CN1390250A (en) 2003-01-08
EP1220886A1 (en) 2002-07-10
ZA200201995B (en) 2003-05-28
AU768792B2 (en) 2004-01-08
US6426326B1 (en) 2002-07-30
BR0014025A (en) 2002-05-14
JP2003509573A (en) 2003-03-11
CN1183242C (en) 2005-01-05
BR0014025B1 (en) 2011-07-12
EP1220886B1 (en) 2014-03-05
JP4980531B2 (en) 2012-07-18
AU7510500A (en) 2001-04-17
CA2384793C (en) 2009-10-20

Similar Documents

Publication Publication Date Title
EP1220886B1 (en) Liquid cleansing composition comprising lamellar phase having low salt level
US6150312A (en) Liquid composition with enhanced low temperature stability comprising sodium tricedeth sulfate
EP1037601B1 (en) Liquid composition with enhanced low temperature stability
EP1607471B2 (en) Extrudable multiphase composition comprising lamellar phase inducing structurant in each phase
EP1267825B1 (en) Extrudable multiphase composition comprising a lamellar phase and an isotropic phase
AU2001244180A1 (en) Extrudable multiphase composition comprising a lamellar phase and an isotropic phase
AU2001240677A1 (en) Extrudable multiphase composition comprising lamellar phase inducing structurant in each phase
WO1997005857A1 (en) Liquid cleansing composition comprising soluble, lamellar phase inducing structurant
EP1486559A1 (en) A packaged product containing an extrudable multiphase composition of a free fatty acid phase and a soap phase
EP0928186A1 (en) Liquid compositions comprising stability enhancing surfactants and a method of enhancing low temperature stability thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000964035

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002/01995

Country of ref document: ZA

Ref document number: 200201995

Country of ref document: ZA

Ref document number: IN/PCT/2002/00300/MU

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2384793

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 75105/00

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2001 523721

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 008155755

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2000964035

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 75105/00

Country of ref document: AU