WO2001013332A2 - Method for generating and animating a three-dimensional human body model - Google Patents

Method for generating and animating a three-dimensional human body model Download PDF

Info

Publication number
WO2001013332A2
WO2001013332A2 PCT/GB2000/003075 GB0003075W WO0113332A2 WO 2001013332 A2 WO2001013332 A2 WO 2001013332A2 GB 0003075 W GB0003075 W GB 0003075W WO 0113332 A2 WO0113332 A2 WO 0113332A2
Authority
WO
Grant status
Application
Patent type
Prior art keywords
ω ω
vertex
polygon
lt lt
oo
Prior art date
Application number
PCT/GB2000/003075
Other languages
French (fr)
Other versions
WO2001013332A3 (en )
Inventor
Michael Gary Sherwood
Original Assignee
Biovirtual Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation

Abstract

The present invention concerns methods of representing a limbed creature in a three-dimensional model, comprising defining no more than about 3000 adjacent polygons (in particular quadrilaterals), at least 90 % of which are quadrilaterals, each tubular section of the limbed creature having a cross-section having a multiple of two sides, and the model describing substantially all of the salient points on the body of the limbed creature. It also concerns methods of representing a head in a three-dimensional model, comprising defining no more than 500 polygons describing substantially all of the salient points on the head. Also provided is a method for reconstructing a surface representation of an individual using the models of the invention, together with methods for using a computer for reconstructing a three-dimensional surface of a limbed creature and head, systems, computer programs and computer program products for same.

Description

TITLE OF THE INVENTION Surface Representation

BACKGROUND OF THE INVENTION FIELD OF THE INVENTION

It has been well known for many years to represent three-dimensional objects using a wire frame model, and this has been widely used in the computer industry. In wire frame modelling techniques, a number of points on the surface of an object to be represented are identified and a calculation or measurement made of the position of each of those points to identify their location in some 3-dimensional coordinate system. Typically, each identified point is joined with its nearest neighbours by lines or "wires". An object may be represented with whatever degree of fidelity desired by changing the spacing of the points; in other words, by adapting the resolution with which points on the surface are stored. This is analogous to e.g. pressing chicken wire against a 3-dimensional surface and allowing it to deform such that the intersections of the wires represent points on the surface of the 3-dimensional object. The areas enclosed by wire boundaries correspond to elemental surface elements often described as being "geometric primitives". Depending on how the chicken wire is constructed, these elements may for example be triangular, rectangular, hexagonal or any other polygonal shape.

Once the coordinates of each of the vertices have been recorded, the wire frame model can be displayed and viewed from any desired angle, or the vertices moved to change the shape of the model.

The wire frame can be made to appear more realistic, for example by eliminating the transparent nature of a wire frame so that a viewer sees only the portion of the wire frame which would be visible when viewing the wire frame from a particular perspective and eliminating those lines and vertices which would be hidden by the surface in front. Textures can also be applied to the surfaces of each of the adjacent polygons and in that way a wire model can provide a single surface representing the object. Lighting effects can be applied to achieve a more realistic look. Additionally, the textures applied to the surfaces of the polygons can actually be images of sections of the surface of the object being modelled, i.e. a polygon representing a section of the surface of an arm can be given a texture comprising an image of the surface of the corresponding section of the arm being modelled. This polygonal surface can then be manipulated as the model is displayed or animated to give a realistic look to the model. This process is well known in the field of 3D computer graphics and is referred to as UV mapping. In UV mapping, each vertex (a three-dimensional X,Y,Z coordinate) of a polygon is considered have a (two-dimensional U,V) coordinate in the computer file containing the image of the surface (UV space). Thus, a triangle in three-dimensional space has coordinates (X1,Y1,Z1),(X2,Y2,Z2),(X3,Y3,Z3) and is displayed using pixels from the equivalent triangle in UV space with the coordinates (U1,V1),(U2,V2),(U3,V3).

Scanning techniques have also been employed in which a grid of rectangles is projected onto an object (for example a person). The projected rectangles deform in shape depending on the shape of the object. Pairs of cameras are then used to identify the relative positions of each of the vertices of the grid, allowing subsequent data processing to calculate the three-dimensional position of each vertex, in turn allowing the construction of a three dimensional model of the object. However, such scanning techniques are limited by their ability to only operate at a fixed resolution - either they must scan everything at a very high resolution in order to define the desired features of shape of the object, in turn resulting in a very large set of data defining the object, or they must use a lower resolution and accept a loss of resolution of the desired features. For example, the human face requires a higher resolution to define its features than does the human leg. Prior art modelling and animation techniques include e.g. those of US 5870220, US 5741211, US 5732204, US 5747822, US 5793372, US 5793392 and US 5742291.

It has also been known to provide a template model for an object (e.g. a heart - see US 5889524) having specifically defined salient (i.e. anatomical or morphological) features. The defined points, edges or planes on the template model can then be mapped (realigned) to specific points, edges or planes on the object being modelled. This can be useful in allowing comparison of different members of an object class, and can help optimise modelling by providing a basic template for the model. However, these models use triangles and are not constructed to minimise the number of polygons used. Other publications of interest include US 5883631, US 5815401, US 5796400 and US 5726896.

However, the techniques used to date have been computer-driven, using "optimised" triangular template meshes and suchlike which fail to recognise that the object being modelled has a template morphology which when animated will change in specific ways. They have also failed to ensure that a minimum amount of data required to represent the object is used. Similarly, they fail to ensure that changes in resolution of the model are accompanied by a minimum possible increase in calculations required for modelling.

BRIEF SUMMARY OF THE INVENTION

The present invention overcomes the prior art disadvantages by comprising a three- dimensional model of a limbed creature, particularly quadrupeds (including quadrupeds which use feet as hands), more particularly of a human, which uses a significantly reduced number of polygons to provide a high resolution representation. The simple structure of the model means that its rendering requires fewer calculations, and is therefore faster. It is also designed so that animation of the model, particularly movements of limbs and of the face require a simplified manipulation of vertices when compared to existing models. This in turn reduces the calculations required for animation meaning that animation can be achieved more quickly. The polygons used in the model also provide the significant advantage that their resolution can be readily increased without a disproportionate increase in calculations. The increased resolution models also retain all of the original vertices (a feature which is not common to prior art techniques). This means that preliminary modelling and animation can be achieved using a low resolution model, with all of the advantages that it entails (for example fast animation). Once that has been satisfactorily completed, a higher resolution model can replace the low resolution model and the output animation generated. Since the original vertices are also present in the high resolution model, the series of transformations used to animate the low resolution model can also be used to animate the high resolution model.

Also provided by the invention are methods for reconstructing a surface representation of an individual, methods for using a computer for reconstructing a three-dimensional surface of a limbed creature, systems for reconstructing a surface of a limbed creature, computer programs for reconstructing the surface of a limbed creature, and computer program products for same.

Another aspect of the invention also concerns surface representations of just the head portion of a three dimensional model, and having the same advantages as previously described due in particular to the use of quadrilaterals, including the simplicity of the model, its ease of animation and the ease of changing its resolution. The invention also provides the above mentioned methods, systems, computer programs and computer program products for the surface representation of the head as for the surface representation of the individual.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS Figure 1 shows a back view of a first human model;

Figure 2 shows a bottom view of a first human model; Figure 3 shows a front view of a first human model;

Figure 4 shows a perspective view of a first human model;

Figure 5 shows a side view of a first human model;

Figure 6 shows a top view of a first human model;

Figure 7 shows a back view of a first human model foot;

Figure 8 shows a bottom view of a first human model foot;

Figure 9 shows a front view of a first human model foot;

Figure 10 shows a perspective view of a first human model foot;

Figure 11 shows a side view of a first human model foot;

Figure 12 shows a top view of a first human model foot;

Figure 13 shows a back view of a first human model hand;

Figure 14 shows a bottom view of a first human model hand;

Figure 15 shows a front view of a first human model hand;

Figure 16 shows a perspective view of a first human model hand;

Figure 17 shows a side view of a first human model hand;

Figure 18 shows a top view of a first human model hand;

Figure 19 shows a back view of a first human model head;

Figure 20 shows a bottom view of a first human model head;

Figure 21 shows a front view of a first human model head;

Figure 22 shows a perspective view of a first human model head;

Figure 23 shows a side view of a first human model head;

Figure 24 shows a top view of a first human model head;

Figure 25 shows a close-up view of the front of the first human model chest of Figure 3;

Figure 26 shows a back view of a second human model;

Figure 27 shows a bottom view of a second human model;

Figure 28 shows a front view of a second human model;

Figure 29 shows a perspective view of a second human model;

Figure 30 shows a side view of a second human model; Figure 31 shows a top view of a second human model; Figure 32 shows a back view of a second human model foot; Figure 33 shows a bottom view of a second human model foot; Figure 34 shows a front view of a second human model foot; Figure 35 shows a perspective view of a second human model foot; Figure 36 shows a side view of a second human model foot; Figure 37 shows a top view of a second human model foot; Figure 38 shows a bottom view of a second human model hand; Figure 39 shows a front view of a second human model hand; Figure 40 shows a perspective view of a second human model hand; Figure 41 shows a side view of a second human model hand (from the front of the model); Figure 42 shows a side view of a second human model hand (from the rear of the model); Figure 43 shows a top view of a second human model hand; Figure 44 shows a back view of a second human model head; Figure 45 shows a bottom view of a second human model head; Figure 46 shows a front view of a second human model head; Figure 47 shows a perspective view of a second human model head; Figure 48 shows a side view of a second human model head; Figure 49 shows a top view of a second human model head; Figure 50 is a flowchart representing steps of an embodiment of the present invention for using a computer for reconstructing a three-dimensional surface of a limbed creature; Figure 51 illustrates a representation of a system for reconstructing a surface of a limbed creature in accordance with one embodiment of the present invention; Figure 52 shows a perspective view of a third human model head; Figure 53 shows a standard UV space map; and Figure 54 shows a space map guide.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides a method of representing a limbed creature in a three dimensional model, comprising defining no more than about 3000 adjacent polygons, at least 90% of which are quadrilaterals, each tubular section of the limbed creature having a cross-section having a multiple of two sides, and the model describing substantially all of the salient points on the body of the limbed creature.

The present invention also provides for a method of representing a limbed creature in a three-dimensional model, comprising defining no more than about 2900, 2800, 2700, 2600, 2500, 2400, 2300, 2200, 2100 or in particular 2000 adjacent polygons.

In particular the tubular sections may be cylindrical and may have at least four sides. As described in the model below, it is particularly useful for cylindrical structures such as limbs, fingers etc. to have eight sides.

It has not been previously suggested that the whole of a limbed creature, particularly a quadruped may successfully be modelled using no more than about 2000 polygons, and as demonstrated below it can be readily achieved using no more than 1820 polygons. The reason that such a small number of polygons can be used is due to the fact that they primarily comprise quadrilaterals, and also because the edges of the quadrilaterals define axes which 'flow' through the model. The use of quadrilaterals makes the joining of adjacent quadrilaterals simple, and provides the distinct advantage of allowing a mathematically simple sub-division of the polygons themselves. For example the subdivision of triangles is not as simple as sub-division of quadrilaterals and typically results in the production of a "bumpy" surface. Since the sub-division of quadrilaterals is mathematically simple it means that a single sub-division or multiple sub-divisions of the whole of the model or just parts of it may be made whilst not causing the same magnitude of increase in calculations and other disadvantages usually encountered with sub-division of e.g. triangular polygons.

The use of quadrilaterals also provides the advantage that when sub-division occurs the vertices of the original quadrilateral are retained. Thus two models of a quadruped may be constructed - the first being a low-resolution model, and the second being a high- resolution model. The (second) high resolution model is arrived at by the sub-division of the quadrilaterals of the (first) low resolution model, together with alignment of the newly defined quadrilaterals with image data from the quadruped to be modelled. The first model may then be rapidly manipulated, for exampled animated, and when the exact nature of the set of manipulations is decided, the manipulations may then be applied to the high resolution model. In this way a whole series of possibilities may be easily explored before the relatively processor-intensive manipulation of the high resolution model is undertaken.

Similarly, the simultaneous animation of a plurality of models for example at least 10, 20, 50 or 100 models, may be performed quickly using low resolution models. Once a series of steps defining the animation of the model has been performed at low resolution, the high resolution models may then be animated using the same manipulations (i.e. transformations) of the vertices shared by the low- and high-resolution models.

Additionally, where a model is displayed so that it is perceived to be at a distance from a viewer and so quite small and having indistinguishable details, a subset of vertices and thus a smaller amount of data can be used. In particular, regions that would not be easily distinguishable at a distance, for example fingers, can be modelled with fewer vertices than are needed when the model appears to be nearby. This means that the same manipulations (i.e. transformations) of the vertices that would animate the model if perceived to be nearby can be used to animate the perceived distant model whilst requiring fewer calculations due to the reduced number of vertices, the distant model behaving in the same way that a nearby model would.

As mentioned above, the substantial advantages of the present invention derive in part from the use of quadrilaterals. As demonstrated below, a model comprising 100% quadrilaterals may be readily created. Generally, models comprising at least 90%, for example at least 95, 96, 97, 98 or 99% quadrilaterals may be created. Such models will also benefit from the general advantages provided by the use of quadrilaterals, although not to as great an extent as the model comprising solely quadrilaterals.

Due to the anatomical and morphological similarities between limbed creatures such as quadrupeds, and also due to the nature of the model which is generated, the model may be of for example a primate, ape, monkey, chimpanzee, canine, feline, equestrian or bovine. In particular, quadrupeds may be a quadrumane, for example an anthropoid, for example a human. Thus the term quadruped includes animals which use feet as hands and thus includes animals with four limbs but which display a bipedal stance.

An important feature of the present invention is the fact that by using no more than about 3000 polygons, for example by using 1820 quadrilaterals, it is possible to describe substantially all of the salient points on the body of the limbed creature (for example quadruped), and achieve a photorealistic representation (reconstruction) of the surface of the limbed creature. It may be that in some models there is no desire to model particular salient points (anatomical or morphological features) to a high resolution. However, the salient points to be described may include substantially (for example at least eight or nine of) the group comprising (i) the top of the head; (ii) the tip of the chin; (iii) the centre of each pupil; (iv) the north, south, east and west extremities of each eye; (v) the top, bottom and widest points of each ear; (vi) the top of the nose, centre of the bridge of the nose, the centre of each nostril, and the widest points of the nose; (vii) the centre, centre-left and centre-right of the septum; (viii) the centre of the mouth, the end- points of the mouth, the two apexes of the upper lip, and the bottom most point of the lower lip; (ix) the centre of each nipple; and (x) the front-most, back-most and widest points of each foot.

Other anatomical features not necessarily identified by a single point but by an edge or a plane may also be described. In particular these include the lengths, widths and circumferences of each skeletal section, for example the jointed sections of each limb, together with the length and width of the neck and trunk.

As mentioned above, it may not be desirable to describe (i.e. define as part of the model) all of the morphological features of a limbed creature (quadruped) - for example the toes of the feet might not be described, nor may the fingers of the hand. If the features of the hand are described in detail, they may include each jointed section of each digit, the tip of each digit (finger and thumb), and may describe surfaces defining the fingernails. The digits (toes) of the feet may be described in the same way as the fingers. Similarly the Adam's apple may be described. The genitalia may also be described. The model detailed below described the hands in detail, but does not provide detailed descriptions of the feet or genitalia. However, it is possible to describe these features in a model having no more than about 3000 polygons in total, and achieve a photorealistic model of a limbed creature such as a quadruped.

In order to simplify the model which is constructed, the left and right sides may be symmetrical. However, the re-alignment of the vertices of the model in order to effect a reconstruction of a surface representation may result in a loss of symmetry. Starting with an initially symmetrical model whose vertices are subsequently realigned to reconstruct a surface representation of a limbed creature, the data set describing the symmetrical polygons and vertices may be reduced in size by only describing about one half of them (if the model has a central axis about which the left and right sides are symmetrical and on which rests vertices then the appropriate vertices and polygons will need describing).

The models constructed according to the present invention are particularly useful for animation purposes due to their simplicity. Their usefulness for animation purposes (as well as general non-animation purposes) may be enhanced by the provision of a plurality of "loft levels" which describe jointed sections of the body and which when animated will deform in a manner similar to the modelled body. In this way, stretching of surfaces of the model which are not stretched in the limbed creature being modelled is avoided, helping to make the models more lifelike. In particular, each long-bone section (upper- and lower-limbs) may have two loft levels, providing what has been found to be the minimum number of vertices necessary to represent the section properly at multiple levels of sub-division. Each simple joint (knuckle, wrist/ankle and knee/elbow) may have two loft levels, positioned above and below the joint itself. It has been found that this is the minimum configuration which can represent the joints through their full range of movement at multiple levels of sub-division. Each complex joint (shoulder, hip and base of the thumb) may have three loft levels. This has been found to be the minimum configuration which can represent the complex joints through their full range of movement at multiple levels of sub-division.

The model may include polygons at the front upper section of the trunk describing breasts and nipples.

Also useful in ensuring mathematical simplicity of the model and easy animation is the feature of having flowing axial lines. These axial lines may in particular include lines which rest on the Y=0, Z=0 and X=0 axes. In particular, the model may have, defined by vertices of the polygons, in outstretched stance (as shown by the Figures), front and back medial axial lines on the forelimbs forming a continuous loop connecting each forelimb via the chest and back and continuing around every digit, said medial lines resting on the Z=0 axis. The model may have, defined by vertices of the polygons, in outstretched stance side medial axial lines on the head, neck, forelimbs, trunk and hind limbs forming a continuous loop connecting the top of the head via the centre of each forelimb, the centre of the side of the trunk, and the centre of the lower limbs, said medial lines resting on the Y=0 axis. The model may have, defined by edges of the polygons, in outstretched stance front and back medial axial lines on the head, neck and trunk forming a continuous loop connecting the top of the head via the centre of the head, centre of the chest and centre of the back, said medial lines resting on the X=0 axis.

In particular, the method of the present invention may define exactly or substantially the model of Figures 1-25 or the model of Figures 26-49, optionally further defined by Tables 1 and 2 respectively. Individual polygons or sets of polygons may be subdivided to for example provide a smoother surface or allow for further detail, whilst still falling within the scope of the invention. For example, sub-dividing the region of the mesh that represents the hair may allow a better representation of long hair with a smooth silhouette, or the extra detail may allow better representation of headgear such as hats. An example of such a subdivision is shown in the model of Figure 52 which shows a human head and can be compared to Figure 22 where subdivision has not been used. Subdivision can be applied wherever it is necessary to show greater detail.

The method of the present invention may be a method for reconstructing a surface representation of individual member of the modelled class of limbed creature, comprising the additional step of determining the coordinates of the salient points of the individual which are described by the model limbed creature, and aligning the salient points of the model limbed creature to the salient points of the individual limbed creature to reconstruct the surface of the individual limbed creature. The interpolated points may also be aligned. Figure 50 is a flow chart representing steps in a method provided in accordance with an embodiment of the present invention for using a computer for reconstructing a three- dimensional surface of a limbed creature. In a first step 502, instructions executed by the computer define a three-dimensional model of a limbed creature according to the method of the present invention. In one embodiment of the invention, the model comprises no more than about 3000 adjacent polygons, at least ninety percent of which are quadrilaterals, wherein each tubular section of the limbed creature has a cross-section having a multiple of two sides, and the model describes salient points on the body of the limbed creature. In another step 504, instructions executed by the computer generate data from imaging the limbed creature, the data including the coordinates of the salient points described by the model limbed creature. In a step 506, instructions executed by the computer align the salient points of the model limbed creature to the salient points of the imaged limbed creature to reconstruct the surface of the imaged limbed creature. Figure 51 illustrates a representation of a system for reconstructing a surface of a limbed creature in accordance with one embodiment of the present invention. The system 510 includes an imaging system 512 for producing images of a limbed creature. The system 510 also includes a memory 514. The memory 514 stores a three-dimensional model of a limbed creature 516, which model, in one embodiment of the invention, comprises no more than about 3000 adjacent polygons, at least ninety percent of which are quadrilaterals, each tubular section of the limbed creature having a cross-section having a multiple of two sides, said model describing salient points on the body of the limbed creature. The memory 514 also stores data 518 defining the coordinates of the salient points of the imaged limbed creature as described by the model limbed creature. The memory 514 also stores machine instructions 520 that define steps for processing the data derived from the images using the three-dimensional model. The system 510 further includes a processor 522 that is coupled to the memory 514, said processor 522 executing the machine instructions 520, causing the processor 522 to align the salient points of the model limbed creature to the salient points of the imaged limbed creature to reconstruct the surface of the imaged limbed creature 524. Also provided according to the present invention is a method for using a computer for reconstructing a three-dimensional surface of a limbed creature comprising the steps of: a) defining a three-dimensional model of a limbed creature according to the method of the present invention, said model describing salient points on the body of the limbed creature; b) providing data from imaging the limbed creature, said data including the coordinates of the salient points described by the model limbed creature; and c) aligning the salient points of the model limbed creature to the salient points of the imaged limbed creature to reconstruct the surface of the imaged limbed creature.

Also provided according to the present invention is a system for reconstructing a surface of a limbed creature, comprising: a) an imaging system for producing images of the limbed creature; b) a memory for storing: i) a three-dimensional model of a limbed creature according to the present invention, said model describing salient points on the body of the limbed creature; ii) data defining the coordinates of the salient points of the imaged limbed creature as described by the model limbed creature; and iii) machine instructions that define steps for processing the data derived from the images using the three-dimensional model; and c) a processor that is coupled to the memory, said processor executing the machine instructions, causing the processor to align the salient points of the model limbed creature to the salient points of the imaged limbed creature to reconstruct the surface of the imaged limbed creature.

Also provided according to the present invention is a system for displaying a reconstruction of a limbed creature, comprising: a) a memory for storing: i) a three-dimensional model of a limbed creature according to the present invention, said model describing salient points on the body of the limbed creature; ii) data defining the coordinates of the salient points of an imaged limbed creature as described by the model limbed creature; iii) machine instructions that define steps for processing the data derived from the images using the three-dimensional model; and iv) machine instructions that define steps for displaying the images obtained; b) display means for displaying images; and c) a processor that is coupled to the memory and display means , said processor executing the machine instructions, causing the processor to align the salient points of the model limbed creature to the salient points of the imaged limbed creature to reconstruct the surface of the imaged limbed creature and display said reconstruction on said display means.

Also provided according to the present invention is a computer program for reconstructing the surface of a limbed creature, comprising: i) program code comprising data defining a three-dimensional model of a limbed creature according to the present invention, said model describing salient points on the body of the limbed creature; ii) program code for effecting the input of data defining the coordinates of the salient points of imaged limbed creature as described by the model limbed creature; and iii) program code defining steps for processing the inputted data using the three-dimensional model to align the salient points of the model limbed creature to the salient points of the imaged limbed creature to reconstruct the surface of the imaged limbed creature. Also provided according to the present invention is a computer program product for reconstructing the surface of a limbed creature, comprising a computer usable medium having computer readable program code means according to the present invention embodied in said medium.

The present invention can be put to a wide range of uses, for example the photorealistic representation of a human head or whole body by re-alignment of vertices against two photographs (i.e. forward-facing and side-profile). Similarly vertices can be re-aligned against salient points taken from a 45 ° side elevation (i.e. an INS-style photograph, midway between a front and side view), although this technique does require approximations of some features to be made by e.g. assuming symmetry. This technique may in particular be used to reconstruct face surfaces. Vertices can also be re-aligned against a front-view. This method requires the approximation of depth information by eg. assuming average values. Again this can be applied to the reconstruction ef faces.

The invention can also be used to measure the bodily dimensions of people from e.g. video or still images by aligning the salient points of the model to those in the images and then using the aligned model as a "ruler". Once a surface image of a person has been created, the vertices may be altered to represent the results of surgical procedures, for example cosmetic surgical procedures. Alternatively, models of humans can be used to provide "virtual tailoring" where the wearing of items of clothing can be modelled, or where a model of individual can be used to enable the manufacture of custom-fitted clothing.

The model can be used to reconstruct a surface representation of a person in a photo-fit style fashion in order to produce a three-dimensional model of a suspect.

Video games are also an important application of the present invention - it is always desirable to produce the most accurate three-dimensional models in video games whilst ensuring that their rendering and animation requires the least possible computer processing power. The models of the present invention are, as described above, mathematically simple and so their use in video games is particularly desirable.

When a reconstruction of the surface of a limbed creature as a quadrilateral mesh is to be displayed on a computer system, it is usually converted into a mesh of triangles for rendering by the hardware of the computer system due to limitations of the display hardware. This triangulation process is a simple well-known procedure built into the hardware or device-level software. It is dependent upon the order that the vertices are sent to the hardware rendering system, but this order is not usually considered when developing a model. When an image is displayed without vertex order being taken into account during development, there can be errors of the smoothness of the surface particularly in areas with complex curvature. In the model of Example 1 (described in more detail later) the order of the vertices has been selected so that the vertices are presented to the hardware rendering system in an order that forces each quadrilateral to be triangulated so that no errors in smoothness occur. Further information on triangulation in general can be found at the following website written by Jonathan Shewchuk, Assistant Professor in Computer Science University of California at Berkeley - http://www.cs.berkeley.edu/~jrs/meshf99/ .

The models and surface reconstructions of the present invention may also be used to construct a database, for example to enable computer-recognition of people by the location of their salient points as described by the model.

The models may also be used in virtual-reality environments or to provide e.g. video conferencing and virtual-meetings at low-bandwidth between computers which have stored on them the same basic limbed creature model - once an individual has been imaged and a surface representation of the individual constructed on a first computer by re-alignment of vertices of a model limbed creature according to the salient points defined by the imaging, the coordinates of the salient points and any surface textures (or the differences between them and the same points/textures of the basic limbed creature stored on the second computer) can be transmitted between first and second computers as a relatively small set of data, and used to achieve the same reconstruction on the second computer by re-aligning vertices of the model limbed creature which is already stored on the second computer. Alternatively the set of re-alignments of vertices may be sent between the two computers. New limbed creatures may be defined on a computer by simply providing it with a new set of coordinates for vertices of the model, the model using the same polygons defined by the same sets of vertices to describe the different limbed creatures. Animation of models can also be achieved using relatively small sets of data which define only the re-alignments of the vertices which occur from one frame to the next. Similarly, using a basic model limbed creature stored on first and second computers, a streaming animation of a reconstructed surface representation of an individual may be sent between the two computers in the form of a stream of data first defining the vertices of the reconstructed surface representation and the textures to be applied to the surface, and then a series of frames which need only define the realignments of vertices from frame to frame. Assuming that from frame to frame the realignments of the vertices are limited in scope (for example primarily re-alignments of vertices around the mouth during an animation of a conversation) then the set of data required from frame to frame will be limited, allowing for a low-bandwidth transmission. Key-frames may be sent, for example every few seconds, which define the absolute coordinates of the vertices, rather than the re-alignments necessary, and/or which define the surface textures. In this way, loss of data packets over the connection between two computers would not necessitate the re-sending of the whole of the transmission, instead being corrected by the next key frame. Thus the present invention is particularly useful for providing models, reconstructions of surface representations and animations of same across connections such as internet connections, even relatively low bandwidth connections, for example as streaming broadcasts. Using the quadrilateral meshes (i.e. the models) of the present invention it is possible to define a photorealistic image of an individual for transmission as just the 1822 vertices plus a suitable (mainly facial) image map. With the polygonal relationships between vertices being predefined, there is no need for them to be transmitted. The vertices when stored as real numbers occupy 3 (x, y, z) x 1822 x 2 bytes, ie 10932 bytes. If symmetry is assumed, this can be reduced to approximately 6000 bytes (all axial x=0 vertices are included). A suitable image map for the polygons of the face in a compressed format such as jpeg can be provided in under 40k, which means that it is possible to provide an animatable, photorealistic 3D individual in less than 50k of data.

Data compression may be enhanced in a number of ways, in particular in a client-server situation where the client is only capable of displaying or animating a certain number of polygons, or where the client only wishes to display a certain part of a model. Examples of data compression include basing specific models upon a generic model as mentioned above. For example, a standard "human character" could be pre-installed on a client machine. Data for vertices of a specific model could then be sent identifying the generic model to be used and then the deviations from the selected generic model, thus minimising the amount of data to be sent. A catalogue of standard "characters"could be pre-installed on a client machine, for example representing males and females, and different boy morphologies such as endomorph, mesomorph and ectomorph. Similarly, non-human characters could form part of a pre-installed catalogue. Standard image maps or textures may be provided for the polygons of the model, again possibly in the format of a catalogue which can simply be referenced in a data set representing a model. Thus data sets required to describe a specific model and its animation can be significantly reduced in size. In a client-server situation it would also be possible for the client to indicate to the server that it only desired to be sent a reduced resolution model. This could for example be because of limited bandwidth in the client-server connection or because the client is only capable of displaying or animating a limited number of polygons. The server, whilst maintaining the resolution of its model could then selectively filter the data sets sent to the client describing the model and/or its animation in order to reduce the size of data set. For example a limited bandwidth connection could be optimised by sending at full resolution the representation of a model referencing a character in a catalogue. Although taking a relatively long period to send, once received by the client, the animation of the model could then be achieved at full speed despite the low bandwidth of the connection by only sending animation data for key vertices (for example the salient points defined by the model), the client machine then estimating the movement of other vertices. In order to aid such estimates by client machines, models (for example characters in a catalogue) may also be provided with reference data which defines the specific or general movement of non-key vertices in relation to key vertices. Similarly, if the client machine is only capable of displaying or animating a limited number or polygons then the initial data set defining the model may be filtered to reduce the number of polygons in the model. Data sets can also be minimised if a client machine is only displaying part of a model, for example the head. In such a case it would not be necessary for the client machine to be sent data representing the movement of other parts of the body. Thus a client could indicate to a server that it required only data for the head of a model and the server could filter data sets accordingly. When the client again wanted to display the full model then the server could for example send a "key frame" (above), or a data set defining movement of the model since the last full set of data was sent, or for example a data set defining movement of the head since the last filtered data set for head-only movements, and the movement of the rest of the body since the last full data set.

The models may also be used to provide "virtual celebrities" or "virtual characters" comprising heads or entire bodies which may be incorporated into for example games or video productions. Such virtual characters may additionally comprise a digital signature as part of the data set defining them to verify the content of the data set. Such digital signatures could be used to ensure that software including such characters was appropriately licensed or authorised or that data defining a character was from a verified source. In particular the signature could be produced using standard public/private key cryptographic techniques such as PGP. It could for example include a signature part from the licensor of the character and a signature part from the licensee. In that way, a signature for a particular data set would verify both the licensor and licensee, meaning that a non-licensee could not simply copy a signed character data set from a licensee's product.

The data sets defining the models, be they virtual celebrities, characters defined for specific individuals or otherwise, may be readily stored on any appropriate medium. In particular they may be stored on portable media for example magnetic cards, so-called "smart cards", mobile phones (for example on SIM cards used with mobile phones) or any other suitable media. This provides the opportunity for applications such as security (identification of people), medical applications such as imaging, shopping in which a user could provide their stored "character" and have it used as a template for modelling clothes and suchlike, video games and other entertainment. In order to guarantee the authenticity of such stored data sets, digital signatures and other cryptographic techniques may be used as discussed above. In the case of storage on portable media carried by e.g. a mobile phone, where the storage device also having a data transmission capability such as infra-red (e.g. using the IrDA protocol) or Bluetooth, data may be transmitted to a receiver without needing to physically contact the receiver with the storage means.

The model may also be used in e.g. morphing techniques - models of different limbed creatures may be constructed, for example of a gorilla and human, having a common set of quadrilaterals, the quadrilaterals having different vertices. Using the set of vertices for the model human, a surface representation of a human could then be reconstructed from applying image data and coordinates of salient points to re-align the vertices. The realignments could then be applied to the vertices of the model gorilla, in effect morphing the human into a gorilla. A set of intermediate steps between the coordinates of the vertices of the human and gorilla surface representations could then be generated to animate the morphing process. Heads of different creatures may be similarly morphed.

As discussed above, a surface representation of an individual may be reconstructed from scanned images by aligning the salient points of a model to the salient points of the individual identified in the scanned images. This can be readily achieved using standard scanning apparatus which have been configured to identify the salient points of the models of the present invention, and is well within the abilities of one skilled in the art, given the information disclosed herein. Similarly computer chips, graphics cards and software may be optimised for the modelling and reconstruction of the present invention.

Other uses of the invention lie in modelling in engineering simulations, design and ergonomic applications.

The heads modelled in Figures 19-24 and 44-49 and described by Tables 1 and 2 also forms a separate part of the invention. The head can be described by a set of 495 vertices defining 486 adjacent quadrilaterals as shown in Figures 19-24 and Table 1, the head model including the neck. Alternatively the head model may exclude the neck and may comprise 461 vertices defining 453 adjacent quadrilaterals as shown in Figures 44-49 and Table 2. This model of the head has been created to enable photorealistic representation of an individuals head, particularly their face. In particular it is simple to animate due to the fact that the polygons defining the head are arranged such that facial movements such as movements of the mouth, cheeks and eyes cause a "natural" seeming distortion of the polygons. It has not previously been suggested that it is possible to define a model of a face, particularly a face suited to animation or allowing the photorealistic representation or reconstruction of an individual's face, using so few polygons, in particular not using quadrilaterals with all of the advantages that their use entails. Thus according to the present invention there is also provided a method of representing a head in a three dimensional model, comprising defining no more than 500 polygons describing substantially all of the salient points on the head.

At least 95, 96, 97, 98 or 99%) of said polygons may be quadrilaterals, and all of said polygons may be quadrilateral.

The model may comprise for example 453 or 486 quadrilaterals.

The model may describe salient points comprising substantially (for example at least six, seven or eight of) the group of: i) the top of the head; ii) the tip of the chin; iii) the centre of each pupil, iv) the north, south, east and west extremities of each eye; v) the top, bottom and widest points of each ear; vi) the top of the nose, centre of the bridge of the nose, the centre of each nostril, and the widest point of the nose; vii) the centre of the mouth, the end point of the mouth, the two apexes of the upper lip, and the bottom most point of the lower lip; viii) the centre, centre-left and centre-right of the septum; and ix) the tip of the Adam's apple.

As with the limbed creature model, the left and right sides of the model may be symmetrical, although of course this symmetry may be lost upon realignment of vertices to reconstruct a surface representation of an individual face. The model may in particular be used for animation, and as discussed above it provides a particular advantage in being simple (i.e. mathematically simple) to animate in contrast with existing prior art models.

The method may be a method for reconstructing a surface representation of the head of an individual, comprising the additional step of determining the coordinates of the salient points of the individual which are described by the model head, and aligning the salient points of the model head to the salient points of the individual's head to reconstruct the surface of the individual's head.

Also provided is a system for displaying a reconstruction of a head, comprising: a) a memory for storing: i) a three-dimensional model of a head, said model describing salient points on the head; ii) data defining the coordinates of the salient points of an imaged head as described by the model head; iii) machine instructions that define steps for processing the data derived from the images using the three-dimensional model; and iv) machine instructions that define steps for displaying the images obtained; b) display means for displaying images; and c) a processor that is coupled to the memory and display means , said processor executing the machine instructions, causing the processor to align the salient points of the model head to the salient points of the imaged head to reconstruct the surface of the imaged head and display said reconstruction on said display means.

Also provided is a method for using a computer for reconstructing a three-dimensional surface of a head comprising the steps of: a) defining a three-dimensional model of a head according to the method of the present invention, said model describing salient points of the head; b) providing data from imaging the head, said data including the coordinates of the salient points described by the model head; and c) aligning the salient points of the model head to the salient points of the imaged head to reconstruct the surface of the imaged head.

Also provided is a system for reconstructing a surface of a head, comprising: a) an imaging system for producing images of the head; b) a memory for storing: i) a three-dimensional model of a head according to the present invention, said model describing salient points of the head; ii) data defining the coordinates of the salient points of the imaged head as described by the model head; and iii) machine instructions that define steps for processing the data derived from the images using the three-dimensional model; and c) a processor that is coupled to the memory, said processor executing the machine instructions, causing the processor to aligning the salient points of the model head to the salient points of the imaged head to reconstruct the surface of the imaged head.

Also provided is a computer program for reconstructing the surface of a head, comprising: i) program code comprising data defining a three-dimensional model of a head according to the present invention, said model describing salient points of the head; ii) program code for effecting the input of data defining the coordinates of the salient points of the imaged head as described by the model head; and iii) program code defining steps for processing the inputted data using the three-dimensional model to align the salient points of the model head to the salient points of the imaged head to reconstruct the surface of the imaged head.

Also provided is a computer program product for reconstructing the surface of a head, comprising a computer usable medium having computer readable program code means according to the present invention embodied in said medium.

As an alternative to representation of shapes by a series of polygons, it is possible to use objects well known in the art such as splines, nurbs, metaballs and voxels. These objects may be linked to form a mesh using models having control points defined by the vertices of the models of the present invention, and the present invention extends to such models, their uses, systems, computer programs and computer program products embodying same.

An alternative to the mapping of salient points described previously is the use of UV mapping, using a standardised UV space map for the image to be applied to the mesh. In such a standardised UV space map, the source image data is modified to fit the standard UV space. An example of a standardised UV space map is shown in Figure 53 where the block of polygons labelled 310 represents the torso of a model, 315 represents the head, 320 represents right arm, 325 represents the left arm, 330 represents the back of the hand, 335 represents the palm of the hand, 340 represents the upper foot, 345 represents the lower foot, 350 represents the right leg, 355 represents the left leg, 360 represents the tongue, 365 represents the upper teeth, 370 represents the lower teeth, 375 represents the left eye and 380 represents the right eye. Data from such UV space maps can be fully interchanged in whole or in part with data from other UV space maps constructed in the same way. As all the points in any mesh derived from the original mesh, such as a low resolution mesh or a subdivided mesh, are fixed relative to the original mesh a single UV space map can be applied to any model derived from the original mesh. This has the advantages of being able to mix and match details such as clothing or hairstyles between models, or alternatively the standard UV space coordinates can be stored with an application rather than stored with the models used in the application thus reducing the size of the models. Mapping the data from the UV space map onto a mesh is a well-known procedure, further information about the subject can be found, for example, at the website of Primitive Itch of Richmond, California - http://www.primitiveitch.com/truetexture/tutorial2.html .

To facilitate manual UV space mapping, a guide system allows a user to match image features to the UV space map using a standard computer paint package. Figure 54 shows such a guide system derived from the standardised mesh of Figure 53. A user can apply features directly onto the guide and they will appear correctly placed on the three- dimensional model. Alternatively, the salient points of the guide map may be moved so that they align with the salient points of the image so that salient points are correctly located on the three-dimensional model. An example of a space map guide system is shown in Figure 54 where area labelled 310 represents the torso of a model, 315 represents the head, 320 represents right arm, 325 represents the left arm, 330 represents the back of the hand, 335 represents the palm of the hand, 340 represents the upper foot, 345 represents the lower foot, 350 represents the right leg, 355 represents the left leg, 360 represents the tongue, 365 represents the upper teeth, 370 represents the lower teeth, 375 represents the left eye and 380 represents the right eye. Further information about mapping a two-dimensional image onto a three-dimensional model can be found, for example,at the website of Uni graphics Solutions Inc of St Louis, Missouri http://www.ugsolutions.com/products/unigraphics/cad/photo/user/uvtext.html .

EXAMPLE 1

As can be seen from Figures 1-25 and Table 1, a first quadruped is modelled in a neutral stance, with the legs apart, 12% off vertical, the arms outstretched horizontally to their maximum span and the fingers straight and apart. The model comprises a total 1822 vertices used to define 1820 quadrilaterals, and is symmetrical about the X=0 axis (i.e. the left and right sides of the body are symmetrical). The following salient points are described: the top of the head 10, the tip of the chin 20, the centre of each pupil 30, the north, south, east and west extremities of each eye 41-44, the top, bottom and widest points of each ear 51-53, the top of the nose 60, centre of the bridge of the nose 61, the centre of each nostril 62, and the widest point of the nose 63, the centre of the mouth 70, the end-point of the mouth 71, the two apexes of the upper lip 72, and the bottom most point of the lower lip 73, the centre 80, centre-left 81 and centre-right 82 of the septum, the centre of each nipple 90, the front-most 100, widest 101,102 and back 103 points of each foot, the tips of each finger 110-113 and thumb 114, and the Adam's apple 120.

Each of the four limbs 130-133 and each of the fingers and thumb 140-144 is octagonal, allowing for simple subdivision. The two legs 130,131 join to the trunk 150 at the pelvis 160 and all of the axial lines from the legs 130,131 flow through to the trunk 150, which is thus primarily a 16-sided cylinder.

The two arms 132, 133 join to the trunk at the shoulders 170. Three of the axial lines flow through to the neck 180 and on through the head 190. Three of the remaining axial lines flow through to the trunk 150 and legs 130,131. The two remaining axial lines (front and back medial axial lines) on the arms 132,133 form a continuous loop 200 (marked as section I-I) resting on the Z=0 axis, connecting each arm 132,133 via the upper region of the trunk 150 (i.e. chest) and back 210 and continue around every finger 140-143.

Where each body part joins the next (e.g. digits 140-144 to hands 220, hands 220 to arms 132,133, arms 132,133 to trunk 150 etc.) all connecting polygons are quadrilateral, optimised for smooth subdivision. Each long bone section and simple joint has two loft-levels, with each complex joint having three loft-levels. For example, shoulder 230 comprises three loft levels 231,232,233 connecting it to upper portion 240 of arm 132 having two loft levels 241,242 which in turn connect to elbow 250 having two loft levels 251,252.

Breasts 260 are formed from eight quadrilaterals 261-268 arranged around irregular octagon which itself is split into four quadrilaterals 271-274.

The model has, defined by edges of the polygons side medial axial lines on head 10, neck 180, arms 132,133, trunk 150 and legs 130,131 forming a continuous loop 280 (marked as section II-II) connecting the top of head 10 via the centre of each arm 132,133, the centre of the side of trunk 150, and the centre of each leg 130,131, said medial lines resting on the Y=0 axis.

The model has, defined by edges of the polygons front and back medial axial lines on head 10, neck 180 and trunk 150 forming a continuous loop 290 (marked as section III- III) connecting the top of head 10 via the centre of head 10, centre of trunk 150 and centre of back 210, said medial lines resting on the X=0 axis.

In use, the person to be modelled is scanned to produce a series of images and the X, Y and Z coordinates of the salient points 10, 20, 30, 41-44, 51-53, 60-63, 70-73, 80-81, 90, 100-102, 100-114 and 120 determined. The salient points 10, 20, 30, 41-44, 51-53, 60- 63, 70-73, 80-81, 90, 100-102, 100-114 and 120 of the model of Figures 1-25 are then aligned to the coordinates derived from the scanned images to give the model the correct basic shape and allow the interpolation of the alignment of the other vertices of the model. The surface of the person being modelled can then be reconstructed, The quadrilaterals joining to provide a single surface. Smoothing algorithms are then be applied to the reconstructed surface to make it more realistic. Finally, sections of the scanned images correlating to the polygons of the model are then used to provide texture (i.e. surface images) for the smoothed surface to provide a finished model. The smoothing stage is optional one and may be performed using a wide range of algorithms which are available in commercially available software packages such as the World Toolkit produced by Engineering Animation Inc. (www.sense8.com). Other particularly useful software packages include TrueSpace and 3D Studio.

EXAMPLE 2

In a second model (Figures 26-49; Table 2) comprises 1820 adjacent quadrilaterals defined by 1822 vertices. It has the same basic structure as the first model and the same reference numerals are used for the first and second models.

As can be seen from the first model head of Figures 19-24, the quadrilaterals defining the top of the head are arranged such that their outer edges define a series of 16-sided concentric polygons centred on the top of the head 10. The second model head of Figures 44-49 has a different arrangement at the top of the head - a more rectangular arrangement of the quadrilaterals. Other differences between the first and second models include the quadrilaterals defining the shoulders (when viewed from the back).

Thus it is clear that a range of models according to the present invention can be readily created and modified by a person skilled in the art, particularly by the modification of the first and second models described herein.

It will be appreciated that it is not intended to limit the invention to the above example only, many variations, such as might readily occur to one skilled in the art, being possible, without departing from the scope thereof as defined by the appended claims.

Table 1 defines the vertices and polygons of the first human model of Figures 1-25. Table 2 defines the vertices and polygons of the second human model of Figures 26-49. The vertices and polygons of Table 1 are presented in a commonly recognised format. The Table is split into two sections - the first section defines the number of vertices then lists them in numerical order. Values given for coordinates are the distance in metres from the origin (i.e. the point in the Figures at which the planes I-I, II-II and III-III intersect) and are given in the order X,Y,Z. The second section of the Table comprises a list of polygons sorted in numerical order. The first column gives the number of the individual polygon, the subsequent columns identify the vertices that define the polygon.

Table 2 is presented in a similar format, again split into two sections. In the first section the vertices are listed in numerical order and the coordinates are again the distance in metres from the origin and given in the order Y,Z and X. The second section of the Table comprises a list of polygons sorted according to their numeric order. The first column defines the number of vertices in the polygon, and the subsequent columns identify the vertices which define the polygon. All polygons defined in the Tables face outwards in the resultant models.

Table 1

[bioVirtual Standard Mesh Report]

Mesh Contents:

Vertices : 1822

Polygons : 1820

Vertex Positions: (X, Y, Z)

Vertex 0) (-0 0005 1 2334 0 0002)

Vertex 1) (-0 0004 1 2279 0 1096)

Vertex 2) (-0 0005 1 2152 -0 1122)

Vertex 3) ( o 1236 1 2116 0 0001)

Vertex 4) (-0 1245 1 2114 0 0002)

Vertex 5) ( o 1237 1 2079 0 1037)

Vertex 6) (-0 1245 1 2078 0 1039)

Vertex 7) ( o 1236 1 1952 -0 1057)

Vertex 8) (-0 1246 1 1950 -0 1056)

Vertex 9) (-0 0003 1 1867 0 2096)

Vertex 10) ( o 1238 1 1696 0 1975)

Vertex 11) (-0 1244 1 1694 0 1976)

Vertex 12) (-0 0005 1 1441 -0 2181)

Vertex 13) ( o 2065 1 1434 0 0004)

Vertex 14) (-0 2102 1 1428 0 0003)

Vertex 15) ( o 2018 1 1390 0 0876)

Vertex 16) (-0 2073 1 1384 0 0878)

Vertex 17) (-0 0003 1 1349 0 2603)

Vertex 18) ( o 1236 1 1314 -0 2043)

Vertex 19) (-0 1246 1 1312 r -0 2041)

Vertex 20) ( o 1977 1 1277 -0 0875)

Vertex 21) (-0 2019 1 1275 -0 0873)

Vertex 22) ( o 1238 1 1240 0 2479)

Vertex 23) (-0 1243 1 1238 0 2480)

Vertex 24) ( o 1968 1 1131 0 1748)

Vertex 25) (-0 1974 1 1128 0 1750)

Vertex 26) ( o 1893 1 0876 -0 1532)

Vertex 27) (-0 1902 1 0873 -0 1530)

Vertex 28) ( o 1895 1 0839 0 2117)

Vertex 29) (-0 1900 1 0836 0 2119)

Vertex 30) (-o 0002 1 0600 0 3030)

Vertex 31) ( o 1239 1 0554 0 2854)

Vertex 32) (-0 1243 1 0552 0 2856)

Vertex 33) ( o 1939 1 0408 0 2281)

Vertex 34) (-0 1958 1 0406 0 2283)

Vertex 35) (-0 0005 1 0382 -0 2783)

Vertex 36) ( o 1236 1 0328 -0 2627)

Vertex 37) (-0 1245 1 0327 -0 2626)

Vertex 38) ( o 2308 1 0219 0 1606)

Vertex 39) (-0 2312 1 0216 0 1608)

Vertex 40) ( o 2515 1 0055 0 0876)

Vertex 41) (-0 2521 1 0052 0 0878)

Vertex 42) ( o 2551 1 0052 -0 0000)

Vertex 43) ( o 2441 1 0052 -0 0876)

Vertex 44) ( o 2039 1 0052 -0 1901)

Vertex 45) (-0 2048 1 0049 -0 1899)

Vertex 46) (-0 2449 1 0048 -0 0873)

Vertex 47) (-0 2558 1 0048 0 0003)

Vertex 48) ( o 1240 0 9485 0 3179)

Vertex 49) (-0 1242 0 9483 0 3180)

Vertex 50) ( o 2009 0 9376 0 2547)

Vertex 51) (-0 2012 0 9373 0 2549)

Vertex 52) (-0 0001 0 9246 0 3457) Vertex 53) ( o.2625, 0.9183, -0.0000)

Vertex 54) ( o. 2607, 0. 9183, 0. 0875)

Vertex 55) ( o. 2551, 0. 9183, -0. 0876)

Vertex 56) ( o. 2443, 0. 9183, 0. 1532)

Vertex 57) ( o. 2113, 0. 9183, -0. 2091)

Vertex 58) ( o. 1237 0 9183, -0 2809)

Vertex 59) (-0. 0004 0 9182, -0 2977)

Vertex 60) (-0. 1245 0. 9181, -0 2808)

Vertex 61) (-0. 2120, 0. 9180, -0 2089)

Vertex 62) (-0 2447 0 9179, 0 1535)

Vertex 63) (-0 2557 0 9180, -0 0873)

Vertex 64) (-0 2611 0 9179, 0 0878)

Vertex 65) (-0 2630 0 9180, 0 0002)

Vertex 66) ( o 1240 0 9043, 0 3310)

Vertex 67) (-0 1241 0 9041 0 3311)

Vertex 68) ( o 1565 0 8945, 0 3171)

Vertex 69) (-0 1566 0 8943, 0 3173)

Vertex 70) ( o 0813 0 8937, 0 3478)

Vertex 71) (-0 0814 0 8936 0 3479)

Vertex 72) ( o 1240 0 8802 0 3365)

Vertex 73) (-0 1241 0 8800 0 3366)

Vertex 74) ( o 0671 0 8765 0 3507)

Vertex 75) (-0 0672 0 8764 0 3508)

Vertex 76) ( o 1715 0 8719 0 3054)

Vertex 77) (-0 1716 0 8716 0 3056)

Vertex 78) ( o 1970 0 8595 0 2762)

Vertex 79) (-0 0000 0 8593 0 3544)

Vertex 80) (-o 1971 0 8592 0 2764)

Vertex 81) ( o 1240 0 8576 0 3259)

Vertex 82) (-0 1241 0 8574 0 3260)

Vertex 83) ( o 0748 0 8528 0 3310)

Vertex 84) (-0 0748 0 8527 0 3311)

Vertex 85) ( o 1634 0 8507 0 3043)

Vertex 86) (-0 1635 r 0 8505 0 3045)

Vertex 87) ( o 1813 , o 8368 0 2817)

Vertex 88) (-0 1814 0 8366 0 2819)

Vertex 89) ( o 0372 0 8356 0 3270)

Vertex 90) (-0 0372 0 8356 0 3271)

Vertex 91) ( o 1240 , o 8339 0 2996)

Vertex 92) (-0 1241 , o 8337 0 2998)

Vertex 93) ( o 2160 0 8336 0 2324)

Vertex 94) (-0 2161 0 8333 0 2327)

Vertex 95) ( o 1416 r 0 8306 0 .2971)

Vertex 96) ( o 1007 , o 8306 0 .2971)

Vertex 97) (-0 1008 0 8304 0 .2972)

Vertex 98) (-0 1416 0 8304 0 2972)

Vertex 99) ( o 2786 0 8231 -0 0431)

Vertex 100) (-o 2790 r 0 8227 -0 .0428)

Vertex 101) (-0 0000 , o 8225 0 .3409)

Vertex 102) ( o 1656 , o 8222 0 .2843)

Vertex 103) (-0 1657 , o 8220 0 .2844)

Vertex 104) ( o 1240 0 8211 0 3025)

Vertex 105) (-0 .1241 , o 8209 , o .3027)

Vertex 106) ( o 0255 r 0 8207 , o .3241)

Vertex 107) (-0 0256 , o 8206 0 .3241)

Vertex 108) ( o 0708 , o 8181 0 .2894)

Vertex 109) (-0 .0708 , o 8180 , o .2895)

Vertex 110) ( o .1003 r 0 8178 , o .2971)

Vertex 111) (-0 .1004 r 0 8177 , o .2972)

Vertex 112) ( o .1478 r 0 8175 0 .2970)

Vertex 113) (-0 1478 , o 8173 , o .2972)

Vertex 114) ( o .1937 r 0 .8171 r 0 .2525) Vertex 115) (-0 1938, 0 8169 0.2527)

Vertex 116) ( o 2928, 0 8111 -0. 0446)

Vertex 117) (-0 2932, 0 8107, -0. 0443)

Vertex 118) ( o 2786, 0 8070, -0. 1001)

Vertex 119) (-0 2790, 0 8067, -0. 0998)

Vertex 120) ( o 2552, 0 8067 -0 0876)

Vertex 121) ( o 1795, 0 8065 0 2671)

Vertex 122) ( o 1496, 0 8065 0 2970)

Vertex 123) ( o 1241, 0 8065 0 3047)

Vertex 124) ( o 1238 0 8066 -0 2759)

Vertex 125) ( o 0985 0 8065 0 2971)

Vertex 126) ( o 0591, 0 8065 0 2843)

Vertex 127) ( o 0223, 0 8064 0 3278)

Vertex 128) ( o 0000, 0 8064 0 3431)

Vertex 129) (-0 0003 0 8065 -0 2940)

Vertex 130) (-0 0223 0 8064 0 3278)

Vertex 131) (-0 0591 0 8064 0 2844)

Vertex 132) (-0 0985 0 8063 0 2972)

Vertex 133) (-0 1241 0 8063 0 3049)

Vertex 134) (-0 1244 0 8064 -0 2757)

Vertex 135) (-0 1496 0 8063 0 2972)

Vertex 136) (-0 1796 0 8063 0 2673)

Vertex 137) (-0 2557 0 8063 -0 0874)

Vertex 138) ( o 2626 0 8063 -0 0001)

Vertex 139) ( o 2608 0 8063 0 0875)

Vertex 140) ( o 2444 0 8062 0 1459)

Vertex 141) ( o 2193 0 8062 0 2204)

Vertex 142) ( o 2114 0 8063 -0 2077)

Vertex 143) ( o 1959 0 8062 0 2496)

Vertex 144) (-0 1960 0 8059 0 2498)

Vertex 145) (-0 2119 0 8060 -0 2074)

Vertex 146) (-o 2194 0 8059 0 2206)

Vertex 147) (-0 2446 0 8059 0 1462)

Vertex 148) (-0 2610 0 8059 r 0 0878)

Vertex 149) (-0 2629 0 8059 , o 0002)

Vertex 150) ( o 2972 0 8001 , -o 0909)

Vertex 151) (-0 2976 0 7997 , -o 0906)

Vertex 152) ( o •1948 0 7978 0 2514)

Vertex 153) (-0 1949 , o 7975 r 0 2516)

Vertex 154) ( o 0522 0 7951 r 0 2924)

Vertex 155) (-0 0522 0 7951 , o 2924)

Vertex 156) ( o 2728 0 7946 . -o 0158)

Vertex 157) (-0 2731 r 0 7942 , -o .0155)

Vertex 158) ( o 1700 0 7908 , o 2824)

Vertex 159) (-0 1701 0 7906 r 0 2826)

Vertex 160) ( o 1460 0 7894 . o 2970)

Vertex 161) (-0 1460 0 7892 . o 2972)

Vertex 162) ( o 1022 r 0 7875 , o .2971)

Vertex 163) (-0 1022 0 7874 r 0 .2972)

Vertex 164) ( o 1241 0 7846 , o 2982)

Vertex 165) (-0 1241 0 7844 r 0 2983)

Vertex 166) ( o 0000 0 7838 . o 3592)

Vertex 167) ( o .2742 . o 7829 , -o .0453)

Vertex 168) (-0 2746 , o 7826 r -0 .0450)

Vertex 169) ( o 0248 0 7820 r 0 3424)

Vertex 170) (-0 0248 0 7819 . o 3424)

Vertex 171) ( o .2178 r 0 7799 . o .2229)

Vertex 172) (-0 .2179 , o 7796 . o .2232)

Vertex 173) ( o .1456 0 7766 r 0 2970)

Vertex 174) ( o 0985 0 7766 r 0 3018)

Vertex 175) (-o 0985 0 7764 . o 3019)

Vertex 176) (-0 .1456 , o 7764 . o .2972) Vertex 177) ( o.2819, 0.7764, -0.0712)

Vertex 178) (-0. 2823, 0. 7760, -0. 0709)

Vertex 179) ( o. 0456, 0. 7747, 0. 3121)

Vertex 180) (-0. 0456, 0. 7746, 0. 3121)

Vertex 181) ( o. 1850, 0. 7715, 0. 2711)

Vertex 182) ( o. 1241, 0. 7715, 0. 3007)

Vertex 183) (-0. 1241, 0. 7713, 0. 3008)

Vertex 184) (-0. 1850, 0. 7713, 0. 2713)

Vertex 185) ( o. 2574, 0. 7665, -0. 1135)

Vertex 186) (-0. 2578, 0. 7662, -0. 1133)

Vertex 187) ( o. 2925, 0. 7625, -0. 1048)

Vertex 188) (-0. 2929, 0. 7621, -0. 1045)

Vertex 189) ( o. 0861, 0 7598, 0. 3142)

Vertex 190) (-0. 0861, 0 7596, 0. 3143)

Vertex 191) ( o. 2633, 0 7592, -0. 0234)

Vertex 192) (-0. 2636, 0 7589, -0. 0231)

Vertex 193) ( o 2480, 0 7570 -0. 0964)

Vertex 194) (-0. 2483, 0 7567 -0. 0961)

Vertex 195) ( o. 1620, 0 7536 0. 2970)

Vertex 196) (-0. 1620, 0 7534, 0. 2972)

Vertex 197) ( o 0001, 0 7531 0 3763)

Vertex 198) ( o 0234, 0 7506 0 3595)

Vertex 199) (-0 0233, 0 7506 0 3595)

Vertex 200) ( o 2786, 0 7501 -0 0833)

Vertex 201) (-0 2790, 0 7497 -0 0830)

Vertex 202) ( o 1208, 0 7463 0 3120)

Vertex 203) (-0 1208, 0 7461 0 3121)

Vertex 204) ( o 0453, 0 7426 0 3285)

Vertex 205) (-0 0452, 0 7425 0 3285)

Vertex 206) ( o 2065, 0 7412 0 2485)

Vertex 207) (-0 2065, 0 7410 0 2487)

Vertex 208) ( o 2582, 0 7340 -0 0504)

Vertex 209) (-0 2585, 0 7337 -0 0502)

Vertex 210) ( o 0723, 0 7317 0 3248)

Vertex 211) (-0 0722, 0 7316 0 3249)

Vertex 212) ( o 0001, 0 7236 0 3938)

Vertex 213) ( o 0256, 0 7199 0 3737)

Vertex 214) (-0 0255, 0 7199 0 3738)

Vertex 215) ( o 1814, 0 7164 , o 2853)

Vertex 216) (-0 1813, 0 7162 0 2855)

Vertex 217) ( o 2666, 0 7136 -0 0727)

Vertex 218) (-0 2669, 0 7132 -0 0724)

Vertex 219) ( o 1896, 0 7125 r -0 1832)

Vertex 220) ( o 0435, 0 7123 r 0 3398)

Vertex 221) (-0 0434, 0 7122 0 3398)

Vertex 222) (-0 1900, 0 7122 -0 1830)

Vertex 223) ( o 2550, 0 7118 , -o 0001)

Vertex 224) ( o 2499, 0 7117 r 0 0875)

Vertex 225) ( o 2445, 0 7117 r 0 1459)

Vertex 226) (-0 2445, 0 7114 . o 1462)

Vertex 227) (-0 2500, 0 .7114 r 0 0878)

Vertex 228) (-o 2552, 0 .7114 r 0 0002)

Vertex 229) ( o 2396, 0 .7103 . -o 0807)

Vertex 230) (-o 2399, 0 7100 . -o 0805)

Vertex 231) ( o 2746, 0 .7074 r -0 0909)

Vertex 232) (-0 2749, 0 .7070 . -o 0907)

Vertex 233) ( o 0001, 0 .7060 r 0 4037)

Vertex 234) ( o 0566, 0 .7050 , o 3317)

Vertex 235) (-o .0565, 0 .7049 . o 3318)

Vertex 236) ( o 1121, 0 .7047 r 0 3175)

Vertex 237) (-0 1120, 0 .7045 r 0 3176)

Vertex 238) ( o 2495, 0 .7038 r -0 0968) Vertex 239) (-0.2498, 0.7034, -0.0965)

Vertex 240) (-0. 0002, 0. 7011, -0. 2506)

Vertex 241) ( o 1093, 0. 7000 -0. 2328)

Vertex 242) (-0 1097, 0. 6999 -0. 2327)

Vertex 243) ( o 2517, 0. 6983, -0. 0347)

Vertex 244) (-0 2519, 0. 6979, -0. 0345)

Vertex 245) ( o 0457, 0. 6951, 0. 3460)

Vertex 246) (-0 0455 0. 6951 0 3460)

Vertex 247) ( o 0311 0. 6933 0 3880)

Vertex 248) (-0 0309 0. 6933 0 3880)

Vertex 249) ( o 2277 0. 6920 0 2116)

Vertex 250) (-0 2277 0. 6917 0 2118)

Vertex 251) ( o 0534 0 6915 0 3354)

Vertex 252) (-0 0532 0 6914 0 3354)

Vertex 253) ( o 0001 0 6878 0 4153)

Vertex 254) ( o 2568 0. 6859 -0 0508)

Vertex 255) (-0 2570 0. 6855 -0 0505)

Vertex 256) ( o 0734 0 6853 0 3248)

Vertex 257) (-0 0733 0 6852 0 3249)

Vertex 258) ( o 0588 0 6842 0 3412)

Vertex 259) (-0 0587 0 6841 0 3413)

Vertex 260) ( o 0140 0 6823 0 4135)

Vertex 261) (-0 0137 0 6823 0 4135)

Vertex 262) ( o 0446 0 6813 0 3671)

Vertex 263) (-0 0444 0 6812 0 3672)

Vertex 264) ( o 0676 0 6806 0 3288)

Vertex 265) (-o 0674 0 6805 0 3289)

Vertex 266) ( o 0001 0 6721 0 4256)

Vertex 267) ( o 0180 0 6714 0 4226)

Vertex 268) (-o 0177 0 6714 , o 4226)

Vertex 269) ( o 0377 0 6685 r 0 4058)

Vertex 270) (-0 0375 0 6684 0 4059)

Vertex 271) ( o 2342 0 6680 -0 0479)

Vertex 272) (-o 2344 , o 6676 , -o 0476)

Vertex 273) ( o 0468 . o 6667 , o 3774)

Vertex 274) (-0 0466 , o 6666 r 0 3774)

Vertex 275) ( o 1993 0 6657 , 0 2580)

Vertex 276) (-0 1992 r 0 6654 0 2582)

Vertex 277) ( o 0672 , o 6638 r 0 3379)

Vertex 278) (-0 0670 r 0 6637 r 0 3380)

Vertex 279) ( o 0753 r 0 6594 r 0 3244)

Vertex 280) (-0 0751 , 0 6593 , o 3245)

Vertex 281) ( o 2670 0 6589 -0 0574)

Vertex 282) (-0 2672 , o 6585 r -0 0571)

Vertex 283) ( o 2408 r 0 6570 r -0 0161)

Vertex 284) ( o 2324 . o 6570 r -0 0442)

Vertex 285) (-o 2325 . o 6567 r -0 0440)

Vertex 286) (-0 2409 r 0 6567 . -o 0159)

Vertex 287) ( o 0250 r 0 6561 , o 3938)

Vertex 288) (-0 0247 r 0 6560 r 0 3938)

Vertex 289) ( o 0133 r 0 6557 , o 4204)

Vertex 290) (-0 0130 r 0 6557 t 0 4204)

Vertex 291) ( o 0333 . o 6553 , o 4055)

Vertex 292) (-0 .0331 . o 6553 . o 4055)

Vertex 293) ( o .0166 , 0 6550 , o 3993)

Vertex 294) ( o 0002 , o 6550 , o 4226)

Vertex 295) (-0 0163 , o 6549 , o 3993)

Vertex 296) ( o 2491 r 0 6545 r -0 0625)

Vertex 297) ( o .0319 . o .6543 , o 3766)

Vertex 298) (-o .0316 , o 6542 . o 3767)

Vertex 299) (-0 2493 . o 6541 r -0 0622)

Vertex 300) ( o 0308 , o 6535 . o 4036) Vertex 301) (-0 0305 0 6535 0 4037)

Vertex 302) ( o 2299 0 6533 0 1824)

Vertex 303) ( o 0428 0 6532 0 3799)

Vertex 304) (-0 0426 0 6531 0 3800)

Vertex 305) (-0 2299 0 6530 0 1826)

Vertex 306) ( o 1373 0 6529 0 3029)

Vertex 307) (-0 1371 0 6527 0 3030)

Vertex 308) ( o 0370 0 6513 0 3777)

Vertex 309) (-0 0367 0 6513 0 3778)

Vertex 310) ( o 0155 0 6510 0 3825)

Vertex 311) (-0 0152 0 6509 0 3825)

Vertex 312) ( o 0888 0 6507 0 3160)

Vertex 313) ( o 0093 0 6506 0 4124)

Vertex 314) (-0 0090 0 6506 0 4124)

Vertex 315) (-0 0886 0 6505 0 3161)

Vertex 316) ( o 0002 0 6498 0 4175)

Vertex 317) ( o 2185 0 6479 -0 0570)

Vertex 318) (-0 2187 0 6476 -0 0568)

Vertex 319) ( o 0085 0 6458 0 3894)

Vertex 320) (-0 0083 0 6458 0 3894)

Vertex 321) ( o 0377 0 6455 0 3631)

Vertex 322) (-0 0375 0 6455 0 3632)

Vertex 323) ( o 0001 0 6436 0 3931)

Vertex 324) ( o 0687 0 6433 0 3306)

Vertex 325) ( o 0629 0 6433 0 3438)

Vertex 326) (-0 0626 0 6432 0 3438)

Vertex 327) (-0 0685 0 6432 0 3307)

Vertex 328) ( o 0173 0 6426 0 3642)

Vertex 329) (-0 0170 0 6425 0 3643)

Vertex 330) ( o 0461 0 6386 0 3584)

Vertex 331) (-0 0458 0 6385 0 3584)

Vertex 332) ( o 2419 0 6373 r -0 0001)

Vertex 333) ( o 2390 0 6373 0 0875)

Vertex 334) ( o 2336 0 6373 0 1459)

Vertex 335) (-0 2335 0 6370 0 1461)

Vertex 336) (-0 2390 0 6370 0 0878)

Vertex 337) (-0 2420 0 6370 0 0002)

Vertex 338) ( o 0140 0 6349 0 3642)

Vertex 339) (-0 0137 0 6349 0 3642)

Vertex 340) ( o 0001 0 6338 0 3646)

Vertex 341) ( o 0509 , o 6324 r 0 .3485)

Vertex 342) (-0 0506 0 6323 0 3486)

Vertex 343) ( o 1458 0 6292 -0 1380)

Vertex 344) (-0 1461 0 6290 -0 1378)

Vertex 345) ( o 0147 0 6283 0 3639)

Vertex 346) ( o 0001 0 6283 0 3642)

Vertex 347) (-0 0002 0 6284 -0 1952)

Vertex 348) (-0 0145 0 6283 0 3639)

Vertex 349) ( o 0874 0 6281 -0 1814)

Vertex 350) (-0 0877 0 6280 -0 1813)

Vertex 351) ( o 2525 0 6224 -0 0231)

Vertex 352) (-o 2526 0 6220 -0 0228)

Vertex 353) ( o 2572 0 6216 -0 0450)

Vertex 354) (-0 2573 0 6213 -0 0447)

Vertex 355) ( o 2459 0 6162 -0 0176)

Vertex 356) (-0 2460 0 6158 -0 0173)

Vertex 357) ( o 2382 0 6158 -0 0471)

Vertex 358) (-0 2384 0 6155 -0 0469)

Vertex 359) ( o 2084 0 6095 0 2189)

Vertex 360) (-0 2083 0 6092 0 2191)

Vertex 361) ( o 1933 0 6088 -0 0701)

Vertex 362) (-o 1935 0 6086 -0 0699) Vertex 363) ( o.0607, 0 6043 0.3423)

Vertex 364) (-o. 0604, 0 6042 0. 3424)

Vertex 365) ( o. 0210, 0. 6024, 0. 3620)

Vertex 366) ( o. 0002, 0. 6024, 0. 3620)

Vertex 367) (-o. 0206, 0. 6024, 0. 3621)

Vertex 368) ( o 2208 0 5975 -0 0001)

Vertex 369) (-0 2208, 0 5972 0 0002)

Vertex 370) ( o 1034, 0 5967 0 2996)

Vertex 371) (-0 1031, 0 5965 0 2997)

Vertex 372) ( o 1519, 0 5931 0 2740)

Vertex 373) (-0 1517, 0 5928 0 2742)

Vertex 374) ( o 0221, 0 5674 0 3668)

Vertex 375) (-0 0217 0 5674 0 3668)

Vertex 376) ( o 0002 0 5648 0 3671)

Vertex 377) ( o 0636 0 5612 0 3423)

Vertex 378) (-0 0634 0 5612 0 3424)

Vertex 379) ( o 2054 0 5584 -0 0000)

Vertex 380) (-0 2055 0 5583 0 0001)

Vertex 381) ( o 2299 0 5577 0 0321)

Vertex 382) (-0 2299 0 5575 0 0323)

Vertex 383) ( o 0209 0 5532 0 3507)

Vertex 384) (-0 0207 0 5531 0 3507)

Vertex 385) ( o 0001 0 5524 0 3529)

Vertex 386) ( o 0560 0 5517 0 3332)

Vertex 387) (-0 0557 0 5517 0 3332)

Vertex 388) ( o 0202 0 5484 0 3511)

Vertex 389) ( o 0001 0 5488 , o 3529)

Vertex 390) (-0 0199 0 5484 0 3511)

Vertex 391) ( o 2256 0 5474 0 0875)

Vertex 392) ( o 1081 0 5473 0 2883)

Vertex 393) ( o 0979 0 5473 0 2938)

Vertex 394) (-0 0977 0 5473 0 2938)

Vertex 395) (-0 1079 0 5473 r 0 2884)

Vertex 396) (-o 2255 0 5473 0 0877)

Vertex 397) ( o 0563 0 5437 r 0 3328)

Vertex 398) (-0 0561 0 5436 0 3329)

Vertex 399) ( o 0224 0 5422 0 3507)

Vertex 400) ( o 0001 0 5426 0 3529)

Vertex 401) (-0 0221 0 5422 0 3507)

Vertex 402) ( o 2081 0 5401 r 0 1496)

Vertex 403) (-0 2080 0 5400 0 1497)

Vertex 404) ( o 1526 0 5379 r 0 2510)

Vertex 405) (-0 1524 0 5378 , o 2512)

Vertex 406) ( o 0654 0 5312 0 3354)

Vertex 407) (-0 0652 0 5312 0 3354)

Vertex 408) ( o .0001 , o 5280 r 0 3606)

Vertex 409) ( o .0275 , o 5272 , o 3591)

Vertex 410) (-0 0272 0 5272 r 0 3591)

Vertex 411) ( o 0647 0 5177 , o 3186)

Vertex 412) (-0 0645 0 5177 r 0 3183)

Vertex 413) ( o 0001 0 5108 , o 3423)

Vertex 414) ( o 0253 0 5097 , o 3368)

Vertex 415) (-0 .0251 r 0 5097 , o 3369)

Vertex 416) ( o .2007 , o 5076 , o 0547)

Vertex 417) (-0 .2007 0 5076 r 0 0548)

Vertex 418) ( o .0898 , o 5010 r 0 2857)

Vertex 419) (-0 .0897 0 5010 r 0 2858)

Vertex 420) ( o 0172 0 4929 r 0 3365)

Vertex 421) (-0 .0171 , o 4929 , o 3365)

Vertex 422) ( o .0001 , o 4922 r 0 3416)

Vertex 423) ( o .0617 , o 4802 r 0 3182)

Vertex 424) (-0 .0616 r 0 4802 , o 3183) Vertex 425) ( o 1813 0 4798 0 0875)

Vertex 426) (-0 1814 0 4799 ' 0 0877)

Vertex 427) ( o 0336 0 4736 0 3346)

Vertex 428) (-0 0336 0 4736 0 3347)

Vertex 429) ( o 0000 0 4725 0 3409)

Vertex 430) ( o 1725 0 4707 0 0474)

Vertex 431) (-0 1727 0 4707 0 0475)

Vertex 432) ( o 1569 0 4649 0 1569)

Vertex 433) ( o 1248 0 4648 0 2350)

Vertex 434) (-0 1248 0 4649 0 2351)

Vertex 435) (-0 1570 0 4649 0 1570)

Vertex 436) ( o 0782 0 4345 0 2970)

Vertex 437) (-0 0780 0 4345 0 2971)

Vertex 438) ( o 0373 0 4276 0 3226)

Vertex 439) (-0 0371 0 4276 0 3226)

Vertex 440) ( o 0001 0 4272 0 3303)

Vertex 441) ( o 1208 0 4233 0 0875)

Vertex 442) (-0 1208 0 4233 0 0876)

Vertex 443) ( o 1055 0 4123 0 1715)

Vertex 444) (-0 1054 0 4123 0 1716)

Vertex 445) ( o 0691 0 4108 0 2686)

Vertex 446) (-0 0689 0 4108 0 2686)

Vertex 447) ( o 0899 0 4068 r 0 2332)

Vertex 448) (-0 0897 0 4068 , 0 2332)

Vertex 449) ( o 0355 0 3948 0 2854)

Vertex 450) (-0 0353 0 3948 , 0 2854)

Vertex 451) ( o 0464 0 3915 0 1383)

Vertex 452) (-0 0463 0 3915 0 1383)

Vertex 453) ( o 0377 0 3890 0 1854)

Vertex 454) (-0 0375 0 3890 0 1854)

Vertex 455) ( o 0001 0 3882 0 2897)

Vertex 456) ( o 0362 r 0 3871 , o 2372)

Vertex 457) (-0 0360 0 3871 r 0 2372)

Vertex 458) ( o 0001 0 3846 r 0 1576)

Vertex 459) ( o 0001 0 3806 r 0 2018)

Vertex 460) ( o 0001 0 3798 r 0 2452)

Vertex 461) ( o 2036 0 2748 -0 0001)

Vertex 462) (-0 0876 0 3558 -0 1635)

Vertex 463) (-o 1311 0 3558 -0 1394)

Vertex 464) (-0 1730 0 3558 -0 0802)

Vertex 465) (-0 1865 r 0 3394 r 0 0001)

Vertex 466) (-0 2036 0 2748 r 0 0001)

Vertex 467) (-0 0397 0 3354 , o 1420)

Vertex 468) (-o 1529 0 3102 r 0 0475)

Vertex 469) ( o 0001 0 2737 , o 1474)

Vertex 470) ( o 1926 0 2693 -0 1114)

Vertex 471) (-0 1047 0 3638 0 0858)

Vertex 472) ( o 0398 0 3354 0 1419)

Vertex 473) (-0 1032 0 2927 0 0913)

Vertex 474) (-0 0375 0 2770 r 0 1358)

Vertex 475) ( o 1283 0 4708 , -o 1314)

Vertex 476) (-0 1286 0 4708 , -o 1313)

Vertex 477) ( o 0874 0 4697 , -o 1620)

Vertex 478) (-0 0877 0 4697 -0 1620)

Vertex 479) (-0 0002 0 4690 -0 1700)

Vertex 480) ( o 1729 0 4594 -0 0697)

Vertex 481) (-0 1731 0 4595 -0 0696)

Vertex 482) ( o 1883 0 4350 -0 0001)

Vertex 483) (-0 1883 0 4350 , o 0001)

Vertex 484) ( o 1504 0 3868 , o 0474)

Vertex 485) (-0 1503 0 3868 0 0475)

Vertex 486) ( o 1048 0 3638 0 0857) Vertex 487) ( o.1729, 0.3558, -0.0803)

Vertex 488) ( o. 1273, 0. 3558, -0. 1394)

Vertex 489) ( o. 0872, 0. 3558, -0. 1635)

Vertex 490) (-0 0001 0 3558, -0. 1781)

Vertex 491) ( o 1865 0 3394, -0. 0001)

Vertex 492) ( o 0001 0 3317, 0. 1562)

Vertex 493) ( o. 1529 0 3102, 0. 0474)

Vertex 494) ( o 1033, 0. 2927, 0. 0912)

Vertex 495) ( o. 0380, 0. 2770, 0. 1357)

Vertex 496) (-o 1927 0 2693 -0 1112)

Vertex 497) ( o 1496 0 2558 -0 1730)

Vertex 498) (-0 1496 0 2558 -0 1730)

Vertex 499) ( o 0872 0 2438, -0 1985)

Vertex 500) (-0 0872 0 2438 -0 1989)

Vertex 501) (-0 0000 0 2390 -0 2208)

Vertex 502) ( o 1617 0 2175 0 0657)

Vertex 503) (-0 1617 0 2175 0 0657)

Vertex 504) ( o 6368 0 2055 -0 0002)

Vertex 505) (-0 6368 0 2054 -0 0001)

Vertex 506) ( o 3459 0 2025 -0 0000)

Vertex 507) (-0 3459 0 2025 0 0000)

Vertex 508) ( o 7514 0 1992 -0 0001)

Vertex 509) (-0 7514 0 1992 -0 0001)

Vertex 510) ( o 4875 0 1850 -0 0002)

Vertex 511) (-0 4875 0 1850 -0 0001)

Vertex 512) ( o 1091 0 1817 0 1201)

Vertex 513) (-0 1091 0 1817 0 1201)

Vertex 514) ( o 3627 0 1678 -0 1895)

Vertex 515) (-0 3627 0 1679 -0 1894)

Vertex 516) ( o 0380 0 1638 0 1620)

Vertex 517) (-0 0376 0 1638 0 1620)

Vertex 518) (-0 0000 0 1631 0 1646)

Vertex 519) ( o 6368 0 1552 0 1425)

Vertex 520) ( o 6368 , o 1550 -0 1673)

Vertex 521) (-0 6368 , o 1551 0 1426)

Vertex 522) (-0 6368 r 0 1551 -0 1672)

Vertex 523) ( o 7513 r 0 1457 0 1426)

Vertex 524) ( o 7515 0 1455 -0 1625)

Vertex 525) (-0 7514 r 0 1456 , o 1426)

Vertex 526) (-0 7514 r 0 1456 r -0 1624)

Vertex 527) ( o 9846 . o 1390 0 0001)

Vertex 528) (-o 9846 , o 1390 , -o 0000)

Vertex 529) ( o 5021 , o 1384 , o 1440)

Vertex 530) ( o 5021 0 1382 -0 1786)

Vertex 531) (-o 5021 r 0 1383 , o 1441)

Vertex 532) (-0 5021 , o 1383 r -0 1785)

Vertex 533) ( 1 8728 r 0 1350 r 0 0006)

Vertex 534) (-1 8728 , o 1350 r 0 0003)

Vertex 535) ( 1 2820 , o 1215 r 0 0002)

Vertex 536) (-1 2820 , o 1215 -0 0000)

Vertex 537) ( 1 4857 , o 1156 r 0 0003)

Vertex 538) (-1 4853 o 1151 r 0 0000)

Vertex 539) ( 1 6484 , o 1143 r 0 0005)

Vertex 540) (-1 6482 . o 1141 , o 0001)

Vertex 541) ( o 3456 r 0 1139 . o 1456)

Vertex 542) (-0 3456 0 1139 0 1456)

Vertex 543) ( o 9845 r 0 .1019 , o .1004)

Vertex 544) ( o 9846 r 0 .1017 , -o 1620)

Vertex 545) (-o 9846 r 0 1018 r 0 1003)

Vertex 546) (-0 9846 r 0 1018 , -o 1620)

Vertex 547) ( 1 8729 r 0 0993 . -o 1285)

Vertex 548) (-1 .8729 r 0 .0993 . -o .1289) Vertex 549) ( 2.1778, 0.0989, 0.0008)

Vertex 550) ( 1. 8727, 0 0989, 0 0937)

Vertex 551) (-1. 8727, 0 0989, 0 0933)

Vertex 552) (-2. 1778, 0 0989, 0. 0005)

Vertex 553) ( o. 2175, 0 0971, -0. 2606)

Vertex 554) (-0. 2182, 0 0971, -0. 2605)

Vertex 555) ( o 1901, 0 0956, 0 2073)

Vertex 556) (-0 1901, 0 0956, 0 2073)

Vertex 557) ( 1 2819, 0 0909, 0 0977)

Vertex 558) (-1. 2820, 0 0909, 0 0974)

Vertex 559) ( 1 2820, 0 0905, -0 1257)

Vertex 560) (-1. 2820, 0 0905, -0 1259)

Vertex 561) ( o 0876 0 0865 -0 2795)

Vertex 562) (-0 0876 0 0865 -0 2795)

Vertex 563) ( o 0872 0 0854 0 2511)

Vertex 564) (-0 0872, 0 0854 0 2511)

Vertex 565) (-0 0000, 0 0817 -0 2905)

Vertex 566) ( 1 4795 0 0813 0 0726)

Vertex 567) (-1 4791 0 0808 0 0723)

Vertex 568) ( 1 6491 0 0767 0 0775)

Vertex 569) ( o 0000 0 0766 0 2492)

Vertex 570) (-1 6489 0 0765 0 0771)

Vertex 571) ( 1 5478 0 0765 -0 1266)

Vertex 572) (-1 5474 0 0761 -0 1270)

Vertex 573) ( 2 1779 0 0730 -0 0886)

Vertex 574) (-2 1779 0 0730 -0 0889)

Vertex 575) ( 2 1778 0 0722 0 0745)

Vertex 576) (-2 1778 0 0722 0 0742)

Vertex 577) ( 1 5868 0 0710 -0 1248)

Vertex 578) (-1 5865 0 0707 -0 1251)

Vertex 579) ( 2 4447 0 0659 0 0007)

Vertex 580) (-2 4450 0 0660 0 0006)

Vertex 581) (-2 4975 0 0617 0 0007)

Vertex 582) (-2 5333 0 0617 0 0007)

Vertex 583) (-2 5749 0 0609 0 0008)

Vertex 584) ( 2 5329 0 0604 0 0005)

Vertex 585) ( 2 4970 0 0603 0 0005)

Vertex 586) ( 2 5749 0 0599 0 0010)

Vertex 587) (-2 6351 0 .0598 , o 0008)

Vertex 588) ( 2 6351 , o 0588 0 0010)

Vertex 589) (-2 7424 0 0566 0 0009)

Vertex 590) ( 2 7424 0 0555 0 0011)

Vertex 591) (-2 6198 0 0544 -0 0328)

Vertex 592) (-2 6271 , o .0544 r -0 0160)

Vertex 593) ( 2 6271 , o .0533 , -o 0158)

Vertex 594) ( 2 6198 0 0533 -0 0325)

Vertex 595) (-2 5840 0 0533 0 0205)

Vertex 596) (-2 5330 0 0526 -0 0518)

Vertex 597) ( 2 .5840 , o .0522 r 0 0207)

Vertex 598) (-2 5658 r 0 .0518 , -o 0368)

Vertex 599) ( 2 5325 r 0 .0512 , -o 0520)

Vertex 600) (-2 5329 , o 0514 r 0 0361)

Vertex 601) ( 2 5658 . o 0507 -0 0366)

Vertex 602) ( 2 .5325 . o .0502 . o 0359)

Vertex 603) (-2 .7344 , o .0500 , -o 0550)

Vertex 604) ( 2 .7344 r 0 .0489 r -0 0547)

Vertex 605) (-2 .5982 r 0 .0478 , 0 0438)

Vertex 606) (-2 .6136 . o 0478 -0 0532)

Vertex 607) (-2 .7873 . o .0478 . o 0009)

Vertex 608) ( 2 .4447 . o .0473 r 0 0624)

Vertex 609) (-2 .4449 , o .0474 r 0 0623)

Vertex 610) (-2 .4976 , o .0475 , -o 0719) Vertex 611) (-2 6708 0 0474 0 0519)

Vertex 612) ( 2 7873 , 0 0467 , o 0011)

Vertex 613) ( 2 6136 , o 0467 , -o 0530)

Vertex 614) ( 2 5982 , o 0467 r 0 0441)

Vertex 615) ( 2 4448 r 0 0466 . -0 0745)

Vertex 616) (-2 4450 r 0 0467 r -0 0745)

Vertex 617) ( 2 6708 , 0 0464 , o 0522)

Vertex 618) ( 2 4971 0 0461 . -o 0722)

Vertex 619) (-2 7814 0 0459 , o 0648)

Vertex 620) (-2 4975 0 0452 0 0602)

Vertex 621) (-2 6511 0 0452 r 0 0271)

Vertex 622) ( 2 7814 0 0449 r 0 0650)

Vertex 623) (-2 7756 0 0445 r -0 0604)

Vertex 624) ( 2 6511 0 0442 0 0273)

Vertex 625) ( 2 4970 0 0439 0 0599)

Vertex 626) ( 2 7756 0 0434 -0 0602)

Vertex 627) (-2 6056 0 0431 -0 0853)

Vertex 628) (-2 7453 0 0430 0 0618)

Vertex 629) ( 2 7453 0 0420 0 0621)

Vertex 630) ( 2 6056 0 0419 -0 0851)

Vertex 631) (-2 7391 0 0416 -0 0250)

Vertex 632) (-2 7445 0 0412 0 0363)

Vertex 633) ( 2 7391 0 0405 -0 0248)

Vertex 634) ( 2 7445 0 0402 0 0365)

Vertex 635) (-2 8077 0 0394 r 0 0009)

Vertex 636) (-2 7213 , 0 0391 r -0 1141)

Vertex 637) ( 2 8077 0 0383 r 0 0012)

Vertex 638) (-2 8011 0 0383 , o 0659)

Vertex 639) ( 2 7213 0 0379 , -o 1138)

Vertex 640) ( 2 8011 0 0373 , o 0661)

Vertex 641) (-2 7785 0 0372 -0 0276)

Vertex 642) (-2 5734 0 0364 , o 0686)

Vertex 643) (-2 7942 0 0365 -0 0619)

Vertex 644) ( 2 7785 0 0361 -0 0273)

Vertex 645) (-2 7531 0 0362 -0 1203)

Vertex 646) ( 2 7942 0 0354 -0 0616)

Vertex 647) ( 2 5734 0 0354 0 0689)

Vertex 648) ( 2 7530 0 0350 -0 1200)

Vertex 649) (-2 7763 0 0339 0 0370)

Vertex 650) (-2 7289 0 0333 -0 0845)

Vertex 651) ( 2 7763 0 0329 0 0373)

Vertex 652) ( 2 7289 0 0321 -0 0843)

Vertex 653) (-2 7720 0 0311 -0 1217)

Vertex 654) (-2 5990 0 0307 -0 1069)

Vertex 655) ( 2 7720 0 0299 -0 1215)

Vertex 656) ( 2 5990 0 0295 -0 1066)

Vertex 657) (-2 8158 0 0296 -0 1257)

Vertex 658) (-2 6931 0 0291 0 0793)

Vertex 659) (-2 7570 0 0292 -0 0900)

Vertex 660) (-2 8843 0 0288 0 0699)

Vertex 661) ( 2 8158 0 0284 -0 1255)

Vertex 662) ( 2 7570 0 0281 -0 0897)

Vertex 663) ( 2 6931 0 0281 0 0795)

Vertex 664) (-2 7737 0 0280 0 0877)

Vertex 665) (-2 8873 0 0281 0 0010)

Vertex 666) (-2 9672 0 0281 0 0010)

Vertex 667) ( 2 8843 0 0278 0 0702)

Vertex 668) ( 2 9672 0 0270 0 0012)

Vertex 669) ( 2 8873 0 0270 0 0012)

Vertex 670) ( 2 7737 0 0271, 0 0880)

Vertex 671) (-2 8091 0 0270, 0. 0261)

Vertex 672) (-2 8567 0 0270, -0. 0673) Vertex 673) (-3 0376 0 0270 0 0011)

Vertex 674) (-2 8282 0 0267 -0 1268)

Vertex 675) (-2 9088 0 0266 0 0010)

Vertex 676) (-2 7434 0 0262 0 0848)

Vertex 677) (-2 8066 0 0263 -0 0184)

Vertex 678) (-2 9883 0 0263 0 0010)

Vertex 679) ( 3 0376 0 0260 0 0013)

Vertex 680) ( 2 8566 0 0259 -0 0667)

Vertex 681) ( 2 8091 0 0259 0 0263)

Vertex 682) (-2 8731 0 0259 -0 0687)

Vertex 683) (-2 9018 0 0258 0 0707)

Vertex 684) ( 2 9088 0 0256 0 0012)

Vertex 685) ( 2 8282 0 0255 -0 1266)

Vertex 686) (-2 8012 0 0256 -0 0396)

Vertex 687) (-2 8173 0 0256 -0 1082)

Vertex 688) ( 2 9883 0 0252 0 0013)

Vertex 689) ( 2 8066 0 0252 -0 0182)

Vertex 690) ( 2 7434 0 0252 0 0850)

Vertex 691) (-2 8066 0 0251 0 0483)

Vertex 692) (-2 9587 0 0251 0 0736)

Vertex 693) ( 2 9018 0 0249 0 0709)

Vertex 694) ( 2 8731 0 0248 -0 0681)

Vertex 695) (-2 7877 0 0249 -0 0838)

Vertex 696) ( 2 8173 0 0244 -0 1079)

Vertex 697) ( 2 8012 0 0244 -0 0394)

Vertex 698) (-2 7945 0 0244 0 0874)

Vertex 699) (-2 8793 0 0245 -0 1315)

Vertex 700) (-2 9450 0 0245 -0 0745)

Vertex 701) (-3 0916 0 0244 0 0011)

Vertex 702) ( 2 9588 0 0241 0 0739)

Vertex 703) ( 2 8066 0 0241 0 0486)

Vertex 704) (-2 7789 0 0241 -0 1024)

Vertex 705) ( 2 7877 0 0237 -0 0835)

Vertex 706) ( 3 0916 0 0234 0 0013)

Vertex 707) ( 2 9449 0 0234 -0 0743)

Vertex 708) ( 2 8793 0 0233 -0 1313)

Vertex 709) ( 2 7945 0 0234 0 0876)

Vertex 710) ( 2 7789 0 0230 -0 1021)

Vertex 711) (-2 8914 0 0231 -0 1326)

Vertex 712) (-2 9777 0 0229 0 0747)

Vertex 713) ( 2 9777 0 0219 0 0750)

Vertex 714) ( 2 8914 0 0218 , -o 1324)

Vertex 715) (-2 7454 0 0216 -0 1356)

Vertex 716) (-2 9264 0 0216 -0 1358)

Vertex 717) (-2 9672 0 0215 0 0182)

Vertex 718) (-3 0222 0 0215 0 0766)

Vertex 719) (-2 8297 0 0212 -0 1096)

Vertex 720) (-2 9603 0 0208 -0 0760)

Vertex 721) (-3 0376 0 0208 -0 0157)

Vertex 722) ( 3 0222 0 0204 0 0768)

Vertex 723) ( 2 9672 0 0205 0 0184)

Vertex 724) ( 2 9264 0 0203 -0 1356)

Vertex 725) ( 2 7454 0 0204 -0 1354)

Vertex 726) (-2 9672 0 0204 -0 0176)

Vertex 727) (-2 9880 0 0204 -0 0172)

Vertex 728) ( 2 8297 0 0200 -0 1094)

Vertex 729) (-2 7151 0 0201 -0 1298)

Vertex 730) ( 3 0376 0 0197 -0 0155)

Vertex 731) ( 2 9603 0 0197 -0 0757)

Vertex 732) (-2 8268 0 0198 -0 1403)

Vertex 733) (-2 8835 0 0196 0 0918)

Vertex 734) (-2 9883 0 0197 0 0175) Vertex 735) (-3 0092 0 0197 -0 0803)

Vertex 736) (-3 0376 0 0197 0 0157)

Vertex 737) ( 2 9880, 0 0194, -0 0170)

Vertex 738) ( 2 9672 0 0194 -0 0174)

Vertex 739) (-3 0847 0 0193 -0 0113)

Vertex 740) (-3 0850 0 0193 0 0113)

Vertex 741) ( 2 7151 0 0189 -0 1295)

Vertex 742) (-2 8808 0 0190 -0 1162)

Vertex 743) (-2 8872 0 0189 0 0225)

Vertex 744) (-3 0704 0 0190 0 0792)

Vertex 745) ( 3 0376 0 0187 0 0159)

Vertex 746) ( 3 0092 0 0186 -0 0801)

Vertex 747) ( 2 9883 0 0187 0 0177)

Vertex 748) ( 2 8836 0 0187 0 0921)

Vertex 749) ( 2 8268 0 0186 -0 1401)

Vertex 750) ( 3 0850 0 0183 0 0115)

Vertex 751) ( 3 0847 0 0183 -0 0111)

Vertex 752) (-2 7655 0 0183 -0 1363)

Vertex 753) (-2 9088 0 0182 0 0214)

Vertex 754) (-3 0563 0 0183 -0 0843)

Vertex 755) ( 3 0704 0 0178 0 0794)

Vertex 756) ( 2 8872 0 0179 0 0227)

Vertex 757) ( 2 8808 0 0178 -0 1159)

Vertex 758) (-2 8585 0 0179 -0 0469)

Vertex 759) (-2 9088 0 0179 -0 0176)

Vertex 760) (-2 9669 0 0180 -0 1395)

Vertex 761) (-2 6544 0 0175 0 0866)

Vertex 762) (-2 8749 0 0175 -0 0483)

Vertex 763) (-2 9275 0 0176 -0 1231)

Vertex 764) (-2 9629 0 0176 -0 1307)

Vertex 765) ( 3 0563 0 0172 -0 0841)

Vertex 766) ( 2 9088 0 0172 0 0217)

Vertex 767) ( 2 7655 0 0171 -0 1361)

Vertex 768) (-2 8144 0 0172 -0 1399)

Vertex 769) (-2 8782 0 0172 -0 1435)

Vertex 770) (-2 8925 0 0172 -0 1180)

Vertex 771) (-2 9011 0 0171 0 0926)

Vertex 772) ( 2 9669 0 0166 -0 1392)

Vertex 773) ( 2 9088 , o 0168 r -0 0174)

Vertex 774) ( 2 8585 , o 0168 -0 0466)

Vertex 775) (-2 8552 0 0168 -0 0859)

Vertex 776) (-2 8716 0 0168 -0 0866)

Vertex 777) ( 2 9629 0 0163 -0 1305)

Vertex 778) ( 2 9275 0 0163 -0 1228)

Vertex 779) ( 2 8749 , o 0164 , -0 0481)

Vertex 780) ( 2 6544 0 0165 , o 0868)

Vertex 781) (-2 8903 0 0165 -0 1446)

Vertex 782) ( 2 9011 0 0161 0 0928)

Vertex 783) ( 2 8924 0 0160 -0 1178)

Vertex 784) ( 2 8782 0 0160 -0 1433)

Vertex 785) ( 2 8144 r 0 0160 , -o 1397)

Vertex 786) (-2 9595 , o 0160 r 0 0576)

Vertex 787) ( 2 8716 0 0157 , -o 0864)

Vertex 788) ( 2 8552 0 0157 -0 0857)

Vertex 789) (-2 8876 0 0157 -0 0173)

Vertex 790) (-2 9464 0 0157 -0 0563)

Vertex 791) ( 2 8903 r 0 0152 , -o 1444)

Vertex 792) (-2 9253 , o 0154 -0 1461)

Vertex 793) (-2 9617 , 0 0153 -0 0577)

Vertex 794) (-2 9784 0 0153 0 0587)

Vertex 795) (-3 0222 0 0153 0 0613)

Vertex 796) ( 2 9595 r 0 0150 r 0 0578) Vertex 797) (-2 8847 0 0149 0 0535)

Vertex 798) (-2 9580 0 0149 0 0937)

Vertex 799) (-3 0110 0 0150 -0 0632)

Vertex 800) ( 2 9464 0 0146 -0 0560)

Vertex 801) ( 2 8876 0 0146 -0 0170)

Vertex 802) (-3 0512 0 0146 -0 0715)

Vertex 803) (-3 0664 0 0146 0 0671)

Vertex 804) ( 3 0223 0 0142 0 0615)

Vertex 805) ( 2 9785 0 0142 0 0589)

Vertex 806) ( 2 9617 0 0143 -0 0575)

Vertex 807) ( 2 9253 0 0141 -0 1458)

Vertex 808) (-2 9022 0 0142 0 0546)

Vertex 809) (-2 9592 0 0142 -0 0902)

Vertex 810) ( 3 0110 0 0139 -0 0629)

Vertex 811) ( 2 9580 0 0139 0 0939)

Vertex 812) ( 2 8847 0 0139 0 0538)

Vertex 813) (-2 9614 0 0140 -0 1475)

Vertex 814) (-2 9770 0 0138 0 0937)

Vertex 815) ( 3 0664 0 0134 0 0674)

Vertex 816) ( 3 0511 0 0135 -0 0713)

Vertex 817) (-2 9435 0 0135 -0 0899)

Vertex 818) (-3 0085 0 0135 -0 0927)

Vertex 819) (-3 0215 0 0134 0 0930)

Vertex 820) ( 2 9592 0 0131 -0 0900)

Vertex 821) ( 2 9022 0 0132 0 0549)

Vertex 822) (-3 0631 0 0131 0 0894)

Vertex 823) ( 2 9770 0 0128 , o 0940)

Vertex 824) ' ( 2 9614 r 0 0126 -0 1473)

Vertex 825) (-3 0490 0 0128 r -0 0942)

Vertex 826) ( 3 0215 0 0124 0 0932)

Vertex 827) ( 3 0085 0 0124 -0 0925)

Vertex 828) ( 2 9435 0 0124 -0 0896)

Vertex 829) ( 3 0631 , o 0120 . o 0896)

Vertex 830) ( 3 0490 , o 0117 , -o 0939)

Vertex 831) (-2 6259 0 0080 r 0 1070)

Vertex 832) ( 2 6259 0 0070 r 0 1072)

Vertex 833) ( 2 4447 -0 0001 , o 0883)

Vertex 834) ( 2 4448 -0 0001 -0 1011)

Vertex 835) ( 2 1782 -0 0000 0 1022)

Vertex 836) ( 2 1783 , o .0000 , -o 1185)

Vertex 837) ( 1 8727 -0 0000 r 0 1415)

Vertex 838) ( 1 8729 0 0000 r -0 1632)

Vertex 839) ( 1 6312 0 0001 0 1125)

Vertex 840) ( 1 5785 0 0002 -0 1467)

Vertex 841) ( 1 5595 0 0002 -0 1503)

Vertex 842) ( 1 4937 r 0 0003 . o 1102)

Vertex 843) ( 1 2819 , o 0001 , o 1539)

Vertex 844) ( 1 2821 r -0 0001 r -0 1632)

Vertex 845) ( o 9848 r 0 0001 r 0 1545)

Vertex 846) ( o 9850 -0 0001 -0 2090)

Vertex 847) ( o 7513 0 0001 0 2065)

Vertex 848) ( o 7515 -0 0001 -0 2274)

Vertex 849) ( o 6368 r 0 .0001 r 0 2035)

Vertex 850) ( o 6368 , -o 0001 , -o 2303)

Vertex 851) ( o 5386 0 0001 0 2090)

Vertex 852) ( o 5382 -0 0002 -0 2409)

Vertex 853) ( o 4014 -0 0000 -0 2795)

Vertex 854) ( o 3456 0 0000 0 2547)

Vertex 855) ( o 2182 , o 0000 , o 2839)

Vertex 856) ( o 2182 -0 0000 -0 2949)

Vertex 857) ( o 0872 0 0000 , o 3098)

Vertex 858) ( o 0872 -0 0000 -0 3105) Vertex 859) ( o 0000 0 0000 0 2996)

Vertex 860) (-0 0000 -0 0000 -0 3175)

Vertex 861) (-0 0872 0 0000 0 3098)

Vertex 862) (-0 0872 -0 0000 -0 3105)

Vertex 863) (-0 2182 0 0000 0 2839)

Vertex 864) (-0 2182 -0 0000 -0 2949)

Vertex 865) (-0 3456 0 0000 0 2547)

Vertex 866) (-0 4014 -0 0000 -0 2795)

Vertex 867) (-0 5383 -0 0001 -0 2409)

Vertex 868) (-0 5386 0 0000 0 2091)

Vertex 869) (-0 6368 0 0000 0 2036)

Vertex 870) (-0 6368 -0 0001 -0 2303)

Vertex 871) (-0 7514 0 0000 0 2065)

Vertex 872) (-0 7514 -0 0001 -0 2273)

Vertex 873) (-0 9849 0 0000 0 1544)

Vertex 874) (-0 9849 -0 0000 -0 2091)

Vertex 875) (-1 2820 0 0000 0 1536)

Vertex 876) (-1 2820 -0 0000 -0 1635)

Vertex 877) (-1 4933 -0 0002 , o 1099)

Vertex 878) (-1 5591 -0 0002 , -o 1507)

Vertex 879) (-1 5781 -0 0001 , -o 1470)

Vertex 880) (-1 6310 -0 0001 0 1121)

Vertex 881) (-1 8727 -0 0000 0 1411)

Vertex 882) (-1 8729 0 0000 -0 1636)

Vertex 883) (-2 1781 -0 0000 0 1019)

Vertex 884) (-2 1783 0 0000 -0 1189)

Vertex 885) (-2 4449 -0 0000 0 0882)

Vertex 886) (-2 4450 0 0000 -0 1012)

Vertex 887) (-2 4975 -0 0000 0 0857)

Vertex 888) (-2 4976 0 0000 -0 0982)

Vertex 889) (-2 5958 0 0001 , -o 1186)

Vertex 890) (-2 7096 0 0001 , -o 1371)

Vertex 891) (-2 7410 0 0001 r -0 1426)

Vertex 892) (-2 7434 -0 0001 r 0 1008)

Vertex 893) (-2 7629 0 0001 -0 1422)

Vertex 894) (-2 7697 -0 0001 0 1009)

Vertex 895) (-2 7749 0 0000 -0 0904)

Vertex 896) (-2 7819 0 0000 -0 0951)

Vertex 897) (-2 7862 0 0000 -0 0885)

Vertex 898) (-2 7908 -0 0001 0 0994)

Vertex 899) (-2 7971 0 0000 -0 0287)

Vertex 900) (-2 8007 -0 0000 , o 0367)

Vertex 901) (-2 8037 0 0000 -0 0320)

Vertex 902) (-2 8063 0 0000 -0 0254)

Vertex 903) (-2 8084 -0 0000 0 0421)

Vertex 904) (-2 8095 -0 0000 0 0326)

Vertex 905) (-2 8140 0 0001 -0 1454)

Vertex 906) (-2 8180 0 0001 -0 1005)

Vertex 907) (-2 8264 0 0001 -0 1462)

Vertex 908) (-2 8304 0 0001 -0 1024)

Vertex 909) (-2 8545 0 0000 -0 0910)

Vertex 910) (-2 8592 0 0000 -0 0377)

Vertex 911) (-2 8709 0 0000 -0 0921)

Vertex 912) (-2 8756 0 0000 -0 0396)

Vertex 913) (-2 8779 0 0001 -0 1483)

Vertex 914) (-2 8811 0 0001 -0 1093)

Vertex 915) (-2 8832 -0 0001 0 1013)

Vertex 916) (-2 8850 -0 0000 0 0466)

Vertex 917) (-2 8873 0 0000 -0 0250)

Vertex 918) (-2 8876 -0 0000 0 0298)

Vertex 919) (-2 8896 0 0001 -0 1494)

Vertex 920) (-2 8932 0 0001 -0 1114) Vertex 921) (-2 9007 -0 0001 0 1013)

Vertex 922) (-2 9025 -0 0000 0 0477)

Vertex 923) (-2 9088 -0 0000 0 0287)

Vertex 924) (-2 9088 0 0000 -0 0246)

Vertex 925) (-2 9250 0 0001 -0 1508)

Vertex 926) (-2 9278 0 0001 -0 1169)

Vertex 927) (-2 9432 0 0000 -0 0957)

Vertex 928) (-2 9471 -0 0000 -0 0486)

Vertex 929) (-2 9476 0 0001 -0 1519)

Vertex 930) (-2 9549 0 0001 -0 1227)

Vertex 931) (-2 9580 -0 0001 0 1017)

Vertex 932) (-2 9585 0 0000 -0 0968)

Vertex 933) (-2 9598 -0 0001 0 0503)

Vertex 934) (-2 9625 -0 0000 -0 0508)

Vertex 935) (-2 9625 0 0001 -0 1391)

Vertex 936) (-2 9672 -0 0000 0 0258)

Vertex 937) (-2 9672 0 0000 -0 0245)

Vertex 938) (-2 9766 -0 0001 0 1017)

Vertex 939) (-2 9784 -0 0001 0 0521)

Vertex 940) (-2 9880 0 0000 -0 0238)

Vertex 941) (-2 9883 -0 0000 0 0237)

Vertex 942) (-3 0078 0 0000 -0 0989)

Vertex 943) (-3 0114 0 0000 -0 0570)

Vertex 944) (-3 0211 -0 0001 0 0992)

Vertex 945) (-3 0226 -0 0000 0 0569)

Vertex 946) (-3 0366 0 0000 , -o 0975)

Vertex 947) (-3 0372 -0 0000 0 0211)

Vertex 948) (-3 0373 -0 0000 -0 0212)

Vertex 949) (-3 0387 0 0000 -0 0632)

Vertex 950) (-3 0488 -0 0000 0 0956)

Vertex 951) (-3 0496 -0 0000 0 0609)

Vertex 952) (-3 0501 0 0000 r -0 0840)

Vertex 953) (-3 0649 -0 0000 r 0 0788)

Vertex 954) (-3 0693 -0 0001 , o 0175)

Vertex 955) (-3 0705 -0 0000 r -0 0183)

Vertex 956) (-3 0869 -0 0001 0 0011)

Vertex 957) (-2 5420 -0 0004 0 0970)

Vertex 958) ( 3 0869 -0 0010 0 0013)

Vertex 959) ( 3 0705 -0 0011 -0 0180)

Vertex 960) ( 3 0693 -0 0010 0 0177)

Vertex 961) ( 3 0649 . -o 0011 r 0 0790)

Vertex 962) ( 3 0501 r -0 0011 , -o 0837)

Vertex 963) ( 3 0496 -0 0011 , o 0612)

Vertex 964) ( 3 0489 , -o 0011 , o 0958)

Vertex 965) ( 3 0387 -0 0010 -0 0629)

Vertex 966) ( 3 0372 -0 0010 0 0214)

Vertex 967) ( 3 0373 -0 0011 -0 0210)

Vertex 968) ( 3 0366 -0 0011 -0 0972)

Vertex 969) ( 3 0226 -0 0011 0 0571)

Vertex 970) ( 3 0211 , -o 0011 , o 0995)

Vertex 971) ( 3 0114 r -0 0011 r -0 0567)

Vertex 972) ( 3 0077 -0 0011 , -o 0987)

Vertex 973) ( 2 9883 -0 0010 0 0239)

Vertex 974) ( 2 9880 -0 0011 -0 0235)

Vertex 975) ( 2 9785 -0 0011 0 0524)

Vertex 976) ( 2 9766 -0 0011 0 1020)

Vertex 977) ( 2 9672 -0 0010 0 0261)

Vertex 978) ( 2 9672 -0 0011 -0 0243)

Vertex 979) ( 2 9625 , -o 0011 -0 0506)

Vertex 980) ( 2 9625 -0 0012 -0 1389)

Vertex 981) ( 2 9598 , -o 0011 0 0505)

Vertex 982) ( 2 9585 , -o 0011 -0 0965) Vertex 983) ( 2 9580, -0.0011, 0 1020)

Vertex 984) ( 2. 9548, -0. 0012, -0. 1224)

Vertex 985) ( 2. 9476, -0. 0012, -0 1516)

Vertex 986) ( 2. 9471, -0. 0011, -0. 0484)

Vertex 987) ( 2 9431, -0. 0011, -0. 0955)

Vertex 988) ( 2 9278 -0 0012 -0 1166)

Vertex 989) ( 2 9249 -0 0012 -0 1506)

Vertex 990) ( 2 9088 -0 0011, 0 0290)

Vertex 991) ( 2 9088, -0 0011, -0 0243)

Vertex 992) ( 2 9026, -0. 0011, 0 0479)

Vertex 993) ( 2 9007, -0. 0010, 0 1016)

Vertex 994) ( 2 8932, -0. 0012, -0 1112)

Vertex 995) ( 2 8895 -0 0012 -0 1491)

Vertex 996) ( 2 8876 -0 0011 0 0300)

Vertex 997) ( 2 8873 -0 0011 -0 0247)

Vertex 998) ( 2 8850 -0 0011 0 0468)

Vertex 999) ( 2 8832 -0 0010 0 1016)

Vertex 1000) ( 2 8811 -0 0012 -0 1090)

Vertex 1001) ( 2 8779 -0 0012 -0 1480)

Vertex 1002) ( 2 8756 -0 0011 -0 0393)

Vertex 1003) ( 2 8709 -0 0011 -0 0918)

Vertex 1004) ( 2 8592 -0 0011 -0 0375)

Vertex 1005) ( 2 8545 -0 0011 -0 0908)

Vertex 1006) ( 2 8304 -0 0011 -0 1021)

Vertex 1007) ( 2 8264 -0 0012 -0 1459)

Vertex 1008) ( 2 8180 -0 0011 -0 1003)

Vertex 1009) ( 2 8140 -0 0012 -0 1452)

Vertex 1010) ( 2 8095 -0 0011 0 0329)

Vertex 1011) ( 2 8084 -0 0011 0 0424)

Vertex 1012) ( 2 8063 -0 0011 -0 0251)

Vertex 1013) ( 2 8037 -0 0011 -0 0317)

Vertex 1014) ( 2 8007 -0 0011 0 0369)

Vertex 1015) ( 2 7971 r -0 0011 -0 0284)

Vertex 1016) ( 2 7909 -0 0010 0 0997)

Vertex 1017) ( 2 7862 r -0 0011 -0 0882)

Vertex 1018) ( 2 7818 -0 0011 -0 0948)

Vertex 1019) ( 2 7749 -0 0011 -0 0901)

Vertex 1020) ( 2 7697 -0 0010 0 1011)

Vertex 1021) ( 2 7629 -0 0012 -0 1419)

Vertex 1022) ( 2 .7434 , -o 0010 0 1011)

Vertex 1023) ( 2 7410 r -0 0012 -0 1423)

Vertex 1024) ( 2 7096 -0 0012 -0 1368)

Vertex 1025) ( 2 5958 , -o 0011 -0 1183)

Vertex 1026) ( 2 4970 -0 0013 0 0855)

Vertex 1027) ( 2 4971 -0 0013 -0 0984)

Vertex 1028) ( 2 .5416 , -o 0014 r 0 0974)

Vertex 1029) (-2 .8268 t -0 0072 , -o 1403)

Vertex 1030) (-2 .8899 , -o 0080 -0 1447)

Vertex 1031) ( 2 .8268 , -o 0084 -0 1400)

Vertex 1032) (-2 8144 r -0 0083 -0 1400)

Vertex 1033) (-2 8782 , -o 0083 -0 1436)

Vertex 1034) (-2 9392 , -o 0083 -0 1472)

Vertex 1035) (-2 .9253 r -0 .0087 r -0 1461)

Vertex 1036) ( 2 .8899 r -0 0092 r -0 1444)

Vertex 1037) ( 2 .9392 . -o 0096 -0 1469)

Vertex 1038) ( 2 .8782 r -0 0096 -0 1433)

Vertex 1039) ( 2 .8144 , -o 0095 -0 1397)

Vertex 1040) (-2 .6938 , -o 0096 0 1129)

Vertex 1041) (-2 .7131 r -0 .0095 r 0 .1019)

Vertex 1042) (-3 .0383 , -o .0095 . o .0624)

Vertex 1043) ( 2 .9253 r -0 .0100 , -o .1458)

Vertex 1044) ( 3 .0383 , -o .0106 . o .0630) Vertex 1045) ( 2 7131 -0 0105 0 1022)

Vertex 1046) ( 2 6938 -0 0105 0 1131)

Vertex 1047) (-3 0226 -0 0114 0 0616)

Vertex 1048) (-2 8804 -0 0116 -0 1162)

Vertex 1049) ( 3 0226 -0 0121 0 0619)

Vertex 1050) (-2 8297 -0 0120 -0 1097)

Vertex 1051) (-2 8924 -0 0120 -0 1180)

Vertex 1052) ( 2 8804 -0 0125 -0 1159)

Vertex 1053) (-2 8066 -0 0124 -0 0185)

Vertex 1054) (-2 9275 -0 0123 -0 1227)

Vertex 1055) (-2 9410 -0 0123 -0 1260)

Vertex 1056) ( 2 8924 -0 0129 -0 1177)

Vertex 1057) ( 2 8297 -0 0128 -0 1094)

Vertex 1058) ( 2 9410 -0 0133 -0 1257)

Vertex 1059) ( 2 9275 -0 0132 -0 1225)

Vertex 1060) ( 2 8066 -0 0131 -0 0182)

Vertex 1061) (-2 9784 -0 0132 0 0587)

Vertex 1062) (-3 0335 -0 0132 0 0916)

Vertex 1063) (-2 8173 -0 0134 -0 1082)

Vertex 1064) (-2 9374 -0 0134 -0 1366)

Vertex 1065) (-2 9617 -0 0135 -0 0578)

Vertex 1066) (-3 0106 -0 0135 -0 0632)

Vertex 1067) (-3 0231 -0 0135 -0 0654)

Vertex 1068) ( 3 0335 -0 0139 0 0918)

Vertex 1069) ( 2 9784 -0 0139 0 0589)

Vertex 1070) (-2 7658 -0 0138 -0 1367)

Vertex 1071) (-2 9260 -0 0138 -0 1359)

Vertex 1072) ( 3 0230 -0 0142 -0 0651)

Vertex 1073) ( 3 0106 -0 0142 -0 0629)

Vertex 1074) ( 2 9617 -0 0142 -0 0575)

Vertex 1075) ( 2 9373 -0 0144 -0 1363)

Vertex 1076) ( 2 8173 -0 0143 -0 1079)

Vertex 1077) (-3 0215 -0 0143 , o 0930)

Vertex 1078) ( 2 9260 -0 0147 , -o 1356)

Vertex 1079) ( 2 7658 -0 0147 -0 1364)

Vertex 1080) (-2 9591 -0 0147 0 0576)

Vertex 1081) (-2 9770 -0 0147 0 0937)

Vertex 1082) (-2 9883 -0 0146 0 0174)

Vertex 1083) ( 3 0215 -0 0150 0 0933)

Vertex 1084) (-2 8282 -0 0149 r -0 1268)

Vertex 1085) (-3 0569 -0 0150 0 0157)

Vertex 1086) ( 2 9883 -0 0153 , o 0177)

Vertex 1087) ( 2 9770 -0 0153 0 0940)

Vertex 1088) ( 2 9591 -0 0153 0 0578)

Vertex 1089) (-2 8793 -0 0153 -0 1315)

Vertex 1090) (-2 9464 -0 0153 , -o 0563)

Vertex 1091) (-2 9672 -0 0153 r -0 0172)

Vertex 1092) (-3 0372 -0 0154 0 0153)

Vertex 1093) ( 3 0569 -0 0156 0 0159)

Vertex 1094) ( 2 8282 -0 0157 -0 1265)

Vertex 1095) (-2 7789 -0 0156 -0 1028)

Vertex 1096) (-2 8585 -0 0157 -0 0469)

Vertex 1097) (-2 8910 -0 0156 , -o 1326)

Vertex 1098) (-3 0562 -0 0157 r -0 0143)

Vertex 1099) ( 3 0372 -0 0160 0 0155)

Vertex 1100) ( 2 9672 -0 0160 -0 0170)

Vertex 1101) ( 2 9464 -0 0160 -0 0560)

Vertex 1102) ( 2 8793 -0 0161 -0 1312)

Vertex 1103) (-2 6697 , -o 0161 , o 1314)

Vertex 1104) (-2 8749 -0 0160 r -0 0487)

Vertex 1105) (-3 0081 -0 0160 -0 0928)

Vertex 1106) (-3 0183 -0 0160 -0 0927) Vertex 1107) ( 3 0562 -0 0164, -0 0140)

Vertex 1108) ( 2 8910 -0 0165, -0 1323)

Vertex 1109) ( 2 8585 -0 0164, -0 0466)

Vertex 1110) ( 2 7789 -0 0165, -0 1025)

Vertex 1111) (-2 8012 -0 0164, -0 0400)

Vertex 1112) (-2 8155 -0 0164, -0 1257)

Vertex 1113) (-2 9588 -0 0164, -0 0906)

Vertex 1114) ( 3 0183 -0 0168, -0 0925)

Vertex 1115) ( 3 0081 -0 0168 -0 0925)

Vertex 1116) ( 2 8749 -0 0168 -0 0484)

Vertex 1117) ( 2 6697 -0 0167 0 1317)

Vertex 1118) (-2 9580 -0 0169 0 0940)

Vertex 1119) (-2 9672 -0 0168 0 0178)

Vertex 1120) (-3 0372 -0 0168 -0 0157)

Vertex 1121) ( 2 9588 -0 0171 -0 0903)

Vertex 1122) ( 2 8154 -0 0172 -0 1254)

Vertex 1123) ( 2 8012 -0 0172 -0 0397)

Vertex 1124) (-2 9435 -0 0171 -0 0899)

Vertex 1125) (-2 9880 -0 0172 -0 0172)

Vertex 1126) ( 3 0372 -0 0175 -0 0155)

Vertex 1127) ( 2 9672 -0 0175 0 0181)

Vertex 1128) ( 2 9580 -0 0175 0 0943)

Vertex 1129) (-2 8552 -0 0175 -0 0859)

Vertex 1130) ( 2 9880 -0 0178 -0 0170)

Vertex 1131) ( 2 9435 -0 0179 -0 0896)

Vertex 1132) (-2 9088 -0 0179 0 0214)

Vertex 1133) ( 2 8552 -0 0183 -0 0856)

Vertex 1134) (-2 9025 -0 0183 0 0546)

Vertex 1135) (-2 9088 -0 0182 -0 0177)

Vertex 1136) ( 2 9088 -0 0186 0 0217)

Vertex 1137) (-2 9011 -0 0187 0 0925)

Vertex 1138) ( 2 9088 -0 0190 -0 0174)

Vertex 1139) ( 2 9025 -0 0189 0 0549)

Vertex 1140) (-2 8716 -0 0189 -0 0867)

Vertex 1141) ( 2 9011 -0 0193 0 0928)

Vertex 1142) (-2 8876 -0 0193 -0 0173)

Vertex 1143) (-3 0092 -0 0193 -0 0803)

Vertex 1144) (-3 0172 -0 0193 -0 0811)

Vertex 1145) ( 2 8716 -0 0197 -0 0864)

Vertex 1146) (-2 7458 -0 .0196 -0 .1353)

Vertex 1147) (-2 8066 -0 0197 , o .0483)

Vertex 1148) ( 3 0172 -0 0200 -0 0808)

Vertex 1149) ( 3 0092 -0 0200 -0 0801)

Vertex 1150) ( 2 8876 -0 0201 -0 0170)

Vertex 1151) (-2 8847 -0 0201 0 0535)

Vertex 1152) (-3 0266 -0 0201 0 0769)

Vertex 1153) ( 2 8066 -0 0204 0 0486)

Vertex 1154) ( 2 7457 -0 0205 -0 1350)

Vertex 1155) (-2 9603 -0 0204 , -o 0760)

Vertex 1156) ( 3 0266 -0 0208 0 0772)

Vertex 1157) ( 2 8847 -0 0208 0 0538)

Vertex 1158) (-2 7717 -0 0207 -0 1218)

Vertex 1159) (-2 7877 -0 0208 -0 0834)

Vertex 1160) ( 2 9603 -0 0212 -0 0757)

Vertex 1161) (-2 7942 -0 0211 -0 0619)

Vertex 1162) (-2 8876 -0 0212 0 0228)

Vertex 1163) ( 2 7877 -0 0216 -0 0831)

Vertex 1164) ( 2 7716 -0 0216 -0 1215)

Vertex 1165) (-3 0219 -0 0216 0 0766)

Vertex 1166) (-3 0489 -0 0216 0 0011)

Vertex 1167) ( 2 8876 -0 0219 0 0231)

Vertex 1168) ( 2 7942 -0 0219 -0 0616) Vertex 1169) (-2 9450, -0 0219, -0 0749)

Vertex 1170) ( 3 0489, -0 0222, 0 0013)

Vertex 1171) ( 3 0219, -0 0223, 0 0768)

Vertex 1172) (-2 7945, -0 0223, 0 0874)

Vertex 1173) (-2 8091, -0 0223, 0 0261)

Vertex 1174) (-2 8835 -0 0223 0 0918)

Vertex 1175) (-2 9883 -0 0223 0 0010)

Vertex 1176) ( 2 9450 -0 0226 -0 0746)

Vertex 1177) (-2 8570 -0 0226 -0 0673)

Vertex 1178) (-3 0372, -0 0227 0 0011)

Vertex 1179) ( 2 9883, -0 0229 0 0013)

Vertex 1180) ( 2 8836, -0 0229 0 0921)

Vertex 1181) ( 2 8091 -0 0230 0 0264)

Vertex 1182) ( 2 7945 -0 0229 0 0877)

Vertex 1183) (-2 9777 -0 0231 0 0744)

Vertex 1184) ( 3 0372 -0 0233 0 0013)

Vertex 1185) ( 2 8570 -0 0234 -0 0667)

Vertex 1186) (-2 7151 -0 0233 -0 1306)

Vertex 1187) (-2 8731 -0 0233 -0 0688)

Vertex 1188) ( 2 9777 -0 0237 0 0746)

Vertex 1189) ( 2 8731 -0 0241 -0 0681)

Vertex 1190) ( 2 7151 -0 0241 -0 1302)

Vertex 1191) (-2 9672 -0 0241 0 0010)

Vertex 1192) (-2 5963 -0 0245 0 1288)

Vertex 1193) ( 2 9672 -0 0248 0 0013)

Vertex 1194) ( 2 5963 -0 0251 0 1291)

Vertex 1195) (-2 7527 -0 0255 -0 1203)

Vertex 1196) (-2 9088 -0 0256 0 0010)

Vertex 1197) (-2 9587 -0 0256 0 0736)

Vertex 1198) (-2 7895 -0 0259 -0 0276)

Vertex 1199) ( 2 9587 -0 0263 0 0739)

Vertex 1200) ( 2 9088 -0 0263 0 0012)

Vertex 1201) ( 2 7527 -0 0263 , -o 1200)

Vertex 1202) (-2 7960 -0 0263 r 0 0374)

Vertex 1203) ( 2 7895 -0 0266 , -o 0273)

Vertex 1204) ( 2 7960 -0 0270 , o 0377)

Vertex 1205) (-2 7738 -0 0270 -0 0904)

Vertex 1206) ( 2 7738 -0 0278 -0 0901)

Vertex 1207) (-2 7737 -0 0278 0 0870)

Vertex 1208) (-2 8011 -0 0278 , o 0658)

Vertex 1209) (-2 8077 -0 0281 0 0009)

Vertex 1210) (-2 9018 -0 0282 . o 0706)

Vertex 1211) ( 2 8011 -0 0284 0 0661)

Vertex 1212) ( 2 7737 -0 0284 0 0873)

Vertex 1213) (-2 8873 -0 0285 0 0009)

Vertex 1214) ( 2 9018 , -o .0288 , o 0709)

Vertex 1215) ( 2 8077 , -o .0288 r 0 0012)

Vertex 1216) ( 2 8873 -0 0292 , o 0012)

Vertex 1217) (-2 7430 -0 0296 , o 0910)

Vertex 1218) (-2 7753 -0 0299 -0 0605)

Vertex 1219) ( 2 7431 -0 0302 , o 0913)

Vertex 1220) ( 2 7753 -0 0307 -0 0601)

Vertex 1221) (-2 .8843 , -o .0307 r 0 0699)

Vertex 1222) (-2 5299 , -o 0311 r 0 1080)

Vertex 1223) ( 2 8843 -0 0313 r 0 0702)

Vertex 1224) (-2 7213 -0 0313 r -0 1141)

Vertex 1225) ( 2 5299 -0 0317 . o 1083)

Vertex 1226) ( 2 7213 -0 0322 , -o 1138)

Vertex 1227) (-2 7873 -0 0332 0 0009)

Vertex 1228) ( 2 7873 , -o .0339 r 0 0012)

Vertex 1229) (-2 7289 , -o .0339 , -o 0853)

Vertex 1230) ( 2 7289 r -0 0347 r -0 0850) Vertex 1231) (-2 7814, -0 0347, 0 0647)

Vertex 1232) ( 2 7814, -0 0354, 0 0650)

Vertex 1233) (-2 7241, -0 0354, 0 0913)

Vertex 1234) (-2 7344 -0 0354 -0 0550)

Vertex 1235) (-2 7384 -0 0358 -0 0251)

Vertex 1236) ( 2 7344 -0 0361 -0 0547)

Vertex 1237) ( 2 7241 -0 0361 0 0916)

Vertex 1238) ( 2 7384 -0 0365 -0 0248)

Vertex 1239) (-2 7417 -0 0391 0 0008)

Vertex 1240) ( 2 7417 -0 0398 0 0011)

Vertex 1241) (-2 7055 -0 0420 0 0008)

Vertex 1242) ( 2 7055 -0 0427 0 0011)

Vertex 1243) (-2 7453 -0 0431 0 0618)

Vertex 1244) (-2 6452 -0 0435 0 1537)

Vertex 1245) (-2 7449 -0 0435 0 0362)

Vertex 1246) ( 2 7453 -0 0437 0 0621)

Vertex 1247) ( 2 7449 -0 0441 0 0366)

Vertex 1248) ( 2 6452 -0 0440 0 1540)

Vertex 1249) (-2 6778 -0 0441 0 0008)

Vertex 1250) ( 2 6778 -0 0449 0 0011)

Vertex 1251) (-2 6009 -0 0470 -0 1015)

Vertex 1252) ( 2 6009 -0 0478 -0 1011)

Vertex 1253) (-2 4975 -0 0478 0 0598)

Vertex 1254) ( 2 4970 -0 0488 0 0596)

Vertex 1255) (-2 4976 -0 0489 -0 0727)

Vertex 1256) ( 2 4971 -0 0499 -0 0729)

Vertex 1257) ( 2 4447 -0 0501 0 0620)

Vertex 1258) (-2 4449 -0 0500 0 0619)

Vertex 1259) (-2 7408 -0 0501 0 1337)

Vertex 1260) ( 2 7409 -0 0507 0 1340)

Vertex 1261) ( 2 4448 -0 0508 -0 0752)

Vertex 1262) (-2 4450 -0 0507 -0 0753)

Vertex 1263) (-2 7404 -0 0526 0 1501)

Vertex 1264) ( 2 7405 -0 0532 0 1504)

Vertex 1265) (-2 7193 -0 0537 0 1034)

Vertex 1266) (-2 6989 -0 0540 0 0709)

Vertex 1267) ( 2 7193 -0 0547 0 1037)

Vertex 1268) ( 2 6989 -0 0551 0 0712)

Vertex 1269) (-2 5840 -0 0569 0 0007)

Vertex 1270) (-2 4975 -0 0573 0 0007)

Vertex 1271) (-2 7693 , -o 0574 r 0 1377)

Vertex 1272) (-2 7638 , -o 0577 0 1516)

Vertex 1273) ( 2 5840 -0 0580 0 0011)

Vertex 1274) ( 2 7693 -0 0583 0 1380)

Vertex 1275) ( 2 4971 -0 0586 0 0005)

Vertex 1276) ( 2 7638 -0 0587 0 1519)

Vertex 1277) (-2 5883 -0 0596 0 1372)

Vertex 1278) ( 2 1782 -0 0602 0 0749)

Vertex 1279) ( 2 1783 -0 0602 -0 0908)

Vertex 1280) (-2 1782 , -o 0602 0 0745)

Vertex 1281) (-2 1783 , -o 0602 -0 0912)

Vertex 1282) ( 2 5883 , -o 0605 0 1376)

Vertex 1283) (-2 7408 -0 0617 0 1205)

Vertex 1284) ( 2 4447 , -o 0625 0 0007)

Vertex 1285) (-2 4450 -0 0624 0 0006)

Vertex 1286) ( 2 7409 -0 0627 0 1208)

Vertex 1287) (-2 8065 -0 0647 0 1370)

Vertex 1288) ( 2 8065 -0 0656 0 1373)

Vertex 1289) (-2 8065 r -0 0665 0 1483)

Vertex 1290) ( 2 8065 , -o 0675 0 1486)

Vertex 1291) (-2 7740 r -0 0676 0 1249)

Vertex 1292) (-2 8372 , -o 0683 0 1410) Vertex 1293) ( 2.7741, -0.0686, 0.1252)

Vertex 1294) ( 2. 8372, -0. 0693, 0. 1413)

Vertex 1295) (-2. 7404, -0. 0695, 0. 1734)

Vertex 1296) ( 2. 7405, -0. 0703, 0. 1738)

Vertex 1297) (-2. 8397, -0. 0716, 0. 1487)

Vertex 1298) ( 2. 8397, -0. 0726, 0. 1490)

Vertex 1299) (-2 7568, -0. 0731, 0. 1745)

Vertex 1300) (-2 7124, -0. 0738, 0. 1019)

Vertex 1301) (-2. 8065, -0. 0738, 0. 1242)

Vertex 1302) ( 2. 7569, -0. 0740, 0. 1749)

Vertex 1303) (-2 5453, -0 0741 0 0930)

Vertex 1304) ( 2 8065, -0 0748 0 1245)

Vertex 1305) ( 2 7124, -0 0748 0 1022)

Vertex 1306) ( 2. 5453, -0. 0751, 0. 0934)

Vertex 1307) (-2 6386 -0 0768 0 1617)

Vertex 1308) (-2 8313 -0 0771 0 1297)

Vertex 1309) ( 2 6387, -0 0776 0 1620)

Vertex 1310) ( 2 8313 -0 0781 0 1300)

Vertex 1311) (-2 8065 -0 0818 0 1658)

Vertex 1312) ( 2 8065 -0 0828 0 1661)

Vertex 1313) (-2 7408 -0 0847 0 1227)

Vertex 1314) ( 2 7408 -0 0857 0 1230)

Vertex 1315) (-2 7744 -0 0887 0 1253)

Vertex 1316) ( 2 7744 -0 0897 0 1256)

Vertex 1317) (-2 8477 -0 0899 0 1593)

Vertex 1318) ( 2 8477 -0 0908 0 1596)

Vertex 1319) (-2 8065 -0 0917 0 1235)

Vertex 1320) ( 2 8065 -0 0927 0 1238)

Vertex 1321) (-2 8313 -0 0931 0 1300)

Vertex 1322) ( 2 8313 -0 0941 0 1304)

Vertex 1323) ( 2 1782 -0 0949 0 0008)

Vertex 1324) (-2 1782 -0 0949 0 0004)

Vertex 1325) (-2 6011 -0 0957 0 1251)

Vertex 1326) (-2 8488 -0 0964 0 1425)

Vertex 1327) ( 2 6011 . -o 0966 0 1256)

Vertex 1328) (-2 6639 , -o 0967 , o 0795)

Vertex 1329) ( 2 8489 -0 0974 0 1428)

Vertex 1330) ( 2 .6639 , -o 0978 . o 0800)

Vertex 1331) (-2 .7404 , -o 0979 r 0 1796)

Vertex 1332) ( 2 7405 , -o 0988 r 0 1800)

Vertex 1333) ( 1 5872 . -o 0995 . -o 1240)

Vertex 1334) (-1 .5869 , -o 0997 r -0 .1244)

Vertex 1335) ( 1 .6498 r -0 1006 r 0 0771)

Vertex 1336) (-1 .6496 r -0 1008 , o 0767)

Vertex 1337) (-2 7547 . -o 1012 , o 1803)

Vertex 1338) ( o .2182 , -o 1018 . o .3492)

Vertex 1339) (-0 .2182 , -o 1018 r 0 .3492)

Vertex 1340) ( 2 .7547 , -o 1021 r 0 1811)

Vertex 1341) ( o .3456 . -o 1044 r 0 3259)

Vertex 1342) (-0 .3456 , -o .1044 , o .3259)

Vertex 1343) (-2 .8061 . -o 1045 , o .1713)

Vertex 1344) (-2 .6949 , -o 1052 r 0 .1124)

Vertex 1345) ( 2 .8061 , -o 1054 . o 1716)

Vertex 1346) ( 2 .6949 , -o .1061 , o .1128)

Vertex 1347) ( 1 .5482 . -o .1060 . -o .1262)

Vertex 1348) (-1 .5478 , -o 1064 r -0 .1266)

Vertex 1349) (-2 .8496 , -o 1066 . o .1640)

Vertex 1350) ( 2 .8496 , -o .1076 . o .1644)

Vertex 1351) (-2 .7408 , -o .1081 , o .1336)

Vertex 1352) ( 2 .7408 , -o .1091 f o .1340)

Vertex 1353) (-2 .7693 , -o .1092 . o .1376)

Vertex 1354) (-2 .8065 , -o .1099 . o .1373) Vertex 1355) ( 2 7693, -0.1102, 0 1380)

Vertex 1356) (-2. 8372, -0. 1103, 0. 1406)

Vertex 1357) ( 2. 8065, -0. 1109, 0. 1377)

Vertex 1358) (-2. 6503, -0. 1110, 0. 1478)

Vertex 1359) (-2. 7408, -0. 1110, 0. 1683)

Vertex 1360) ( 2 8372, -0 1113, 0 1410)

Vertex 1361) ( 1 8727, -0 1117, 0 0933)

Vertex 1362) ( 1 4787, -0 1114, 0 0726)

Vertex 1363) (-1 4784, -0. 1118, 0 0723)

Vertex 1364) (-1 8727 -0 1117 0 0929)

Vertex 1365) ( 2 7408 -0 1119 0 1687)

Vertex 1366) ( 2 6503 -0 1119 0 1482)

Vertex 1367) (-2 7579, -0 1121, 0 1701)

Vertex 1368) ( 1 8729, -0 1124, -0 1286)

Vertex 1369) (-1 8729 -0 1124 -0 1290)

Vertex 1370) (-2 8061 -0 1129 0 1621)

Vertex 1371) ( 2 7580 -0 1130 0 1705)

Vertex 1372) (-2 8452 -0 1132 0 1589)

Vertex 1373) ( 2 8061, -0 1138 0 1625)

Vertex 1374) ( 2 8452 -0 1142 0 1593)

Vertex 1375) ( 1 2823 -0 1186 0 0978)

Vertex 1376) (-1 2823 -0 1186 0 0975)

Vertex 1377) ( o 0872 -0 1201 0 3813)

Vertex 1378) (-0 0872 -0 1201 0 3813)

Vertex 1379) ( 1 2824 -0 1205 -0 1248)

Vertex 1380) (-1 2823 -0 1205 -0 1251)

Vertex 1381) ( o 0000 -0 1277 0 3729)

Vertex 1382) ( o 7513 -0 1317 0 1413)

Vertex 1383) ( o 7515 -0 1318 -0 1726)

Vertex 1384) (-0 7514 -0 1317 0 1412)

Vertex 1385) (-0 7514 -0 1318 -0 1726)

Vertex 1386) ( o 6368 -0 1351 -0 1810)

Vertex 1387) (-0 6368 -0 1351 -0 1810)

Vertex 1388) ( o 6368 -0 1360 r 0 1639)

Vertex 1389) (-0 6368 -0 1361 , o 1639)

Vertex 1390) ( 1 4857 -0 1373 0 0004)

Vertex 1391) (-1 4853 -0 1378 0 0000)

Vertex 1392) ( 1 6488 -0 1378 0 0004)

Vertex 1393) (-1 6486 -0 1380 , o 0001)

Vertex 1394) ( 1 8728 -0 1533 , o 0006)

Vertex 1395) (-1 8728 -0 1533 , o 0002)

Vertex 1396) ( 1 2823 -0 1547 0 0003)

Vertex 1397) (-1 2823 -0 1547 0 0000)

Vertex 1398) ( o 9849 r -0 1565 , o .0998)

Vertex 1399) ( o 9850 -0 1566 , -o 1608)

Vertex 1400) (-0 9849 -0 1565 r 0 0997)

Vertex 1401) (-0 9849 -0 1566 -0 1609)

Vertex 1402) ( o .7514 r -0 1781 . o .0001)

Vertex 1403) (-0 7514 , -o 1781 , o .0000)

Vertex 1404) ( o 6368 -0 1890 . o .0000)

Vertex 1405) ( o 5820 -0 1890 r 0 1817)

Vertex 1406) ( o 5820 -0 1891 r -0 1974)

Vertex 1407) ( o 4605 . -o 1890 , o .3273)

Vertex 1408) (-0 4605 r -0 1890 r 0 .3273)

Vertex 1409) (-0 5820 , -o 1890 r 0 .1817)

Vertex 1410) (-0 5820 . -o 1890 . -o .1974)

Vertex 1411) (-0 .6368 r -0 .1890 , o .0000)

Vertex 1412) ( o .9849 r -0 1967 , o .0002)

Vertex 1413) (-0 .9849 r -0 1967 r 0 .0000)

Vertex 1414) ( o 4014 , -o 2190 r -0 .2737)

Vertex 1415) (-0 4014 , -o 2190 , -o 2737)

Vertex 1416) ( o .0000 . -o 2197 , o .4171) Vertex 1417) ( o 0872 -0 2365 0 4437)

Vertex 1418) (-0 0872 -0 2365 0 4437)

Vertex 1419) ( o 3456 -0 2554 0 4109)

Vertex 1420) (-0 3456 -0 2554 0 4109)

Vertex 1421) ( o 6109 -0 2693 0 0004)

Vertex 1422) (-0 6109 -0 2693 0 0004)

Vertex 1423) ( o 2182 -0 2730 0 4441)

Vertex 1424) (-0 2182 -0 2730 0 4441)

Vertex 1425) ( o 4142 -0 3164 0 4076)

Vertex 1426) (-o 4142 -0 3164 0 4076)

Vertex 1427) ( o 3456 -0 3777 0 4693)

Vertex 1428) (-0 3456 -0 3777 0 4693)

Vertex 1429) ( o 3007 -0 3894 0 4839)

Vertex 1430) (-0 3007 -0 3894 0 4839)

Vertex 1431) ( o 3711 -0 3905 0 4583)

Vertex 1432) (-0 3711 -0 3905 0 4583)

Vertex 1433) ( o 6010 -0 4291 -0 0000)

Vertex 1434) ( o 5514 -0 4291 -0 1967)

Vertex 1435) ( o 4729 -0 4291 0 2912)

Vertex 1436) ( o 4255 -0 4291 0 4003)

Vertex 1437) ( o 3821 -0 4291 0 4583)

Vertex 1438) ( o 3456 -0 4291 0 4839)

Vertex 1439) ( o 2916 -0 4291 0 5021)

Vertex 1440) ( o 2912 -0 4291 -0 3040)

Vertex 1441) ( o 1821 -0 4291 0 5131)

Vertex 1442) ( o 0872 -0 4291 0 5094)

Vertex 1443) ( o 0872 -0 4291 -0 3372)

Vertex 1444) ( o 0000 -0 4291 0 4912)

Vertex 1445) ( o 0000 -0 4291 -0 3481)

Vertex 1446) (-0 0872 -0 4291 0 5094)

Vertex 1447) (-0 0872 -0 4291 -0 3372)

Vertex 1448) (-0 1821 -0 4291 0 5131)

Vertex 1449) (-0 2912 -0 4291 -0 3040)

Vertex 1450) (-0 2916 -0 4291 0 5021)

Vertex 1451) (-0 3456 -0 4291 0 4839)

Vertex 1452) (-0 3821 -0 4291 0 4583)

Vertex 1453) (-0 4255 -0 4291 0 4003)

Vertex 1454) (-0 4729 -0 4291 0 2912)

Vertex 1455) (-0 5514 -0 4291 -0 1967)

Vertex 1456) (-0 6010 -0 4291 0 0000)

Vertex 1457) ( o 3711 -0 4620 0 4693)

Vertex 1458) ( o 3007 -0 4620 0 5003)

Vertex 1459) (-0 3007 -0 4620 0 5003)

Vertex 1460) (-0 3711 -0 4620 0 4693)

Vertex 1461) ( o 3390 -0 4729 0 4839)

Vertex 1462) (-0 3390 -0 4729 0 4839)

Vertex 1463) ( o 2182 -0 5094 0 5131)

Vertex 1464) (-o 2182 -0 5094 0 5131)

Vertex 1465) ( o 3875 -0 5189 0 4182)

Vertex 1466) (-0 3875 -0 5189 0 4182)

Vertex 1467) ( o 0000 -0 5258 0 5007)

Vertex 1468) ( o 3138 -0 5528 0 4729)

Vertex 1469) (-0 3138 -0 5528 0 4729)

Vertex 1470) ( o 0872 -0 5817 0 5021)

Vertex 1471) (-0 0872 -0 5817 0 5021)

Vertex 1472) ( o 5565 -0 6474 -0 0000)

Vertex 1473) ( o 5021 -0 6474 -0 1960)

Vertex 1474) ( o 4547 -0 6474 0 3346)

Vertex 1475) ( o 2912 -0 6474 0 4729)

Vertex 1476) ( o 2912 -0 6474 -0 2755)

Vertex 1477) ( o 0872 -0 6474 -0 3240)

Vertex 1478) ( o 0000 -0 6474 -0 3120) Vertex 1479) (-0 0872 -0 6474 -0 3240)

Vertex 1480) (-o 2912 -0 6474 0 4729)

Vertex 1481) (-0 2912 -0 6474 -0 2755)

Vertex 1482) (-0 4547 -0 6474 0 3346)

Vertex 1483) (-0 5021 -0 6474 -0 1960)

Vertex 1484) (-0 5565 -0 6474 0 0000)

Vertex 1485) ( o 4803 -0 9523 0 0005)

Vertex 1486) ( o 4183 -0 9524 0 2996)

Vertex 1487) ( o 4187 -0 9524 -0 1456)

Vertex 1488) ( o 2832 -0 9524 0 4342)

Vertex 1489) ( o 2838 -0 9524 -0 2132)

Vertex 1490) (-0 2839 -0 9525 0 4336)

Vertex 1491) (-o 2833 -0 9525 -0 2138)

Vertex 1492) (-0 4188 -0 9525 0 2988)

Vertex 1493) (-0 4184 -0 9525 -0 1464)

Vertex 1494) (-o 4802 -0 9525 -0 0005)

Vertex 1495) ( o 0868 -0 9531 0 4851)

Vertex 1496) ( o 0875 -0 9531 -0 2638)

Vertex 1497) (-0 0004 -0 9532 0 4894)

Vertex 1498) ( o 0003 -0 9532 -0 2536)

Vertex 1499) (-0 0877 -0 9532 0 4849)

Vertex 1500) (-0 0869 -0 9532 -0 2639)

Vertex 1501) ( o 4804 -1 2003 0 0005)

Vertex 1502) ( o 4184 -1 2002 0 2661)

Vertex 1503) ( o 4188 -1 2004 -0 1586)

Vertex 1504) ( o 2833 -1 2002 0 3682)

Vertex 1505) ( o 2839 -1 2006 -0 2609)

Vertex 1506) ( o 0869 -1 2003 0 4486)

Vertex 1507) ( o 0876 -1 2007 -0 3060)

Vertex 1508) (-0 0003 -1 2004 0 4518)

Vertex 1509) ( o 0004 -1 2007 -0 2933)

Vertex 1510) (-0 0875 , -1 2004 0 4485)

Vertex 1511) (-0 0868 -1 2008 -0 3062)

Vertex 1512) (-0 2838 -1 2006 0 3676)

Vertex 1513) (-0 2832 , - 1 2009 , -o 2615)

Vertex 1514) (-o 4187 - 1 2007 0 2653)

Vertex 1515) (-0 4183 -1 2009 -0 1595)

Vertex 1516) (-0 4801 , -1 2008 , -o 0004)

Vertex 1517) ( o 5363 , -1 3834 0 0012)

Vertex 1518) (-0 5358 -1 3841 -0 0009)

Vertex 1519) ( o 4519 , -1 4008 0 2619)

Vertex 1520) ( o 4528 -1 4012 -0 2449)

Vertex 1521) (-0 4524 -1 4013 0 2602)

Vertex 1522) (-0 4514 , - 1 4018 -0 2466)

Vertex 1523) ( o 2845 -1 4449 -0 3766)

Vertex 1524) (-0 2826 - 1 4452 -0 3777)

Vertex 1525) ( o 2831 -1 4450 0 3503)

Vertex 1526) (-0 2839 -1 4453 0 3493)

Vertex 1527) ( o 0867 -1 4633 0 4116)

Vertex 1528) (-0 0877 -1 4634 0 4113)

Vertex 1529) (-0 0005 -1 4688 0 4173)

Vertex 1530) ( o 0883 -1 5063 -0 3955)

Vertex 1531) (-0 0862 -1 5064 -0 3958)

Vertex 1532) ( o 0010 -1 5085 -0 3825)

Vertex 1533) ( o 5637 -1 5162 0 0007)

Vertex 1534) (-o 5631 -1 5169 -0 0015)

Vertex 1535) ( o 4789 -1 5340 0 2658)

Vertex 1536) (-0 4793 -1 5345 0 2639)

Vertex 1537) ( o 4808 -1 5406 -0 2750)

Vertex 1538) (-0 4790 -1 5412 -0 2769)

Vertex 1539) ( o 2835 -1 5763 0 3512)

Vertex 1540) (-0 2842 -1 5767 0 3501) Vertex 1541) ( o.2851, -1.6364, -0.3980)

Vertex 1542) (-0. 2828, -1. 6368, -0. 3990)

Vertex 1543) ( o. 0869, -1. 6542, 0. 3852)

Vertex 1544) (-0. 0876, -1. 6543, 0 3848)

Vertex 1545) ( o. 5966, -1. 6582, 0 0014)

Vertex 1546) (-0. 5959, -1. 6589, -0. 0011)

Vertex 1547) (-0. 0003, -1. 6732, 0. 3905)

Vertex 1548) ( o. 0011, -1. 6738, -0 3846)

Vertex 1549) ( o. 5084, -1. 6766, 0 2712)

Vertex 1550) (-0. 5088, -1. 6772, 0 2691)

Vertex 1551) ( o 0884, -1 6796 -0 4173)

Vertex 1552) (-0. 0860, -1. 6798, -0 4176)

Vertex 1553) ( o. 2835, -1. 7242, 0 3433)

Vertex 1554) (-0 2841 -1 7245 0 3422)

Vertex 1555) ( o 5109, -1 7419 -0 2597)

Vertex 1556) (-0 5089, -1 7426 -0 2618)

Vertex 1557) ( o 0011, -1. 7669 -0 3579)

Vertex 1558) ( o 0884 -1 7844 -0 3993)

Vertex 1559) (-0 0860, -1 7845 -0 3996)

Vertex 1560) ( o 6347, -1 8359 0 0020)

Vertex 1561) (-0 6337 -1 8366 -0 0006)

Vertex 1562) ( o 0871 -1 8494 0 3426)

Vertex 1563) (-0 0874 -1 8495 0 3423)

Vertex 1564) ( o 3106 -1 8535 -0 3627)

Vertex 1565) (-o 3080 -1 8539 -0 3639)

Vertex 1566) ( o 5456 -1 8547 -0 2278)

Vertex 1567) (-o 5436 -1 8554 -0 2300)

Vertex 1568) ( o 5439 -1 8551 0 2623)

Vertex 1569) (-0 5440 -1 8557 0 2601)

Vertex 1570) (-0 0002 -1 8692 0 3684)

Vertex 1571) ( o 0011 -1 8807 -0 2870)

Vertex 1572) ( o 3196 -1 9023 0 3424)

Vertex 1573) ( o 3215 -1 9027 -0 3261)

Vertex 1574) (-0 3201 -1 9026 0 3412)

Vertex 1575) (-0 3190 -1 9031 , -o 3273)

Vertex 1576) ( o 0886 -1 9105 -0 3199)

Vertex 1577) (-o 0861 -1 9107 -0 3200)

Vertex 1578) ( o 0869 -1 9206 , o .3104)

Vertex 1579) (-o 0873 -1 9207 , o 3102)

Vertex 1580) ( o 0010 -1 9332 -0 2278)

Vertex 1581) (-o 0001 , -1 9476 r 0 .3469)

Vertex 1582) ( o 0871 , -1 9736 , o 2626)

Vertex 1583) ( o 0884 , -1 9739 -0 2275)

Vertex 1584) (-0 0871 -1 9737 0 2625)

Vertex 1585) (-0 0862 , -1 9741 t -0 .2276)

Vertex 1586) ( o 0000 , -1 9951 r 0 3090)

Vertex 1587) ( o 0221 -2 0151 , o 0007)

Vertex 1588) (-0 .0209 , -2 .0151 , o .0006)

Vertex 1589) ( o .0006 , -2 0173 r 0 .0007)

Vertex 1590) ( o .0957 . -2 0184 . -o .2264)

Vertex 1591) ( o .0940 , -2 .0181 . o .2499)

Vertex 1592) (-0 .0940 , -2 .0182 r 0 .2497)

Vertex 1593) (-0 .0935 . -2 .0186 r -0 .2265)

Vertex 1594) ( o .0262 . -2 .0479 . o .0004)

Vertex 1595) (-o .0249 r -2 .0479 , o .0007)

Vertex 1596) ( o .7105 , -2 .2876 . o .0025)

Vertex 1597) (-0 .7090 , -2 .2885 , -o .0003)

Vertex 1598) ( o .6334 , -2 .3042 . -o .2222)

Vertex 1599) ( o .6314 , -2 .3039 . o .2559)

Vertex 1600) (-o .6310 , -2 .3046 . o .2534)

Vertex 1601) (-0 .6309 . -2 .3050 , -o .2246)

Vertex 1602) ( o .4195 , -2 .3500 . -o .3132) Vertex 1603) ( o.4173, -2.3496, 0.3426)

Vertex 1604) (-0. 4172, -2. 3500 0. 3410)

Vertex 1605) (-0. 4165, -2. 3506, -0. 3147)

Vertex 1606) ( o 1835 -2 4005 -0 2229)

Vertex 1607) ( o. 1819 -2 4002 0 2489)

Vertex 1608) (-0. 1813, -2 4003 0 2484)

Vertex 1609) (-0. 1809, -2 4007 -0 2234)

Vertex 1610) ( o 1213 -2 4128 0 0010)

Vertex 1611) (-0 1196 -2 4129 0 0007)

Vertex 1612) ( o 7338 -2 7251 0 0028)

Vertex 1613) (-0 7317 -2 7260 -0 0000)

Vertex 1614) ( o. 6858 -2 7349 0 2019)

Vertex 1615) (-0 6846 -2 7357 0 1993)

Vertex 1616) ( o 6846 -2 7358 -0 1553)

Vertex 1617) (-0 6818 -2 7367 -0 1579)

Vertex 1618) ( o 5065 -2 7729 0 2748)

Vertex 1619) ( o 5078 -2 7732 -0 2149)

Vertex 1620) (-0 5055 -2 7735 0 2730)

Vertex 1621) (-0 5047 -2 7739 -0 2167)

Vertex 1622) ( o 3730 -2 8021 -0 1547)

Vertex 1623) (-0 3702 -2 8026 -0 1559)

Vertex 1624) ( o 3428 -2 8081 0 2025)

Vertex 1625) (-0 3416 -2 8084 0 2014)

Vertex 1626) ( o 3098 -2 8152 0 0017)

Vertex 1627) (-0 3076 -2 8155 0 0008)

Vertex 1628) ( o 7697 -3 0572 r 0 0031)

Vertex 1629) (-0 7673 -3 0581 0 0002)

Vertex 1630) ( o 7121 -3 0628 -0 1226)

Vertex 1631) (-0 7091 -3 0636 -0 1252)

Vertex 1632) ( o 5765 -3 0954 r -0 1751)

Vertex 1633) (-o 5732 -3 0961 - -o 1772)

Vertex 1634) ( o 7215 -3 1181 r 0 1614)

Vertex 1635) (-0 7197 -3 1189 0 1587)

Vertex 1636) ( o 4541 , -3 1206 r -0 1247)

Vertex 1637) (-0 4511 -3 1211 , -o 1262)

Vertex 1638) ( o 3968 -3 1373 r 0 0022)

Vertex 1639) (-0 3943 -3 1378 , o 0008)

Vertex 1640) ( o 4680 -3 1708 , o 1618)

Vertex 1641) (-0 4660 r -3 1713 r 0 1602)

Vertex 1642) ( o 5918 , -3 1732 r 0 2330)

Vertex 1643) (-o 5902 -3 1739 r 0 2309)

Vertex 1644) ( o 7472 -3 2416 -0 1293)

Vertex 1645) (-0 7441 r -3 2425 r -0 1320)

Vertex 1646) ( o 7476 . -3 2480 r 0 1356)

Vertex 1647) (-o 7454 , -3 2489 r 0 1330)

Vertex 1648) ( o 6091 -3 2517 0 1991)

Vertex 1649) (-0 6072 , -3 2524 r 0 1970)

Vertex 1650) ( o 6102 , -3 2523 , -o 1826)

Vertex 1651) (-0 6068 , -3 2530 . -o 1848)

Vertex 1652) ( o 8038 . -3 2703 r 0 0033)

Vertex 1653) (-0 8011 r "3 2712 r 0 0005)

Vertex 1654) ( o 5214 r -3 2884 r -0 1281)

Vertex 1655) (-0 5182 r "3 2890 , -o 1299)

Vertex 1656) ( o 5221 . -3 2970 . o 1340)

Vertex 1657) (-0 5199 , -3 2976 r 0 1321)

Vertex 1658) ( o 4838 . -3 3391 , o 0025)

Vertex 1659) (-0 4810 , -3 3397 r 0 0008)

Vertex 1660) ( o 9223 . -3 6906 , o 0043)

Vertex 1661) (-o 9191 . -3 6917 , o 0011)

Vertex 1662) ( o 8612 , -3 7039 r -0 2039)

Vertex 1663) (-0 8573 r -3 7049 , -o 2069)

Vertex 1664) (-0 8356 r -3 7091 , o 0978) Vertex 1665) ( o.8385, -3 7085, 0.1008)

Vertex 1666) ( o. 7121, -3 7348, 0. 1428)

Vertex 1667) ( o. 7132, -3 7350, -0. 2758)

Vertex 1668) (-0. 7093, -3 7356, 0. 1402)

Vertex 1669) (-0. 7091, -3 7359, -0. 2783)

Vertex 1670) ( o. 6060, -3 7575, 0. 1005)

Vertex 1671) (-0 6031 -3 7582 0 0983)

Vertex 1672) ( o 5752 -3 7647 -0 2254)

Vertex 1673) (-o. 5712, -3 7653, -0 2275)

Vertex 1674) ( o. 5151, -3 7773 0 0029)

Vertex 1675) (-0 5118 -3 7779 0 0010)

Vertex 1676) ( o 9477 -4 1102 0 0042)

Vertex 1677) (-0 9440 -4 1114 0 0009)

Vertex 1678) ( o 8928 -4 1212 0 0858)

Vertex 1679) ( o 8933 -4 1213 -0 1276)

Vertex 1680) (-0 8897 -4 1222 0 0827)

Vertex 1681) (-0 8896 -4 1224 -0 1308)

Vertex 1682) ( o 7996 -4 1405 0 1148)

Vertex 1683) ( o 8004 -4 1407 -0 1596)

Vertex 1684) (-0 7963 -4 1415 0 1120)

Vertex 1685) (-0 7961 -4 1417 -0 1625)

Vertex 1686) ( o 7173 -4 1581 0 0854)

Vertex 1687) (-0 7138 -4 1590 0 0828)

Vertex 1688) ( o 7138 -4 1594 -0 1310)

Vertex 1689) (-0 7096 -4 1602 -0 1336)

Vertex 1690) ( o 6741 -4 1673 0 0035)

Vertex 1691) (-o 6703 -4 1681 0 0011)

Vertex 1692) ( o 9537 -4 3905 0 0044)

Vertex 1693) (-0 9497 -4 3916 0 0011)

Vertex 1694) ( o 9204 -4 3979 -0 0946)

Vertex 1695) (-0 9161 -4 3990 -0 0978)

Vertex 1696) ( o 9166 -4 3981 0 0985)

Vertex 1697) (-0 9129 -4 3992 0 0952)

Vertex 1698) ( o 8578 -4 4109 0 1271)

Vertex 1699) ( o 8581 -4 4111 -0 1257)

Vertex 1700) (-0 8536 -4 4121 -0 1288)

Vertex 1701) (-0 8541 -4 4119 0 1241)

Vertex 1702) ( o 7905 r -4 .4253 r -0 0949)

Vertex 1703) (-0 7861 . -4 4262 -0 0977)

Vertex 1704) ( o 7856 -4 4259 0 0974)

Vertex 1705) (-0 7819 -4 4269 0 0946)

Vertex 1706) ( o 7534 r "4 .4329 r 0 0039)

Vertex 1707) (-0 7493 , -4 4338 , o 0012)

Vertex 1708) ( o 8723 -4 4802 0 1652)

Vertex 1709) (-0 8687 -4 4813 0 1621)

Vertex 1710) ( o 9479 , -4 4918 . o 1417)

Vertex 1711) (-o 9442 , -4 4929 , o 1383)

Vertex 1712) ( Ό 9910 -4 5203 0 0046)

Vertex 1713) (-0 9869 -4 5215 0 0011)

Vertex 1714) ( o 8053 . -4 5227 - o 1413)

Vertex 1715) (-0 8015 r -4 5236 r 0 1384)

Vertex 1716) ( o 9512 -4 5281 -0 1097)

Vertex 1717) (-0 9467 -4 5292 -0 1131)

Vertex 1718) ( o 8860 r -4 5439 r -0 1376)

Vertex 1719) (-0 8813 -4 5449 , -o 1408)

Vertex 1720) ( o 8228 -4 5571 , -o 1093)

Vertex 1721) (-0 8182 , - .5580 r -0 .1122)

Vertex 1722) ( o 8883 , -4 .5637 , o 3426)

Vertex 1723) (-0 8852 , - 5647 0 3395)

Vertex 1724) ( o 7849 -4 5658 0 0041)

Vertex 1725) (-0 7807 . -4 .5667 r 0 .0013)

Vertex 1726) ( o 9953 r "4 .5719 , o .3320) Vertex 1727) (-0 9922 -4 5731, 0.3285)

Vertex 1728) ( o 8180 -4 6112, 0. 3300)

Vertex 1729) (-0 8148 -4 6122, 0. 3271)

Vertex 1730) ( 1 0596 -4 6593 0 4778)

Vertex 1731) (-1 0569 -4 6605 0 4741)

Vertex 1732) ( o 9093 -4 6635 0 4774)

Vertex 1733) (-0 9065 -4 6646 0 4742)

Vertex 1734) ( 1 1230 -4 6834 0 2842)

Vertex 1735) (-1 1195 -4 6847 0 2803)

Vertex 1736) ( 1 0876 -4 6853 0 1415)

Vertex 1737) (-1 0837 -4 6867 0 1376)

Vertex 1738) ( 1 0891 -4 6873 0 0050)

Vertex 1739) (-1 0847 -4 6886 0 0012)

Vertex 1740) ( o 8044 -4 6935 0 1407)

Vertex 1741) (-0 8005 -4 6944 0 1378)

Vertex 1742) ( 1 0414 -4 6973 -0 1641)

Vertex 1743) (-1 0365 -4 6985 -0 1678)

Vertex 1744) ( o 8248 -4 7028 0 2998)

Vertex 1745) (-0 8214 -4 7038 0 2969)

Vertex 1746) ( 1 0807 -4 7037 0 6243)

Vertex 1747) (-1 0786 -4 7049 0 6203)

Vertex 1748) ( o 9183 -4 7065 0 6285)

Vertex 1749) (-0 9162 -4 7076 0 6253)

Vertex 1750) ( o 8006 -4 7148 0 4771)

Vertex 1751) (-0 7978 -4 7158 0 4743)

Vertex 1752) ( o 9233 -4 7216 -0 1995)

Vertex 1753) (-0 9182 -4 7227 -0 2027)

Vertex 1754) ( 1 1663 -4 7222 0 4782)

Vertex 1755) (-1 1634 -4 7236 0 4740)

Vertex 1756) ( 1 1465 -4 7273 0 6125)

Vertex 1757) (-1 1442 -4 7286 0 6082)

Vertex 1758) ( 1 1034 -4 7316 0 2707)

Vertex 1759) ( 1 0199 -4 7315 0 7037)

Vertex 1760) (-1 0181 -4 7327 0 7000)

Vertex 1761) (-1 0998 -4 7329 0 2668)

Vertex 1762) ( 1 0745 -4 7324 0 1415)

Vertex 1763) (-1 0706 -4 7337 0 1377)

Vertex 1764) ( o 8353 -4 7403 -0 1650)

Vertex 1765) (-o 8303 -4 7413 -0 1680)

Vertex 1766) ( o 9250 -4 7418 0 7289)

Vertex 1767) (-0 9233 -4 7429 0 7257)

Vertex 1768) ( o 9275 -4 7443 0 1410)

Vertex 1769) (-0 9235 -4 7455 0 1378)

Vertex 1770) ( 1 0487 -4 7478 0 7479)

Vertex 1771) (-1 0470 , -4 7490 , o 7441)

Vertex 1772) ( o 7951 -4 7494 0 0042)

Vertex 1773) (-0 7906 -4 7503 0 0014)

Vertex 1774) ( o 8279 -4 7504 0 6210)

Vertex 1775) (-0 8257 -4 7514 0 6181)

Vertex 1776) ( o 9290 -4 7527 0 2706)

Vertex 1777) (-0 9254 , -4 7538 0 2673)

Vertex 1778) ( o 8582 -4 7591 0 1409)

Vertex 1779) (-0 8542 -4 7601 0 1378)

Vertex 1780) ( o 7886 -4 7612 0 4771)

Vertex 1781) (-o 7858 -4 7621 0 4743)

Vertex 1782) ( o 8627 -4 7649 0 6995)

Vertex 1783) (-0 8608 , -4 7660 , 0 6965)

Vertex 1784) ( 1 1762 . -4 7697 , o 4782)

Vertex 1785) (-1 1733 -4 7710 0 4740)

Vertex 1786) ( o 8472 -4 7714 0 2740)

Vertex 1787) (-0 8437 -4 7724 0 2710)

Vertex 1788) ( o 9322 , -4 7739 , o 7830) < < < < < < < < < < < < < < < ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ l-i H I-i t-i H H I-S K H H I-i l-i t-l f-. ct ct r+ ct r ct cf rt ct ct ct ct rt ct Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ xxxxxxxxxxxxxxx hJ HJ I-J l--' l--' l--' l--' OOC30 C»00 -J -J ^1 ^I ^1 ~J ~0 ~J ^1 ^1 ^I ω MHOrø co jσiui fcωMHo ω

Figure imgf000062_0001

*_ h-' h-' J-. α-. (J I-' oσι *> ω M π o

t-i ) NJ I-' U> ) ui ιt. μoω -J m

Figure imgf000062_0002

Figure imgf000062_0003

UΛ ΛJ- Λμμ MM . h-1 r coμviι_ oi- i_ ω_i«HDμcouι

Figure imgf000062_0004

Polygon 27) 25 16 41 39

Polygon 28) 32 30 17 23

Polygon 29) 31 22 17 30

Polygon 30) 26 44 36 18

Polygon 31) 37 45 27 19

Polygon 32) 43 44 26 20

Polygon 33) 46 21 27 45

Polygon 34 22 31 33 28

Polygon 35 23 29 34 32

Polygon 36 28 33 38 24

Polygon 37 39 34 29 25

Polygon 38 49 52 30 32

Polygon 39 48 31 30 52

Polygon 40 31 48 50 33

Polygon 41 32 34 51 49

Polygon 42 33 50 56 38

Polygon 43 62 51 34 39

Polygon 44 36 58 59 35

Polygon 45 59 60 37 35

Polygon 46 44 57 58 36

Polygon 47 60 61 45 37

Polygon 48 54 40 38 56

Polygon 49 64 62 39 41

Polygon 50 53 42 40 54

Polygon 51 65 64 41 47

Polygon 52 55 43 42 53

Polygon 53 57 44 43 55

Polygon 54 61 63 46 45

Polygon 55 47 46 63 65

Polygon 56 70 66 48 52

Polygon 57 68 50 48 66

Polygon 58 69 67 49 51

Polygon 59 71 52 49 67

Polygon 60 ) 76 78 50 68

Polygon 61 ) 50 78 93 56

Polygon 62 94 80 51 62

Polygon 63 77 69 51 80

Polygon 64 75 79 52 71

Polygon 65 ) 74 70 52 79

Polygon 66 ) 138 53 54 139

Polygon 67 ) 120 55 53 138

Polygon 68 56 140 139 54

Polygon 69 ) 142 57 55 120

Polygon 70 ) 93 141 140 56

Polygon 71 ) 124 58 57 142

Polygon 72 ) 129 59 58 124

Polygon 73 ) 129 134 60 59

Polygon 74 ) 134 145 61 60

Polygon 75 ) 145 137 63 61

Polygon 76 ) 148 147 62 64

Polygon 77 ) 147 146 94 62

Polygon 78 ) 65 63 137 149

Polygon 79 ) 149 148 64 65

Polygon 80 ) 70 74 72 66

Polygon 81 ) 72 76 68 66

Polygon 82 ) 69 77 73 67

Polygon 83 ) 73 75 71 67

Polygon 84 ) 83 81 72 74

Polygon 85 ) 85 76 72 81

Polygon 86 ) 86 82 73 77

Polygon 87 ) 84 75 73 82

Polygon 88 ) 79 89 83 74 ©

©

© © CO

O

H U α.

rH rH ιH r-H I-l .-H ι-H .-H τ-H ι-H ι-H I i-H 1-H i-l 1-H rH rH

CO

Figure imgf000064_0001
>H rH rH rH rH tH ιH rH ιH ιH rH ιH rH ιH ιH ι-. ιH rH ιH ι-H r. ι-l ιH rH ιH ι-l ιH rH ιH rH ιH rH ι-l ι-H

Figure imgf000064_0002

^ι_oo^θrHLn^Lθ(_θ[^oocr.csin \.Ln^rHU3^ro HrH^c θrHc ^

∞ OOOO rHσ. O rHCTlCr.σ.σ. OOOOO rH N.t σϊO rH rH '^^ rH rH rHO rH rHrO rH rH rHOC^ rH t-H ^H iH r-H rH .H tH rH rH rH iH tH rH ^ iH ^ rH ^ rH rH ^ rH rH H rH iH iH iH iH ^ ^ tH tH i→ ^ ^ i→ ^ rH ^ rH i-H rH rH rH i-H rH rH i-l t-H

Figure imgf000064_0003
H H H HH H H H HH H H H H HHH rlHHH HH H HH H H H H

C C C G G G G G C C G C G C G C G G G C C G G G G G G C C C G G G G C G C G C G G G G C G C G C G G G G G C C G C C G G G G o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o tJil__ritJ>t^0i0itTit__rt(__nC7>t_n&ti0^0^01tJidi&tJi0i0i0i&

^>~t ^>ι ^>n _>ι ^>. ^ _>_ _ . _>η _ _ ^>. ^>_ ! ^t ^i _>. ! _ ^ ι >. _>. >. >_ ^ι ^ ι ^>~ι ^>ι ^ ι ^>_ ^-i ^>ι >^ ^>_ ^> ^ . >_ _>^ι I ι >ι >. >- ^>. 1 _ ι ^ι I>^ ^i _ _ ^>ι ^>_ ^ ι _>^ι ^>_ >ι ^- >_ _ . >. >. >ι !>. t>_ _ ι >.

© HHHr. H HHHHrl H HH H H H HHHH HHHHHHr. H HHH H r. H HH H H H H H H HHHH HHH riHHHrlH rl H H H HH H o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o ι_μ θj .-. &4 α. tiι <-. α. αι Λ θj α. αι . pM i-. ι-y .-. t-j θj (-. Λ

Polygon 151) 142 219 241 124

Polygon 152) 240 129 124 241

Polygon 153) 162 126 154 174

Polygon 154) 128 166 169 127

Polygon 155) 179 154 127 169

Polygon 156) 170 166 128 130

Polygon 157) 240 242 134 129

Polygon 158) 180 170 130 155

Polygon 159) 163 175 155 131

Polygon 160) 133 165 163 132

Polygon 161 161 165 133 135

Polygon 162 242 222 145 134

Polygon 163 159 136 153 184

Polygon 164 161 136 159 176

Polygon 165 145 222 194 137

Polygon 166 223 138 139 224

Polygon 167 223 191 156 138

Polygon 168 140 225 224 139

Polygon 169 171 225 140 141

Polygon 170 152 171 141 143

Polygon 171 146 172 153 144

Polygon 172 147 226 172 146

Polygon 173 227 226 147 148

Polygon 174 228 227 148 149

Polygon 175 157 192 228 149

Polygon 176 177 200 187 150

Polygon 177 188 201 178 151

Polygon 178 152 181 206 171

Polygon 179 207 184 153 172

Polygon 180 189 174 154 179

Polygon 181 190 180 155 175

Polygon 182 ) 173 195 181 158

Polygon 183 196 176 159 184

Polygon 184 182 173 160 164

Polygon 185 ) 183 165 161 176

Polygon 186 ) 182 164 162 174

Polygon 187 ) 183 175 163 165

Polygon 188 ) 199 197 166 170

Polygon 189 ) 198 169 166 197

Polygon 190 ) 191 208 177 167

Polygon 191 ) 178 209 192 168

Polygon 192 ) 204 179 169 198

Polygon 193 ) 205 199 170 180

Polygon 194 ) 249 225 171 206

Polygon 195 ) 250 207 172 226

Polygon 196 ) 202 195 173 182

Polygon 197 ) 202 182 174 189

Polygon 198 ) 203 190 175 183

Polygon 199 ) 203 183 176 196

Polygon 200 ) 208 217 200 177

Polygon 201 ) 201 218 209 178

Polygon 202 ) 210 189 179 204

Polygon 203 ) 211 205 180 190

Polygon 204 ) 215 206 181 195

Polygon 205 ) 216 196 184 207

Polygon 206 ) 187 231 238 185

Polygon 207 ) 238 229 193 185

Polygon 208 ) 194 230 239 186

Polygon 209 ) 239 232 188 186

Polygon 210 ) 200 217 231 187

Polygon 211 ) 232 218 201 188

Polygon 212 ) 236 202 189 210 ©

©

© © CO

O

H U α.

(^c^ Njcn^ \ivo n(Njf _.orHLnor oo^in_ r _^rHVDu_)r^_NjtnL^

O^CTiσ σiOrHσ.rH HOCs.rHrHLn'^rHf rOrπr ^CS.POI^ rH∞^^ C\l _\l rH rH rH C\. <N. rH _\. _\_ < C\l ( -\. ( C\] C CNO CSI θNl .\. < -\l _S_ -^

Figure imgf000066_0001
rH rH ^ rO ^ -OrOCSJ ∞ '^ '^ O rH σ. ^ r^ ^ ^ I^ '^ r O ∞ -O .^ i→ O rH ^ rH CT^ ^ ^ '^ rH O H σ. O rH rH NI ^ rH rH ^ m OO H rH r^ '^ r^ t^σD rH '^ m ^ ^ Nl ^ Ni r^ \I rH C .^ C ( CSl CNJ rH C\. < \J S. C\l _\_ \I OvJ < C\I C\. C\l _\. C

_^∞cricri \ιvDt^^ θrH^_nιo^^ιno H_sι_^_nvD D[^^ι c rHcsjo \ιcor^ rO O OCNI Nj r O rH rH CSJ CSi rO m i^ l^ LO n rH rH H ^ ^ ^ O O LO lO '^ lO L Om OO rO O ^ C\l ( -\I C\! C\l _NJ CSI C\. C\_ ( -\l -\I Csl ( CN. \. _\l( C\I \_ < C^

Figure imgf000066_0002
o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o t7iO^t7it7 O^t7i01U^t_nU^ T,t7,tT>tJ*tTit_fiO1O1t31O1tI^O1D1Oit7>UitJi 7itTit71t_^^ >ι>ι>. .>ι>.>ι>.>.>.>ι>ι>.>ι>.>ι>ι>.>ι>ι .>ι>.>.>. >ι>. _^

© H rHr. HrH r. H H H H H H r. iHH H H H HH H H H rl H rl H H H HH HH H H H H HH H iHrl H H rl r. H H ^H H H H H H HH HrlHH H o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

Q θj Dj i-u . D- D. αj D. D. j 4 . D. α. αι D. ι^ ι^ D. ι-u ι-u Dj Λ

Polygon 275) 273 262 247 269

Polygon 276) 274 270 248 263

Polygon 277) 270 268 261 248

Polygon 278) 359 302 249 275

Polygon 279) 360 276 250 305

Polygon 280) 261 268 266 253

Polygon 281) 266 267 260 253

Polygon 282) 351 353 281 254

Polygon 283) 282 354 352 255

Polygon 284) 264 279 312 256

Polygon 285) 315 280 265 257

Polygon 286) 262 273 277 258

Polygon 287 277 279 264 258

Polygon 288) 265 280 278 259

Polygon 289) 278 274 263 259

Polygon 290) 290 294 266 268

Polygon 291 289 267 266 294

Polygon 292 289 291 269 267

Polygon 293 270 292 290 268

Polygon 294 273 269 291 303

Polygon 295 292 270 274 304

Polygon 296 296 357 284 271

Polygon 297 285 358 299 272

Polygon 298 303 325 277 273

Polygon 299 304 274 278 326

Polygon 300 275 306 372 359

Polygon 301 373 307 276 360

Polygon 302 279 277 325 324

Polygon 303 326 278 280 327

Polygon 304 324 370 312 279

Polygon 305 315 371 327 280

Polygon 306 353 357 296 281

Polygon 307 299 358 354 282

Polygon 308 ) 332 355 351 283

Polygon 309 332 368 317 284

Polygon 310 357 355 332 284

Polygon 311 318 369 337 285

Polygon 312 337 356 358 285

Polygon 313 ) 352 356 337 286

Polygon 314 ) 293 310 297 287

Polygon 315 ) 297 308 300 287

Polygon 316 ) 300 313 293 287

Polygon 317 ) 295 314 301 288

Polygon 318 ) 298 311 295 288

Polygon 319 ) 301 309 298 288

Polygon 320 ) 316 313 289 294

Polygon 321 ) 313 300 291 289

Polygon 322 ) 292 301 314 290

Polygon 323 ) 316 294 290 314

Polygon 324 ) 300 308 303 291

Polygon 325 ) 304 309 301 292

Polygon 326 ) 313 319 310 293

Polygon 327 ) 311 320 314 295

Polygon 328 ) 310 328 321 297

Polygon 329 ) 321 330 308 297

Polygon 330 ) 309 331 322 298

Polygon 331 ) 322 329 311 298

Polygon 332 ) 302 359 402 334

Polygon 333 ) 325 303 308 330

Polygon 334 ) 326 331 309 304

Polygon 335 ) 305 335 403 360

Polygon 336 ) 370 372 306 312 Polygon 337) 371 315 307 373

Polygon 338) 319 338 328 310

Polygon 339) 329 339 320 311

Polygon 340) 316 323 319 313

Polygon 341) 320 323 316 314

Polygon 342 368 379 361 317

Polygon 343 362 380 369 318

Polygon 344] 323 340 338 319

Polygon 345) 339 340 323 320

Polygon 346 328 338 330 321

Polygon 347 331 339 329 322

Polygon 348 325 330 341 324

Polygon 349 341 363 370 324

Polygon 350 342 331 326 327

Polygon 351 371 364 342 327

Polygon 352 338 345 341 330

Polygon 353 342 348 339 331

Polygon 354 391 381 332 333

Polygon 355 381 379 368 332

Polygon 356 333 334 402 391

Polygon 357 336 396 403 335

Polygon 358 337 382 396 336

Polygon 359 369 380 382 337

Polygon 360 340 346 345 338

Polygon 361 348 346 340 339

Polygon 362 345 365 363 341

Polygon 363 364 367 348 342

Polygon 364 361 480 475 343

Polygon 365 477 349 343 475

Polygon 366 344 350 478 476

Polygon 367 362 344 476 481

Polygon 368 346 366 365 345

Polygon 369 367 366 346 348

Polygon 370 ) 479 347 349 477

Polygon 371 ) 350 347 479 478

Polygon 372 ) 357 353 351 355

Polygon 373 358 356 352 354

Polygon 374 404 402 359 372

Polygon 375 ) 360 403 405 373

Polygon 376 ) 379 482 480 361

Polygon 377 ) 481 483 380 362

Polygon 378 365 374 377 363

Polygon 379 ) 392 370 363 377

Polygon 380 ) 395 378 364 371

Polygon 381 ) 378 375 367 364

Polygon 382 ) 366 376 374 365

Polygon 383 ) 375 376 366 367

Polygon 384 ) 392 404 372 370

Polygon 385 ) 373 405 395 371

Polygon 386 ) 376 385 383 374

Polygon 387 ) 383 386 377 374

Polygon 388 ) 378 387 384 375

Polygon 389 ) 384 385 376 375

Polygon 390 ) 377 386 393 392

Polygon 391 ) 394 387 378 395

Polygon 392 ) 416 430 379 381

Polygon 393 ) 482 379 430 484

Polygon 394 ) 417 382 380 431

Polygon 395 ) 483 485 431 380

Polygon 396 ) 416 381 391 425

Polygon 397 ) 426 396 382 417

Polygon 398 ) 389 388 383 385 Polygon 399) 388 393 386 383

Polygon 400) 387 394 390 384

Polygon 401) 389 385 384 390

Polygon 402) 389 400 399 388

Polygon 403) 397 393 388 399

Polygon 404) 401 400 389 390

Polygon 405) 398 401 390 394

Polygon 406) 432 425 391 402

Polygon 407) 406 392 393 397

Polygon 408) 392 406 411 418

Polygon 409) 418 433 404 392

Polygon 410 407 398 394 395

Polygon 411 419 395 405 434

Polygon 412 412 407 395 419

Polygon 413) 435 403 396 426

Polygon 414) 409 406 397 399

Polygon 415 410 401 398 407

Polygon 416 408 409 399 400

Polygon 417 408 400 401 410

Polygon 418) 433 432 402 404

Polygon 419 434 405 403 435

Polygon 420 414 411 406 409

Polygon 421 407 412 415 410

Polygon 422 413 408 410 415

Polygon 423 409 408 413 414

Polygon 424 423 418 411 414

Polygon 425 424 415 412 419

Polygon 426 421 422 413 415

Polygon 427 420 414 413 422

Polygon 428 427 423 414 420

Polygon 429 428 421 415 424

Polygon 430 425 441 430 416

Polygon 431 442 426 417 431

Polygon 432 436 433 418 423

Polygon 433 437 424 419 434

Polygon 434 429 427 420 422

Polygon 435 429 422 421 428

Polygon 436 427 438 436 423

Polygon 437 437 439 428 424

Polygon 438 443 441 425 432

Polygon 439 444 435 426 442

Polygon 440 438 427 429 440

Polygon 441 429 428 439 440

Polygon 442 484 430 441 486

Polygon 443 442 431 485 471

Polygon 444 447 443 432 433

Polygon 445 ) 445 447 433 436

Polygon 446 448 434 435 444

Polygon 447 434 448 446 437

Polygon 448 438 449 445 436

Polygon 449 ) 450 439 437 446

Polygon 450 ) 440 455 449 438

Polygon 451 ) 450 455 440 439

Polygon 452 443 453 451 441

Polygon 453 ) 486 441 451 472

Polygon 454 ) 452 454 444 442

Polygon 455 ) 452 442 471 467

Polygon 456 ) 447 456 453 443

Polygon 457 ) 454 457 448 444

Polygon 458 ) 449 456 447 445

Polygon 459 ) 448 457 450 446

Polygon 460 ) 455 460 456 449 Polygon 461) 457 460 455 450

Polygon 462) 453 459 458 451

Polygon 463) 472 451 458 492

Polygon 464) 458 459 454 452

Polygon 465) 467 492 458 452

Polygon 466) 456 460 459 453

Polygon 467) 459 460 457 454

Polygon 468) 461 502 541 506

Polygon 469) 470 461 506 514

Polygon 470) 498 463 462 500

Polygon 471) 496 464 463 498

Polygon 472) 466 465 464 496

Polygon 473) 468 465 466 503

Polygon 474) 496 515 507 466

Polygon 475) 466 507 542 503

Polygon 476) 474 469 492 467

Polygon 477 473 468 503 513

Polygon 478 514 553 497 470

Polygon 479) 467 471 473 474

Polygon 480) 492 469 495 472

Polygon 481 474 473 513 517

Polygon 482 469 474 517 518

Polygon 483 487 488 475 480

Polygon 484 477 475 488 489

Polygon 485 463 476 478 462

Polygon 486 464 481 476 463

Polygon 487 489 490 479 477

Polygon 488 479 490 462 478

Polygon 489 480 482 491 487

Polygon 490 465 483 481 464

Polygon 491 491 482 484 493

Polygon 492 485 483 465 468

Polygon 493 493 484 486 494

Polygon 494 471 485 468 473

Polygon 495 472 495 494 486

Polygon 496 461 470 487 491

Polygon 497 488 487 470 497

Polygon 498 497 499 489 488

Polygon 499 ) 490 489 499 501

Polygon 500 500 462 490 501

Polygon 501 461 491 493 502

Polygon 502 502 493 494 512

Polygon 503 ) 512 494 495 516

Polygon 504 ) 516 495 469 518

Polygon 505 ) 498 554 515 496

Polygon 506 553 561 499 497

Polygon 507 ) 500 562 554 498

Polygon 508 ) 561 565 501 499

Polygon 509 ) 501 565 562 500

Polygon 510 ) 512 555 541 502

Polygon 511 ) 556 513 503 542

Polygon 512 ) 508 524 520 504

Polygon 513 ) 529 519 504 510

Polygon 514 ) 519 523 508 504

Polygon 515 ) 530 510 504 520

Polygon 516 ) 509 525 521 505

Polygon 517 ) 532 522 505 511

Polygon 518 ) 531 511 505 521

Polygon 519 ) 522 526 509 505

Polygon 520 ) 510 530 514 506

Polygon 521 ) 541 529 510 506

Polygon 522 ) 511 531 542 507 Polygon 523) 515 532 511 507

Polygon 524) 523 543 527 508

Polygon 525) 527 544 524 508

Polygon 526) 526 546 528 509

Polygon 527) 528 545 525 509

Polygon 528) 516 563 555 512

Polygon 529) 556 564 517 513

Polygon 530) 530 852 853 514

Polygon 531) 853 856 553 514

Polygon 532) 554 864 866 515

Polygon 533) 532 515 866 867

Polygon 534) 569 563 516 518

Polygon 535) 569 518 517 564

Polygon 536) 851 849 519 529

Polygon 537) 849 847 523 519

Polygon 538) 524 848 850 520

Polygon 539) 852 530 520 850

Polygon 540) 525 871 869 521

Polygon 541) 868 531 521 869

Polygon 542) 867 870 522 532

Polygon 543) 870 872 526 522

Polygon 544) 847 845 543 523

Polygon 545) 544 846 848 524

Polygon 546) 545 873 871 525

Polygon 547) 872 874 546 526

Polygon 548) 535 559 544 527

Polygon 549) 543 557 535 527

Polygon 550) 536 558 545 528

Polygon 551) 546 560 536 528

Polygon 552) 854 851 529 541

Polygon 553) 865 542 531 868

Polygon 554) 568 550 533 539

Polygon 555) 577 539 533 547

Polygon 556) 549 573 547 533

Polygon 557) 550 575 549 533

Polygon 558) 578 548 534 540

Polygon 559) 552 534 548 574

Polygon 560) 570 540 534 551

Polygon 561) 552 576 551 534

Polygon 562) 537 571 559 535

Polygon 563) 557 566 537 535

Polygon 564) 538 567 558 536

Polygon 565) 560 572 538 536

Polygon 566) 539 577 571 537

Polygon 567) 566 568 539 537

Polygon 568) 540 570 567 538

Polygon 569) 572 578 540 538

Polygon 570) 855 854 541 555

Polygon 571) 863 556 542 865

Polygon 572) 845 843 557 543

Polygon 573) 559 844 846 544

Polygon 574) 558 875 873 545

Polygon 575) 874 876 560 546

Polygon 576) 573 836 838 547

Polygon 577) 840 577 547 838

Polygon 578) 879 882 548 578

Polygon 579) 574 548 882 884

Polygon 580) 575 608 579 549

Polygon 581) 579 615 573 549

Polygon 582) 839 837 550 568

Polygon 583) 837 835 575 550

Polygon 584) 576 883 881 551 Polygon 585 880 570 551 881

Polygon 586) 574 616 580 552

Polygon 587 580 609 576 552

Polygon 588 856 858 561 553

Polygon 589 562 862 864 554

Polygon 590 857 855 555 563

Polygon 591 861 564 556 863

Polygon 592 843 842 566 557

Polygon 593 567 877 875 558

Polygon 594 571 841 844 559

Polygon 595 876 878 572 560

Polygon 596 858 860 565 561

Polygon 597 565 860 862 562

Polygon 598 859 857 563 569

Polygon 599 859 569 564 861

Polygon 600 842 839 568 566

Polygon 601 570 880 877 567

Polygon 602 577 840 841 571

Polygon 603 878 879 578 572

Polygon 604 615 834 836 573

Polygon 605 884 886 616 574

Polygon 606 835 833 608 575

Polygon 607 609 885 883 576

Polygon 608 585 618 615 579

Polygon 609 608 625 585 579

Polygon 610 581 620 609 580

Polygon 611 616 610 581 580

Polygon 612 ) 600 620 581 582

Polygon 613 ) 596 582 581 610

Polygon 614 ) 582 583 595 600

Polygon 615 598 583 582 596

Polygon 616 583 587 621 595

Polygon 617 592 587 583 598

Polygon 618 ) 585 625 602 584

Polygon 619 ) 601 599 584 586

Polygon 620 ) 599 618 585 584

Polygon 621 ) 597 586 584 602

Polygon 622 ) 593 601 586 588

Polygon 623 ) 624 588 586 597

Polygon 624 ) 621 587 589 632

Polygon 625 ) 589 587 592 631

Polygon 626 ) 590 633 593 588

Polygon 627 ) 624 634 590 588

Polygon 628 ) 649 632 589 607

Polygon 629 ) 641 607 589 631

Polygon 630 ) 644 633 590 612

Polygon 631 ) 651 612 590 634

Polygon 632 ) 598 606 591 592

Polygon 633 ) 592 591 603 631

Polygon 634 ) 603 591 606 650

Polygon 635 ) 594 613 601 593

Polygon 636 ) 604 594 593 633

Polygon 637 ) 604 652 613 594

Polygon 638 ) 605 642 600 595

Polygon 639 ) 605 595 621 611

Polygon 640 ) 627 596 610 654

Polygon 641 ) 606 598 596 627

Polygon 642 ) 602 647 614 597

Polygon 643 ) 614 617 624 597

Polygon 644 ) 630 599 601 613

Polygon 645 ) 630 656 618 599

Polygon 646 ) 957 620 600 642 Polygon 647 625 1028 647 602

Polygon 648 641 631 603 623

Polygon 649 659 623 603 650

Polygon 650 662 652 604 626

Polygon 651 644 626 604 633

Polygon 652 605 611 658 761

Polygon 653 831 642 605 761

Polygon 654 636 650 606 627

Polygon 655 635 671 649 607

Polygon 656 641 677 635 607

Polygon 657 1026 625 608 833

Polygon 658 887 885 609 620

Polygon 659 616 886 888 610

Polygon 660 888 889 654 610

Polygon 661 628 611 621 632

Polygon 662 658 611 628 676

Polygon 663 637 689 644 612

Polygon 664 651 681 637 612

Polygon 665 639 630 613 652

Polygon 666 647 832 780 614

Polygon 667 663 617 614 780

Polygon 668 1027 834 615 618

Polygon 669 629 634 624 617

Polygon 670 663 690 629 617

Polygon 671 656 1025 1027 618

Polygon 672 628 632 649 619

Polygon 673 638 698 664 619

Polygon 674 649 691 638 619

Polygon 675 664 676 628 619

Polygon 676 957 1222 887 620

Polygon 677 629 690 670 622

Polygon 678 640 703 651 622

Polygon 679 651 634 629 622

Polygon 680 670 709 640 622

Polygon 681 643 686 641 623

Polygon 682 659 695 643 623

Polygon 683 1026 1225 1028 625

Polygon 684 644 697 646 626

Polygon 685 646 705 662 626

Polygon 686 636 627 654 729

Polygon 687 ) 639 741 656 630

Polygon 688 ) 665 743 671 635

Polygon 689 ) 677 789 665 635

Polygon 690 659 650 636 645

Polygon 691 715 645 636 729

Polygon 692 669 801 689 637

Polygon 693 681 756 669 637

Polygon 694 660 733 698 638

Polygon 695 691 797 660 638

Polygon 696 ) 725 741 639 648

Polygon 697 ) 662 648 639 652

Polygon 698 ) 667 812 703 640

Polygon 699 ) 709 748 667 640

Polygon 700 686 901 899 641

Polygon 701 899 902 677 641

Polygon 702 831 1192 957 642

Polygon 703 672 758 686 643

Polygon 704 695 775 672 643

Polygon 705 ) 689 1012 1015 644

Polygon 706 ) 1015 1013 697 644

Polygon 707 ) 653 704 659 645

Polygon 708 ) 715 752 653 645 Polygon 709) 680 788 705 646

Polygon 710) 697 774 680 646

Polygon 711) 1028 1194 832 647

Polygon 712) 655 767 725 648

Polygon 713) 662 710 655 648

Polygon 714) 671 904 900 649

Polygon 715) 903 691 649 900

Polygon 716) 703 1011 1014 651

Polygon 717) 1014 1010 681 651

Polygon 718) 657 687 704 653

Polygon 719) 752 768 657 653

Polygon 720) 890 729 654 889

Polygon 721 661 785 767 655

Polygon 722) 710 696 661 655

Polygon 723) 1024 1025 656 741

Polygon 724 674 719 687 657

Polygon 725 768 732 674 657

Polygon 726 892 1041 658 676

Polygon 727 1041 1040 761 658

Polygon 728 704 896 895 659

Polygon 729 897 695 659 895

Polygon 730 683 771 733 660

Polygon 731 797 808 683 660

Polygon 732 685 749 785 661

Polygon 733 696 728 685 661

Polygon 734 705 1017 1019 662

Polygon 735 1019 1018 710 662

Polygon 736 780 1046 1045 663

Polygon 737 1045 1022 690 663

Polygon 738 898 894 664 698

Polygon 739 892 676 664 894

Polygon 740 675 753 743 665

Polygon 741 789 759 675 665

Polygon 742 675 759 726 666

Polygon 743 678 734 717 666

Polygon 744 717 753 675 666

Polygon 745 726 727 678 666

Polygon 746 ) 693 821 812 667

Polygon 747 ) 748 782 693 667

Polygon 748 766 723 668 684

Polygon 749 ) 688 737 738 668

Polygon 750 ) 723 747 688 668

Polygon 751 ) 773 684 668 738

Polygon 752 ) 684 773 801 669

Polygon 753 ) 756 766 684 669

Polygon 754 ) 690 1022 1020 670

Polygon 755 ) 1020 1016 709 670

Polygon 756 ) 918 904 671 743

Polygon 757 ) 682 762 758 672

Polygon 758 ) 775 776 682 672

Polygon 759 ) 678 727 721 673

Polygon 760 ) 740 736 673 701

Polygon 761 ) 739 701 673 721

Polygon 762 ) 736 734 678 673

Polygon 763 ) 699 742 719 674

Polygon 764 ) 732 769 699 674

Polygon 765 ) 917 789 677 902

Polygon 766 ) 747 745 679 688

Polygon 767 ) 751 730 679 706

Polygon 768 ) 737 688 679 730

Polygon 769 ) 750 706 679 745

Polygon 770 ) 694 787 788 680 Polygon 771) 774 779 694 680

Polygon 772) 996 756 681 1010

Polygon 773) 700 790 762 682

Polygon 774) 776 817 700 682

Polygon 775) 692 798 771 683

Polygon 776) 808 786 692 683

Polygon 777) 708 784 749 685

Polygon 778) 728 757 708 685

Polygon 779) 910 901 686 758

Polygon 780) 908 906 687 719

Polygon 781) 906 896 704 687

Polygon 782) 997 1012 689 801

Polygon 783) 903 916 797 691

Polygon 784) 712 814 798 692

Polygon 785 786 794 712 692

Polygon 786) 702 796 821 693

Polygon 787) 782 811 702 693

Polygon 788 707 828 787 694

Polygon 789 779 800 707 694

Polygon 790 909 775 695 897

Polygon 791 710 1018 1008 696

Polygon 792 1006 728 696 1008

Polygon 793 1004 774 697 1013

Polygon 794 915 898 698 733

Polygon 795 711 770 742 699

Polygon 796 769 781 711 699

Polygon 797 720 793 790 700

Polygon 798 817 809 720 700

Polygon 799 739 955 956 701

Polygon 800 956 954 740 701

Polygon 801 713 805 796 702

Polygon 802 811 823 713 702

Polygon 803 998 1011 703 812

Polygon 804 1005 1017 705 788

Polygon 805 750 960 958 706

Polygon 806 958 959 751 706

Polygon 807 731 820 828 707

Polygon 808 800 806 731 707

Polygon 809 714 791 784 708

Polygon 810 757 783 714 708

Polygon 811 999 748 709 1016

Polygon 812 ) 716 763 770 711

Polygon 813 781 792 716 711

Polygon 814 718 819 814 712

Polygon 815 794 795 718 712

Polygon 816 ) 722 804 805 713

Polygon 817 ) 823 826 722 713

Polygon 818 ) 724 807 791 714

Polygon 819 ) 783 778 724 714

Polygon 820 ) 890 891 715 729

Polygon 821 ) 893 752 715 891

Polygon 822 ) 764 763 716 760

Polygon 823 ) 813 760 716 792

Polygon 824 ) 941 936 717 734

Polygon 825 ) 923 753 717 936

Polygon 826 ) 822 819 718 744

Polygon 827 ) 803 744 718 795

Polygon 828 ) 914 908 719 742

Polygon 829 ) 735 799 793 720

Polygon 830 ) 809 818 735 720

Polygon 831 ) 940 948 721 727

Polygon 832 ) 948 955 739 721 ©

©

© © CO

O

H U α.

ro Ni Do o <_^∞ 3._^_^_^

Figure imgf000076_0001

^-oot^r^cjrH^i^i^r^ ^^r^OLn^u i^σi^^∞rH'^oorHor o.^LncNii^σ. o-n _.^o_^ Nic m NiLnLθ[^c\irHo 3rH^(_ _nιor^ _rirHrH n nt^^ D∞

∞_^σι[^oo_^oocrιr^[^<_^σ.∞∞<_^.^cr)cnr~_^c_rισισ>(_r.σ^

<-( τ-^ <-* <-< H

_n r. ^r ^ -~ [^ ro ^ oθ H _^ ^ D oorn H vo -π o ^ ∞ o r r (η (^ D o vD (^ rH [^ -^ rH CNJ D _^ ( [^ ^C -S_ ^ 0 -n ^ ^ 0 ^ rH< m O \l '^ .^ .^ CSI ( O L^ αD co ι^ σ. oo [^ [^ o cr. σ. o _^ σ. _~ < > _^ σ. σ..^ oo oo _^ σ. cn σ> σ. oo ^

(η ^ _ι u) oo Λθ H r. rn ^ _. t^ co σ. θH Cir. ^ _. ^ t^ ∞ crι θ H N f ^ -. Φ r~∞ σιθ H(\i fη ^ _ιu) _^∞

CXJCO CDCO OO ∞ CO OOOO ∞ OOCO OO OOOO OOOO∞ COCDOO D OO

C5

Figure imgf000076_0002

Polygon 895 783 994 988 778

Polygon 896 986 800 779 1002

Polygon 897 832 1117 1046 780

Polygon 898 925 792 781 919

Polygon 899 983 811 782 993

Polygon 900 995 1001 784 791

Polygon 901 808 922 933 786

Polygon 902 939 794 786 933

Polygon 903 987 1003 787 828

Polygon 904 1003 1005 788 787

Polygon 905 934 928 790 793

Polygon 906 989 995 791 807

Polygon 907 813 792 925 929

Polygon 908 943 934 793 799

Polygon 909 945 795 794 939

Polygon 910 803 795 945 951

Polygon 911 975 981 796 805

Polygon 912 981 992 821 796

Polygon 913 922 808 797 916

Polygon 914 938 931 798 814

Polygon 915 802 949 943 799

Polygon 916 979 806 800 986

Polygon 917 815 963 969 804

Polygon 918 969 975 805 804

Polygon 919 971 810 806 979

Polygon 920 989 807 824 985

Polygon 921 817 927 932 809

Polygon 922 942 818 809 932

Polygon 923 971 965 816 810

Polygon 924 976 823 811 983

Polygon 925 992 998 812 821

Polygon 926 944 938 814 819

Polygon 927 ) 825 818 942 946

Polygon 928 822 950 944 819

Polygon 929 972 982 820 827

Polygon 930 982 987 828 820

Polygon 931 970 826 823 976

Polygon 932 ) 829 826 970 964

Polygon 933 830 968 972 827

Polygon 934 1103 1244 1192 831

Polygon 935 1194 1248 1117 832

Polygon 936 835 1278 1257 833

Polygon 937 ) 1257 1254 1026 833

Polygon 938 1027 1256 1261 834

Polygon 939 ) 1261 1279 836 834

Polygon 940 ) 837 1361 1278 835

Polygon 941 1279 1368 838 836

Polygon 942 ) 1361 837 839 1335

Polygon 943 1368 1333 840 838

Polygon 944 ) 842 1362 1335 839

Polygon 945 ) 1333 1347 841 840

Polygon 946 ) 1347 1379 844 841

Polygon 947 ) 843 1375 1362 842

Polygon 948 845 1398 1375 843

Polygon 949 ) 1379 1399 846 844

Polygon 950 ) 847 1382 1398 845

Polygon 951 ) 1399 1383 848 846

Polygon 952 ) 1388 1382 847 849

Polygon 953 1383 1386 850 848

Polygon 954 ) 1405 1388 849 851

Polygon 955 ) 1406 852 850 1386

Polygon 956 ) 1341 1407 851 854 Polygon 957) 1407 1435 1405 851

Polygon 958) 1414 853 852 1406

Polygon 959) 856 853 1414 1440

Polygon 960) 1338 1341 854 855

Polygon 961) 1377 1338 855 857

Polygon 962) 1443 858 856 1440

Polygon 963) 1381 1377 857 859

Polygon 964) 1445 860 858 1443

Polygon 965) 1381 859 861 1378

Polygon 966 1445 1447 862 860

Polygon 967 1378 861 863 1339

Polygon 968 1447 1449 864 862

Polygon 969; 1339 863 865 1342

Polygon 970 1415 866 864 1449

Polygon 971 1342 865 868 1408

Polygon 972 1415 1410 867 866

Polygon 973 1410 1387 870 867

Polygon 974 1409 868 869 1389

Polygon 975 1409 1454 1408 868

Polygon 976 1389 869 871 1384

Polygon 977 1385 872 870 1387

Polygon 978 1400 1384 871 873

Polygon 979 1401 874 872 1385

Polygon 980 1376 1400 873 875

Polygon 981 1380 876 874 1401

Polygon 982 1363 1376 875 877

Polygon 983 1348 878 876 1380

Polygon 984 1336 1363 877 880

Polygon 985 1334 879 878 1348

Polygon 986 1369 882 879 1334

Polygon 987 1364 1336 880 881

Polygon 988 1280 1364 881 883

Polygon 989 1281 884 882 1369

Polygon 990 1258 1280 883 885

Polygon 991 1262 886 884 1281

Polygon 992 887 1253 1258 885

Polygon 993 1262 1255 888 886

Polygon 994 1222 1303 1253 887

Polygon 995 1255 1251 889 888

Polygon 996 1251 1186 890 889

Polygon 997 1186 1146 891 890

Polygon 998 1070 893 891 1146

Polygon 999 ) 894 1207 1217 892

Polygon 1000 ) 1217 1233 1041 892

Polygon 1001 ) 1070 1032 905 893

Polygon 1002 1172 1207 894 898

Polygon 1003 1095 1205 895 896

Polygon 1004 ) 1159 897 895 1205

Polygon 1005 ) 906 1063 1095 896

Polygon 1006 ) 1159 1129 909 897

Polygon 1007 ) 915 1174 1172 898

Polygon 1008 ) 1111 1198 899 901

Polygon 1009 ) 1053 902 899 1198

Polygon 1010 ) 904 1173 1202 900

Polygon 1011 ) 1147 903 900 1202

Polygon 1012 ) 910 1096 1111 901

Polygon 1013 ) 1053 1142 917 902

Polygon 1014 ) 1147 1151 916 903

Polygon 1015 ) 918 1162 1173 904

Polygon 1016 ) 1029 907 905 1032

Polygon 1017 ) 908 1050 1063 906

Polygon 1018 ) 1029 1033 913 907 Polygon 1019) 914 1048 1050 908

Polygon 1020) 1140 911 909 1129

Polygon 1021) 1104 1096 910 912

Polygon 1022 1140 1124 927 911

Polygon 1023 928 1090 1104 912

Polygon 1024 1030 919 913 1033

Polygon 1025 1051 1048 914 920

Polygon 1026 1137 1174 915 921

Polygon 1027 1134 922 916 1151

Polygon 1028 1135 924 917 1142

Polygon 1029 1132 1162 918 923

Polygon 1030 1030 1035 925 919

Polygon 1031 926 1054 1051 920

Polygon 1032 931 1118 1137 921

Polygon 1033 1134 1080 933 922

Polygon 1034 936 1119 1132 923

Polygon 1035 1135 1091 937 924

Polygon 1036 1034 929 925 1035

Polygon 1037 930 1055 1054 926

Polygon 1038 1113 932 927 1124

Polygon 1039 1065 1090 928 934

Polygon 1040 1034 1064 935 929

Polygon 1041 935 1064 1055 930

Polygon 1042 1081 1118 931 938

Polygon 1043 1113 1105 942 932

Polygon 1044 1061 939 933 1080

Polygon 1045 943 1066 1065 934

Polygon 1046 936 941 1082 1119

Polygon 1047 1125 940 937 1091

Polygon 1048 ) 944 1077 1081 938

Polygon 1049 ) 1061 1047 945 939

Polygon 1050 ) 1125 1120 948 940

Polygon 1051 947 1092 1082 941

Polygon 1052 ) 1106 946 942 1105

Polygon 1053 ) 1067 1066 943 949

Polygon 1054 ) 1062 1077 944 950

Polygon 1055 ) 1042 951 945 1047

Polygon 1056 ) 1106 1144 952 946

Polygon 1057 ) 954 1085 1092 947

Polygon 1058 ) 1098 955 948 1120

Polygon 1059 ) 952 1144 1067 949

Polygon 1060 ) 953 1152 1062 950

Polygon 1061 ) 1042 1152 953 951

Polygon 1062 ) 956 1166 1085 954

Polygon 1063 ) 1098 1166 956 955

Polygon 1064 ) 1192 1277 1222 957

Polygon 1065 ) 1093 1170 958 960

Polygon 1066 ) 1107 959 958 1170

Polygon 1067 ) 1107 1126 967 959

Polygon 1068 ) 966 1099 1093 960

Polygon 1069 ) 1068 1156 961 964

Polygon 1070 ) 1044 963 961 1156

Polygon 1071 ) 1072 1148 962 965

Polygon 1072 ) 1114 968 962 1148

Polygon 1073 ) 969 963 1044 1049

Polygon 1074 ) 970 1083 1068 964

Polygon 1075 ) 971 1073 1072 965

Polygon 1076 ) 973 1086 1099 966

Polygon 1077 ) 1130 974 967 1126

Polygon 1078 ) 1114 1115 972 968

Polygon 1079 ) 1069 975 969 1049

Polygon 1080 ) 1087 1083 970 976 ©

©

© © CO

O

H U α.

rHLnroo-Oioooσ.^-O∞C r ^Ln DrH'^cηorHcs.ro^ nooi^^ o [^ rHi^oi^r^c oi^∞t^∞∞cri∞∞∞cncri^cTicncΛσi^σirHinL^ σirimHmσiOiHfflαioommoimσiHmoσiΛσimσioioHHOOooooHoooooooooooooooooooooooooo r- m Ni^Orπr^t^oo^oorHi^moocnrHr^ooσ^^i^oorHVDrHVDr^ooσiOrHVD-nσiLni^c^ ι^[^∞mco(xi[~_^[^oooooo X)θθ nooocDθoooroσ.σ.^Lno _.< ισισιoθrHθθθ oσiOHOioσimoσxrimmfflomH n ΛmH noiHooσKJiσi nooHOHoooooHooHooHooooooNHOoooHOH

^ -~ ^ CD∞ _~ rH H Ln Lθ CN] rH 00σι . U3 P Crι __π [^ O _^ O CNJ00 ^ C^ [^ C» \l _^ 00C^ NJ C_ θ t^ C0 ^f0( -n '^ rH O 0 σi VD _0 -0C0 ιn00 ^ rH rH 00 ^

OCTlHO. OHrl(JlHO (Tl O H H O O H OO W H HH HOOH O OHO OH H H O O O O O(\l ( . < _ N H N ( N H(M H r. (Mm ) OO O O OOH rH rH rH rH rH rH rH HH H H HH H H H H HH H H HH H HHHHri H H HH H H HH H HH H riH rlHHHH HH H HH HH H

CTl iH .~ C» CT. <0 __J <X> ^C0 _^ a. rH rH C0 _^ C\l -n V0 ^V_D C0<-^ a. O ^ rH O .^ r^CNii^.^^∞r .ooo no .o Nj^∞mo'^-nmσi.omσ^o

01H<Λσ>001rHH(ΛOOHHHσiOOHOO<JlHH0100HOHHOOOHOHOOHOOHOO(.HOMO( riH(.0.(MHOOOOHO rH rH rH rH H H H H H 1-H rH rH rH rH rH rH H H H H rl H H H H H H H H H H H H H H H H H H H H r. H H H H H H H H H H rl rl

rH CN. CO ^ O O t^ OO CriO HCSi rO '^ -nVO I^ ∞ σ. O rH rO ^ LO D .^ 00∞ 00000000000000σ. σ. σ. σ. σ. σ. σ. σ. σ. C3. O O O O OO O O OO rH rH t-H rH r^

OOOO OOO OO OO OO OO OO OOH H HH H HH HH H H HH H H H H H H H H H H H H H HH HH H H HH HH HH H H HH H HHHH H H H H H HH HH H H H H HH H H H H ri H H H H HH H HH H H HH H iHH H H HH H riH H HHHHHHH HH H HH HH

C5 o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

C>DiDiDiDiD^U10^0^&tTiDi&C7itTiC7iDi^D101Di&&&i&&iD^Dil_7iDi0i&

© H H HH HH H H H HHH H H H HH H HrlH H Hr. H H HHH H H H H H H H H H H H H H HrlH H H H H H H H HH H H H H H H H o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

Dj (-. (-. Dj (-. (-. Oj CU .lι Pj (-j l-M l-U (-. l- &ι α. C C^

©

©

© © CO

O

H U α.

•^roooLO^oOrHcs.^vo^^t^.^^σϊ^^'^coooσ^-nco^cr.ooot^r o ro^ot^u_>^'r^Ln,^^∞ o^σ.∞^∞-ncnocr.θLno<y>-n-o^

O O rH O rH O OO rH OO MCSJ OO OOO OO iH H NJ O rH O O rH OO OO O rH rH O rH rH O O rH rH O OO rH O rH OO rH O rH O O O rH O rH O O rH

I H H H rlHHH H HH H H Hri HH H H H H HH H H H H H HHHHH HH H H HH HH H H H H H HH rlHH HH H H HHH H H HHH

O

^ D D_~( JC_ mθl-0^_θLθ_^ nrHCΛCΛOrH_^ Nl(^rO^^ NJCOθr rH-^

^mr ro siLnocovD^'^^rHVD_noo^Ln-nino-O O-nLnc^LO Dovov_D(^

O O O O rH NI rH Sl rH O OO rH rH OO OO O O rH O O OO rH O Orsl O rH O OO OrH O O rH rH O rH O rH rH OO rH rH rH OO O rH rH rH rH rH O rH rH rH

H H H H H HHH H HH H H HHHHH H H H H HHH H H H H H H H H HHH H HHHH H HH HHH H H H H HH H H H HH riHH H

HHHOOHOHHHriOHN(MHHHHHHHHNHHOHNHHH

Figure imgf000081_0001
HHHHHHHHHHHHHHHHHHHHHHriHHHHHHHHH

HHOHHOOHHHHHHHOOOHHHHHHHOHHHO

Figure imgf000081_0002
HHHHHrHHHHHHHHrlHHHHHHHHHHHHriHH c ^-n^.^oocrιθrH \_r^^Lnvo_~∞(_!.θrHC\.r '^-θ^ ^co

HHHHHHHHHHHHHHHHHHrlHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHNt.( N(_ c c c c c c c c c _-! c c c _-: c c a c c c c c c c c c c: c : c c c c _. _. c c c c

C5 o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o tT>U Cr>OϊtτιOιO tJitrιtrιt7iO^O^&Oι&&tτιtJ D.D-D-&CFit7^ >I >I >. >I >. >. >. >. >I >. >. >. >. >. >I >I >I >I . >. >. >Ϊ >I >I >. >I >. >I >I .^

HHHrHr-IHHHHHHHrlHrtHHHHHHHHrlHHHHHHHH HHHHHHHHHHHHHrlHHHHHHHHH HHHHH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 αιαι(-.ι-.<-.αjp.Pjα.θjα.p.α.Pj[-.ι-4α.o.ρ.ι-M<-..^

Polygon 1205) 1193 1100 1130 1179

Polygon 1206) 1193 1200 1138 1100

Polygon 1207) 1116 1189 1176 1101

Polygon 1208 1295 1244 1103 1263

Polygon 1209 1113 1155 1143 1105

Polygon 1210 1106 1105 1143 1144

Polygon 1211 1170 1184 1126 1107

Polygon 1212 1123 1168 1185 1109

Polygon 1213 1185 1189 1116 1109

Polygon 1214 1206 1201 1164 1110

Polygon 1215 1218 1198 1111 1161

Polygon 1216 1169 1155 1113 1124

Polygon 1217 1148 1149 1115 1114

Polygon 1218 1149 1160 1121 1115

Polygon 1219 1296 1264 1117 1248

Polygon 1220 1137 1118 1197 1210

Polygon 1221 1191 1196 1132 1119

Polygon 1222 1178 1120 1125 1175

Polygon 1223 1176 1131 1121 1160

Polygon 1224 1203 1220 1168 1123

Polygon 1225 1140 1187 1169 1124

Polygon 1226 1179 1130 1126 1184

Polygon 1227 1136 1200 1193 1127

Polygon 1228 1141 1214 1199 1128

Polygon 1229 1159 1161 1177 1129

Polygon 1230 1177 1187 1140 1129

Polygon 1231 1176 1189 1145 1131

Polygon 1232 1213 1162 1132 1196

Polygon 1233 1145 1189 1185 1133

Polygon 1234 1185 1168 1163 1133

Polygon 1235 1221 1210 1134 1151

Polygon 1236 1213 1196 1135 1142

Polygon 1237 1216 1200 1136 1167

Polygon 1238 1221 1174 1137 1210

Polygon 1239 1216 1150 1138 1200

Polygon 1240 1223 1157 1139 1214

Polygon 1241 1223 1214 1141 1180

Polygon 1242 1186 1224 1195 1146

Polygon 1243 1231 1208 1147 1202

Polygon 1244 1221 1151 1147 1208

Polygon 1245 1223 1211 1153 1157

Polygon 1246 1211 1232 1204 1153

Polygon 1247 1201 1226 1190 1154

Polygon 1248 1218 1161 1159 1205

Polygon 1249 1213 1209 1173 1162

Polygon 1250 1168 1220 1206 1163

Polygon 1251 1181 1215 1216 1167

Polygon 1252 1221 1208 1172 1174

Polygon 1253 1231 1207 1172 1208

Polygon 1254 ) 1227 1202 1173 1209

Polygon 1255 ) 1182 1211 1223 1180

Polygon 1256 ) 1204 1228 1215 1181

Polygon 1257 1212 1232 1211 1182

Polygon 1258 1251 1269 1224 1186

Polygon 1259 1226 1273 1252 1190

Polygon 1260 1244 1307 1277 1192

Polygon 1261 1282 1309 1248 1194

Polygon 1262 1229 1205 1195 1224

Polygon 1263 1218 1234 1235 1198

Polygon 1264 ) 1235 1239 1227 1198

Polygon 1265 ) 1206 1230 1226 1201

Polygon 1266 ) 1227 1239 1245 1202 ©

©

© © CO

O

H U α.

H H H H H H H H H H H H H H H H ri H H H H H H H H H H H H H

Figure imgf000083_0001
H H H H H H H H H H H H H H H H H H H H H H H H H H H H

H H H H H H H H H H H H H H H H H H H H H H H H H H H H

Figure imgf000083_0002
H H H H H H H H H H H H H H H H H H H H H H H H H H H H

Figure imgf000083_0003

C5 o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

O O t_n U 01 tT* t71 t3. tJ1 U- U. t_n tTi tT» t7* tTi tJϊ 01 D t7> 01 U10.01 U. t71 Oϊ o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o p. p. ι-u α. pj P. &ι i_M &ι α. o. αι .-. P. o. α! (-j Pu θ. ι_j αj i-M &ι ^

© c<_

©

© © ca O

H U α.

rH C\I O '^ [^ Cθ σ. m

Figure imgf000084_0001
HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

Lnιou3 θ^[^ooooθrHcoc^ Dro<_Λ[^ocιoror rH no Dσι DLnocrισo ^

W ^VD rH rH O. O Tl rH rH Cri rHCNI n Ni r ^ ^ LO ^ rH rl '^ NI '^ n iO VD rH ^ - LO rH -O -^

HHHH H H HH HH HHH H H HHH H HH HHHHH HH HH HH HHHHHriHHHH H HH HH H r-HHHH H HH HH HH HH

^ CT> r^ r V0 CNJ H O ^ [^ ∞ ιn ∞ V000 σϊCSl ^ ∞ rH rH Crι O \_ 0] rH H V0.\. [^ C\l U_>C\. rH rH CJ. O CT. CFl rH rH rH O rH C3. Cr>{ . C\_ rH rH -O rH ^ CSl LO C^ \. VO _S_ c . Mror cN.o c c^rocη^romcsi N.Mrop.mromco

Figure imgf000084_0002
HHHHHHHHHHHHHHHHHHHHHHHHHHHrlHH c<_ c<_ cccccαcccccccccccccccccGcccccαcccccccccccc c<_ o &>ot7»ot__oOotτιot7tOooζ_7io01oOϊot_notJ.otT>OootFto01ot_ϊ1oU1ot_rttoT'ooOϊoot_noO^ooooooooooooooooooooooooooooooooooooo

© rl rH H rH H H H μ H ιH H H H H H ιH HH H H H H H r. H H H H μH μ H HH H H rH H HH H μH HH H μ H rlH ιHιHr(H H HH H HrlH H o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o O eu t-j &. t-. i-y p^ ai Qj Ci P. i-q p. j ai .ii . i-M a. p. i-..^

Polygon 1391 1352 1365 1366 1346 Polygon 1392 1390 1396 1379 1347 Polygon 1393 1380 1397 1391 1348 Polygon 1394 1359 1367 1353 1351 Polygon 1395 1371 1365 1352 1355 Polygon 1396 1367 1370 1354 1353 Polygon 1397 1370 1372 1356 1354 Polygon 1398 1357 1373 1371 1355 Polygon 1399 1374 1373 1357 1360 Polygon 1400 1375 1396 1390 1362 Polygon 1401 1391 1397 1376 1363 Polygon 1402 1398 1412 1396 1375 Polygon 1403 1397 1413 1400 1376 Polygon 1404 1416 1417 1377 1381 Polygon 1405 1416 1381 1378 1418 Polygon 1406 1396 1412 1399 1379 Polygon 1407 1401 1413 1397 1380 Polygon 1408 1388 1404 1402 1382 Polygon 1409 1382 1402 1412 1398 Polygon 1410 1412 1402 1383 1399 Polygon 1411 1402 1404 1386 1383 Polygon 1412 1384 1400 1413 1403 Polygon 1413 1403 1411 1389 1384 Polygon 1414 1387 1411 1403 1385 Polygon 1415 1413 1401 1385 1403 Polygon 1416 1421 1406 1386 1404 Polygon 1417 1422 1411 1387 1410 Polygon 1418 1421 1404 1388 1405 Polygon 1419 1422 1409 1389 1411 Polygon 1420 1433 1421 1405 1435 Polygon 1421 1421 1433 1434 1406 Polygon 1422 1434 1440 1414 1406 Polygon 1423 1425 1436 1435 1407 Polygon 1424 1426 1408 1454 1453 Polygon 1425 1454 1409 1422 1456 Polygon 1426 1415 1449 1455 1410 Polygon 1427 1455 1456 1422 1410 Polygon 1428 1418 1446 1444 1416 Polygon 1429 1444 1442 1417 1416 Polygon 1430 1442 1441 1423 1417 Polygon 1431 1424 1448 1446 1418 Polygon 1432 1429 1427 1419 1423 Polygon 1433 1431 1425 1419 1427 Polygon 1434 1432 1428 1420 1426 Polygon 1435 1430 1424 1420 1428 Polygon 1436 1441 1439 1429 1423 Polygon 1437 1430 1450 1448 1424 Polygon 1438 1431 1437 1436 1425 Polygon 1439 1453 1452 1432 1426 Polygon 1440 1429 1439 1438 1427 Polygon 1441 1438 1437 1431 1427 Polygon 1442 1432 1452 1451 1428 Polygon 1443 1451 1450 1430 1428 Polygon 1444 1474 1472 1433 1435 Polygon 1445 1473 1434 1433 1472 Polygon 1446 1476 1440 1434 1473 Polygon 1447 1465 1474 1435 1436 Polygon 1448 1457 1465 1436 1437 Polygon 1449 1438 1461 1457 1437 Polygon 1450 1458 1461 1438 1439 Polygon 1451 1441 1463 1458 1439 Polygon 1452 1477 1443 1440 1476 ©

©

© © CO

O

H U α.

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

Figure imgf000086_0001

HH H riri rlHHHH H HHHH H H H H H H H H H HHH H H rlrlH H HH HH H H iHH H HH HH rl H H H H H HH H H H H HHHH

O-^-0_^CΛrHrH^m( \. C '^'^-nrH^ \_00rH^σ._^_^OOL0r V0 I^ 0^ 0_^_^CD _D00^^ C0LnC0^VDV0 DU3.^_^^k0^_^σι00_^_^∞ ^ .^OC^

H H H H H H HH H HH HHHHH H H H H HH H H H H HH H HH H H H H H rlHH H HH H H HHH H HHH HH rlH HHH H HH H csi^cot-Hoo^σ.cnrHi-HOfn'^cs.r oooocr.σ.-OOLnor^O no^^ ^^[^r~-^^_^ nco-θ^-θLθoooovD^ _3^[^oot^ooσ^[^[^oooooococo _.σι _^

Figure imgf000086_0002
HHHHHHHHHriHHHHHHHHHHH

C5 o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

CPt_rt _πtTi _flD1t7itJ1tJit7>t7»t7,tT'l_πt7i tTιtT)tJi 3^tT|t7it_fit t_ϊt^ o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

(_ι ft Dj θ D.ft θ4 (-ι ft Λ C. &(αι Dj l-( D. Dj A ft . D. ft C. ft α( &( Oi ft (lι ft

Polygon 1515 1507 1530 1532 1509 Polygon 1516 1529 1508 1510 1528 Polygon 1517 1511 1509 1532 1531 Polygon 1518 1528 1510 1512 1526 Polygon 1519 1513 1511 1531 1524 Polygon 1520 1526 1512 1514 1521 Polygon 1521 1515 1513 1524 1522 Polygon 1522 1516 1518 1521 1514 Polygon 1523 1522 1518 1516 1515 Polygon 1524 1517 1519 1535 1533 Polygon 1525 1537 1520 1517 1533 Polygon 1526 1518 1522 1538 1534 Polygon 1527 1518 1534 1536 1521 Polygon 1528 1539 1535 1519 1525 Polygon 1529 1523 1520 1537 1541 Polygon 1530 1540 1526 1521 1536 Polygon 1531 1524 1542 1538 1522 Polygon 1532 1541 1551 1530 1523 Polygon 1533 1542 1524 1531 1552 Polygon 1534 1543 1539 1525 1527 Polygon 1535 1544 1528 1526 1540 Polygon 1536 1547 1543 1527 1529 Polygon 1537 1547 1529 1528 1544 Polygon 1538 1551 1548 1532 1530 Polygon 1539 1532 1548 1552 1531 Polygon 1540 1533 1535 1549 1545 Polygon 1541 1555 1537 1533 1545 Polygon 1542 1556 1546 1534 1538 Polygon 1543 1550 1536 1534 1546 Polygon 1544 1553 1549 1535 1539 Polygon 1545 1554 1540 1536 1550 Polygon 1546 1555 1564 1541 1537 Polygon 1547 1542 1565 1556 1538 Polygon 1548 1562 1553 1539 1543 Polygon 1549 1563 1544 1540 1554 Polygon 1550 1564 1558 1551 1541 Polygon 1551 1552 1559 1565 1542 Polygon 1552 1570 1562 1543 1547 Polygon 1553 1570 1547 1544 1563 Polygon 1554 1568 1560 1545 1549 Polygon 1555 1566 1555 1545 1560 Polygon 1556 1567 1561 1546 1556 Polygon 1557 1569 1550 1546 1561 Polygon 1558 1551 1558 1557 1548 Polygon 1559 1557 1559 1552 1548 Polygon 1560 1549 1553 1572 1568 Polygon 1561 1550 1569 1574 1554 Polygon 1562 1578 1582 1553 1562 Polygon 1563 1582 1591 1572 1553 Polygon 1564 1574 1592 1584 1554 Polygon 1565 1579 1563 1554 1584 Polygon 1566 1573 1564 1555 1566 Polygon 1567 1575 1567 1556 1565 Polygon 1568 1576 1571 1557 1558 Polygon 1569 1577 1559 1557 1571 Polygon 1570 1564 1583 1576 1558 Polygon 1571 1577 1585 1565 1559 Polygon 1572 1568 1599 1596 1560 Polygon 1573 1596 1598 1566 1560 Polygon 1574 1567 1601 1597 1561 Polygon 1575 1597 1600 1569 1561 Polygon 1576 1581 1578 1562 1570 ©

©

© © CO

O

H U α.

crι<θLθ o[^cocrirHrHrH_Nj^rocoσ\_^ovDcsιc^u_>^Ln o^<x>_n _^_^∞vo^ _3vor~.^σ.ooσι.^.^∞∞∞∞∞∞∞∞oσ.ocr><yι<_Λσι<^ ι -ι_ιu._i-i_ι-.-.-.^u)-.-i_ι_n_iLn-. ιnιn-.-iu)Λ Dιnιo-.tn-ι-. Λ

H H H H HH r. H H H H H HHHHH H H HHHH H H H H HHH H H H H HH HH H HHH H

M^LθMrH<Tι^θ[^( rn^ n \!rHr ιn NjrH[^c3.ooroθrH or \joo( ωωω^oσl^ω ^^ωcococo[D(Λm∞oDσlC OlmσlHmHOOHOHoooooooo inioio-n^LOLO OLnLnLOin-nLO n-n O O-o-nLnL^

H H H H H HHH HH H H HH HHH HH H HH H H H H rlHH rlH H HHH rlHH H HH H H

Figure imgf000088_0001

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH rHθr ooιocsιo Dot^^ooσirH^cri n rι_^o^ NioooθrHrH riCjrHr ^MLnLn

C0Cr>CT-0-.^[^Or^tt>OOOOC0000000CDCX>Cr.00Cri00rHrHrHrH<_nrHO

_o-θ n n-θ n^-o-o DvD o(£i_jπ_θ π n nLθLθLθ-θ-o^ )^ 3_^ riHHHHHHHHHHHHHHHHHriHHHHHHHHHHriHHHHHrlHHHHHHHH

_^∞CΛθrHc\]po^Lnvø_^ »σ>θrHCN-ro^LnvD_^∞σ.θrH \_f ^

[^_^[^C00000C0<X>00CD0000aDa.Cr.a^0.<_^Cr.CriCr.CTl<y.OOOO iΛinLO-n-nLnLΩ-oinLn πLn-n-nLnunijOLn-OLnin

HHHHHHHHHHHHHHHHHrlHHHHHHHHHHHHHHHHHHHHHHriHH

G G G C G C C C C C C <-. C C C G G C C C ._ .-_ G C. G C C G C fi ^

C5 o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

0^ 7*t7it^tJ10^t7>01t_n0^t7> 7it7>t^U^O^C^trtt_nU^t7»t7>tJi0^t7*t71tTiU^01t^

© HH H HH rlH H rl H HH H H HH H H H rH HH H H rH H HHH HH HH H HH H rlHHHH H H o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o &ι Pj p. α. p. o. θj C_ι α. ι-. p. ι-. &ι αι α. Pj α. o. P. Pj Cι i_-ι .^

Polygon 1639) 1653 1647 1635 1629

Polygon 1640) 1644 1650 1632 1630

Polygon 1641) 1633 1651 1645 1631

Polygon 1642) 1632 1650 1654 1636

Polygon 1643) 1655 1651 1633 1637

Polygon 1644 1646 1634 1642 1648

Polygon 1645 1643 1635 1647 1649

Polygon 1646 1636 1654 1658 1638

Polygon 1647 1637 1639 1659 1655

Polygon 1648 1640 1638 1658 1656

Polygon 1649 1659 1639 1641 1657

Polygon 1650 1642 1640 1656 1648

Polygon 1651 1657 1641 1643 1649

Polygon 1652 1660 1662 1644 1652

Polygon 1653 1662 1667 1650 1644

Polygon 1654 1651 1669 1663 1645

Polygon 1655 1661 1653 1645 1663

Polygon 1656 1665 1646 1648 1666

Polygon 1657 1660 1652 1646 1665

Polygon 1658 1661 1664 1647 1653

Polygon 1659 1649 1647 1664 1668

Polygon 1660 1670 1666 1648 1656

Polygon 1661 1649 1668 1671 1657

Polygon 1662 1672 1654 1650 1667

Polygon 1663 1673 1669 1651 1655

Polygon 1664 1674 1658 1654 1672

Polygon 1665 1675 1673 1655 1659

Polygon 1666 1670 1656 1658 1674

Polygon 1667 1657 1671 1675 1659

Polygon 1668 1676 1660 1665 1678

Polygon 1669 1662 1660 1676 1679

Polygon 1670 1677 1661 1663 1681

Polygon 1671 1677 1680 1664 1661

Polygon 1672 1667 1662 1679 1683

Polygon 1673 1681 1663 1669 1685

Polygon 1674 1668 1664 1680 1684

Polygon 1675 1678 1665 1666 1682

Polygon 1676 1686 1682 1666 1670

Polygon 1677 ) 1688 1672 1667 1683

Polygon 1678 1668 1684 1687 1671

Polygon 1679 1689 1685 1669 1673

Polygon 1680 1690 1686 1670 1674

Polygon 1681 ) 1691 1675 1671 1687

Polygon 1682 ) 1690 1674 1672 1688

Polygon 1683 ) 1691 1689 1673 1675

Polygon 1684 ) 1692 1676 1678 1696

Polygon 1685 1679 1676 1692 1694

Polygon 1686 ) 1693 1677 1681 1695

Polygon 1687 ) 1680 1677 1693 1697

Polygon 1688 ) 1696 1678 1682 1698

Polygon 1689 ) 1683 1679 1694 1699

Polygon 1690 ) 1684 1680 1697 1701

Polygon 1691 ) 1695 1681 1685 1700

Polygon 1692 ) 1704 1698 1682 1686

Polygon 1693 ) 1702 1688 1683 1699

Polygon 1694 ) 1705 1687 1684 1701

Polygon 1695 ) 1685 1689 1703 1700

Polygon 1696 ) 1704 1686 1690 1706

Polygon 1697 ) 1687 1705 1707 1691

Polygon 1698 ) 1706 1690 1688 1702

Polygon 1699 ) 1707 1703 1689 1691

Polygon 1700 ) 1696 1710 1712 1692 ©

©

© © CO

O

H U α.

rH rH L^ -^ -^ -^ H H rl H H H HH H H H HriHH H H H H H

Figure imgf000090_0001
oo o oo '^ L^ in -OCsl -O Sl VO
Figure imgf000090_0002
jLn(^(_^_^oorH^θrH_n^-θ^ιo^θrHr ovD nιnoo[^,^o _nrH jcrι^_^ rH σ^ rHσ rH CT. rH rH C\_ (Λ] rH CSl C\J<\_ C\. rH rH rH C\. !→<η rH r r rH ^ \]

[^ vD i^ vo _^ ^ r- _^ [^ _^ -^ -^ -^ _^ [^ _^ t^ -^ _^ -^ _^ _~ i^ _^ [^ [^ _~ _^ -~ _^ _^ _^ [^ r^ _^ _^ r^ _^ r^ _^

r— r— r— r~- r~- r~- r— r— r~-

Figure imgf000090_0003

C5

Figure imgf000090_0004

© ©

© CO

O

H U α.

_OVDrH^σ._^_^^_^OrHCTl_nVDL0OrH^00V0rHmrH jr~^r __)_^U300Criσi00O^_^ vco∞^-__.^r^^ιn-. oωιπo3r~ -._^-i^r^ω^^σiω_^ωvo_^r^_ ωcoo_ t^o∞ jσι∞o3CD∞ r^r^r^_^r^_^ι^[^_^_^r^oo_^_^_^ι^[^_^_^(^_^_^-^-^_^-~[^_^[^_^r~_^r^_^co_^_^co_^cor^_^_^

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH o rH^LncriυD.^σioo ri^rH Njro^LOVDi^σD DσiOrH-nvDm Nj-ooomcooo ^

HHHHHHHHHHHHHHHHHHHHrlHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH Hθr-vo D -^^-n^-o^rH^t^θrH \ι^or^-^^oo^^^< moooo_^_^σ.σι \ιro^

Hoo∞ _^vD^^^σ.σ.ΦHco-^σ.^~^-)or-'iι^oo^_lHHσι(_l^o^H(_.∞σlσlωoσl_^looHHOOHHOHH^ιHOHH oor^_^ι^r^-^r^ι^[^_^r^[^oo[^_^[^_^[^ooι^ι^ι^cooor^oooo_^-^_^co_^co_^ι^r^[~-^oθ-^∞

HHriHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHrlHHHHHHHHHHHHHHHHHH c^θrHooθrHθ( θoo-oc ^θrHσιo∞^∞σ.σ.[^∞om_^c\_cn^ u. J^^^ ^ωωoooo^HH(_.mmoωoD∞ooΦ^ωHHHoo∞(»HooHOO noo(\IΛlHH(loσloσloσιHOOHHOHOH

HHH H H H H HH H HHHH HH H HHri H H H H HH HHH HHHHH HH rl H rlH HH H H H H H H HH HH HHHH H

C5

© o

Figure imgf000091_0001

Table 2 nff version 2 .1 null

1822

0.0000 0 .3380 0.0000

0.0300 0 .3365 0.0000

-0.0308 0 .3330 0.0000

0.0000 0 .3320 0.0340

0.0000 0 .3320 -0.0340

0.0284 0 .3310 0.0340

0.0284 0 .3310 -0.0340

-0.0290 0 .3275 0.0340

-0.0290 0 .3275 -0.0340

0.0574 0 .3252 0.0000

0.0541 0 .3205 0.0340

0.0541 0 .3205 -0.0340

-0.0598 0. .3135 0.0000

0.0001 0 .3133 0.0567

0.0000 0, .3132 -0.0575

0.0240 0 .3121 0.0554

0.0240 0, .3120 -0.0567

0.0713 0, .3110 0.0000

-0.0560 0 .3100 0.0340

-0.0560 0. .3100 -0.0340

-0.0240 0 .3090 0.0543

-0.0240 0, .3090 -0.0552

0.0679 0, .3080 0.0340

0.0679 0 .3080 -0.0340

0.0479 0. .3050 0.0540

0.0479 0, .3050 -0.0540

-0.0420 0. .2980 0.0520

-0.0420 0. .2980 -0.0520

0.0580 0, .2970 0.0520

0.0580 0. .2970 -0.0520

0.0830 0. .2905 0.0000

0.0782 0, .2892 0.0340

0.0782 0. .2892 -0.0340

0.0625 0, .2852 0.0532

0.0625 0. .2852 -0.0536

-0.0763 0. .2845 0.0000

-0.0720 0. .2830 0.0340

-0.0720 0. .2830 -0.0340

0.0440 0. .2800 0.0633

0.0440 0. .2800 -0.0633

0.0240 0. .2755 0.0690

0.0240 0. .2755 -0.0690

0.0000 0. .2754 0.0700

-0.0240 0. .2754 0.0670

-0.0521 0. .2754 0.0560

-0.0521 0. .2754 -0.0560

-0.0240 0. .2754 -0.0670

0.0000 0. .2754 -0.0700

0.0871 0. .2599 0.0340 0.0871 0.2599 -0.0340

0.0698 0 .2569 0.0551

0.0698 0 .2569 -0.0551

0.0947 0 .2534 0.0000

0.0000 0 .2516 0.0720

0.0240 0 .2516 0.0715

-0.0240 0 .2516 0.0700

0.0420 0 .2516 0.0670

-0.0573 0 .2516 0.0580

-0.0770 0 .2516 0.0340

-0.0816 0. .2516 0.0000

-0.0770 0 .2516 -0.0340

-0.0573 0. .2516 -0.0580

0.0420 0 .2516 -0.0670

-0.0240 0. .2516 -0.0700

0.0240 0, .2516 -0.0715

0.0000 0. .2516 -0.0720

0.0907 0, .2478 0.0340

0.0907 0. .2478 -0.0340

0.0869 0, .2451 0.0429

0.0869 0 .2451 -0.0429

0.0953 0, .2449 0.0223

0.0953 0. .2449 -0.0223

0.0922 0, .2412 0.0340

0.0922 0, .2412 -0.0340

0.0961 0, .2402 0.0184

0.0961 0. .2402 -0.0184

0.0837 0. .2389 0.0470

0.0837 0, .2389 -0.0470

0.0757 0. .2355 0.0540

0.0971 0, .2355 0.0000

0.0757 0. .2355 -0.0540

0.0893 0. .2350 0.0340

0.0893 0. .2350 -0.0340

0.0907 0. .2337 0.0205

0.0907 0, .2337 -0.0205

0.0834 0. .2331 0.0448

0.0834 0, .2331 -0.0448

0.0772 0. .2293 0.0497

0.0772 0. .2293 -0.0497

0.0896 0. ,2290 0.0102

0.0896 0. .2290 -0.0102

0.0821 0. .2285 0.0340

0.0821 0. .2285 -0.0340

0.0637 0. .2284 0.0592

0.0637 0. .2284 -0.0592

0.0814 0. .2276 0.0388

0.0814 0. .2276 0.0276

0.0814 0. .2276 -0.0276

0.0814 0. .2276 -0.0388

-0.0118 0. .2255 0.0764

-0.0118 0. .2255 -0.0764

0.0934 0. ,2254 0.0000

0.0779 0. ,2253 0.0454

0.0779 0. .2253 -0.0454

0.0829 0. ,2250 0.0340 0.0829 0.2250 -0.0340

0.0888 0.2249 0.0070

0.0888 0.2249 -0.0070

0.0793 0.2242 0.0194

0.0793 0.2242 -0.0194

0.0814 0.2241 0.0275

0.0814 0.2241 -0.0275

0.0814 0.2240 0.0405

0.0814 0.2240 -0.0405

0.0692 0.2239 0.0531

0.0692 0.2239 -0.0531

-0.0122 0.2222 0.0803

-0.0122 0.2222 -0.0803

-0.0274 0.2211 0.0764

-0.0274 0.2211 -0.0764

-0.0240 0.2210 0.0700

0.0732 0.2210 0.0492

0.0814 0.2210 0.0410

0.0835 0.2210 0.0340

-0.0756 0.2210 0.0340

0.0814 0.2210 0.0270

0.0779 0.2210 0.0162

0.0898 0.2210 0.0061

0.0940 0.2210 0.0000

-0.0806 0.2210 0.0000

0.0898 0.2210 -0.0061

0.0779 0.2210 -0.0162

0.0814 0.2210 -0.0270

0.0835 0.2210 -0.0340

-0.0756 0.2210 -0.0340

0.0814 0.2210 -0.0410

0.0732 0.2210 -0.0492

-0.0240 0.2210 -0.0700

0.0000 0.2209 0.0720

0.0240 0.2209 0.0715

0.0400 0.2209 0.0670

0.0604 0.2209 0.0601

-0.0569 0.2209 0.0580

0.0684 0.2209 0.0537

0.0684 0.2209 -0.0537

-0.0569 0.2209 -0.0580

0.0604 0.2209 -0.0601

0.0400 0.2209 -0.0670

0.0240 0.2209 -0.0715

0.0000 0.2209 -0.0720

-0.0249 0.2192 0.0815

-0.0249 0.2192 -0.0815

0.0689 0.2186 0.0534

0.0689 0.2186 -0.0534

0.0801 0.2179 0.0143

0.0801 0.2179 -0.0143

-0.0043 0.2177 0.0748

-0.0043 0.2177 -0.0748

0.0774 0.2167 0.0466

0.0774 0.2167 -0.0466

0.0814 0.2163 0.0400

Figure imgf000095_0001

ON

o o C 00 o σ. LD VO CN o <tf "tf 00 o o o CO o CN in CO vo r~ σ. cτι o σ. ro in CN [ o vo ro CN CN o 00 <tf ^ VD ^ O rH rO -Φ CN O VO OO O OO σ. o o t-- σ

-# ω ( <tf LO r- ID o σ. in σι ι CN ro r- CN rH o ^t< ro in oo ro CN CN 00 o ^f ro ro cN H Vo _n o _- σ. H o r- o σ. >

O CN o ro r- o O o in o ro C O O H O in ro o o O CN O t~- vo o < o o o in O l O H O o o o •* o

• o • o o O o • o o o O • o o • O • o o o • o • o • O • o • o o o • o • o o o o • • O o • o o o • o • o o o o • o • o ■ σ • o o i o 1 o o oo 1 O 1 i o o 1 1 o O I o o I I O I o o 1 o I I I o I O I O I O I o o I

ro oo ω o o ro in in r n r^ c^ cD oo oo oo r^ r^ m ^ '^ ^ '^ o o σi σi o o ^ ^ i ^ r^ r^ in in i in in m vo i i in i ^ ^ ^ ^ 'tf M oj cN CN N CN r^ cN CN H H H H O o oo ∞ ro oo ∞ co r^ t^ D o o Ln i i^

H H H H H H H H H H H H H H H H H H H H H H H H H H O O O O O O O O O O O O O O O O O O O O O O O O θ σ. σ. σ. σ. σ. C CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN N CN CN CN CN CN CN CN C CN CN CN CN CN CN CN CN CN CN

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

C5 <tf CN CN

CN 00 00

O l r-

H O O

Figure imgf000095_0002
o O O

-0.0199 0..1955 0.0731

-0.0199 0. .1955 -0.0731

-0.0502 0. .1952 0.0520

0.0931 0. .1952 0.0119

0.0931 0. .1952 -0.0119

-0.0502 0. ,1952 -0.0520

0.0000 0. .1950 0.0699

0.0240 0. .1950 0.0685

0.0400 0. .1950 0.0670

0.0400 0, .1950 -0.0670

0.0240 0. .1950 -0.0685

0.0000 0. .1950 -0.0699

-0.0221 0, .1946 0.0657

-0.0221 0, .1946 -0.0657

-0.0249 0. .1938 0.0753

-0.0249 0. .1938 -0.0753

0.1106 0, .1935 0.0000

0.0909 0, .1932 0.0155

0.0909 0. .1932 -0.0155

0.0870 0, .1931 0.0307

0.0870 0, .1931 -0.0307

-0.0265 0, .1928 0.0684

-0.0265 0. .1928 -0.0684

-0.0687 0, .1921 0.0000

-0.0638 0, .1918 0.0300

-0.0638 0. .1918 -0.0300

-0.0095 0, .1913 0.0690

-0.0095 0. .1913 -0.0690

0.0948 0. .1905 0.0125

0.0948 0, .1905 -0.0125

0.1063 0, .1900 0.0085

0.1063 0, .1900 -0.0085

0.0580 0, .1896 0.0624

0.0580 0, .1896 -0.0624

0.0919 0, .1895 0.0146

0.0919 0, .1895 -0.0146

0.1138 0, .1885 0.0000

-0.0139 0, .1879 0.0704

-0.0139 0, .1879 -0.0704

0.0890 0, .1878 0.0201

0.0890 0, .1878 -0.0201

0.0935 0, .1875 0.0161

0.0935 0, .1875 -0.0161

0.1133 0 .1870 0.0038

0.1133 0, .1870 -0.0038

0.1006 0, .1867 0.0122

0.1006 0, .1867 -0.0122

0.0901 0, .1865 0.0185

0.0901 0, .1865 -0.0185

0.1166 0, .1842 0.0000

0.1158 0, .1840 0.0049

0.1158 0, .1840 -0.0049

0.1112 0, .1832 0.0103

0.1112 0 .1832 -0.0103

-0.0131 0, .1830 0.0642

-0.0131 0, .1830 -0.0642 0.1034 0.1827 0.0128

0.1034 0. 1827 -0.0128

0.0707 0. 1824 0.0546

0.0707 0. 1824 -0.0546

0.0926 0. ,1819 0.0184

0.0926 0. ,1819 -0.0184

0.0889 0. ,1807 0.0206

0.0889 0. ,1807 -0.0206

-0.0157 0. ,1805 0.0732

-0.0157 0. ,1805 -0.0732

-0.0044 0. ,1800 0.0660

-0.0121 0. ,1800 0.0637

-0.0121 0. ,1800 -0.0637

-0.0044 0. .1800 -0.0660

0.1079 0. .1798 0.0068

0.1079 0. .1798 -0.0068

0.1152 0. ,1797 0.0036

0.1152 0. .1797 -0.0036

0.1111 0. .1796 0.0091

0.1111 0. .1796 -0.0091

0.1094 0. .1795 0.0045

0.1158 0. .1795 0.0000

0.1094 0. .1795 -0.0045

-0.0171 0. .1793 0.0683

0.1032 0. .1793 0.0087

0.1032 0. .1793 -0.0087

-0.0171 0. .1793 -0.0683

0.1106 0. .1791 0.0084

0.1106 0. .1791 -0.0084

0.0500 0, .1790 0.0630

0.1041 0. .1790 0.0117

0.1041 0, .1790 -0.0117

0.0500 0. .1790 -0.0630

0.0830 0. .1789 0.0376

0.0830 0, .1789 -0.0376

0.1035 0, .1785 0.0101

0.1035 0. .1785 -0.0101

0.1048 0, .1784 0.0042

0.1048 0, .1784 -0.0042

0.0866 0, .1783 0.0243

0.1130 0. .1783 0.0025

0.1130 0, .1783 -0.0025

0.0866 0, .1783 -0.0243

0.1144 0, .1781 0.0000

-0.0156 0, .1775 0.0599

-0.0156 0, .1775 -0.0599

0.1067 0, .1770 0.0023

0.1067 0, .1770 -0.0023

0.0995 0, .1769 0.0103

0.0995 0, .1769 -0.0103

0.1077 0, .1764 0.0000

0.0906 0, .1763 0.0188

0.0942 0, .1763 0.0172

0.0942 0, .1763 -0.0172

0.0906 0 .1763 -0.0188

0.0998 0, .1761 0.0047 0.0998 0.,1761 -0.0047

0.0982 0. ,1750 0.0126

0.0982 0. .1750 -0.0126

0.0000 0. .1746 0.0663

0.0240 0. .1746 0.0655

0.0400 0. ,1746 0.0640

0.0400 0. .1746 -0.0640

0.0240 0. .1746 -0.0655

0.0000 0. .1746 -0.0663

0.0998 0. .1740 0.0038

0.0998 0. .1740 -0.0038

0.0995 0. .1737 0.0000

0.0955 0. .1733 0.0139

0.0955 0. .1733 -0.0139

-0.0378 0. .1724 0.0400

-0.0378 0. .1724 -0.0400

0.0997 0. .1722 0.0040

0.0995 0. .1722 0.0000

-0.0535 0. .1722 0.0000

0.0997 0. .1722 -0.0040

-0.0497 0. .1721 0.0240

-0.0497 0. .1721 -0.0240

-0.0063 0. .1705 0.0692

-0.0063 0. .1705 -0.0692

-0.0123 0. .1703 0.0705

-0.0123 0. .1703 -0.0705

-0.0048 0. .1688 0.0674

-0.0048 0. .1688 -0.0674

-0.0129 0. .1687 0.0653

-0.0129 0, .1687 -0.0653

0.0600 0, .1670 0.0571

0.0600 0. .1670 -0.0571

-0.0192 0. .1668 0.0530

-0.0192 0. .1668 -0.0530

0.0938 0. .1656 0.0166

0.0938 0. .1656 -0.0166

0.0992 0. .1651 0.0057

0.0992 0. .1651 0.0000

0.0992 0. .1651 -0.0057

0.0000 0. .1637 0.0605

0.0000 0. .1637 -0.0605

0.0821 0. .1635 0.0283

0.0821 0. .1635 -0.0283

0.0751 0. .1625 0.0416

0.0751 0. .1625 -0.0416

0.1005 0. .1555 0.0060

0.1005 0. .1555 -0.0060

0.1006 0. .1548 0.0000

0.0938 0. .1538 0.0174

0.0938 0. .1538 -0.0174

0.0000 0. .1530 0.0563

0.0000 0. .1530 -0.0563

0.0088 0. .1528 0.0630

0.0088 0. .1528 -0.0630

0.0961 0. .1516 0.0057

0.0961 0, .1516 -0.0057 0.0967 0.1514 0.0000

0 .0913 0 .1512 0.0153

0 .0913 0 .1512 -0.0153

0 .0962 0 .1504 0.0055

0 .0967 0 .1504 0.0000

0 .0962 0 .1503 -0.0055

0 .0240 0 .1500 0.0618

0, .0790 0 .1500 0.0296

0, .0805 0 .1500 0.0268

0, .0805 0 .1500 -0.0268

0, .0790 0 .1500 -0.0296

0 .0240 0 .1500 -0.0618

0, .0912 0 .1490 0.0154

0, .0912 0 .1490 -0.0154

0, .0961 0 .1487 0.0061

0, .0967 0 .1487 0.0000

0, .0961 0 .1486 -0.0061

0, .0410 0, .1480 0.0570

0. .0410 0, .1480 -0.0570

0. .0688 0, .1474 0.0418

0. .0688 0, .1474 -0.0418

0. .0919 0, .1456 0.0179

0. .0919 0. .1455 -0.0179

0. .0988 0. .1447 0.0000

0. .0984 0, .1445 0.0075

0, .0984 0, .1445 -0.0075

0. .0873 0. .1419 0.0177

0. .0872 0, .1419 -0.0177

0. .0938 0, .1400 0.0000

0. .0923 0. .1397 0.0069

0. .0923 0, .1397 -0.0069

0. .0150 0. .1391 0.0550

0. .0150 0. .1391 -0.0550

0. .0783 0. .1373 0.0246

0. .0783 0. .1373 -0.0246

0. ,0922 0. .1351 0.0047

0. ,0922 0. .1351 -0.0047

0. ,0936 0. ,1349 0.0000

0. .0872 0. .1316 0.0169

0. ,0872 0. .1316 -0.0169

0. ,0240 0. .1315 0.0497

0. ,0240 0. ,1315 -0.0497

0. 0917 0. ,1298 0.0092

0. 0917 0. ,1298 -0.0092

0. 0934 0. ,1295 0.0000

0. 0130 0. 1290 0.0473

-0.0360 0. 1290 0.0352

-c 1.0360 0. 1290 -0.0352

0. 0130 0. 1290 -0.0473

Figure imgf000099_0001

-c 1.0444 0. 1287 -0.0240

Figure imgf000099_0002

0. 0430 0. 1274 0.0430

0. 0644 0. 1274 0.0342

0. 0644 0. 1274 -0.0342

0. 0430 0. 1274 -0.0430 -0.0191 0.,1259 0.0474

-0.0191 0. ,1259 -0.0474

0.0000 0. ,1192 0.0516

0.0000 0. .1192 -0.0516

0.0814 0. .1191 0.0214

0.0814 0. .1191 -0.0214

0.0884 0. .1172 0.0102

0.0884 0. .1172 -0.0102

0.0905 0. .1171 0.0000

0.0240 0. .1160 0.0331

0.0240 0. .1160 -0.0331

0.0470 0. .1130 0.0289

0.0470 0. .1130 -0.0289

0.0736 0. .1126 0.0189

0.0736 0. .1126 -0.0189

0.0639 0. .1115 0.0246

0.0639 0. .1115 -0.0246

0.0782 0. .1082 0.0097

0.0782 0. .1082 -0.0097

0.0379 0. .1073 0.0127

0.0379 0. .1073 -0.0127

0.0508 0. .1066 0.0103

0.0508 0. .1066 -0.0103

0.0794 0. .1064 0.0000

0.0650 0. .1061 0.0099

0.0650 0, .1061 -0.0099

0.0130 0, .1060 0.0412

0.0130 0, .1060 -0.0412

0.0432 0. .1054 0.0000

0.0553 0, .1043 0.0000

0.0672 0, .1041 0.0000

0.0235 0, .0997 0.0287

0.0235 0, .0997 -0.0287

-0.0220 0, .0975 0.0474

-0.0382 0, .0975 0.0349

-0.0448 0, .0975 0.0239

-0.0488 0, .0975 0.0000

-0.0448 0, .0975 -0.0240

-0.0382 0, .0975 -0.0359

-0.0220 0, .0975 -0.0474

0.0000 0 .0930 0.0511

0.0000 0, .0930 -0.0511

0.0389 0, .0919 0.0109

0.0389 0. .0919 -0.0109

0.0428 0 .0909 0.0000

0.0130 0, .0850 0.0419

0.0130 0, .0850 -0.0419

0.0250 0, .0802 0.0283

0.0250 0 .0802 -0.0283

0.0372 0 .0759 0.0104

0.0372 0, .0759 -0.0103

0.0000 0, .0753 0.0558

0.0000 0 .0753 -0.0558

0.0404 0, .0750 0.0000

-0.0305 0, .0738 0.0528

-0.0305 0 .0738 -0.0528 -0.0474 0.,0701 0.0410

-0.0474 0. .0701 -0.0410

-0.0544 0. ,0668 0.0239

-0.0545 0. .0668 -0.0239

-0.0605 0. .0655 0.0000

0.0180 0. ,0596 0.0443

0.0180 0. ,0596 -0.0443

0.0000 0. ,0563 0.1745

0.0000 0. .0563 -0.1745

0.0000 0. .0555 0.0948

0.0000 0. .0555 -0.0948

0.0000 0. .0546 0.2059

0.0000 0. .0546 -0.2059

0.0000 0. .0507 0.1336

0.0000 0. .0507 -0.1336

0.0329 0. .0498 0.0299

0.0329 0. .0498 -0.0299

-0.0519 0. .0460 0.0994

-0.0519 0. .0460 -0.0994

0.0444 0. .0449 0.0104

0.0444 0. .0449 -0.0103

0.0451 0. .0447 0.0000

0.0391 0. .0425 0.1745

-0.0458 0. .0425 0.1745

0.0391 0. .0425 -0.1745

-0.0458 0. .0425 -0.1745

0.0391 0. .0399 0.2059

-0.0445 0. .0399 0.2059

0.0391 0. .0399 -0.2059

-0.0445 0, .0399 -0.2059

0.0000 0, .0381 0.2698

0.0000 0. .0381 -0.2698

0.0395 0. .0379 0.1376

-0.0489 0. .0379 0.1376

0.0395 0, .0379 -0.1376

-0.0489 0, .0379 -0.1376

0.0000 0. .0370 0.5132

0.0000 0. .0370 -0.5132

0.0000 0. .0333 0.3513

0.0000 0, .0333 -0.3513

0.0000 0, .0316 0.4071

0.0000 0, .0316 -0.4071

0.0000 0. .0313 0.4517

0.0000 0. .0313 -0.4517

0.0399 0, .0312 0.0947

0.0399 0, .0312 -0.0947

0.0275 0, .0279 0.2698

-0.0444 0, .0279 0.2698

0.0275 0. .0279 -0.2698

-0.0444 0. .0279 -0.2698

-0.0354 0, .0272 0.5132

-0.0354 0, .0272 -0.5132

0.0000 0. .0271 0.5968

0.0255 0. .0271 0.5132

0.0255 0, .0271 -0.5132

0.0000 0, .0271 -0.5968 O O I O I I O I O I I O o 1 1 1 1 o o o o o o o O O O O o 1 1 1 1 o o o o o 1 o o 1 1 1 1 o o o o 1 1 • • O • O O • O • o o • o o o o o o o o . . . . . o . . o o o o . . . . o o o o - o • • o • o • • o o . . . . o o o o o o o o o o o • . . . o o o o o . o o . . . o o o o •

(-"• O O H O O O O O O O O o o o o o o o o o o o o o o o o to t o o o o to σ. to I-1 M o σ. σ. o o o o t t Ul Ul o o σi o μ μ μ μ ω μ ifl H μ ui Ul o o o o o o o o o o o o o o o t to OJ OJ _-» 00 M vo vo ~J 00 00 -J _ 0J 0J σ. σ. 0. σ. -J ^]

VD O _> 0) Ul (Ji θ vl ι. O l^ _p» o rf* >t vo o o o o o o o o o rfi ff> to to *> d^ ^ ^ H OJ H oo 00 vo 00 00 σ> σ. *> ^ -J -J 00 00 H H

OJ OJ (^ OJ _o σ. O. DO ω J Ul in 00 CD σ_ σ. σ. Ul Ul rf^ rf

o o o o o o o o o o o o o o o o o o o o o o o o o o o o oo o o o o oo oo o o o o o o o o oo o o o o o o o o o o o o o o o o o o oo o o o o o o o o o o

H H M M M t _ M tO _ oj J θJ M

O H H H

Figure imgf000102_0001

O I O I O I o

• o o o . o . o . o

CTv • • . 0J . 0J • o • o

-0 -J ι 0J ui 0J Ul o Ul o Ul o σi I-1 Ul H Ul H Ul t Ul vo o 0J σ. M 0J l-> OJ to H vo σi oo to

Figure imgf000102_0002
0J 0J 00

Figure imgf000102_0003

I I I I I I I O I O I o 1 1 1 1 o 1 o 1 o o 1 o o 1 o 1 1 o o 1 1 o o 1 o o o o 1 o 1 1 o 1 o o 1 o o O O O O O O - o • o • o o o o . o . o . . o . . o . o o . . o o . • o • . • . o o o o . . o . o o o ■ o • o . • • • o . o . o o . o o • o • • o o . . o o • o o o o . o . . o • o o . o to to o o t-> o O O O O O O O O O O H o o o o M o l-> o t-1 o o o o o o o o I-1 H o o (-1 o o M o M M o H o o H o o H o J ι-» to OJ 00 to OJ tO OJ tO OJ tO VO tO VO OJ OO H OJ o .-» 00 o -J 0J -J o 0J o vo o vo o t σ. σi t H σi (-> -J -J σ. ^1 H Ji to to H H o *> H 0.

00 Ul _^ VO l^ Ul l(^ VD 0J VO J 0J VO 0J VD 0J Crι ^α J I -J 0. -J 00 H 00 o H o •] -J -J -J 0J -0 -J 0J σi OJ to σ. Ul to 0J l vo o o o 00 >£>. o o o o

VO ~j w σi ui m i. ^ to DO 00 to 00 Ul Ul H H 0_ σ. 00 00 vo σ. σ. 00 vo

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o oo o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o oo o o o o o o o o o o o o oo o o oo o o oo o o o o oo oo o o o o o o o o o o

O O O O O O O O O O O O O O O O O O O O O H I-' l-' H H H» H H H H H rJ H J H H H H H rJ H J H H J H H J H I-> H -' ^ ^ ^ ^ ^ ro C0 00 00 00 00 00 00 V0 V0 V0 V0 VD VD VD VD O O O O O O O O O H H I-' J H H H H H W t0 t0 W W _O W M M W vi sivj (B ^o o μ μ _) ^uι α) o μ wιιi Ni j ^o o ι _ι _i Ui ^ i co o μ u (> (_ιuι eo (i! «)μ μ ι Uι. _i i_ι j ιi) co α)oo co o o o

o »σι. i o

Figure imgf000103_0001
o

I I O O I I I O O I I O I I O I I O O O I I O I I I I O O O O I O I I I O O I O I O O I O O I O I O O O O O O O o o • • O O O • • O O - O O - O O - • • O O - O O O O • • • • O • O O O • • O • O ■ • O • • O • o

• • o o • • • O O - ■ O • • O • ■ o o o • • o • ■ • • o o o o • o • • • o o - o • o o - o o - o - o o o o o o o o o t o O O O tO tO O O tO O O O O O H H O O O t O O O O H H H' tO O O O O O O M O O O O O O tO O O O O O tO O O h-' O O tO OJ O tf- OJ OJ OJ O O OJ tO OJ OJ tO O to to OJ vo O DO OJ OJ H DO DO H VO VD OJ OJ O O tO H OJ O VD I-' σi H O O O OJ O OJ O I-' σ. OJ O O OO O O

H θ »j ^] -J -j σ. to to σ. oo . σι o o OJ 00 o vo o o σ. -j H VO OJ VO H' VO O O UI O VO I-' UI O I-' VO VD OO O O UI O O UI O OO VO OO O O VO O O

H OJ Ul * fll OJ -J to OJ -J OJ H VO tO O OJ VO H O σ. OJ

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

O O O O O O O O O O O O O O O O O O O O O O O O O O u. w uι uι uι uι σ. σ. (n σ. σ. σ. j iB ω a ω ω o o ω u ω ι.

Figure imgf000104_0001
vj

I I I I I I o o I O O O O O O I o o 1 1 1 1 o o 1 o o 1 1 o o o 1 1 o o 1 1 o o o 1 1 1 1 1 1 1 1 o o o o 1 1 O O O O O O - • o o • • O O o o o o o o o o o o o o o o o o o o o -J 00 ■ -J vj vl 00 00 vj • -α oo -o -j -J -J ] -J 00 -J -J -J -J 00 J -J 00 -J

00 -0 00 00 00 -J VO H 00 vi o. m oo o j- m j o. μ 00 00 -J o σ. -J -J 00 o 00 -J Ul σ. -J -J 1 vo ^J -J σ. 00 0J 00 o ~0 -J -J 00 -J -J σ. vo H vo 00 -J

H -j to H o ui to σi H vo (-j ui vo ~j ~o oj cr. vo o -t O 00 σ. -0 to σi -J Ul H σ. H vo 00 •~J σ. Ul -J vo 00 vo to to M σ. Ul vo -J OJ 00 σi o J o vo

M UI OO OJ H tO OJ O σ. tO UI OO O O tO VO H I-' OO -0 -J vo l σ. o OJ 0J t o o 00 H vo to ~j o H Ul ~J 00 00 lf> 00 vo H -J Ul to to vo H t j £> 0J H tO rf^ tO H' VO OJ O 0J Ul t o o 00 o 00 H o CJ> to 0J vo 00 H o 00 00 t-1 to

ι_

I I I I O O I O I I O I O O I O O O I I o I i i o O O I I I I I I I I I O O I O O O O O • O O O O • O O O O • O O O O • • O • o o • o • • o • • • o o • o o o • • • O O O O O O O O O - • o o • • • • o • • • • o • • • • o o ■ o • • o • o o • o o o • • o • • • o o o o o • o o o o o to o o o o o o o o o to o o o o o to o o o o o o to o o o to o o o o o o o o o to o o o o o o o o o o to o tO tO H O OJ Ul OJ OJ OJ OJ Ul .O OJ OJ I-' OJ OJ O H OJ Ul H tO Ul OJ o to w ^ t> t »!» -> ui OJ OJ to o O O £> 1. 1. W I O J I1J O O W W 1. O O

_t-. θJ θJ Ui α_ ι-> to vo (D -j σ. θJ σ. .P> J Ui oo uι J _o vo .t* θJ σ. -j j oo oo vo ui to σ *^ VO tO U1 00 0J Ul U1 0 tO Ul VO OO I-" _^ U1 0 Ul Ul -J ^] -J -0 _^

O 00 H _-> Ul c. σ. σ. σ. *> H O Ul Ul σ. _-■ OJ h* 00 t _-> o vi μ σi oo w o μ ^ w

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o oo o o oo o o oo o o oo o o o o oo o o o o o o o o oo o o oo o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o oo o o o o o o o o o o o o o o o o ,t- ,t_. l^ ,ι_. rf_, !^ ^ h_ ht_. ^ !^ ht_. ^ di rf_, ^ ^ t_ ^ hi_. ^ ht_, uι uι uι uι uι <_π m mm mΦ (Λ^ si ^ vi ] ] ] eo (D(θ(i) io ιij ω oo oo oμ μ μ H μ uwκ)W ww w _iι. _i_i ι. _i ι. uιuιιιι o\(Λ(ii(!i(Λ ^

1 1 o o o 1 1 1 1 o o o 1 1 1 1 1 1 1 o o o 1 1 1 o o o o o o o 1 1 1 o 1 1 o o 1 1 1 1 1 o o 1 o 1 1 o o o o 1 o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

-j -J 00 00 -J -J 00 00 00 -J ~J oo 00 00 -J 00 00 00 00 ~J -J 00 00 00

-J -j 00 o H ^J -J -0 -J Ul vo J 00 00 -J -0 00 -J -J 00 vo lt> 00 -J -J rf> _^ -J vo H to OJ 00 -J ~J ^ 00 CD M M 00 00 00 -J •J I-1 J -J -J 00 00 cπ o H to 00

00 00 OJ -J OJ o vo 00 -J -J o -J -1 o 00 to h-> vo 00 vo h-> H OJ o Ul Ul Ul ^ o 00 tl DO _t» vo 00 ^ £> |J OJ 00 OJ to H VO ~J H to £>. Ul M h-» to H J 00 0J σ. t OJ -> O cπ to 00 H 00 H Ul H DO o ] J -J OJ .£> to >J> -J -J -J OJ σ. to vo σ. ^ H I-1 o o ui Ul H 00 to tP- 00 o _^ to ^ *> >&. 00 OJ OJ vo h-> to t vo *. o CTl -J to vo to 00 d^ o I-1 OJ Ul 00 >t> to hC- .£> OJ (^ σ. o t σ. o 00 1 rf

Figure imgf000105_0001

O O I O I I O I O O O I O I o o I O I I O O O I I I O O O O O I I I I I I I O I o I I o o o o o o o o o o o o o o o o o o o o o • o • • o . . o o O . o . . . o o . o o . . o . . o o o . . . . o o o o o o • • o • o • • t to o to o o to o o to to H O to o o o H t o H to o o H o o H H o o o o to H O O O O O O O I-' O O O tO O tO O O O vo vo to *> to to ui to rf* Ul μ> »▻ to Ul t to H 00 Ul d^ >p- Ul H to hJ M Ul 01 00 I-1 o H» H Uulι _^ uι σι uι ι-' tJ> 0J H θ t 0π 0J 0J J ui J 0J H J 0J

H H σi to *. Ul to σi o to ^J Ul t Ul *> o H *> o . ~J Ul ^1 o σ 00 Ul H vo l ui ] rfrf>^. ^ uι uι oo σ o vo uι uι θJ 1J uι oo vo to ι-' vo uι θJ ιt» σι

H vo ^J H o o -J vo vo ^] σi o OJ K-1 vo o ^] σ ' OJ VO -J O OO O σi σ σi vo ui o μ

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O H t w j J J ω ι ω o ω ω ω ω w J W UJ J ω ω uj ω ω J J Lo _-. _-. j^ ^ lJ 1^ 4i ^

^ u w w * _i _i ϋi uι ^ m m (Λ vi si vi ^ vi α) α) oo o) (i) ^ iD o ω ^ o o o o μ H μ μ w _o M M _o j ω ω _- _- ι(> _- ιt> uι ui (jι uι uι

O O O • • oo 00 00

H -0 0J O ui tO σ vo uι -θ »

Figure imgf000106_0001

Figure imgf000106_0002

0.0240 0.,0000 0.6700

-0.0279 0. ,0000 0.6700

0.0278 0. ,0000 0.5969

-0.0327 0. .0000 0.5969

0.0386 0. .0000 0.5132

-0.0449 0. .0000 0.5132

0.0307 0. .0000 0.4470

-0.0403 0. .0000 0.4325

-0.0413 0. .0000 0.4273

0.0301 0. .0000 0.4093

0.0421 0. .0000 0.3513

-0.0448 0. .0000 0.3513

0.0423 0. .0000 0.2699

-0.0573 0. .0000 0.2699

0.0566 0. .0000 0.2059

-0.0623 0. .0000 0.2059

0.0558 0. .0000 0.1745

-0.0631 0. .0000 0.1745

0.0573 0. .0000 0.1476

-0.0660 0. .0000 0.1475

-0.0766 0. .0000 0.1100

0.0698 0. .0000 0.0947

0.0778 0. .0000 0.0598

-0.0808 0. .0000 0.0598

0.0849 0. .0000 0.0239

-0.0851 0. .0000 0.0239

0.0821 0. .0000 0.0000

-0.0870 0, .0000 0.0000

0.0849 0. .0000 -0.0239

-0.0851 0. .0000 -0.0239

0.0778 0, .0000 -0.0598

-0.0808 0, .0000 -0.0598

0.0698 0. .0000 -0.0947

-0.0766 0. .0000 -0.1100

-0.0660 0. .0000 -0.1475

0.0573 0, .0000 -0.1476

0.0558 0, .0000 -0.1745

-0.0631 0. .0000 -0.1745

0.0566 0, .0000 -0.2059

-0.0623 0, .0000 -0.2059

0.0423 0, .0000 -0.2699

-0.0573 0, .0000 -0.2699

0.0421 0. .0000 -0.3513

-0.0448 0. .0000 -0.3513

0.0301 0, .0000 -0.4093

-0.0413 0, .0000 -0.4273

-0.0403 0, .0000 -0.4325

0.0307 0. .0000 -0.4470

0.0386 0, .0000 -0.5132

-0.0449 0, .0000 -0.5132

0.0278 0, .0000 -0.5969

-0.0327 0, .0000 -0.5969

0.0240 0, .0000 -0.6700

-0.0279 0, .0000 -0.6700

0.0233 0, .0000 -0.6844

-0.0271 0. .0000 -0.6844 -0.0327 0.0000 -0.,7113

-0.0378 0. 0000 -0. ,7425

-0.0393 0. 0000 -0. ,7511

0.0274 0. 0000 -0. ,7518

-0.0392 0. 0000 -0. ,7571

0.0274 0. ,0000 -0. ,7590

-0.0250 0. 0000 -0. ,7604

-0.0263 0. 0000 -0. .7623

-0.0245 0. 0000 -0. ,7635

0.0270 0. ,0000 -0. .7648

-0.0081 0. ,0000 -0. .7665

0.0098 0. ,0000 -0. .7675

-0.0090 0. ,0000 -0. .7683

-0.0072 0. ,0000 -0. .7690

0.0113 0. ,0000 -0. .7696

0.0087 0. ,0000 -0. .7699

-0.0401 0. ,0000 -0. .7711

-0.0278 0. .0000 -0. .7722

-0.0403 0. .0000 -0. .7745

-0.0283 0. .0000 -0. .7756

-0.0252 0. ,0000 -0. .7822

-0.0106 0. .0000 -0, .7835

-0.0255 0. .0000 -0. .7867

-0.0111 0. .0000 -0. .7880

-0.0409 0. .0000 -0. .7886

-0.0302 0, .0000 -0. .7895

0.0275 0. .0000 -0. .7901

0.0125 0. .0000 -0, .7906

-0.0071 0. .0000 -0, .7912

0.0079 0. .0000 -0 .7913

-0.0412 0, .0000 -0, .7918

-0.0308 0. .0000 -0, .7928

0.0275 0, .0000 -0, .7949

0.0128 0 .0000 -0 .7954

0.0076 0, .0000 -0 .7971

-0.0070 0, .0000 -0, .7971

-0.0416 0. .0000 -0, .8015

-0.0323 0 .0000 -0 .8023

-0.0265 0 .0000 -0 .8065

-0.0136 0, .0000 -0 .8076

-0.0419 0, .0000 -0 .8077

-0.0339 0 .0000 -0 .8097

0.0276 0 .0000 -0 .8106

-0.0268 0 .0000 -0 .8107

0.0135 0 .0000 -0 .8111

-0.0142 0 .0000 -0 .8118

-0.0384 0 .0000 -0 .8118

0.0068 0 .0000 -0 .8131

-0.0070 0 .0000 -0 .8131

0.0276 0 .0000 -0 .8157

0.0140 0 .0000 -0 .8162

-0.0068 0 .0000 -0 .8188

0.0062 0 .0000 -0 .8189

-0.0274 0 .0000 -0 .8242

-0.0159 0 .0000 -0 .8252

0.0269 0 .0000 -0 .8279 0.0153 0.0000 -0.8283

-0.0270 0.0000 -0.8321

0.0055 0.0000 -0.8323

-0.0061 0.0000 -0.8323

-0.0176 0.0000 -0.8327

0.0259 0.0000 -0.8355

0.0164 0.0000 -0.8357

-0.0233 0.0000 -0.8358

0.0213 0.0000 -0.8399

0.0045 0.0000 -0.8411

-0.0053 0.0000 -0.8414

0.0000 0.0000 -0.8459

0.0264 -0.0001 -0.6966

0.0000 -0.0003 0.8459

-0.0053 -0.0003 0.8414

0.0045 -0.0003 0.8411

0.0213 -0.0003 0.8399

-0.0233 -0.0003 0.8358

0.0164 -0.0003 0.8357

0.0259 -0.0003 0.8355

-0.0176 -0.0003 0.8327

0.0055 -0.0003 0.8323

-0.0061 -0.0003 0.8323

-0.0270 -0.0003 0.8321

0.0153 -0.0003 0.8283

0.0269 -0.0003 0.8279

-0.0159 -0.0003 0.8252

-0.0274 -0.0003 0.8242

0.0062 -0.0003 0.8189

-0.0068 -0.0003 0.8188

0.0140 -0.0003 0.8162

0.0276 -0.0003 0.8157

0.0068 -0.0003 0.8131

-0.0070 -0.0003 0.8131

-0.0142 -0.0003 0.8118

-0.0384 -0.0003 0.8118

0.0135 -0.0003 0.8111

-0.0268 -0.0003 0.8107

0.0276 -0.0003 0.8106

-0.0339 -0.0003 0.8097

-0.0419 -0.0003 0.8077

-0.0136 -0.0003 0.8076

-0.0265 -0.0003 0.8065

-0.0323 -0.0003 0.8023

-0.0416 -0.0003 0.8015

0.0076 -0.0003 0.7971

-0.0070 -0.0003 0.7971

0.0128 -0.0003 0.7954

0.0275 -0.0003 0.7949

-0.0308 -0.0003 0.7928

-0.0412 -0.0003 0.7918

0.0079 -0.0003 0.7913

-0.0071 -0.0003 0.7912

0.0125 -0.0003 0.7906

0.0275 -0.0003 0.7901

-0.0302 -0.0003 0.7895 I I I I O I O O O O I O O O I I I I I I I I I O I O I I I O I O I I I O I O I I O O I

O O O O O O O - o • O O O O O O O O O o • o o • o o o o o o o O O O O O O O O o ■ o O o o o o o • o • • o o o o o o

O O O O O O O H O t-1 J to h-> o H to OJ ooooooooooo O DO o o to o to o o o t o o o o H1 o o o o o o o o o o oJ OJ OJ o oJ OJ OJ Csi OJ cr. O ^J 01 4^ 01 -J o oj o „-. oJ tt> .p» oj o OJ OJ OJ cn to oj oJ OJ OJ -j 0J ~J to to to J o vo o o oo £> to ιJ to to h-1 to M to t^ oj ui to to o σi to σi -J ] VO o 00 -J -0 00 VD O V0 O O VO 00 C0 V000 .f- ^- J to vo _-. vvoo rf- Uulι 0σ1ι £_->. o 00 00 vo ^J 0J -j o ^1 o 00 ui o Ul o σ oo vo oJ H σ OJ H J σi σi σi vo oj σi σi σi ^ vo ^α H 00 0J t o 0J Ul H o to I-1 oo OJ 0J t σi Ul H vo

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I oooooooooooooooooooooooooo oooooooooooooooooooooooooooooo o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o w w w ω ω w w ω ω ω M to to to to to to to to to to to to to to to to to o o o o o o o o o o o o o o o o o o o o o o o o o o o o uι ^ 1^ ^ ^ w ω ω _o H vo vo vo ] σι cn σι cn σ. σ! Ui .- ω ω w w w o .i-. w ω ω ω ω w ω w ω ω

o 1 1 1 o 1 1 o 1 1 o o o o 1 1 1 o o o o 1 1 1 1 o 1 1 oooooooooooooooooooooooooooo

• O o o • o o • o o • • . o o o . . • o o o o . o o

-J . . • ~J 00 . . -J -J 00 00 . . -J ] 00 -J . . • . ^1 . . vo 00 00 ~J 00 -0 -J to -0 00 0J φ. 0J o 00 -J -J -0 00 o vo 00 00 ! -J -J -J -J vo oo cD H ι^ uι uι uι uι σι σ\ σι σ> σ σι σι σι σι σι >o -j -j ~j oo oo oo cD θo to o o 01 vo vo -J 00 00 to 00 0J to H 0J hJ OJ H 00 Ul H o o 00 -J >J> vo -0 σ >^ hp- ι-' tθ H i-' -~j vo o to θJ _-. σι ~j cD vo vD vo μj to _-. uι to θJ σι CD θo σi Ul to vo 0J t Ul 0J vo 00 to Ul σ σi to 0J 00 to -J ht* vo H> Ul 00 H σi μ H _*≥.. ui ι^ ^ ω uι μ co μ o ti> ω w oo uι ι_ι ω o oι w μ ιo uι oι ιo uι -j o oι vo to H σi *• 0J OJ σ Ul t σi >J -J t vo σi

v

I I I I I I I I I l O O 1 1 1 1 1 o o 1 1 1 1 O O O O O O O O O O - • o o o o o o o o o O O o o σ o o o o O O O O O H DO o o o o o to H o o o o w μ to μ w I-' l-' l-' OJ OJ Ul I-1 H H J to rf* Ul o 0J OJ 0J

.ι H CD W σ. oo 1 σi ] o 00 00 Ul OJ tt- o

O M it P O

Figure imgf000111_0001
H> σi to ui ~J to σ H -J vo J vo 00 OJ

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I O O O O O O O O o o o o o o o o o o o o oo o o oo o o o o o o o o o o o o o o o o o o oo o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

_^ _^ .J> .I .I^ .J .J .^ .I .J .J ^ .J .J _^ _^ _^ .^ uι uι <_π uι uι uι .^ !^ .F- .^ ^ .^ .i-. .^ w w w ω ω ω to _ M to to _o _θ H H H θ θ θ θ θ vo vo vo vo v^

1 1 o o o o 1 1 1 1 o o o o 1 1 1 1 o o 1 1 1 1 o o o 1 1 o 1 1 1 o o 1 o o o o o 1 1 o o 1 1 1 1 1 1 1 o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

-o. ι ^] 00 1 00 00 00 ^1 00 00 00 00 00 ] 00 o 00 00 00 00 00 00 _ 00 00 -J

-J -J σi 00 vo 0J 00 00 -J -J 00 o M 0J 00 -J ^J -0 1 0J 00 00 00 -J H M H 00 -J t 00 00 00 Ul o 00 o o to to CD -0 M J 00 00 00 00 -J 00 00 σi o o -J

-J 01 I-1 0J to 1 to t 00 OJ vo 1 0J to J o 00 σi Ul 0J H o 00 o Ul 00 0J -J 00 H I-1 -J to t J^ H Ul 00 o Ul σi H to to H o ^] 0J H vo to Ul Ul

H I Ul 0J to Ul -J >£. -o. (-> o lt> H 0J -J to 0J H o -0 to 0J -J vo vo 00 vo -0 Ul o 00 Ul o vo 00 00 o vo σi o .&. H ~0 to 0J 00 Ul h-1 |J to I-1 σi H to vo __*

Ul σi H 0J 00 σi Ul to OJ Ul 0J I-1 .£» o -J o vo 00 vo o 00 o φ- o σi vo o 0J to

Figure imgf000111_0002

I O O O I I O I I I I O O I I O O O I I O I I I I I o

O o O O o o o o o o O o o o o •

• o • o • • • o o • o • • • o o o o 0 o o o o o μ1 to O O H O O O H O O O O O tO σi to σi to to oo _-. o to 0J J O tO tO OJ J _O tO _O O Ul

-J o o I-1 OJ J ii-. 00 H -J O Ul tO tO O -J hti tO tO Ul H to 01 H H O. H 0J O 0J U1 0J O U1 0J O

Figure imgf000112_0001

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O σ. σ. uι uι uι uι uι uι uι uι uι uι uι uι uι uι uη uι uι uι uι uι uι uι uι uι uι ι uι uι uι uι u^ o o ιo ι ω iβ m ffi oθ i i si si ι oι ι uι uι uι iΛ (Λ ι. _i _- w w w (o t ι μ μ o o o »_) ii) U) θ) αι oi (D i i i si i ι oι σι oι m m ijι

O O I I O O I I O I O I O O I I O O O I O I I o o I O I o o O O O I I O O O I I l O O O O I ■ • O O • • O O • O • o • • O O • o o • • O • O . . . O O - • • O O O • • • • o -J ~J • • ~0 ] • . 00 • 00 • -0 00 00 J • • ] -J • o • 00 00 00 00 00 • O _ 00 • • • -J -J 00 00 • ono io oo ui i sj ^ μ vi i vo DO oo ui σi oo -j VO DO DO -J OO 00 00 ] sj VO VO ] 00 o O H ~J H H oo oo σ o OO OO OO OJ OO tO tO OO ui H OJ to vo oJ vo σi i-' cri ui O VO H to VO O vo rJ >t>. cn σι uι σι to to vo u-ι oo uι _ vo vo vo σi oo oo o w to H O -j ' o oJ i-' H -0 tt> -J -o ui oo ui vo μ ui t ω ω ui iti μ 4-. H VO O OJ σi oo vo to vo σ tt^ i-' o σi ^ H i ui ht- i σi oo to σ j oo σi σi ui oo to oj o σi oo OJ H

Ul H 0J -J VO Ul DO Φ> Ul ^ oo σi vo μ _> μ >t=» oo σi w μ oi

Figure imgf000112_0002

I O O O I O I O O O O O O O O O O O I I O O I o o o O 1 O O O O I I o I O O O O O O O I O O O O O O I o • • • o O O • O • O • • O • • ■ • o o • o o o o o o

• o o o • O O O O O O O O O O O - • O • O • O O - o o o o o o • • o • • • o o o o o o o • . o o o o o o

O H tO H O tO O O H O tO H I-' O I-' tO O O H O H O O I-' O H' o o 0J O OJ O O O tO O O O o to to o to o o o o o to o t to o o

OJ 00 VO 00 *> O O V0 O 0J -J V0 O -J 0J t0 t0 O O O 0J O VD O V0 o OJ Ul O UI O OJ H O I-' OJ I-' o o 0J 01 rf^ o o I-1 to o lt- 01 0J o o to

H VO ^ VO 01 -o o θ H o σι oo H θ θo σ uι uι θ _ o θJ o vD ~j vo o 0J H O H O OI VO H VO OI OO o H -J o vo o o 00 o o vo vo -J -J o o

Ul 00 o o oo to 00 to o o μ o oi 00 00

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

(t oo oo oo α) θ) α) i_ os si ^ Ni vi i >j vi i v] ^ N] vi vj vi j j si v] vi g (ii (jι ι_ι i (_i (_ ι_i (_ι oι oι . oι oi (!i ι oi (_ o (i m (_ oι ^ ι. ιii W M μ o ω αi (rι o) -j s] i oι oι _i * w w ω ω _o μ o o o vo oo vi oι oι o ^ * ι. ι. ι. u w w w w ιo ιo ιo μ μ μ μ μ μ o

I O O I I o o o O O I o o o o O I i o o I O O O I I O O I O O O O I I O I I I o o

• o o o o o o o o o o o o o . . . o o . . o . . . . o o . o O o o . o

-J . . -0 -J ~J . oo ■ CD • . ~J -J oo . -1 00 • -J -j ] 00 . . 00 . . . . 00 00 •

V0 01 -J σ ui VO 01 VO s] 01 01 -J -J -J -J -j σ σ ~j Ul vo H -J 00 s] i H ~J 00 ^ 00 H ~J -J oo J 00 σi 01 o H 00 -J o oo ] s] -0 DO 0J 00 o vo vo 01 Ul H VO Ul VO O -J vo σi σi σi σi σi rf σi .f- -j o σi μ> vo ui H »p» ] 01 00 .! DO DO H Ul vo o 00 0J 00 -J H VO σ σi 00 Ul o ui _=» OJ o O H to .&• to I-1 μ oi ui w -J o o DO ιt> oi w μ 00 tP> O -J |J> J o 0J o -J !J> VO 0J σ 00 00 DO vo DO to o 00 o vo Ul H Ul -J

-J OJ J-. to to __. α t ιi αi μ w Ul _-> l 0_J_ o o 0JJ vvon i VOn tDO ro00 ro00 <-_

t

Figure imgf000113_0001

Figure imgf000113_0002

O I o o o o o o o • o o o o o o tO O tO J _-. O OJ O o Dθ o ~J H θ -j o

0J U1 0J hl-. 0J O Ul O

Figure imgf000114_0001

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I oooooooooooooooooooooooooooooooooooooooooooooooooooooooo oooooooooooooooooooooooooooooooooooooooooooooooooooooooo

H H M I-' H H H H H H I-' l-' H H H H I-' l-' l-' M H H H H I-' M H I-' H H H μ' h-' H H μ' l-' l-' l-' H O O O O O O O O O O O O O

(n oι oι oι oι oι iJi uι ifl uι uι ij w ^ ι. * _i ιi u w w w u ω w u _o _ M t u M μ μ μ μ μ o o o ^ ^ a (o ιo a ιo ιo >D io ιo (i (»

<_n <_n Ul W H O O V0 00 ] - 1 01 H O 00 ] 0^ .f^ V0 V0 V0 ' ] _ J 01 rfi W H H V0 W H H H O V0 V0 0^

I o o O O O O I O O I I o o O O I O I o o o I o I o o O I I I O I o o o ■ • o o o • • o • o o o o • O o o ■ o

• Ul Ul -j σ -j σi σi -J • -J ~o -o -J • • • -J • -o. -J • 01

Ul vo vo U _l 0_0 U-l _ -J- -J_ 0_1. -J 0_J .. -O_. -0_ _ ι oo σi oo σ H. -0 0J -o _ to Ul Ul -J -J -J d-. ] .. h .f.- -J , ~J -J 01 ~J ιt- ] σi ~j vo

VO 01 01 -j .p- αo oo u. ui oo o vo ui OJ rf^ i-' o ιt> eo * to u μ OJ OJ ^ tO tO Ul tO Ul l-' σι vo uι _^ ^ to σι -j ) 01 Ul OJ oι o «) * ^ vo Ni ω _> co m to iD Ui o μ o >! * _- _- >j ω OO OO VO tO OJ tO tfi tO ^ H ui w o vo σi to to oo -o.00 J ~0 0J vo t . vo ht> i-1 σi to (-> o φ> 00 to VO 00 * ω ui to 00 00

Figure imgf000114_0002

-0.0251 -0..0165 -0.5969

0, .0374 -0, .0166 0.7093

0, .0328 -0, .0169 -0.7511

0, .0000 -0, .0171 0.6700

0, .0000 -0, .0171 -0.6700

0, .0328 -0. .0172 0.7511

0 .0373 -0, .0177 -0.7691

0, .0373 -0. .0180 0.7691

0, .0404 -0, .0182 -0.7691

0, .0404 -0, .0185 0.7691

0, .0340 -0. .0185 -0.7602

0, .0384 -0, .0187 -0.7775

0, .0340 -0. .0188 0.7602

0, .0384 -0, .0190 0.7775

0, .0473 -0. .0190 -0.7510

0, .0473 -0. .0193 0.7510

0, .0405 -0, .0196 -0.7782

0, .0405 -0. .0199 0.7782

0, .0476 -0, .0200 -0.7555

0, .0277 -0. .0202 -0.7433

0, .0338 -0, .0202 -0.7691

0, .0476 -0, .0203 0.7555

0, .0253 -0, .0203 -0.6975

0, .0338 -0, .0205 0.7691

0, .0277 -0. .0205 0.7433

0, .0253 -0. .0206 0.6975

0, .0441 -0, .0210 -0.7231

0, .0353 -0, .0211 -0.7759

0, .0441 -0, .0213 0.7231

0, .0353 -0, .0214 0.7759

0, .0452 -0, .0224 -0.7691

0, .0452 -0, .0227 0.7691

0. .0334 -0. .0232 -0.7511

0, .0334 -0, .0235 0.7511

0, .0341 -0. .0243 -0.7603

0. .0341 -0. .0246 0.7603

0, .0434 -0, .0246 -0.7804

0, .0434 -0, .0249 0.7804

0, .0336 -0, .0251 -0.7691

0. .0336 -0, .0254 0.7691

0, .0354 -0. .0255 -0.7759

0. .0354 -0. .0258 0.7759

0, .0000 -0. .0260 0.5969

0. .0000 -0. .0260 -0.5969

0. .0341 -0. .0262 -0.7128

0. .0388 -0. .0264 -0.7807

0. .0341 -0. .0265 0.7128

0. .0216 -0. .0265 -0.7300

0. .0388 -0. .0267 0.7807

0. .0216 -0. .0268 0.7300

0. .0490 -0. .0268 -0.7510

0. .0490 -0. .0271 0.7510

-0.0341 -0. .0273 0.4349

-0.0341 -0. .0273 -0.4349

0. .0210 -0. .0276 0.4521

0. .0210 -0. .0276 -0.4521 O O O O O

• • o o o o o o o o it it o o o it it o o o vo vo

Figure imgf000116_0001

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I o o o o o o o o o O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

O O o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

0 ^J 0«J OwJ OLuJ 0ι^J w w w ω ω w w ω ω ω w w ω w ω ω w w w w w w w ω ω oJ W W w ω w ω w w to to to _ M s] s] s] si si s] si σι σ σι cn uι ω ω _θ M M to ι-' H i--' θ θ o o o o o o o o o o o o o o o vD VD vo vo vo vo vo vo oo oo oo oo oo oo s] s] s] oo si si w w o o H H H H O o o vo vo ui ui ω to o o vo oo cD si si si σi σi σ σi ui it it it DO M H vo vo σi ui DO H H Vo oo σi σ σi o vo vo s]

I I I I o o O I o 1 o 1 o o o 1 o 1 1 o 1 o o 1 1 o o O 1 1 o 1 o 1 1 o 1 o 1 1 o O o 1 1 1 o O 1 O 1 o o o o o . o . . . o . o o o . o o . o o . o • o o o . o o * . . o o o . . O . o it to to o • o • J si s] • si . . Ul . si si . it Ul si . . s] • si . . si . si . • it s] s] . . o si • o •

Ul it si si to to O O O 0J Ul o to 0J Ul si σi si Ul i Ul M si to Ul Ul it o M si si si σ s] Ul s] si Ul si 00 si it t 0J σi si si o VD Ul o Ul s] o it it o o Ul Ul O Ul H to 0J Ul -1 vo vo s] Ul 01 H 00 Ul σi μ» M o Ul 0J si Ul to vo si 00 01 Ul H Ul o 00 to it 00 vo 0J σi vo it it Ul vo Ul si Ul lt Ul Ul Ul VO VO O H lt 0J vo it si o VO 00 vo OJ to Ul 00 H 0J Ul to to Ul H σ H> s] vo vo 00 M H o o it to Ul o 00 vo it si VD VD 00 it

Ul vo vo it vo it si o to 00 to to H 0J Ul μ> vo H VD to Ul o si 00 vo

y

I

0.0000 -0..0378 -0.4518

0.0000 -0. .0420 0.5132

0.0000 -0. .0420 -0.5132

0.0000 -0. .0424 0.3514

0.0000 -0. .0424 -0.3514

0.0273 -0. .0429 0.2699

-0.0441 -0. .0429 0.2699

0.0273 -0. .0429 -0.2699

-0.0441 -0. .0429 -0.2699

0.0000 -0. .0488 0.2059

0.0000 -0. .0488 -0.2059

0.0000 -0. .0518 0.1745

0.0498 -0. .0518 0.1595

-0.0541 -0. .0518 0.1595

0.0897 -0. .0518 0.1262

0.0897 -0. .0518 -0.1262

0.0498 -0. ,0518 -0.1595

-0.0541 -0. .0518 -0.1595

0.0000 -0. .0518 -0.1745

0.0000 -0. .0539 0.2699

0.0000 -0. .0539 -0.2699

-0.0750 -0. .0600 0.1100

-0.0750 -0, .0600 . -0.1100

0.1143 -0, .0602 0.0000

0.1216 -0, .0648 0.0239

0.1216 -0. .0648 -0.0239

0.1126 -0. .0700 0.0947

0.1126 -0. .0700 -0.0947

0.0001 -0, .0738 0.1674

0.0001 -0, .0738 -0.1674

0.1217 -0. .0748 0.0598

0.1217 -0, .0748 -0.0598

0.1117 -0. .0867 0.1135

0.1117 -0. .0867 -0.1135

0.1286 -0. .1035 0.0947

0.1286 -0, .1035 -0.0947

0.1326 -0, .1067 0.0824

0.1326 -0. .1067 -0.0824

0.1256 -0. .1070 0.1017

0.1256 -0. .1070 -0.1017

0.0000 -0, .1176 0.1647

-0.0539 -0, .1176 0.1511

0.0798 -0. .1176 0.1296

0.1097 -0. .1176 0.1166

0.1256 -0. .1176 0.1047

0.1326 -0. .1176 0.0947

0.1376 -0, .1176 0.0799

-0.0833 -0. .1176 0.0798

0.1406 -0. .1176 0.0499

0.1396 -0. .1176 0.0239

-0.0924 -0. .1176 0.0239

0.1346 -0. .1176 0.0000

-0.0954 -0. .1176 0.0000

0.1396 -0. .1176 -0.0239

-0.0924 -0. .1176 -0.0239

0.1406 -0. .1176 -0.0499 -0.0833 -0..1176 -0.0798

0.1376 -0. .1176 -0.0799

0.1326 -0. .1176 -0.0947

0.1256 -0. .1176 -0.1047

0.1097 -0. .1176 -0.1166

0.0798 -0. .1176 -0.1296

-0.0539 -0, .1176 -0.1511

0.0000 -0, .1176 -0.1647

0.1286 -0, .1266 0.1017

0.1371 -0. .1266 0.0824

0.1371 -0, .1266 -0.0824

0.1286 -0, .1266 -0.1017

0.1326 -0. .1296 0.0929

0.1326 -0. .1296 -0.0929

0.1406 -0. .1396 0.0598

0.1406 -0. .1396 -0.0598

0.1146 -0, .1422 0.1062

0.1146 -0, .1422 -0.1062

0.1372 -0, .1441 0.0000

0.1296 -0, .1515 0.0860

0.1296 -0, .1515 -0.0860

0.1376 -0, .1594 0.0239

0.1376 -0, .1594 -0.0239

0.0000 -0, .1774 0.1525

-0.0537 -0. .1774 0.1376

0.0917 -0, .1774 0.1246

0.1296 -0 .1774 0.0798

-0.0755 -0, .1774 0.0798

-0.0888 -0, .1774 0.0239

-0.0855 -0, .1774 0.0000

-0.0888 -0, .1774 -0.0239

0.1296 -0, .1774 -0.0798

-0.0755 -0, .1774 -0.0798

0.0917 -0, .1774 -0.1246

-0.0537 -0. .1774 -0.1376

0.0000 -0, .1774 -0.1525

0.0000 -0 .2610 0.1316

0.0820 -0, .2610 0.1147

-0.0400 -0 .2610 0.1147

0.1189 -0, .2610 0.0777

-0.0585 -0, .2610 0.0777

0.1189 -0, .2610 -0.0777

-0.0585 -0, .2610 -0.0777

0.0820 -0, .2610 -0.1147

-0.0400 -0. .2610 -0.1147

0.0000 -0, .2610 -0.1316

0.1329 -0, .2612 0.0239

-0.0723 -0 .2612 0.0239

0.1341 -0 .2612 0.0000

-0.0695 -0 .2612 0.0000

0.1329 -0, .2612 -0.0239

-0.0723 -0, .2612 -0.0239

0.0000 -0, .3290 0.1316

0.0728 -0, .3290 0.1147

-0.0436 -0, .3290 0.1147

0.1008 -0, .3290 0.0777 -0.0716 -0..3290 0.0777

0.1229 -0. .3290 0.0239

-0.0839 -0. .3290 0.0239

0.1238 -0, .3290 0.0000

-0.0804 -0. .3290 0.0000

0.1229 -0. .3290 -0.0239

-0.0839 -0. .3290 -0.0239

0.1008 -0. .3290 -0.0777

-0.0716 -0. .3290 -0.0777

0.0728 -0. .3290 -0.1147

-0.0436 -0. .3290 -0.1147

0.0000 -0. .3290 -0.1316

0.0000 -0. .3792 0.1469

0.0000 -0, .3792 -0.1469

0.0715 -0, .3840 0.1239

-0.0674 -0. .3840 0.1239

0.0715 -0, .3840 -0.1239

-0.0674 -0. .3840 -0.1239

-0.1034 -0, .3959 0.0777

-0.1034 -0, .3959 -0.0777

0.0958 -0, .3961 0.0777

0.0958 -0, .3961 -0.0777

0.1127 -0, .4011 0.0239

0.1127 -0, .4011 -0.0239

0.1143 -0, .4026 0.0000

-0.1085 -0, .4127 0.0239

-0.1085 -0. .4127 -0.0239

-0.1049 -0, .4133 0.0000

-0.0002 -0. .4156 0.1544

-0.0002 -0 .4156 -0.1544

0.0725 -0, .4205 0.1313

0.0725 -0, .4205 -0.1313

-0.0757 -0, .4222 0.1315

-0.0757 -0, .4222 -0.1315

0.0960 -0 .4321 0.0778

0.0960 -0, .4321 -0.0778

-0.1093 -0, .4484 0.0778

-0.1093 -0, .4484 -0.0778

0.1054 -0, .4534 0.0239

0.1054 -0 .4534 -0.0239

-0.0001 -0, .4545 0.1634

-0.0001 -0, .4545 -0.1634

0.1069 -0, .4586 0.0000

-0.1055 -0, .4586 0.0000

0.0739 -0, .4596 0.1394

0.0739 -0, .4596 -0.1394

-0.1145 -0, .4602 0.0239

-0.1145 -0. .4602 -0.0239

0.0938 -0, .4726 0.0778

0.0938 -0 .4726 -0.0778

-0.0716 -0, .4774 0.1397

-0.0716 -0, .4774 -0.1397

-0.0982 -0, .4841 0.0000

-0.1096 -0, .4889 0.0239

-0.1096 -0, .4889 -0.0239

0.0000 -0, .5032 0.1738 1 o o o o o o 1 O O O O I O O O O I O O I O O O O I O I o o O O I I I O I O I O O O I I I o o o o o o o o 0 > - - - 0 > ' 0 - - - - 0 - 0 - ' 0 ' ' 0 o o • o • o • • • O O O O

• o o o o o o . O O O O - • O O - O O O O - O O - O O O O - O • o o - o o • • • O • O • M o o • • • • o o o o Ul Ul o o o o o σi σ o o VD vo o o σi σi o o o o o o σi σi o o o o co O si O si vo o oo oo o o o vo o vo o o sl sl O O O O VD VO O it it it o o o o σi s] si σ oo oJ OJ Oo σ vo vo σi O O O O Ol OO OO Ol O O O it Ol H Ol H it Ol it it OO OO OO OJ OO OJ sJ O I-' H Ol Ol VO VD OJ OJ O

OJ 01 σi o o o o l-» VD vo σ it it σi H ui ui H O O O o tO OJ OJ tO O O O Ul tO OO tO OO VO tO VO VO sl sl VD Ul VO Ul OO OO it lt tO tO VO VO sl sl O

OJ it it OJ OJ Ul Ul t to Ul Ul 00 00 si 00 VO VO s] s]

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ooooooooooooooooooooooooooo ooooooooooooo oooooooooooooooo si si si si si σi n σs σ σ σi σi cn σ σi σs σi σ σi σ σi ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui

Ji ^ ^ l|i ι|i 01 0\ Ul Ul Ul (Jl ι. ι. _- ι. W W U W ) M 01 01 Ul ^ Ul Ul Ul (Jl Ul ι. ^ l. _i |. W _ _O IO _O tO _0 _0 _O lθ μ μ θ O O O O O O O O vo vo vo cn σi H H si si si si i . it .t H .-' H H si si H H W W W W .o to w cn o o o o ω vo σ. σi ω ω μj i-j

(B i ι a ιo w _j (D oo _o (iι o o o o uι uι uι ιn o o w M μ H (i) W M -θ io ω ω ^ eo ] _i ι. ijι ui ι. _i _i _i W ijι ιn iJ W ii) U) ω u

I I I I I I O I I I I O O 1 o I oooo 1 O O I O O O O O I O I O I O I o o o o o o ■ o O O O • • o . o O • • O • o • o • o • o o o o H H • • O O . o • o o • O O • o o o o l-i . |_ι . o • O •

00 oo to 0J it it M si si l-> VO O o o to to o o o o to to O DO DO O 00 00 o o it H it O OO O DO I-' si s _] O_ __ 0J OJ ιt ιt VD VD H I-' ιt ιt s] s] J OJ VD lt O to to Ul Ul o ui t to J 0J DO 0J DO 0J 00 00 si si o o VO it VD OO lt tO OJ sl t OO O OO OJ O VD VO OO VD lt lt lt UI OJ OJ O tO tt Ul s] Ul Ul 00 VD Ul vo 0J 0J VD VO OJ VD 0J VO s] si si si o o VD tO it sl OJ VO OJ

Ul it Ul VD 00 vo VD VD VO VO s] si to 00

v

-0.0433 -0..7498 -0.1872

0.0747 -0. .7600 0.1387

-0.0595 -0. .7600 0.1387

0.0747 -0. .7600 -0.1387

-0.0595 -0. .7600 -0.1387

-0.0429 -0. .7679 0.1018

-0.0429 -0. .7679 -0.1018

0.0550 -0, .7696 0.0938

0.0550 -0. .7696 -0.0938

0.0000 -0. .7715 0.0846

0.0000 -0. .7715 -0.0846

0.0000 -0. .8379 0.2106

0.0000 -0. .8379 -0.2106

-0.0344 -0. .8394 0.1947

-0.0344 -0. .8394 -0.1947

-0.0487 -0. .8483 0.1575

-0.0487 -0. .8483 -0.1575

0.0434 -0, .8546 0.1975

0.0434 -0, .8546 -0.1975

-0.0348 -0, .8552 0.1240

-0.0348 -0, .8552 -0.1240

0.0000 -0, .8598 0.1084

0.0000 -0, .8598 -0.1084

0.0437 -0. .8690 0.1280

0.0437 -0, .8690 -0.1280

0.0631 -0. .8697 0.1620

0.0631 -0. .8697 -0.1620

-0.0363 -0, .8884 0.2043

-0.0363 -0. .8884 -0.2043

0.0363 -0, .8902 0.2046

0.0363 -0, .8902 -0.2046

0.0538 -0, .8912 0.1667

0.0538 -0, .8912 -0.1667

-0.0508 -0. .8913 0.1667

-0.0508 -0. .8913 -0.1667

0.0000 -0. .8963 0.2199

0.0000 -0, .8963 -0.2199

-0.0358 -0, .9012 0.1424

-0.0358 -0, .9012 -0.1424

0.0360 -0. .9036 0.1428

0.0360 -0, .9036 -0.1428

0.0000 -0. .9151 0.1322

0.0000 -0, .9151 -0.1322

0.0001 -1. .0115 0.2523

0.0001 -1. .0115 -0.2523

-0.0569 -1. .0151 0.2354

-0.0569 -1, .0151 -0.2354

0.0266 -1. .0163 -0.2294

0.0266 -1. .0164 0.2294

0.0382 -1. .0236 0.1948

-0.0765 -1. .0236 0.1948

0.0382 -1. .0236 -0.1948

-0.0765 -1. .0236 -0.1948

0.0267 -1. .0298 0.1657

0.0267 -1. .0298 -0.1657

-0.0626 -1. .0317 0.1570 O O O O O O O I I I I I I O O O O O O O O O O O O 1 1 o 1 1 O o o I l O O O O I I o O O O O O O o o • o o • . • o o • • • • o o • • o o o o o o o O O O O O O O O O O O O • • o • • o o o • • o o o o - • o co oo oo o o vo vo o o o o o o OO OJ O O OJ OJ it it O O tO DO O O OJ O O OJ to DO O O O O O O O O to D

VD VO VO O O DO M W W W ω ω OJ sl sl O O sl sl it it O O Ul Ul tO tO OJ OJ OJ OJ Ul Ul tO tO O O O O OJ OJ tO t J si si o o si si H i-' αo oo i-' i-' O. σi o o σi σi .-' o o σi σi si si si ui ui si oo oo si si o o o o σ σi it i

(-1 i VD VD OJ OJ 01 O VD VD

I I I I I I I I I I I

_- -1 H H ι-> H i-1 ι-» H _- H l-» μ-1 H H

M W W W M _o M ω w w M _o w _o ι _o N) ω _o to u _o _o M _o M _o _j _o _o ιo to _o _o M U _o μ μ μ μ μ cn ui ui ui ui ui ui it t it it it it ω w ω ω ω w M tO H i-' H M H H O O O O o o o o o o it it w w w ω μ μ o o oo αι oπ iJi μ μ * co ij) H μ j ^ _i * u w _o _ ιt (ii (» co uι ui (jι ifl W u w _ ιo ιo tf (» μ μ w ()) θJ φ u o θ -i uι a ^ μ μ tf io (i) o o θ) αι ι_) a «) io ι. ι. w u w w μ μ ιo ιi) i

o I O I i o O I I O I O I O I I o o O I o O I

• o • o o • • o O ■ o • o ■ o o • o • • o to ■ to • to - ttoo - to - ttoo - to - to - to • to • to • to t„o t.o_ t.o_ t.o_ • t.o- . , to to si to H DO it DO tO DO it tO Ol tO tO tO s] to on to OJ to tO H DO DO OJ OJ tO Ul tO Ul DO σ. l-' CO .-' VO μ' V

Figure imgf000122_0001

00 s] to μ> it it OO DO it it tO Ol O tO O sl l-' Ul O 0J 00 H Ol OJ OJ it it Ul O Ul l-' Ol O OO it VO Ul VO o) ) ι. l. uι μ ι. (B _o μ o o o ) μ o ^o ιB (Il lfl Φ l. (Il () o ^ _i Ul l o ^ μ ol O ()l _- ι ul O o. it Ul 00 to 0J σ vo 00 σ ui σi 00 to

Figure imgf000122_0002

0.0893 -1.2638 -0.2238

0 .1296 -1 .2771 0.2901

0 .1296 -1 .2771 -0.2901

0 .1296 -1 .2782 0.2489

0 .1296 -1 .2782 -0.2489

0 .0765 -1 .2837 0.3073

0 .0765 -1 .2837 -0.3073

0 .0374 -1 .2842 0.2975

0 .0374 -1 .2842 -0.2975

0 .0000 -1 .2847 0.2978

0 .0000 -1 .2847 -0.2978

0 .0374 -1 .2863 0.2199

0 .0374 -1 .2863 -0.2199

-( 3.0463 -1 .2874 0.2846

-0.0463 -1 .2874 -0.2846

0 .0810 -1 .2889 0.2256

0 .0810 -1 .2889 -0.2256

0 .1697 -1 .2893 0.2960

0 .1697 -1 .2893 -0.2960

0 .1710 -1 .2900 0.2515

0 .1710 -1 .2900 -0.2515

0, .1296 -1, .2922 0.2191

0, .1296 -1, .2922 -0.2191

-0.0559 -1, .2940 0.2522

-0.0559 -1, .2940 -0.2522

0, .1296 -1, .2944 0.3193

0, .1296 -1, .2944 -0.3193

0, .1664 -1, .2958 0.3140

0, .1664 -1, .2958 -0.3140

0, .0728 -1, .2969 0.3019

0. .1915 -1, .2969 0.2794

0, .1915 -1, .2969 -0.2794

0, .0728 -1, .2969 -0.3019

0. .0374 -1, .2971 0.2939

0, .0374 -1. .2971 -0.2939

-0.0464 -1, .2991 0.2281

-0.0464 -1, .2991 -0.2281

0. .1985 -1, .2997 0.2534

0. .1985 -1. .2997 -0.2534

0. .0374 -1. .3003 0.2536

0. .0374 -1. .3003 -0.2536

0. .2036 -1. .3014 0.2873

0. .2036 -1. .3014 -0.2873

0. .0000 -1. .3016 0.2172

0. .0000 -1. .3016 -0.2172

0. .1690 -1. .3020 0.2267

0. .1690 -1. .3020 -0.2267

0. .0729 -1. .3026 0.2541

0. .0729 -1. .3026 -0.2541

0. .0374 -1. .3043 0.2346

0. .0374 -1. .3043 -0.2346

0. .1296 -1. .3049 0.2158

0. .1296 -1. .3049 -0.2158

0. ,1905 -1. .3060 0.2363

0. ,1905 -1. ,3060 -0.2363

0. ,1296 -1. ,3074 0.3220 lt lt lt lt> lt l^ l^ lt ll- lf lt> l l^ lt> lt l^ ) P O O O O O O O I I O I O I O O O O O O O I O O

00 o o o • o . . to o o • o • to H tO H DO tO •

O to to 01 01 o o VO O O VD O o o σi to H w μ oi o O O VO VO J OJ o o V0 0J 0J VD it O it DO VO OJ VO OO tO OJ OJ OJ 01 01 Ul Ul o o H it it to o to ui σi OJ Oi OJ Ui it σi σi i to to sj si

VD 00 sl σ! Ul ιt lt 0J 0J tO tO rJ J O O O O

I-1 H H H _-> M M H H I-1 .->

OJ OJ OJ OJ OJ OJ OJ OJ OJ OO OJ OJ OJ OJ OJ OJ OJ OJ OJ OJ OJ OJ OJ DO tO tO tO tO tO DO DO tO tO tO tO tO DO tO tO tO tO tO tO H H H VO VO OO OO sl sl Ul Ul Ul Ul l-' l-' l-' H O O O O O O lt lt lt i

H I-' DO -' H H OO H Ul -' sl VO Ol it OJ DO H VD O Ol O it OJ to O O tO tO μ' h-' VD VD VO VO H μ' H M VD VO VD VO VO VO tO tO tO t

M M M M l μ w tj μ μ μ μ μ oi si oo ui I O I O I O I I o o I O O I I I O O O I l O

W sl Ol Ul it Ol H O Ul VO OO O H o o O O O to to to t to t to to to to to t tO tO M tO tO M tO tO W W tO tO Ul Ul -O DO tO Ul Ul Ul tO tO VO tO tO it DO VO OJ OJ it Ul Ul Ul OO OO Ul Ul Ul OO CD OO VO VO O μ _o μ μ μ oι μ ^ μ oo μ uι ω μ _ ιt> w H O si VO OJ Ul it it l 00 00 O O 00 00 00 o o o o to sl H OO I-J Ul it OJ to OJ Ul it o o H O O oo to

O O O O O O O O O O O O O O O O O

ΩxΩxOxΩxΩxxΩ OxΩxxO ΩxΩxxΩ OxΩxxΩxO Ωx Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω σσtrtrcrtrtrtrtrσcrtrtrcrcrσtr o rtorT or ror rotort rot foT ort rotort rot ro σo orr rotorT

■t lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt

On Ul Ul Ul Ul Ul Ul Ul UI Ui Ul Ul it it it it it it it t it it W W W W W W W W W W W W tO M tO tO tO tO M H H H K' H H α) s] i_ ui ι. w κ) _j μ μ o o ^ tD θi oι ιn u μ o «) Cθ sj (iι uι ijι «- w μ o o ui ι. ι μ o i_ (i) i si (>ι ui ι. _i iΛJ W ι

_o u ι ι. ω _i io _i μ w μ ι ιo μ o ι. vi μ w uι ifl (i) Ui ι j

Figure imgf000125_0001
si si si vo vo si si σ. σ si σi σi ui ui σi ui σi ui σi ui σ ui σi ui ui ui ^ it OJ OJ OJ OJ it it it it OJ OO OJ OJ it it it it OJ OJ to to to it Ul sl it OJ Ol l-' VO OO O Ul OJ sl Ul Ul OJ it it l-' sl O OO tO O l-' O OO VD lt OJ it OJ Ul it Ul it l-' tO VO OO H Ol OJ O si 01 vo oo to
Figure imgf000125_0002
uπ oπ H Ui i-' Ui i-' si si σi oo ui si ui o. ui σi it it it it σi i^ Ol it it Ul W Ul Ul W it OO OJ Ul tO OJ OJ tO it DO DO OJ DO OJ DO it H it tO it H OJ tO tO H' vo oo it si oJ ui oJ o vo vD o σi oo tO si o cn si σi it OJ it to to o ui CD si vo M Oo vo W H to vo oo to oo σi σ si σi to o ui o σi si O -O vo ui oJ it o o vo oo oooooooooooooooooooooooooooooooooooooooooooooooooooooooo X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X t

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω -I

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

rotortorτorr rof fotortorrorr rotortorτorτ ιo. cot roorf fot σooortort ffooorr rotortortortor orr rot rotor ortorf rof ffoor orr roτorfofforr roroπorτorr rorort floooooo j_3J !_ !3' ^ __rJ ^ !_ ^ ι_ ι_-J ^ ^ !_ ^ !_ ^ !_ !_ ^ !_r ι_r ! ' !_ ^

t lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt

o ι oι σι oι oι σι σ uι oι oi ι. w _o _o μ o ιo

Figure imgf000126_0001

H H H μ μ H μ μ μ μ μ H μ μ μ μ H H ω μ io μ' H H μ' OO VO VO OO VO OO VO OO VD H VO OO OO OO OO sl OO sl si si σi si si 01 μ> H 01 H H μ u μ u o ι(> μ μ u H H θ H θ P ι. μ o ι» o oι O O M O OO Oπ sl VO DO Ol H OJ it O O sl O Ul it VO DO s] it OJ VD tO O Ul OJ it it it OJ tO oJ OJ O OO si vo vD si oo oo σi oJ H Oo Do σi it oπ it VD σi ui to H s] s] Ul it VO μ' H H H I-' l-' H H H μ' H H μ' l-' H H h-' l-' H μ' H H H I-' H H H H I-' VD VD VO VO I-' M H 00 C0 VO 0O 00 00 00 00 s] s] s] s] |-» H H I-> H H H OJ tO tO tO OJ OJ Ul UI Ul tO Ul OJ OJ tO tO lt it l-' l-' l-' H OJ tO OJ tO O O O O sl OO Ul O l-' O O OO sl O VO it Ol UI OJ Ul sl Ol it it it it it OJ it OJ m to ui si θ si ι-> s] σι o o σι ι-» σi H ι j μ> θJ to O H Ol Ol H OJ tO VO OO Ul Ol s] vo vo σ oo si ui it

H H ' ι ι μj ' i-' H i-' i-' H j » μi H vo ' vD H H j j H VO OO VO VO OO VO OO VD OO OO l-' VO OO sl sl OO sl OO sl OO sl sl Ol sl H Ol VD I-' Ol Ol Ol

OJ H tO O tO I-' H it OJ H H O H O I-' it sl O Ul O O O O I-' OD sl O Ol it tO Ul l-' OO VO O OJ Ol OO VO OJ Ul tO Ol l-' l-' OJ OO tO it Ul it it OJ I-' O OJ tO OJ Ol OO VD sl VD Ol OO OO OJ VD O tO UI M Ul it sl OO OJ it H 00 si

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O x x t

Ω ΩxΩxΩxxΩ ΩxxΩ Ω ΩxΩxxΩ ΩxΩxΩxxΩ ΩxΩxΩxΩxΩxxΩxΩ ΩxxΩxΩ Ωx ΩxΩ ΩxΩxΩxxΩ ΩxΩxxΩxΩ ΩxΩxxΩxΩ ΩxΩxxΩ Ω ΩxΩxxΩ ΩxΩxxΩ Ω ΩxΩxxΩxΩ Ωx

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω σo ι_rotrotrtrσ rτorτ rr rτ o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

Figure imgf000126_0002

it lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt tt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt

H J H H H H rJ H J H H J rJ rJ H J H> H rJ rJ rJ J J H H H a H H rJ J rJ J H H' H H H H H M -' H H H H H H J H H H H H H H σ. uι uι uι uι uι uι uι ui ιt .t .t .t .t ιt ι w w w ω ω w ω ω ω ω w M M to _o to to to _o _o _o w _o H H H μ> μ» o o o

O VD 00 Ul ιt W M H O VD 00 O Cn t O VD 00 00 s] 0 0^ ιt ω W H O V0 00 s] s] 0. ιt ιt ω tO H O VD V0 00 00 s] s] σι 0^ Ul ιt W H O si 01 Ul

H μJ μJ μJ H H H μJ H H H H H H M CO H H H H M H H I-' l-' tO H I-' l-' H DO H H μJ l--' H I--' H H _--' H H H I-' μ' H H I--, H H I--' l--' H rJ cn cD si si si si oo oo si ui it it it it it t it to w it ui ui it ω ω cn ui it w cn to ui it it to to σi ui vo oo w cP Ui σi u^

>. _i U ifl ^ w μ (B j ιo ai Ni oι w μ o u ι_) uι >o ι uι w ijι o o «) iJ) ι. μ ι ιιι o co w oi sj ϋi o eo μ j oι _i μ oι _o ι ι μ j u μ μ μ μ μ u u io w μ i i w μ μ ι-' t H M M H μ' M H i-' H H Dθ H H H H M M μ' H ' ' to ' i--1 H μ' H ' ' μ' i--' H i--' ' H i-' ι 1

CD VD VD VO OO O O O O VD DO DO DO sl Ul si to vo to M si oo M oi σi si TO it si si σ si it μ' σ σi si oo i-' oo vD VD Oo vo si si vo ui ui σi σi σ σi ui ui OJ tO Ol Ul O VO sl Ol H O tO OO sl Ol tO tO H Ul H lt tO Ol it tO H Ul Ul O M O VO Cri it O VD M it W H VO OO it W sl tO OO sl l-' OJ tO I-' O OJ tO Ul it -O

|-' rJ rJ H rJ rJ H H tO _O tO H H H to _o ^-' to ^-J H l--> H H ^-' H ^-' H rJ > J H ' to H μ' ' ' H H μJ J H ' H rJ μι μ-, H rJ H rJ J J H , si si oo oo si oo si si oo to to to si cπ si to to oπ M vo oΛ ui it σ σi ui si ω σi Ui σ σi M it σi σi ui ui it ui oo M Oo ui σ ui σi ω it oJ to oJ to oJ to i-1

OJ Ol H O it it H OO sl OO sl Ol tO OJ H Ul lt Ol W it H VO Ul Ul W Ul O t Cn it VO DO VD H lt O OO tO tO Ol O Ul sl OO O sl Ol OJ UI I-' H Ul O Ol l-'

O O O O O O O O O O O O OO O O O O O O O O O O O O O O O O O O O O OO O O O O O O O O O O O O O O O O O O O O

X X X X X X X X X X X X X X X X X X X Ω Ω Ω Ω Ω Ω Ω Ω Ω - - X- X_ X_ X_ X_ X Ω- X Ω_ X Ω_ X X Ω_ Ω_ X

Ω_ Ω_ Ω_ Ω- Ω- Ω Ω Ω Ω Ω Ω Ω Ω_ X Ω_ X Ω_ X X X t Ω_ X Ω_ X Ω_ X Ω- X Ω_ Ω_ X Ω_ Ω_ Ω_ X Ω_ Ω_ X X X Ω Ω Ω- nX nX o n oX Xo Xo Xo rι X Xn Xo Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o ci- (^ rr rr rr rτ rr <-r rτ rr rτ rr rr rr rt .-r a σ . (^ rr rr rr rr rr rr <-. rτ rr !__r i_r .3' .3J .- !_r .-r !_r . ^ .-f .- !-r :-r ^ ^ ^ ^

it lt lt t lt lt tt lt lt lt lt lt lt lt lt lt lt lt lt tt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt ^

tO tO tO tO tO tO tO tO tO tO tO t tO tO M tO tO H' H μ' H μ μ μ μ μ μ μ μ μ μ μ o o o o o o yo «) (_) o. ι oι oι vo oo si σ ui it ω to M H O vo oo si σi ui it vo cD si si

Figure imgf000128_0001
w ω _o _ ιo u _ w ω w _ M M _o w ω M _o _ _o μ u _o _o _o ! io ι ι _ _o ιo μ _ μ _o μ μ _o κ) i μ μ μ μ _j _o μ μ μ μ μ μ μ μ μ it W Ul sl W tO it W H W W H it Ul H H tO O H H VO H O tO tO O tO O W O W VO W OO O VO VO O O O VO OO OO OO tO O OO VO sl VO V^ w W ι. (Ji oι μ i w * v] _i α) W θ ϋi μ o uι w u ^ (iι _J W i_) «) ω o ι o ιθ ι. θ) j ] Ui o (> μ αι oι ι _ ι ι o (B (j) μ -j o uι _i (Ji

W - M w ω to to to to to to to tO M to to to to to to to to to w ω to to to to to to to to to to M to to to M w w w io μ μ μ μ μ it C» 00 O O it it it it Ul Ul Ul Ul sl s] 0J 0J t0 -O H 0J 0J it it it it 0J 0J H H 0J 0J tO 0J |-' l--' H I--' H H ,- OO OO OO OO UUlI iιtt O O O O VO VD OO OO OO

^0 _ μ ^l l l Ul ^l α! ^l 5l Ul ι. l Ul Ul ι. μ o _i l l ι. ι. ^l 0l α) ] l " O ,VO" ,I--j' ΛOvl lUnl ,l--j' 'O, "O"O -s'l lOJMOJ, 'tO' ^tO ΛO ιVOn Ul it VD OO OO VO OJ tO OJ w w u u Kj w u M t io ω w i M U ω w u u μ ω w i i t io to u M i i μ w μ - μ w w μ M t μ μ μ wωμμμμμμμ μμ

_ it!__. (Uπl [O_J_> O<_J_> ^sll _i£t_. KtOi ιH_ι (O.Ji (O.J1 lO.Ji _i!t__. l_-_ι' LHJ _lt_. MtO lI-_ι' LH-i _O-_ iVOn LH-J _O-> ι_ι l 0.Ji ι H_ι M DO o O O OJ 00 OJ VD OJ VD O O 00 O O 00 VO 00 VO O tO VO si VD si 01 VO s] 01 01

H Ui H si ui oo o oJ OJ Ui σi it si σi vo H O it it oo to oj Ul O VO 00 00 H to j μ' oo vo oJ oo o. σ ui vo vD O OJ O tO Ul sl Ul VO VO tO sl VO sl Ul it Ul

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X t

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω s

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω trσ _r^σtrtrσ σoj&'σσo'σσtr trσcrtrσtrtr &'tf ojσ o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o a rr rr rr rr f^ t^ n- rr rr rr rr c^ rf rr n- rr rr rr rr rr rf rr rr rr rr rT rr r^ r_r i_r' !_f !_ :_ ^ !_ !_ t_r :_r :_f !-r' ? ρr ^ !_r :_r

it lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt tt lt lt lt lt lt lt lt lt lt lt lt lt lt tt lt lt lt lt lt lt lt lt lt lt t lt lt tt lt lt lt lt l^

tO tO tO tO tO tO tO tO IO M M tO DO DO DO DO M tO tO tO tO tO tO tO tO tO M si si σi σi σ σ σi ui ui ui it it it it it it it it it it it it it ω ω ω w ω w w w ω w ω to to to to to to M μ o ω αι -j ι oι

Figure imgf000129_0001
w u o ιo co ffl i J θ. o. uι iΛ ι. ω o θ Ni ι ui ι. w u to μ o o o ιo «) eo si oι oι uι _- w w to μ o tO tO M tO tO tO tO tO tO tO M W tO tO W M M W tO tO M M M tO tO M M tO W tO W tO tO tO tO tO tO tO W

VD si vo o ω vΩ σi si σ si σi H σi ∞ ui σ σi O si si σi σi σ ui ui ui it tn OT it it o ui ui ui ui it ω ω it H

Ol it H O VO it CXJ OO W sl tO U- .t tO H ^ H Ul Ul O W VO O VD tO OT sl Ul W sl H sl Ol sl H W OO VO I-' it OO W sl H CD w w ω M to M to to tO M M to w w to ω w to to M to to to M to w ω ω ω ω w M to to M to to w to w uι o o ιo ω oo ιθ vi (iθ si si oo v] uι uι oι o ω a! ω uι uι uι sl it W tO H VO O it O VD W O VO it W sl

Figure imgf000129_0002
to to w to to w to tO O to w w ω ω w - to to ω to to w w w to w to to to to w to ω to w

(t ω >ι >o o oι ω (_ Ni oi si oι μ ui (D i m vi o oi s] θi (_ ι. uι uι ui (io ui ι. ι. ι o uι ui ιii Ui oo ω μ i W ι. μ vi w uι ω w w _- ιt ι. ω it tO W O VO sl tt W OO it sl Ul tO tO H O Ol tO M O M VD OO VO CD cn it M sl Ol W cn sl W tO CD CD W VO W s] ^

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X t

Ω Ω Ω " Ω~ Ω" Ω" Ω~ Ω~ Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω~ Ω~ Ω Ω Ω Ω Ω' Ω"" Ω" Ω Ω Ω Ω Ω Ω O Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

o rrorrorrocrorrorroπ-o< rororrorr rororτorr coforroπ-o< rororrorr rororτorτo(-rorrorrorto<-ro.^oooooooooooooooooooooooooo t ι_ ' _^ _-^!-JJ -^!^ ^!- j _- !_ !_ !_ ^!_ ^ t_ ι_r^!_ ^

lt lt lt lt lt lt t lt lt lt lt lt t lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt t lt t lt lt lt lt lt lt lt lt lt lt lt _^

w ω w w w ω ω ω w w ω ω w oJ W w ω w w w ω to to M to to M to to w w M to M W to to to to M to to to t^ _ _j _ w u u ι μ μ μ μ μ μ μ o o o o o o iD io ιo ιo ^ ιo vo ω ιo ^ ffl ) α! (i! θo oo co θ) θo oo ι» (io (io oo (D θ) Cθ ] j Ni Ni ^ i s] vj o o σi it it to i-' o vD OO si it W H O si σi ui it ω to oo ∞ O si ui ω M O o vo vo oo oo oo si si o σ ui it it w to H o vo oo s^ w w oj ω ω w ω ω w ω ω w

W sl lO it DO W DO W DO Ol Ol M M CD H O H Ul M 00 VD W _O m O

Figure imgf000130_0001
oJ w ω ω oJ i oJ J J J ω ω w w ω ω ω it UJ J i ω j ω υJ J ω oj ω ω J Oo w J J ω it σ it σi w ω ω it it cxJ O to to ω ω si si o ω w o to ω w to M H O O H O O H O H H O Oπ ui σi Lπ σ ui ui si si M tO si si to to u^

Ul it M W O VO OO O O O VO W W VD OO H O W H O tO VD H O ro O VO VO OO O^ O Ol VO lt W CXJ O Ol Ol VO Ui ro CD sl H O sl it W W w w ω w w w w w ω w w w ω ω ω w ω ω ω w w w ω ω oj ω w w w to w M ω t to ω to to w w ω ω ω w w to w w ω w tt it W sl it W W tO ω σ σi μ' μ' tO tO si σ O M W M M O tO M H O O VD H VD H VO VO O VO O VD W Ul W ω H Ul Ul VO tO H tO O O Ul O sl VD H D0 H O H VD O W OT V0 H 0. V0 O CX> W W O V0 Ul i H t0 00 H lt O H W .t lt H W 00 Ul H W O O s] 00 sl tO sl l-> lt 01 s] M

O O O O O O O O O O O O O O O O O O O O O o o o O o O o O O O O O o O O O O O O O O O O O O O O O O O O O O O O

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X t

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ Ω Ω Ω ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ

Ω Ω Ω Ω Ω ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ Ω ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ

Ω Ω Ω Ω Ω ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω σσσtrσtr σσ rι_>Jσσ σtrtrσ t_r&,σ oj σσ ι_rff o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o ft f rt rr r rt ff rτ ff ct r rt ff ft rf rr rr rr rt rt rt rf rr rr rt rt rr rt rr rτ rf rt ι rt ft rτ fτ r rr rf ft ft rr rt rr r rτ rt rr rt rt rt

it lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt tt lt lt lt lt lt lt lt

ω w ι_ u u w w ω w u w ω w w ω u u ω w u u ω u w w ω u ιj u w ω u _j w u j ω w w w w w u ι. w u u ω u u ω w w w w ω

VO VO VO VO CD 00 C» CD 00 00 C» 00 » 00 CD s] sl s] sl s] s] sl sl sl s] 0! Ol O1 0! Ol Ol Ol Ol Ol Ul U! U. it l^ M tO H O VO ∞ OO it it ω ω M O O VD VD OO si Ul it it H O σi Ul it it ω ω tO H O VO M H sl si σ Ul ^ it W W tO H VO OO si σi U^ it w it w ω ω w w w w ω it w it it it w w w w w w w w ω ω ω w ω ω w i ω i ω w ω it w w w it w i oj ω w ω w w w oj w ω

O VO O VO VO VO OO VO OO CD CD H VD lt W W OO VO OO OO sl OO sl sl VO O^ Ol sl sl sl Ol it sl O sl Ul Ul W it lt lt W Ul W Ol Ol it lt lt Ol W

(Λ w w * θ (o ^ θ Nj oo ϋi ^ μ ι. u o μ iJi oι _i (» W (Λ W i j (iι oo μ s] w _o ω u w _i ^ (ii tf αj oι _o o μ μ _i Ui (» o ^ i o. ι. μ w M it w it ω it w i w o w ω it it it it it i ω ω ω ω w w it it w w w w w j it it it it w w it it ω w it it it it ω ω ω ω ω w ω it ω μ a w «ι o ιo o αι a ιo (» w u oι μ oι μ ^ ^ θ iιo (o θ) o θ i si vi ^ ιi) i ι. _i o o w ifl w iΛ oι _i U ι. ι ιιι _i ι. o) (i) i£i o j ιo l' H si si ∞ H si o vo it ω vo o Ui oo O si σ it ω ui si σ ui ui it ui σi Lπ ui W it it w ui it oo si ui it o σ w ui it H si ui σ σ^

^ j_. hj_. ^ ^ ) ω oj w w j j ht ιt ω ιt ιt j ω ω ) oj w (jj j ω oj j ω ω j j ht ω

H O to o o vo vo oo vo oo oo vo H W OD it ω αD vo si oo si oo vo O si o σi si si si rø it si o ui ui ui w σi σ σ W it ω it σi it it oo ω

∞ cn ui H o w vo ui o σ oo o^ σi ω M ω o si M oi it si w ui to σ it si ω o si o M w to w w o o^ σi ui to to vo H oo w o ui M oooooooooooooooooooooooooooooooooooooooooooooooooooooooo X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

ffoofτorr ror rorort ror roortoπ ror ro ffo foT foTort ro rotortorτ ffoort rotoor ffoorτo ror ror rofof ortortorτortorrortort roroorr roiorto roror ort ro rotorf rot rotoffoo ^ !_ ι_ιJ ^ ^ !_ t3J !^ !-iJ !J ! ^ ι_)J !_r ι_)J !_ ^ |_r ^ ^ ^ ι_ ' l3' l-^

it lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt tt lt lt tt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt tt lt lt lt lt lt lt

t l t .t l . _ l l tt l .t _ lt _t .t _t . . . . lt _ lt _t lt .t . . l _ l _ _ lt . _t _ _ lt . l . l l l _t _t W U U W W ll J LJ

Ul Ul Ul it it it tt it it it it W W OJ W W W W W W W W W tO tO tO tO tO tO tO tO H H H H H H H J O O O O O O O VO VO VO VO V^

H θ θ θθ si σι ιt w tθ H vo vD θD si uι t w t to ι-j μ» o c» si σι ui ι W H θ VD TO θ o^ ui ιt ω ω w θo oo s] σi w to o v^ it lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt it lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt litt ltt litt litt litt lttt OOJO litt litt it OJ it σi σ ui ui it ui it oo σ oo it ui it it oJ OJ si σ s ^l W — s ^l it it tO Ul OJ it tO tO tO OJ tO OJ tO DO tO tO H I-' μ' H H I-' O it O O O O VO DO μ' μ> o to vo vD Ui s] tθ s] θ J s] o uι oo σι σ oo vVoO uUιl uUιl H O OO VO H sl Ol sl OO DO VO OJ OJ Ul tt O DO Ul VO it OJ O tO VD O it O sl VO Ol VO Ul Ul 00 it tt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt oi (o oι oι o uι uι co o) θ) _o uι uι uι ui vi Ni v] α) i vi ^ Ni ιjι ^ uι ui ι|i ι. _o to * ι. w uι ω _o u _ _o _o μ μ μ μ w w μ o μ o ιt μ w o w w M ι. ι. w ιt si oι _o μ ^ w _i i ^ s] W o o:ι i ι. u ιo w w a) Ni ω ^ ι uι μ o (_ vJ θ μ _i W ι. uι ui ι. ιo o) θ θ) θ io o U -j (i) it lt lt lt lt lt lt lt lt lt lt lt lt lt lt t lt lt lt lt lt lt lt t lt lt t lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt l^

Ul sl 01 it Ul it U1 01 00 it s] it Ul Ul sl W Ul it s] W s] 01 _O it it Ul tO it M tO tO W tO W W tO H DO H O H H H O W O O w k) o ιo ra oo _- _o μ ι. ι. ι «j ι w oo oι μ u ιo * ui Nj ω j o o (» uι u «j ιt> co ι_ι o μ ω _i _o uι αι ω o μ ui J θ3 w μ ι ω si ιo (B ι.

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω ' Ω' Ω"" Ω" Ω" Ω" Ω~

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

o rrorr ort orr ror orr orτ ror rot o orτ o(-r o o o o o o o o o o o o o o o o o o o o o o o o !_>j :_>J !_r .->J .-jJ ._f !_r' !__J F :J !3'

Figure imgf000132_0001

it lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt t lt lt lt tt lt lt lt lt lt lt lt t lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt ^

Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul ιt ιt ιt t ιt ιt ιt ιt ιt ιt ιt ιt ιt ιt ιt ιt ιt ιt ιt ιt ιt ιt lt ιt ιt ιt ιt ιt ιt ιt ιt ιt _t ιt ιt ιt ιt ιt ιt ^ o o o o o o o o o o o o iD io ω ω ^ ω i ^ ^ io co ω oo αi αj eo co oo co i i ^ ^ -j si i Ni Nj oi i oi i oi oi i oi ui ui ui ui ui ϋi ui oι w uι uι uι * ι. _i _i M o ω oo j oι uι w _) K) μ o ω (D vj i ι. M μ o a oθ i o. ui ι. _i W ( ^ ι μ μ o o ιo (iι ι_i ι. w ιo

Ul Ul Ul Ul Ul Ul Ul Ul Ul UI Ul Ui Ul Ul it Ul Ul it UI Ul Ul it Ul it Ul it it it it it it it Ul Ul it it it it it it it it it it it it it i^ μ u _o μ o to μ μ o ι. μ o oι o uι >o μ o ιo o o μ ω μ a o oo ι_) αι ^ α) iD *o o o «) io «) θo oo αι α) -j vj (_ (io _ι oι oi (!i oι uι uι oi (_i si o to H H vo o vo o cD .o tO M μ' o w cn it si σi σ tO si it w o w oo Ui ω σi σi oo o H VO si ui H vo W si to o ui it vo vD W

Ul Ul Ul Ul Ul Ul Ul Ul UI Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul it lt Ul Ul lt lt lt Ul Ul lt lt it lt lt lt lt lt lt lt lt it lt lt lt lt lt lt lt lt u to w w w w ιo ι to unn oι iJi oι oι lfl Ui ι. μ μ _i μ μ μ μ μ μ irno o o ^ ιo »o o o ω «) HHo ιo co (i) -J J θi l OO sl sl sl Ol Ol Ol Ol OO o σi H to ui o ω vo it σi ui ui ui tO it ω to Lπ it i-' oo cD si σi w tO it it w to w σi oo o H vo o Do μ' o vo oo μ' Ui o Ul O H H Ol Ul Ol Ul it

Ul UI Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul it Ul it Ul it Ul it Ul it Ul it Ul it it it it it t it it it it it it it it it it it it it it it it it ^ μ o μ w w μ o μ w μ ι. c. o (fl μ ^ o o ιo o iD μ ^ μ αJ θ (D a o3 ^ eo αJ i j -j vi vi ^ oι α) j α) i j oι ι α) (iι oι ι ijι uι uι ιιι o. _s ^ μ w μ o oι ^ o u μ w μ ι. ^ ιn vi w j ιn (iι _i (ii H _j φ i uι θ Ni ιo u o ω θ) j -i ϋi uι _i θo w (ii (iι o ιo w u «) _. uι >o o. i _j μ oooooooooooooooooooooooooooooooooooooooooooooooooooooooo X

Ω _. X

Ω_ X X

Ω_ Ω_ Ω_ X

Ω_. X

Ω_. X

Ω_. X

Ω- X

Ω- X

Ω. X

Ω- X

Ω_ X

Ω" ΩX ΩX XΩ ΩX ΩX XΩ ΩX ΩX XΩ ΩX ΩX ΩX XΩ ΩX ΩX ΩX XΩ ΩX ΩX ΩX ΩX ΩX ΩX XΩ ΩX ΩX ΩX XΩ XΩ ΩX ΩX XΩ XΩ XΩ XΩ XΩ ΩX XΩ XΩ XΩ ΩX XΩ

Ω Ω Ω Ω Ω t

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

o rτortort πooffort cotorto( cotort foto rofortorforτortortortorτoortofforto(i rot rotortortorrortorfortortor ofl foTor roτ αoort rot rotort rorortortort rorort rot foro fofot

tt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt tt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt

ui ui w ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui it it it it it it it W W W W W W W W W W W W W W W W W tO tO tO tO M tO tO tO M tO tO tO M M tO H H H H H M H H si σι uι t w M H CD θo θ s] θ. σι uι ui ιt ι t ιt w w ω w j D θo oo s] si σι ui ιt ω M M H H θ o vo vo si σι uι ui ιt ιt ^

Lπ ca ui ui oo oo ui ui ui ui ui ui ui ui ui ui U- Ui ui ui ui ui ui ∞ i/i m ui ui ui oo ui ui oo ∞ ui αD Ui oo ui oo u^

O sl Ul Ul it Ol Ul sl tt Ol W Ol W UI W OH Ul lt lt Ul lt it W Ol it lt W it W O it it it sl W Ol tO M it tO Ol H Ol Ul UI W Ul ι. θ3 vo (fl w uι w o oι ω o αi ] vi _o μ oo o o ω vj ^ α) μ (Ji oι ω uι _o uι _i v] θ M * (_ι θ ι. io ^ ι. tiJ (_ ι. u o ffι ι θJ i i uι μ μ

00 00 00 00 00 00 O5 Ul Ul Ui Ul Ul Ul Ul Ul Ul Ul Ul Ul U1 Ul U1 00 O0 Ul Ui Ul C» CD σ5 C» rø 00 00 00 OD C» CX CX) Ul U1 00 00 00 00 Ul Ul

W si si it it σi ui si si σi si si σi σi si sj si si si si si si σi σi ui cn ui ui ui O si it it si cji σi si ui it it ui σi σi σi σi u^ oι ιιι iΛ _i u u (j α) θ (D Ni W N] m μ oι θ ι. α) W i αι ui ι. θ ffl vi a _' (_ uι _ ^ (D μ _o co ] μ a a vi ιii C. ι _i uι . _i W _o μ ιo oo ui oo oo ui ui oo ui ui ui ui ui oπ ui ui u Uli Ul Ul Ul Ul Ul Ul Ul Ul OO Ul Ul Ul Ul Ul OO OO Ul UI OO Ul OO Oπ CD Ul OO Ul Ul Ul OO Ul OO Ul Ul Ul Ul Ul Ul Ul Ul Ul oo σi si it ui ui ui it σi oo si oj ui oj ui uUil it Ul it it it W Ul it Ul W it W it it sl it it M sl W Ol W Ul tO it H Cri W Ol Ul Ul H Ul tO DO DO DO H it l-' oo o oo σ si σ it O si vo i-' Oo oo si VD H O to cxj vo o vo o tO cn ui ui it σ H Oo ω σ o H VD O o w vo oo oJ to σi OJ OJ si ui ui oo it si H to o o O O o o O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X O

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω ΩΩ Ω Ω ΩΩ ΩΩ ΩΩ ΩΩ Ω Ω Ω ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ

Ω Ω Ω Ω Ω Ω Ω Ω Ω ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ Ω Ω ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ Ω Ω ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ Ω Ω Ω ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ ΩΩ

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω trσ trtrtrσσσ tr r.rG'tr σσD't r'tr trertrσ σtrtr r o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o rr ff rf rt rr rτ rr rt rr rt ff α rτ rτ rt rt r rt n rt rr rτ rτ ι ft π π α α rf rr rr rτ r rr ff rr rt rt rt rt rt ff rr rt rt ft rt rt ft rt rτ ;_r^ ^ !_r t? !_r .-τJ .3' .r !_r :_r ^ tr !_y !_y !_r ;_r

it lt t lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt l^

ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui vo vo vo oo oo oo oo oo ∞ co oo oo oo oo oo oo oo oo cD CD oo oD CD si si si si si si si si σi σi σi σi σi σi σi ui ui ui ui ui ui ui ui ui ui ui ui ui μ o o ^ oi (» ~j ^ (Λ θi ι. _i _i _i U w ι _j μ o o (o ^ oi (Λ ι. w ι μ «i (Λ ι. w u μ o ι_) θi J o. iji ι. _o ι μ μ o o ιo ιo α) θ) vi uι cn σι σι σι σι uι uι w uι uι σ. uι uι uι uι uι uι uι cn uι σ uι σ uι σι oo oo σι oo uι uι oo cD Ui uι oo oo uι uι cx> CD W

^ o u ^ ω aι a o o ιo (t o(i ιo co θo ffi μ o) θ (io o w (o μ vi ] v] ι. ι ι ι ui si s] θi _i (n oι ι uι α> ] (i) si W -i vi J (jj j w

W tt tO H sl i O M VO sl CO W VD Ol Ul OO sl O. W O M Ol H ro Ul VO W lt Ul OO sl O W H VO Ul OO Ol l-' sl W W OJ tO Ol O lt H uι m 00 iD Ui *

OO

Figure imgf000135_0001
O σ. σ σι σ σ uι uι uι <n uι σ uι uι uι σι uι uι uι σι uι σ. uι σ. uι σι oo σ. σι oo uι c» c» uι < ι oo co <_. uι c» o μ w o w ^ VD ^VD oOO) MtO aODι oO (OBO (O»O aVO oO (OBO iVoO θOO) oO θOOJ itO oCO) oO OO) μ I-1 a 00) oO μ H w OJ N si] ( itι ^si ισιii (σiι uuιi oσi (σ)i si] _ iti vsii ισιiι oσiι ιuιιi iσjii (σ)i ^si aooi vsii (i) vsii uOJ <sji -sj] -soi o00ι -sj] σi to OJ si to O OJ VO I-' CO I-' O Ul VO tO sl Ul OJ O tO O I-' VO Ul on OJ 00 σ σi 00 H sl OO VD sl tO Ul tO it UI Ol it Ul lt H Ol O O Ul s] OJ VO it t si

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X O Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω x Ω ΩxxΩxΩ ΩxxΩxΩxΩ ΩxxΩxΩ ΩxxΩxΩxΩ ΩxxΩxΩ ΩxxΩxΩ Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω _

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω .

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

o π-or orrorτorr roτ roorτo.-rorrorr roτorτoc orr rororr roτoorτoorrorτorτ roτ roτ roτorrorτooooooooooooooooooooooooooo tr ι_r t_j !_r' :_r' jr ;_r !_ ^ ^ !_r' .-iJ .- . !_ rjJ :_r ^

it lt lt lt lt lt lt lt lt lt t lt lt lt lt lt lt lt lt lt t lt lt lt t lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt tt lt lt lt lt lt lt lt t t ^

σ σι σι σ. σι σι σι σι σι σ σι cn cn cn σι σι σι σι σ σι σ σ σι σι σ. σι σι σ cn σ σι σι cr. σ_ cn σι σ σ σ σ σ σ^

W W tO tO tO tO tO tO tO M tO tO tO H H H H H H H H H H H H H H H H μJ O O O O O O O O O O O O O VD VO VO VO VO VO VO VO VO VO VO VO V^ ui O si σ σi ui w w to to to o vo vo vo vo oo si si ui it it w to tO M H O o vo oo si si cn ui ui it it ω ω w o vo vD si si σ σ^ oι o\ o. oι oι μ oι m oι oι oι oι ιo oι o o oι oι oι oι oi ] m oι oι oι m oi (B θi o. ffl oι o. σι -j o oι oι oι oι σι o oι oι o. oι o. oι oι o σ m uι σι (iι oι w ui ι. * o ^ _i vi ui ι. ιo uι oi ι|i w _o uι oι u μ oi ι. w uι w w w co μ ιo w _i u ιo oι μ w _o uι to ι ι. w o μ o _ι μ ιo o o w ιo o o uo vo it oΛ it to vo ω o H O VD si it vo oo rø σi w vo ∞ O si tO H si oo H oo σ o w μ' ui si H H ω cn o w ui w o H it M s^ σi j vi o oi o Λ Oi fl o o o » Φ o (iι μ ι. uι o μ uι w w μ

Figure imgf000136_0002
ι. μ ιo ι ι. w o μ
Figure imgf000136_0001
oι m m m oι μ oι oι oι m Λ m ro o. oι oι σι μ m oι ω σ. o m σι oι o oι oo ω m m m m oi vi oι σι o σι m oι o oι σ oι uι oι m oι oi (_ι m m uι vj uι w oι _i θ ι. * ι. to ui v] ffl _ w oι * o _) ω w μ α) W W ιii Ui _ uι eo o) [j w _- uι _- oι ι uι κ) u _i _o μ w _ μ ιo M o o μ ^ o o ιo

H Ol O. W Ol tO W I-' O VO H O sJ OO OO it VO DO VO it it O O O sl i OO OO it Ca Ul Ul Ul VO O tO H Ol W W H sl O OO O it it CS

OO O O O O O O O O O OO O O O O O OO O O O O O O O O O O OO O O OO O O O O O O O O O O O O O O OO O O O O

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X O

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω O

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

rorortor orrorrorrort-oπ-orrorrorrortoooooooooooooooooooooooooo

Figure imgf000136_0003

it lt lt lt lt lt lt lt lt lt lt lt lt lt lt tt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt ^

-l -1 01 01 01 01 01 01 01 0. W W Oi σi 01 01 01 01 01 01 01 01 0\ 01 01 0. m θi σi 01 01 01 01 01 Λ 01 01 01 01 (Λ 01 01 01 01 01 0\ 01 0101 0i m θl 0101 01 0l σι σ cn cn σι σι σι σι σ! σι σ! σι σι σ σι uι uι uι uι uι u. uι uι uι uι uι <_π uι ui ιt ιt tt .t ι ι ι ιt ιt ιt oι oι oι ιn uι _i ι. w w ιo _ μ μ o o ι_ι «) θo co j i oι uι uι _' W w μ μ u) io (D α) si oι oι ijι ιιi ι. _' W W M μ μ o o «) io θ) α) si ^ o. oι oι si σi σi si σ oo σ σi σ σ oo oo σi si σi σi σi σi σi σi σi si σi σi

H sl sl OO sI VO VO oo vo si OJ VD OO o σ ui tt vo σ oo σi tO it si sl OO UI VO Ul lt OO VO Ul tO I-' VO O. VO sl tO OO I-' O μ' VO VD Ul s]

Figure imgf000137_0001

O O s] s] sl C0 00 H H H H s] s] C0 s1 00 00 H 00 s] s7 H 01 s] TO s] Cr. H H VO VO O sl H s1 s] s] s] H H O O H V0 V0 s] C» 01 s1 s] s. sl 00 s] 0~. s] Ul W Ul Ul Ul VO VO O O O O tO it O sl VO VO O VO W H O VD OO VO Ol OO O O O O H Ol H O OO Ul O O O O UI H O O it M Ol tO VO W Ul O I-' Ul OO u * ^ ιo w ω o _o _i μ μ (o ιo ιs μ i (ji ι. _j u ^ w ι ifl θ oι ~] μ μ w ^ o >o _i -θ U ι. μ μ iji M ^ M μ iB M W ιn vi w oι μ uι *o i() to σ oo s] o it O H it oo to to

Ol sl sl Ol sl Ol OO Ol σi σi vo σi oo σ si σi si σi σi σi σi σ σi σi sl H tO sl it sl VO VO si oo ui si vo σi o it it σi vo σ oo it ui σi ui si σi oπ OJ O it O DO Ol sl sl VO sl OJ OO H O OO VO VO Ul O Ul

Figure imgf000137_0002

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

X n Xo Xo Xo Xn Xo X- X- X- X- X- X- X- X- X- X- X- X- X- X- X- X- X- X- X- X- X- X- X Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω- X Ω- X X X X X X X X X X X X X X X X X X X X- X X X X X X O

Ω Ω Ω Ω- Ω- Ω- Ω- Ω- Ω- Ω- Ω- Ω- Ω- Ω- Ω- Ω- Ω- Ω- Ω- Ω- Ω- Ω- Ω Ω- Ω- Ω- Ω- Ω- Ω-

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω σ

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

o rr ror ror αo ror ror roτorτ roτor rof roτorroσorτorτorr roτor orto oooooooooooooooooooooooo

Figure imgf000137_0003
Figure imgf000137_0004

it lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt tt lt ^

O si sj si oι m oι oι m oι oι oι oι oι oι σι σι σι oι oι σι o oι m oι oι oι σι oι oι oι o oι o. oι oι oι oι oι oι oι θ- Oi oι oι oι oι o σι oι o\ oι oι oι oι oι o o o o a vo ^ ω ω w w ω ω io a io ω αi is m oo oo ffl tB ffl αi oo o ffl ffl si -j -j si ^ j j sj ^ ^ j i si -j j j oi i oi oi i i oi m o. μ μ o o ^ ιo oi vi -i ιιι ιn ι. ι. w w u u μ ιo vi ] iJi ιr ιπ w w ι ι μ o o «) iD a ιθ vi ι. _i U W W U _ ι μ o o ιo ιo o) (i) eo (» N] i ι

V s_ OO s] s] s] s] H H s] O s] s] sl sl s] s] VD 03 VO s] s] sl s1 00 01 s] s] H s] 01 sl s] s] 01 VO s] Cn s] s] s] Cr. s] 01 sl H OS s] 01 sl s] 01 01 s1 01 s] Ul W H tO Ol H W O O H VO sl O OO O OO H O O O H Ul M O O VO O O O O VO lt W O OO O ω Vo ω tO O O sl OO it O VO Ul OO OJ tO OO OO it VO DO Ol VO sl O VO H W M O O O VO O DO DO Ol tO W H Ol VO CXJ OO OO OO DO O^ O H it it Ul O Cn OO tO VO Cn H H CC Ul M W M J 00 o o

VO VO 00 si s] s] vo sl sl sl sl sl sl sl OO sl

Ui Ui o VD oo si μ> 01 sl sl it J 01 00 tO tO it Ul VO OJ H O Ul cri W W si si σ to i-' si

Figure imgf000138_0001
j ^ i j Nj α) vi i μ j vi -j vj α] vi i ι μ ^ ιo ^ vi i iΛ i i s] j (ii j vi i i vi i oi i (!i j ] j i vj >θ i μ o. oι c. ()i i i oι oι c. it Ul tO VO H lt VD O tO O sl O CD O DO H VO VO O O O O O lt VO sl O Ol Ul VD OO O OO OJ it OO VO I-' sl O OJ DO OO Ul O O CTl O O H DO OO ιt OO O Ul s] sl _O H DO OO sl H )t O H OO VO -O H O M <n ιt C» Cn CO O Ul VO VD VD CD H O^ H DO CO ιt VO tO it H it OO Cβ OJ OJ tO OO

00 DO O

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X O Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

( rr rt rf rτ rt rT f ft r rt rr rr rt rf rf rt rτ rr rt r rt r rt rt ct rr r ft rr rt rr rt α rt rt ct rf r ct rt rf ι rt rt rr rr cτ rt rr rr ff ^ l_r i_ ^ i3' !3' t ι_ tJJ ? l-5' |J !3' ^ !^ !3' ^ ff l- ^ l-)J !^ ff

it lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt t lt lt lt lt lt lt lt lt tt lt lt lt lt lt lt lt lt lt lt lt

sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sj sl sl sl sl W W ω ω W W W ω ω W W W ω w tO tO M tO tO tO tO tO tO tO tO tO tO tO H I-' H H H H H H I-' H H H H H H H H O O O O O O O O O O O

CD si σ ui ιt θJ M _θ H H θ o α3 σ σι uι ui ιt ιt w ω to _θ H H θ o vo cD CB s] s] c_. σι uι ui ιt ιt w w _o M H H vo cD θθ s] s] c^

VO VO sl OO sl sl sl VD sl OO sl VD sl H VD sl H sl sl sl VO sl OO sl VO sl OO sl sl sl sl V _O s -l s _l. s ,l O—O s _l. s _l. s _l. O —O s ,] sl s] s] s] H sl s] 0O sl VO sl sl 00 00 sl si si it H Ui oj si o σi O it σ ui o OJ ui o σi si si si σ to ui it to o oJ it VO it OJ OJ VD Ol VD tO OO tO tO tO VO H OO I-' O UI H O OJ Ul Ul OO I-' H H1 oo it o oo it σi H si oo σi σi si H O si vo tO si oo tO si σi σi ui oo s] VO Ul tO Ul it Ol it tO O H VO OJ it OJ tO it OO H Ol H sl lt O H OO O OO tO I-' OJ

01 OJ 01 » ω oo ro ω w ιo ω αι ω » ω co oo ιθ J Ui w o _i w μ o μ W i (_ ιo ι o μ αi ι. -i M <ι μ u ijι θ i ι. ι α) u uι

Figure imgf000139_0001

O sl VO sl sl VO VO O sl W it Ul VD it H 01 w α) i _i a μ w ιιι (iι

Figure imgf000139_0002

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X v

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω 0

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω σσbjtr trtrσbjσσtrσ trdj σσtr&'σσ trσtrσ tf σσσ^ o π- oπ orr oc-. orr orτ orr o(-f orτ orτoorτorrorτorτorτorτorrorrorrorτoαorrorrorτorror^ooooooooooooooooooooooooooooo

it lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt

O sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl vD VD vo vo vo vo vo vD θo oo oo αJ θo oo c» cx3 s] si s] s] s] si si si s] si σ σι σι σι σι cn σ σ σι σι uι uι uι uι uι uι ui ιt ιt _^ ι <_ ιn ι. w θ j si oι oι _i u o ω (» ] (_ ui ι. w w w μ ^ vi ij uι ω w w o o ω α) vj ι uι ui ι. ^ M io a α) θi _ι uι ui ι. _- w tj

VO 00 vo vo s] VO 00 s] VO VO si s] sl VD OO VO sl sl H VO OO sl sl H VD VO OO VO OO OO μ- sl VD OO sl VO sJ VO OO sl s]

00 O it OJ VO DO O VD VO 00 si VD , o _o σ -. i .-' t .o.- σ-i. v-o, o oJ H Oo σ o vD σi to ui to vo o oo vo μ' σi σi it ui o ui s]

H Ul Ul VO VD Ul s] OJ H O si oo oJ Ui Do σi σ it o Ul OJ VD tO O Ol H VO tO UI OJ O lt VO O Ul Ol sl OJ OJ OJ O

Figure imgf000140_0001
ι_ ω w w ιo ω ω ω μ ω vo ω ιo ω Φ μ ιo vD io ιo w μ ω ω ιo ω ω μ ω w n> w o μ iD >- W w ιo ιo ιo w u) w ω μ μ w o α) io ω w w ω >o ^ ^ι w _^ ι. M iιι u o oo w w (θ (i) U μ αι ιo oι w μ o ^ α) (_ w μ o -i o. _o w ιo μ w _o μ μ ^ a oi ()i ι. ι. o o o i() μ U (_i i uι uι ιo ιo

M Ul H Ul W VD VD it O s_| V0 t0 Ul W Ul H C it a_ O H O s] Ul it H V0 O 00 U1 O O C» O O V0 sl M it O W it V0 Crt Ul O O W (n o O W O _^

Ui s] to VD OJ vo H

OO VO OO sl VD OO VO VO sl H' sl VO OO sl H OO VO VO OO sl sl OO OO VD VO sl l-' OO VO sl VO V VOLi OuOu ssll VvuD VvLDJ VHOJ sslj ss]j OO VD OO VD sl sl l-' sl sl OO sl VO OO VO VD VD tO OO O VO OJ H VD tO OO O VD OJ O _ VD O O OO OO H sl sl O DO OO tO OO O OJ Ol sl DO H OO Ol OJ tO H OO Ol H Ol O Ul Ol OO O OO Ol tO Ul Ol tO On H H

H H OJ Ul it OJ Ul OO OO O it W O H DO it o ω it si σ VO H it O H H tO O tO o σi t "O'• H'- it Ul it O OO Ol Ul H tO tO OO Ul O DO Ul sl O Ol tO OO OO it 00 H σi H si

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X O

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω v Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω σσσσ t trσff σ _rt_ trσσ t trr'&'trσ σσσj ι_r trσσσ o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o rr ff rr rr f rt rt rr ff rt rT rt ft ft rt α ff rt r rt ff r rT rr rt ff ft fT rt rT rt rr rr rt rt rr rf rt π rr rt r rt rr rt rr rT rT rf rr rr !_ι' !_r' .J :-r &' ^ :_r- Er :_r ^ :_f :-r !_r :_ ;_r t_r ^ ^

it lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt l^

OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO OJ D OO CD CD CD Cri CD OO OO OO CD OO OO OO CD CD CB CD rø OO OO CD OO ∞

01 0i σi Ul Ul Ul Ul Ul Ul Ul Ui Ul Ul ιt ιt ιt ιt ιt ιt ιt t ιt ιt W W ω ω W W ω W W W W tO tO tO tO t H H H H I--' H O O O O O O O VD VO VD

-O H O VO CD sl Ol Ul it W M H H O VO OO sl O^ UI it W tO H O VO OO sl Ol Ul it it W W H sl Ol W O O VD OO it tO H O VD VD O O^ i^

Figure imgf000141_0001

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H VO VD VO VD VO VO VD VO VO VO VD VO VD VD VO VO VD VO VO VO VO i W it W i W it ω ω it it it ω it t ω w w w w ω ω w w w ω ω ω ω t Do M to M M σ σi si oo si ui it it o o σ i to oo si o ιt W ιt s] t oo ιt si ω ιt H W ιt o o oo oo σ3 θo vD vo θ si ιt σι ω w σ. σ θ Ui uι θ ιt ιt rø ιt θ si to o <n t to σι uι _j s] ui H Ui ω v^ vo vD si oo ui H OJ si oo o it ui ' σi ui σi oo oJ to vo oo ui vo si to oJ Ui oo H vo σ it oo oo it i μ eo μ oj μ oi μ μ αi co μ μ ffi μ oi μ αi μ αj μ μ oo oo μ oj μ αi μ oj μ μ μ μ μ iB αi cii eo io tf αno iiKD Kt io to tD αno αno io flo σ w σι ω σ ω uι w ω uι ui ιt ιt ι_π w uι W ιt ω ιt w ω ιt ιt W ιt ω w to w to o tθ H H s] to M to oo ιt to ω vo M H H W rø

_> vi u o) θ vj (» ω ι. ι o o κ) eo o αι α) ώ m -o <ιi ι. μ o oi (D Ni (jι ι _o uι μ i (Λ oo u ^ ui ffi (io w ι co ω ιo o uι » o. μ (D

00 H si 0O H Ul s] 00 tO 00 Ul tO Ul H 00 H 01 si si DO oooooooooooooooooooooooooooooooooooooooooooooooooooooooo

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Ω X X X X X X X X X X X X X X X X X X X X X X X X X X

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o rt rr rr rt rt rt r rτ rτ rr rτ rt rt rr rτ σ rt rt ft rt rr rr rr rt ft (. r ft rt rτ rτ rt rt r rt rt rt ft r rτ rr rt rt rt f r rt rr ff rτ rτ rf rr r rr

:_r !_f r_' :_r :_r^ :3' !__' rr ;3' :-ιj :-5' tτ :_r ff !_r :^

it lt tt lt lt tt lt lt lt lt lt lt lt lt lt lt lt lt tt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt tt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt

VO VO VO VO VD VD VO VO VO VO VD V0 VO VO VO 03 CD 00 C» 00 00 ∞ 00 O0 00 ∞ 00 00 00 03 CD ∞ ∞ 00 00 ∞ CD C0 00 00 rø

H H H H O O o o o o o o o o o vo vo vo vo vo vo vo vo vo vo vD vo vo oo oo oo oo oo oo oo ∞ oD OO si si si si si si si si si sj σi σ σ σi σi σi σi σi w w μ o a o) ] i ιn * W M μ o o a ιo α) vj (_ (J Ui ι. u _ _o μ o a α) i (_ W ι. -θ μ o ^ (» ^ ( iΛ ι. w ι μ o ιo ιιι o) s] ι uι _.

H VO H VO H VO H VO H VD H H VO H VO H VD VD H VO H OO OO H H OO H H H H H H OT H OO H OO OO H H OO H OO H OO H OO H OO H OO H I-' OO H OO O DO H H H H O O O H H O H DO O H O H H O tO VO VO O M VD H H tO M tO tO OO M CXJ W aJ OO W W OO W sl it sl W sl W sl it Ol it it Ol it Ol ι _i M W ιii K) a) w aι _i uι o o _i ^ ifl iιι oι o (iι aj i ^ _i θJ W Ui w c. j ι» uι aι ι. o o) i o ιn aι w o) μ o μ μ a) _i Ui OJ o vo vo to si j to oo vo ui O s] σ. σi H ui to to H VO it oo o H UI si VD O UI vo

H H I-' I-' H' H I-' H H H H H H H H H H H H H H H H I-' H H I-' H H' H H H H H H H H H H' H H H H H H I-' H H H I-' H H I-' I-' I-' H O O H H H O O O O I-' H H O H H O H H H O H O H O tO lO O H H tO W tO tO tO tO tO tO OJ OJ OJ OJ OJ OJ OJ OJ it it OJ OJ it OJ OJ it it it OJ OJ VO tO O it it OJ Ul tO Ol Ul it VD lt sl Ul H O to σi ui vo si OJ OJ O si it oo ui o ui ui σi ui oo oo σi σ oJ OJ it σi oo si o o oo oo Lπ oo cD i-' o μ' it O O it lt O OO OJ O VO -O H DO Ol sl OJ OJ H it vo ω vo ui to to w si o σi σi H OJ Ui w to oo i-' O it vo it σi oo OJ o σi H o ui it it VD si o oo ui to

VD H VO H VO H VO H yo t-> o yo > lo μ ^ μ μ H H tO O O H O O H H H H VO O si VD UI OJ Ol sl sl Ol sl H vo vo si o o ui it H ω H O VD Ui rø ui σi oo it σi oJ to vo σ oo si σi o it oo to oo o o o si it σ OJ -> OJ OJ H Ul Ul sl H s] OJ OO O it Ol OO Ol O it VO OO VD to vo

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

o rrorrocτoaorrorrorrorroπ-orτorrorτorrorrorroorro<-rorrorτoπ-orτorr ror cororτorrorτo oooooooooooooooooooooooo

Figure imgf000142_0001

it lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt

o o o o ιo ω ιo vo ω ιo ω ιo ιo w vo w vD ω ω ιo ω w ιo vo ιo ω ω ω ω ιo w ω vo vo ω iβ ω o w) io ω ω ω vD io iD Vo ιo ιo ) ω ω ιo ω ω o σ σ σi σi cn cn σ σi σ σ cn σi ui ui ui ui ui ui ui it it it it it t it it it it ω ω ω w ω w w w oJ M to to M to to M o ^ (B vi _ι ifl _i W _o _o μ μ o a θ) θ) -j W ι. o ιo α) i ι iΛ ι. w w μ o a (i) Nj ιιι _i W _j μ o ιo αi i oι uι _s u ι μ o Co ^ (Ji i[i _'

VO H I-' H VO VO VD H H VO I-' VO VO I-' H VD H H VO H VO VD H VO H I-' VO VD VD H H VO I-_ VO VO H H VO VO H VD I__ VO H H VO I-_ VO VO H VD I-' I-' VD VD s] O H H sl s] s] O H 01 H 01 01 H I-> 01 H O U1 0 Ul Ul H Ul H O Ul it it H O it O it it O H OJ OJ O OJ I-' OJ O H OJ H O tO O tO H H tO tO Ol it l-' tO OJ H O it it Ul Ul it O. O sl O VO VO σi it OJ tO tO it O it O VO O si tO Ol it VO I-' OJ OO H OO Ul OJ it tO O OJ OJ Ol OJ H Ol OJ OJ it Ul H O vo it σi it oo σi si o to oo to o σi si Ul O OJ it Ul Ul o to μ -' H H H H H H H H H H r-' r-' r-' H H H H H H H -' H -' -' H H H H O I-' O O H O O O H O O O O H O O O H O I-' O O H H H t-' O o w _! ι. ι ι _ι ι m o _o ι oι ι μ uι w μ o μ _ι u w w iΛJ Ui

Figure imgf000143_0001
m u o vj Ni uι w oι μ uι μ _- ιii (_ι ui ι. μ
Figure imgf000143_0002
o oo _i uι w uι _i Ni μ

H vo vo vo μ» μ» H VO VD H VD H H VO VO H H VD H VO H I-' VO H VO VD vo vo vo VD VD VO H l-» vo vo ID μ VD vo vo

O si si si o o O O O H OI H O O UI H to ui o ui o o ui o ui ui o o it it it it H O OJ it H O 00 o tO 0J H oo > o to to o

00 Ul tO it VD s] Ol VO OO it OJ Ul VD sl VO s] to σi oo oJ o σi ui vo Do H sl Ol Ol OO OO Ul OO oO μH> Ol VO tO I-' Ul UI VO DO Ul VO sl OJ OJ OJ Ul Ul Ol it tO it

OJ vo to 00 00 OS 0J o to ui DO si to si σi to VO Ul 00 Ul to si μ> 00 σ o o o o o o o o o o o o o o o o o o o o o o o o o oo o o o o o o o o oo oo o o o o o o o o o o o o o o oo X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω t Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω t trtrtrtr rσ 'trtrtrff trff ffD'ij'd'ff t. trffO'trff trt. σt. trtrff trtrD'trt. σtrD'fft. o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o il rl rr rr it rt π π rf rf rr rf rr i rf ri ff rt ff rr rr rr il rl rt rt ff rt rf rt ff rt rt r i rr rt rr rr rf rt rt rl- α

!_-j !_r !_r ^ ^ .y .J .3' .3J .- .3J .- .3' !-r .3' .3' .3J .^

it lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt

H H H H H H H H H H H H H H H H H H H H H H H H H H VO VO VD VO VO VO VO VO VO VD VD VO VO VO VO VO VD VD VD VO VO VO VO VO VO VO VO VO VD VO O O O O O O O O O O O O O O O O O O O O O O O O O O VO VD VO VD VO VO VO VO VO VO OO OO OO OO OO OO OO OO OO OO OO sl sl sl sl sl sl sl sl s] DO W _0 _O tO tO tO tO tO H H H H H H H O O O O O O O O O O VO CO s] O. Ul it W tO H O VO C» s] Cn it W tO H O O V0 03 s] 01 Ul it OJ tO H vD Oo σi ui it OJ to i-' o oo si σi oJ to i-' O VD OO si σi ui it oJ to i-' o

H H I-' H I-' H H H H I-' H I-' H H H I-' I-' I-' H H I-' I-' H H H H H I-' I-' I-' H H vo μ μ io μ io μ μ μ w io μ μ μ w w μ ω a μ μ ω μ w O tO tO tO H H O O O O H O O O H O O O O O H O H O O O O H H O O O VD H H VO O VO H O O OD VO H O O OO CO H VO OO O H sl H s] W tO Ul VO Ul it sl tO H Ol tO H Ol Ul H OJ H OJ O OJ H it O OJ O H UI Ul H OJ O VO OJ OJ Ol it lt OJ O OJ OO OJ tO OO sl it Ol O O OJ Ol OJ sl H VD DO UI it tO O it Ul VO tO VO OJ O Ul O OJ it VO OO I-' OO OJ OO Lπ it OO Ol Ol sl O O σi O VD OO 00 H tO si μ 00 Ul O VO O Ul

H H H H H H H H H H H H H H H H H H H H H H H H H H H DO OJ DO DO H DO H DO tO tO DO tO tO DO tO O H Oo O H M H rJ O_> OO Hr-' μ-, Oo HμJ Oo Oo Hr-' Hr-' HJ Hr-' Oo o HμJ Hι--' oc_) oc_) |--' l--' HrJ Oo Oo HrJ ' J "' o O -', H i-1 M i-" O H OO O Ul Ul VO OJ UI H O O H O O O O sl H OJ si σ to oj o oj ui oo ui σ oo w ui oo ui ui σi oj ui it i-' it ui it oj oj oj ui o oOjJ oOoJ ttoO oOoO oO t-oO ttoO ss to to σ σ to o si it vo σi σ to oJ OJ it it vo o 01 0 0J 0J V0 H s] tO 0J O H 00 t0 O s] O s] 01 01 U. 01 0J V0 H H VD s] 00 H 00 01 00 00 O s] H it

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H l_ι H H VO VD H VO H H H VO H H VO VO VO H H VO H H VO VD H VO H O H tO O O O tO O tO H O H H O OH O O O O O H O H O O H O O H O O H VO VD H VD O O H 00 O H 00 VD 00 O O V0 H O 00 si O 00 O

OO VD DO tO tO tO H tO H . . O .O_ _tO_ .H .H OO tO sl O UI H O O H O Ul OO H H Ol o on it oo si oJ cπ ui o o vD oπ tO si to oπ si si H t 00 H 00 00 tO si it lt Ul sl Ul lt VO OJ tO O VD tO OJ Ul it H H Ol VO sl sl VD Ul Ol sl tO O H DO sl H 01 VO 0J H 00 00 Ul it si si σi OJ

O O OO OO O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω -P O

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω ΩΩ Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

ooooooooooooooooooooooooooo

Figure imgf000144_0001

it tt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt tt lt lt lt lt

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H O O O O O O O O O O O O O O O O O O OO O O O O O O O O O O O O O O O O O O O O O O O O O O OO O O O O O O O O

CB Oo oo oo oo oo si si si si si si si cn σi σ σi σ σi σi σ σi σi ui ui ui ui ui ui ui ui ui ui it it it it it it it it it it it it OJ W w ω w ω w w u M M μ o ^ vi c. _i U M o u θ) c. ϋi ifl w _o μ o o i)) vi i ι. u u _o ω μ o ώ θ) α) Nj ι iJ Ui _' U μ o o ιθ v] (Ji o. ι. ι μ μ o o

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H O H O H H H H H H O O H H O O H O H H O tO H O O H O tO H H O O O H O O O H tO O H O tO tO O H O H O O O O O O O O σi oo si vD Oo oJ Oi σi H O si si it oo oo σi ui σi H Ui oo H Ul Ul sl O Ul O VD O Ul Ul OO sl OO Ul Ol H OO it Ul lt OJ Ul it tO sl O lt OJ sl VO OJ VO OJ OO

Ol sl Ul tO OJ it it Ln O H lt OJ Ol OO OJ sl Ul Ol tO tO O UI O VO Ol OO Ul VD OO tO sl lt lt H VO H H si σ σ σi sl OJ VD H DO Ul OO OJ Ul O it OO sl OJ lt

\-i \-, ^ ^-' t-' t-' t-i t-i i i t-> i-> t-i - > 1 i-> H H H H H H H H H H H H H H H H H H H H H H H H ' t-> -' > i-i l t^ x }-' t-i -i i-> 1 H tO tO O H O O tO tO H o o H H O O H tO tO tO H H tO tO tO H O H O O H H H O O O si oo vo si vD H O Oo σi si σi it vo vo si it σi it u _i σ_i. v_o_ t_o_ . sl tO sl Ol H DO O VO si H Oo oo vo oo σi σi σi si σ σ σi oo σi si O si si Ul to O si 00 00

OO OO H OO sl O H OJ it Ol O VD Ul VO it VD OJ 00 Ul si oo σ oo to oo it o s] 00 it H tO OO it sl OJ it sl O H Ul Ul W OJ it OO tO OO H 00 DO t H vo vo

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H O H H H H H H O H H H H H O H H O H O O H DO tO O O O O H DO O H O O O O O H tO tO DO O H tO H tO O O O H O H O O O O O

Φ j μ -j μ ^ _ι co w i ι. ι. ^ ra uι _i w uι ω j (B o vi ^ ι_ vi _i o uι o ^ oι ι iji flo oι oι u co _i iji (io o (_ι -j ιt' W o <Λ μ w io u w μ ^ w ι» j ι. μ w o ^ α) α) eo (>ι o (jι ui vi ω uι iji ι. ιo μ _o ^ oι ι ] ^ o >o ij θ si c. ιo ω w ϋ io ιo (D (i) _i i ι_i ι. i)i si u

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

X X X X X X X X X X X X X X X X X X X X X X X X X

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω ΩxxΩxΩ ΩxxΩ ΩxΩxxΩxΩ ΩxxΩxΩ ΩxΩxΩxxΩ ΩxΩxxΩxΩ ΩxΩxxΩxΩ ΩxΩxxΩxΩxΩxΩ

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

o rrorrorroc or oc o(-rorrorroorτorτorτ roτorrorτorrorrorrorro. oσorro( orrorτortortorrorrorτor^oooooooooooooooooooooooo !_>J ._iJ ty t_J !_r . :_f !_r- U' :_r ^ :_r^ ^ tr ^ ^ ;_f !_?

it lt lt lt lt lt lt lt t lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt t lt lt lt lt lt lt lt l^

H.. H.. H|_l MH H MH HH HH HM (H__J HH H (H_1 (H_1 HH H(_l H|_,HH H|_1 H|_,|___, 1___,1___,1___, H H H H H H H H H H H H H H H H H H H H H

H O O O O O O O O O O O O cπ ui ui ui it it it it OJ OJ OO OJ OJ OJ OJ OJ OJ OJ tO tO tO tO tO tO tO tO tO H H O O O O O O O O O VO VO VD VD VD VD VD VD 00 00 00 00

VO it 00 OJ si s] OS H VO OO sl Ol Ul it OJ OJ tO H VO VO OO sl Ol it OJ H O VD OO sl Ul it OJ H O VD VD sl UI Ul OO H O O oo σi σi ui oo H H O OO si σ σi

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H tO tO tO H tO tO H H tO DO DO H H H H H H H H H H H H H tO H H H H tO . t-> i-> ' i t-> t->

O O H U1 0 0 CX3 CX3 H O H 01 lt U1 00 it VO s] s] Cn it OO CD it 0 01 tO VO VD lt lt lt OJ Ol VO DO sl tO ui H H si oo to σi o it o o si tO H Ui ui σi σi si vo H σi it o oo o ui H si oo vo oo

Figure imgf000146_0001
UI VD VO OO VO s]

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H tO tO tO tO tO tO tO tO tO DO tO tO tO tO H H tO H H H DO tO H H tO H H H tO tO H H H DO DO H H H H H DO H DO H H H H H H H H H DO H H H H M W DO DO W DO DO tO H tO H H DO n OO H OO OO Ol H O sl OO DO sl sl VO H VO σi it σi H O OO σi OO it Ul VO OO O sl sl Ol OO VO OO sl VO OO H VD OO VO OO Cn tO W H H it OJ W Cri H Ol W H Ce vo OJ VO sl H it O VO sl O Ol UI Ol O Ol O VO VO OO H VD OO it it Ul Ul VO O VD OO H sl Ul it Ul Ol sl lt VO lt OJ

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H DO DO H DO H tO H H H tO H DO H H H H H H H H H H H H H H H DO H H H H H H H H H H DO H H H H H H tO H H H H H H O H Ol VD O H Ul O VO H Ul Ul sl O VO H Ol OO Ol it it sl VO VO OJ Ol Ol OJ sl OJ OJ Ol tO H Ul VO Ol H OO tO O it it sl OJ VO Ol H sl O sl tO VD O OJ OO VO sl H O it H H OO Ul it sl O it O Ol O W Ul M Ul O sl VO OJ O VO OO H OO tO sl it H Ul Ul OO it Ol Ul Ol Ol OJ lt Ol OO OJ Ol H sl Ul O Ul H it VO -O VO VO

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω O

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o α rt rt rt ff α rτ rt rt r ι. α rT ( rr rt rt rf rt rt rt r fτ π rt rf rt rτ rf rr rt rτ rτ rr α rt rt rf rt rr rt r fT ff rτ rt ft r rf rr rt rt rt rt r r

tt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt tt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt tt lt lt lt

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H

U w Mw Mw _wo _wo ww _w Mt Ww M-j wU cWυ _w) Uw _wo _wo Mw _wo uw _wo -_o _rj Mw Mw wU w_o Mw ωi _o _θ -θ _ κ) W _o ι _o _o M N) μ μ μ μ μ μ μ μ μ μ

UUll UUll UUlI UUll UUII UUll CUπl UUll UUll UUll lltt lltt lltt lltt iitt iitt OOJJ OOJJ OOJJ OOJJ OOJJ OOJJ ttOO ttOO ttOO ttOO ttOO HH H H O O OO OO OO OO OO OO OO O _ O VO VO VO VD VD VO OO OO OO OO si si σi σi σi sl Ol Ul it lt OJ OJ tO H O VO OO it tO H O VO sl Cri it OJ O VD Ol Ul it tO VO s] si σ ui it it OJ OJ to to H 00 00 Ul it to o σi to H O OJ to tO si OJ to

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H W M M M W W _ U W U -O W _O U _O U _0 _O W _O M M tO M W W tO M tO M _O IO _O M _ IO _O W -0 _O I tO tO tO tO tO tO tO tO H DO DO sl sl Cn O Ul O sl sl Ul C OS O VO lt lt lt t Cσrii WOJ iitt Oσli OOJJ iitt OOJJ Oo Oσli ssli OOJJ iitt HH O0O0 ttOO ttOO iitt OJ OJ tO it tO O OO H t 00 it DO Ul H o oo o o si oo σi H

OO Ul tO Ul sl OJ O OJ Ul OO VD VD Ul Ol VO sl H si 00 H 0101 VO O σi VD si s] 0J VO H O VD si to oo oo ui si σi ui oo it DO it σi H DO it tO VD OO it H OO OJ ' t-' \-' t-i t-' t-' ' i-i -' i ^ ^ ^ H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H OJ tO tO tO tO tO tO tO tO OJ OJ OO OJ lO W tO W U M U W KJ U W W M W W M -O W U I U M M M lO W tO IO IO U U W IO tO IO IO -O I IO IO -O I IO to oo oo si oo σi oo si si oj to oj o o Cni Ol it it O it OJ O it it Ul tO it tO Cn Ol it it W W it it OJ it it OJ OJ OJ OJ tO O O sl Ol OJ tO H DO OJ DO H DO O

OO it Ul OO it VD Ul Ul O O OO tO H OoOo Ocrli Ooli OOJJ UUli Oo VvOo Oo tDOO H O si vo ui oo o oi OJ oi it o o oi o oJ vo o vo it vo vD si oJ vo Do oo H si H H Ui o vo

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H

M tO tO W tO tO tO tO tO tO M tO W M tO D tO M M tO tO M tO tO M tO W tO tO tO tO tO M tO NJ tO W tO W

OO Ol sJ O sl sl Ul Ul Ol sl Ol VD O Ul it it it Ol it W Ol Ul W sl CD tO O it W W H OJ H tO it M W W t M tO W O it sl Cn M H H W

^ μ o oι uι o αι c. ^ w oι oi vi o w _o ijι ιs _ w uι θ ι. w _o u) W oι u _j ] θ _o (D ^ o o) μ uι oi vi ijι uι ιt i M ι. μ uι W -θ ^ co oι oι u

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X x x x x x x x x x x x x x x x x x x x

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω σ Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o rr rr rr π- rτ rr c rr rr <-r rr rr rτ <-r π- π- ( rr rr rr rr rτ rr rτ rr rr rr . r^ rr r_J i_r ._r- ^ !__' ;_ !_r p' !_r !_j, !_r :_ !_ !_r ^ ^ ._ ^

it lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H w ω ω ω ω ω w w w w w ω to to to to to M to to to M to to to to M to M to to to to to to to NJ to to to w μ μ μ μ o o o o o o o o io ω o ω ω a ^ io a ω o oo oo iB oi oo co αi oo αi i Ni si ^ i i si vi vj si i oi oi i oi o oi oi oi i o ui ui ui

W tO H O VO OO sl Ul it tO H O VO CD sl Oi it W M H O VO OO OD O sl Ol W M H O VD OO sl Ol lt lt W tO H H VO CD sl Ol Ul it W tO H O O VO VO ro

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H w w w w ω w w oJ W W W W w ω ω ω to t ω ω w ω to to t ω to to ω w ω w w w w w t to w t to to ω ω M w ω w ui ι. μ u oι w w μ μ _i μ ι. μ μ _o u «) »o o o μ μ (o (_) θ *o ι_ι μ ιo ιιι _o M (!i o o α! ] w αi (o (D o θ (i) i o ι_! vi θ) θ) ^ (i. eo vi co

H Ul sl VD Ol H H lt O O VO it H OO O^ tO VD OO it CD Ul M sl it O H W W sl VD lt W H sl M OO Cn O VO H sl W Ul Cn OO O Ol tO H lt lt it W .^

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H w ω ω ω w w w j w ω w ω ω w ω ω w w w w ω ω ω w to ω to w w ω w ω ω ω ω w ω to ω w w to w w w w w ω w uι ι_ ι. (ii -i uι ιιι uι _o _i _o ij ι. ij ι. ι. w _o u _o μ μ μ o iD μ μ m υ ^ ω iD ^ μ o ω _o μ o (i! W ι. μ _> μ o ω w ι >θ vi ι vj ι w o (o o _ι _ι io _) W _ι μ μ u o vo o -j ^ o oι ^ oι ι o co α) si oι uι oι uι iji ι. ι. ! io _i o ι μ μ ^ uι cιι * (> w _j iB ι. u w oι μ w ι. -' i t-i i-' l-> \-> > t-' -> -' \-' H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H OJ OJ OJ OJ OJ OJ OJ OJ OJ OJ OO OJ ω w ω w ω ω ω to w to w ω w to to ω to ω w ω w w ω to to to ω to to to ω ω w w to u to M to to to to to H H it tO OJ tO UI it tO H O H H O0JJ ttO0 H O 0J H H V0 O VD H O V0 VD 00 H V0 O t0 0. 01 _O t0 V0 VD 00 O V0 00 s] t0 0J O O 00 s] V0 00 sl 00 sl s] 01 00 ui oo OJ to Do σ oo σi o Do oo o WJ ssil vVoO sl tO H O Ol sl H OO H it it tO VO it H VD it it OO W Ul O OJ OO Ol VO sl DO OO O Ul O OJ Ol UI Ul VO Ol it H OJ O

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω 4 Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω ^

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o rT rt rT f r α α r rt r ft rt rt rt rt rt rt rt rt rr rt r rr rt rf rt rf rt rt rr rt rt r rr rt rr ff rr rr rr rr r rt rt rr rt rt rt rt r rT rT rt

tt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt tt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H ω ω oj ω ω w ω ω w w w ω w ω w w w w ω w w ω w ω ω w w w w w ω ω w w w ω ω w oj oj w w oj j w w j j w oj oj o oj oj w j oo co oo oo oo cD CB CD Oo oo o o si si si σi σi cπ ui ui ui ui ui it it it it it it it it it ω ω w w w w w w w w w w ω w oJ M to w oι ui (ji ι' _i W w w o ω oo s] m w _θ i ui ι. _j α) Ni i W ι. w _o μ o a vo oo αi vj m oι uι ι _i ιi> w ω ι μ ιθ s] i uι o ιo ui ι.

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H ιt ι θ ιt ιt ι W ιt ω ιt ω ιt w w w w w w w w ω w w w ω w ω w w ιt ιt W ι w _t w ω w w ω w w w w ω w w w w ω w ω ω o o ι» o o o a o αι o ω μ o) u ^ ^ ^ ι ui si i uι ui (» ιo ui ] ui ι. o μ j W ιt> U i * θi ω oι ω ι. m oι ω uι ι_ ui - uι ι uι μ it W sl W O DO VO M CD H O^ OO H sl OO H Cn O sl O sl Ul VO O O DO W OO VO OO VO H it DO W sl W W it DO DO W OO DO CD sl O O Ol OO tO t O W Cri

H H y-1 1 ' t-' t-1 H H H r- H H H H H H H H H H H H H H H H H H H it it it it it it it it it

Figure imgf000149_0001
tP- - if-. J OJ OJ OJ J OJ OJ O OJ OJ OJ OJ OJ OJ it it OJ it it it it O OJJ OOJJ OOJJ OOJJ OOJJ OOJJ OOJJ OOJJ OOJJ OOJJ OOJJ OOJJ OOJJ OOJJ OOJJ OOJJ OOJJ OOJJ OOJJ OOJJ tO H H O O HH HH OO H H H H H H VO VD sl sl sl sl si σi VO VO Ol sl Ul sl tO tO sl H tO H H sl VO VO VD VO VO VD VD VD sl CTl sl it sl it Ol Ul Ul Ul Ul

H OO OJ it tO tO it oJ to σi σi oj tO si σi it OJ to o H si si σi ui it vo io σi ui OJ Oo o vo s] O H Ul it O Ul H O lt H sl it Ol tO it O Ol sl it Ul

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H it t lt OJ it OJ it OJ it OJ OJ OJ it lt OJ OJ OJ OJ OJ OJ OJ OO OJ OJ OJ OJ OJ OJ OO it it OJ OO tt OJ it OJ OJ OJ OJ OJ OO OJ OJ OJ OO OJ OJ OJ OJ OJ OJ OJ OJ OJ OJ O O O OO O OO O VO O VO VD OO H O VD s] VO sl s] Ul U1 0. Ul VO si σι Ul Ul sl tO O lt s] tO it tO Ol Ol VD Ol VO Ol VO lt VO lt Ul Ol Ol it tO Ul tO Ul H Ul Ol H OJ VD OJ Ol tO OO tO sl VO H sl O Ol Ol O OJ H Ol it Cn OJ H VO Ol O H O O sl Cn OO it H OJ sl OJ OJ H tO VO OJ l tO O VD O σ VO OO sl H UI VO tO

O O O O O O O O O O O O O O O _ X_ O X__ _ O_O X_ X__ X_ O X__ O X__ O X__ O O O O O O O _ O_ O_ O— O O O O O O O O O O O O O O O O O O O O O O O O O •Xx_ _Xx_ _Xx_ _Xx_ _X_ _X_ _X_ _X_ _X_ _X_ X__ X_>_' X_x_ X___. _X>_. _Xy_ ,X__, >X_<' _X>_. _Xx_ _Xx_ X SX _Xx! _Xx_ _Xx_ _X>_! _X_ iX. SX_ _X_ lXid _Xx_ _X>_. X_>_! _X>_. _Xx_ _x_ _x_ _*_ _x_ _x_ !x_ _><_ _*_ _x_ _x_ _x_

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω ΩxΩxΩxΩxxΩxΩ ΩxxΩxΩxΩxΩ 0

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o rt ri ff rr ff α rt rt α α ff rt rr rf rτ rr ft r rτ rt rt r rr rr α rt rr r ( rτ rt r rr rt rτ rτ rr rf rt α α ( rτ ft r ft rτ rt π π π π rτ ff !_r' :__' !_ r !_r' !_r ^ ff !_r !_r ^ !_ ^ !_r ^ !_ £3' tr !_r !_r !_r ff

it lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt tt lt tt lt lt lt lt

H H H H it lt lt lt

Ol Ol Ul Ul ω o a α)

Figure imgf000150_0001

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H it lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt tt lt lt lt lt tt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt tt lt lt lt lt lt lt lt lt lt lt lt i oι oι oι o. (» uι uι uι uι iΛ Co ui si ιi i ιt. si ι. ι|i si _i w w w W vj j w uι w w ιo uι w u _i _o M K) W io _i ι. μ uι μ ιo uι ιo ω ιo ω μ o μ

O 01 M W H W 01 it W tO H H O V0 CB C» 01 O lt t0 01 H V000 si m W t0 Ul H t0 00 V0 W H O H CD 01 O W it -0 it 00 Ul Ul t0 it Ul lt H Ul H Ul O

H H H . H H H H H H H H H H H H H H H H t-' I-' 1 H H it lt lt lt lt lt lt lt lt lt lt lt it it it lt lt lt lt lt litt lltt lltt lttt lltt lltt tltt lltt lltt lltt lltt lltt lltt tltt lltt lltt lltt lltt lltt lltt lltt lltt lltt lltt lltt lltt lltt lltt lltt lltt lltt lltt lltt lltt it it sl Ol Ol Ol Ol OO OO OO Ol Ol Ol OO Ul OO Ol sl sl sl σ si si σi cπ σi cπ σ si si si ui ui oj oj ui oj ui oj oj oj oj to it it it it ui it ui ui oj it oj o to to t Ul VO VD OO OO it it DO Ol O DO OJ VO H it VO H OO si o si O VD O tO H VD OO H to σ σi vo σi OJ oi o oJ OJ t

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H it lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt ^ σι σι σ» σι σ uι oo σι σι σι cπ uι crι ιt θ ιt σ ιt o σi ιt uι σι uι cn s] ιt W si w cπ w ω ω ω ιt to to to tθ ιt t H ι^ os ω _i μ uι . _ ι o _ ^ (Λ _i a μ j si uι o w φ μ si ui ι. θ ιii _o o μ oo _ (iι oι ifl ι. o ifl sj m ^ fr i ui j> σ uι _i _i μ ιθ ι. μ

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω V

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o ff rr rT cT rt ff rt rt r ff rf r rt rr rt rr rr rr rt rr rt ft rf fT rr rt r rt rr rr rT rr r rr rr n ff rr rt rt rt rt rt rr rt rr rr n rtft rt rt r

! U' .-f _ _r _? _3' _3' _3' .r .3J .3J _ _r _-r ._r .3, .^

it lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt tt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt tt lt lt lt lt lt lt lt lt lt lt lt lt lt lt

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H Ul Cπ Cπ Ul U- Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Cπ Cπ ι ιt ιt .t ιt ιt tt lt lt lt lt lt ιt ιt ιt ιt ι^

H H H H H H H H H H H O O O O O O O O O O VD VO VD VD VD VO VO VO VO VO OO OO OO OO OO OO OO OO OO OO sl sl sl sl sl sl sl sl sl si σi σ σi σ Ol VO OO CD sl sl Ul it W tO H O VD OO sl Ol Ul it W M H H O- sl cn W tO H H O O VO OO sl O Ul W tO H O VO CD sl cn it W tO M H O sl sl c

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H

Ul Cπ Ul Ul Cn Ul Ul Ul Ul Ul <Jl Ul Ul Ul Cπ Ul Ul Cπ Cπ Ul Ul Cπ ιt Ul .t Ul .t Ul Cπ Ul ι Ul ιt W ι^ tO W tO W H tO H M H W H W H W O tO O tO O H O O VO O VO H VD H O H VO O VO O OO O OO VO OO VO OO O VO VO OO sl OO CD sl OO VO VO sl OO Ol Ol

^ ^ u w a _j oι _i * μ w _ o o αι ω (Λ θ ι. Ni W tf vi i uι _i W θ i u uι ifl W it μ ()i u _i μ _o o (o i Φ Ui vi ui ι. o uι ^ μ ι (iι «)

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ui Ul Ul Ul Ul lt lt it it it Ul lt lt lt lt lt it it it it it it lt lt W W W W W H H DO tO M tO W tO W tO W tO tO tO DO H H H O O H H H H H H O O O O O O VO VD VO VD VO O VO VO OO OO OO OO VD OO VD VO OO sl OO

>o oι ra j tj co o3 _ μ ι. oι μ o3 W ^ θ v] (_ι o ^ μ o Φ (D θi (_ι w μ o ^ si oι ιn _i W U ι. _i _j μ o α) oι α! Ni ι o ffl uι ^ o uι o

H H H H H H H H H H H H H HH HH HH HH H HH HH HH H H H H H H H H H H H H H H -> t-> ' t-' H' \-' t-1 \-i -> -' Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul it Ul lt Ul lt Ul Ul it Ul it Ul it Ul lt lt lt tt lt lt lt lt lt it lt lt lt lt lt lt lt lt lt OJ tO OJ tO OJ H tO H DO H DO H tO O tO O tO O O HH OO H O O VD O VO H VO H o 00 O 00 O OO VO OO VO OO sl sl sl OO si _ si _ o_o vo _ s _i si _ vo σi si si

Ul H it O OJ Ol H Ul Ol OJ OO H VD VO s] s] Ul Ul VD OJ si o oo oo σi it it OJ OJ VD to σi it VO tO si H it to oJ O H vo oo si σ σi oJ ui vo ui o s] VD it H

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O x x x x x x x x x x x x x x x x x x x x X X X X X X X x x x x x x x x x x x x x x x x x x x x x x x x x x x x

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω σ'σtrtrtrtrσσσσtrσσff σ'σσt σtr&'trtrσt trtrσ^ o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o ff rt rt r ft r rτ rt rt rt rt rτ α ff rr ff rf rf rτ rt rτ rτ rt rt rt rt rt rt r σ ff rr rt rτ rf r (t rt rt rr ft rr ιi rr rt rt rt rf ct rt rf rt rτ ff i_j' :_r !_r !_ ^ ^ !_r :_r ;_r :_y r_J .3' .3' !-r . ._f !_r ^

tt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt t lt lt lt lt lt lt lt

H H H H H H H H H H H H H H H H H H H ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui o σi σi ω oJ w ω ω ω w to M to to M μ * oo

Figure imgf000152_0001
ifl _i (> w w μ o α) - oι ui ι. ω ι μ o

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H ui c cπ ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui o θ si si vo c» s] si s] vo cn vo oΛ s] σi s] uι cn σι ∞ si co σι σι uι uι uι σ! Cn σi ιt σι .t u. σ! Ui . . uι w oι θ M i^ αι uι ώ θ Ni si m (» si ι. μ (i) W θi ι. _i _o _ ^ W Ni μ μ ffι o ( sj _o _i _i _ uι o ^ oi (io ι uι ι μ ι. ^ θ vi μ μ ι. i vi

H H H H H H H H H H H H H H H H H H H ui σi σi σi σi cπ ui ui ui σi σi ui uπ ui ui ui ui ui ui oo o o o o vo vD Oo oo o o vo vo oo oo si si si si ι. w (j ι w o μ μ o μ ) uι ui W si ι ijι

Figure imgf000152_0002

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H ui ui ui cn ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui ui oo si vo o si si oo si si o^ vo σi vD σ si ui si σi σi σi cB si oo ui σi ui ui σi ui σ it σ σi ui it ui ui it it it OJ it W it ui ω to it w θ ι. a μ w ιι_ w o o) ^ -j oi (Λ Ui oι ^ μ ] ι. w _- _o M ι. oι ω i o μ ιιι θ Nj t w μ ι. (n μ o a (jι oi i uι ι _o >o w α) io ι o (D <ji w oooooooooooooooooooooooooooooooooooooooooooooooooooooooo

X X X X X X X X X X X X X X X X X Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω x xx Ω Ω Ω Ω Ω ΩxxΩxΩ ΩxxΩxΩ ΩxxΩ ΩxxΩ <-

Ω ΩxΩxΩ Ω ΩxxΩxΩxΩ ΩxxΩ ΩxxΩxΩxΩ ΩxΩxΩxxΩ ΩxΩxxΩ ΩxΩxxΩxΩx X X Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω tf σtrcrσtrσσσtrσσσtrσtr σσσσ σtr tr&'trσ o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o rr rr rτ π- .^ rr rr rt rτ rτ rr r. rr α rτ r. rr (-r cr rτ <-r rτ .τ rr r^

it lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt t lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt l^

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H m oι oι oι oι σι oι σι m m m uι uι uι uι _ι uι uι uι uι uι uι uι uι uι w uι w w uι uι ι_ι uι ι_ι uι ι_

W tO tO tO tO W W tO tO M tO VO VO VO VO VD VO VO VO VO VO OO OO OO OO OO OO OO OO sl sl sl sl sl sl s] O VO VO CXI OO UI it W tO H O

Figure imgf000153_0001
VO OO sl sl O^ Ol W tO H O Ul it it W M M

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H ^ ol α. o. m o^ m o σι σ. ol Ol Ol σl l σl <rl m σl ^ σ^ ol m m m m σl m σl Ol m o ol m m ul Ul σ ^_l o ul w Ul Ul Ul lJl Ul Ul w ul Ul m it Ul W Ul W it M W tO it W DO tO W W H tO H tO H H W H DO O M O H O H O H H O H VO VO O VO O OO VO OO VO OO OO OO OO OO OO VO O O VO OO it W H D0 _t H 01 s] 01 W W D0 i H O Cn 00 V0 s] 00 it H Cn o D0 V0 O s] V0 Ul U- W 01 W H W V0 UI 03 it 0> 00 D0 00 O s] 01 V0 0^

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H σι _ι σι oι oι oι o. oι oι oι oι oι m oι o. ffl (Λ oι m oι σι σι m oι oι o o oι o. m oι o o Λ _ m oι o oι oι σι i_ uι ι_ι uι uι uι w w uι uι o σι o o uι

Cn it it it it W W W W W it W it W W it it W W W OJ M tO tO tO tO tO tO tO tO H H H H H H H H H H VO VD aJ VO VD CXJ OO CD OO OO O O O O OT o ^ ifl ι. oι ιo oι ^ (» ι μ ()i o w w M uι μ θ ι. ^ ] ι _ι u ιn _i M μ o co ^ ui vj oi ι. μ μ o o (jι uι »o _. _i io θ) Ni c. oι »o (ϊi ι -j uι

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H σι c_ cn σι σι σ σι σ σ σι σι σι σι σι σι σ σι σι σι σι σι σ σι σι σι σ σι σι σ σι σι

Figure imgf000153_0002
σι cr_ σ uι σι σι σι uι uι uι uι uι uι uι uι

W ω Ul OJ Ul M it W tO ω tO M it W H M W H tO H DO DO H DO H tO O H O H O H O O H VO H O VO O VO VO OO OO OO VO OO OO OO OO OO O VD VD O s] M Ul W O tO sl O sl Ol W Ul M tO H VO O it Ul Vo σi OO W H it O H OO ∞ σi sl it it M O W OO M VO Ul sl it W CD σi sl H sl Ul VO H DO C^

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

Ω x xΩ ΩxΩx xΩ xΩ ΩxΩx xΩ ΩxΩxΩxΩxΩx xΩ ΩxΩxΩx xΩ Ωx Ωx xΩ ΩxΩx xΩ xΩ xΩ xΩ xΩ x l_ Ω ΩxΩx xΩ xΩ ΩxΩxΩx xΩ Ωx Ωx xΩ Ωx Ωx xΩ xΩ xΩ xΩ xΩ xΩ xΩ xΩ xΩ xΩ xΩ xΩ xΩ t Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

o σoπ-orτorr orτorτorτ orτ orr ror ror roτorτ roτ orτorτorτorτ or orτ oa oπorrorr orrorτortorr orτo o o o o o o o o o o o o o o o o o o o o o o o o o o

_ _ _t t lt .t lt - lt _ l l . lt lt .t _ lt .t . _t _ . l . lt l _t lt .t . lt .t _ l . . _t l .t _t .t l l . lt .t _ lt _ l t l lt . _t

H H H

Ol ol Ol oo oι

Figure imgf000154_0001
k) μ

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H

01 01 oι oι σι oι oι oι oι oι oι oι o σι w oι _i (!i oι oι o\ oι o oι oι oι σ\ σι σι oι oι oι oι oι oι o. o. oι c!. oι oι o. oι oι o. oι oι oι oι oι oι oι oι o oι

VO 00 vD Co oo vo vo cB vo oo vo si si cB OO si o si ∞ 00 o0o0 si σi cD σi sα si σi si σi si cπ ui o ui σi σi ui cn ui σi it σ.

O VD VD Ol Ul sl it DO OJ H DO OO UI OO s] OJ it OJ O Ol O VD VD sl OJ Ol Ul H OO VD tO Ul sl OO Ol it OJ Ul OO OJ H DO tO OJ Ol H OO VO it sl DO sl O OJ

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H si si si si O si si cn σi σi σ σ σi σi σi σi σi σΛ σ σi σi σi σi σi σ σi σi σi σi σi σi σi σ σ σ σi σ σi σi σi σi σ σi σi σi σi σi σi σ σi σ^

O O O O O O O ^ 10 ^ ω ω ( ^ ω ^ ω θ ffl (IJ (S C0 (10 α) 0J (I) J vl Nl l ^ -J v] v] ] Nl N] . l 01 01 01 _l 01 01 ιl ι. Ul Ul Ul Ul ι|i ιl> Ul Ul ^ ι ιn W ι. o μ ^ (ii j iji ι. (iι μ o μ θ Φ vi ιιι cii U ι. ιn w o μ ιo tD ι. ιn _i M μ o flo μ o (_ μ ιθ vi o ιo o i ι ι_ι oι ιo o uι _i μ

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H i -j σι oι oι oι σι σι σι oι oι oι σι m oι m oι oι m oι oι oι oι oι oι σι oι oι oι oι o. oι oι oι <Ji oι oι oι m m oι m oι σι oι oι σι oι oι oι <_ι oι σι o. σ m o o oo oo vo vD ∞ oo vo cD vo si vo ∞ si si oo cii si si cβ si cn oo cn cn si σi si cπ si si ui σi ui ui c it cri cπ σi ui ^

_^ θ vJ θ) co ui ι. ω oι o ω ^ _o ^ _i iΛ (Λ ^ μ ω w (_ι co μ j * j w oι ^ o ω (B io ι. -j o ιo ι. ι oι o iJ i ι >o o uι θ3 W θ. μ oι uι oooooooooooooooooooooooooooooooooooooooooooooooooooooooo X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Figure imgf000154_0002

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o rr rr α rr r. rr rr rτ rr r. rr rr rτ rr rr rτ r- α σ rr rr rr r. rτ rr cr r rr α ;τ :r ^ !__j !_r ^ :_r ^ !_r :_r !_r ^ !_r ∑y ;_r .j' ^ ^

it lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt lt

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H s] s] O sl s] s] s] s] s] sl s] s] sl s] O sl s] s] s] s] s] s] s] sl s] s] s] s] s] s] s] s] s] s] s] s] s] O s] s] s] s] s] <n σi Cn Cr. Cn (^ ω OJ W W W W W W W tO tO tO tO tO tO tO tO tO tO H H H H H H H H H H H H H H O O O O O O O O O O VO VO VD VD VO VO VO VO VO VO OO OO OO uι _i ι. ω ω μ μ o o ιo (D si ι w ω _ ω μ o θ) vi oι uι uι _i ι. w _ μ μ o o ^ a ) oo ι ι. u ιo μ o «) (D si ι W ι. w ι i_) θθ ]

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H si si O si si si si si si si si si si si si si si si si si O si O si si si O si si si si si si si si si si O si si si si si i si si cn o si si σi si σ σ si si

W Ul Ul it Ul Ul it it W Ul it W W W M OJ W CTi tO Cn H it it -O it tO H W W H W tO tO H tO H H O O tO O O H O H VO O H H VD H VD VO O O si cD it vo o ui si cn M H it ui o ω si to ∞ cπ it H M vo tO H vo o it si oo si w cn σi ω H tO it cn si o vo w co it H ca o c^

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H HH HH HH HH H H J H H H sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl σi cn rø o o ui it ui it oo oo ui ui ω ω ui si si σi cn ui si it it si it it ω ω ω w to to to to to to to to H to tO H O O H H H H H O O O

W t0 it Ul lt O V0 0. CB H O it H H O O W t0 Ul lt W tO W Ul it t0 W t0 U1 VD 00 lt V0 s] ai C» Ul it Ul lt Ul H O lt V0 00 Vv0o oo H si σi O si σ si

H H H H H H H H H H H H H H H H H H H H H H H H H H H H s] si i s] si si si -J si sl sl sl sl sl sl sl sl sl sl sl s] sl sl sl sl sl sl sl sl sl sl sl sl sl si si si si si si si si si si σi σi si σ. si si σi σi σ OJ ui ui it OJ Ul it lt Ul OJ OJ tO OJ tO OJ σi tO Ul tO it H tO it tO it OO H tO OO H OJ H tO H tO O H tO O O H O O O H H VD VD H VO H O VO VD s] 0J ιt CJl Ul O H ιt V0 0J σ. t0 Ul ιt 0J O 0J 00 Ul H oo o vo σi si si to σi cπ oo o to si ιt H O. Ul VO DO CO H O sl VO -0 00 it DO 00 O H

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O ooooo

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X O

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

o rrorroσoc oαorfoσorτor orrorrorτorτorro<-roσorrorrorrorrorrorroctorrorτorτocrorrortorrorrorroooooooooooooooooooooooo

l lt _t _ . _t lt _ . . _t _t _ l . . _t lt _ l . _t _ lt . . l _t _t lt _t . . . . _t _t _ _t l . _ _t lt _ .t _ l lt . . l _t l _ lt

H H H H H H H H H H H H H H ' 1 1 ' ^ ' H H H H H H H H H sl sl sl sl sl sl sl sl sl sl sl sl ssil ssil sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl ssil ssil ssil ssil ss]l ss]l sl sl ssil ssil ssil ssil ss]l ss]l ss]l sl sl sl sl sl sl sl sl sl sl s]

VO OO OO OO OO OO OO sl sl sl sl s] si σi σ σi cri cn cn σi cn σi cri cn σi σi ui ui ui ui ui ui ui ui ui ui ui it it it it it it it it it it t it it it OJ OJ OJ OJ OJ O VO OO Ul it H O si σi Ul it H o vo vo oo oo si σi ui it ω to H H O vo oo oo si σ ui it OJ tO H O VD OO si si σ σ ui it OJ to H H O O VO OO sl Ol Ul

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H sl OO sl OO sl sl CO sl OO sl sl CD sl OO sl sl sl sl sl sl OO sl sl sl sl sl sl sl sl sl sl sl sl sl OO sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl sl V0 O VO O V0 V0 D0 00 O 00 V0 O 00 H sl s] s] 00 00 sl H V0 σi si σi s] Cn C» s] V0 O 00 Ui σ\ O s] 00 0^ sl (n Ul Ul ιt 00 CD Ul VD sl ιt s] s^

^ ιn _o ι o (j o ^ ι. w _i o α) o a ι» c. ^ w w sj αι ^ μ oi ιi> (iι μ θ -i c. ifl a uι θ vi ι. o ^ -θ μ oι u oo ιo ι_ oo M (Λ (o ι μ

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H

∞ C» C_0 C0 00 CD 00 J 00 s] s] CD 00 00 s] 00 sl s] s] 00 00 00 00 00 s] s] s] 00 O 00 O sl s] 00 00 sl sl s] s] O s] sl s] CD 00 σ_ 00 00 sl s] 00 00

O H H O O H H DO DO VO VO O O H OO H OO VD VO H H H O O σi OO OO O σi O VD VO VD H H VO VO OO OO σi sl si σi DO DO H O H OO OO H O VO VO VO OO ω tO si to vo oo H O W M Ui ω si si σ σi ω tO si σi o oo ^ vo vD OO it αJ o vo H O it w ui it ω M si H O cn H O H VO si o σi σi H OO si oi ui

H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H OO sl OO sl OO OO sl OO sl sl sl sl sl sl sl OO sl sI sl OO sl sl sl sl-sl sl si si s] s] s] si si si si si si si si si si s] s] s] 00 si si si si si si s] s] s] si O VO O VO O tO VD O OO VD CD OO VD sl sl O sl OO OO H sl σi VD OO sl σi si si σ. si D ui oo σ oo si s] σ it σ ui ui oo oo o ui si si it si VO it 0. 0J Ul tO OJ OJ H lt H lt σi σi Ul tO VO VO VD sl OO OO OJ OO it tO VD σi Ul sl s] O 01 tO H O s] it H litt H lt Ul Ol VO O Cn VO sl O H tO OJ VD it OO sl tO OJ OO Ul

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 0

Ω " Ω" Ω" Ω' Ω~ Ω Ω" Ω" Ω"" Ω" Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω O Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω o* Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω σtr σ r ff σtrσσσσσσtr trσσσ σσ trtrσσ tr r t ^ o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o rr rt <τ rr rr rτ σ rr rr rt rr rr rr rr <-r α rr π- rr rr <-r α rr π rr rr r. ' ' l- i_ ι_ ^ ^ ^ !j' i_ ι_ ^ i3' ff i_ ι_ ^ i3' ^ ^ ι_r ι_r ι_ t ^ ^ ι_ ^

1791 1807 1805 1800 Oxcccccc both

1792 1794 1818 1812 Oxcccccc both

1793 1815 1819 1795 Oxcccccc both

1796 1808 1809 1798 Oxcccccc both

1797 1801 1811 1810 Oxcccccc both

1802 1803 1812 1818 Oxcccccc both

1802 1818 1820 1804 Oxcccccc both

1805 1807 1819 1815 Oxcccccc both

1806 1821 1819 1807 Oxcccccc both

1808 1816 1813 1809 Oxcccccc both

1810 1811 1814 1817 Oxcccccc both

Claims

Claims
1. A method of representing a limbed creature in a three dimensional model, comprising defining no more than about 3000 adjacent polygons, at least 90% of which are quadrilaterals, each tubular section of the limbed creature having a cross-section having a multiple of two sides, and the model describing substantially all of the salient points on the body of the limbed creature.
2. A method according to claim 1, comprising defining no more than about 2900, 2800, 2700, 2600, 2500, 2400, 2300, 2200, 2100 or 2000 adjacent polygons.
3. A method according to claim 1 or 2, each tubular section of said limbed creature having a multiple of eight sides.
4. A method according to claim 1 or 2, at least 95, 96, 97, 98 or 99% of said polygons being quadrilaterals.
5. A method according to claim 4, all of said polygons being quadrilateral.
6. A method according to claim 5, said method comprising defining no more than 1820 adjacent quadrilaterals.
7. A method according to any one of the preceding claims, said limbed creature comprising a quadruped.
8. A method according to claim 7, said quadruped being selected from the group consisting primate, ape, monkey, chimpanzee, feline, canine, equestrian and bovine.
9. A method according to claim 8, said quadruped being anthropoid.
10. A method according to claim 8, said quadruped being a human.
11. A method according to any one of the preceding claims, said model describing salient points comprising substantially the group of: i) the top of the head; ii) the tip of the chin; iii) the centre of each pupil, iv) the north, south, east and west extremities of each eye; v) the top, bottom and widest points of each ear; vi) the top of the nose, centre of the bridge of the nose, the centre of each nostril, and the widest point of the nose; vii) the centre of the mouth, the end point of the mouth, the two apexes of the upper lip, and the bottom most point of the lower lip; viii) the centre, centre-left and centre-right of the septum; ix) the centre of each nipple; and x) the front-most, back-most and widest points of each foot.
12. A method according to claim 11 , said model additionally describing at least one salient point selected from the group of: i) the tip of each finger and thumb; ii) the tip of the Adam's apple; iii) the tip of each toe; and iv) the genitals.
13. A method according to any one of the preceding claims, the left and right sides of said model being symmetrical.
14. A method according to any one of the preceding claims, the model having, defined by vertices of the polygons, in outstretched stance front and back medial axial lines on the forelimbs forming a continuous loop connecting each forelimb via the chest and back and continuing around every finger, said medial lines resting on the Z=0 axis.
15. A method according to any one of the preceding claims, the model having, defined by vertices of the polygons, in outstretched stance side medial axial lines on the head, neck, forelimbs, trunk and hindlimbs forming a continuous loop connecting the top of the head via the centre of each forelimb, the centre of the side of the trunk, and the centre of the lower limbs, said medial lines resting on the Y=0 axis.
16. A method according to any one of the preceding claims, the model having, defined by edges of the polygons, in outstretched stance front and back medial axial lines on the head, neck and trunk forming a continuous loop connecting the top of the head via the centre of the head, centre of the chest and centre of the back, said medial lines resting on the X=0 axis.
17. A method according to any one of the preceding claims, the model comprising substantially the model of either one of the group consisting Figures 1-25 and Figures 26-49.
18. A method according to any one of the preceding claims, the model comprising substantially the model of either one of the group consisting Table 1 and Table 2.
19. A method according to any one of the preceding claims, said model being used for animation.
20. A method according to any one of the preceding claims, being a method for reconstructing a surface representation of an individual member of the modelled class of limbed creature, comprising the additional step of determining the coordinates of the salient points of the individual which are described by the model limbed creature, and aligning the salient points of the model limbed creature to the salient points of the individual limbed creature to reconstruct the surface of the individual limbed creature.
21. A method according to claim 20, the determination and alignment steps comprising the steps of: i) transforming said three-dimensional model into a two-dimensional representation of said model which includes said surface of each of the polygons; ii) providing a two-dimensional image of the surface of the individual limbed creature; iii) aligning the salient points of the transformed three-dimensional model and the two-dimensional image of the limbed creature; and iv) performing an inverse transformation of the aligned model to transform it into a three-dimensional model.
22. A method for using a computer for reconstructing a three-dimensional surface of a limbed creature comprising the steps of: a) defining a three-dimensional model of a limbed creature according to the method of any one of claims 1-18, said model describing salient points of the body of the limbed creature; b) providing data from imaging the limbed creature, said data including the coordinates of the salient points described by the model limbed creature; and c) aligning the salient points of the model limbed creature to the salient points of the imaged limbed creature to reconstruct the surface of the imaged limbed creature.
23. A system for reconstructing a surface of a limbed creature, comprising: a) an imaging system for producing images of the limbed creature; b) a memory for storing: i) a three-dimensional model of a limbed creature according to the method of any one of claims 1-18, said model describing salient points on the body of the limbed creature; ii) data defining the coordinates of the salient points of the imaged limbed creature as described by the model limbed creature; and iii) machine instructions that define steps for processing the data derived from the images using the three-dimensional model; and c) a processor that is coupled to the memory, said processor executing the machine instructions, causing the processor to align the salient points of the model limbed creature to the salient points of the imaged limbed creature to reconstruct the surface of the imaged limbed creature.
24. A system for displaying a reconstruction of a limbed creature, comprising: a) a memory for storing: i) a three-dimensional model of a limbed creature according to the method of any one of claims 1-18, said model describing salient points on the body of the limbed creature; ii) data defining the coordinates of the salient points of an imaged limbed creature as described by the model limbed creature; iii) machine instructions that define steps for processing the data derived from the images using the three-dimensional model; and iv) machine instructions that define steps for displaying the images obtained; b) display means for displaying images; and c) a processor that is coupled to the memory and display means , said processor executing the machine instructions, causing the processor to align the salient points of the model limbed creature to the salient points of the imaged limbed creature to reconstruct the surface of the imaged limbed creature and display said reconstruction on said display means.
25. A computer program for reconstructing the surface of a limbed creature, comprising: i) program code comprising data defining a three-dimensional model of a limbed creature according to the method of any one of claims 1-18, said model describing salient points on the body of the limbed creature; ii) program code for effecting the input of data defining the coordinates of the salient points of imaged limbed creature as described by the model limbed creature; and iii) program code defining steps for processing the inputted data using the three-dimensional model to align the salient points of the model limbed creature to the salient points of the imaged limbed creature to reconstruct the surface of the imaged limbed creature.
26. A computer program product for reconstructing the surface of a limbed creature, comprising a computer usable medium having computer readable program code means according to claim 25 embodied in said medium.
27. A method of representing a head in a three dimensional model, comprising defining no more than 500 polygons describing substantially all of the salient points on the head.
28. A method according to claim 27, at least 95, 96, 97, 98 or 99% of said polygons being quadrilaterals.
29. A method according to claim 28, all of said polygons being quadrilateral.
30. A method according to claim 29, said model comprising 486 quadrilaterals.
31. A method according to any one of claims 27-30, said model describing salient points comprising substantially the group of: i) the top of the head; ii) the tip of the chin; iii) the centre of each pupil, iv) the north, south, east and west extremities of each eye; v) the top, bottom and widest points of each ear; vi) the top of the nose, centre of the bridge of the nose, the centre of each nostril, and the widest point of the nose; vii) the centre of the mouth, the end point of the mouth, the two apexes of the upper lip, and the bottom most point of the lower lip; viii) the centre, centre-left and centre-right of the septum; and ix) the tip of the Adam's apple.
32. A method according to any one of claims 27-31 , the left and right sides of said model being symmetrical.
33. A method according to any one of claims 27-32, the model comprising substantially the model of either one of the group consisting Figures 19-24 and Figures 44-49.
34. A method according to any one of claims 27-32, the model comprising substantially the head described by the model of either one of the group consisting Table 1 and Table 2.
35. A method according to any one of claims 27-34, said model being used for animation.
36. A method according to any one of claims 27-35, being a method for reconstructing a surface representation of the head of an individual, comprising the additional step of determining the coordinates of the salient points of the individual which are described by the model head, and aligning the salient points of the model head to the salient points of the individual's head to reconstruct the surface of the individual's head.
37. A method for using a computer for reconstructing a three-dimensional surface of a head comprising the steps of: a) defining a three-dimensional model of a head according to the method of any one of claims 27-34, said model describing salient points of the head; b) providing data from imaging the head, said data including the coordinates of the salient points described by the model head; and c) aligning the salient points of the model head to the salient points of the imaged head to reconstruct the surface of the imaged head.
38. A system for reconstructing a surface of a head, comprising: a) an imaging system for producing images of the head; b) a memory for storing: i) a three-dimensional model of a head according to the method of any one of claims 27-34, said model describing salient points of the head; ii) data defining the coordinates of the salient points of the imaged head as described by the model head; and iii) machine instructions that define steps for processing the data derived from the images using the three-dimensional model; and c) a processor that is coupled to the memory, said processor executing the machine instructions, causing the processor to aligning the salient points of the model head to the salient points of the imaged head to reconstruct the surface of the imaged head.
39. A system for displaying a reconstruction of a head, comprising: a) a memory for storing: i) a three-dimensional model of a head according to the method of any one of claims 27-34, said model describing salient points on the head; ii) data defining the coordinates of the salient points of an imaged head as described by the model head; iii) machine instructions that define steps for processing the data derived from the images using the three-dimensional model; and iv) machine instructions that define steps for displaying the images obtained; b) display means for displaying images; and c) a processor that is coupled to the memory and display means , said processor executing the machine instructions, causing the processor to align the salient points of the model head to the salient points of the imaged head to reconstruct the surface of the imaged head and display said reconstruction on said display means.
40. A computer program for reconstructing the surface of a head, comprising: i) program code comprising data defining a three-dimensional model of a head according to the method of any one of claims 27-34, said model describing salient points of the head; ii) program code for effecting the input of data defining the coordinates of the salient points of the imaged head as described by the model head; and iii) program code defining steps for processing the inputted data using the three-dimensional model to align the salient points of the model head to the salient points of the imaged head to reconstruct the surface of the imaged head.
41. A computer program product for reconstructing the surface of a head, comprising a computer usable medium having computer readable program code means according to claim 40 embodied in said medium.
PCT/GB2000/003075 1999-08-11 2000-08-10 Method for generating and animating a three-dimensional human body model WO2001013332A3 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB9918807.0 1999-08-11
GB9918807A GB2353194A (en) 1999-08-11 1999-08-11 Surface representation
US45402199 true 1999-12-03 1999-12-03
US09/454,021 1999-12-03

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AU6458200A AU6458200A (en) 1999-08-11 2000-08-10 Surface representation

Publications (2)

Publication Number Publication Date
WO2001013332A2 true true WO2001013332A2 (en) 2001-02-22
WO2001013332A3 true WO2001013332A3 (en) 2001-08-30

Family

ID=26315837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2000/003075 WO2001013332A3 (en) 1999-08-11 2000-08-10 Method for generating and animating a three-dimensional human body model

Country Status (1)

Country Link
WO (1) WO2001013332A3 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5107444A (en) * 1988-09-13 1992-04-21 Computer Design, Inc. Method and apparatus for flattening three-dimensional surfaces
EP0784295A2 (en) * 1996-01-11 1997-07-16 Microsoft Corporation Mesh simplification and construction of meshes
US5850222A (en) * 1995-09-13 1998-12-15 Pixel Dust, Inc. Method and system for displaying a graphic image of a person modeling a garment
US5886702A (en) * 1996-10-16 1999-03-23 Real-Time Geometry Corporation System and method for computer modeling of 3D objects or surfaces by mesh constructions having optimal quality characteristics and dynamic resolution capabilities

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5107444A (en) * 1988-09-13 1992-04-21 Computer Design, Inc. Method and apparatus for flattening three-dimensional surfaces
US5850222A (en) * 1995-09-13 1998-12-15 Pixel Dust, Inc. Method and system for displaying a graphic image of a person modeling a garment
EP0784295A2 (en) * 1996-01-11 1997-07-16 Microsoft Corporation Mesh simplification and construction of meshes
US5886702A (en) * 1996-10-16 1999-03-23 Real-Time Geometry Corporation System and method for computer modeling of 3D objects or surfaces by mesh constructions having optimal quality characteristics and dynamic resolution capabilities

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEE Y ET AL: "CONSTRUCTING PHYSICS-BASED FACIAL MODELS OF INDIVIDUALS" PROCEEDINGS/COMPTE RENDU GRAPHICS INTERFACE,XX,XX, 1993, pages 1-8, XP002064612 *

Also Published As

Publication number Publication date Type
WO2001013332A3 (en) 2001-08-30 application

Similar Documents

Publication Publication Date Title
Bodenheimer et al. The process of motion capture: Dealing with the data
Badler et al. Simulating humans: computer graphics animation and control
Bloomenthal et al. Convolution surfaces
Kähler et al. Reanimating the dead: reconstruction of expressive faces from skull data
Sumner et al. Deformation transfer for triangle meshes
Igarashi et al. Clothing manipulation
US6037949A (en) Texture mapping and other uses of scalar fields on subdivision surfaces in computer graphics and animation
Kähler et al. Geometry-based muscle modeling for facial animation
De Aguiar et al. Automatic conversion of mesh animations into skeleton‐based animations
Gotsman et al. Guaranteed intersection-free polygon morphing
Boulic et al. The HUMANOID environment for interactive animation of multiple deformable human characters
Sheffer et al. Pyramid coordinates for morphing and deformation
US6400368B1 (en) System and method for constructing and using generalized skeletons for animation models
Corazza et al. A markerless motion capture system to study musculoskeletal biomechanics: visual hull and simulated annealing approach
Nesme et al. Preserving topology and elasticity for embedded deformable models
Fernandez et al. Anatomically based geometric modelling of the musculo-skeletal system and other organs
Nedel et al. Real time muscle deformations using mass-spring systems
Koch et al. Simulating facial surgery using finite element models
Jacobson et al. Bounded biharmonic weights for real-time deformation.
Thalmann et al. Fast realistic human body deformations for animation and VR applications
US20050018885A1 (en) System and method of anatomical modeling
Xia et al. Three-dimensional virtual-reality surgical planning and soft-tissue prediction for orthognathic surgery
US6300960B1 (en) Realistic surface simulation in computer animation
US6476804B1 (en) System and method for generating computer animated graphical images of an exterior patch surface layer of material stretching over an understructure
Raviv et al. Three-dimensional freeform sculpting via zero sets of scalar trivariate functions

Legal Events

Date Code Title Description
AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

121 Ep: the epo has been informed by wipo that ep was designated in this application
AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase in:

Ref country code: JP