WO2001018078A1 - Foldable ophthalmic and otorhinolaryngological device materials - Google Patents

Foldable ophthalmic and otorhinolaryngological device materials Download PDF

Info

Publication number
WO2001018078A1
WO2001018078A1 PCT/US2000/023283 US0023283W WO0118078A1 WO 2001018078 A1 WO2001018078 A1 WO 2001018078A1 US 0023283 W US0023283 W US 0023283W WO 0118078 A1 WO0118078 A1 WO 0118078A1
Authority
WO
WIPO (PCT)
Prior art keywords
device material
methacrylate
otorhinolaryngological
cross
monomer
Prior art date
Application number
PCT/US2000/023283
Other languages
French (fr)
Inventor
Charles Freeman
Douglas C. Schlueter
Original Assignee
Alcon Universal Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcon Universal Ltd. filed Critical Alcon Universal Ltd.
Priority to DE60018766T priority Critical patent/DE60018766T2/en
Priority to AU69347/00A priority patent/AU766276B2/en
Priority to AT00957779T priority patent/ATE291045T1/en
Priority to DK00957779T priority patent/DK1210380T3/en
Priority to EP00957779A priority patent/EP1210380B1/en
Priority to BRPI0007069-6A priority patent/BR0007069B1/en
Priority to CA002347707A priority patent/CA2347707C/en
Priority to JP2001522299A priority patent/JP5459816B2/en
Publication of WO2001018078A1 publication Critical patent/WO2001018078A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/301Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and one oxygen in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/302Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and two or more oxygen atoms in the alcohol moiety
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • G02B1/043Contact lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/145Corneal inlays, onlays, or lenses for refractive correction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses

Definitions

  • This invention is directed to acrylic device materials.
  • this invention relates to soft, high refractive index acrylic device materials particularly suited for use as intraocular lens (“IOL”) materials.
  • hydrogels With the recent advances in small-incision cataract surgery, increased emphasis has been placed on developing soft, foldable materials suitable for use in artificial lenses. In general, these materials fall into one of three categories: hydrogels, silicones, and acrylics.
  • hydrogel materials have a relatively low refractive index, making them less desirable than other materials because of the thicker lens optic necessary to achieve a given refractive power.
  • Silicone materials generally have a higher refractive index than hydrogels, but tend to unfold explosively after being placed in the eye in a folded position. Explosive unfolding can potentially damage the corneal endothelium and/or rupture the natural lens capsule.
  • Acrylic materials are desirable because they typically have a high refractive index and unfold more slowly or controllably than silicone materials.
  • U.S. Patent No. 5,290,892 discloses high refractive index, acrylic materials suitable for use as an IOL material. These acrylic materials contain, as principal components, two aryl acrylic monomers. They also contain a cross-linking component. The lOLs made of these acrylic materials can be rolled or folded for insertion through small incisions.
  • U.S. Patent No. 5,331 ,073 also discloses soft acrylic IOL materials. These materials contain as principal components, two acrylic monomers which are defined by the properties of their respective homopolymers. The first monomer is defined as one in which its homopoiymer has a refractive index of at least about 1.50. The second monomer is defined as one in which its homopoiymer has a glass transition temperature less than about 22 °C. These IOL materials also contain a cross-linking component. Additionally, these materials may optionally contain a fourth constituent, different from the first three constituents, which is derived from a hydrophilic monomer. These materials preferably have a total of less than about 15% by weight of a hydrophilic component.
  • U.S. Patent No. 5,693,095 discloses foldable ophthalmic lens materials comprising a total of at least 90% by weight of only two principal lens-forming monomers.
  • One lens-forming monomer is an aryl acrylic hydrophobic monomer.
  • the other lens-forming monomer is a hydrophilic monomer.
  • the lens materials also comprise a cross-linking monomer and optionally comprise a UV absorber, polymerization initiators, reactive UV absorbers and reactive blue-light absorbers.
  • Improved soft, foldable acrylic materials which are particularly suited for use as lOLs, but which are also useful as other ophthalmic or otorhinoloaryngological devices, such as contact lenses, keratoprostheses, corneal rings or inlays, otological ventilation tubes and nasal implants have now been discovered.
  • These materials contain only one principal lens- forming component: an aryl acrylic hydrophobic monomer.
  • the materials of the present invention comprise at least about 80% by weight of the principal monomeric component.
  • the remainder of the material comprises a cross- linking monomer and optionally one or more additional components selected from the group consisting of UV-light absorbing compounds and blue-light absorbing compounds.
  • the present invention is based on the finding that acrylic copolymers suitable for use as foldable IOL materials can be synthesized using only one principal aryl acrylic hydrophobic monomer, reducing or eliminating difficulties, such as physico/chemical heterogeneity, associated with curing copolymers that contain two or more principal device- forming monomers.
  • the ophthalmic or otorhinolaryngological device materials of the present invention comprise only one principal device-forming monomer.
  • the device-forming monomer may be referred to as a lens- forming monomer, particularly with reference to an IOL.
  • the materials of the present invention are also suitable for use as other ophthalmic or otorhinolaryngological devices such as contact lenses, keratoprostheses, corneal inlays or rings, otological ventilation tubes and nasal implants.
  • aryl acrylic hydrophobic monomers suitable for use as the sole lens-forming monomer in the materials of the present invention have the formula
  • A is H, CH 3 , CH 2 CH 3 , or CH 2 OH;
  • B is (CH 2 ) m or [O(CH 2 ) 2 ] n ;
  • C is (CH 2 ) W ; m is 2 - 6; n is 1 - 10;
  • D is H, C1 - C 4 alkyl, d - C 4 alkoxy, CQH$, CH2C6H5 or halogen.
  • Preferred aryl acrylic hydrophobic monomers for use in the materials of the present invention are those wherein A is CH 3 , B is (CH 2 ) m , m is 2 - 5, Y is nothing or O, w is 0 - 1 , and D is H. Most preferred are 4-phenylbutyl methacrylate, 5-phenylpentyl methacrylate, 2-benzyloxyethyl methacrylate, and 3-benzyloxypropyl methacrylate.
  • Monomers of structure I can be made by known methods.
  • the conjugate alcohol of the desired monomer can be combined in a reaction vessel with methyl methacrylate, tetrabutyl titanate (catalyst), and a polymerization inhibitor such as 4-benzyloxy phenol.
  • the vessel can then be heated to facilitate the reaction and distill off the reaction by-products to drive the reaction to completion.
  • Alternative synthesis schemes involve adding methacrylic acid to the conjugate alcohol and catalyzing with a carbodiimide or mixing the conjugate alcohol with methacryioyl chloride and a base such as pyridine or triethylamine.
  • the materials of the present invention comprise a total of at least about 80%, preferably at least about 85%, by weight or more of the principal lens-forming monomer.
  • the copolymer materials of the present invention are cross-linked.
  • the copolymerizable cross-linking agent used in the copolymers of this invention may be any terminally ethylenically unsaturated compound having more than one unsaturated group.
  • the chosen cross-linking agent should be soluble in the chosen monomer of structure I to minimize curing problems.
  • the total amount of the cross-linking component is at least 0.1 % by weight and, depending on the identity and concentration of the remaining components and the desired physical properties, can range to about 20% by weight.
  • the preferred concentration range for the cross-linking component is 0.1 - 15% by weight.
  • the lens material of the present invention may also contain a total of up to about 10% by weight of additional components which serve other purposes, such as reactive UV and/or blue-light absorbers.
  • a preferred reactive UV absorber is 2-(2'-hydroxy-3'-methallyl-5'- methylphenyl)benzotriazole, commercially available as o-Methallyl Tinuvin P ("oMTP”) from Polysciences, Inc., Warrington, Pennsylvania. UV absorbers are typically present in an amount from about 0.1 - 5 % (weight).
  • Suitable reactive blue-light absorbing compounds are those described in U.S. Patent No. 5,470,932, the entire contents of which are hereby incorporated by reference. Blue-light absorbers are typically present in an amount from about 0.01 - 0.5 % (weight).
  • Suitable polymerization initiators include thermal initiators and photoinitiators.
  • Preferred thermal initiators include peroxy free-radical initiators, such as t-butyl (peroxy-2-ethyl)hexanoate and di-(tert-butylcyclohexyl) peroxydicarbonate (commercially available as Perkadox 16 from Akzo Chemicals Inc., Chicago, Illinois).
  • preferred photoinitiators include benzoylphosphine oxide photoinitiators, such as the blue-light initiator 2,4,6-trimethyl-benzoyldiphenylphosphine oxide, commercially available as Lucirin ® TPO from BASF Corporation (Charlotte, North Carolina). Initiators are typically present in an amount of about 5% (weight) or less.
  • the identity and amount of the principal lens-forming monomer described above and the identity and amount of any additional components are determined by the desired properties of the finished ophthalmic lens.
  • the ingredients and their proportion are selected so that the acrylic lens materials of the present invention possess the following properties, which make the materials of the present invention particularly suitable for use in lOLs which are to be inserted through incisions of 5 mm or less.
  • the lens material preferably has a refractive index in the dry state of at least about 1.50 as measured by an Abbe' refractometer at 589 nm (Na light source).
  • a refractive index in the dry state of at least about 1.50 as measured by an Abbe' refractometer at 589 nm (Na light source).
  • optics made from materials having a refractive index lower than 1.50 are necessarily thicker than optics of the same power which are made from materials having a higher refractive index.
  • IOL optics made from materials having a refractive index lower than about 1.50 generally require relatively larger incisions for IOL implantation.
  • the glass-transition temperature ("Tg) of the lens material which affects the material's folding and unfolding characteristics, is preferably below about 25
  • Tg is measured by differential scanning calorimetry at 10 °C/min., and is determined at the midpoint of the transition of the heat flux curve.
  • the lens material will have an elongation of at least 150%, preferably at least 200%, and most preferably at least 300%. This property indicates that the lens generally will not crack, tear or split when folded. Elongation of polymer samples is determined on dumbbell shaped tension test specimens with a 20 mm total length, length in the grip area of 4.88 mm, overall width of 2.49 mm, 0.833 mm width of the narrow section, a fillet radius of 8.83 mm, and a thickness of 0.9 mm. Testing is performed on samples at standard laboratory conditions of 23 ⁇ 2 °C and 50 ⁇ 5 % relative humidity using a tensile tester.
  • the grip distance is set at 14 mm and a crosshead speed is set at 500 mm/minute and the sample is pulled to failure.
  • the elongation (strain) is reported as a fraction of the displacement at failure to the original grip distance.
  • the modulus is calculated as the instantaneous slope of the stress- strain curve at a selected strain. Stress is calculated at the maximum load for the sample, typically the load when the sample breaks, assuming that the initial area remains constant. This stress is recorded as "tensile strength" in the examples below.
  • the lOLs constructed of the materials of the present invention can be of any design capable of being rolled or folded into a small cross section that can fit through a relatively smaller incision.
  • the lOLs can be of what is known as a one piece or multipiece design, and comprise optic and haptic components.
  • the optic is that portion which serves as the lens.
  • the haptics are attached to the optic and hold the optic in its proper place in the eye.
  • the optic and haptic(s) can be of the same or different material.
  • a multipiece lens is so called because the optic and the haptic(s) are made separately and then the haptics are attached to the optic.
  • the optic and the haptics are formed out of one piece of material. Depending on the material, the haptics are then cut, or lathed, out of the material to produce the IOL.
  • a three neck round bottom flask containing a teflon coated magnetic stirring bar was successively charged with 120 mL (1.09 mol) of methyl methacrylate (2), 5.35 g (0.015 mol) of titanium tetrabutoxide (Ti(OC 4 H 9 ) 4 ), 60 mL (0.39 mol) of 4-phenyl-1-butanol (1 ), and 14.6 g (0.073 mol) of 4-benzyloxyphenol (4-BOP).
  • An addition funnel, thermometer, and a short path still head with thermometer and receiver flask were placed in the flask necks. The flask was placed in an oil bath and the temperature was increased until distillation began.
  • Methyl methacrylate (2) was placed in the addition funnel and was added dropwise at the same rate as the distillate. The reaction mixture was heated for 4 hours and then cooled to room temperature. The crude product was vacuum distilled to isolate 62.8 g (0.29 mol, 74%) of 4-phenylbutyl methacrylate (3) as a clear, colorless liquid.
  • a three neck round bottom flask containing a teflon coated magnetic stirring bar was successively charged with 95 mL (0.884 mol) of methyl methacrylate (2), 4.22 g (0.012 mol) of titanium tetrabutoxide (Ti(OC 4 H 9 ) 4 ), 50 mL (0.316 mol) of 3-benzyloxy-1-propanol (1 ), and 14.6 g (0.073 mol) of 4- benzyloxyphenol (4-BOP).
  • An addition funnel, thermometer, and a short path still head with thermometer and receiver flask were placed in the flask necks. The flask was placed in an oil bath and the temperature was increased until distillation began.
  • Methyl methacrylate (2) was placed in the addition funnel and was added dropwise at the same rate as the distillate. The reaction mixture was heated for 4 hours and then cooled to room temperature. The crude product was vacuum distilled to isolate 36.5 g (0.156 mol, 49%) of 3- benzyloxypropyl methacrylate (3) as a clear, colorless liquid.
  • Each of the formulations of Examples 3 - 29 are prepared as follows. After combining the formulation components as listed in Tables 1 - 4, each formulation is mixed by agitation and then injected into a polypropylene 25 x 12 x 1 mm slab mold. To make slabs, the cavity in the bottom portion of the slab mold is filled to capacity with the formulation and then the top is placed on strictly as a seal. The molds can either be filled under an inert nitrogen or standard laboratory atmosphere. To maintain the mold geometry during curing, spring clamps are used on the molds.
  • the clamped molds are placed in a forced air oven and cured by heating to 70 - 80 °C, holding at 70 - 80 °C for one hour, then heating to approximately 100 - 110 °C and holding at approximately 100 - 110 °C for two hours.
  • the molds are opened and the cured intraocular lenses or polymer slabs are removed and extracted in acetone to remove any materials not bound to the cross-linked network.
  • PEO 1000 polyethylene glycol 1000 dimethacrylate
  • PEO 600 polyethylene glycol 600 dimethacrylate

Abstract

Disclosed are soft, high refractive index, acrylic materials having an elongation of at least 150 %. These materials, especially useful as intraocular lens materials, contain an aryl acrylic hydrophobic monomer as the single principal device-forming monomer. In addition to their use as intraocular lens materials, the present materials are also suitable for use in other ophthalmic or otorhinolaryngological devices, such as contact lenses, keratoprostheses, corneal inlays or rings; otological ventilation tubes and nasal implants.

Description

FOLDABLE OPHTHALMIC AND OTORHINOLARYNGOLOGICAL DEVICE
MATERIALS
Field of the Invention
This invention is directed to acrylic device materials. In particular, this invention relates to soft, high refractive index acrylic device materials particularly suited for use as intraocular lens ("IOL") materials.
Background of the Invention
With the recent advances in small-incision cataract surgery, increased emphasis has been placed on developing soft, foldable materials suitable for use in artificial lenses. In general, these materials fall into one of three categories: hydrogels, silicones, and acrylics.
In general, hydrogel materials have a relatively low refractive index, making them less desirable than other materials because of the thicker lens optic necessary to achieve a given refractive power. Silicone materials generally have a higher refractive index than hydrogels, but tend to unfold explosively after being placed in the eye in a folded position. Explosive unfolding can potentially damage the corneal endothelium and/or rupture the natural lens capsule. Acrylic materials are desirable because they typically have a high refractive index and unfold more slowly or controllably than silicone materials.
U.S. Patent No. 5,290,892 discloses high refractive index, acrylic materials suitable for use as an IOL material. These acrylic materials contain, as principal components, two aryl acrylic monomers. They also contain a cross-linking component. The lOLs made of these acrylic materials can be rolled or folded for insertion through small incisions.
U.S. Patent No. 5,331 ,073 also discloses soft acrylic IOL materials. These materials contain as principal components, two acrylic monomers which are defined by the properties of their respective homopolymers. The first monomer is defined as one in which its homopoiymer has a refractive index of at least about 1.50. The second monomer is defined as one in which its homopoiymer has a glass transition temperature less than about 22 °C. These IOL materials also contain a cross-linking component. Additionally, these materials may optionally contain a fourth constituent, different from the first three constituents, which is derived from a hydrophilic monomer. These materials preferably have a total of less than about 15% by weight of a hydrophilic component.
U.S. Patent No. 5,693,095 discloses foldable ophthalmic lens materials comprising a total of at least 90% by weight of only two principal lens-forming monomers. One lens-forming monomer is an aryl acrylic hydrophobic monomer. The other lens-forming monomer is a hydrophilic monomer. The lens materials also comprise a cross-linking monomer and optionally comprise a UV absorber, polymerization initiators, reactive UV absorbers and reactive blue-light absorbers.
Summary of the Invention
Improved soft, foldable acrylic materials which are particularly suited for use as lOLs, but which are also useful as other ophthalmic or otorhinoloaryngological devices, such as contact lenses, keratoprostheses, corneal rings or inlays, otological ventilation tubes and nasal implants have now been discovered. These materials contain only one principal lens- forming component: an aryl acrylic hydrophobic monomer. The materials of the present invention comprise at least about 80% by weight of the principal monomeric component. The remainder of the material comprises a cross- linking monomer and optionally one or more additional components selected from the group consisting of UV-light absorbing compounds and blue-light absorbing compounds. Among other factors, the present invention is based on the finding that acrylic copolymers suitable for use as foldable IOL materials can be synthesized using only one principal aryl acrylic hydrophobic monomer, reducing or eliminating difficulties, such as physico/chemical heterogeneity, associated with curing copolymers that contain two or more principal device- forming monomers.
Detailed Description of the Invention
The ophthalmic or otorhinolaryngological device materials of the present invention comprise only one principal device-forming monomer. For convenience, the device-forming monomer may be referred to as a lens- forming monomer, particularly with reference to an IOL. The materials of the present invention, however, are also suitable for use as other ophthalmic or otorhinolaryngological devices such as contact lenses, keratoprostheses, corneal inlays or rings, otological ventilation tubes and nasal implants.
The aryl acrylic hydrophobic monomers suitable for use as the sole lens-forming monomer in the materials of the present invention have the formula
Figure imgf000004_0001
(I)
wherein: A is H, CH3, CH2CH3, or CH2OH; B is (CH2)m or [O(CH2)2]n;
C is (CH2)W; m is 2 - 6; n is 1 - 10;
Y is nothing, O, S, or NR, provided that if Y is O, S, or NR, then B is (CH2)m; R is H, CH3, CnH2n+1 (n=1-10), iso-OC3H7, C6H5, or CH2C6H5; w is 0 - 6, provided that m + w <8; and
D is H, C1 - C4 alkyl, d - C4 alkoxy, CQH$, CH2C6H5 or halogen.
Preferred aryl acrylic hydrophobic monomers for use in the materials of the present invention are those wherein A is CH3, B is (CH2)m, m is 2 - 5, Y is nothing or O, w is 0 - 1 , and D is H. Most preferred are 4-phenylbutyl methacrylate, 5-phenylpentyl methacrylate, 2-benzyloxyethyl methacrylate, and 3-benzyloxypropyl methacrylate.
Monomers of structure I can be made by known methods. For example, the conjugate alcohol of the desired monomer can be combined in a reaction vessel with methyl methacrylate, tetrabutyl titanate (catalyst), and a polymerization inhibitor such as 4-benzyloxy phenol. The vessel can then be heated to facilitate the reaction and distill off the reaction by-products to drive the reaction to completion. Alternative synthesis schemes involve adding methacrylic acid to the conjugate alcohol and catalyzing with a carbodiimide or mixing the conjugate alcohol with methacryioyl chloride and a base such as pyridine or triethylamine.
The materials of the present invention comprise a total of at least about 80%, preferably at least about 85%, by weight or more of the principal lens-forming monomer.
The copolymer materials of the present invention are cross-linked. The copolymerizable cross-linking agent used in the copolymers of this invention may be any terminally ethylenically unsaturated compound having more than one unsaturated group. Suitable cross-linking agents include, for example: ethylene glycol dimethacrylate; diethylene glycol dimethacrylate; allyl methacrylate; 1 ,3-propanediol dimethacrylate; 2,3-propanediol dimethacrylate; 1 ,6-hexanediol dimethacrylate; 1 ,4-butanediol dimethacrylate; CH2=C(CH3)C(=O)O-(CH2CH2O)n-C(=O)C(CH3)=CH2 where n = 1 - 50; and CH2=C(CH3)C(=O)O(CH2)tO-C(=O)C(CH3)=CH2 where t = 3 - 20; and their corresponding acrylates. The most preferred cross-linking monomer is CH2=C(CH3)C(=O)O-(CH2CH2O)n-C(=O)C(CH3)=CH2 where n is such that the number-average molecular weight is about 400, about 600, or, most preferably, about 1000.
The chosen cross-linking agent should be soluble in the chosen monomer of structure I to minimize curing problems. When n approaches the upper end of the range of 1 - 50, the CH2=C(CH3)C(=O)O-(CH2CH2O)n- C(=O)C(CH3)=CH2 cross-linker may not be soluble at desired levels in some monomers of structure I, even with the aid of heat or sonication.
Generally, only one cross-linking monomer will be present in the device materials of the present invention. In some cases, however, combinations of cross-linking monomers may be desirable. If combinations of two or more types of cross-linking agents are used, none of the cross-linking agents may be CH2=C(CH3)C(=O)O-(CH2CH2O)n-C(=O)C(CH3)=CH2 wherein n = 2-50.
Generally, the total amount of the cross-linking component is at least 0.1 % by weight and, depending on the identity and concentration of the remaining components and the desired physical properties, can range to about 20% by weight. The preferred concentration range for the cross-linking component is 0.1 - 15% by weight.
In addition to the aryl acrylic hydrophobic lens-forming monomer and the cross-linking component, the lens material of the present invention may also contain a total of up to about 10% by weight of additional components which serve other purposes, such as reactive UV and/or blue-light absorbers.
A preferred reactive UV absorber is 2-(2'-hydroxy-3'-methallyl-5'- methylphenyl)benzotriazole, commercially available as o-Methallyl Tinuvin P ("oMTP") from Polysciences, Inc., Warrington, Pennsylvania. UV absorbers are typically present in an amount from about 0.1 - 5 % (weight).
Suitable reactive blue-light absorbing compounds are those described in U.S. Patent No. 5,470,932, the entire contents of which are hereby incorporated by reference. Blue-light absorbers are typically present in an amount from about 0.01 - 0.5 % (weight).
Suitable polymerization initiators include thermal initiators and photoinitiators. Preferred thermal initiators include peroxy free-radical initiators, such as t-butyl (peroxy-2-ethyl)hexanoate and di-(tert-butylcyclohexyl) peroxydicarbonate (commercially available as Perkadox 16 from Akzo Chemicals Inc., Chicago, Illinois). Particularly in cases where the lens material does not contain a blue-light absorbing chromophore, preferred photoinitiators include benzoylphosphine oxide photoinitiators, such as the blue-light initiator 2,4,6-trimethyl-benzoyldiphenylphosphine oxide, commercially available as Lucirin® TPO from BASF Corporation (Charlotte, North Carolina). Initiators are typically present in an amount of about 5% (weight) or less.
The identity and amount of the principal lens-forming monomer described above and the identity and amount of any additional components are determined by the desired properties of the finished ophthalmic lens. Preferably, the ingredients and their proportion are selected so that the acrylic lens materials of the present invention possess the following properties, which make the materials of the present invention particularly suitable for use in lOLs which are to be inserted through incisions of 5 mm or less.
The lens material preferably has a refractive index in the dry state of at least about 1.50 as measured by an Abbe' refractometer at 589 nm (Na light source). For a given optic diameter, optics made from materials having a refractive index lower than 1.50 are necessarily thicker than optics of the same power which are made from materials having a higher refractive index. As such, IOL optics made from materials having a refractive index lower than about 1.50 generally require relatively larger incisions for IOL implantation.
The glass-transition temperature ("Tg") of the lens material, which affects the material's folding and unfolding characteristics, is preferably below about 25
°C, and more preferably below about 15 °C. Tg is measured by differential scanning calorimetry at 10 °C/min., and is determined at the midpoint of the transition of the heat flux curve.
The lens material will have an elongation of at least 150%, preferably at least 200%, and most preferably at least 300%. This property indicates that the lens generally will not crack, tear or split when folded. Elongation of polymer samples is determined on dumbbell shaped tension test specimens with a 20 mm total length, length in the grip area of 4.88 mm, overall width of 2.49 mm, 0.833 mm width of the narrow section, a fillet radius of 8.83 mm, and a thickness of 0.9 mm. Testing is performed on samples at standard laboratory conditions of 23 ± 2 °C and 50 ± 5 % relative humidity using a tensile tester. The grip distance is set at 14 mm and a crosshead speed is set at 500 mm/minute and the sample is pulled to failure. The elongation (strain) is reported as a fraction of the displacement at failure to the original grip distance. The modulus is calculated as the instantaneous slope of the stress- strain curve at a selected strain. Stress is calculated at the maximum load for the sample, typically the load when the sample breaks, assuming that the initial area remains constant. This stress is recorded as "tensile strength" in the examples below.
lOLs constructed of the materials of the present invention can be of any design capable of being rolled or folded into a small cross section that can fit through a relatively smaller incision. For example, the lOLs can be of what is known as a one piece or multipiece design, and comprise optic and haptic components. The optic is that portion which serves as the lens. The haptics are attached to the optic and hold the optic in its proper place in the eye. The optic and haptic(s) can be of the same or different material. A multipiece lens is so called because the optic and the haptic(s) are made separately and then the haptics are attached to the optic. In a single piece lens, the optic and the haptics are formed out of one piece of material. Depending on the material, the haptics are then cut, or lathed, out of the material to produce the IOL.
The invention will be further illustrated by the following examples, which are intended to be illustrative, but not limiting.
Example 1 : Synthesis of 4-phenylbutyl methacrylate.
Figure imgf000009_0001
(1) (2) (3)
A three neck round bottom flask containing a teflon coated magnetic stirring bar was successively charged with 120 mL (1.09 mol) of methyl methacrylate (2), 5.35 g (0.015 mol) of titanium tetrabutoxide (Ti(OC4H9)4), 60 mL (0.39 mol) of 4-phenyl-1-butanol (1 ), and 14.6 g (0.073 mol) of 4-benzyloxyphenol (4-BOP). An addition funnel, thermometer, and a short path still head with thermometer and receiver flask were placed in the flask necks. The flask was placed in an oil bath and the temperature was increased until distillation began. Methyl methacrylate (2) was placed in the addition funnel and was added dropwise at the same rate as the distillate. The reaction mixture was heated for 4 hours and then cooled to room temperature. The crude product was vacuum distilled to isolate 62.8 g (0.29 mol, 74%) of 4-phenylbutyl methacrylate (3) as a clear, colorless liquid.
Example 2: Synthesis of 3-benzyloxypropyl methacrylate.
Figure imgf000010_0001
(1) (2) (3)
A three neck round bottom flask containing a teflon coated magnetic stirring bar was successively charged with 95 mL (0.884 mol) of methyl methacrylate (2), 4.22 g (0.012 mol) of titanium tetrabutoxide (Ti(OC4H9)4), 50 mL (0.316 mol) of 3-benzyloxy-1-propanol (1 ), and 14.6 g (0.073 mol) of 4- benzyloxyphenol (4-BOP). An addition funnel, thermometer, and a short path still head with thermometer and receiver flask were placed in the flask necks. The flask was placed in an oil bath and the temperature was increased until distillation began. Methyl methacrylate (2) was placed in the addition funnel and was added dropwise at the same rate as the distillate. The reaction mixture was heated for 4 hours and then cooled to room temperature. The crude product was vacuum distilled to isolate 36.5 g (0.156 mol, 49%) of 3- benzyloxypropyl methacrylate (3) as a clear, colorless liquid.
Examples 3 - 29, shown below in Tables 1 - 4, illustrate of the materials of the present invention. Each of the formulations of Examples 3 - 29 are prepared as follows. After combining the formulation components as listed in Tables 1 - 4, each formulation is mixed by agitation and then injected into a polypropylene 25 x 12 x 1 mm slab mold. To make slabs, the cavity in the bottom portion of the slab mold is filled to capacity with the formulation and then the top is placed on strictly as a seal. The molds can either be filled under an inert nitrogen or standard laboratory atmosphere. To maintain the mold geometry during curing, spring clamps are used on the molds. The clamped molds are placed in a forced air oven and cured by heating to 70 - 80 °C, holding at 70 - 80 °C for one hour, then heating to approximately 100 - 110 °C and holding at approximately 100 - 110 °C for two hours. At the end of polymerization period, the molds are opened and the cured intraocular lenses or polymer slabs are removed and extracted in acetone to remove any materials not bound to the cross-linked network.
Physical property data shown for the cured materials in Tables 1 - 4 were assessed (according to the methods referred to above). Unless indicated otherwise, all ingredient amounts shown below are listed as % by weight. The following abbreviations are used in Tables 1-4:
PEMA 2-phenylethyl methacrylate
PPrMA 3-phenylpropylmethacrylate
PBMA 4-phenylbutylmethacrylate
BEEMA benzyloxyethoxyethyl methacrylate
BEMA 2-benzyloxyethyl methacrylate
BPMA 3-benzyloxypropyl methacrylate
PPMA 5-phenyipentyl methacrylate
BBMA 4-benzyloxybutyl methacrylate
PEO 1000 polyethylene glycol 1000 dimethacrylate
PEO 600 polyethylene glycol 600 dimethacrylate
PEO 400 polyethylene glyclo 400 dimethacrylate
EGDMA ethylene glycoldimethacrylate t-BPO t-butyl (peroxy-2-ethyl)hexanoate
BPO benzoyl peroxide
TABLE 1
Figure imgf000011_0001
TABLE 2
Examples
Component 8 9 10 11 12 13 14
BEMA 89.9
PBMA - - - - - - 90.0
BPMA 94.7 90 - 99.6 - - -
PPMA - - 89.7 - - - -
BBMA - - - - 89.9 - -
PEO 1000 5.3 10 10.3 - 10.1 10.1 10.1
EGDMA - - - 0.4 - - - t-BPO 1.4 1.5 1.4 1.6 1.6 1.3 1.4
Tensile strength
(MPa) 3.37 2.83 2.02 3.07 1.1 1 6.46 4.195
% Strain 900 659 515 974 440 815 696
Young's modulus
(MPa) 0.67 0.62 0.76 1.02 0.33 1.89 2.00
100% modulus (MPa) 0.45 0.42 0.51 0.59 0.22 1.07 0.99
Rl (dry) 1.539 1.534 1.533 1.543 1.531 1.541 1.535
TABLE 3
Figure imgf000012_0001
TABLE 4
Examples (Ingredients shown in % w/w)
Component 24 25 26 27 28 29 30 31
BEEMA _ _ ... ... ... ... 99.6 90.0
PPrMA 85.03 — — 85.00 — — — —
PBMA — 85.02 — — 84.94 — — —
PPMA — — 85.06 — — 85.00 — —
PEO 600 14.97 14.98 14.94 — — — — —
PEO 1000 — — — 15.00 15.06 15.00 — 10.0
EGDMA — — — — — — 0.6 —
BPO 1.00 1.01 0.99 1.01 1.01 1.01 — — t-BPO — — — — — — 1.1 1.2
Tensile Strength (MPA) 8.34 4.24 2.67 6.15 3.35 2.05 1.56 1.22
% Strain 502 486 390 662 582 402 468 294
Youngs (MPA) 5.48 1.38 0.85 2.41 0.88 0.67 0.32 0.51
100% (MPA) 3.09 0.96 0.57 1.41 0.63 0.48 0.24 0.36
Tg (°C) — — — ... ... ... -23.2 -26.7

Claims

We claim:
1. A polymeric ophthalmic or otorhinolaryngological device material having an elongation of at least 150%, comprising a single device-forming monomer and a cross-linking monomer, wherein the single device- forming monomer is present in an amount of at least about 80% by weight and is an aryl acrylic hydrophobic monomer of the formula
Figure imgf000014_0001
(I)
wherein: A is H, CH3, CH2CH3, or CH2OH; B is (CH2)m or [O(CH2)2]n; C is (CH2)W; m is 2 - 6; n is 1 - 10; Y is nothing, O, S, or NR, provided that if Y is O, S, or NR, then B is (CH2)m; R is H, CH3, CnH2n+1 (n=1-10), iso-OC3H7, C6H5, or
CH2C6H5; w is 0 - 6, provided that m + w <8; and
D is H, Ci - C alkyl, Ci - C4 alkoxy, C-6H5, CH2C6H5 or halogen.
The polymeric ophthalmic or otorhinolaryngological device material of claim 1 wherein A is CH3, B is (CH2)m, m is 2 - 5, Y is nothing or O, w is 0 - 1 , and D is H.
The polymeric ophthalmic or otorhinolaryngological device material of Claim 2 wherein the aryl acrylic hydrophobic monomer is selected from the group consisting of 4-phenylbutyl methacrylate; 5-phenylpentyl methacrylate; 2-benzyloxyethyl methacrylate; and 3-benzyloxypropyl methacrylate.
4. The polymeric ophthalmic or otorhinolaryngological device material of Claim 1 further comprising one or more components selected from the group consisting of reactive UV absorbers and reactive blue-light absorbers.
5. The polymeric ophthalmic or otorhinolaryngological device material of Claim 1 wherein the material is an ophthalmic device material and has a refractive index of at least 1.50.
6. The polymeric ophthalmic or otorhinolaryngological device material of Claim 1 wherein the material has a Tg less than about +25 °C.
7. The polymeric ophthalmic or otorhinolaryngological device material of Claim 6 wherein the material has a Tg less than about +15 °C.
8. The polymeric ophthalmic or otorhinolaryngological device material of Claim 1 wherein the material has an elongation of at least 200%.
9. The polymeric ophthalmic or otorhinolaryngological device material of Claim 8 wherein the copolymer has an elongation of at least 300%.
10. The polymeric ophthalmic or otorhinolaryngological device material of Claim 1 wherein the device is selected from the group consisting of contact lenses; keratoprostheses; corneal inlays or rings; otological ventilation tubes; and nasal implants.
11. The polymeric ophthalmic or otorhinolaryngological device material of Claim 1 wherein the cross-linking component comprises one or more cross-linking agents selected from the group consisting of ethylene glycol dimethacrylate; diethylene glycol dimethacrylate; allyl methacrylate; 1 ,3-propanediol dimethacrylate; 2,3-propanediol dimethacrylate; 1 ,6-hexanediol dimethacrylate; 1 ,4-butanediol dimethacrylate; CH2=C(CH3)C(=O)O-(CH2CH2O)n-C(=O)C(CH3)=CH2 where n = 1 - 50; CH2=C(CH3)C(=O)O(CH2)tOC(=O)C(CH3)=CH2 where t = 3 - 20; and their corresponding acrylates, provided that if the device material comprises two or more cross-linking agents, none of the cross-linking agents is CH2=C(CH3)C(=O)O-(CH2CH2O)n- C(=O)C(CH3)=CH2 wherein n = 2-50.
12. The polymeric ophthalmic or otorhinolaryngological device material of Claim 1 wherein the single device-forming monomer is present in an amount of at least about 85% by weight.
13. The polymeric ophthalmic or otorhinolaryngological device material of Claim 1 wherein the cross-linking monomer is present in an amount of about 0.01 - 15% by weight.
14. The polymeric ophthalmic or otorhinolaryngological device material of Claim 1 wherein the aryl acrylic hydrophobic monomer is selected from the group consisting of 4-phenylbutyl methacrylate; 5-phenylpentyl methacrylate; 2-benzyloxyethyl methacrylate;and 3-benzyloxypropyl methacrylate; and the cross-linking monomer is CH2=C(CH3)C(=O)O- (CH2CH2O)n-C(=O)C(CH3) =CH2, where n is such that the number average molecular weight of the cross-linking monomer is about 1000.
15. An intraocular lens optic comprising the polymeric device material of Claim 1.
16. An intraocular lens optic comprising the polymeric device material of Claim 14.
PCT/US2000/023283 1999-09-07 2000-08-23 Foldable ophthalmic and otorhinolaryngological device materials WO2001018078A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE60018766T DE60018766T2 (en) 1999-09-07 2000-08-23 MATERIAL FOR FOLDABLE OPHTHALMIC AND OTORHINOLARYNGOLOGICAL OBJECTS
AU69347/00A AU766276B2 (en) 1999-09-07 2000-08-23 Foldable ophthalmic and otorhinolaryngological device materials
AT00957779T ATE291045T1 (en) 1999-09-07 2000-08-23 MATERIAL FOR FOLDABLE OPHTALMIC AND OTORHINOLARYNGOLOGICAL ITEMS
DK00957779T DK1210380T3 (en) 1999-09-07 2000-08-23 Foldable ophthalmic and otorhinolaryngological device materials
EP00957779A EP1210380B1 (en) 1999-09-07 2000-08-23 Foldable ophthalmic and otorhinolaryngological device materials
BRPI0007069-6A BR0007069B1 (en) 1999-09-07 2000-08-23 collapsible ophthalmic and ENT device materials.
CA002347707A CA2347707C (en) 1999-09-07 2000-08-23 Foldable ophthalmic and otorhinolaryngological device materials
JP2001522299A JP5459816B2 (en) 1999-09-07 2000-08-23 Foldable ophthalmic and otolaryngological device materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15262299P 1999-09-07 1999-09-07
US60/152,622 1999-09-07

Publications (1)

Publication Number Publication Date
WO2001018078A1 true WO2001018078A1 (en) 2001-03-15

Family

ID=22543687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/023283 WO2001018078A1 (en) 1999-09-07 2000-08-23 Foldable ophthalmic and otorhinolaryngological device materials

Country Status (14)

Country Link
US (2) US6528602B1 (en)
EP (1) EP1210380B1 (en)
JP (3) JP5459816B2 (en)
CN (1) CN1151186C (en)
AR (1) AR025571A1 (en)
AT (1) ATE291045T1 (en)
AU (1) AU766276B2 (en)
BR (1) BR0007069B1 (en)
CA (1) CA2347707C (en)
DE (1) DE60018766T2 (en)
DK (1) DK1210380T3 (en)
ES (1) ES2235935T3 (en)
PT (1) PT1210380E (en)
WO (1) WO2001018078A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6635732B2 (en) 1999-04-12 2003-10-21 Surgidev Corporation Water plasticized high refractive index polymer for ophthalmic applications
WO2004007579A1 (en) * 2002-07-16 2004-01-22 Alcon, Inc. Ophthalmic and otorhinolaryngological device materials
US7354980B1 (en) 2004-03-12 2008-04-08 Key Medical Technologies, Inc. High refractive index polymers for ophthalmic applications
WO2009137525A1 (en) * 2008-05-06 2009-11-12 Alcon, Inc. High refractive index ophthalmic device materials
US7745555B2 (en) 2004-12-07 2010-06-29 Key Medical Technologies, Inc. Nanohybrid polymers for ophthalmic applications
US7790824B2 (en) 2007-07-25 2010-09-07 Alcon, Inc. High refractive index ophthalmic device materials
WO2012004746A2 (en) 2010-07-05 2012-01-12 Polymer Technologies International (Eou) Refractive-diffractive ophthalmic device and compositions useful for producing same
US8148445B1 (en) 2009-01-14 2012-04-03 Novartis Ag Ophthalmic and otorhinolaryngological device materials containing a multi-arm PEG macromer
US8166299B2 (en) * 2004-07-06 2012-04-24 Andrew Christopher Kemshall Secure messaging
US8247511B2 (en) 1999-04-12 2012-08-21 Advanced Vision Science, Inc. Water plasticized high refractive index polymer for ophthalmic applications
US8449610B2 (en) 2010-06-21 2013-05-28 Novartis Ag High refractive index, acrylic ophthalmic device materials with reduced glistenings
US8728157B2 (en) 2007-10-05 2014-05-20 Novartis Ag Ophthalmic and otorhinolaryngological device materials

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6723815B2 (en) 1999-09-02 2004-04-20 Alcon, Inc. Covalently-bound, hydrophilic coating compositions for surgical implants
JP5459816B2 (en) * 1999-09-07 2014-04-02 アルコン,インコーポレイテッド Foldable ophthalmic and otolaryngological device materials
US8048155B2 (en) 2002-02-02 2011-11-01 Powervision, Inc. Intraocular implant devices
US8328869B2 (en) 2002-12-12 2012-12-11 Powervision, Inc. Accommodating intraocular lenses and methods of use
US8361145B2 (en) 2002-12-12 2013-01-29 Powervision, Inc. Accommodating intraocular lens system having circumferential haptic support and method
US10835373B2 (en) 2002-12-12 2020-11-17 Alcon Inc. Accommodating intraocular lenses and methods of use
US7157538B2 (en) * 2004-08-13 2007-01-02 Alcon, Inc. Covalently-bound, hydrophilic coating compositions for surgical implants
EP1815273A2 (en) * 2004-09-28 2007-08-08 Brewer Science, Inc. Curable high refractive index resins for optoelectronic applications
EP1818690A1 (en) * 2006-02-14 2007-08-15 Procornea Holding B.V. Intraocular lenses essentially free from glistenings
WO2007094664A1 (en) * 2006-02-14 2007-08-23 Procornea Holding B.V. High refractive index monomers and (co)polymers prepared therefrom
US7714039B2 (en) * 2006-07-21 2010-05-11 Alcon, Inc. Low-tack ophthalmic and otorhinolaryngological device materials
TWI399228B (en) * 2006-07-21 2013-06-21 Alcon Inc Low-tack ophthalmic and otorhinolaryngological device materials
US8058323B2 (en) * 2006-07-21 2011-11-15 Novartis Ag Low-tack ophthalmic and otorhinolaryngological device materials
TW200816966A (en) * 2006-07-21 2008-04-16 Alcon Mfg Ltd Low-tack ophthalmic and otorhinolaryngological device materials
JP5448166B2 (en) * 2006-10-13 2014-03-19 アルコン,インコーポレイテッド Intraocular lens with unique blue-purple cut-off and blue light transmission characteristics
DE602008002426D1 (en) * 2007-04-30 2010-10-14 Alcon Inc UV ABSORBER FOR GLASSES OF GLASSES
US20090001372A1 (en) * 2007-06-29 2009-01-01 Lumination Llc Efficient cooling of lasers, LEDs and photonics devices
CA2693906C (en) 2007-07-23 2015-10-06 Powervision, Inc. Post-implant lens power modification
US8968396B2 (en) 2007-07-23 2015-03-03 Powervision, Inc. Intraocular lens delivery systems and methods of use
WO2009015226A2 (en) 2007-07-23 2009-01-29 Powervision, Inc. Accommodating intraocular lenses and methods of use
US8668734B2 (en) 2010-07-09 2014-03-11 Powervision, Inc. Intraocular lens delivery devices and methods of use
TWI435915B (en) * 2007-08-09 2014-05-01 Alcon Inc Ophthalmic lens materials containing chromophores that absorb both uv and short wavelength visible light
TW200920330A (en) * 2007-10-02 2009-05-16 Alcon Inc Ophthalmic and otorhinolaryngological device materials containing an alkyl ethoxylate
US7858672B1 (en) 2007-10-02 2010-12-28 Alcon, Inc. Methacrylic materials suitable for ophthalmic and otorhinolaryngological devices
TW200916130A (en) 2007-10-02 2009-04-16 Alcon Inc Ophthalmic and otorhinolaryngological device materials containing an alkylphenol ethoxylate
TWI426931B (en) * 2007-10-03 2014-02-21 Alcon Inc Ophthalmic and otorhinolaryngological device materials
TWI461186B (en) * 2007-10-05 2014-11-21 Alcon Inc Ophthalmic and otorhinolaryngological device materials
WO2009102454A1 (en) * 2008-02-12 2009-08-20 Aaren Scientific Inc. Ophthalmic lens having a yellow dye light blocking component
US7884228B1 (en) * 2008-05-06 2011-02-08 Alcon, Inc. UV-absorbers for ophthalmic lens materials
US7803359B1 (en) 2008-05-06 2010-09-28 Alcon, Inc. UV-absorbers for ophthalmic lens materials
US8043607B2 (en) 2008-07-15 2011-10-25 Novartis Ag UV-absorbers for ophthalmic lens materials
US20110202037A1 (en) * 2008-08-18 2011-08-18 Bolger William E Fluid delivery catheter apparatus
US8945142B2 (en) 2008-08-27 2015-02-03 Cook Medical Technologies Llc Delivery system for implanting nasal ventilation tube
US20110201996A1 (en) * 2008-08-27 2011-08-18 Melder Patrick C Nasal ventilation system and method of using same
US8236053B1 (en) 2008-10-08 2012-08-07 Novartis Ag 2-amino benzophenone UV-absorbers for ophthalmic lens materials
TWI453199B (en) 2008-11-04 2014-09-21 Alcon Inc Uv/visible light absorbers for ophthalmic lens materials
US10299913B2 (en) 2009-01-09 2019-05-28 Powervision, Inc. Accommodating intraocular lenses and methods of use
US8293858B1 (en) 2009-01-14 2012-10-23 Novartis Ag Ophthalmic and otorhinolaryngological device materials containing a reactive NVP macromer
TWI487690B (en) 2009-07-06 2015-06-11 Alcon Inc Visible light absorbers for ophthalmic lens materials
TWI464151B (en) 2009-07-06 2014-12-11 Alcon Inc Uv/visible light absorbers for ophthalmic lens materials
CA2769827C (en) * 2009-08-24 2016-09-13 Novartis Ag Ophthalmic and otorhinolaryngological device materials
TWI473629B (en) * 2010-01-18 2015-02-21 Alcon Inc Visible light absorbers for ophthalmic lens materials
JP2013520291A (en) 2010-02-23 2013-06-06 パワーヴィジョン・インコーポレーテッド Liquid for accommodation type intraocular lens
RU2566305C2 (en) 2010-04-29 2015-10-20 Новартис Аг Intraocular lenses with combinations of uv absorbers and blue light chromophores
US8362177B1 (en) 2010-05-05 2013-01-29 Novartis Ag High refractive index ophthalmic device materials with reduced tack
TWI517861B (en) * 2011-02-08 2016-01-21 諾華公司 Low-tack, hydrophobic ophthalmic device materials
TWI513768B (en) 2011-06-01 2015-12-21 Novartis Ag Hydrophobic acrylic intraocular lens materials
TWI551646B (en) * 2011-06-03 2016-10-01 諾華公司 Hydrophobic acrylic intraocular lens materials
JP5799634B2 (en) 2011-07-22 2015-10-28 株式会社リコー Image processing apparatus and image processing system
TW201311621A (en) 2011-08-15 2013-03-16 Novartis Ag UV-absorbers for ophthalmic lens materials
KR101982897B1 (en) 2011-09-16 2019-05-27 벤즈리써치앤드디벨롭먼트코오포레이숀 Hydrophobic intraocular lens
US10433949B2 (en) 2011-11-08 2019-10-08 Powervision, Inc. Accommodating intraocular lenses
JP5941166B2 (en) 2012-02-15 2016-06-29 ノバルティス アーゲー Ophthalmic and ENT device materials containing multi-arm PEG macromers
US8585938B1 (en) 2012-03-30 2013-11-19 Novartis Ag UV-absorbers for ophthalmic lens materials
WO2014003714A1 (en) 2012-06-26 2014-01-03 Novartis Ag 2-amino benzophenone uv-absorbers for ophthalmic lens materials
US20150353667A1 (en) 2013-01-07 2015-12-10 Council Of Scientific & Industrial Research Flexible, high refractive index hydrophobic copolymer
EP3785668A1 (en) 2013-03-15 2021-03-03 Alcon Inc. Intraocular lens storage and loading devices and methods of use
CN105792860B (en) * 2013-12-04 2019-06-04 诺华股份有限公司 Reflective soft acrylic material with high refractive index and minimum
US9956384B2 (en) 2014-01-24 2018-05-01 Cook Medical Technologies Llc Articulating balloon catheter and method for using the same
US9921341B2 (en) 2014-12-16 2018-03-20 Novartis Ag Low-water content acrylate-acrylamide copolymers for ophthalmic devices
US9864102B2 (en) 2014-12-16 2018-01-09 Novartis Ag Hydrophobic acrylate-acrylamide copolymers for ophthalmic devices
ES2703566T3 (en) 2015-02-16 2019-03-11 Novartis Ag Wet packaging of intraocular lens materials with high refractive index
WO2017079733A1 (en) 2015-11-06 2017-05-11 Powervision, Inc. Accommodating intraocular lenses and methods of manufacturing
TW201905075A (en) 2017-06-05 2019-02-01 瑞士商諾華公司 High refractive index, high Abbe number artificial lens material
US11660182B2 (en) 2019-10-04 2023-05-30 Alcon Inc. Adjustable intraocular lenses and methods of post-operatively adjusting intraocular lenses
CN111154028A (en) * 2020-01-06 2020-05-15 东南大学 High-refractive-index corneal contact lens material and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290892A (en) * 1990-11-07 1994-03-01 Nestle S.A. Flexible intraocular lenses made from high refractive index polymers
US5693095A (en) * 1995-06-07 1997-12-02 Alcon Laboratories, Inc. High refractive index ophthalmic lens materials
US5922821A (en) * 1996-08-09 1999-07-13 Alcon Laboratories, Inc. Ophthalmic lens polymers
WO1999053347A1 (en) * 1998-04-15 1999-10-21 Alcon Laboratories, Inc. High refractive index ophthalmic device materials

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850892A (en) 1972-01-03 1974-11-26 Biocontacts Physiologically compatible plastic contact lenses and a method for their production
US4304895A (en) 1973-06-20 1981-12-08 Wesley-Jessen, Inc. Ultraviolet absorbing corneal contact lenses
AR207867A1 (en) 1974-07-04 1976-11-08 Smith & Nephew Res A LIGHTLY INTERLACED HYDROGEL COPOLYMER
US4260954A (en) 1979-01-26 1981-04-07 Barcus-Berry, Inc. Amplifier load correction system
US4267295A (en) 1979-02-09 1981-05-12 Syntex (U.S.A.) Inc. Polymeric compositions and hydrogels formed therefrom
US4452776A (en) 1979-08-20 1984-06-05 Eye Research Institute Of Retina Foundation Hydrogel implant article and method
JPS6017404B2 (en) 1980-12-15 1985-05-02 ホ−ヤ株式会社 Low dispersion high refractive index lens
US4405773A (en) 1982-02-05 1983-09-20 Schering Corporation Hydrophylic contact lenses and methods for making same
US5507805A (en) 1982-05-03 1996-04-16 American Cyanamid Company Intraocular lens and method of retaining in place
EP0109073B1 (en) 1982-11-11 1988-04-13 Showa Denko Kabushiki Kaisha Polymerizable compositions
JPS59195621A (en) 1983-04-22 1984-11-06 Toyo Contact Lens Co Ltd Soft contact lens
US4528311A (en) 1983-07-11 1985-07-09 Iolab Corporation Ultraviolet absorbing polymers comprising 2-hydroxy-5-acrylyloxyphenyl-2H-benzotriazoles
EP0391452B1 (en) 1983-08-30 1994-01-05 Ezekiel Nominees Pty.Ltd. Intraocular lens implants
US4664666A (en) 1983-08-30 1987-05-12 Ezekiel Nominees Pty. Ltd. Intraocular lens implants
CA1252249A (en) * 1983-09-24 1989-04-04 Teruo Sakagami Halogen-containing resin lens material
JPS60200011A (en) 1984-03-21 1985-10-09 Matsushita Electric Ind Co Ltd Liquid fuel burner
US4620954A (en) 1985-06-07 1986-11-04 Ciba Vision Care Corp. Hydrogel from ultraviolet-initiated copolymerization
JPS62111229A (en) 1985-11-11 1987-05-22 Hoya Corp Soft contact lens
US4676792A (en) 1986-08-26 1987-06-30 Donald Praeger Method and artificial intraocular lens device for the phakic treatment of myopia
JPH0622565B2 (en) 1986-10-28 1994-03-30 株式会社メニコン Intraocular lens material
EP0273710B2 (en) 1986-12-26 1996-10-16 Nippon Shokubai Kagaku Kogyo Co., Ltd Resin having high refractive index, process for producing said resin and optical materials composed of said resin
NL8701548A (en) 1987-07-01 1989-02-01 Tno POLYMER NETWORK, METHOD FOR THE PREPARATION THEREOF, THE USE THEREOF FOR CLADING AND / OR IMPREGNATING OR FOR MANUFACTURING EYE LENSES, AND FORMED PROPERTIES, WHOLLY OR FROM AN EXISTINGLY PROVEN POLISH.
US4834750A (en) 1987-09-17 1989-05-30 Ioptex Research, Inc. Deformable-elastic intraocular lens
US5269813A (en) 1990-06-12 1993-12-14 Menicon Co., Ltd. Material for one-piece intraocular lenses
ES2094796T3 (en) * 1990-11-07 1997-02-01 Nestle Sa POLYMERS AND THEIR USE FOR OPHTHALMIC LENSES.
JPH05310A (en) 1991-06-26 1993-01-08 Kobe Steel Ltd Wiper device for hot rolling mill and method for controlling the same
US5341974A (en) 1992-06-19 1994-08-30 Mont-Bell Co., Ltd. Back bag
US5331073A (en) 1992-11-09 1994-07-19 Allergan, Inc. Polymeric compositions and intraocular lenses made from same
JP3108550B2 (en) 1992-11-11 2000-11-13 株式会社メニコン Soft ophthalmic lens material
US5470932A (en) 1993-10-18 1995-11-28 Alcon Laboratories, Inc. Polymerizable yellow dyes and their use in opthalmic lenses
US5451651A (en) 1993-12-17 1995-09-19 Bausch & Lomb Incorporated Urea and urethane monomers for contact lens materials
SE9403392D0 (en) 1994-10-06 1994-10-06 Pharmacia Ab Intraocular lens materials
US5654350A (en) 1995-06-07 1997-08-05 Johnson & Johnson Vision Products, Inc. Contact lenses with hydrophilic crosslinkers
SE9600006D0 (en) 1996-01-02 1996-01-02 Pharmacia Ab Foldable intraocular lens materials
DE69816751T2 (en) * 1997-05-29 2004-06-03 Alcon Laboratories, Inc., Fort Worth MATERIALS FOR TREATING THE GLAUCOMA
US5891931A (en) 1997-08-07 1999-04-06 Alcon Laboratories, Inc. Method of preparing foldable high refractive index acrylic ophthalmic device materials
ATE259839T1 (en) * 1997-08-12 2004-03-15 Alcon Mfg Ltd POLYMERS FOR EYE LENSES
JP3641110B2 (en) 1997-08-20 2005-04-20 株式会社メニコン Materials for soft intraocular lenses
JP4144920B2 (en) 1997-08-20 2008-09-03 興和株式会社 Soft intraocular lens material
DE19738345C1 (en) 1997-09-02 1999-05-06 Mdp Medical Device Polymers Gm intraocular lens
CN1213671A (en) 1997-10-07 1999-04-14 参天制药株式会社 Four-component copolymer and eye lens formed by same
DK1079870T3 (en) * 1998-04-15 2002-02-25 Alcon Lab Inc Intraocular bicomposite lens and method for its preparation
EP1080381B1 (en) * 1998-04-15 2005-07-27 Alcon Manufacturing Ltd. High refractive index ophthalmic device materials prepared using a post-polymerization cross-linking method
BR9914904A (en) 1998-10-29 2001-08-07 Allergan Sales Inc Intraocular lenses made with polymeric compositions
US6245106B1 (en) 1998-10-29 2001-06-12 Allergan Sales, Inc. Intraocular lenses made from polymeric compositions and monomers useful in said compositions
US6329485B1 (en) 1998-12-11 2001-12-11 Bausch & Lomb Incorporated High refractive index hydrogel compositions for ophthalmic implants
US6281319B1 (en) 1999-04-12 2001-08-28 Surgidev Corporation Water plasticized high refractive index polymer for ophthalmic applications
WO2000079312A1 (en) 1999-06-17 2000-12-28 Bausch & Lomb Surgical, Inc. High refractive index compositions for ophthalmic implants
US6271281B1 (en) 1999-08-26 2001-08-07 Medennium, Inc. Homopolymers containing stable elasticity inducing crosslinkers and ocular implants made therefrom
JP5459816B2 (en) * 1999-09-07 2014-04-02 アルコン,インコーポレイテッド Foldable ophthalmic and otolaryngological device materials
EP1210381A1 (en) * 1999-09-07 2002-06-05 Alcon Universal, Ltd. Ophthalmic and otorhinolaryngological device materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290892A (en) * 1990-11-07 1994-03-01 Nestle S.A. Flexible intraocular lenses made from high refractive index polymers
US5433746A (en) * 1990-11-07 1995-07-18 Nestle S.A. Flexible intraocular lenses made from high refractive index polymers
US5693095A (en) * 1995-06-07 1997-12-02 Alcon Laboratories, Inc. High refractive index ophthalmic lens materials
US5922821A (en) * 1996-08-09 1999-07-13 Alcon Laboratories, Inc. Ophthalmic lens polymers
WO1999053347A1 (en) * 1998-04-15 1999-10-21 Alcon Laboratories, Inc. High refractive index ophthalmic device materials

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6635731B2 (en) 1999-04-12 2003-10-21 Surgidev Corporation Water plasticized high refractive index polymer for ophthalmic applications
US7083645B2 (en) 1999-04-12 2006-08-01 Advanced Vision Science, Inc. Water plasticized high refractive index polymer for ophthalmic applications
US6635732B2 (en) 1999-04-12 2003-10-21 Surgidev Corporation Water plasticized high refractive index polymer for ophthalmic applications
US8247511B2 (en) 1999-04-12 2012-08-21 Advanced Vision Science, Inc. Water plasticized high refractive index polymer for ophthalmic applications
WO2004007579A1 (en) * 2002-07-16 2004-01-22 Alcon, Inc. Ophthalmic and otorhinolaryngological device materials
US6806337B2 (en) 2002-07-16 2004-10-19 Alcon Ophthalmic and otorhinolaryngological device materials
US7354980B1 (en) 2004-03-12 2008-04-08 Key Medical Technologies, Inc. High refractive index polymers for ophthalmic applications
US8166299B2 (en) * 2004-07-06 2012-04-24 Andrew Christopher Kemshall Secure messaging
US9056934B2 (en) 2004-12-07 2015-06-16 Key Medical Technologies, Inc. Nanohybrid polymers for ophthalmic applications
US7745555B2 (en) 2004-12-07 2010-06-29 Key Medical Technologies, Inc. Nanohybrid polymers for ophthalmic applications
US10421830B2 (en) 2004-12-07 2019-09-24 Key Medical Technologies, Inc. Nanohybrid polymers for ophthalmic applications
US7790824B2 (en) 2007-07-25 2010-09-07 Alcon, Inc. High refractive index ophthalmic device materials
US8900297B2 (en) 2007-10-05 2014-12-02 Novartis Ag Ophthalmic and otorhinolaryngological device materials
US8728157B2 (en) 2007-10-05 2014-05-20 Novartis Ag Ophthalmic and otorhinolaryngological device materials
US7790825B2 (en) 2008-05-06 2010-09-07 Alcon, Inc. High refractive index ophthalmic device materials
WO2009137525A1 (en) * 2008-05-06 2009-11-12 Alcon, Inc. High refractive index ophthalmic device materials
US8148445B1 (en) 2009-01-14 2012-04-03 Novartis Ag Ophthalmic and otorhinolaryngological device materials containing a multi-arm PEG macromer
US8449610B2 (en) 2010-06-21 2013-05-28 Novartis Ag High refractive index, acrylic ophthalmic device materials with reduced glistenings
WO2012004744A2 (en) 2010-07-05 2012-01-12 Polymer Technologies International (Eou) Polymeric composition for ocular devices
WO2012004746A2 (en) 2010-07-05 2012-01-12 Polymer Technologies International (Eou) Refractive-diffractive ophthalmic device and compositions useful for producing same

Also Published As

Publication number Publication date
EP1210380B1 (en) 2005-03-16
DE60018766T2 (en) 2005-08-11
PT1210380E (en) 2005-05-31
CA2347707C (en) 2009-06-09
ATE291045T1 (en) 2005-04-15
US6653422B2 (en) 2003-11-25
BR0007069A (en) 2001-07-31
AU6934700A (en) 2001-04-10
CN1151186C (en) 2004-05-26
AR025571A1 (en) 2002-12-04
US20030130460A1 (en) 2003-07-10
JP2003508187A (en) 2003-03-04
CN1353726A (en) 2002-06-12
ES2235935T3 (en) 2005-07-16
JP2011161261A (en) 2011-08-25
EP1210380A1 (en) 2002-06-05
US6528602B1 (en) 2003-03-04
CA2347707A1 (en) 2001-03-15
DK1210380T3 (en) 2005-05-30
DE60018766D1 (en) 2005-04-21
JP5459816B2 (en) 2014-04-02
BR0007069B1 (en) 2010-02-09
JP2014042846A (en) 2014-03-13
AU766276B2 (en) 2003-10-16

Similar Documents

Publication Publication Date Title
CA2347707C (en) Foldable ophthalmic and otorhinolaryngological device materials
AU766397B2 (en) Ophthalmic and otorhinolaryngological device materials
CA2657633C (en) Low-tack ophthalmic and otorhinolaryngological device materials formed from a principal aryl acrylic hydrophobic monomer and a dimethylacryloxypropyl-terminated polydimethylsiloxane macromer
AU2011271228B2 (en) High refractive index, acrylic ophthalmic device materials with reduced glistenings
US7714039B2 (en) Low-tack ophthalmic and otorhinolaryngological device materials
US8058323B2 (en) Low-tack ophthalmic and otorhinolaryngological device materials
US20080021548A1 (en) Low-tack ophthalmic and otorhinolaryngological device materials
US11576998B2 (en) High refractive index, high Abbe number intraocular lens materials

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00808550.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref document number: 2347707

Country of ref document: CA

Ref document number: 2347707

Country of ref document: CA

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2001 522299

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 69347/00

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2000957779

Country of ref document: EP

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWP Wipo information: published in national office

Ref document number: 2000957779

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000957779

Country of ref document: EP