WO2001011664A1 - Support container and semiconductor manufacturing/inspecting device - Google Patents

Support container and semiconductor manufacturing/inspecting device Download PDF

Info

Publication number
WO2001011664A1
WO2001011664A1 PCT/JP2000/005045 JP0005045W WO0111664A1 WO 2001011664 A1 WO2001011664 A1 WO 2001011664A1 JP 0005045 W JP0005045 W JP 0005045W WO 0111664 A1 WO0111664 A1 WO 0111664A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic substrate
support container
outer frame
semiconductor manufacturing
frame portion
Prior art date
Application number
PCT/JP2000/005045
Other languages
French (fr)
Japanese (ja)
Inventor
Masakazu Furukawa
Mitsuteru Tomita
Yasuji Hiramatsu
Yasutaka Ito
Original Assignee
Ibiden Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP22533599A external-priority patent/JP4330717B2/en
Priority claimed from JP2000170452A external-priority patent/JP2001345371A/en
Application filed by Ibiden Co., Ltd. filed Critical Ibiden Co., Ltd.
Publication of WO2001011664A1 publication Critical patent/WO2001011664A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction

Definitions

  • the present invention mainly comprises a support container constituting a device for manufacturing or inspecting a semiconductor, such as a hot plate (ceramic heater), an electrostatic chuck, and a vacuum probe, and the support container and a ceramic substrate.
  • the present invention relates to a semiconductor manufacturing / inspection apparatus, and in particular, to a supporting container and a semiconductor manufacturing / inspection apparatus which have a high cooling rate and can be used for a ceramic substrate having a larger size.
  • a heating device called a hot plate In a semiconductor manufacturing process, for example, when heating and drying a silicon wafer that has undergone a photosensitive resin coating step, a heating device called a hot plate is usually used.
  • the apparatus disclosed in the publication includes a hot plate using a ceramic substrate made of aluminum nitride as an electric heating member, and a resistance ripening member provided on the ceramic substrate.
  • the resistance heating element is formed on the bottom surface of the ceramic substrate constituting the hot plate. Both ends of the resistance heating element protruding to the side of the plate are connected to the power supply via wiring.
  • a silicon wafer which is a heat substance, is placed on the heating surface side of the hot plate, and the resistance heating element is energized in this state, so that the silicon wafer is heated to several hundreds.
  • Japanese Patent Publication No. Hei 8-82246 describes a technique for attaching a cooling fin-type cooling body to a hot plate.
  • this cooling body although the hot plate could be locally cooled, the whole could not be cooled uniformly.
  • Such a hot plate is supported and used by a substantially cylindrical container called a support container.
  • a control device containing a control device, a power supply and the like is present below the support container, and the above-mentioned wiring and the like are connected to the control device in the control device.
  • a heat shield plate is provided between the control device and the ceramic substrate, and a radiation fin is interposed between the control device and the hot plate.
  • the present invention has been made in order to solve the above-mentioned problems.
  • the first group of the present invention uses a simple structure, is low-cost, and can shorten the entire hot plate in a short time. It is an object of the present invention to provide a semiconductor manufacturing / inspection device capable of uniformly cooling between the devices.
  • Another object of the present invention is to provide a support container capable of improving the cooling rate of a ceramic substrate having a resistance heating element, and a semiconductor manufacturing / inspection apparatus using the support container.
  • the third group of the present invention can reduce the size of the device by extending a cylindrical portion having an outer diameter smaller than the outer frame of the support container. It is an object of the present invention to provide a support container capable of directly using the entire apparatus including a control device provided therein, and a semiconductor manufacturing / inspection apparatus using the support container.
  • a first group of semiconductor manufacturing / inspection apparatuses of the present invention are semiconductor manufacturing / inspection apparatuses in which a ceramic substrate having a resistance heating element is disposed in an opening of a bottomed supporting container, Is characterized in that a coolant supply pipe is formed to communicate the inside and the outside of the coolant supply pipe.
  • the support container is provided with a refrigerant supply pipe for communicating the inside and the outside thereof, by flowing a fluid from the refrigerant supply pipe into the support container, The fluid can be uniformly sprayed on the entire ceramic substrate. Therefore, it is possible to forcibly cool the ceramic substrate, and it is possible to cool the ceramic substrate in a shorter time as compared with cooling. That is, the entire ceramic substrate can be uniformly cooled in a short time. Further, since a refrigerant supply pipe having a simple structure can be used, cooling can be performed at low cost.
  • the coolant supply pipe be formed at the bottom of the support container. This is because the fluid circulated from the refrigerant supply pipe can be blown perpendicular to the ceramic substrate surface.
  • a heat insulating ring is provided between the upper edge of the opening of the support container and the outer peripheral portion of the bottom surface of the ceramic substrate. This is because a hermetically closed space is formed between the support container and the ceramic substrate, so that the fluid circulated in the support container can be prevented from leaking outside. It is desirable that a sealing member is provided at the wiring lead-out portion of the support container. This is because leakage of the fluid to the outside of the device through the portion is prevented, and a higher sealing property can be ensured by the space formed between the support container and the ceramic substrate.
  • the support container of the first invention of the second group is a support container for supporting a ceramic substrate, comprising a substantially cylindrical outer frame portion and a plate-like body connected and fixed to the outer frame portion. A plurality of openings are formed in the plate-shaped body. Further, a semiconductor manufacturing / inspection apparatus using the same also belongs to the first invention of the second group.
  • the support container of the second invention of the second group is a support container for supporting a ceramic substrate, comprising a substantially cylindrical outer frame portion and a plate-like body connected and fixed to the outer frame portion.
  • the relationship between the weight M (kg) of the ceramic substrate and the diameter L (mm) of the ceramic substrate is M ⁇ L / 200.
  • a semiconductor manufacturing and inspection apparatus using the same also belongs to the second group of the second invention.
  • a plurality of openings are formed in the plate-shaped body functioning as a bottom plate or a heat shield plate, thereby reducing the heat capacity of the plate-shaped body and discharging and cooling the cooling medium. This makes it possible to improve the cooling rate.
  • the relationship between the projected area S A of the plate-shaped body and the total area S of the openings provided in the plate-shaped body is preferably 0.33 ⁇ SZSA, and more preferably 0.1 ⁇ SZSA.
  • the ratio of the total area of the openings By setting the ratio of the total area of the openings to 3% or more, the heat capacity of the plate-shaped body can be reduced, and the cooling medium that has exchanged heat with the ceramic substrate can be easily discharged, thereby improving the cooling rate. Because you can.
  • the cooling medium is supplied from a cooling medium supply port provided in the plate.
  • the cooling medium may be a liquid or a gas, but is preferably a gas from the viewpoint of preventing a short circuit of the resistance heating element.
  • the gas include an inert gas such as nitrogen, argon, helium, and chlorofluorocarbon, and air.
  • the liquid include water and ethylene glycol.
  • the weight M (kg) of the support container and the diameter L (mm) of the ceramic substrate satisfy the relational expression of 0 such that The weight M of the supporting container and the diameter L of the ceramic substrate are set.
  • the reason why both are set in this way is that the lighter the weight of the supporting container, the smaller the heat capacity, the faster the cooling, and the lower the radiant heat from the supporting container.
  • the weight refers to the total weight, and refers to the weight of the substantially cylindrical outer frame portion and the plate-like body connected and fixed to the outer frame portion.
  • the cooling medium supply port and the heat insulating ring are formed. If this is the case, include the weight of the cooling medium supply port and the heat insulating material. The smaller the total weight, the smaller the heat capacity and the easier it is to cool, and the cooling of the ceramic substrate is not hindered by the radiation ripening from the support container itself.
  • the upper limit of the weight M of the supporting container is set to be a function of the diameter of the ceramic substrate.
  • a method of reducing the weight of the support container a method of providing an opening in the plate-like body or setting the thickness of each member constituting the support container to 0.1 to 5 mm can be adopted. If the thickness of the supporting container exceeds 5 mm, the ripening capacity becomes too large.
  • the weight M (kg) of the support container is The weight M of the supporting container and the diameter L of the ceramic substrate are set so as to satisfy the relational expression of M ⁇ LZ200 between the diameter L (mm) of the ceramic substrate and the diameter L (mm) of the ceramic substrate.
  • a third group of the support containers of the present invention is a support container for supporting a stage substrate, wherein the support container has a substantially cylindrical outer frame portion and a cylinder having a smaller diameter than an outer frame portion extending to the bottom of the outer frame portion.
  • a third group of semiconductor manufacturing / inspection apparatuses of the present invention include a disc-shaped ceramic substrate provided with a conductor layer on the surface or inside thereof, a substantially cylindrical outer frame portion for receiving the ceramic substrate, and the outside. And a support container including a cylindrical portion having a smaller diameter than the outer frame portion extended at the bottom of the frame portion.
  • a heat dissipating fin is formed on the cylindrical portion having a smaller diameter than the outer frame portion of the third group of support containers of the present invention. This is because the radiation fins can directly release the heat that adversely affects the device to the outside.
  • the radiating fins may be formed directly on the cylindrical part with a smaller diameter than the outer frame part. Alternatively, it may be formed by fitting a small-diameter cylindrical portion to the cylinder on which the radiation fins are formed. In the former case, the heat transfer property is excellent, and in the latter case, the outer frame in which the stage plate (ceramic substrate, aluminum plate, etc.) is incorporated can be easily replaced from the apparatus body.
  • the cylindrical portion having a smaller diameter than the outer frame portion is detachably extended from the outer frame portion.
  • FIG. 1 is a cross-sectional view schematically showing a hot plate as an example of a first group of semiconductor manufacturing / inspection apparatuses of the present invention.
  • FIG. 2 is a partially enlarged sectional view of the hot plate shown in FIG.
  • FIG. 3 is a cross-sectional view schematically showing another embodiment of a hot plate, which is an example of a first group of semiconductor manufacturing and inspection apparatuses of the present invention.
  • FIGS. 4A and 4B are plan views schematically showing still another embodiment of a hot plate which is an example of the semiconductor manufacturing / inspection apparatus of the first group of the present invention.
  • FIG. 5 (a) is a longitudinal sectional view schematically showing a ceramic substrate constituting a first group of electrostatic chucks according to the present invention
  • FIG. 5 (b) is an A-type ceramic substrate shown in FIG. 5 (a).
  • FIG. 3 is a sectional view taken along line A.
  • FIG. 6 is a horizontal sectional view schematically showing another example of the ceramic substrate constituting the first group of the electrostatic chuck according to the present invention.
  • FIG. 7 is a horizontal sectional view schematically showing still another example of the ceramic substrate constituting the first group of the electrostatic chuck according to the present invention.
  • FIG. 8 is a cross-sectional view schematically showing a ceramic substrate constituting a wafer prober which is an example of a first group of semiconductor manufacturing / inspection apparatuses of the present invention.
  • FIG. 9 is a plan view schematically showing the ceramic substrate shown in FIG.
  • FIG. 10 is a cross-sectional view taken along line AA of the ceramic substrate shown in FIG.
  • FIG. 11 (a) is a cross-sectional view schematically showing a hot plate which is an example of a semiconductor manufacturing / inspection apparatus of the second group of the present invention, and (b) is a heat shield member shown in (a). It is a perspective view which shows typically the bottom part.
  • FIG. 12 is a plan view of the hot plate shown in FIG.
  • FIG. 13A is a cross-sectional view schematically showing another embodiment of a hot plate which is an example of the semiconductor manufacturing / inspection apparatus according to the second group of the present invention, wherein the heat shield plate shown in FIG. It is a perspective view which shows typically.
  • FIG. 14 is a cross-sectional view schematically showing a hot plate which is an example of a semiconductor manufacturing / inspection apparatus of the third group of the present invention.
  • FIG. 15 is a plan view of the hot plate shown in FIG.
  • FIG. 16 is a cross-sectional view schematically showing another embodiment of a hot plate which is an example of the semiconductor manufacturing / inspection apparatus of the third group of the present invention.
  • FIGS. 17 (a) to 17 (d) are cross-sectional views schematically showing a part of a method for manufacturing a hot plate which is an example of a second group of semiconductor manufacturing / inspection apparatuses of the present invention. Explanation of reference numerals
  • a first group of semiconductor manufacturing / inspection apparatuses of the present invention is a semiconductor manufacturing / inspection apparatus in which a ceramic substrate having a resistance ripening body is arranged in an opening of a bottomed support container, It is characterized in that the container is formed with a refrigerant supply pipe for communicating the inside and the outside thereof.
  • a hot plate 1 which is a specific example of the semiconductor manufacturing / inspection apparatus shown in FIGS. 1 and 2 includes a support container 2 and a ceramic substrate 3 as main components.
  • the support container 2 is a bottomed metal member (here, an aluminum member), A circular opening 4 is formed in the upper part.
  • a pin insertion sleeve 5 through which a lifter pin (not shown) is inserted is provided at three locations in the center of the bottom 2 a of the support container 2. These lifter pins raise and lower the silicon wafer W while supporting the silicon wafer W at three points.
  • a lead wire drawing hole 7 for inserting a lead wire 6 for supplying a current to the ceramic substrate 3 is formed in the outer peripheral portion of the bottom 2a.
  • the silicon wafer W to which the photosensitive resin has been applied is 200 to 300. Used as a low-temperature hot plate for drying at C.
  • the ceramic substrate 3 having the resistance heating element 10 provided on the bottom surface 3b is placed in the opening 4 of the support container 2 via a heat insulating ring 14 to be described later.
  • a substantially closed space S 1 is formed between the inner surface of the support container 2 and the bottom surface of the ceramic substrate 3.
  • the ceramic substrate 3 has a circular shape and is designed to have a diameter slightly smaller than the outer dimensions of the support container 2.
  • the resistance heating element 10 is formed concentrically or spirally on the bottom surface 3 b of the ceramic substrate 3.
  • through holes 11 are formed at three places corresponding to the respective pin insertion sleeves.
  • the material of the ceramic substrate 3 constituting the first group of semiconductor manufacturing / inspection apparatuses of the present invention is not particularly limited, and examples thereof include a nitride ceramic, a carbide ceramic, and an oxide ceramic.
  • nitride ceramic examples include metal nitride ceramics such as aluminum nitride, silicon nitride, and boron nitride.
  • carbide ceramic examples include metal carbide ceramics, for example, silicon carbide, zirconium carbide, tantalum carbide, and the like.
  • oxide ceramic examples include metal oxide ceramics, for example, alumina, zirconia, cordierite, mullite, and the like.
  • nitride ceramics and carbide ceramics are more preferable than oxide ceramics. This is because the thermal conductivity is high. Aluminum nitride is the most preferable among the nitride ceramics. This is because the thermal conductivity is as high as 18 OW / m ⁇ K.
  • the ceramic material may contain a sintering aid.
  • the sintering aid include alkali metal oxides, alkaline earth metal oxides, and rare earth oxides.
  • C a O, Y 2 0 3, N a 2 0, L i 2 0, R b 2 0 is preferable.
  • the content of these is preferably 0.1 to 10% by weight. Further, it may contain alumina.
  • the resistance heating element 10 is formed by baking a conductive paste on a ceramic substrate 3 which is a sintered body.
  • the conductor base those containing metal particles, metal oxides, resins, solvents and the like are generally used.
  • Suitable metal particles used for the conductor paste include, for example, gold, silver, platinum, palladium, bell, tungsten, nickel and the like. This is because these metals are relatively difficult to oxidize even when exposed to high temperatures, and have sufficient resistance to generate heat when energized.
  • Suitable metal oxides used for the conductor paste include, for example, lead oxide, zinc oxide, silica, boron oxide, alumina, yttria, titania and the like.
  • an external terminal 12 made of a conductive material is soldered to an end 10 a of the resistance heating element 10.
  • electrical continuity between the external terminal 12 and the resistance heating element 10 is achieved.
  • a socket 6 a at the end of the lead wire 6 is fitted to the end of the external terminal 12. Therefore, current is supplied to the resistance heating element 10 via the lead wire 6 and the external terminal 12, and as a result, the temperature of the resistance heating element 10 increases, and the entire ceramic substrate 3 is heated.
  • a plurality of screw holes 13 are provided at equal intervals in the upper edge of the opening 4 of the support container 2.
  • a maturing ring 14 is provided on the upper edge of the opening 4.
  • the heat insulating ring 14 has an annular shape, and has a size substantially equal to the size of the opening 4.
  • an elastic material such as resin or rubber is preferable.
  • a plurality of screw holes 15 are provided at positions corresponding to the screw holes 13 in the heat insulating ring 14.
  • a support step 16 for horizontally supporting the outer peripheral portion of the bottom surface of the ceramic substrate 3 is provided at all stations. And is formed over a long distance. When the ceramic substrate 3 is supported on the supporting step 16, the height of the upper end surface of the heat insulating ring 14 and the height of the heating surface of the ceramic substrate 3 are substantially the same.
  • the heat insulating ring 14 in the present embodiment seals a gap formed between the upper edge of the opening 4 of the support container 2 and the outer peripheral portion of the bottom surface of the ceramic substrate 3, thereby preventing air from flowing through the gap. Have a role to do.
  • a locking ring 21 is fixed to a heating surface of the ripening ring 14 with a screw 25.
  • the locking ring 21 has an annular main body 22, a plurality of screw holes 23, and a plurality of locking pieces 24.
  • the ceramic substrate 3 set on the supporting step 16 is pressed by the respective locking pieces 24 from the plate thickness direction, so that the ceramic substrate 3 is clamped and fixed to the heat insulating ring 14.
  • a coolant supply pipe 17 and a coolant discharge pipe 18 are provided at the bottom 2 a of the support container 2 using bolts or the like. Two refrigerant supply pipes 17 and two refrigerant discharge pipes 18 are formed. In the present embodiment, the coolant supply pipes 17 are juxtaposed substantially at the center of the bottom 2a. Further, each refrigerant discharge pipe 18 is arranged at a position separated from the refrigerant supply pipe 17 with each refrigerant supply pipe 17 interposed therebetween. That is, each refrigerant discharge pipe 18 is disposed at a position separated from each refrigerant supply pipe 17 in both end directions of the bottom 2a.
  • the refrigerant supply pipe 17 and the refrigerant discharge pipe 18 have flow paths that open on both the inner end face and the outer end face. For this reason, the inside and outside of the support container 2 are communicated through the flow path.
  • a female screw groove is formed on the inner peripheral surface of the opening on the outer end face side of the refrigerant supply pipe 17, and one end of a fluid supply pipe (not shown) is detachable from the opening. Since the other end of this pipe is connected to a gas pressure pump, air as a cooling medium is supplied through the pipe.
  • a female screw groove is also formed on the inner peripheral surface of the opening on the outer end surface side of the refrigerant discharge pipe 18. The air in the support container 2 is discharged outside through this pipe.
  • the other end of the above-mentioned pipe is opened at a place somewhat away from the apparatus.
  • a seal packing 8 is attached to the above-mentioned lead wire outlet hole 7.
  • This seal packing 8 has an annular shape and is made of rubber or the like. It is formed of a suitable elastic body.
  • Each lead wire 6 is inserted into the through hole of the seal packing 8 and then drawn out of the support container 2.
  • the seal packing 8 in the present embodiment has a role of sealing the gap formed between each lead wire 6 and the lead wire drawing hole 7 to prevent air from flowing through the gap. .
  • the silicon wafer W coated with the photosensitive resin is placed on the hot plate 3, and the resistance heating element 10 is energized in this state. Then, the temperature of the silicon wafer W gradually increases due to the contact with the heated ceramic substrate 3. When the photosensitive resin is sufficiently dried by heating for a predetermined time, the power supply to the resistance pattern 10 is stopped.
  • the gas pressure pump is driven to supply cooling air to the refrigerant supply pipe 17 side, and the air is introduced into the closed space S1 via the refrigerant supply pipe 17.
  • the air discharged through the refrigerant supply pipe 17 flows toward the refrigerant discharge pipe 18 while contacting the entire bottom surface side of the ceramic substrate 3 in the closed space S1.
  • the heat removes the heat of the ceramic substrate 3 substantially uniformly as a whole.
  • the air whose temperature has risen due to the removal of heat flows out of the space again through the refrigerant discharge pipe 18 and is discharged into another space free from contamination. Note that a series of air flows is schematically indicated by thick arrows in FIG. Then, when the ceramic substrate 3 is cooled down to a somewhat low temperature, the silicon wafer W is removed from the ceramic substrate 3.
  • the first group of semiconductor manufacturing inspection apparatuses according to the present invention have been described using a hot plate as a specific example.
  • the first group of semiconductor manufacturing inspection apparatuses according to the present invention are provided inside or at the bottom of a ceramic substrate.
  • an electrostatic chuck or a wafer probe may be used.
  • each refrigerant supply pipe 17 is provided at the bottom of the support container 2.
  • the air circulated from the refrigerant supply pipe 17 into the support container 2 can be blown perpendicularly to the bottom surface of the ceramic substrate 3. Therefore, the ceramic substrate 3 can be cooled in a relatively short time.
  • the substantially closed space S1 is formed between the support container 2 and the ceramic substrate 3 as described above.
  • protrusions such as the external terminals 12 are present on the bottom surface side of the ceramic substrate 3, they are arranged in a space S 1 formed between the support container 2 and the ceramic substrate 3. That is, the projection is not exposed to the outside of the device, and is in a so-called protected state. Therefore, regardless of the presence of the protrusion, the bottom surface of the support container 2 can be attached to the support stage (not shown) without difficulty.
  • the space S1 formed between the support container 2 and the ceramic substrate 3 is substantially sealed, so that air can flow therethrough. For this reason, it becomes possible to forcibly cool the ceramic substrate 3 by the flow of air to the space S 1 ⁇ , and the time required for cooling can be reduced as compared with the case of cooling. Therefore, if this semiconductor manufacturing / inspection apparatus is used, the time required for one drying process can be shortened without fail, and the productivity can be improved. Further, since the refrigerant supply pipe and the like are relatively inexpensive, productivity can be improved at low cost. Since the space S 1 is not closed but is substantially closed, air does not easily leak to the outside of the device, and there is no risk of contaminating the surroundings.
  • a refrigerant supply pipe 17 and a refrigerant discharge pipe 18 for communicating the inside and outside of the support container 2 are provided, respectively. Therefore, via both tubes 17 and 18 By efficiently circulating the air in the closed space S1, the ceramic substrate 3 can be forcibly cooled and returned to a low temperature in a relatively short time.
  • a heat insulating ring 14 is provided between the upper edge of the opening 4 of the support container 2 and the outer peripheral portion of the bottom surface of the ceramic substrate 3 to seal a gap in the portion. ing. Therefore, air leakage to the outside of the device through the gap between the support container 2 and the ceramic substrate 3 is prevented, and higher airtightness can be secured in the space S1. This contributes to ensuring the prevention of environmental contamination by air discharge.
  • a seal packing 8 is further provided in the wiring drawing hole 7 on the bottom 2a, and the lead wire 6 is inserted through the through hole. Therefore, air leakage to the outside of the device through the wiring lead-out hole 7 is prevented, and a higher airtightness can be ensured by the space S1. This also contributes to the prevention of surrounding pollution by air discharge.
  • each refrigerant discharge pipe 18 can be omitted.
  • each refrigerant discharge pipe 18 may be omitted, and an opening 27 may be provided at the bottom 2a. In this way, the structure of the semiconductor manufacturing / inspection apparatus 1 can be simplified, and the manufacturing cost can be reduced.
  • two refrigerant supply pipes 17 are provided at the bottom 2 a of the support container 2.
  • the number of the refrigerant supply pipes 17 may be increased to three or more. In this way, as the number of the refrigerant supply pipes 17 increases, the ceramic substrate 3 can be cooled in a shorter time, and the ceramic substrate 3 can be cooled more uniformly. The same applies to the number of refrigerant discharge pipes 18. Thus, three or more may be provided.
  • the resistance heating element 10 is formed by dividing each of the resistance parts 102 to 104 into three parts. Change to provide independent power supply. That is, by dividing the resistance pattern 10 into three, a circuit for generating heat in the resistance pattern 10 is divided into three. In this case, three heating regions A1 to A3 are formed on the ceramic substrate 3 as indicated by hatching in FIG. 4 (b).
  • each of the refrigerant supply pipes 17 and each of the refrigerant discharge pipes 18 arranged in the same areas A1 to A3 are arranged at positions that are the vertices of an equilateral triangle.
  • the temperature can be controlled by the ON / OFF operation of each circuit.
  • the cooling air can be blown to each of the heat generating regions A1 to A3 for cooling, the ceramic substrate 3 can be cooled more uniformly.
  • each refrigerant supply pipe 17 and each refrigerant discharge pipe 18 are not limited to positions at the vertices of an equilateral triangle, and may be disposed at any positions.
  • the number of pipes 17 and 18 in the same area is not limited to three, but at least one. That is, it is sufficient that at least one of the tubes 17 and 18 is provided for each of the heat generating areas A1 to A3.
  • the number of divided circuits is not limited to three, but may be two or four or more.
  • the total number of refrigerant supply pipes 17 may be at least 70% of the total number of divided circuits, and one or more refrigerant supply pipes 17 are necessarily provided for one circuit. No need. That is, when the number of circuits is 4, three or more refrigerant supply pipes 17 may be provided, and when the number of circuits is 10, seven or more refrigerant supply pipes may be provided. .
  • the lead-out hole 7 serving as a wiring lead-out portion may be provided in a place other than the bottom 2 a of the support container 2, for example, in a side wall of the support container 2.
  • air other than air air
  • an inert gas such as carbon dioxide or nitrogen
  • the liquid may be allowed to flow as a cooling fluid.
  • thermocouple may be embedded in the ceramic substrate 3 as needed. This is because the temperature can be controlled by measuring the temperature of the ceramic substrate 3 with a thermocouple and changing the voltage and current values based on the data. In this case, it is preferable that the lead wire of the thermocouple is also drawn out through the seal packing 8.
  • the first group of ceramic substrates for a semiconductor device according to the present invention have a brightness of N4 or less as a value based on the provisions of JIS Z8721. This is because a material having such brightness has excellent radiation heat quantity and concealing property. In addition, such a ceramic substrate can accurately measure the surface temperature by means of the thermoviewer.
  • the lightness N is defined as 0 for the ideal black lightness, 10 for the ideal white lightness, and the lightness of the color between these black lightness and white lightness. Each color is divided into 10 so that the perception is at the same rate, and displayed with the symbols NO to N10.
  • the actual measurement is performed by comparing the color charts corresponding to N0 to N10. In this case, the first decimal place is 0 or 5.
  • a ceramic substrate having such properties can be obtained by including 50 to 500 ppm of carbon in the ceramic substrate.
  • carbon There are two types of carbon, amorphous and crystalline.Amorphous carbon can suppress a decrease in the volume resistivity of a ceramic substrate at a high temperature. Since the decrease in the thermal conductivity of the ceramic substrate at a high temperature can be suppressed, the type of force can be appropriately selected according to the purpose of the substrate to be manufactured.
  • amorphous carbon for example, a hydrocarbon consisting of only C, H, and O, preferably a saccharide can be obtained by calcining in air, and as a crystalline carbon, Graphite powder or the like can be used.
  • carbon can be obtained by thermally decomposing the acrylic resin in an inert atmosphere (nitriding gas, argon gas) and then ripening and pressurizing.
  • an inert atmosphere nitriding gas, argon gas
  • the first group of ceramic substrates for semiconductor devices of the present invention preferably have a disk shape, a diameter of 20 mm or more is desirable, and a diameter of 250 mm or more is optimal.
  • Disc-shaped ceramic substrates for semiconductor devices are required to have uniform temperature, but the larger the diameter of the substrate, the more likely the temperature will be non-uniform.
  • the thickness of the first group of ceramic substrates for a semiconductor device of the present invention is preferably 50 mm or less, more preferably 20 mm or less. Also, 1 to 10 mm is optimal.
  • the thickness is too thin, warping at high temperatures is likely to occur, and if it is too thick, the heat capacity becomes too large and the temperature rise / fall characteristics deteriorate.
  • the porosity of the first group of ceramic substrates for a semiconductor device of the present invention is desirably 0 or 5% or less. This is because a decrease in thermal conductivity at high temperatures and the occurrence of warpage can be suppressed.
  • the first group of ceramic substrates for semiconductor devices of the present invention can be used at 200 or more.
  • thermocouple in a bottomed hole formed in the ceramic substrate. This is because the temperature of the resistance heating element can be measured with a thermocouple, and the temperature can be controlled by changing the voltage and current based on the data.
  • the size of the joining portion of the metal wires of the thermocouple is preferably equal to or larger than the wire diameter of each metal wire and 0.5 mm or less.
  • thermocouples examples include K-type, R-type, B-type, E-type, J-type, and T-type thermocouples, as described in JIS-C-162 (1980). Can be
  • the resistance heating elements embedded in the ceramic substrate are metals such as noble metals (gold, silver, platinum, palladium), tungsten, molybdenum, nickel, and the like.
  • metals such as noble metals (gold, silver, platinum, palladium), tungsten, molybdenum, nickel, and the like.
  • tungsten or molybdenum carbide it is desirable to be made of a conductive ceramic such as tungsten or molybdenum carbide.
  • the resistance itself can be increased, and the thickness itself must be increased in order to prevent disconnection, etc. This is because they are not easily oxidized and the aging conductivity is hardly lowered. These may be used alone or in combination of two or more.
  • the resistance heating element needs to make the temperature of the entire ceramic substrate uniform, a concentric pattern as shown in Fig. 12 or a combination of a concentric pattern and a bent line pattern is required. preferable.
  • the thickness of the resistance heating element is
  • It is preferably from 1 to 50 ⁇ , and the width is preferably from 5 to 2 O mm.
  • the resistance value can be changed by changing the thickness and width of the resistance heating element, but this range is the most practical.
  • the resistance value of the resistance ripening body is thin, and the resistance value increases as it becomes thinner.
  • the distance between the heating surface and the resistance heating element becomes shorter, and the uniformity of the surface temperature decreases. We need to increase the width.
  • the resistance heating element is provided inside the ceramic substrate, there is no need to consider adhesion to nitride ceramics or the like.
  • the resistance heating element is provided on the surface (bottom surface), the distance between the heating surface and the resistance heating element is increased, and the uniformity of the surface temperature can be improved.
  • the heat exchange can be achieved by bringing the cooling medium into direct contact with the resistor, rapid cooling can be achieved.
  • the resistance heating element may have a cross section of any of a square, an ellipse, a spindle, and a spheroid, but is desirably flat. This is because the flattened surface can easily radiate heat toward the heated surface, so that the amount of heat transmitted to the heated surface can be increased, and the temperature distribution on the ripened surface is difficult to achieve. Note that the resistance heating element may have a spiral shape.
  • the resistance heating element is formed in an area of up to 50% in the thickness direction from the bottom surface. This is to prevent the occurrence of temperature distribution on the heating surface and to uniformly heat the semiconductor wafer.
  • a conductive paste made of metal or conductive ceramic.
  • a resistance heating element when a resistance heating element is formed on the bottom surface of a ceramic substrate, baking is usually performed to produce the ceramic substrate, and then the above-mentioned conductive paste layer is formed on the surface of the ceramic substrate, followed by baking, thereby producing a resistance heating element. Form the body.
  • the above-mentioned conductive paste layer when forming a resistance heating element inside the ceramic substrate, the above-mentioned conductive paste layer was formed on the Darling sheet. Thereafter, the green sheet is laminated and fired to form a resistance heating element inside.
  • the conductive paste is not particularly limited, but preferably contains a resin, a solvent, a thickener, or the like containing metal particles or conductive ceramic particles in order to secure conductivity.
  • the material of the metal particles and the conductive ceramic particles include those described above.
  • the metal particles or conductive ceramic particles preferably have a particle size of 0.1 to 100 m. If it is too small, less than 0.1 / im, it is liable to be oxidized, while if it exceeds 100 ⁇ , sintering becomes difficult and the resistance value becomes large.
  • the shape of the metal particles may be spherical or scaly. When these metal particles are used, they may be a mixture of the sphere and the flakes. When the metal particles are flakes or a mixture of spheres and flakes, the metal oxide between the metal particles is easily retained, and the adhesion between the resistance heating element and the ceramic substrate is ensured. This is advantageous because the resistance value can be increased.
  • the resin used for the conductor paste include an acrylic resin, an epoxy resin, and a phenol resin.
  • the solvent include isopropyl alcohol and the like.
  • the thickener include cellulose and the like.
  • a metal oxide is added to the conductor paste in addition to the metal particles, and the metal particles and the metal oxide are sintered. It is preferable to have it. Thus, by sintering the metal oxide together with the metal particles, the ceramic substrate and the metal particles can be more closely adhered.
  • metal oxide examples include lead oxide, zinc oxide, silica, and boron oxide ( ⁇ 0 3 ), at least one selected from the group consisting of ⁇ / remina, yttria and titania is preferred.
  • the adhesion to the ceramic substrate can be particularly improved.
  • the amount of the metal oxide added to the metal particles is preferably from 0.1% by weight to less than 10% by weight. Further, when the resistance heating element is formed using the conductor paste having such a configuration, the area resistivity is preferably 1 to 45 ⁇ .
  • the sheet resistivity exceeds 45 ⁇ ⁇ , the amount of heat generation becomes too large with respect to the applied voltage, and in a ceramic substrate for a semiconductor device provided with a resistive heating element on the surface, the amount of ripening is controlled. Because it is difficult. If the addition amount of the metal oxide is 10% by weight or more, the sheet resistivity exceeds 5 ⁇ opening, and the calorific value becomes too large to make temperature control difficult, resulting in temperature distribution. become.
  • a metal coating layer is preferably formed on the surface of the resistance heating element. This is to prevent the resistance value from changing due to oxidation of the internal metal sintered body.
  • the thickness of the metal coating layer to be formed is preferably 0.1 to 10 / zm.
  • the metal used for forming the metal coating layer is not particularly limited as long as it is a non-oxidizing metal, and specific examples thereof include gold, silver, palladium, platinum, and nickel. These may be used alone or in combination of two or more. Of these, nickel is preferred.
  • the resistance heating element is formed inside the ceramic substrate, the resistance heating No coating is required because the surface is not oxidized.
  • the heat insulating ring provided between the support container and the hot plate is a heat insulating ring having a plate supporting step on the inner peripheral edge. It is desirable that the support container is screwed to the opening heating surface.
  • the seal structure provided in the wiring lead-out section is an annular seal packing made of an elastic body. This makes it difficult for a gap to be formed between the wiring inserted through the seal packing and the wiring lead-out portion, thereby more reliably preventing leakage of fluid to the outside of the device and improving the sealing performance.
  • the fluid is desirably air. As a result, it has low reactivity, there is no fear of short-circuit between resistors, and it is also advantageous for low cost.
  • the support container is formed with a refrigerant discharge pipe for discharging the fluid in the support container to the outside.
  • the fluid supplied into the support container can be made to flow out of the refrigerant discharge pipe to the outside. Therefore, the hot plate can be cooled in a shorter time.
  • a hot plate has been described as an example of the semiconductor manufacturing and inspection apparatus of the first group of the present invention.
  • an electrostatic chuck, a wafer propper, a susceptor and the like can be mentioned.
  • the above-mentioned hot plate is a device in which only a resistance heating element is provided on the surface or inside of a ceramic substrate, whereby a heated object such as a semiconductor wafer can be heated to a predetermined temperature.
  • an electrostatic electrode when an electrostatic electrode is provided as a conductive layer inside a ceramic substrate constituting the semiconductor manufacturing / inspection apparatus of the first group of the present invention, it functions as an electrostatic chuck.
  • the metal used for the above-mentioned electrostatic electrode for example, noble metals (gold, silver, platinum, palladium), tungsten, molybdenum, nickel and the like are preferable.
  • the conductive ceramic used for the electrostatic electrode include carbides of tungsten and molybdenum. These may be used alone or in combination of two or more.
  • FIG. 5A is a longitudinal sectional view schematically showing a ceramic substrate used for an electrostatic chuck
  • FIG. 5A is a sectional view taken along line AA of the ceramic substrate shown in FIG.
  • chuck positive and negative electrode layers 62 and 63 are buried inside the ceramic substrate 61 and connected to through holes 680 respectively, and a ceramic dielectric film is formed on the electrode. 6 4 are formed.
  • a resistance heating element 66 and a through hole 68 are provided inside the ceramic substrate 61 so that an object to be heated such as a silicon wafer 29 can be heated.
  • an RF electrode may be buried in the ceramic substrate 61 as necessary.
  • the ceramic substrate 61 is usually formed in a circular shape in plan view, and the semi-circular portion 62 a shown in (b) is formed inside the ceramic substrate 61.
  • the chuck positive electrode electrostatic layer 62 composed of the comb teeth 62 b and the chuck negative electrostatic layer 63 also composed of the semi-circular part 63 a and the comb teeth 63 b are combined with each other. They are arranged to face each other so as to intersect 6 2 b and 6 3 b.
  • the ceramic substrate having such a configuration is fitted into a support container having substantially the same structure and function as the support container 2 shown in FIG. 1, and operates as an electrostatic chuck.
  • the plus side and one side of the wiring extending from the DC power supply in the control device are connected to the chuck positive electrode electrostatic layer 62 and the chuck negative electrode electrostatic layer 63, and a DC voltage is applied.
  • the semiconductor wafer mounted on the electrostatic chuck is electrostatically attracted and various processing can be performed on the semiconductor wafer.
  • FIGS. 6 and 7 are horizontal cross-sectional views schematically showing electrostatic electrodes of a ceramic substrate constituting another electrostatic chuck.
  • a ceramic substrate is used in the ceramic substrate for an electrostatic chuck shown in FIG. 6, a ceramic substrate is used.
  • a semi-circular chuck positive electrode electrostatic layer 1 12 and a chuck negative electrode electrostatic layer 1 13 are formed in the inside of 111, and the ceramic for the electrostatic chuck shown in Fig. 7 is formed.
  • the chuck positive electrode electrostatic layers 1 2 2 a and 1 2 b and the chuck negative electrode electrostatic layers 1 2 3 a and 1 2 3 b are formed by dividing a circle into four inside the ceramic substrate 12 1.
  • the two positive electrode electrostatic layers 122a and 122b and the two chuck negative electrode electrostatic layers 123a and 123b are formed to intersect, respectively.
  • the number of divisions is not particularly limited, and may be five or more, and the shape is not limited to a sector.
  • a check top conductor layer is provided on the surface of a ceramic substrate constituting the first group of semiconductor manufacturing and inspection devices of the present invention and a guard electrode or a ground electrode is provided as an internal conductor layer, it functions as a wafer prober. .
  • FIG. 8 is a cross-sectional view schematically showing one embodiment of a ceramic substrate constituting a first group of the wafer probers of the present invention
  • FIG. 9 is a plan view thereof
  • FIG. 8 is a cross-sectional view schematically showing one embodiment of a ceramic substrate constituting a first group of the wafer probers of the present invention
  • FIG. 9 is a sectional view taken along line AA of the wafer prober shown in FIG.
  • a concentric groove 58 is formed on the surface of a ceramic substrate 53 having a circular shape in plan view, and a plurality of suction holes 59 for sucking a silicon wafer are formed in a part of the groove 58.
  • a chuck top conductor layer 52 for connecting to an electrode of a silicon wafer is formed in a circular shape on most of the ceramic substrate 53 including the groove 58.
  • a resistance heating element 51 having a concentric circular shape in a plan view is provided in order to control the temperature of the silicon wafer.
  • external terminals are connected and fixed to both ends of the resistance heating element 51.
  • a guard electrode 56 having a lattice shape as shown in FIG. 10 and a ground electrode 57 (not shown) are provided in order to remove stray capacitor noise.
  • Reference numeral 55 indicates an electrode non-formed portion. Such a rectangular electrode non-formed portion 55 is formed inside the guard electrode 56 so that the upper and lower ceramic substrates 53 sandwiching the guard electrode 56 are firmly bonded. It is.
  • the ceramic substrate having such a configuration is fitted into a support container having a structure substantially similar to that shown in FIG. 1, and operates as a wafer prober.
  • a second group of the present invention is a support container for supporting a ceramic substrate, comprising a substantially cylindrical outer frame portion and a plate-shaped member connected and fixed to the outer frame portion. Is a supporting container having a plurality of openings formed therein, and a semiconductor manufacturing / inspection apparatus using the same is also one of the first inventions of the second group.
  • a second group of the present invention is a support container for supporting a ceramic substrate, comprising a substantially cylindrical outer frame portion and a plate-shaped body connected and fixed to the outer frame portion, Weight M (kg) and ceramic substrate diameter L (mm)
  • This is a support container characterized in that it is 200, and is one of the second inventions of a second group of semiconductor manufacturing / inspection apparatuses using the same.
  • any of the above-mentioned inventions has both of the above two requirements. Is preferred. Other configurations are substantially the same.
  • FIG. 11 (a) is a longitudinal sectional view schematically showing a hot plate which is an example of the semiconductor manufacturing / inspection apparatus of the second group of the present invention, and (b) is a heat shield member (heat shield plate). It is a perspective view which shows the bottom part of FIG.
  • FIG. 12 is a plan view of the semiconductor manufacturing / inspection apparatus shown in FIG.
  • this hot plate includes a ceramic substrate 3 and a supporting container 90, and a plurality of concentric resistances in plan view are provided on the surface (bottom surface) of the disk-shaped ceramic substrate 3.
  • a heating element 10 is formed, and a bottomed hole 34, a through hole 11 and the like are formed.
  • a temperature measuring element 37 connected to a lead wire 36 is embedded in the bottomed hole 34. I have.
  • the ceramic substrate 3 is fitted on the upper portion of a substantially cylindrical support container 90 via an insulating ring 14 having an L-shaped cross section.
  • the support container 90 is provided with a ring-shaped substrate receiving portion 93 that supports the ceramic substrate 3 and the heat insulating ring 14 inside the substantially cylindrical outer frame portion 91.
  • the heat insulation ring 14 and the ceramic substrate 3 are fixed by a substrate receiving portion 93 and a fixing bracket 97 via a bolt 98.
  • the fixing bracket 97 is attached to the bolt 98, and the ceramic substrate 3 and the like are pressed and fixed.
  • a heat shielding member (heat shielding plate) 96 for preventing heat radiation is connected and fixed to the outer frame portion 91.
  • the heat shield member (heat shield plate) 96 may be fixed via a port or the like, may be integrally formed with the outer frame portion 91, or may be fixed by welding or the like.
  • the heat shield plate 96 is not necessarily a plate-like body, but may be a bottomed cylindrical member in which the plate-like body and the cylindrical member are integrated.
  • control device containing a control device, a power supply, and the like is present below the support container 90, and the conductive wire 6 and the lead wire 36 are connected to the control device in the control device.
  • a heat shield plate 96 is provided between the control device and the ceramic substrate 3.
  • heat radiating fins may be interposed between the control device and the hot plate, if necessary.
  • the temperature and the like of the ceramic substrate 3 can be accurately controlled, and the silicon wafer W can be uniformly heated to a target temperature.
  • the above controller is also protected from the heat of the hot plate, and can operate normally.
  • the outer frame portion 91 and the heat shield plate 96 are made of a metal, specifically, at least one metal selected from stainless steel, aluminum, copper, steel, nickel, and a noble metal. It is desirable. Metals have high thermal conductivity and low specific heat, so they are easy to cool, and radiant heat does not hinder the cooling of the ceramic substrate 31. is there.
  • the thickness of the members (the outer frame portion 91 and the heat shield plate 96) constituting the support container 90 is preferably 0.1 to 5 mm. If it is less than 0.1 mm, the strength will be poor, and if it exceeds 5 mm, the heat capacity will increase.
  • the relationship between the projected area SA of the heat shield plate 96 (that is, the area of the bottom when there is no opening) and the total area S of the openings provided in the plate-like body is 0.03 ⁇ SZSA.
  • the total area of the openings is less than 3%, it becomes difficult to discharge the cooling medium that has exchanged heat with the ceramic substrate, and the heat capacity of the heat shield plate also increases.
  • the diameter (average diameter or length of one side in the case of an ellipse or a square) of one opening 96a is preferably 1 to 50 mm. If the diameter of the opening 96a is less than 1 mm, it is difficult to discharge the cooling medium, and if it exceeds 50 mm, it does not function as a heat shield.
  • the openings 96a are desirably arranged evenly on the heat shield plate as shown in FIG. 11 (b).
  • the resistive heating elements 10 are provided on the bottom surface as described above.
  • the terminal 12 is connected via a solder layer, and a socket 6 a having a conductive wire 6 is attached to the external terminal 12.
  • a through hole 11 for inserting a lifter pin (not shown) is formed in a portion near the center of the ceramic substrate 3, and a pin insertion sleeve 5 communicating with the through hole 11 is provided with a heat shield plate. Installed on 9 6 I have.
  • the support container 90 includes a substantially cylindrical outer frame portion 91, and an annular substrate receiving portion 93 provided inside the outer frame portion 91, and these are integrally formed. . Further, on the bottom surface of the outer frame part 91, a bottomed cylindrical heat shield member (heat shield plate 96) is installed.
  • the substrate receiving portion 93 supports the ceramic substrate 3 fitted via the heat insulating ring 14.
  • the heat shield plate 96 is provided with a refrigerant supply pipe 17 so that cooling air or the like can be introduced when the ceramic substrate 3 is cooled.
  • a large number of apertures 96a are provided for discharging the gas.
  • a cooling medium is supplied from the refrigerant supply pipe 17 and is discharged from the opening 96a, and the ceramic substrate 3 is cooled, whereby the ceramic substrate 3 can be rapidly cooled. it can.
  • the heat insulating ring 14 is preferably made of at least one resin selected from a polyimide resin, a fluororesin, and a benzoimidazole resin, or a fiber-reinforced resin.
  • the fiber-reinforced resin include a resin in which glass fiber fibers are dispersed. Since the fiber-reinforced resin softens even when the temperature is raised and the ceramic substrate does not tilt, the separation distance can be accurately secured when the wafer is held and ripened from the heated surface.
  • the resistance heating element 10 When the semiconductor manufacturing inspection apparatus (hot plate) of the second group of the present invention is operated, the resistance heating element 10 generates heat and the ceramic substrate 3 rises in temperature, but the temperature measurement embedded in the ceramic substrate 3 is performed.
  • the temperature of the ceramic substrate 3 is measured by the element 37, the measurement data is input to the control device, and the amount of applied voltage (current) is controlled, so that the temperature of the ceramic substrate 3 is controlled to a constant value.
  • FIG. 13 (a) is a cross-sectional view showing a hot plate according to another embodiment, and (b) is a perspective view schematically showing a heat shield plate, as shown in this hot plate.
  • a cylindrical portion 72 to which a radiation fin 72 d is attached may extend below the support container 70. By providing the radiation fins 72 d in this way, the hot plate can be cooled more quickly.
  • the cylindrical portion 72 provided at the lower part of the support container 70 is provided with a heat radiation fin, so that the heat radiation fin is placed on the control device in which the control device and the power supply are stored.
  • the hot plate can be installed via the. Then, the function of the radiation fins does not increase the temperature of the lower control device, but keeps it at a temperature close to normal temperature.
  • the configuration of the hot plate shown in FIG. 13 will be described later in detail.
  • the resistance heating element embedded in the ceramic substrate has been described in the first group of the present invention, and the description thereof will be omitted here.
  • a ceramic substrate provided with a resistance heating element has been described as an example of the conductor layer.
  • the conductor layer is not limited to the resistance heating element.
  • a chuck top conductor is provided on the surface of the ceramic substrate.
  • a guard electrode and a Dutch electrode are formed inside the layer.
  • electrostatic electrodes and RF electrodes are formed inside a ceramic substrate.
  • the materials and characteristics of the ceramic substrates constituting the semiconductor manufacturing / inspection apparatus of the second group of the present invention have been described in the first group of the present invention, and therefore, the description thereof will be omitted.
  • a method of manufacturing a hot plate will be described as an example of a method of manufacturing a semiconductor manufacturing / inspection apparatus of the second group of the present invention.
  • FIGS. 17 (a) to 17 (d) are cross-sectional views schematically showing a manufacturing process of a ceramic substrate having a resistance heating element inside a ceramic substrate constituting a second group of semiconductor manufacturing / inspection apparatuses of the present invention. It is.
  • the production method is not particularly described, but it can be produced by using a method similar to the method described below.
  • a paste is prepared by mixing a nitride ceramic powder with a pinda, a solvent, and the like, and a green sheet is produced using the paste.
  • a sintering aid such as yttria may be added.
  • crystalline or amorphous carbon may be added.
  • the binder at least one selected from an acrylic binder, ethyl cellulose, butyl cellulose solvent, and polyvinyl alcohol is desirable.
  • At least one selected from a-terbineol and glycol is desirable.
  • a paste obtained by mixing these is shaped into a sheet by a doctor blade method to produce a green sheet 500.
  • the thickness of the green sheet 500 is preferably 0.1 to 5 mm.
  • a part to be a through hole for inserting a support pin for supporting a silicon wafer and a part to be a bottomed hole for embedding a temperature measuring element such as a thermocouple into the obtained green sheet is formed.
  • the above processing may be performed after forming a green sheet laminate described later, or the above processing may be performed after forming a sintered body.
  • a conductor paste containing a metal paste or a conductive ceramic is printed on the green sheet 500 to form a conductor paste layer 320.
  • These conductor pastes contain metal particles or conductive ceramic particles.
  • the average particle diameter of the metal particles is preferably from 0.1 to 5. If the average particle exceeds a force of less than 0.1 ⁇ ⁇ 5 ⁇ , it is difficult to print the conductive paste.
  • a conductive paste for example, 85 to 87 parts by weight of metal particles or conductive ceramic particles; at least one kind of binder 1 selected from acryl-based, ethynolecellulose, butyl cellulose solvent, and polyvinyl alcohol; 5 to 10 parts by weight; and a composition (paste) in which at least one solvent selected from ⁇ -terbineol and glycol is mixed with 1.5 to 10 parts by weight.
  • the green sheet 5 on which the conductor paste prepared in the above step (1) is not printed 5 00 is laminated on and under the green sheet 500 on which the conductive paste layer 320 produced in the above step (2) is printed (FIG. 17 (a)).
  • the number of the green sheets 500 laminated on the upper side is made larger than the number of the dull sheets 500 laminated on the lower side, and the formation position of the resistance heating element 32 is eccentric toward the bottom.
  • the number of layers of the upper green sheet 500 is preferably 20 to 50, and the number of layers of the lower green sheet 500 is preferably 5 to 20.
  • the green sheet laminate is heated and pressurized to sinter the green sheet 500 and the internal conductive paste to produce a ceramic substrate 31 (FIG. 17 (b)).
  • the heating temperature is preferably from 100 to 200
  • the pressurization pressure is preferably from 100 to 200 kg / cm 2 .
  • Heating is performed in an inert gas atmosphere.
  • the inert gas for example, argon, nitrogen, or the like can be used.
  • the obtained ceramic substrate 31 is provided with a bottomed hole (not shown) for inserting a temperature measuring element and a blind hole 38 for inserting an external terminal (FIG. 17 (c)).
  • the bottomed hole 38 and the bag hole 38 can be formed by blasting such as drilling or sand blasting after surface polishing.
  • a washer 29 made of a conductive ceramic or the like is fitted into the through hole 39 exposed from the blind hole 38, and the conductive wire 33 is connected using a gold solder or the like (FIG. 17 (d)).
  • the ripening temperature is preferably from 90 to 450 in the case of soldering, and is preferably from 900 to 110 ⁇ in the case of treatment with brazing material.
  • a thermocouple as a temperature measuring element is sealed with a heat-resistant resin to form a ceramic substrate for a hot plate.
  • the obtained ceramic substrate is fitted through a heat insulating ring into a supporting container having a structure as shown in FIGS. 11 to 13, and wiring from a temperature measuring element 37 such as a thermocouple and a resistance heating element 32 is provided. Then, insert the cylindrical part or the like into the radiator fin of the control device equipped with the radiator fin, or attach it to the controller and connect the wiring to the control device below it.
  • the heat shield plates 86 and 96 of the supporting container were shot by punching after forming a disk etc. with metal. Pull out to form an opening.
  • a silicon wafer or the like is placed on the hot plate, or the silicon wafer or the like is held by support pins, and then the object to be heated such as the silicon wafer is heated and various operations are performed. be able to.
  • the ceramic substrate for the electrostatic chuck can be manufactured by providing an electrostatic electrode inside the ceramic substrate, and a chuck top conductor layer is provided on the heating surface.
  • a ceramic substrate for a wafer proper can be manufactured.
  • a conductive paste layer may be formed on the surface of the green sheet as in the case of forming the resistance heating element.
  • a conductor layer is formed on the surface of the ceramic substrate, a sputtering method or a plating method can be used, and these may be used in combination.
  • the present invention will be described based on the embodiments of the present invention.
  • the third group of the present invention is not limited to this embodiment and can be modified without impairing the effects of the present invention. ,.
  • a semiconductor manufacturing / inspection apparatus includes a disc-shaped ceramic substrate provided with a resistance heating element composed of one or more circuits, a substantially cylindrical outer frame portion, and an outer frame portion.
  • a ring-shaped substrate receiving portion provided at an upper portion on the inner side and supporting the ceramic substrate fitted via a heat insulating ring; and a heat shield plate provided at a lower portion on the inner side of the outer frame portion for preventing heat radiation.
  • a support container including an annular heat-shielding plate receiving portion for supporting through a connecting member.
  • a cylindrical portion having a diameter smaller than that of the outer frame portion and having a force having a heat radiation fin or a heat radiation fin can be fitted to the bottom of the outer frame portion.
  • the above-mentioned semiconductor manufacturing / inspection apparatus has a configuration in which a cylindrical part having a smaller diameter than the outer frame part is extended at the bottom part, and the cylindrical part is provided in a conventional precision equipment storage part. It can be fitted directly into a cooler with a radiating fin (hereinafter referred to as a radiating fin). Therefore, there is no need to newly produce the above-mentioned heat radiation fins and the like, and the control device provided with the conventionally used heat radiation fins can be used as it is.
  • FIG. 14 is a vertical sectional view schematically showing a hot plate which is an example of the third group of semiconductor manufacturing and inspection equipment of the present invention
  • FIG. 15 is a plan view thereof.
  • the third group of semiconductor manufacturing / inspection devices of the present invention comprises a ceramic substrate 31 on which a resistance heating element 32 is formed and a supporting container 40, and the ceramic substrate 31 has an L-shaped thermal insulation in cross section. It is fitted into the upper part of the support container 40 via the ring 14.
  • a concentric resistance heating element 32 composed of a plurality of circuits is provided inside the disc-shaped ceramic substrate 31, and a blind hole 38 is formed at an end 3 2 a of the resistance heating element.
  • the end 32 a of the resistance heating element and the conductive wire 33 are connected through a through hole 39.
  • a through hole 35 for inserting a support pin (not shown) and a bottomed hole 34 are formed in a portion near the center, and a temperature measuring element 3 to which a lead wire 36 is connected is formed. 7 is inserted into the bottomed hole 34.
  • the support container 40 includes a substantially cylindrical outer frame portion 41, and a ring-shaped substrate receiving portion 43 and a heat-shielding plate receiving portion 4 provided on the upper and lower portions of the inner side of the outer frame portion 41, respectively. 4 and a cylindrical portion 42 provided on the bottom surface of the outer frame portion 41 and having a smaller diameter than the outer frame portion 41. These are integrally formed.
  • the substrate receiving portion 43 supports the ceramic substrate 31 fitted via the heat insulating ring 14, and the heat shield plate receiving portion 44 serves to prevent heat radiation through a connecting member 47 such as a bolt.
  • the heat shield plates 46 are supported.
  • the heat shield plate 46 is provided with a refrigerant introduction pipe 17 so that cooling air or the like can be introduced when the ceramic substrate 31 is cooled. Further, a pin insertion sleeve 5 communicating with the through hole 35 through which the support pin is inserted is formed.
  • a radiation fin 130 is fitted into the cylindrical portion 42 at the lower part of the support container 40, and a control device containing a control device is provided below the radiation fin 130.
  • the conductive wire 33 and the lead wire 36 are connected to the control device in the control device.
  • the material of the supporting container 40 is not particularly limited, and examples thereof include metals such as iron and SUS.
  • the outer frame portion 41 has a substantially cylindrical shape, and its inner diameter is determined by the ceramic substrate used, but a ceramic substrate of 25 O mm or more can be fitted through a maturing ring. Size is preferred.
  • the outer diameter of the cylindrical portion 42 is set to a size that can be fitted into the radiation fin, that is, 200 to 243 mm.
  • the resistance heating element 32 When the semiconductor manufacturing / inspection apparatus of the third group of the present invention is operated, the resistance heating element 32 generates heat and the temperature of the ceramic substrate 31 rises, but the temperature measuring element 3 embedded in the ceramic substrate 3 1 By 7, the temperature of the ceramic substrate 31 is measured, the measured data is input to the control device, and the applied voltage (current) is controlled, so that the temperature of the ceramic substrate 31 is controlled to a constant value.
  • the outer diameter of the cylindrical portion 42 is just large enough to fit into the radiating fins.
  • the plate can be installed.
  • the lower control device does not become high in temperature due to the function of the radiation fins, and is maintained at a temperature close to room temperature.
  • the resistance heating element embedded in the ceramic substrate has been described in the first group of the present invention, and the description thereof is omitted here.
  • a ceramic substrate provided with a resistance heating element has been described as an example of the conductor layer.
  • the conductor layer is not limited to the resistance heating element.
  • a chuck top conductor is provided on the surface of the ceramic substrate.
  • a guard electrode and a Dutch electrode are formed inside the layer.
  • electrostatic electrodes and RF electrodes are formed inside a ceramic substrate.
  • This hot plate is composed of a ceramic substrate 31 and a support container 70.
  • the ceramic substrate 31 has the same configuration as the ceramic substrate 31 shown in FIG. 14, and the ceramic substrate 31 is thermally insulated. It is fitted into the upper part of the support container 70 via the ring 14.
  • the support container 70 includes a substantially cylindrical outer frame portion 71, and a ring-shaped substrate receiving portion 73 and a heat shield plate receiving portion provided on the inner upper and lower portions of the outer frame portion 71, respectively. And a part 74, which are integrally formed.
  • a cylindrical portion 7 is connected via an intermediate portion 7 2a having an upper annular portion 7 2b, a lower annular portion 7 2c, and a power radiating fin 7 2d. 2, the diameter of the cylindrical portion of the intermediate portion 72 a is smaller than that of the outer frame portion 71.
  • the cylindrical portion 72 is separated from the outer frame portion 71 and the like, and is extended so as to be detachable. Therefore, the cylindrical portion 72 is, together with the heat shield plate 86, bolts and the like. It is supported and fixed to the heat shield plate receiving portion 74 via the connecting member 77.
  • the internal structure, wiring, etc. of the heat shield plate 86 are substantially the same as those of the hot plate shown in FIG. 13, and a control device is provided below the cylindrical portion 72 having the heat radiation fins 72 d.
  • the conductive wire 33 and the lead wire 36 are connected to control equipment in the control device.
  • the diameter of the cylindrical portion of the cylindrical portion 72 is the same as the diameter of the cylindrical portion 72 shown in FIG.
  • the resistance heating element 32 When this hot plate is activated, the resistance heating element 32 generates heat and the ceramic substrate 31 rises in temperature. However, the temperature measurement element 37 embedded in the ceramic substrate 31 allows the ceramic substrate 3 to be heated. The temperature of 1 is measured, the measured data is input to the control device, and the amount of applied voltage (current) is controlled, so that the temperature of the ceramic substrate 31 is controlled to a constant value.
  • the cylindrical portion 72 can be attached to a control device, the control device and the power supply are housed, and the third group of the semiconductor manufacturing / inspection device of the present invention is installed on the control device. It can be attached, and by the function of the radiation fin, the lower control device Can be kept at almost room temperature.
  • the cylindrical portion having a small diameter only needs to be fitted to the main body of the apparatus, it is not necessary to increase the size of the fitting portion and to increase the size of the apparatus.
  • the size of the fitting portion can be the same as that of the conventional one, so that the apparatus main body can be left as it is.
  • the hot plate has been described as an example of the semiconductor manufacturing / inspection apparatus of the third group of the present invention.
  • Specific examples of the third group of semiconductor manufacturing / inspection apparatuses of the present invention include, for example, an electrostatic chuck, a wafer prober, and a susceptor in addition to the hot plate.
  • this granular powder was placed in a mold having a hexagonal cross section, and formed into a hexagonal flat plate to obtain a green body.
  • a disk having a diameter of 210 mm was cut out from the sintered body to obtain a ceramic plate (ceramic substrate).
  • the plate-shaped body is subjected to dry-rolling, and a portion serving as a through hole for inserting a support pin of a semiconductor wafer and a portion serving as a bottomed hole for embedding a thermocouple (diameter: 1.1 mm, (Depth: 2 mm).
  • a conductor paste was printed on the bottom surface of the sintered body obtained in (3) by screen printing.
  • the printing pattern was concentric.
  • Solvent PS 603D manufactured by Tokuka Chemical Laboratory, which is used to form through holes in printed wiring boards, was used.
  • This conductor paste is a silver-lead paste, with 100 parts by weight of silver being lead oxide (5% by weight), zinc oxide (55% by weight), silica (10% by weight), and boron oxide (25% by weight). ) And alumina (5% by weight).
  • the silver particles had an average particle size of 4.5 / zm and were scaly.
  • the silver-lead resistance heating element 32 had a thickness of 5 / zm, a width of 2.4 mm, and an area resistivity of 7.7 mQZ.
  • Silver-lead solder paste (manufactured by Tanaka Kikinzoku Co., Ltd.) was printed by screen printing on the part where external terminals for securing connection to the power supply were to be formed, forming a solder paste layer.
  • an external terminal made of Kovar is placed on the solder paste layer, heated and reflowed at 420, the external terminal is attached to the surface of the resistance heating element, and then a socket having a conductive wire is connected to the external terminal. Attached.
  • thermocouple for temperature control was inserted into the bottomed hole, filled with polyimide resin, cured at 190 for 2 hours, and the production of the ceramic substrate for the hot plate was completed. Thereafter, the ceramic substrate having the resistance ripening body is fitted into a support container 90 having a structure as shown in FIG. 11, and the lead wires from the temperature measuring element (thermocouple) and the stakes are formed. Conductive wires from the end of the heating element were arranged as shown in FIG.
  • the outer frame portion and the heat shield plate are made of stainless steel having a diameter of 220 mm and a thickness of 1.5 mm, and the heat insulating ring 14 is made of a fluorine resin reinforced with glass fiber.
  • the bolt 98, the fixing bracket 97, and the refrigerant supply pipe 17 are also made of stainless steel.
  • the heat shield 96 has a diameter of 10 mix! An opening of about 4 Omm was provided, and the area ratio of the opening was 15% (Example 1), 30% (Example 2), and 50% (Example 3).
  • the weight (total of the outer frame part 91, heat shield plate 96, heat insulating ring 14, Bonoleto 98, fixing bracket 97, and refrigerant supply pipe 17) is 0.96 kg (Example 1) and 0.96 kg, respectively. 86 kg (Example 2) and 0.78 kg (Example 3). See Table 1 for details.
  • Example 2 Basically, it is the same as Example 1, except that the area ratio of the opening (diameter 10 mm) of the heat shield 96 is 8.0%, and the weight (the outer frame part 91, the heat shield 96, Insulation ring 14, bolt 98, fixing bracket 97, and refrigerant supply pipe 17) totaled 0.98 kg.
  • Example 2 Basically similar to Example 1, except that the diameter of the opening is 2 Omm, the area ratio of the opening of the heat shield plate 16 is 30%, and the thickness of the heat shield plate is 3 mm.
  • the weight (total of the outer frame portion 91, the heat shield plate 96, the heat insulating ring 14, the bolt 98, the fixing bracket 97, and the refrigerant supply pipe 17) Weighed 1.42 kg.
  • Example 2 the refrigerant was introduced and allowed to cool.
  • the time required to decrease the temperature from 200 to 25 ° C was as follows in Examples 1 to 3. In each case, the time was 2 minutes, the time in Example 4 was 3 minutes, and the time in Example 5 was 5 minutes. In each of the examples, the cooling time was relatively short.
  • the main factor that determines the cooling rate is the weight of the supporting vessel, and the opening ratio is a secondary factor.
  • the cooling rate is significantly reduced.
  • the temperature reduction rate can be improved only by controlling the weight of the opening and the supporting container, and a device having a simple structure and low cost can be obtained.
  • this granular powder was placed in a mold having a hexagonal cross section, and formed into a hexagonal flat plate to obtain a green body.
  • a disk having a diameter of 210 mm was cut out from the sintered body to obtain a ceramic plate (ceramic substrate).
  • this plate is drilled to form a through hole for inserting a support pin of a semiconductor wafer and a bottomed hole for embedding a thermocouple (diameter: 1. lmm, depth: 2 mm).
  • a conductor paste was printed on the bottom surface of the sintered body obtained in (3) by screen printing.
  • the printing pattern was concentric.
  • Solvent PS 603D manufactured by Tokuka Chemical Laboratory, which is used to form through holes in printed wiring boards, was used.
  • This conductor paste is a silver-lead paste, and based on 100 parts by weight of silver, oxidized lead (5% by weight), zinc oxide (55% by weight), silica (10% by weight), and boron oxide (25% by weight) %) And 7.5% by weight of a metal oxide consisting of alumina (5% by weight).
  • the silver particles had a mean particle size of 4.5 / m and were flake-like.
  • the silver / lead resistance heating element 32 had a thickness of 5 m, a width of 2.4 mm, and an area resistivity of 7.7 mQZ.
  • Silver-lead solder paste (manufactured by Tanaka Kikinzoku Co., Ltd.) was printed by screen printing on the part where external terminals for securing connection to the power supply were to be formed, forming a solder paste layer.
  • the external terminals made of Kovar are placed on the solder paste layer, heated and reflowed at 420 ° C, and the external terminals are attached to the surface of the resistance heating element. Sockets were attached to the external terminals.
  • thermocouple for temperature control was inserted into the bottomed hole, filled with polyimide resin, cured at 190 for 2 hours, and the production of the ceramic substrate for the hot plate was completed. Thereafter, the ceramic substrate having the resistance heating element is fitted into a support container 40 having a structure as shown in FIG. 14, and the lead wire from the temperature measuring element (thermocouple) and the end from the end of the resistance heating element are connected.
  • the conductive wires were arranged as shown in FIG. 14, and the cylindrical portion 42 constituting the hot plate support container 40 was fitted into the radiating fins of the control device to connect the wires to the control device. .
  • Conductor paste ⁇ was prepared.
  • tungsten particles having an average particle size of 3 / zm 100 parts by weight of tungsten particles having an average particle size of 3 / zm, 1.9 parts by weight of an acryl-based binder, 3.7 parts by weight of an ⁇ -terbineol solvent and 0.2 parts by weight of a dispersant are mixed to prepare a conductive paste ⁇ . did.
  • the conductor paste A was printed on the green sheet by screen printing to form a conductor base layer 320 for the resistance heating element 32.
  • the printing pattern was a concentric pattern, the width of the conductor paste layer was 10 mm, and its thickness was 12 // m.
  • the obtained laminate was degreased in nitrogen gas at 600 ° C. for 5 hours, and hot-pressed at 189 O and a pressure of 150 kg / cm 2 for 10 hours to form a 3 mm thick plate.
  • An aluminum nitride sintered body was obtained. This was cut into a 23 Omm disk and used as a hot plate with a resistance heating element 32 with a thickness of 6 ⁇ and a width of 1 Omm (aspect ratio: 1666) (see Fig. 1). 7 (b)).
  • the plate obtained in (4) is polished with a diamond grindstone, a mask is placed on the plate, and a bottomed hole for a thermocouple is formed on the surface by blasting with SiC or the like. Was set up.
  • the plate-shaped body is subjected to dorinor processing to form a blind hole 38 (FIG. 17 (c)).
  • the conductive wire 33 is formed. center hole in ⁇ input City, N i-Au alloy (Au: 8 1. 5 wt%, N i: 1 8. 4 weight 0/0, impurities: 0. 1 wt%) of gold braze used consisting, 9 7, the washer 29 and the conductive wire 33 were brazed, and the conductive wire 33 was connected to the end of the resistance heating element 32 through the through hole 38 (Fig. 17 (d )).
  • thermocouples for temperature control were embedded in the bottomed holes, filled with a polyimide resin, and cured at 190 ° C for 2 hours to produce a ceramic substrate for a hot plate.
  • Example 6 After that, in substantially the same manner as in Example 6, it is inserted into the support container 40 shown in FIG. 14 to perform wiring and the like. Further, the completed hot plate is inserted into the control device, and the wiring to the control device is performed. Connected.
  • the support container is provided with the refrigerant supply pipe for communicating the inside and the outside thereof, the entire semiconductor manufacturing / inspection apparatus is uniformly cooled in a short time. be able to.
  • the opening is formed in the plate-shaped body fixed to the support container, high-speed temperature reduction can be realized.
  • a control unit including a conventionally used radiation fin or the like is provided at the bottom of the support container.
  • the device can be used as it is.

Abstract

A semiconductor manufacturing/inspecting device capable of cooling the whole uniformly in a short time. The semiconductor manufacturing/inspecting device in which ceramic base having a resistor heat generator is disposed in an opening of a bottomed support container is characterized in that a coolant supply pipe for communication of the inside of the support container with its outside is provided to the support container.

Description

明細書  Specification
支持容器および半導体製造 ·検査装置 技術分野  Support container and semiconductor manufacturing · Inspection equipment Technical field
本発明は、 主に、 ホットプレート (セラミックヒータ) 、 静電チャック、 ゥェ ハプローバなど、 半導体の製造用や検査用の装置を構成する支持容器、 および、 該支持容器とセラミック基板等とからなる半導体製造 ·検査装置に関し、 特には、 冷却速度が速く、 より大きなサイズのセラミック基板等に用いることができる支 持容器および半導体製造 ·検查装置に関する。 背景技術  The present invention mainly comprises a support container constituting a device for manufacturing or inspecting a semiconductor, such as a hot plate (ceramic heater), an electrostatic chuck, and a vacuum probe, and the support container and a ceramic substrate. The present invention relates to a semiconductor manufacturing / inspection apparatus, and in particular, to a supporting container and a semiconductor manufacturing / inspection apparatus which have a high cooling rate and can be used for a ceramic substrate having a larger size. Background art
半導体製造プロセスにおいて、 例えば、 感光性樹脂塗布工程を経たシリコンゥ ェハを加熱乾燥させる場合、 通常、 ホットプレートと呼ばれる加熱装置が用いら れる。  In a semiconductor manufacturing process, for example, when heating and drying a silicon wafer that has undergone a photosensitive resin coating step, a heating device called a hot plate is usually used.
この種の装置の従来例としては、 例えば、 特公平 4一 1 3 8 7 3号公報に開示 されたもの等がある。 同公報における装置は、 電熱部材としての窒化アルミユウ ムからなるセラミック基板を用いたホットプレートと、 そのセラミック基板に設 けられた抵抗発熟体とからなる。 抵抗発熱体はホットプレートを構成するセラミ ック基板の底面に形成されている。 プレートの側方に突出している抵抗発熱体の 両端部は、 それぞれ配線を介して電源に接続されている。  As a conventional example of this type of apparatus, there is, for example, one disclosed in Japanese Patent Publication No. Hei 11-3873. The apparatus disclosed in the publication includes a hot plate using a ceramic substrate made of aluminum nitride as an electric heating member, and a resistance ripening member provided on the ceramic substrate. The resistance heating element is formed on the bottom surface of the ceramic substrate constituting the hot plate. Both ends of the resistance heating element protruding to the side of the plate are connected to the power supply via wiring.
そして、ホットプレートの加熱面側に 熱物であるシリコンウェハを載置し、 この状態で抵抗発熱体に通電することにより、 シリコンウェハが数百 に加熱さ れるようになっている。  Then, a silicon wafer, which is a heat substance, is placed on the heating surface side of the hot plate, and the resistance heating element is energized in this state, so that the silicon wafer is heated to several hundreds.
ところで、 抵抗発熱体への通電により所定時間の加熱を行って感光性樹脂を乾 燥させた場合には、 まずホットプレートをある程度低い温度まで放冷し、 その後、 シリコンウェハを取り外す必要がある。 しかしながら、 放冷にはある程度の時間 を要するので、 このことが生産性の向上を図るうえで障害となっていた。  By the way, when the photosensitive resin is dried by heating the resistive heating element for a predetermined period of time by energizing the resistance heating element, it is necessary to first cool the hot plate to a certain low temperature and then remove the silicon wafer. However, it takes a certain amount of time to cool down, which has been an obstacle to improving productivity.
また、 近年、 半導体製品の製造においては、 スループットに要する時間の短縮 化が要求されており、 冷却時間の短縮化の強い要請があった。 そこで、 例えば、 特公平 8— 8 2 4 6号公報では、 放熱フィン型の冷却体をホ ットプレートに取り付ける技術が記載されている。 しかしながら、 この冷却体で は、 ホットプレートを局所的に冷却させることはできるものの、 全体を均一に冷 却させることができなかった。 In recent years, in the manufacture of semiconductor products, a reduction in the time required for throughput has been required, and there has been a strong demand for a reduction in cooling time. Therefore, for example, Japanese Patent Publication No. Hei 8-82246 describes a technique for attaching a cooling fin-type cooling body to a hot plate. However, with this cooling body, although the hot plate could be locally cooled, the whole could not be cooled uniformly.
通常、 このようなホットプレートは、 支持容器と呼ばれる略円筒形状の容器に より支持され使用されている。 この支持容器の下部には制御機器や電源等を収め た制御装置が存在しており、 上記配線等が、 制御装置内の制御機器に接続されて いる。  Usually, such a hot plate is supported and used by a substantially cylindrical container called a support container. A control device containing a control device, a power supply and the like is present below the support container, and the above-mentioned wiring and the like are connected to the control device in the control device.
しかしながら、 精密機器類は高温に弱いため、 ホットプレートを使用する際、 窒化アルミニウム等のセラミック基板の放射熱を遮蔽し、 精密機器類等が収めら れた制御装置を保護する必要がある。 そのため、 上記制御装置とセラミック基板 との間には、 遮熱板が設けられ、 さらに、 制御装置とホットプレートとの間には 放熱フィンが介装されている。  However, precision instruments are sensitive to high temperatures, so when using a hot plate, it is necessary to shield the radiant heat of ceramic substrates such as aluminum nitride and protect the control devices that house the precision instruments. Therefore, a heat shield plate is provided between the control device and the ceramic substrate, and a radiation fin is interposed between the control device and the hot plate.
このような構成の半導体製造 ·検査装置を用レ、ることにより、 セラミック基板 の温度等を、 精度よく制御することができ、 さらに、 上記制御装置もホットプレ —トの熟から保護され、 正常な動作が可能となる。  By using a semiconductor manufacturing / inspection apparatus having such a configuration, it is possible to accurately control the temperature of the ceramic substrate and the like, and the above-described control apparatus is also protected from the ripening of the hot plate, and is operated normally. Operation becomes possible.
しかしながら、 近年、 半導体製品に用いられるシリコンウェハは、 より大きな サイズのものが要求されてきており、 そのためにシリコンウェハを載置等するセ ラミック基板や支持容器のサイズも大きくならざるを得ない。 し力 し、 これらの 支持容器等を載せるための放熱フィンを備え、 内部に精密機器が収納された制御 装置も、 支持容器の大きさに合わせてサイズを変更しなければならないとすると、 経済的な負担が大きくなる。  However, in recent years, silicon wafers used for semiconductor products have been required to have a larger size, and therefore, the size of a ceramic substrate or a supporting container on which a silicon wafer is mounted has to be increased. However, if the control device, which has radiating fins for placing these supporting containers and the like and contains precision equipment inside, must be resized according to the size of the supporting containers, it is economical. Burden increases.
また、 放熱フィンを設けない場合であっても、 装置に支持容器を固定すること となり、 支持容器の固定スペースをとつてしまい、 装置全体が大型化するという 問題があった。 発明の要約  In addition, even when the heat radiation fins are not provided, the supporting container is fixed to the device, which takes up a space for fixing the supporting container, and there is a problem that the entire device becomes large. Summary of the Invention
本発明は、 上述した問題点を解決するためになされたもので、 第一群の本発明 は、 簡単な構造のものを使用し、 かつ、 低コストで、 ホットプレート全体を短時 間で均一に冷却することができる半導体製造 ·検査装置を提供することを目的と する。 The present invention has been made in order to solve the above-mentioned problems. The first group of the present invention uses a simple structure, is low-cost, and can shorten the entire hot plate in a short time. It is an object of the present invention to provide a semiconductor manufacturing / inspection device capable of uniformly cooling between the devices.
また、 第二群の本発明は、 抵抗発熱体を有するセラミック基板の冷却速度を向 上させ得る支持容器と該支持容器を用いた半導体製造 ·検査装置とを提供するこ とを目的とする。  Another object of the present invention is to provide a support container capable of improving the cooling rate of a ceramic substrate having a resistance heating element, and a semiconductor manufacturing / inspection apparatus using the support container.
また、 第三群の本発明は、 支持容器の外枠よりも外径の小さい円筒部を延設す ることにより装置を小型化することができ、 また、 従来から用いられている放熱 フィンを備えた制御装置を含む装置全体をそのまま使用することができる支持容 器と該支持容器を用いた半導体製造 ·検査装置とを提供することを目的とする。  The third group of the present invention can reduce the size of the device by extending a cylindrical portion having an outer diameter smaller than the outer frame of the support container. It is an object of the present invention to provide a support container capable of directly using the entire apparatus including a control device provided therein, and a semiconductor manufacturing / inspection apparatus using the support container.
第一群の本発明の半導体製造 ·検査装置は、 有底状の支持容器の開口部に、 抵 抗発熱体を有するセラミック基板を配置してなる半導体製造 ·検査装置であって、 上記支持容器には、 その内外を連通させる冷媒供給管が形成されていることを特 徴とするものである。  A first group of semiconductor manufacturing / inspection apparatuses of the present invention are semiconductor manufacturing / inspection apparatuses in which a ceramic substrate having a resistance heating element is disposed in an opening of a bottomed supporting container, Is characterized in that a coolant supply pipe is formed to communicate the inside and the outside of the coolant supply pipe.
第一群の本発明の半導体製造 ·検査装置によると、 支持容器にはその内外を連 通させる冷媒供給管が形成されているため、 該冷媒供給管から支持容器内に流体 を流通させることにより、 該流体をセラミック基板の全体に均一に吹き付けるこ とができる。 従って、 セラミック基板を強制的に冷却することが可能となり、 放 冷に比べて短時間で冷却することができる。 すなわち、 セラミック基板全体を短 時間で均一に冷却することができる。 また、 簡単な構造の冷媒供給管を用いるこ とができるため、 低コストで冷却することができる。  According to the first group of semiconductor manufacturing / inspection apparatuses of the present invention, since the support container is provided with a refrigerant supply pipe for communicating the inside and the outside thereof, by flowing a fluid from the refrigerant supply pipe into the support container, The fluid can be uniformly sprayed on the entire ceramic substrate. Therefore, it is possible to forcibly cool the ceramic substrate, and it is possible to cool the ceramic substrate in a shorter time as compared with cooling. That is, the entire ceramic substrate can be uniformly cooled in a short time. Further, since a refrigerant supply pipe having a simple structure can be used, cooling can be performed at low cost.
上記冷媒供給管は、 上記支持容器の底部に形成されていることが望ましい。 上 記冷媒供給管から流通された流体をセラミック基板面に対して垂直に吹き付ける ことができるからである。  It is desirable that the coolant supply pipe be formed at the bottom of the support container. This is because the fluid circulated from the refrigerant supply pipe can be blown perpendicular to the ceramic substrate surface.
上記冷媒供給管は、 複数個形成されていることが望ましい。 より短時間かつ均 一にセラミック基板を冷却することができるからである。  It is desirable that a plurality of the refrigerant supply pipes are formed. This is because the ceramic substrate can be uniformly cooled in a shorter time.
上記支持容器の開口部の上縁と上記セラミック基板の底面外周部との間には、 断熱リングが設けられていることが望ましい。 支持容器とセラミック基板との間 に密閉した閉空間が形成され、 支持容器内に流通された流体が外部に漏れ出すこ とを防止することができるからである。 上記支持容器における配線引き出し部には、 シール部材が設けられていること が望ましい。 当該部分を介した装置外部への流体の漏れ出しが防止され、 支持容 器とセラミック基板との間に形成された空間により高い密閉性を確保することが できるからである。 It is preferable that a heat insulating ring is provided between the upper edge of the opening of the support container and the outer peripheral portion of the bottom surface of the ceramic substrate. This is because a hermetically closed space is formed between the support container and the ceramic substrate, so that the fluid circulated in the support container can be prevented from leaking outside. It is desirable that a sealing member is provided at the wiring lead-out portion of the support container. This is because leakage of the fluid to the outside of the device through the portion is prevented, and a higher sealing property can be ensured by the space formed between the support container and the ceramic substrate.
第二群の第一の本発明の支持容器は、 セラミック基板を支持する支持容器であ つて、 略円筒形状の外枠部および該外枠部に連結固定される板状体からなり、 上 記板状体には複数の開口が形成されていることを特徴とするものである。 また、 これを用いた半導体製造 ·検査装置も、 第二群の第一の本発明に属する。  The support container of the first invention of the second group is a support container for supporting a ceramic substrate, comprising a substantially cylindrical outer frame portion and a plate-like body connected and fixed to the outer frame portion. A plurality of openings are formed in the plate-shaped body. Further, a semiconductor manufacturing / inspection apparatus using the same also belongs to the first invention of the second group.
第二群の第二の本発明の支持容器は、 セラミック基板を支持する支持容器であ つて、 略円筒形状外枠部および該外枠部に連結固定される板状体からなり、 上記 支持容器の重量 M ( k g ) およびセラミック基板の直径 L (mm) の関係が M≤ L/ 2 0 0であることを特徴とするものである。また、 これを用いた半導体製造- 検査装置も第二群の第二の本発明に属する。  The support container of the second invention of the second group is a support container for supporting a ceramic substrate, comprising a substantially cylindrical outer frame portion and a plate-like body connected and fixed to the outer frame portion. The relationship between the weight M (kg) of the ceramic substrate and the diameter L (mm) of the ceramic substrate is M≤L / 200. Further, a semiconductor manufacturing and inspection apparatus using the same also belongs to the second group of the second invention.
第二群の第一の本発明の支持容器では、 底板あるいは遮熱板として機能する板 状体に開口を複数形成し、 板状体の熱容量を小さくするとともに、 冷却媒体を排 出しゃすくすることで、 冷却速度を向上させることを可能にしたものである。 上記板状体の投影面積 S Aおよび上記板状体に設けられた開口の合計面積 Sの 関係は、 0 . 0 3≤S Z S Aであることが望ましく、 0 . 1≤S Z S Aであるこ とがより望ましい。  In the support container of the first invention of the second group, a plurality of openings are formed in the plate-shaped body functioning as a bottom plate or a heat shield plate, thereby reducing the heat capacity of the plate-shaped body and discharging and cooling the cooling medium. This makes it possible to improve the cooling rate. The relationship between the projected area S A of the plate-shaped body and the total area S of the openings provided in the plate-shaped body is preferably 0.33 ≦ SZSA, and more preferably 0.1 ≦ SZSA.
開口の合計面積の割合を 3 %以上とすることで、 板状体の熱容量を小さくする ことができ、 しかも、 セラミック基板と熱交換した冷却媒体が排出しやすくなり、 冷却速度を向上させることができるからである。  By setting the ratio of the total area of the openings to 3% or more, the heat capacity of the plate-shaped body can be reduced, and the cooling medium that has exchanged heat with the ceramic substrate can be easily discharged, thereby improving the cooling rate. Because you can.
上記冷却媒体は、 上記板状体に設けた冷却媒体供給口から供給される。 上記冷 却媒体は、 液体、 気体のどちらであってもよいが、 抵抗発熱体の短絡を防止する 観点から気体であることが望ましレ、。 気体としては、 例えば、 窒素、 アルゴン、 ヘリウム、 フロンなどの不活性気体、 空気などが挙げられる。 また、 液体として は、 例えば、 水、 エチレングリコールなどが挙げられる。  The cooling medium is supplied from a cooling medium supply port provided in the plate. The cooling medium may be a liquid or a gas, but is preferably a gas from the viewpoint of preventing a short circuit of the resistance heating element. Examples of the gas include an inert gas such as nitrogen, argon, helium, and chlorofluorocarbon, and air. Examples of the liquid include water and ethylene glycol.
第二群の第二の本発明の支持容器では、 支持容器の重量 M ( k g ) と、 セラミ ック基板の直径 L (mm) との間で、 0 0の関係式を満たすように、 支持容器の重量 Mとセラミック基板の直径 Lとを設定している。 In the support container of the second invention of the second group, the weight M (kg) of the support container and the diameter L (mm) of the ceramic substrate satisfy the relational expression of 0 such that The weight M of the supporting container and the diameter L of the ceramic substrate are set.
このように両者を設定したのは、 支持容器の重量が軽いほど熱容量が小さく、 速く冷却させることができ、 支持容器からの輻射熱を低減させることが可能とな るからである。 重量とは、 総重量を指し、 略円筒形状の外枠部および該外枠部に 連結固定される板状体の重量を指すが、 冷却媒体供給口や断熱リング (断熱材) が形成されていた場合は冷却媒体供給口や断熱材の重さを含む。 総重量が小さレヽ ほど、 熱容量が小さくなるため冷却しやすくなり、 支持容器自体からの輻射熟に より、 セラミック基板の冷却が阻害されることはない。  The reason why both are set in this way is that the lighter the weight of the supporting container, the smaller the heat capacity, the faster the cooling, and the lower the radiant heat from the supporting container. The weight refers to the total weight, and refers to the weight of the substantially cylindrical outer frame portion and the plate-like body connected and fixed to the outer frame portion. The cooling medium supply port and the heat insulating ring (heat insulating material) are formed. If this is the case, include the weight of the cooling medium supply port and the heat insulating material. The smaller the total weight, the smaller the heat capacity and the easier it is to cool, and the cooling of the ceramic substrate is not hindered by the radiation ripening from the support container itself.
し力 しながら、 セラミック基板の直径が大きくなると支持容器も大きくなるた め、 重量の上限もそれに伴い大きくなる。 このため、 支持容器の重量 Mの上限を、 セラミック基板の直径の関数となるように設定しているのである。  However, as the diameter of the ceramic substrate increases, the size of the supporting container also increases, and the upper limit of the weight increases accordingly. For this reason, the upper limit of the weight M of the supporting container is set to be a function of the diameter of the ceramic substrate.
上記支持容器の重量を軽滅する方法としては、 板状体に開口を設けるか、 上記 支持容器を構成する各部材の厚さを、 0 . l〜5 mmにする方法を採用すること ができる。 支持容器の厚さが 5 mmを超えると、 熟容量が大きくなり過ぎる。  As a method of reducing the weight of the support container, a method of providing an opening in the plate-like body or setting the thickness of each member constituting the support container to 0.1 to 5 mm can be adopted. If the thickness of the supporting container exceeds 5 mm, the ripening capacity becomes too large.
このように、 第二群の第一の本発明では、 支持容器を構成する板状体に開口を 複数形成し、 第二群の第二の本発明では、 支持容器の重量 M ( k g ) と、 セラミ ック基板の直径 L (mm) との間で、 M≤L Z 2 0 0の関係式を満たすように、 支持容器の重量 Mとセラミック基板の直径 Lとを設定している。  Thus, in the second group of the first invention, a plurality of openings are formed in the plate-like body constituting the support container, and in the second group of the second invention, the weight M (kg) of the support container is The weight M of the supporting container and the diameter L of the ceramic substrate are set so as to satisfy the relational expression of M ≦ LZ200 between the diameter L (mm) of the ceramic substrate and the diameter L (mm) of the ceramic substrate.
第三群の本発明の支持容器は、 ステージ基板を支持する支持容器であって、 略 円筒形状の外枠部および該外枠部の底部に延設された外枠部よりも直径の小さな 円筒部からなることを特徴とするものであり、  A third group of the support containers of the present invention is a support container for supporting a stage substrate, wherein the support container has a substantially cylindrical outer frame portion and a cylinder having a smaller diameter than an outer frame portion extending to the bottom of the outer frame portion. Part,
また、 第三群の本発明の半導体製造 ·検査装置は、 表面もしくは内部に導体層 が設けられた円板形状のセラミック基板と、 該セラミック基板を受ける略円筒形 状の外枠部および該外枠部の底部に延設された外枠部よりも直径の小さな円筒部 を含んで構成される支持容器とからなることを特徴とするものである。  Further, a third group of semiconductor manufacturing / inspection apparatuses of the present invention include a disc-shaped ceramic substrate provided with a conductor layer on the surface or inside thereof, a substantially cylindrical outer frame portion for receiving the ceramic substrate, and the outside. And a support container including a cylindrical portion having a smaller diameter than the outer frame portion extended at the bottom of the frame portion.
第三群の本発明の支持容器の外枠部よりも直径の小さな円筒部には、 放熱フィ ンが形成されてなることが望ましい。 放熱フィンは、 装置に悪影響を与える熱を 外部に直接放出させることができるからである。  It is desirable that a heat dissipating fin is formed on the cylindrical portion having a smaller diameter than the outer frame portion of the third group of support containers of the present invention. This is because the radiation fins can directly release the heat that adversely affects the device to the outside.
放熱フィンは、 外枠部よりも直径の小さな円筒部に、 直接形成されていてもよ く、 放熱フィンが形成された円筒に直径の小さな円筒部が嵌合されて形成されて いてもよい。 前者の場合には、 熱伝達性に優れ、 後者の場合には、 装置本体から ステージ板 (セラミック基板、 アルミニウム板等) が組み込まれた外枠部を容易 に交換することができる。 The radiating fins may be formed directly on the cylindrical part with a smaller diameter than the outer frame part. Alternatively, it may be formed by fitting a small-diameter cylindrical portion to the cylinder on which the radiation fins are formed. In the former case, the heat transfer property is excellent, and in the latter case, the outer frame in which the stage plate (ceramic substrate, aluminum plate, etc.) is incorporated can be easily replaced from the apparatus body.
また、 この外枠部よりも直径の小さな円筒部は、 取り外し可能な状態で上記外 枠部に延設されていることが望ましい。 図面の簡単な説明  It is preferable that the cylindrical portion having a smaller diameter than the outer frame portion is detachably extended from the outer frame portion. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 第一群の本発明の半導体製造 ·検査装置の一例であるホットプレート を模式的に示す断面図である。  FIG. 1 is a cross-sectional view schematically showing a hot plate as an example of a first group of semiconductor manufacturing / inspection apparatuses of the present invention.
図 2は、 図 1に示したホットプレートの部分拡大断面図である。  FIG. 2 is a partially enlarged sectional view of the hot plate shown in FIG.
図 3は、 第一群の本発明の半導体製造'検査装置の一例であるホットプレート の別の実施形態を模式的に示す断面図である。  FIG. 3 is a cross-sectional view schematically showing another embodiment of a hot plate, which is an example of a first group of semiconductor manufacturing and inspection apparatuses of the present invention.
図 4 ( a ) 、 ( b ) は、 第一群の本発明の半導体製造 ·検査装置の一例である ホットプレートのさらに別の実施形態を模式的に示す平面図である。  FIGS. 4A and 4B are plan views schematically showing still another embodiment of a hot plate which is an example of the semiconductor manufacturing / inspection apparatus of the first group of the present invention.
図 5 ( a ) は、 第一群の本発明に係る静電チャックを構成するセラミック基板 を模式的に示す縦断面図であり、 (b ) は、 (a ) に示したセラミック基板の A 一 A線断面図である。  FIG. 5 (a) is a longitudinal sectional view schematically showing a ceramic substrate constituting a first group of electrostatic chucks according to the present invention, and FIG. 5 (b) is an A-type ceramic substrate shown in FIG. 5 (a). FIG. 3 is a sectional view taken along line A.
図 6は、 第一群の本発明に係る静電チャックを構成するセラミック基板の別の 一例を模式的に示す水平断面図である。  FIG. 6 is a horizontal sectional view schematically showing another example of the ceramic substrate constituting the first group of the electrostatic chuck according to the present invention.
図 7は、 第一群の本発明に係る静電チャックを構成するセラミック基板のさら に別の一例を模式的に示す水平断面図である。  FIG. 7 is a horizontal sectional view schematically showing still another example of the ceramic substrate constituting the first group of the electrostatic chuck according to the present invention.
図 8は、 第一群の本発明の半導体製造 ·検査装置の一例であるウェハプローバ を構成するセラミック基板を模式的に示す断面図である。  FIG. 8 is a cross-sectional view schematically showing a ceramic substrate constituting a wafer prober which is an example of a first group of semiconductor manufacturing / inspection apparatuses of the present invention.
図 9は、 図 7に示したセラミック基板を模式的に示す平面図である。  FIG. 9 is a plan view schematically showing the ceramic substrate shown in FIG.
図 1 0は、 図 7に示したセラミック基板の A— A線断面図である。  FIG. 10 is a cross-sectional view taken along line AA of the ceramic substrate shown in FIG.
図 1 1 ( a ) は、 第二群の本発明の半導体製造 ·検査装置の一例であるホット プレートを模式的に示す断面図であり、 (b ) は、 (a ) に示した遮熱部材の底 部を模式的に示す斜視図である。 図 1 2は、 図 1に示したホットプレートの平面図である。 FIG. 11 (a) is a cross-sectional view schematically showing a hot plate which is an example of a semiconductor manufacturing / inspection apparatus of the second group of the present invention, and (b) is a heat shield member shown in (a). It is a perspective view which shows typically the bottom part. FIG. 12 is a plan view of the hot plate shown in FIG.
図 1 3 (a) は、 第二群の本発明の半導体製造 ·検査装置の一例であるホット プレートの別の実施形態を模式的に示す断面図であり、 (a) に示した遮熱板を 模式的に示す斜視図である。  FIG. 13A is a cross-sectional view schematically showing another embodiment of a hot plate which is an example of the semiconductor manufacturing / inspection apparatus according to the second group of the present invention, wherein the heat shield plate shown in FIG. It is a perspective view which shows typically.
図 1 4は、 第三群の本発明の半導体製造 '検査装置の一例であるホットプレー トを模式的に示す断面図である。  FIG. 14 is a cross-sectional view schematically showing a hot plate which is an example of a semiconductor manufacturing / inspection apparatus of the third group of the present invention.
図 1 5は、 図 1 4に示したホットプレートの平面図である。  FIG. 15 is a plan view of the hot plate shown in FIG.
図 1 6は、 第三群の本発明の半導体製造'検査装置の一例であるホットプレー トの別の実施形態を模式的に示す断面図である。  FIG. 16 is a cross-sectional view schematically showing another embodiment of a hot plate which is an example of the semiconductor manufacturing / inspection apparatus of the third group of the present invention.
図 1 7 (a) 〜 (d) は、 第二群の本発明の半導体製造 ·検査装置の一例であ るホットプレートの製造方法の一部を模式的に示す断面図である。 符号の説明  FIGS. 17 (a) to 17 (d) are cross-sectional views schematically showing a part of a method for manufacturing a hot plate which is an example of a second group of semiconductor manufacturing / inspection apparatuses of the present invention. Explanation of reference numerals
2、 40、 70、 9 0 支持容器  2, 40, 70, 90 Support container
2 a 底部  2a bottom
3、 3 1、 5 3、 6 1、 1 1 1、 1 2 1 セラミック基板  3, 3 1, 5 3, 6 1, 1 1 1, 1 2 1 Ceramic substrate
4 開口部  4 Opening
5 挿通スリーブ  5 Insertion sleeve
6、 3 6 リード線  6, 3 6 Lead wire
7 リード線引出孔  7 Lead wire outlet hole
8 シーノレ/くツキング  8 Seenore
1 0、 3 2、 5 1、 6 6 抵抗発熱体  1 0, 3 2, 5 1, 6 6 Resistance heating element
1 1, 3 5 貫通孔  1 1, 3 5 Through hole
1 2 外部端子  1 2 External terminal
1 4 断熱リング  1 4 Insulation ring
1 6 支持段部  1 6 Support step
1 7 冷媒供給管  1 7 Refrigerant supply pipe
1 8 冷媒排出管  1 8 Refrigerant discharge pipe
2 1 係止リング 2 2 本体 2 1 Lock ring 2 2 Body
2 9 ヮッシヤー  2 9 Pessier
3 3 導電線  3 3 Conductive wire
3 4 有底孔  3 4 Hole with bottom
3 7 測温素子  3 7 Temperature measuring element
3 8 袋孔  3 8 Bag hole
3 9、 5 4 スノレーホ一ノレ  3 9, 5 4 Snorrejo
4 1 外枠  4 1 Outer frame
4 2、 7 2 円筒部  4 2, 7 2 Cylindrical part
4 3 , 7 3 基板受け部  4 3, 7 3 PCB receiver
4 4、 7 4 遮熱板受け部  4 4, 7 4 Heat shield plate receiver
4 6、 8 6、 9 6 遮熱板  4 6, 8 6, 9 6 Heat shield
4 7 , 7 7 連結部材  4 7, 7 7 Connecting member
5 2 チヤップトップ導体層  5 2 Chip-top conductor layer
5 6 ガード電極  5 6 Guard electrode
5 7 グランド電極  5 7 Ground electrode
5 8 溝  5 8 groove
5 9 吸引孔 発明の詳細な開示  5 9 Suction hole Detailed disclosure of the invention
まず、 第一群の本発明の半導体製造 ·検査装置を、 図 1、 2に基づいて説明す る。  First, a first group of semiconductor manufacturing / inspection apparatuses of the present invention will be described with reference to FIGS.
第一群の本発明の半導体製造 ·検査装置は、 有底状の支持容器の開口部に、 抵 抗発熟体を有するセラミック基板を配置してなる半導体製造 ·検査装置であって、 上記支持容器には、 その内外を連通させる冷媒供給管が形成されていることを特 徴とするものである。  A first group of semiconductor manufacturing / inspection apparatuses of the present invention is a semiconductor manufacturing / inspection apparatus in which a ceramic substrate having a resistance ripening body is arranged in an opening of a bottomed support container, It is characterized in that the container is formed with a refrigerant supply pipe for communicating the inside and the outside thereof.
図 1、 2に示される半導体製造 ·検査装置の具体例であるホットプレート 1は、 支持容器 2およびセラミック基板 3を主要な構成要素として備えている。  A hot plate 1 which is a specific example of the semiconductor manufacturing / inspection apparatus shown in FIGS. 1 and 2 includes a support container 2 and a ceramic substrate 3 as main components.
支持容器 2は、 有底状の金属部材 (ここではアルミニウム製部材) であって、 円形状の開口部 4がその上部に形成されている。 この支持容器 2の底部 2 aの中 心部における 3箇所には、 図示しないリフタ一ピンが挿通されるピン挿通スリー ブ 5が設けられている。 これらのリフターピンは、 シリコンウェハ Wを 3点で支 持した状態でシリコンウェハ Wを昇降させる。 底部 2 aの外周部には、 セラミツ ク基板 3に電流を供給するリ一ド線 6を挿通するためのリ一ド線引出用孔 7が形 成されている。 The support container 2 is a bottomed metal member (here, an aluminum member), A circular opening 4 is formed in the upper part. A pin insertion sleeve 5 through which a lifter pin (not shown) is inserted is provided at three locations in the center of the bottom 2 a of the support container 2. These lifter pins raise and lower the silicon wafer W while supporting the silicon wafer W at three points. In the outer peripheral portion of the bottom 2a, a lead wire drawing hole 7 for inserting a lead wire 6 for supplying a current to the ceramic substrate 3 is formed.
本実施形態のホットプレート 1は、 感光性樹脂が塗布されたシリコンウェハ W を 2 0 0〜3 0 0。Cにて乾燥させるための低温用ホットプレ一ト等として用いら れる。 この底面 3 bに抵抗発熱体 1 0が設けられたセラミック基板 3は、 後述す る断熱リング 1 4を介して、 支持容器 2の開口部 4に設置されている。 この断熱 リング 1 4を設置することにより、 支持容器 2の内面側とセラミック基板 3の底 面側との間には、 略密閉された空間 S 1が形成される。  In the hot plate 1 of the present embodiment, the silicon wafer W to which the photosensitive resin has been applied is 200 to 300. Used as a low-temperature hot plate for drying at C. The ceramic substrate 3 having the resistance heating element 10 provided on the bottom surface 3b is placed in the opening 4 of the support container 2 via a heat insulating ring 14 to be described later. By providing the heat insulating ring 14, a substantially closed space S 1 is formed between the inner surface of the support container 2 and the bottom surface of the ceramic substrate 3.
図 1に示したように、 セラミック基板 3は円形状であって、 支持容器 2の外形 寸法より若千小径となるように設計されている。 抵抗発熱体 1 0は、 セラミック 基板 3の底面 3 bにおいて同心円状ないし渦卷き状に形成されている。 セラミツ ク基板 3の中心部には、 各ピン挿通スリ一ブに対応した 3箇所にそれぞれ貫通孔 1 1が形成されている。  As shown in FIG. 1, the ceramic substrate 3 has a circular shape and is designed to have a diameter slightly smaller than the outer dimensions of the support container 2. The resistance heating element 10 is formed concentrically or spirally on the bottom surface 3 b of the ceramic substrate 3. In the center of the ceramic substrate 3, through holes 11 are formed at three places corresponding to the respective pin insertion sleeves.
第一群の本発明の半導体製造 ·検査装置を構成するセラミック基板 3の材料は 特に限定されないが、 例えば、 窒化物セラミック、 炭化物セラミック、 酸化物セ ラミック等が挙げられる。  The material of the ceramic substrate 3 constituting the first group of semiconductor manufacturing / inspection apparatuses of the present invention is not particularly limited, and examples thereof include a nitride ceramic, a carbide ceramic, and an oxide ceramic.
上記窒化物セラミックとしては、 金属窒化物セラミック、 例えば、 窒化アルミ 二ゥム、 窒化ケィ素、 窒化ホウ素等が挙げられる。  Examples of the nitride ceramic include metal nitride ceramics such as aluminum nitride, silicon nitride, and boron nitride.
また、 上記炭化物セラミックとしては、 金属炭化物セラミック、 例えば、 炭化 ケィ素、 炭化ジルコニウム、 炭化タンタル等が挙げられる。  Examples of the carbide ceramic include metal carbide ceramics, for example, silicon carbide, zirconium carbide, tantalum carbide, and the like.
上記酸化物セラミックとしては、 金属酸化物セラミック、 例えば、 アルミナ、 ジルコニァ、 コージエライ ト、 ムライ ト等が挙げられる。  Examples of the oxide ceramic include metal oxide ceramics, for example, alumina, zirconia, cordierite, mullite, and the like.
これらのセラミックは単独で用いてもよく、 2種以上を併用してもよい。 これらのセラミックの中では、 窒化物セラミック、 炭化物セラミックの方が酸 化物セラミックに比べて望ましい。 熱伝導率が高いからである。 また、 窒化物セラミックの中では窒化アルミニウムが最も好適である。 熱伝導 率が 1 8 O W/m · Kと最も高いからである。 These ceramics may be used alone or in combination of two or more. Among these ceramics, nitride ceramics and carbide ceramics are more preferable than oxide ceramics. This is because the thermal conductivity is high. Aluminum nitride is the most preferable among the nitride ceramics. This is because the thermal conductivity is as high as 18 OW / m · K.
また、 上記セラミック材料は、 焼結助剤を含有していてもよい。 上記焼結助剤 としては、 例えば、 アルカリ金属酸化物、 アルカリ土類金属酸化物、 希土類酸化 物等が挙げられる。 これらの焼結助剤のなかでは、 C a O、 Y2 03、 N a 2 0、 L i 2 0、 R b 2 0が好ましい。 これらの含有量としては、 0 . 1〜1 0重量%が 好ましい。 また、 アルミナを含有していてもよい。 Further, the ceramic material may contain a sintering aid. Examples of the sintering aid include alkali metal oxides, alkaline earth metal oxides, and rare earth oxides. Among these sintering aids, C a O, Y 2 0 3, N a 2 0, L i 2 0, R b 2 0 is preferable. The content of these is preferably 0.1 to 10% by weight. Further, it may contain alumina.
抵抗発熱体 1 0は、 焼結体であるセラミック基板 3に対して導体ペーストを焼 き付けることにより形成されたものである。 導体べ一ストとしては、 金属粒子、 金属酸化物、 樹脂、 溶剤などを含むものが一般的に使用される。 導体ペーストに 使用される好適な金属粒子としては、 例えば、 金、 銀、 白金、 パラジウム、 鈴、 タングステン、 ニッケル等が挙げられる。 これらの金属は高温に晒されても比較 的酸化しにくく、 通電により発熱させるにあたって充分な抵抗値を有するからで ある。 導体ペーストに使用される好適な金属酸化物としては、 例えば、 酸化鉛、 酸化亜鉛、 シリカ、 酸化ホウ素、 アルミナ、 イットリア、 チタニア等が挙げられ る。  The resistance heating element 10 is formed by baking a conductive paste on a ceramic substrate 3 which is a sintered body. As the conductor base, those containing metal particles, metal oxides, resins, solvents and the like are generally used. Suitable metal particles used for the conductor paste include, for example, gold, silver, platinum, palladium, bell, tungsten, nickel and the like. This is because these metals are relatively difficult to oxidize even when exposed to high temperatures, and have sufficient resistance to generate heat when energized. Suitable metal oxides used for the conductor paste include, for example, lead oxide, zinc oxide, silica, boron oxide, alumina, yttria, titania and the like.
図 2に示されるように、 抵抗発熱体 1 0の端部 1 0 aには、 導電性材料からな る外部端子 1 2が半田付けされている。 その結果、 外部端子 1 2と抵抗発熱体 1 0との電気的な導通が図られている。 一方、 外部端子 1 2の先端部には、 リード 線 6の先端部にあるソケット 6 aが嵌着されている。 従って、 リード線 6および 外部端子 1 2を介して抵抗発熱体 1 0に電流が供給される結果、 抵抗発熱体 1 0 の温度が上昇し、 セラミック基板 3全体が加熱される。  As shown in FIG. 2, an external terminal 12 made of a conductive material is soldered to an end 10 a of the resistance heating element 10. As a result, electrical continuity between the external terminal 12 and the resistance heating element 10 is achieved. On the other hand, a socket 6 a at the end of the lead wire 6 is fitted to the end of the external terminal 12. Therefore, current is supplied to the resistance heating element 10 via the lead wire 6 and the external terminal 12, and as a result, the temperature of the resistance heating element 10 increases, and the entire ceramic substrate 3 is heated.
図 2に示されるように、 支持容器 2の開口部 4の上縁には、 複数のねじ孔 1 3 が等間隔に透設されている。 同じく開口部 4の上縁には、 断熟リング 1 4が配設 されている。 断熱リング 1 4は、 環状をなし、 かつ、 開口部 4の大きさと略等し くなつている。 断熱リング 1 4の形成用材料としては、 例えば、 樹脂や、 ゴム等 のような弾性体などが好ましい。 断熱リング 1 4において各ねじ孔 1 3に対応す る箇所には、 複数のねじ孔 1 5が透設されている。 断熱リング 1 4の内周面には、 セラミック基板 3の底面外周部を水平に支持するための支持段部 1 6がその全局 にわたつて形成されている。 なお、 支持段部 1 6にセラミック基板 3を支持させ たとき、 断熱リング 1 4の上端面の高さとセラミック基板 3の加熱面の高さとが 略同一になる。 As shown in FIG. 2, a plurality of screw holes 13 are provided at equal intervals in the upper edge of the opening 4 of the support container 2. Similarly, on the upper edge of the opening 4, a maturing ring 14 is provided. The heat insulating ring 14 has an annular shape, and has a size substantially equal to the size of the opening 4. As a material for forming the heat insulating ring 14, for example, an elastic material such as resin or rubber is preferable. A plurality of screw holes 15 are provided at positions corresponding to the screw holes 13 in the heat insulating ring 14. On the inner peripheral surface of the heat insulating ring 14, a support step 16 for horizontally supporting the outer peripheral portion of the bottom surface of the ceramic substrate 3 is provided at all stations. And is formed over a long distance. When the ceramic substrate 3 is supported on the supporting step 16, the height of the upper end surface of the heat insulating ring 14 and the height of the heating surface of the ceramic substrate 3 are substantially the same.
そして、 本実施形態における断熱リング 1 4は、 支持容器 2の開口部 4の上縁 とセラミック基板 3の底面外周部とがなす隙間をシールすることで、 当該隙間を 介してエアの流通を防止する役割を担っている。  The heat insulating ring 14 in the present embodiment seals a gap formed between the upper edge of the opening 4 of the support container 2 and the outer peripheral portion of the bottom surface of the ceramic substrate 3, thereby preventing air from flowing through the gap. Have a role to do.
また、 図 1、 2に示されるように、 断熟リング 1 4の加熱面には、 係止リング 2 1がねじ 2 5により固定されている。 この係止リング 2 1は、 環状の本体 2 2 と、 複数のねじ孔 2 3と、 複数の係止片 2 4とを有する。 支持段部 1 6にセット されたセラミック基板 3は、 各係止片 2 4によって板厚方向から押圧されること により、 断熱リング 1 4に挟持固定される。  As shown in FIGS. 1 and 2, a locking ring 21 is fixed to a heating surface of the ripening ring 14 with a screw 25. The locking ring 21 has an annular main body 22, a plurality of screw holes 23, and a plurality of locking pieces 24. The ceramic substrate 3 set on the supporting step 16 is pressed by the respective locking pieces 24 from the plate thickness direction, so that the ceramic substrate 3 is clamped and fixed to the heat insulating ring 14.
図 1に示されるように、 支持容器 2の底部 2 aには、 冷媒供給管 1 7および冷 媒排出管 1 8がそれぞれボルト等を用いて設置されている。 冷媒供給管 1 7およ び冷媒排出管 1 8は、 それぞれ 2個ずつ形成されている。 本実施形態において冷 媒供給管 1 7は、 底部 2 aの略中央に並設されている。 また、 各冷媒排出管 1 8 は、 各冷媒供給管 1 7を挟んで、 冷媒供給管 1 7から離間した位置に配設されて いる。 すなわち、 各冷媒排出管 1 8は、 各冷媒供給管 1 7よりも、 底部 2 aの両 端方向にそれぞれ離間した位置に配設されている。 冷媒供給管 1 7および冷媒排 出管 1 8は、 内端面および外端面の両方において開口する流路を備えている。 こ のため、 その流路を介して支持容器 2の内外が連通されている。  As shown in FIG. 1, a coolant supply pipe 17 and a coolant discharge pipe 18 are provided at the bottom 2 a of the support container 2 using bolts or the like. Two refrigerant supply pipes 17 and two refrigerant discharge pipes 18 are formed. In the present embodiment, the coolant supply pipes 17 are juxtaposed substantially at the center of the bottom 2a. Further, each refrigerant discharge pipe 18 is arranged at a position separated from the refrigerant supply pipe 17 with each refrigerant supply pipe 17 interposed therebetween. That is, each refrigerant discharge pipe 18 is disposed at a position separated from each refrigerant supply pipe 17 in both end directions of the bottom 2a. The refrigerant supply pipe 17 and the refrigerant discharge pipe 18 have flow paths that open on both the inner end face and the outer end face. For this reason, the inside and outside of the support container 2 are communicated through the flow path.
冷媒供給管 1 7の外端面側の開口部の内周面には雌ねじ溝が形成されていて、 当該開口部には図示しない流体供給用の配管の一端が着脱可能となっている。 こ の配管の他端は気体圧送ポンプに接続されているため、 同配管を介して冷却用媒 体としてのエアが供給されるようになっている。 一方、 冷媒排出管 1 8の外端面 側の開口部の内周面にも雌ねじ溝が形成されている。 支持容器 2内のエアは、 こ の配管を介して外部に排出される。 なお、 上記配管の他端は、 装置からいくぶん 離れた箇所にて開放されている。  A female screw groove is formed on the inner peripheral surface of the opening on the outer end face side of the refrigerant supply pipe 17, and one end of a fluid supply pipe (not shown) is detachable from the opening. Since the other end of this pipe is connected to a gas pressure pump, air as a cooling medium is supplied through the pipe. On the other hand, a female screw groove is also formed on the inner peripheral surface of the opening on the outer end surface side of the refrigerant discharge pipe 18. The air in the support container 2 is discharged outside through this pipe. In addition, the other end of the above-mentioned pipe is opened at a place somewhat away from the apparatus.
図 2に示されるように、 上記のリード線引出用孔 7には、 シールパッキング 8 が装着されている。 このシールパッキング 8は環状をなしており、 ゴム等のよう な好適な弾性体によって形成されている。 各リード線 6は、 このシールパッキン グ 8の貫通孔に挿通されたうえで支持容器 2の外部に引き出されている。 すなわ ち、 本実施形態におけるシールパッキング 8は、 各リード線 6とリード線引出用 孔 7とがなす隙間をシールすることで、 当該隙間を介してエアの流通を防止する 役割を担っている。 As shown in FIG. 2, a seal packing 8 is attached to the above-mentioned lead wire outlet hole 7. This seal packing 8 has an annular shape and is made of rubber or the like. It is formed of a suitable elastic body. Each lead wire 6 is inserted into the through hole of the seal packing 8 and then drawn out of the support container 2. In other words, the seal packing 8 in the present embodiment has a role of sealing the gap formed between each lead wire 6 and the lead wire drawing hole 7 to prevent air from flowing through the gap. .
さて、 次に、 この半導体製造 ·検査装置 1の使用方法について説明する。  Next, a method of using the semiconductor manufacturing / inspection apparatus 1 will be described.
感光性樹脂が塗布されたシリコンウェハ Wをホットプレート 3上に載置し、 こ の状態で抵抗発熱体 1 0に通電する。 すると、 加熱されたセラミック基板 3との 接触によって、 シリコンウェハ Wの温度が次第に上昇する。 所定時間のあいだ加 熱を行うことにより感光性樹脂が充分に乾燥したら、 抵抗パターン 1 0への通電 を止める。  The silicon wafer W coated with the photosensitive resin is placed on the hot plate 3, and the resistance heating element 10 is energized in this state. Then, the temperature of the silicon wafer W gradually increases due to the contact with the heated ceramic substrate 3. When the photosensitive resin is sufficiently dried by heating for a predetermined time, the power supply to the resistance pattern 10 is stopped.
ここで、気体圧送ポンプを駆動して冷媒供給管 1 7側に冷却用のエアを供給し、 冷媒供給管 1 7を介してエアを密閉空間 S 1内に導入する。 冷媒供給管 1 7を経 て吐出されたエアは、 密閉空間 S 1内にてセラミック基板 3の底面側全体に接触 しながら、 冷媒排出管 1 8の方に向かって流れる。 その際、 同エアによってセラ ミック基板 3の熱が全体的に略均一に奪われる。 熱を奪って温度が上昇したエア は、 さらに冷媒排出管 1 8を経て再び空間の外に流出し.、 汚染の心配のない別の 空間にて放出される。 なお、 一連のエアの流れは、 図 1における太線矢印により 概略的に示されている。 そして、 セラミック基板 3がある程度低い温度まで冷や されたら、 シリコンウェハ Wをセラミック基板 3から取り外す。  Here, the gas pressure pump is driven to supply cooling air to the refrigerant supply pipe 17 side, and the air is introduced into the closed space S1 via the refrigerant supply pipe 17. The air discharged through the refrigerant supply pipe 17 flows toward the refrigerant discharge pipe 18 while contacting the entire bottom surface side of the ceramic substrate 3 in the closed space S1. At that time, the heat removes the heat of the ceramic substrate 3 substantially uniformly as a whole. The air whose temperature has risen due to the removal of heat flows out of the space again through the refrigerant discharge pipe 18 and is discharged into another space free from contamination. Note that a series of air flows is schematically indicated by thick arrows in FIG. Then, when the ceramic substrate 3 is cooled down to a somewhat low temperature, the silicon wafer W is removed from the ceramic substrate 3.
以上、 第一群の本発明の半導体製造 '検査装置を、 ホッ トプレートを具体例に とって説明したが、 第一群の本発明の半導体製造 '検査装置は、 セラミック基板 の内部や底面に、 抵抗発熱体が形成されていれば、 静電チャックやウェハプロ一 バであってもよい。  In the above, the first group of semiconductor manufacturing inspection apparatuses according to the present invention have been described using a hot plate as a specific example. However, the first group of semiconductor manufacturing inspection apparatuses according to the present invention are provided inside or at the bottom of a ceramic substrate. As long as the resistance heating element is formed, an electrostatic chuck or a wafer probe may be used.
第一群の本発明の半導体製造 ·検查装置によれば、 以下のような効果を得るこ とができる。  According to the first group of semiconductor manufacturing and inspection apparatuses of the present invention, the following effects can be obtained.
( 1 ) この半導体製造 '検査装置では、 支持容器 2の底部 2 aに 2個の冷媒供 給管 1 7が形成されている。 このため、 冷媒供給管 1 7から支持容器 2内の密閉 空間 S 1内に冷却用のエアを流通させることができる。 そして、 このエアをセラ ミック基板 3の底面全体に接触させることにより、 セラミック基板 3を強制的に 冷却することができる。 このため、 放冷に比べて短時間で、 セラミック基板 3を 冷却することが可能となり、 ホットプレート 3全体を短時間で均一に冷却するこ とができる。 (1) In this semiconductor manufacturing / inspection apparatus, two refrigerant supply pipes 17 are formed at the bottom 2 a of the support container 2. Therefore, cooling air can be circulated from the refrigerant supply pipe 17 into the closed space S1 in the support container 2. And this air is The ceramic substrate 3 can be forcibly cooled by contacting the entire bottom surface of the mic substrate 3. For this reason, the ceramic substrate 3 can be cooled in a shorter time than in the case of cooling, and the entire hot plate 3 can be uniformly cooled in a short time.
( 2 ) この半導体製造 ·検査装置では、 各冷媒供給管 1 7が支持容器 2の底部 (2) In this semiconductor manufacturing / inspection apparatus, each refrigerant supply pipe 17 is provided at the bottom of the support container 2.
2 aに形成されてる。 このため、 冷媒供給管 1 7から支持容器 2内に流通された エアを、 セラミック基板 3の底面に対して垂直に吹き付けることができる。 この ため、 比較的短時間にセラミック基板 3を冷却させることができる。 2 Formed in a. Therefore, the air circulated from the refrigerant supply pipe 17 into the support container 2 can be blown perpendicularly to the bottom surface of the ceramic substrate 3. Therefore, the ceramic substrate 3 can be cooled in a relatively short time.
( 3 ) 冷媒供給管 1 7は 2個形成されているため、 該エアをホットプレート 3 全体に均一に接触させることができ、 セラミック基板 3を均一に冷却することが できる。  (3) Since the two coolant supply pipes 17 are formed, the air can uniformly contact the entire hot plate 3, and the ceramic substrate 3 can be cooled uniformly.
( 4 ) この半導体製造 ·検査装置では、 上記のごとく略密閉された空間 S 1が 支持容器 2とセラミック基板 3との間に形成されている。 セラミック基板 3の底 面側には外部端子 1 2等の突起物が存在するものの、 それらは支持容器 2とセラ ミック基板 3との間に形成された空間 S 1内に配置されている。 すなわち、 上記 突起物は装置の外部に非露出となり、 いわば保護された状態となる。 したがって、 突起物の存在如何に関係なく、 支持容器 2の底面を図示しない支持ステージに対 して、 困難なく取り付けることができる。  (4) In this semiconductor manufacturing / inspection apparatus, the substantially closed space S1 is formed between the support container 2 and the ceramic substrate 3 as described above. Although protrusions such as the external terminals 12 are present on the bottom surface side of the ceramic substrate 3, they are arranged in a space S 1 formed between the support container 2 and the ceramic substrate 3. That is, the projection is not exposed to the outside of the device, and is in a so-called protected state. Therefore, regardless of the presence of the protrusion, the bottom surface of the support container 2 can be attached to the support stage (not shown) without difficulty.
( 5 ) また、 支持容器 2とセラミック基板 3との間に形成された空間 S 1は、 略密閉されていることから、 エアを流通可能なものとなっている。 このため、 空 間 S 1內へのエアの流通によってセラミック基板 3を強制的に冷却することが可 能となり、 放冷に比べて冷却に要する時間が短くて済むようになる。 ゆえに、 こ の半導体製造 ·検査装置を用いれば、 1回の乾燥処理に要する時間が確実に短縮 され、 もって生産性の向上を図ることができる。 また、 この冷媒供給管等は、 比 較的安価であるため、 安価に生産性の向上を図ることができる。 なお、 空間 S 1 は開放状態ではなく略密閉状態であることから、 装置の外部にエアが漏れ出しに くく、 それによつて周囲を汚染する心配もない。  (5) The space S1 formed between the support container 2 and the ceramic substrate 3 is substantially sealed, so that air can flow therethrough. For this reason, it becomes possible to forcibly cool the ceramic substrate 3 by the flow of air to the space S 1 內, and the time required for cooling can be reduced as compared with the case of cooling. Therefore, if this semiconductor manufacturing / inspection apparatus is used, the time required for one drying process can be shortened without fail, and the productivity can be improved. Further, since the refrigerant supply pipe and the like are relatively inexpensive, productivity can be improved at low cost. Since the space S 1 is not closed but is substantially closed, air does not easily leak to the outside of the device, and there is no risk of contaminating the surroundings.
( 6 ) 本実施形態では、 支持容器 2にその内外を連通させる冷媒供給管 1 7と 冷媒排出管 1 8とがそれぞれ設けられている。 したがって、 両管 1 7、 1 8を介 して密閉空間 S 1内にエアを効率よく循環することにより、 セラミック基板 3を 強制冷却し、 比較的短時間のうちに低い温度に戻すことができる。 (6) In the present embodiment, a refrigerant supply pipe 17 and a refrigerant discharge pipe 18 for communicating the inside and outside of the support container 2 are provided, respectively. Therefore, via both tubes 17 and 18 By efficiently circulating the air in the closed space S1, the ceramic substrate 3 can be forcibly cooled and returned to a low temperature in a relatively short time.
( 7 ) この半導体製造 ·検査装置では、 支持容器 2の開口部 4の上縁とセラミ ック基板 3の底面外周部との間に断熱リング 1 4を設け、 当該部分における隙間 のシールを図っている。 よって、 支持容器 2—セラミック基板 3間の隙間を介し た装置外部へのエア漏れが防止され、 空間 S 1により高い密閉性を確保すること ができる。 このことはエア排出による周囲の汚染防止の確実化に貢献する。  (7) In this semiconductor manufacturing / inspection apparatus, a heat insulating ring 14 is provided between the upper edge of the opening 4 of the support container 2 and the outer peripheral portion of the bottom surface of the ceramic substrate 3 to seal a gap in the portion. ing. Therefore, air leakage to the outside of the device through the gap between the support container 2 and the ceramic substrate 3 is prevented, and higher airtightness can be secured in the space S1. This contributes to ensuring the prevention of environmental contamination by air discharge.
また、 この半導体製造 ·検査装置 1では、 さらに底部 2 aの配線引出用孔 7に シールパッキング 8を設け、 その貫通孔にリード線 6を挿通させている。 したが つて、 配線引出用孔 7を介した装置外部へのエア漏れが防止され、 空間 S 1によ り高い密閉性を確保することができる。 このこともエア排出による周囲の汚染防 止の確実化に貢献する。  Further, in the semiconductor manufacturing / inspection apparatus 1, a seal packing 8 is further provided in the wiring drawing hole 7 on the bottom 2a, and the lead wire 6 is inserted through the through hole. Therefore, air leakage to the outside of the device through the wiring lead-out hole 7 is prevented, and a higher airtightness can be ensured by the space S1. This also contributes to the prevention of surrounding pollution by air discharge.
なお、 第一群の本発明の実施形態は以下のように変更してもよい。  Note that the first group of embodiments of the present invention may be modified as follows.
( a ) 密閉性がある程度確保されるのであれば、 断熱リング 1 4を省略すると ともに、 支持容器 2の開口部 4の加熱面に直に係止リング 2 1をねじ止めし、 こ の状態で開口部 4にセラミック基板 3を取り付けてもよい。 すなわち、 セラミツ ク基板 3は支持容器 2に対して直接取り付けてもよい。  (a) If a certain degree of hermeticity is ensured, omit the insulating ring 14 and screw the locking ring 21 directly to the heating surface of the opening 4 of the support container 2, and in this state The ceramic substrate 3 may be attached to the opening 4. That is, the ceramic substrate 3 may be directly attached to the support container 2.
( b ) 上記実施形態では、 支持容器 2とセラミック基板 3との間の空間が、 密 閉空間 S 1となっている。 しかしながら、 この空間は、 必ずしも密閉されている 必要はない。 この場合、 各冷媒供給管 1 7から供給されたエアは、 自ずと外部に 排出されるため、 各冷媒排出管 1 8を省略することができる。 例えば、 図 3に示 すように、 各冷媒排出管 1 8を省略するとともに、 底部 2 aに開口部 2 7を設け てもよい。 このようにすれば、 半導体製造 ·検査装置 1の構造を簡単化すること ができ、 製造コストを低減することができる。  (b) In the above embodiment, the space between the support container 2 and the ceramic substrate 3 is the closed space S1. However, this space need not necessarily be sealed. In this case, since the air supplied from each refrigerant supply pipe 17 is naturally discharged to the outside, each refrigerant discharge pipe 18 can be omitted. For example, as shown in FIG. 3, each refrigerant discharge pipe 18 may be omitted, and an opening 27 may be provided at the bottom 2a. In this way, the structure of the semiconductor manufacturing / inspection apparatus 1 can be simplified, and the manufacturing cost can be reduced.
( c ) 上記実施形態では、 支持容器 2の底部 2 aに、 2個の冷媒供給管 1 7を 配設している。 しかしながら、 これら各冷媒供給管 1 7を、 3個またはそれ以上 に増設してもよレ、。 このようにすれば、 各冷媒供給管 1 7の数を増やすほど、 セ ラミック基板 3をより短時間に冷却することができるとともに、 セラミック基板 3をより均一に冷却することができる。 なお、 冷媒排出管 1 8の数についても同 様に、 3個以上配設してもよい。 (c) In the above embodiment, two refrigerant supply pipes 17 are provided at the bottom 2 a of the support container 2. However, the number of the refrigerant supply pipes 17 may be increased to three or more. In this way, as the number of the refrigerant supply pipes 17 increases, the ceramic substrate 3 can be cooled in a shorter time, and the ceramic substrate 3 can be cooled more uniformly. The same applies to the number of refrigerant discharge pipes 18. Thus, three or more may be provided.
(d) 例えば、 図 4 (a) に示すように、 上記抵抗発熱体 1 0として、 三分割 された各抵抗部 102〜 104を用い、 各抵抗部 102〜1 04に対して、 それ ぞれ独立した電力供給を行うように変更する。 すなわち、 抵抗パターン 10を三 分割することにより、 抵抗パターン 10を発熱させるための回路を 3個に分割す る。 この場合、 図 4 (b) にそれぞれ斜線で示すように、 セラミック基板 3には 三つの発熱領域 A 1〜A 3が形成される。  (d) For example, as shown in FIG. 4 (a), the resistance heating element 10 is formed by dividing each of the resistance parts 102 to 104 into three parts. Change to provide independent power supply. That is, by dividing the resistance pattern 10 into three, a circuit for generating heat in the resistance pattern 10 is divided into three. In this case, three heating regions A1 to A3 are formed on the ceramic substrate 3 as indicated by hatching in FIG. 4 (b).
そして、 図 4 (b) に示すように、 各発熱領域 A 1〜A 3毎に複数 (本実施形 態では 3個) の冷媒供給管 1 7および冷媒排出管 18を配設する。 なお、 同図に おいて、 同一の領域 A 1〜A 3に配設された各冷媒供給管 1 7および各冷媒排出 管 18は、 それぞれ正三角形の頂点となる位置に配置されている。  Then, as shown in FIG. 4 (b), a plurality (three in this embodiment) of refrigerant supply pipes 17 and refrigerant discharge pipes 18 are provided for each of the heat generating areas A1 to A3. Note that, in the figure, each of the refrigerant supply pipes 17 and each of the refrigerant discharge pipes 18 arranged in the same areas A1 to A3 are arranged at positions that are the vertices of an equilateral triangle.
このようにすれば、 各回路の ON · OFF動作によって温度制御を行うことが できるようになる。 また、 各発熱領域 A 1〜A 3毎に冷却用のエアを吹き付けて 冷却させることができるため、 セラミック基板 3をより均一に冷却することがで きる。  In this way, the temperature can be controlled by the ON / OFF operation of each circuit. In addition, since the cooling air can be blown to each of the heat generating regions A1 to A3 for cooling, the ceramic substrate 3 can be cooled more uniformly.
なお、 各冷媒供給管 1 7および各冷媒排出管 1 8は、 正三角形の頂点となる位 置に限らず、 任意の位置に配設されてもよい。  In addition, each refrigerant supply pipe 17 and each refrigerant discharge pipe 18 are not limited to positions at the vertices of an equilateral triangle, and may be disposed at any positions.
また、 同一の領域における各管 1 7、 1 8の配設個数は、 3個に限らず、 少な くとも 1個あればよレ、。 すなわち、 各管 1 7、 18は、 各発熱領域 A1~A3毎 にそれぞれ 1個以上配設されていればよい。  The number of pipes 17 and 18 in the same area is not limited to three, but at least one. That is, it is sufficient that at least one of the tubes 17 and 18 is provided for each of the heat generating areas A1 to A3.
さらに、 回路の分割個数は、 三つに限らず、 二つまたは四つ以上であってもよ レ、。 そしてこの場合、 各冷媒供給管 1 7の配設総数は、 分割された回路の総数の 70パーセント以上であればよく、 必ずしも一回路に対して 1個以上の冷媒供給 管 1 7を配設する必要はない。 すなわち、 冷媒供給管 1 7は、 回路数が 4個のと きには 3個以上配設されていればよく、 回路数が 1 0個のときには 7個以上配設 されていればよレ、。  Further, the number of divided circuits is not limited to three, but may be two or four or more. In this case, the total number of refrigerant supply pipes 17 may be at least 70% of the total number of divided circuits, and one or more refrigerant supply pipes 17 are necessarily provided for one circuit. No need. That is, when the number of circuits is 4, three or more refrigerant supply pipes 17 may be provided, and when the number of circuits is 10, seven or more refrigerant supply pipes may be provided. .
(e) 配線引き出し部であるリード線引出用孔 7を、 支持容器 2の底部 2 a以 外の場所、 例えば、 支持容器 2の側壁部に配設してもよい。  (e) The lead-out hole 7 serving as a wiring lead-out portion may be provided in a place other than the bottom 2 a of the support container 2, for example, in a side wall of the support container 2.
(f ) 支持容器 2に区画された密閉空間 S 1には、 エア (空気) 以外の気 '、 例えば、 炭酸ガスや窒素等の不活性ガスを冷却用流体として流通することも可能 である。 また、 電気的構成に悪影響を与えないものであれば、 液体を冷却用流体 として流通させることも許容されうる。 (f) In the closed space S1 defined by the support container 2, air other than air (air) For example, an inert gas such as carbon dioxide or nitrogen can be distributed as a cooling fluid. In addition, as long as the liquid does not adversely affect the electrical configuration, the liquid may be allowed to flow as a cooling fluid.
( f ) 上記のセラミック基板 3に、 必要に応じて熱電対を埋め込んでおいても よい。 熱電対によりセラミック基板 3の温度を測定し、 そのデータをもとに電圧 値や電流値を変えることで、 温度制御をすることができるからである。 この場合、 熱電対のリード線も同じくシールパッキング 8を介して外部に引き出しておくこ とが好ましい。  (f) A thermocouple may be embedded in the ceramic substrate 3 as needed. This is because the temperature can be controlled by measuring the temperature of the ceramic substrate 3 with a thermocouple and changing the voltage and current values based on the data. In this case, it is preferable that the lead wire of the thermocouple is also drawn out through the seal packing 8.
第一群の本発明にかかる半導体装置用セラミック基板は、 明度が J I S Z 8 7 2 1の規定に基づく値で N 4以下のものであることが望ましい。 このような 明度を有するものが輻射熱量、 隠蔽性に優れるからである。 また、 このようなセ ラミック基板は、 サーモビユアにより、' 正確な表面温度測定が可能となる。  It is desirable that the first group of ceramic substrates for a semiconductor device according to the present invention have a brightness of N4 or less as a value based on the provisions of JIS Z8721. This is because a material having such brightness has excellent radiation heat quantity and concealing property. In addition, such a ceramic substrate can accurately measure the surface temperature by means of the thermoviewer.
ここで、 明度の Nは、 理想的な黒の明度を 0とし、 理想的な白の明度を 1 0と し、 これらの黒の明度と白の明度との間で、 その色の明るさの知覚が等歩度とな るように各色を 1 0分割し、 N O〜N 1 0の記号で表示したものである。  Here, the lightness N is defined as 0 for the ideal black lightness, 10 for the ideal white lightness, and the lightness of the color between these black lightness and white lightness. Each color is divided into 10 so that the perception is at the same rate, and displayed with the symbols NO to N10.
そして、 実際の測定は、 N 0〜N 1 0に対応する色票と比較して行う。 この場 合の小数点 1位は 0または 5とする。  The actual measurement is performed by comparing the color charts corresponding to N0 to N10. In this case, the first decimal place is 0 or 5.
このような特性を有するセラミック基板は、 セラミック基板中にカーボンを 5 0〜5 0 0 0 p p m含有させることにより得られる。 カーボンには、 非晶質のも のと結晶質のものとがあり、 非晶質のカーボンは、 セラミック基板の高温におけ る体積抵抗率の低下を抑制することでき、 結晶質のカーボンは、 セラミック基板 の高温における熱伝導率の低下を抑制することができるため、 その製造する基板 の目的等に応じて適宜力一ボンの種類を選択することができる。  A ceramic substrate having such properties can be obtained by including 50 to 500 ppm of carbon in the ceramic substrate. There are two types of carbon, amorphous and crystalline.Amorphous carbon can suppress a decrease in the volume resistivity of a ceramic substrate at a high temperature. Since the decrease in the thermal conductivity of the ceramic substrate at a high temperature can be suppressed, the type of force can be appropriately selected according to the purpose of the substrate to be manufactured.
非晶質の力一ボンとしては、 例えば、 C、 H、 Oだけからなる炭化水素、 好ま しくは、 糖類を、 空気中で焼成することにより得ることができ、 結晶質のカーボ ンとしては、 グラフアイト粉末等を用いることができる。  As an amorphous carbon, for example, a hydrocarbon consisting of only C, H, and O, preferably a saccharide can be obtained by calcining in air, and as a crystalline carbon, Graphite powder or the like can be used.
また、 アクリル系樹脂を不活性雰囲気 (窒化ガス、 アルゴンガス) 下で熱分解 させた後、 加熟加圧することによりカーボンを得ることができるが、 このアタリ ル系樹脂の酸価を変化させることにより、 結晶性 (非晶性) の程度を調整するこ とができる。 In addition, carbon can be obtained by thermally decomposing the acrylic resin in an inert atmosphere (nitriding gas, argon gas) and then ripening and pressurizing. However, it is necessary to change the acid value of this acryl resin. Adjust the degree of crystallinity (amorphousness) Can be.
第一群の本発明の半導体装置用セラミック基板は、 円板形状が好ましく、 直径 2 0 O mm以上が望ましく、 2 5 0 mm以上が最適である。  The first group of ceramic substrates for semiconductor devices of the present invention preferably have a disk shape, a diameter of 20 mm or more is desirable, and a diameter of 250 mm or more is optimal.
円板形状の半導体装置用セラミック基板は、 温度の均一性が要求されるが、 直 径の大きな基板ほど、 温度が不均一になりやすいからである。  Disc-shaped ceramic substrates for semiconductor devices are required to have uniform temperature, but the larger the diameter of the substrate, the more likely the temperature will be non-uniform.
第一群の本発明の半導体装置用セラミック基板の厚さは、 5 0 mm以下が好ま しく、 2 0 mm以下がより好ましい。 また、 1〜 1 0 mmが最適である。  The thickness of the first group of ceramic substrates for a semiconductor device of the present invention is preferably 50 mm or less, more preferably 20 mm or less. Also, 1 to 10 mm is optimal.
厚みは、 薄すぎると高温での反りが発生しやすく、 厚すぎると熱容量が大きく なり過ぎて昇温降温特性が低下するからである。  If the thickness is too thin, warping at high temperatures is likely to occur, and if it is too thick, the heat capacity becomes too large and the temperature rise / fall characteristics deteriorate.
また、第一群の本発明の半導体装置用セラミック基板の気孔率は、 0または 5 % 以下が望ましい。 高温での熱伝導率の低下、 反りの発生を抑制できるからである。  The porosity of the first group of ceramic substrates for a semiconductor device of the present invention is desirably 0 or 5% or less. This is because a decrease in thermal conductivity at high temperatures and the occurrence of warpage can be suppressed.
第一群の本発明の半導体装置用セラミック基板は、 2 0 0で以上で使用するこ とができる。  The first group of ceramic substrates for semiconductor devices of the present invention can be used at 200 or more.
第一群の本発明の半導体製造 ·検査装置では、 セラミック基板に形成された有 底孔に熱電対を埋め込んでおくことが望ましい。 熱電対により抵抗発熱体の温度 を測定し、 そのデータをもとに電圧、 電流量を変えて、 温度を制御することがで きるからである。  In the semiconductor manufacturing / inspection apparatus of the first group of the present invention, it is desirable to embed a thermocouple in a bottomed hole formed in the ceramic substrate. This is because the temperature of the resistance heating element can be measured with a thermocouple, and the temperature can be controlled by changing the voltage and current based on the data.
上記熱電対の金属線の接合部位の大きさは、 各金属線の素線径と同一か、 もし くは、 それよりも大きく、 かつ、 0 . 5 mm以下がよい。 このような構成によつ て、 接合部分の熱容量が小さくなり、 温度が正確に、 また、 迅速に電流値に変換 されるのである。 このため、 温度制御性が向上してウェハの加熱面の温度分布が 小さくなるのである。  The size of the joining portion of the metal wires of the thermocouple is preferably equal to or larger than the wire diameter of each metal wire and 0.5 mm or less. With such a configuration, the heat capacity of the junction is reduced, and the temperature is accurately and quickly converted to a current value. Therefore, the temperature controllability is improved and the temperature distribution on the heated surface of the wafer is reduced.
上記熱電対としては、 例えば、 J I S— C一 1 6 0 2 ( 1 9 8 0 ) に挙げられ るように、 K型、 R型、 B型、 E型、 J型、 T型熱電対が挙げられる。  Examples of the thermocouples include K-type, R-type, B-type, E-type, J-type, and T-type thermocouples, as described in JIS-C-162 (1980). Can be
ホットプレート等からなる第一群の本発明の半導体製造 ·検査装置において、 セラミック基板に埋設される抵抗発熱体は、 貴金属 (金、 銀、 白金、 パラジウム) 、 タングステン、 モリブデン、 ニッケル等の金属、 または、 タングステン、 モリブ デンの炭化物等の導電性セラミックからなるものであることが望ましい。 抵抗値 を高くすることが可能となり、 断線等を防止する目的で厚み自体を厚くすること ができるとともに、 酸化しにくく、 熟伝導率が低下しにくいからである。 これら は、 単独で用いてもよく、 2種以上を併用してもよい。 In the first group of semiconductor manufacturing / inspection apparatuses of the present invention comprising a hot plate and the like, the resistance heating elements embedded in the ceramic substrate are metals such as noble metals (gold, silver, platinum, palladium), tungsten, molybdenum, nickel, and the like. Alternatively, it is desirable to be made of a conductive ceramic such as tungsten or molybdenum carbide. The resistance itself can be increased, and the thickness itself must be increased in order to prevent disconnection, etc. This is because they are not easily oxidized and the aging conductivity is hardly lowered. These may be used alone or in combination of two or more.
また、 抵抗発熱体は、 セラミック基板全体の温度を均一にする必要があること から、 図 1 2に示すような同心円形状のパターンや同心円形状のパターンと屈曲 線形状のパターンとを組み合わせたものが好ましい。 また、 抵抗発熱体の厚さは、 In addition, since the resistance heating element needs to make the temperature of the entire ceramic substrate uniform, a concentric pattern as shown in Fig. 12 or a combination of a concentric pattern and a bent line pattern is required. preferable. The thickness of the resistance heating element is
1 ~ 5 0 μ πιが望ましく、 その幅は、 5〜 2 O mmが好ましい。 It is preferably from 1 to 50 μπι, and the width is preferably from 5 to 2 O mm.
抵抗発熱体の厚さや幅を変化させることにより、 その抵抗値を変化させること ができるが、 この範囲か最も実用的だからである。 抵抗発熟体の抵抗値は、 薄く、 また、 細くなるほど大きくなる。  The resistance value can be changed by changing the thickness and width of the resistance heating element, but this range is the most practical. The resistance value of the resistance ripening body is thin, and the resistance value increases as it becomes thinner.
なお、 抵抗発熱体を図 1 3に示したように、 内部に設けると、 加熱面と抵抗発 熱体との距離が近くなり、 表面の温度の均一性が低下するため、 抵抗発熱体自体 の幅を広げる必要がある。 また、 セラミック基板の内部に抵抗発熱体を設けるた め、 窒化物セラミック等との密着性を考慮する必要性がなくなる。 また、 抵抗発 熱体を表面 (底面) に設けると、 加熱面と抵抗発熱体との距離が遠くなり、 表面 の温度の均一性を向上させることができる。 また、 冷却媒体を直接抵抗体に接触 させて熱交換できるため、 急速降温を実現できる。  When a resistance heating element is provided inside as shown in Fig. 13, the distance between the heating surface and the resistance heating element becomes shorter, and the uniformity of the surface temperature decreases. We need to increase the width. In addition, since the resistance heating element is provided inside the ceramic substrate, there is no need to consider adhesion to nitride ceramics or the like. In addition, when the resistance heating element is provided on the surface (bottom surface), the distance between the heating surface and the resistance heating element is increased, and the uniformity of the surface temperature can be improved. In addition, since the heat exchange can be achieved by bringing the cooling medium into direct contact with the resistor, rapid cooling can be achieved.
抵抗発熱体は、 断面が方形、 楕円形、 紡錘形、 蒲鋅形状のいずれでもよいが、 偏平なものであることが望ましい。 偏平の方が加熱面に向かって放熱しやすいた め、 加熱面への熱伝搬量を多くすることができ、 加熟面の温度分布ができにくい からである。 なお、 抵抗発熱体は螺旋形状でもよい。  The resistance heating element may have a cross section of any of a square, an ellipse, a spindle, and a spheroid, but is desirably flat. This is because the flattened surface can easily radiate heat toward the heated surface, so that the amount of heat transmitted to the heated surface can be increased, and the temperature distribution on the ripened surface is difficult to achieve. Note that the resistance heating element may have a spiral shape.
また、 抵抗発熱体は、 底面から厚さ方向に 5 0 %までの領域に形成することが 望ましい。 加熱面に温度分布が発生するのを防止し、 半導体ウェハを均一に加熱 するためである。  Further, it is desirable that the resistance heating element is formed in an area of up to 50% in the thickness direction from the bottom surface. This is to prevent the occurrence of temperature distribution on the heating surface and to uniformly heat the semiconductor wafer.
セラミック基板の底面または内部に抵抗発熱体を形成するためには、 金属や導 電性セラミックからなる導体ペーストを用いることが好ましい。  In order to form a resistance heating element on the bottom or inside of the ceramic substrate, it is preferable to use a conductive paste made of metal or conductive ceramic.
即ち、 セラミック基板の底面に抵抗発熱体を形成する場合には、 通常、 焼成を 行って、 セラミック基板を製造した後、 その表面に上記導体ペース ト層を形成し、 焼成することより、 抵抗発熱体を形成する。 一方、 セラミック基板の内部に抵抗 発熱体を形成する場合には、 ダリ一ンシ一ト上に上記導体ペースト層を形成した 後、 グリーンシートを積層、 焼成することにより、 内部に抵抗発熱体を形成する。 上記導体ペーストとしては特に限定されないが、 導電性を確保するため金属粒 子または導電性セラミック粒子が含有されているほ力 樹脂、 溶剤、 増粘剤など を含むものが好ましい。 In other words, when a resistance heating element is formed on the bottom surface of a ceramic substrate, baking is usually performed to produce the ceramic substrate, and then the above-mentioned conductive paste layer is formed on the surface of the ceramic substrate, followed by baking, thereby producing a resistance heating element. Form the body. On the other hand, when forming a resistance heating element inside the ceramic substrate, the above-mentioned conductive paste layer was formed on the Darling sheet. Thereafter, the green sheet is laminated and fired to form a resistance heating element inside. The conductive paste is not particularly limited, but preferably contains a resin, a solvent, a thickener, or the like containing metal particles or conductive ceramic particles in order to secure conductivity.
上記金属粒子や導電性セラミック粒子の材料としては、 上述したものが挙げら れる。 これら金属粒子または導電性セラミック粒子の粒径は、 0 . 1〜1 0 0 mが好ましい。 0 . 1 /i m未満と微細すぎると、 酸化されやすく、 一方、 1 0 0 μ ΐηを超えると、 焼結しにくくなり、 抵抗値が大きくなるからである。  Examples of the material of the metal particles and the conductive ceramic particles include those described above. The metal particles or conductive ceramic particles preferably have a particle size of 0.1 to 100 m. If it is too small, less than 0.1 / im, it is liable to be oxidized, while if it exceeds 100 μΐη, sintering becomes difficult and the resistance value becomes large.
上記金属粒子の形状は、 球状であっても、 リン片状であってもよい。 これらの 金属粒子を用いる場合、 上記球状物と上記リン片状物との混合物であってよい。 上記金属粒子がリン片状物、 または、 球状物とリン片状物との混合物の場合は、 金属粒子間の金属酸化物を保持しやすくなり、 抵抗発熱体とセラミック基板との 密着性を確実にし、 かつ、 抵抗値を大きくすることができるため有利である。 上記導体ペース トに使用される樹脂としては、 例えば、 アクリル樹脂、 ェポキ シ樹脂、 フエノール樹脂等が挙げられる。 また、 溶剤としては、 例えば、 イソプ 口ピルアルコール等が挙げられる。 増粘剤としては、 セルロース等が挙げられる。 抵抗発熱体用の導体ペーストをセラミック基板の表面に形成する際には、 上記 導体ペースト中に上記金属粒子のほかに金属酸化物を添加し、 上記金属粒子およ び上記金属酸化物を焼結させたものとすることが好ましい。 このように、 金属酸 化物を金属粒子とともに焼結させることにより、 セラミック基板と金属粒子とを より密着させることができる。  The shape of the metal particles may be spherical or scaly. When these metal particles are used, they may be a mixture of the sphere and the flakes. When the metal particles are flakes or a mixture of spheres and flakes, the metal oxide between the metal particles is easily retained, and the adhesion between the resistance heating element and the ceramic substrate is ensured. This is advantageous because the resistance value can be increased. Examples of the resin used for the conductor paste include an acrylic resin, an epoxy resin, and a phenol resin. Examples of the solvent include isopropyl alcohol and the like. Examples of the thickener include cellulose and the like. When a conductor paste for a resistance heating element is formed on the surface of a ceramic substrate, a metal oxide is added to the conductor paste in addition to the metal particles, and the metal particles and the metal oxide are sintered. It is preferable to have it. Thus, by sintering the metal oxide together with the metal particles, the ceramic substrate and the metal particles can be more closely adhered.
上記金属酸化物を混合することにより、 セラミック基板との密着性が改善され る理由は明確ではないが、 金属粒子表面や非酸化物からなるセラミック基板の表 面は、 その表面がわずかに酸化されて酸化膜が形成されており、 この酸化膜同士 が金属酸化物を介して焼結して一体化し、 金属粒子とセラミックとが密着するの ではないかと考えられる。 また、 セラミック基板を構成するセラミックが酸化物 の場合は、 当然に表面が酸化物からなるので、 密着性に優れた導体層が形成され る。  It is not clear why mixing the above metal oxide improves the adhesion to the ceramic substrate, but the surface of metal particles and the surface of a ceramic substrate made of non-oxide are slightly oxidized. It is considered that the oxide film is formed by sintering and integrating the oxide films via the metal oxide, and the metal particles and the ceramic adhere to each other. When the ceramic constituting the ceramic substrate is an oxide, the surface is naturally made of an oxide, so that a conductor layer having excellent adhesion is formed.
上記金属酸化物としては、 例えば、 酸化鉛、 酸化亜鉛、 シリカ、 酸化ホウ素 (Β 03 ) 、 ァ /レミナ、 イットリアおよびチタニアからなる群から選ばれる少なくと も 1種が好ましい。 Examples of the metal oxide include lead oxide, zinc oxide, silica, and boron oxide (Β 0 3 ), at least one selected from the group consisting of α / remina, yttria and titania is preferred.
これらの酸化物は、 抵抗発熱体の抵抗値を大きくすることなく、 金属粒子とセ ラミック基板との密着性を改善することができるからである。  This is because these oxides can improve the adhesion between the metal particles and the ceramic substrate without increasing the resistance value of the resistance heating element.
上記酸化鉛、 酸化亜鉛、 シリカ、 酸化ホウ素 (B 2 03 ) 、 アルミナ、 イット リア、 チタニアの割合は、 金属酸化物の全量を 1 0 0重量部とした場合、 重量比 で、 酸化鉛が 1〜1 0、 シリカが 1〜 3 0、 酸化ホウ素が 5〜 5 0、 酸化亜鉛が 2 0〜7 0、 アルミナが 1〜 1 0、 イットリアが:!〜 5 0、 チタニアが:!〜 5 0 であって、 その合計が 1 0 0重量部を超えない範囲で調整されていることが好ま しい。 The lead oxide, zinc oxide, silica, boron oxide (B 2 0 3), alumina, yttria, the proportion of titania, when the total amount of the metal oxide and 1 0 0 parts by weight, a weight ratio of lead oxide 1-10, silica 1-30, boron oxide 5-50, zinc oxide 20-70, alumina 1-10, yttria :! ~ 50, Titania :! 550, and the total is preferably adjusted so as not to exceed 100 parts by weight.
これらの範囲で、 これらの酸化物の量を調整することにより、 特にセラミック 基板との密着性を改善することができる。  By adjusting the amounts of these oxides in these ranges, the adhesion to the ceramic substrate can be particularly improved.
上記金属酸化物の金属粒子に対する添加量は、 0 . 1重量%以上1 0重量%未 満が好ましい。 また、 このような構成の導体ペーストを使用して抵抗発熱体を形 成した際の面積抵抗率は、 1〜4 5 πι ΩΖ口が好ましい。  The amount of the metal oxide added to the metal particles is preferably from 0.1% by weight to less than 10% by weight. Further, when the resistance heating element is formed using the conductor paste having such a configuration, the area resistivity is preferably 1 to 45 πιΩΩ.
面積抵抗率が 4 5 ιη Ω ロを超えると、 印加電圧量に対して発熱量は大きくな りすぎて、 表面に抵抗発熱体を設けた半導体装置用セラミック基板では、 その発 熟量を制御しにくいからである。 なお、 金属酸化物の添加量が 1 0重量%以上で あると、 面積抵抗率が 5 Ο ιη ΩΖ口を超えてしまい、 発熱量が大きくなりすぎて 温度制御が難しくなり、 温度分布が生ずるようになる。  When the sheet resistivity exceeds 45 ιη Ω, the amount of heat generation becomes too large with respect to the applied voltage, and in a ceramic substrate for a semiconductor device provided with a resistive heating element on the surface, the amount of ripening is controlled. Because it is difficult. If the addition amount of the metal oxide is 10% by weight or more, the sheet resistivity exceeds 5ΖιηΩΩ opening, and the calorific value becomes too large to make temperature control difficult, resulting in temperature distribution. become.
抵抗発熱体がセラミック基板の表面に形成される場合には、 抵抗発熱体の表面 部分に、 金属被覆層が形成されていることが好ましい。 内部の金属焼結体が酸化 されて抵抗値が変化するのを防止するためである。 形成する金属被覆層の厚さは、 0 . 1〜 1 0 /z mが好ましレヽ。  When the resistance heating element is formed on the surface of the ceramic substrate, a metal coating layer is preferably formed on the surface of the resistance heating element. This is to prevent the resistance value from changing due to oxidation of the internal metal sintered body. The thickness of the metal coating layer to be formed is preferably 0.1 to 10 / zm.
上記金属被覆層を形成する際に使用される金属は、 非酸化性の金属であれば特 に限定されないが、 具体的には、 例えば、 金、 銀、 パラジウム、 白金、 ニッケル 等が挙げられる。 これらは、 単独で用いてもよく、 2種以上を併用してもよい。 これらのなかでは、 ニッケルが好ましい。  The metal used for forming the metal coating layer is not particularly limited as long as it is a non-oxidizing metal, and specific examples thereof include gold, silver, palladium, platinum, and nickel. These may be used alone or in combination of two or more. Of these, nickel is preferred.
なお、 抵抗発熱体をセラミック基板の内部に形成する場合には、 抵抗発熱^表 面が酸化されることがないため、 被覆は不要である。 If the resistance heating element is formed inside the ceramic substrate, the resistance heating No coating is required because the surface is not oxidized.
次に、 上述した実施形態によって把握される第一群の本発明の技術的思想を以 下に列挙する。  Next, a first group of technical ideas of the present invention grasped by the above-described embodiments will be enumerated below.
( 1 ) 第一群の本発明の半導体製造 ·検査装置において、 支持容器—ホットプ レート間に設けられる断熱リングは、 内周縁にプレート支持段部を有する断熱リ ングであり、 上記断熱リングは上記支持容器の開口部加熱面に対してねじ止めさ れていることが望ましい。  (1) In the first group of semiconductor manufacturing / inspection apparatuses of the present invention, the heat insulating ring provided between the support container and the hot plate is a heat insulating ring having a plate supporting step on the inner peripheral edge. It is desirable that the support container is screwed to the opening heating surface.
( 2 ) 第一群の本発明の半導体製造 ·検査装置において、 上記配線引き出し部 に設けられたシール構造は、 弾性体からなる環状のシールパッキングであること が望ましい。 これにより、 シ一ルパッキングに挿通された配線と配線引き出し部 との間に隙間ができにくくなり、 装置外部への流体の漏れ出しがより確実に防止 され、 密閉性が向上する。  (2) In the first group of semiconductor manufacturing / inspection apparatuses of the present invention, it is preferable that the seal structure provided in the wiring lead-out section is an annular seal packing made of an elastic body. This makes it difficult for a gap to be formed between the wiring inserted through the seal packing and the wiring lead-out portion, thereby more reliably preventing leakage of fluid to the outside of the device and improving the sealing performance.
( 3 ) 第一群の本発明の半導体製造 ·検査装置において、 上記流体はエア (空 気) であることが望ましい。 これにより、 低反応性であり抵抗体間のショートの 心配がなく、 かつ、 低コストにも有利である。  (3) In the semiconductor manufacturing / inspection apparatus of the first group of the present invention, the fluid is desirably air. As a result, it has low reactivity, there is no fear of short-circuit between resistors, and it is also advantageous for low cost.
( 4 ) 第一群の本発明の半導体製造 ·検査装置において、 上記支持容器には、 支持容器内の流体を外部へ排出する冷媒排出管が形成されていることが望ましレ、 これにより、 支持容器内に供給された流体を冷媒排出管から外部に流出させるこ とができる。 このため、 ホットプレートをより短時間のうちに冷却させることが できる。  (4) In the semiconductor manufacturing / inspection apparatus of the first group of the present invention, it is desirable that the support container is formed with a refrigerant discharge pipe for discharging the fluid in the support container to the outside. The fluid supplied into the support container can be made to flow out of the refrigerant discharge pipe to the outside. Therefore, the hot plate can be cooled in a shorter time.
以上、 第一群の本発明の本半導体製造 ·検査装置として、 ホットプレートを例 にとつて説明したが、 第一群の本発明の半導体製造 ·検査装置の具体例としては、 上記ホットプレートのほかに、 例えば、 静電チャック、 ウェハプローパ、 サセプ タ等が挙げられる。  As described above, a hot plate has been described as an example of the semiconductor manufacturing and inspection apparatus of the first group of the present invention. As a specific example of the semiconductor manufacturing and inspection apparatus of the first group of the present invention, In addition, for example, an electrostatic chuck, a wafer propper, a susceptor and the like can be mentioned.
上記ホットプレート (セラミックヒータ) は、 セラミック基板の表面または内 部に抵抗発熱体のみが設けられた装置であり、 これにより、 半導体ウェハ等の被 加熱物を所定の温度に加熱することができる。  The above-mentioned hot plate (ceramic heater) is a device in which only a resistance heating element is provided on the surface or inside of a ceramic substrate, whereby a heated object such as a semiconductor wafer can be heated to a predetermined temperature.
一方、 第一群の本発明の半導体製造 ·検査装置を構成するセラミック基板の内 部に導電層として静電電極を設けた場合には、 静電チャックとして機能する。 上記静電電極に用いる金属としては、 例えば、 貴金属 (金、 銀、 白金、 パラジ ゥム) 、 タングステン、 モリブデン、 ニッケルなどが好ましい。 また、 上記静電 電極に用いる導電性セラミックとしては、 例えば、 タングステン、 モリブデンの 炭化物などが挙げられる。 これらは、 単独で用いてもよく、 2種以上を併用して もよい。 On the other hand, when an electrostatic electrode is provided as a conductive layer inside a ceramic substrate constituting the semiconductor manufacturing / inspection apparatus of the first group of the present invention, it functions as an electrostatic chuck. As the metal used for the above-mentioned electrostatic electrode, for example, noble metals (gold, silver, platinum, palladium), tungsten, molybdenum, nickel and the like are preferable. Examples of the conductive ceramic used for the electrostatic electrode include carbides of tungsten and molybdenum. These may be used alone or in combination of two or more.
図 5 ( a ) は、 静電チャックに用いられるセラミック基板を模式的に示す縦断 面図であり、 ( は、 (a ) に示したセラミック基板の A— A線断面図である。  FIG. 5A is a longitudinal sectional view schematically showing a ceramic substrate used for an electrostatic chuck, and FIG. 5A is a sectional view taken along line AA of the ceramic substrate shown in FIG.
この静電チヤック用のセラミック基板では、 セラミック基板 6 1の内部にチヤ ック正負電極層 6 2、 6 3が埋設され、 それぞれスルーホール 6 8 0と接続され、 その電極上にセラミック誘電体膜 6 4が形成されている。  In this ceramic substrate for electrostatic chuck, chuck positive and negative electrode layers 62 and 63 are buried inside the ceramic substrate 61 and connected to through holes 680 respectively, and a ceramic dielectric film is formed on the electrode. 6 4 are formed.
一方、 セラミック基板 6 1の内部には、 抵抗発熱体 6 6とスルーホール 6 8と が設けられ、 シリコンウェハ 2 9等の被加熱物を加熱することができるようにな つている。 なお、 セラミック基板 6 1には、 必要に応じて、 R F電極が埋設され ていてもよい。  On the other hand, inside the ceramic substrate 61, a resistance heating element 66 and a through hole 68 are provided so that an object to be heated such as a silicon wafer 29 can be heated. Note that an RF electrode may be buried in the ceramic substrate 61 as necessary.
また、 (b ) に示したように、 セラミック基板 6 1は、 通常、 平面視円形状に 形成されており、 セラミック基板 6 1の内部に (b ) に示した半円弧状部 6 2 a と櫛歯部 6 2 bとからなるチャック正極静電層 6 2と、 同じく半円弧状部 6 3 a と櫛歯部 6 3 bとからなるチヤック負極静電層 6 3とが、 互いに櫛歯部 6 2 b、 6 3 bを交差するように対向して配置されている。  Also, as shown in (b), the ceramic substrate 61 is usually formed in a circular shape in plan view, and the semi-circular portion 62 a shown in (b) is formed inside the ceramic substrate 61. The chuck positive electrode electrostatic layer 62 composed of the comb teeth 62 b and the chuck negative electrostatic layer 63 also composed of the semi-circular part 63 a and the comb teeth 63 b are combined with each other. They are arranged to face each other so as to intersect 6 2 b and 6 3 b.
このような構成のセラミック基板が図 1に示した支持容器 2と略同じ構造およ ぴ機能を有する支持容器に嵌め込まれ、 静電チャックとして動作する。 この際、 チャック正極静電層 6 2とチャック負極静電層 6 3とに制御装置内の直流電源か ら延びた配線の +側と一側を接続し、 直流電圧を印加する。  The ceramic substrate having such a configuration is fitted into a support container having substantially the same structure and function as the support container 2 shown in FIG. 1, and operates as an electrostatic chuck. At this time, the plus side and one side of the wiring extending from the DC power supply in the control device are connected to the chuck positive electrode electrostatic layer 62 and the chuck negative electrode electrostatic layer 63, and a DC voltage is applied.
これにより、 この静電チャック上に載置された半導体ウェハが静電的に吸着さ れ、 半導体ウェハに種々の加工を施すことが可能となる。  As a result, the semiconductor wafer mounted on the electrostatic chuck is electrostatically attracted and various processing can be performed on the semiconductor wafer.
図 6およぴ図 7は、 他の静電チヤックを構成するセラミック基板の静電電極を 模式的に示した水平断面図であり、 図 6に示す静電チャック用のセラミック基板 では、 セラミック基板 1 1 1の内部に半円形状のチャック正極静電層 1 1 2とチ ャック負極静電層 1 1 3が形成されており、 図 7に示す静電チャック用のセラミ ック基板では、 セラミック基板 1 2 1の内部に円を 4分割した形状のチャック正 極静電層 1 2 2 a、 1 2 2 bとチャック負極静電層 1 2 3 a、 1 2 3 bとが形成 されている。 また、 2枚の正極静電層 1 2 2 a、 1 2 2 bおよび 2枚のチャック 負極静電層 1 2 3 a、 1 2 3 bは、 それぞれ交差するように形成されている。 FIGS. 6 and 7 are horizontal cross-sectional views schematically showing electrostatic electrodes of a ceramic substrate constituting another electrostatic chuck. In the ceramic substrate for an electrostatic chuck shown in FIG. 6, a ceramic substrate is used. A semi-circular chuck positive electrode electrostatic layer 1 12 and a chuck negative electrode electrostatic layer 1 13 are formed in the inside of 111, and the ceramic for the electrostatic chuck shown in Fig. 7 is formed. For the chuck substrate, the chuck positive electrode electrostatic layers 1 2 2 a and 1 2 b and the chuck negative electrode electrostatic layers 1 2 3 a and 1 2 3 b are formed by dividing a circle into four inside the ceramic substrate 12 1. Are formed. The two positive electrode electrostatic layers 122a and 122b and the two chuck negative electrode electrostatic layers 123a and 123b are formed to intersect, respectively.
なお、 円形等の電極が分割された形態の電極を形成する場合、 その分割数は特 に限定されず、 5分割以上であってもよく、 その形状も扇形に限定されない。 第一群の本発明の半導体製造 ·検査装置を構成するセラミック基板の表面にチ ャックトップ導体層を設け、 内部の導体層として、 ガード電極やグランド電極を 設けた場合には、 ウェハプローバとして機能する。  When an electrode in the form of a circular or divided electrode is formed, the number of divisions is not particularly limited, and may be five or more, and the shape is not limited to a sector. When a check top conductor layer is provided on the surface of a ceramic substrate constituting the first group of semiconductor manufacturing and inspection devices of the present invention and a guard electrode or a ground electrode is provided as an internal conductor layer, it functions as a wafer prober. .
図 8は、 第一群の本発明のウェハプローバを構成するセラミック基板の一実施 形態を模式的に示した断面図であり、 図 9は、 その平面図であり、 図 1 0は、 図 FIG. 8 is a cross-sectional view schematically showing one embodiment of a ceramic substrate constituting a first group of the wafer probers of the present invention, FIG. 9 is a plan view thereof, and FIG.
8に示したウェハプロ一バにおける A— A線断面図である。 FIG. 9 is a sectional view taken along line AA of the wafer prober shown in FIG.
このウェハプローバでは、 平面視円形状のセラミック基板 5 3の表面に同心円 形状の溝 5 8が形成されるとともに、 溝 5 8の一部にシリコンウェハを吸引する ための複数の吸引孔 5 9が設けられており、 溝 5 8を含むセラミック基板 5 3の 大部分にシリコンウェハの電極と接続するためのチャックトップ導体層 5 2が円 形状に形成されている。  In this wafer prober, a concentric groove 58 is formed on the surface of a ceramic substrate 53 having a circular shape in plan view, and a plurality of suction holes 59 for sucking a silicon wafer are formed in a part of the groove 58. A chuck top conductor layer 52 for connecting to an electrode of a silicon wafer is formed in a circular shape on most of the ceramic substrate 53 including the groove 58.
—方、 セラミック基板 5 3の底面には、 シリコンウェハの温度をコントロール するために、 平面視同心円形状の抵抗発熱体 5 1が設けられている。 抵抗発熱体 5 1の両端には、 図示はしていないが、 外部端子が接続、 固定されている。 また、 セラミック基板 5 3の内部には、 ストレイキャパシタゃノイズを除去す るために図 1 0に示したような格子形状のガード電極 5 6とグランド電極 5 7 (図示せず) とが設けられている。 なお、 符号 5 5は、 電極非形成部を示してい る。 このような矩形状の電極非形成部 5 5をガ一ド電極 5 6の内部に形成してい るのは、 ガード電極 5 6を挟んだ上下のセラミック基板 5 3をしつかりと接着さ せるためである。  On the other hand, on the bottom surface of the ceramic substrate 53, a resistance heating element 51 having a concentric circular shape in a plan view is provided in order to control the temperature of the silicon wafer. Although not shown, external terminals are connected and fixed to both ends of the resistance heating element 51. Further, inside the ceramic substrate 53, a guard electrode 56 having a lattice shape as shown in FIG. 10 and a ground electrode 57 (not shown) are provided in order to remove stray capacitor noise. ing. Reference numeral 55 indicates an electrode non-formed portion. Such a rectangular electrode non-formed portion 55 is formed inside the guard electrode 56 so that the upper and lower ceramic substrates 53 sandwiching the guard electrode 56 are firmly bonded. It is.
このような構成のセラミック基板が図 1に示したものと略同様の構造の支持容 器に嵌め込まれ、 ウェハプロ一バとして動作する。  The ceramic substrate having such a configuration is fitted into a support container having a structure substantially similar to that shown in FIG. 1, and operates as a wafer prober.
このウェハプローバでは、 セラミック基板 5 3の上に集積回路が形成されたシ リコンウェハを載置した後、 このシリコンウェハにテスタピンを持つプローブ力 —ドを押しつけ、 加熱、 冷却しながら電圧を印加して導通テストを行うことがで きる。 次に、 第二群の本発明について説明する。 In this wafer prober, an integrated circuit is formed on a ceramic substrate 53. After the recon wafer is mounted, a continuity test can be performed by pressing a probe force with tester pins against the silicon wafer and applying a voltage while heating and cooling. Next, the second group of the present invention will be described.
第二群の第一の本発明は、 セラミック基板を支持する支持容器であって、 略円 筒形状の外枠部および該外枠部に連結固定される板状体からなり、 上記板状体に は複数の開口が形成されていることを特徴とする支持容器であり、 これを用いた 半導体製造 ·検査装置も第二群の第一の本発明の一つである。  A second group of the present invention is a support container for supporting a ceramic substrate, comprising a substantially cylindrical outer frame portion and a plate-shaped member connected and fixed to the outer frame portion. Is a supporting container having a plurality of openings formed therein, and a semiconductor manufacturing / inspection apparatus using the same is also one of the first inventions of the second group.
また、 第二群の第二の本発明は、 セラミック基板を支持する支持容器であって、 略円筒形状の外枠部および該外枠部に連結固定される板状体からなり、 上記支持 容器の重量 M ( k g ) およびセラミック基板の直径 L (mm) の関係が  A second group of the present invention is a support container for supporting a ceramic substrate, comprising a substantially cylindrical outer frame portion and a plate-shaped body connected and fixed to the outer frame portion, Weight M (kg) and ceramic substrate diameter L (mm)
2 0 0であることを特徴とする支持容器であり、 これを用いた半導体製造 ·検査 装置の第二群の第二の本発明の一つである。 This is a support container characterized in that it is 200, and is one of the second inventions of a second group of semiconductor manufacturing / inspection apparatuses using the same.
このように、 支持容器を構成しているのは、 いずれも半導体製造 ·検査装置の 降温速度を速めるためであり、 上記したいずれの発明においても、 上記した 2つ の要件のいずれも備えていることが好ましい。 また、 その他の構成については、 略同様である。  The reason why the supporting container is formed in this way is to increase the temperature reduction rate of the semiconductor manufacturing / inspection apparatus, and any of the above-mentioned inventions has both of the above two requirements. Is preferred. Other configurations are substantially the same.
従って、 以下においては、 上記した 2つの発明をまとめ、 一つの発明として説 明することにする。  Therefore, in the following, the above two inventions will be summarized and described as one invention.
図 1 1 ( a ) は、 第二群の本発明の半導体製造 ·検査装置の一例であるホット プレートを模式的に示す縦断面図であり、 (b ) は、 遮熱部材 (遮熱板) の底部 を示す斜視図である。 また、 図 1 2は、 図 1 1に示した半導体製造 '検査装置の 平面図である。  FIG. 11 (a) is a longitudinal sectional view schematically showing a hot plate which is an example of the semiconductor manufacturing / inspection apparatus of the second group of the present invention, and (b) is a heat shield member (heat shield plate). It is a perspective view which shows the bottom part of FIG. FIG. 12 is a plan view of the semiconductor manufacturing / inspection apparatus shown in FIG.
このホットプレートは、 例えば、 図 1 1に示したように、 セラミック基板 3と 支持容器 9 0とからなり、 円板形状のセラミック基板 3の表面 (底面) に、 複数 の平面視同心円形状の抵抗発熱体 1 0が形成されるとともに、 有底孔 3 4、 貫通 孔 1 1等が形成されている。 そして、 この有底孔 3 4には、 セラミック基板 3の 温度を測定するために、 リード線 3 6が接続された測温素子 3 7が埋め込まれて いる。 For example, as shown in FIG. 11, this hot plate includes a ceramic substrate 3 and a supporting container 90, and a plurality of concentric resistances in plan view are provided on the surface (bottom surface) of the disk-shaped ceramic substrate 3. A heating element 10 is formed, and a bottomed hole 34, a through hole 11 and the like are formed. In order to measure the temperature of the ceramic substrate 3, a temperature measuring element 37 connected to a lead wire 36 is embedded in the bottomed hole 34. I have.
また、 セラミック基板 3は、 断面視 L字型の断熱リング 1 4を介して略円筒形 状の支持容器 9 0の上部に嵌め込まれている。  The ceramic substrate 3 is fitted on the upper portion of a substantially cylindrical support container 90 via an insulating ring 14 having an L-shaped cross section.
この支持容器 9 0には、 略円筒形状の外枠部 9 1の内側に、 セラミック基板 3 と断熱リング 1 4とを支持する円環形状の基板受け部 9 3が設けられている。 断 熱リング 1 4およびセラミック基板 3は、 基板受け部 9 3とボルト 9 8を介した 固定金具 9 7とで固定されている。 すなわち、 ボルト 9 8には固定金具 9 7が取 り付けられ、 セラミック基板 3等を押しつけて固定している。  The support container 90 is provided with a ring-shaped substrate receiving portion 93 that supports the ceramic substrate 3 and the heat insulating ring 14 inside the substantially cylindrical outer frame portion 91. The heat insulation ring 14 and the ceramic substrate 3 are fixed by a substrate receiving portion 93 and a fixing bracket 97 via a bolt 98. In other words, the fixing bracket 97 is attached to the bolt 98, and the ceramic substrate 3 and the like are pressed and fixed.
さらに、 外枠部 9 1には、 放熱防止用の遮熱部材 (遮熱板) 9 6が連結固定さ れている。 遮熱部材 (遮熱板) 9 6は、 ポルト等を介して固定してもよく、 外枠 部 9 1と一体成形してもよく、 あるいは溶接などで固定してもよい。  Further, a heat shielding member (heat shielding plate) 96 for preventing heat radiation is connected and fixed to the outer frame portion 91. The heat shield member (heat shield plate) 96 may be fixed via a port or the like, may be integrally formed with the outer frame portion 91, or may be fixed by welding or the like.
なお、 図 1 1に示したように、 遮熱板 9 6は、 必ずしも板状体でなく、 板状体 と円筒部材とが一体化した有底円筒状形状の部材であってもよい。  As shown in FIG. 11, the heat shield plate 96 is not necessarily a plate-like body, but may be a bottomed cylindrical member in which the plate-like body and the cylindrical member are integrated.
なお、 この支持容器 9 0の下部には制御機器や電源等を収めた制御装置が存在 しており、 導電線 6およびリード線 3 6が、 制御装置内の制御機器に接続されて いる。  Note that a control device containing a control device, a power supply, and the like is present below the support container 90, and the conductive wire 6 and the lead wire 36 are connected to the control device in the control device.
通常、 精密機器類は高温に弱いため、 ホットプレートを使用する際、 セラミツ ク基板 3からの放射熱を遮蔽し、 精密機器類等が収められた制御装置を保護する 必要がある。 そのため、 上記制御装置とセラミック基板 3との間には、 遮熱板 9 6が設けられている。 さらに、 必要に応じ、 制御装置とホットプレートとの間に は放熱フィンが介装されることもある。  Normally, precision instruments are sensitive to high temperatures, so when using a hot plate, it is necessary to shield the radiant heat from the ceramic substrate 3 and protect the control device containing the precision instruments and the like. Therefore, a heat shield plate 96 is provided between the control device and the ceramic substrate 3. In addition, heat radiating fins may be interposed between the control device and the hot plate, if necessary.
この際、 このような構成のホットプレートを用いることにより、 セラミック基 板 3の温度等を、 精度よく制御することができ、 シリコンウェハ Wを目的とする 温度に均一に加熱することができるとともに、 上記制御装置もホットプレートの 熱から保護され、 正常な動作が可能となる。  At this time, by using a hot plate having such a configuration, the temperature and the like of the ceramic substrate 3 can be accurately controlled, and the silicon wafer W can be uniformly heated to a target temperature. The above controller is also protected from the heat of the hot plate, and can operate normally.
本実施形態では、 外枠部 9 1、 遮熱板 9 6は、 金属、 具体的にはステンレス、 アルミニウム、 銅、 スチール、 ニッケル、 貴金属から選ばれる少なくとも 1種以 上の金属で構成されていることが望ましい。 金属は熱伝導率が高く、 比熱が低い ため冷却しやすく、 輻射熱によりセラミック基板 3 1の冷却を阻害しないからで ある。 In the present embodiment, the outer frame portion 91 and the heat shield plate 96 are made of a metal, specifically, at least one metal selected from stainless steel, aluminum, copper, steel, nickel, and a noble metal. It is desirable. Metals have high thermal conductivity and low specific heat, so they are easy to cool, and radiant heat does not hinder the cooling of the ceramic substrate 31. is there.
第二群の本発明では、 支持容器 9 0を構成する部材 (外枠部 9 1、 遮熱板 9 6) の厚さは、 0. l〜5mmが好ましい。 0. 1 mm未満では、 強度に乏しく、 5 mmを越えると熱容量が大きくなるからである。  In the second group of the present invention, the thickness of the members (the outer frame portion 91 and the heat shield plate 96) constituting the support container 90 is preferably 0.1 to 5 mm. If it is less than 0.1 mm, the strength will be poor, and if it exceeds 5 mm, the heat capacity will increase.
外枠部 9 1、 遮熱板 9 6、 断熱リング (断熱材) 1 4、 ボルト 98、 固定金具 9 7、 冷媒供給管 (冷却媒体供給口) 1 7の合計重量、 即ち支持容器の総重量 M (k g) は、 セラミック基板の直径 L (mm) の関数で、 M L/200である。 Mが L/200を超えると、 熱容量が大きくなり、 外枠部 9 1、 遮熱板 9 6、 断 熱リング 1 4、 ボルト 9 8、 固定金具 9 7、 冷媒供給管 (冷却媒体供給口) 1 7 等から輻射熱が発生して、 セラミック基板 3に照り返しが発生し、 セラミック基 板 3の温度低下を阻害するからである。  Outer frame 91, heat shield 96, heat insulating ring (heat insulating material) 14, bolt 98, fixing bracket 97, refrigerant supply pipe (cooling medium supply port) 17, total weight of support vessel, ie total weight of supporting container M (kg) is a function of the diameter L (mm) of the ceramic substrate and is ML / 200. When M exceeds L / 200, the heat capacity increases, and the outer frame 91, heat shield 96, heat insulation ring 14, bolts 98, fixing bracket 97, refrigerant supply pipe (cooling medium supply port) This is because radiant heat is generated from 17 and the like, and reflection is generated on the ceramic substrate 3, which hinders a temperature decrease of the ceramic substrate 3.
セラミック基板 3の直径 Lが 8インチ (L= 200 mm) では、 M= 1 k gが 上限であり、 Lが 1 2インチ (L = 3 00mm) では、 Mは、 1. 5 k gが上限 である。  If the diameter L of the ceramic substrate 3 is 8 inches (L = 200 mm), M = 1 kg is the upper limit, and if L is 12 inches (L = 300 mm), M is 1.5 kg. .
遮熱板 9 6の投影面積 SA (即ち、 開口がなかったとした場合の底部の面積) および上記板状体に設けられた開口の合計面積 Sの関係は、 0. 03≤SZSA である。  The relationship between the projected area SA of the heat shield plate 96 (that is, the area of the bottom when there is no opening) and the total area S of the openings provided in the plate-like body is 0.03 ≦ SZSA.
開口面積の合計が 3%未満では、 セラミック基板と接触して熱交換した冷却媒 体を排出しにくくなり、 また、 遮熱板の熱容量も大きくなるからである。  If the total area of the openings is less than 3%, it becomes difficult to discharge the cooling medium that has exchanged heat with the ceramic substrate, and the heat capacity of the heat shield plate also increases.
1つの開口 9 6 aの直径 (楕円や方形の場合は平均直径または 1辺の長さ) は、 1〜 50 mmが望ましい。 開口 9 6 aの直径が 1 mm未満では、 冷却媒体を排出 しにくく、 50mmを超えると遮熱板として機能しないからである。 開口 96 a は、 図 1 1 (b) に示すように遮熱板に均等に配置しておくことが望ましい。 第二群の本発明の半導体製造 '検査装置 (ホットプレート) では、 上記したよ うに底面に抵抗発熱体 1 0が設けられているが、 これらの抵抗発熱体端部 1 0 a には、 外部端子 1 2が半田層を介して接続され、 この外部端子 1 2に導電線 6を 有するソケット 6 aが取り付けられている。 また、 セラミック基板 3の中央に近 い部分には、 リフターピン (図示せず) を挿入するための貫通孔 1 1が形成され るとともに貫通孔 1 1と連通するピン挿通スリーブ 5が遮熱板 9 6に設置されて いる。 The diameter (average diameter or length of one side in the case of an ellipse or a square) of one opening 96a is preferably 1 to 50 mm. If the diameter of the opening 96a is less than 1 mm, it is difficult to discharge the cooling medium, and if it exceeds 50 mm, it does not function as a heat shield. The openings 96a are desirably arranged evenly on the heat shield plate as shown in FIG. 11 (b). In the second group of semiconductor manufacturing and inspection equipment (hot plates) of the present invention, the resistive heating elements 10 are provided on the bottom surface as described above. The terminal 12 is connected via a solder layer, and a socket 6 a having a conductive wire 6 is attached to the external terminal 12. A through hole 11 for inserting a lifter pin (not shown) is formed in a portion near the center of the ceramic substrate 3, and a pin insertion sleeve 5 communicating with the through hole 11 is provided with a heat shield plate. Installed on 9 6 I have.
支持容器 9 0は、 略円筒形状の外枠部 9 1と、 外枠部 9 1の内側に設けられた 円環形状の基板受け部 9 3とから構成され、 これらは一体に形成されている。 ま た、 外枠部 9 1の底面には、 有底円筒形状の遮熱部材 (遮熱板 9 6 ) が設置され ている。  The support container 90 includes a substantially cylindrical outer frame portion 91, and an annular substrate receiving portion 93 provided inside the outer frame portion 91, and these are integrally formed. . Further, on the bottom surface of the outer frame part 91, a bottomed cylindrical heat shield member (heat shield plate 96) is installed.
そして、 基板受け部 9 3は、 断熱リング 1 4を介して嵌め込まれたセラミック 基板 3を支持している。  The substrate receiving portion 93 supports the ceramic substrate 3 fitted via the heat insulating ring 14.
また、 遮熱板 9 6には、 冷媒供給管 1 7が設けられており、 セラミック基板 3 を冷却する際に、 冷却エアー等を導入することができるようになつており、 さら に、 冷却エアーを排出するための開孔 9 6 aが多数設けられている。  Further, the heat shield plate 96 is provided with a refrigerant supply pipe 17 so that cooling air or the like can be introduced when the ceramic substrate 3 is cooled. A large number of apertures 96a are provided for discharging the gas.
従って、 セラミック基板 3を加熱した後、 冷却媒体を冷媒供給管 1 7より供給 し、 開口 9 6 aより排出させながら、 セラミック基板 3を冷却することにより、 セラミック基板 3を迅速に冷却することができる。  Therefore, after the ceramic substrate 3 is heated, a cooling medium is supplied from the refrigerant supply pipe 17 and is discharged from the opening 96a, and the ceramic substrate 3 is cooled, whereby the ceramic substrate 3 can be rapidly cooled. it can.
断熱リング 1 4は、 ポリイミド樹脂、 フッ素樹脂、 ベンゾィミダゾール樹脂か ら選ばれる少なくとも 1種以上の樹脂、 あるいは繊維補強した樹脂で構成されて いることが望ましい。 繊維補強した樹脂としては、 ガラス繊維のファイバ一が分 散した樹脂などを挙げることができる。 繊維補強樹脂は、 昇温しても軟化してセ ラミック基板が傾かないため、 ウェハを加熱面から保持して加熟する場合に、 離 間距離を精度よく確保できる。  The heat insulating ring 14 is preferably made of at least one resin selected from a polyimide resin, a fluororesin, and a benzoimidazole resin, or a fiber-reinforced resin. Examples of the fiber-reinforced resin include a resin in which glass fiber fibers are dispersed. Since the fiber-reinforced resin softens even when the temperature is raised and the ceramic substrate does not tilt, the separation distance can be accurately secured when the wafer is held and ripened from the heated surface.
第二群の本発明の半導体製造'検査装置 (ホットプレート) を作動させると、 抵抗発熱体 1 0は発熱し、 セラミック基板 3は昇温するが、 セラミック基板 3の 内部に埋設された測温素子 3 7により、 セラミック基板 3の温度が測定され、 測 定データが制御機器にインプットされ、 印加電圧 (電流) 量が制御されるので、 セラミック基板の温度は一定値にコントロールされる。  When the semiconductor manufacturing inspection apparatus (hot plate) of the second group of the present invention is operated, the resistance heating element 10 generates heat and the ceramic substrate 3 rises in temperature, but the temperature measurement embedded in the ceramic substrate 3 is performed. The temperature of the ceramic substrate 3 is measured by the element 37, the measurement data is input to the control device, and the amount of applied voltage (current) is controlled, so that the temperature of the ceramic substrate 3 is controlled to a constant value.
図 1 3 ( a ) は、 別の実施形態に係るホットプレートを示した断面図であり、 ( b ) は、 遮熱板を模式的に示した斜視図であるが、 このホットプレートに示す ように、 この支持容器 7 0の下部に放熱フィン 7 2 dを取り付けた円筒部 7 2が 延設されていてもよい。 このように放熱フィン 7 2 dを設けることにより、 ホッ トプレートをより迅速に冷却することができる。 また、 図 1 3に示した装置では、 支持容器 7 0の下部に設けられた円筒部 7 2 は、 放熱フィンを備えているので、 制御機器や電源が収納された制御装置上に放 熱フィンを介して上記ホットプレートを据えつけることができる。 そして、 上記 放熱フィンの働きにより、 下部の制御装置が高温にならず、 常温に近い温度に保 たれる。 なお、 図 1 3に示したホットプレートの構成については、 後で詳しく説 明する。 FIG. 13 (a) is a cross-sectional view showing a hot plate according to another embodiment, and (b) is a perspective view schematically showing a heat shield plate, as shown in this hot plate. Further, a cylindrical portion 72 to which a radiation fin 72 d is attached may extend below the support container 70. By providing the radiation fins 72 d in this way, the hot plate can be cooled more quickly. In the apparatus shown in FIG. 13, the cylindrical portion 72 provided at the lower part of the support container 70 is provided with a heat radiation fin, so that the heat radiation fin is placed on the control device in which the control device and the power supply are stored. The hot plate can be installed via the. Then, the function of the radiation fins does not increase the temperature of the lower control device, but keeps it at a temperature close to normal temperature. The configuration of the hot plate shown in FIG. 13 will be described later in detail.
第二群の本発明の半導体製造 ·検査装置で、 セラミック基板に埋設される抵抗 発熱体については、 第一群の本発明において説明したので、 ここでは、 その説明 を省略する。  In the semiconductor manufacturing / inspection apparatus of the second group of the present invention, the resistance heating element embedded in the ceramic substrate has been described in the first group of the present invention, and the description thereof will be omitted here.
以上の説明では、 上記導体層として、 抵抗発熱体が設けられたセラミック基板 を例にとって説明したが、 導体層は、 抵抗発熱体に限定されず、 ウェハプローバ では、 セラミック基板の表面にチャックトップ導体層、 内部にガード電極、 ダラ ンド電極が形成される。 また、 静電チャックでは、 セラミック基板の内部に静電 電極や R F電極が形成される。  In the above description, a ceramic substrate provided with a resistance heating element has been described as an example of the conductor layer. However, the conductor layer is not limited to the resistance heating element. In a wafer prober, a chuck top conductor is provided on the surface of the ceramic substrate. A guard electrode and a Dutch electrode are formed inside the layer. In the electrostatic chuck, electrostatic electrodes and RF electrodes are formed inside a ceramic substrate.
これらウェハプローバゃ静電チャックについても、 第一群の本発明で説明した ので、 ここでは説明を省略する。  Since these wafer probers and electrostatic chucks have also been described in the first group of the present invention, their description is omitted here.
また、 第二群の本発明の半導体製造 ·検査装置を構成するセラミック基板の材 料や特性についても、 第一群の本発明で説明したので、 同様に説明を省略する。 次に、 第二群の本発明の半導体製造 ·検査装置の製造方法の一例として、 ホッ トプレートの製造方法について説明する。  Further, the materials and characteristics of the ceramic substrates constituting the semiconductor manufacturing / inspection apparatus of the second group of the present invention have been described in the first group of the present invention, and therefore, the description thereof will be omitted. Next, a method of manufacturing a hot plate will be described as an example of a method of manufacturing a semiconductor manufacturing / inspection apparatus of the second group of the present invention.
図 1 7 ( a ) ~ ( d ) は、 第二群の本発明の半導体製造 ·検査装置を構成する セラミック基板の内部に抵抗発熱体を有するセラミック基板の製造工程を模式的 に示した断面図である。 なお、 第一群の本発明においては、 特に製造方法を説明 しなかったが、 以下に説明する方法と同様の方法を用いることにより、 製造する ことができる。  FIGS. 17 (a) to 17 (d) are cross-sectional views schematically showing a manufacturing process of a ceramic substrate having a resistance heating element inside a ceramic substrate constituting a second group of semiconductor manufacturing / inspection apparatuses of the present invention. It is. In the first group of the present invention, the production method is not particularly described, but it can be produced by using a method similar to the method described below.
( 1 ) セラミック基板の作製工程  (1) Manufacturing process of ceramic substrate
まず、 窒化物セラミックの粉末をパインダ、 溶剤等と混合してペーストを調製 し、 これを用いてグリーンシートを作製する。  First, a paste is prepared by mixing a nitride ceramic powder with a pinda, a solvent, and the like, and a green sheet is produced using the paste.
上述したセラミック粉末としては、窒化アルミニウム等を使用することができ、 必要に応じて、 イットリア等の焼結助剤を加えてもよい。 また、 グリーンシート を作製する際、 結晶質や非晶質のカーボンを添加してもよい。 As the above-mentioned ceramic powder, aluminum nitride or the like can be used, If necessary, a sintering aid such as yttria may be added. Further, when producing the green sheet, crystalline or amorphous carbon may be added.
また、 バインダとしては、 アクリル系バインダ、 ェチルセルロース、 ブチルセ 口ソルブ、 ポリビニルアルコールから選ばれる少なくとも 1種が望ましい。  Further, as the binder, at least one selected from an acrylic binder, ethyl cellulose, butyl cellulose solvent, and polyvinyl alcohol is desirable.
さらに溶媒としては、 a—テルビネオール、 グリコールから選ばれる少なく と も 1種が望ましい。  Further, as the solvent, at least one selected from a-terbineol and glycol is desirable.
これらを混合して得られるペーストをドクターブレード法でシ一ト状に成形し てグリーンシート 5 0 0を作製する。  A paste obtained by mixing these is shaped into a sheet by a doctor blade method to produce a green sheet 500.
グリーンシート 5 0 0の厚さは、 0 . l〜5 mmが好ましい。  The thickness of the green sheet 500 is preferably 0.1 to 5 mm.
次に、 得られたグリーンシートに、 必要に応じて、 シリコンウェハを支持する ための支持ピンを挿入する貫通孔となる部分、 熱電対などの測温素子を埋め込む ための有底孔となる部分、 抵抗発熱体と外部端子とを接続するためのスルーホー ルとなる部分 3 9 0等を形成する。 後述するグリーンシート積層体を形成した後 に、 上記加工を行ってもよく、 焼結体とした後に、 上記加工を行ってもよい。  Next, if necessary, a part to be a through hole for inserting a support pin for supporting a silicon wafer and a part to be a bottomed hole for embedding a temperature measuring element such as a thermocouple into the obtained green sheet Then, a portion 390 or the like to be a through hole for connecting the resistance heating element and the external terminal is formed. The above processing may be performed after forming a green sheet laminate described later, or the above processing may be performed after forming a sintered body.
( 2 ) グリーンシート上に導体ペース トを印刷する工程  (2) Process of printing conductor paste on green sheets
グリーンシート 5 0 0上に、 金属ペーストまたは導電性セラミックを含む導体 ペーストを印刷し、 導体ペース ト層 3 2 0を形成する。  A conductor paste containing a metal paste or a conductive ceramic is printed on the green sheet 500 to form a conductor paste layer 320.
これらの導体ペースト中には、 金属粒子または導電性セラミック粒子が含まれ ている。  These conductor pastes contain metal particles or conductive ceramic particles.
上記金属粒子であるタングステン粒子またはモリブデン粒子等の平均粒子径は、 0 . 1〜5 が好ましい。 平均粒子が 0 . Ι μ πι未満である力 \ 5 μ πιを超え ると、 導体ペーストを印刷しにくいからである。  The average particle diameter of the metal particles, such as tungsten particles or molybdenum particles, is preferably from 0.1 to 5. If the average particle exceeds a force of less than 0.1 μππ \ 5 μπι, it is difficult to print the conductive paste.
このような導体ペーストとしては、 例えば、 金属粒子または導電性セラミック 粒子 8 5〜8 7重量部;ァクリル系、 ェチノレセルロース、 ブチルセ口ソルブ、 ポ リビニルアルコールから選ばれる少なくとも 1種のバインダ 1 . 5〜1 0重量 部;および、 α—テルビネオール、 グリコールから選ばれる少なく とも 1種の溶 媒を 1 . 5〜1 0重量部を混合した組成物 (ペースト) が挙げられる。  As such a conductive paste, for example, 85 to 87 parts by weight of metal particles or conductive ceramic particles; at least one kind of binder 1 selected from acryl-based, ethynolecellulose, butyl cellulose solvent, and polyvinyl alcohol; 5 to 10 parts by weight; and a composition (paste) in which at least one solvent selected from α-terbineol and glycol is mixed with 1.5 to 10 parts by weight.
( 3 ) グリーンシートの積層工程  (3) Green sheet lamination process
上記 (1 ) の工程で作製した導体ペーストを印刷していないグリーンシート 5 0 0を、 上記 (2 ) の工程で作製した導体ペースト層 3 2 0を印刷したグリーン シート 5 0 0の上下に積層する (図 1 7 ( a ) ) 。 The green sheet 5 on which the conductor paste prepared in the above step (1) is not printed 5 00 is laminated on and under the green sheet 500 on which the conductive paste layer 320 produced in the above step (2) is printed (FIG. 17 (a)).
このとき、 上側に積層するグリーンシート 5 0 0の数を下側に積層するダリー ンシート 5 0 0の数よりも多くして、 抵抗発熱体 3 2の形成位置を底面の方向に 偏芯させる。  At this time, the number of the green sheets 500 laminated on the upper side is made larger than the number of the dull sheets 500 laminated on the lower side, and the formation position of the resistance heating element 32 is eccentric toward the bottom.
具体的には、 上側のグリーンシート 5 0 0の積層数は 2 0〜5 0枚が、 下側の グリーンシート 5 0 0の積層数は 5〜2 0枚が好ましい。  Specifically, the number of layers of the upper green sheet 500 is preferably 20 to 50, and the number of layers of the lower green sheet 500 is preferably 5 to 20.
( 4 ) グリーンシート積層体の焼成工程  (4) Green sheet laminate firing process
グリーンシート積層体の加熱、 加圧を行い、 グリーンシート 5 0 0および内部 の導体ペーストを焼結させ、 セラミック基板 3 1を製造する (図 1 7 ( b ) ) 。 加熱温度は、 1 0 0 0〜2 0 0 0 が好ましく、 加圧の圧力は、 1 0 0〜2 0 0 k g / c m2が好ましい。 加熱は、 不活性ガス雰囲気中で行う。 不活性ガスと しては、 例えば、 アルゴン、 窒素などを使用することができる。 The green sheet laminate is heated and pressurized to sinter the green sheet 500 and the internal conductive paste to produce a ceramic substrate 31 (FIG. 17 (b)). The heating temperature is preferably from 100 to 200 , and the pressurization pressure is preferably from 100 to 200 kg / cm 2 . Heating is performed in an inert gas atmosphere. As the inert gas, for example, argon, nitrogen, or the like can be used.
得られたセラミック基板 3 1に、 測温素子を挿入するための有底孔 (図示せず) や、 外部端子を挿入するための袋孔 3 8等を設ける (図 1 7 ( c ) ) 。 有底孔ぉ よぴ袋孔 3 8は、 表面研磨後に、 ドリル加工やサンドブラストなどのブラスト処 理を行うことにより形成することができる。  The obtained ceramic substrate 31 is provided with a bottomed hole (not shown) for inserting a temperature measuring element and a blind hole 38 for inserting an external terminal (FIG. 17 (c)). The bottomed hole 38 and the bag hole 38 can be formed by blasting such as drilling or sand blasting after surface polishing.
次に、 袋孔 3 8より露出したスルーホール 3 9に導電性セラミック等からなる ワッシャー 2 9を嵌め込み、 導電線 3 3を金ろう等を用いて接続する (図 1 7 ( d ) ) 。  Next, a washer 29 made of a conductive ceramic or the like is fitted into the through hole 39 exposed from the blind hole 38, and the conductive wire 33 is connected using a gold solder or the like (FIG. 17 (d)).
なお、 加熟温度は、 半田処理の場合には 9 0〜4 5 0でが好適であり、 ろう材 での処理の場合には、 9 0 0〜1 1 0 0 ^が好適である。 さらに、 測温素子とし ての熱電対などを耐熱性樹脂で封止し、 ホットプレート用のセラミック基板とす る。  The ripening temperature is preferably from 90 to 450 in the case of soldering, and is preferably from 900 to 110 ^ in the case of treatment with brazing material. In addition, a thermocouple as a temperature measuring element is sealed with a heat-resistant resin to form a ceramic substrate for a hot plate.
この後、 得られたセラミック基板を断熱リングを介して図 1 1〜1 3に示した ような構造の支持容器に嵌め込み、 この熱電対等の測温素子 3 7や抵抗発熱体 3 2からの配線を設け、 円筒部等を放熱フィンを備えた制御装置の放熱フィンに嵌 め込むか、 制御装置に取り付け、 その下の制御機器との配線を接続する。 なお、 支持容器の遮熱板 8 6、 9 6は、 金属で円板等を形成した後、 パンチングで撃ち 抜いて開口を形成しておく。 Thereafter, the obtained ceramic substrate is fitted through a heat insulating ring into a supporting container having a structure as shown in FIGS. 11 to 13, and wiring from a temperature measuring element 37 such as a thermocouple and a resistance heating element 32 is provided. Then, insert the cylindrical part or the like into the radiator fin of the control device equipped with the radiator fin, or attach it to the controller and connect the wiring to the control device below it. The heat shield plates 86 and 96 of the supporting container were shot by punching after forming a disk etc. with metal. Pull out to form an opening.
このホットプレートでは、 その上にシリコンウェハ等を載置するか、 または、 シリコンウェハ等を支持ピンで保持させた後、 シリコンウェハ等の被加熱物の加 熱を行うとともに、 種々の操作を行うことができる。  In this hot plate, a silicon wafer or the like is placed on the hot plate, or the silicon wafer or the like is held by support pins, and then the object to be heated such as the silicon wafer is heated and various operations are performed. be able to.
上記ホットプレート用のセラミック基板を製造する際に、 セラミック基板の内 部に静電電極を設けることにより静電チヤック用セラミック基板を製造すること ができ、 また、 加熱面にチャック トップ導体層を設け、 セラミック基板の内部に ガード電極ゃグランド電極を設けることによりウェハプロ一パ用セラミック基板 を製造することができる。  When the ceramic substrate for the hot plate is manufactured, the ceramic substrate for the electrostatic chuck can be manufactured by providing an electrostatic electrode inside the ceramic substrate, and a chuck top conductor layer is provided on the heating surface. By providing a guard electrode and a ground electrode inside a ceramic substrate, a ceramic substrate for a wafer proper can be manufactured.
セラミック基板の内部に電極を設ける場合には、 抵抗発熱体を形成する場合と 同様にグリーンシートの表面に導体ペースト層を形成すればよレ、。 また、 セラミ ック基板の表面に導体層を形成する場合には、 スパッタリング法やめつき法を用 いることができ、 これらを併用してもよい。 次に、 第三群の本発明について説明する。  When the electrodes are provided inside the ceramic substrate, a conductive paste layer may be formed on the surface of the green sheet as in the case of forming the resistance heating element. When a conductor layer is formed on the surface of the ceramic substrate, a sputtering method or a plating method can be used, and these may be used in combination. Next, a third group of the present invention will be described.
以下、 発明の実施の形態に則して説明するが、 第三群の本発明は、 この実施形 態に限定されることなく、 本発明の効果を損なわない範囲で改変できることはい うまでもなレ、。  Hereinafter, the present invention will be described based on the embodiments of the present invention. However, it is needless to say that the third group of the present invention is not limited to this embodiment and can be modified without impairing the effects of the present invention. ,.
この実施の形態では、 半導体製造 '検査装置は、 1または 2以上の回路からな る抵抗発熱体が設けられた円板形状のセラミック基板と、 略円筒形状の外枠部、 該外枠部の内側上部に設けられ、 断熱リングを介して嵌め込まれた上記セラミッ ク基板を支持する円環形状の基板受け部、 および、 該外枠部の内側下部に設けら れ、 放熱防止用の遮熱板を連結部材を介して支持する円環形状の遮熱板受け部を 含んで構成される支持容器とからなる。  In this embodiment, a semiconductor manufacturing / inspection apparatus includes a disc-shaped ceramic substrate provided with a resistance heating element composed of one or more circuits, a substantially cylindrical outer frame portion, and an outer frame portion. A ring-shaped substrate receiving portion provided at an upper portion on the inner side and supporting the ceramic substrate fitted via a heat insulating ring; and a heat shield plate provided at a lower portion on the inner side of the outer frame portion for preventing heat radiation. And a support container including an annular heat-shielding plate receiving portion for supporting through a connecting member.
また、 上記外枠部の底部には、 該外枠部よりも直径が小さく、 放熱フィンを有 する力 \ または、 放熱フィンを嵌合することができるように構成された円筒部が 延設されている。  In addition, a cylindrical portion having a diameter smaller than that of the outer frame portion and having a force having a heat radiation fin or a heat radiation fin can be fitted to the bottom of the outer frame portion. ing.
上記半導体製造 ·検査装置は、 その底部に外枠部よりも直径の小さな円筒部が 延設された構成となっており、 上記円筒部は、 従来の精密機器収納部に設けられ た放熱フィンを有する冷却器 (以下、 放熱フィンという) にそのまま嵌め込むこ とができるようになつている。 従って、 上記放熱フィン等を新たに作製し直す必 要がなく、 従来から用いられている放熱フィンを備えた制御装置をそのまま使用 することができる。 The above-mentioned semiconductor manufacturing / inspection apparatus has a configuration in which a cylindrical part having a smaller diameter than the outer frame part is extended at the bottom part, and the cylindrical part is provided in a conventional precision equipment storage part. It can be fitted directly into a cooler with a radiating fin (hereinafter referred to as a radiating fin). Therefore, there is no need to newly produce the above-mentioned heat radiation fins and the like, and the control device provided with the conventionally used heat radiation fins can be used as it is.
次に、 第三群の本発明の半導体製造 ·検査装置を図面に基づいて説明する。 図 1 4は、 第三群の本発明の半導体製造'検査装置の一例であるホットプレー トを模式的に示す縦断面図であり、 図 1 5は、 その平面図である。  Next, a third group of semiconductor manufacturing / inspection apparatuses of the present invention will be described with reference to the drawings. FIG. 14 is a vertical sectional view schematically showing a hot plate which is an example of the third group of semiconductor manufacturing and inspection equipment of the present invention, and FIG. 15 is a plan view thereof.
第三群の本発明の半導体製造 ·検査装置は、 抵抗発熱体 3 2が形成されたセラ ミック基板 3 1と支持容器 4 0とからなり、 セラミック基板 3 1は、 断面視 L字 型の断熱リング 1 4を介して、 支持容器 4 0の上部に嵌め込まれている。  The third group of semiconductor manufacturing / inspection devices of the present invention comprises a ceramic substrate 31 on which a resistance heating element 32 is formed and a supporting container 40, and the ceramic substrate 31 has an L-shaped thermal insulation in cross section. It is fitted into the upper part of the support container 40 via the ring 14.
円板形状のセラミック基板 3 1の内部には、 複数の回路からなる同心円形状の 抵抗発熱体 3 2が設けられ、 これらの抵抗発熱体端部 3 2 aには、 袋孔 3 8が形 成され、 抵抗発熱体端部 3 2 aと導電線 3 3とはスルーホール 3 9を介して接続 されている。 また、 中央に近い部分には、 支持ピン (図示せず) を挿入するため の貫通孔 3 5が形成されるとともに有底孔 3 4が形成され、 リード線 3 6を接続 した測温素子 3 7が有底孔 3 4に挿入されている。  A concentric resistance heating element 32 composed of a plurality of circuits is provided inside the disc-shaped ceramic substrate 31, and a blind hole 38 is formed at an end 3 2 a of the resistance heating element. The end 32 a of the resistance heating element and the conductive wire 33 are connected through a through hole 39. A through hole 35 for inserting a support pin (not shown) and a bottomed hole 34 are formed in a portion near the center, and a temperature measuring element 3 to which a lead wire 36 is connected is formed. 7 is inserted into the bottomed hole 34.
支持容器 4 0は、 略円筒形状の外枠部 4 1と、 外枠部 4 1の内側上部および下 部にそれぞれ設けられた共に円環形状の基板受け部 4 3および遮熱板受け部 4 4 と、 外枠部 4 1の底面に設けられ、 外枠部 4 1よりも直径の小さな円筒部 4 2と から構成され、 これらは一体に形成されている。 そして、 基板受け部 4 3は、 断 熱リング 1 4を介して嵌め込まれたセラミック基板 3 1を支持し、 遮熱板受け部 4 4は、 ボルト等の連結部材 4 7を介して放熱防止用の遮熱板 4 6を支持してい る。  The support container 40 includes a substantially cylindrical outer frame portion 41, and a ring-shaped substrate receiving portion 43 and a heat-shielding plate receiving portion 4 provided on the upper and lower portions of the inner side of the outer frame portion 41, respectively. 4 and a cylindrical portion 42 provided on the bottom surface of the outer frame portion 41 and having a smaller diameter than the outer frame portion 41. These are integrally formed. The substrate receiving portion 43 supports the ceramic substrate 31 fitted via the heat insulating ring 14, and the heat shield plate receiving portion 44 serves to prevent heat radiation through a connecting member 47 such as a bolt. The heat shield plates 46 are supported.
遮熱板 4 6には、 冷媒導入管 1 7が設けられており、 セラミック基板 3 1を冷 却する際に、 冷却エアー等を導入することができるようになつている。 また、 支 持ピンを挿通する貫通孔 3 5と連通するピン挿通スリーブ 5が形成されている。  The heat shield plate 46 is provided with a refrigerant introduction pipe 17 so that cooling air or the like can be introduced when the ceramic substrate 31 is cooled. Further, a pin insertion sleeve 5 communicating with the through hole 35 through which the support pin is inserted is formed.
また、 支持容器 4 0下部の円筒部 4 2には、 放熱フィン 1 3 0が嵌め込まれる ようになつており、 放熱フィン 1 3 0の下側には制御機器を収めた制御装置が存 在し、 この制御装置内の制御機器に導電線 3 3とリ一ド線 3 6とが接続される。 支持容器 4 0の材質としては特に限定されないが、 例えば、 鉄、 S U S等の金 属等が挙げられる。 Further, a radiation fin 130 is fitted into the cylindrical portion 42 at the lower part of the support container 40, and a control device containing a control device is provided below the radiation fin 130. The conductive wire 33 and the lead wire 36 are connected to the control device in the control device. The material of the supporting container 40 is not particularly limited, and examples thereof include metals such as iron and SUS.
外枠部 4 1は、 略円筒形状であり、 その内径は、 使用するセラミック基板によ り決定されるが、 2 5 O mm以上のセラミック基板を断熟リングを介して嵌め込 むことができる大きさが好ましい。  The outer frame portion 41 has a substantially cylindrical shape, and its inner diameter is determined by the ceramic substrate used, but a ceramic substrate of 25 O mm or more can be fitted through a maturing ring. Size is preferred.
円筒部 4 2の外径は、 放熱フィンに嵌め込むことができる大きさ、 すなわち、 2 0 0 ~ 2 4 3 mmに設定されている。  The outer diameter of the cylindrical portion 42 is set to a size that can be fitted into the radiation fin, that is, 200 to 243 mm.
第三群の本発明の半導体製造 ·検査装置を作動させると、 抵抗発熱体 3 2は発 熱し、 セラミック基板 3 1は昇温するが、 上記セラミック基板 3 1内に埋設され た測温素子 3 7により、 セラミック基板 3 1の温度が測定され、 測定データが制 御機器にインプットされ、 印加電圧 (電流) 量が制御されるので、 セラミック基 板 3 1の温度は一定値にコントロールされる。  When the semiconductor manufacturing / inspection apparatus of the third group of the present invention is operated, the resistance heating element 32 generates heat and the temperature of the ceramic substrate 31 rises, but the temperature measuring element 3 embedded in the ceramic substrate 3 1 By 7, the temperature of the ceramic substrate 31 is measured, the measured data is input to the control device, and the applied voltage (current) is controlled, so that the temperature of the ceramic substrate 31 is controlled to a constant value.
円筒部 4 2の外径は、 丁度放熱フィンに嵌め込むことができる大きさとなって いるので、 制御機器や電源が収納され、 放熱フィンを備えた制御装置上に放熱フ インを介して上記ホットプレートを据えつけることができる。 そして、 上記放熱 フィンの働きにより、 下部の制御装置が高温にならず、 常温に近い温度に保たれ る。  The outer diameter of the cylindrical portion 42 is just large enough to fit into the radiating fins. The plate can be installed. The lower control device does not become high in temperature due to the function of the radiation fins, and is maintained at a temperature close to room temperature.
第三群の本発明の半導体製造 ·検查装置で、 セラミック基板に埋設される抵抗 発熱体については、 第一群の本発明において説明したので、 ここでは、 その説明 を省略する。  In the third group of semiconductor manufacturing and inspection apparatuses according to the present invention, the resistance heating element embedded in the ceramic substrate has been described in the first group of the present invention, and the description thereof is omitted here.
以上の説明では、 上記導体層として、 抵抗発熱体が設けられたセラミック基板 を例にとって説明したが、 導体層は、 抵抗発熱体に限定されず、 ウェハプローバ では、 セラミック基板の表面にチャックトップ導体層、 内部にガード電極、 ダラ ンド電極が形成される。 また、 静電チャックでは、 セラミック基板の内部に静電 電極や R F電極が形成される。  In the above description, a ceramic substrate provided with a resistance heating element has been described as an example of the conductor layer. However, the conductor layer is not limited to the resistance heating element. In a wafer prober, a chuck top conductor is provided on the surface of the ceramic substrate. A guard electrode and a Dutch electrode are formed inside the layer. In the electrostatic chuck, electrostatic electrodes and RF electrodes are formed inside a ceramic substrate.
これらウェハプローバゃ静電チャックについても、 第一群の本発明で説明した ので、 ここでは説明を省略する。  Since these wafer probers and electrostatic chucks have also been described in the first group of the present invention, their description is omitted here.
第三の本発明の半導体製造 ·検査装置を構成するセラミック基板の材料や特性 についても、 第一群の本発明で説明したので、 同様に説明を省略する。 次に、 第三群の本発明の半導体製造 ·検査装置の別の実施形態について、 図 1 6を参照して説明する。 The material and characteristics of the ceramic substrate constituting the semiconductor manufacturing / inspection apparatus according to the third aspect of the present invention have been described in the first group of the present invention, and thus the description thereof is also omitted. Next, another embodiment of the semiconductor manufacturing / inspection apparatus of the third group of the present invention will be described with reference to FIG.
このホットプレートは、 セラミック基板 3 1と支持容器 7 0とからなり、 セラ ミック基板 3 1は、 図 1 4に示したセラミック基板 3 1と同様に構成されており、 このセラミック基板 3 1が断熱リング 1 4を介して、 支持容器 7 0の上部に嵌め 込まれている。  This hot plate is composed of a ceramic substrate 31 and a support container 70. The ceramic substrate 31 has the same configuration as the ceramic substrate 31 shown in FIG. 14, and the ceramic substrate 31 is thermally insulated. It is fitted into the upper part of the support container 70 via the ring 14.
支持容器 7 0は、 略円筒形状の外枠部 7 1と、 外枠部 7 1の内側上部おょぴ下 部にそれぞれ設けられた共に円環形状の基板受け部 7 3および遮熱板受け部 7 4 とを有し、 これらは一体に形成されている。 一方、 外枠部 7 1の底面には、 上部 円環状部 7 2 bと下部円環状部 7 2 cと力 放熱フィン 7 2 dを有する中間部 7 2 aを介して連結された円筒部 7 2が存在し、 中間部 7 2 aの円筒部分の直径は、 外枠部 7 1よりも小さい。 また、 円筒部 7 2は、 外枠部 7 1等とは分離され、 取 り外し可能な状態で延設されており、 そのため、 この円筒部 7 2は、 遮熱板 8 6 とともに、 ボルト等の連結部材 7 7を介して、 遮熱板受け部 7 4に支持、 固定さ れている。  The support container 70 includes a substantially cylindrical outer frame portion 71, and a ring-shaped substrate receiving portion 73 and a heat shield plate receiving portion provided on the inner upper and lower portions of the outer frame portion 71, respectively. And a part 74, which are integrally formed. On the other hand, on the bottom surface of the outer frame portion 71, a cylindrical portion 7 is connected via an intermediate portion 7 2a having an upper annular portion 7 2b, a lower annular portion 7 2c, and a power radiating fin 7 2d. 2, the diameter of the cylindrical portion of the intermediate portion 72 a is smaller than that of the outer frame portion 71. Further, the cylindrical portion 72 is separated from the outer frame portion 71 and the like, and is extended so as to be detachable. Therefore, the cylindrical portion 72 is, together with the heat shield plate 86, bolts and the like. It is supported and fixed to the heat shield plate receiving portion 74 via the connecting member 77.
遮熱板 8 6の内部の構造や配線等は、 図 1 3に示したホットプレートと略同様 であり、 また、 放熱フィン 7 2 dを有する円筒部 7 2の下方には制御装置が存在 し、 この制御装置内の制御機器に導電線 3 3とリード線 3 6とが接続されるよう になっている。  The internal structure, wiring, etc. of the heat shield plate 86 are substantially the same as those of the hot plate shown in FIG. 13, and a control device is provided below the cylindrical portion 72 having the heat radiation fins 72 d. The conductive wire 33 and the lead wire 36 are connected to control equipment in the control device.
円筒部 7 2の円筒部分の直径は、 図 1 3に示した円筒部 7 2の直径と同様であ る。  The diameter of the cylindrical portion of the cylindrical portion 72 is the same as the diameter of the cylindrical portion 72 shown in FIG.
このホットプレートを作動させると、 抵抗発熱体 3 2は発熱し、 セラミック基 板 3 1は昇温するが、 上記セラミック基板 3 1内に埋設された測温素子 3 7によ り、 セラミック基板 3 1の温度が測定され、 測定データが制御機器にインプット され、 印加電圧 (電流) 量が制御されるので、 セラミック基板 3 1の温度は一定 値にコントロールされる。  When this hot plate is activated, the resistance heating element 32 generates heat and the ceramic substrate 31 rises in temperature. However, the temperature measurement element 37 embedded in the ceramic substrate 31 allows the ceramic substrate 3 to be heated. The temperature of 1 is measured, the measured data is input to the control device, and the amount of applied voltage (current) is controlled, so that the temperature of the ceramic substrate 31 is controlled to a constant value.
また、 円筒部 7 2は、 制御機器に取り付けることができるようになっているの で、 制御機器や電源が収納され、 制御装置上に第三群の本発明の半導体製造 ·検 査装置を据えつけることができ、 上記放熱フィンの働きにより、 下部の制御装置 をほぼ常温に保つことができる。 Further, since the cylindrical portion 72 can be attached to a control device, the control device and the power supply are housed, and the third group of the semiconductor manufacturing / inspection device of the present invention is installed on the control device. It can be attached, and by the function of the radiation fin, the lower control device Can be kept at almost room temperature.
また、 直径の小さな円筒部を装置本体に嵌合すればよいので、 嵌合部分を大き くする必要もなく、 装置を大型化する必要もない。  Further, since the cylindrical portion having a small diameter only needs to be fitted to the main body of the apparatus, it is not necessary to increase the size of the fitting portion and to increase the size of the apparatus.
さらに、 ステージ基板を大型化しても、 嵌合部分は従来と同じ大きさのものを 使用することができるため、 装置本体は、 そのままでよい。  Further, even if the size of the stage substrate is increased, the size of the fitting portion can be the same as that of the conventional one, so that the apparatus main body can be left as it is.
以上、 第三群の本発明の本半導体製造 ·検査装置として、 ホットプレートを例 にとつて説明した。 第三群の本発明の半導体製造 ·検査装置の具体例としては、 上記ホットプレートのほかに、 例えば、 静電チャック、 ウェハプローバ、 サセプ タ等が挙げられる。  The hot plate has been described as an example of the semiconductor manufacturing / inspection apparatus of the third group of the present invention. Specific examples of the third group of semiconductor manufacturing / inspection apparatuses of the present invention include, for example, an electrostatic chuck, a wafer prober, and a susceptor in addition to the hot plate.
これらについては、 第一群の本発明で説明したので、 ここでは詳しい説明を省 略する。  Since these have been described in the first group of the present invention, detailed description will be omitted here.
また、 第三群の本発明の半導体製造 ·検査装置の製造方法については、 第一群 の本発明の半導体製造 ·検査装置の製造方法で説明したので、 ここでは省略する。 発明を実施するための最良の形態  The method of manufacturing the semiconductor manufacturing / inspection apparatus according to the third group of the present invention has been described in the method of manufacturing the semiconductor manufacturing / inspection apparatus according to the first group of the present invention, and a description thereof will be omitted. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明をさらに詳細に説明する。  Hereinafter, the present invention will be described in more detail.
(実施例 1〜3) ホットプレートの製造  (Examples 1 to 3) Production of hot plate
( 1 ) 窒化アルミニウム粉末 (トクャマネ土製、 平均粒径 1. 1 μ τη) 1 0 0重 量部、 酸化ィットリウム (Υ2 03 :イットリア、 平均粒径: 0. 4 /zm) 4重量 部、 アクリル系樹脂バインダー 1 1. 5重量部およびアルコールからなる組成物 のスプレードライを行い、 顆粒状の粉末を作製した。 (1) the aluminum nitride powder (Tokuyamane earth, average diameter 1. 1 μ τη) 1 0 0 by weight unit, oxide Ittoriumu (Upsilon 2 0 3: yttria, average particle size: 0. 4 / zm) 4 parts by weight, A composition composed of 11.5 parts by weight of an acrylic resin binder and alcohol was spray-dried to prepare a granular powder.
(2) 次に、 この顆粒状の粉末を断面が六角形状の金型に入れ、 六角形の平板 状に成形して生成形体 (グリーン) を得た。  (2) Next, this granular powder was placed in a mold having a hexagonal cross section, and formed into a hexagonal flat plate to obtain a green body.
(3) 加工処理の終わった生成形体を温度: 1 8 0 0^、 圧力: 2 0 0 k gZ c m2でホットプレスし、 厚さが 3 mmの窒化アルミニウム焼結体を得た。 (3) processing of finished and the green product temperature: 1 8 0 0 ^, pressure: 2 0 0 k hot-pressed at gZ cm 2, thickness was obtained aluminum nitride sintered body of 3 mm.
次に、 この焼結体から直径 2 1 0 mmの円板体を切り出し、 セラミック製の板 状体 (セラミック基板) とした。  Next, a disk having a diameter of 210 mm was cut out from the sintered body to obtain a ceramic plate (ceramic substrate).
次に、 この板状体にドリノレ力卩ェを施し、 半導体ウェハの支持ピンを挿入する貫 通孔となる部分、 熱電対を埋め込むための有底孔となる部分 (直径: 1. l mm、 深さ : 2mm) を形成した。 Next, the plate-shaped body is subjected to dry-rolling, and a portion serving as a through hole for inserting a support pin of a semiconductor wafer and a portion serving as a bottomed hole for embedding a thermocouple (diameter: 1.1 mm, (Depth: 2 mm).
(4) 上記 (3) で得た焼結体の底面に、 スクリーン印刷にて導体ペース トを 印刷した。 印刷パターンは、 同心円状とした。  (4) A conductor paste was printed on the bottom surface of the sintered body obtained in (3) by screen printing. The printing pattern was concentric.
導体ペーストとしては、 プリント配線板のスルーホール形成に使用されている 徳カ化学研究所製のソルべスト P S 603 Dを使用した。  As the conductor paste, Solvent PS 603D manufactured by Tokuka Chemical Laboratory, which is used to form through holes in printed wiring boards, was used.
この導体ペーストは、 銀一鉛ペーストであり、 銀 100重量部に対して、 酸化 鉛 (5重量%) 、 酸化亜鉛 (55重量%) 、 シリカ (1 0重量%) 、 酸化ホウ素 (25重量%) およびアルミナ (5重量%) からなる金属酸化物を 7. 5重量部 含むものであった。 また、 銀粒子は、 平均粒径が 4. 5 /zmで、 リン片状のもの であった。  This conductor paste is a silver-lead paste, with 100 parts by weight of silver being lead oxide (5% by weight), zinc oxide (55% by weight), silica (10% by weight), and boron oxide (25% by weight). ) And alumina (5% by weight). The silver particles had an average particle size of 4.5 / zm and were scaly.
(5) 次に、 導体ペーストを印刷したセラミック基板を 780でで加熱、 焼成 して、 導体ペース ト中の銀、 鉛を焼結させるとともに焼結体に焼き付け、 抵抗発 熱体を形成した。 銀—鉛の抵抗発熱体 32は、 厚さが 5 /zm、 幅 2. 4 mm, 面 積抵抗率が 7. 7mQZ口であった。  (5) Next, the ceramic substrate on which the conductor paste was printed was heated and fired at 780 to sinter the silver and lead in the conductor paste and baked them on a sintered body to form a resistance heat generator. The silver-lead resistance heating element 32 had a thickness of 5 / zm, a width of 2.4 mm, and an area resistivity of 7.7 mQZ.
(6) 硫酸ニッケル 80 g/ 次亜リン酸ナトリウム 24 g/ 1、 酢酸ナト リウム l S gZ l ほう酸 8 gZ l、 塩化ァンモニゥム 6 g / 1の濃度の水溶液 力 らなる無電解ニッケルめっき浴に上記 (5) で作製した焼結体を浸漬し、 銀一 鉛の抵抗発熱体 1 0の表面に厚さ 1 /zmの金属被覆層 (二ッケノレ層) を析出させ た。  (6) An electroless nickel plating bath consisting of 80 g of nickel sulfate / 24 g of sodium hypophosphite, 1 g of sodium acetate l S gZ l boric acid, 8 gZl of boric acid, and 6 g / 1 of ammonium chloride The sintered body prepared in (5) was immersed, and a 1 / zm-thick metal coating layer (two layer) was deposited on the surface of the silver-lead resistance heating element 10.
(7) 電源との接続を確保するための外部端子を取り付ける部分に、 スクリー ン印刷により、 銀一鉛半田ペース ト (田中貴金属社製) を印刷して半田ペース ト 層を形成した。  (7) Silver-lead solder paste (manufactured by Tanaka Kikinzoku Co., Ltd.) was printed by screen printing on the part where external terminals for securing connection to the power supply were to be formed, forming a solder paste layer.
ついで、 半田ペース ト層の上にコバール製の外部端子を载置して、 420 で 加熱リフローし、 外部端子を抵抗発熱体の表面に取り付け、 続いて導電線を有す るソケットを外部端子に取り付けた。  Next, an external terminal made of Kovar is placed on the solder paste layer, heated and reflowed at 420, the external terminal is attached to the surface of the resistance heating element, and then a socket having a conductive wire is connected to the external terminal. Attached.
(8) 温度制御のための熱電対を有底孔に挿入し、 ポリイミ ド樹脂を充填し、 190でで 2時間硬化させ、 ホットプレート用のセラミック基板の製造を終了し た。 この後、 この抵抗発熟体を有するセラミック基板を図 1 1に示したような構 成の支持容器 90に嵌め込み、 測温素子 (熱電対) からのリード線および抵杭発 熱体の端部からの導電線を図 1 1に示したように配設した。 (8) A thermocouple for temperature control was inserted into the bottomed hole, filled with polyimide resin, cured at 190 for 2 hours, and the production of the ceramic substrate for the hot plate was completed. Thereafter, the ceramic substrate having the resistance ripening body is fitted into a support container 90 having a structure as shown in FIG. 11, and the lead wires from the temperature measuring element (thermocouple) and the stakes are formed. Conductive wires from the end of the heating element were arranged as shown in FIG.
この支持容器において、 外枠部、 遮熱板は、 直径 220mm、 厚さ 1. 5mm のステンレス製であり、 断熱リング 14は、 ガラス繊維で補強されたフッ素樹脂 である。 また、 ボルト 98、 固定金具 9 7、 冷媒供給管 1 7もステンレス製であ る。 また、 遮熱板 96には、 直径 10 mix!〜 4 Ommの開口を設け、 開口の面積 比率を 1 5% (実施例 1) 、 30% (実施例 2) 、 50% (実施例 3) とした。 また、 重量 (外枠部 9 1、 遮熱板 96、 断熱リング 14、 ボノレト 98、 固定金具 97、 冷媒供給管 1 7の合計) は、 それぞれ、 0. 96 k g (実施例 1) 、 0. 86 k g (実施例 2) 、 0. 78 k g (実施例 3) とした。 詳細は、 表 1に記載 する。  In this supporting container, the outer frame portion and the heat shield plate are made of stainless steel having a diameter of 220 mm and a thickness of 1.5 mm, and the heat insulating ring 14 is made of a fluorine resin reinforced with glass fiber. The bolt 98, the fixing bracket 97, and the refrigerant supply pipe 17 are also made of stainless steel. The heat shield 96 has a diameter of 10 mix! An opening of about 4 Omm was provided, and the area ratio of the opening was 15% (Example 1), 30% (Example 2), and 50% (Example 3). The weight (total of the outer frame part 91, heat shield plate 96, heat insulating ring 14, Bonoleto 98, fixing bracket 97, and refrigerant supply pipe 17) is 0.96 kg (Example 1) and 0.96 kg, respectively. 86 kg (Example 2) and 0.78 kg (Example 3). See Table 1 for details.
(実施例 4) ホッ トプレートの製造  (Example 4) Production of hot plate
基本的には実施例 1と同様であるが、 遮熱板 96の開口 (直径 1 0mm) の面 積比率が、 8. 0%であり、 重量 (外枠部 9 1、 遮熱板 96、 断熱リング 14、 ボルト 98、 固定金具 97、 冷媒供給管 1 7の合計) は 0. 98 k gであった。  Basically, it is the same as Example 1, except that the area ratio of the opening (diameter 10 mm) of the heat shield 96 is 8.0%, and the weight (the outer frame part 91, the heat shield 96, Insulation ring 14, bolt 98, fixing bracket 97, and refrigerant supply pipe 17) totaled 0.98 kg.
(実施例 5 ) ホットプレートの製造  (Example 5) Production of hot plate
基本的には実施例 1と略同様であるが、 開口の直径が 2 Ommであり、 遮熱板 16の開口の面積比率が 30%であり、 遮熱板の厚さが 3 mmである点が異なる。 本実施例では、 遮熱板の厚さを 3 mmとしたため、 重量 (外枠部 9 1、 遮熱板 9 6、 断熱リング 14、 ボルト 98、 固定金具 97、 冷媒供給管 1 7の合計) は 1. 42 k gと重くなつた。  Basically similar to Example 1, except that the diameter of the opening is 2 Omm, the area ratio of the opening of the heat shield plate 16 is 30%, and the thickness of the heat shield plate is 3 mm. Are different. In this embodiment, since the thickness of the heat shield plate is 3 mm, the weight (total of the outer frame portion 91, the heat shield plate 96, the heat insulating ring 14, the bolt 98, the fixing bracket 97, and the refrigerant supply pipe 17) Weighed 1.42 kg.
(比較例 1) 遮熱板に開口が形成されていないホットプレートの製造 基本的には実施例 1と同様であるが、 開口を全く設けず、 重量 (外枠部 9 1、 遮熟板 96、 断熱リング 14、 ポルト 98、 固定金具 97、 冷媒供給管 1 7の合 計) は 1. 08 k gとなった。  (Comparative Example 1) Manufacture of a hot plate having no opening in the heat shield plate Same as Example 1 except that no opening is provided and the weight (outer frame portion 91, ripening plate 96 , The insulation ring 14, the Porto 98, the fixing bracket 97, and the refrigerant supply pipe 17) totaled 1.08 kg.
(比較例 2) 放冷  (Comparative Example 2) Cooling
実施例 1と同様のホットプレートを製造した後、 このホットプレートの支持容 器に冷媒を全く導入せず、 自然放冷した。 開口率 開口直径 開口の個数 溶器の After the same hot plate as in Example 1 was manufactured, the hot plate was allowed to cool naturally without introducing any refrigerant into the supporting container. Aperture ratio Aperture diameter Number of apertures
(%) (mm) (個) (k g)  (%) (mm) (pcs) (kg)
1 5 1 0 73 0. 96 2  1 5 1 0 73 0.96 2
難例 2 3 0 20 3 6 0. 8 6  Difficult example 2 3 0 20 3 6 0.8.6
難例 3 50 40 1 5 0. 7 8  Difficult case 3 50 40 1 5 0.7.8
1 0 39 0. 9 8  1 0 39 0. 9 8
錢例 5 30 20 3 6 1. 42  Chinen 5 30 20 3 6 1.42
賤例 1 1. 0 8 1 0  Shizu example 1 1.0 8 1 0
0. 9 6 240  0.9 9 6 240
注) i^例 2では、 冷媒を導入 、放冷 表 1に示した結果より明らかなように、 20 0でから 2 5°Cまで降温するのに 要する時間は、 実施例 1〜3では、 いずれの場合も、 2分であり、 実施例 4では、 3分であり、 実施例 5では 5分であり、 いずれの実施例でも降温時間は比較的短 かかった。  Note) i ^ In Example 2, the refrigerant was introduced and allowed to cool. As is clear from the results shown in Table 1, the time required to decrease the temperature from 200 to 25 ° C was as follows in Examples 1 to 3. In each case, the time was 2 minutes, the time in Example 4 was 3 minutes, and the time in Example 5 was 5 minutes. In each of the examples, the cooling time was relatively short.
これに対し、 遮熱板に開口が形成されていない比較例 1では、 降温に 1 0分と 長時間を要し、 比較例 2では、 2 40分とさらに長時間を要した。  On the other hand, in Comparative Example 1 in which an opening was not formed in the heat shield plate, it took a long time to cool down to 10 minutes, and in Comparative Example 2, it took an even longer time as 240 minutes.
このことから、 冷却速度を決定する主因子は、 支持容器の重量であり、 開口率 は副次的要因であると推定される。 ただし、 全く開口がない場合は、 冷却速度の 著しい低下が見られる。 このように第二群の本発明では、 開口や支持容器の重量 の制御だけで、 降温速度を向上させることができ、 簡単な構造でかつ低コストの 装置が得られる。  From this, it is estimated that the main factor that determines the cooling rate is the weight of the supporting vessel, and the opening ratio is a secondary factor. However, when there is no opening, the cooling rate is significantly reduced. As described above, in the second group of the present invention, the temperature reduction rate can be improved only by controlling the weight of the opening and the supporting container, and a device having a simple structure and low cost can be obtained.
(実施例 6) ホットプレートの製造  (Example 6) Production of hot plate
(1) 窒化アルミニウム粉末 (トクャマ社製、 平均粒径 1. 1 μτα) 1 00重 量部、 酸化ィットリウム (Υ23 :イツトリァ、 平均粒径: 0. μτη.) 4重量 部、 アクリル系樹脂バインダー 1 1. 5重量部およびアルコールからなる組成物 のスプレードライを行い、 顆粒状の粉末を作製した。 (1) the aluminum nitride powder (Tokuyama Corp., average particle size 1. 1 μτα) 1 00 by weight part, oxide Ittoriumu (Upsilon 23: Itsutoria, average particle size:. 0. μτη) 4 parts by weight, acrylic A composition comprising 11.5 parts by weight of a resin binder and alcohol was spray-dried to produce a granular powder.
(2) 次に、 この顆粒状の粉末を断面が六角形状の金型に入れ、 六角形の平板 状に成形して生成形体 (グリーン) を得た。  (2) Next, this granular powder was placed in a mold having a hexagonal cross section, and formed into a hexagonal flat plate to obtain a green body.
(3) 加工処理の終わった生成形体を温度: 1 8 0 0°C、 圧力: 2 00 k g/ cm2でホットプレスし、 厚さが 3 mmの窒化アルミニウム焼結体を得た。 (3) After the processed form is processed, temperature: 180 ° C, pressure: 200 kg / Hot pressing was performed at 2 cm 2 to obtain an aluminum nitride sintered body having a thickness of 3 mm.
次に、 この焼結体から直径 21 0 mmの円板体を切り出し、 セラミック製の板 状体 (セラミック基板) とした。  Next, a disk having a diameter of 210 mm was cut out from the sintered body to obtain a ceramic plate (ceramic substrate).
次に、 この板状体にドリル加工を施し、 半導体ウェハの支持ピンを挿入する貫 通孔となる部分、 熱電対を埋め込むための有底孔となる部分 (直径: 1. lmm, 深さ : 2mm) を形成した。  Next, this plate is drilled to form a through hole for inserting a support pin of a semiconductor wafer and a bottomed hole for embedding a thermocouple (diameter: 1. lmm, depth: 2 mm).
(4) 上記 (3) で得た焼結体の底面に、 スクリーン印刷にて導体ペース トを 印刷した。 印刷パターンは、 同心円状とした。  (4) A conductor paste was printed on the bottom surface of the sintered body obtained in (3) by screen printing. The printing pattern was concentric.
導体ペーストとしては、 プリント配線板のスルーホール形成に使用されている 徳カ化学研究所製のソルべスト P S 603 Dを使用した。  As the conductor paste, Solvent PS 603D manufactured by Tokuka Chemical Laboratory, which is used to form through holes in printed wiring boards, was used.
この導体ペーストは、 銀一鉛ペーストであり、 銀 100重量部に対して、 酸ィ匕 鉛 (5重量%) 、 酸化亜鉛 (55重量%) 、 シリカ (10重量%) 、 酸化ホウ素 (25重量%) およびアルミナ (5重量%) からなる金属酸化物を 7. 5重量部 含むものであった。 また、 銀粒子は、 平均粒径が 4. 5 / mで、 リ ン片状のもの であった。  This conductor paste is a silver-lead paste, and based on 100 parts by weight of silver, oxidized lead (5% by weight), zinc oxide (55% by weight), silica (10% by weight), and boron oxide (25% by weight) %) And 7.5% by weight of a metal oxide consisting of alumina (5% by weight). The silver particles had a mean particle size of 4.5 / m and were flake-like.
(5) 次に、 導体ペーストを印刷したセラミック基板を 780 で加熱、 焼成 して、 導体ペース ト中の銀、 鉛を焼結させるとともに焼結体に焼き付け、 抵抗発 熱体を形成した。 銀一鉛の抵抗発熱体 32は、 厚さが 5 m、 幅 2. 4mm、 面 積抵抗率が 7. 7mQZ口であった。  (5) Next, the ceramic substrate on which the conductor paste was printed was heated and fired at 780 to sinter the silver and lead in the conductor paste and bake them on a sintered body to form a resistance heat generator. The silver / lead resistance heating element 32 had a thickness of 5 m, a width of 2.4 mm, and an area resistivity of 7.7 mQZ.
(6) 硫酸ニッケル 80 g l、 次亜リン酸ナトリウム 24 gノ 1、 酢酸ナト リウム 1 2 g/ 1、 ほう酸 8 g/ 1、 塩化アンモニゥム 6 g/ lの濃度の水溶液 からなる無電解ニッケルめっき浴に上記 (5) で作製した焼結体を浸漬し、 銀一 鉛の抵抗発熱体 32の表面に厚さ 1 /zmの金属被覆層 (ニッケル層) を析出させ た。  (6) An electroless nickel plating bath consisting of 80 g of nickel sulfate, 24 g of sodium hypophosphite, 12 g of sodium acetate, 12 g of boric acid, 8 g of boric acid, and 6 g / l of ammonium chloride Then, the sintered body prepared in the above (5) was immersed, and a metal coating layer (nickel layer) having a thickness of 1 / zm was deposited on the surface of the resistance heating element 32 of silver-lead.
(7) 電源との接続を確保するための外部端子を取り付ける部分に、 スクリー ン印刷により、 銀一鉛半田ペース ト (田中貴金属社製) を印刷して半田ペース ト 層を形成した。  (7) Silver-lead solder paste (manufactured by Tanaka Kikinzoku Co., Ltd.) was printed by screen printing on the part where external terminals for securing connection to the power supply were to be formed, forming a solder paste layer.
ついで、 半田ペースト層の上にコバール製の外部端子を載置して、 420°Cで 加熱リフローし、 外部端子を抵抗発熱体の表面に取り付け、 続いて導電線を有す るソケットを外部端子に取り付けた。 Next, the external terminals made of Kovar are placed on the solder paste layer, heated and reflowed at 420 ° C, and the external terminals are attached to the surface of the resistance heating element. Sockets were attached to the external terminals.
(8) 温度制御のための熱電対を有底孔に挿入し、 ポリイミ ド樹脂を充填し、 1 90でで 2時間硬化させ、 ホットプレート用のセラミック基板の製造を終了し た。 この後、 この抵抗発熱体を有するセラミック基板を図 1 4に示したような構 成の支持容器 40に嵌め込み、 測温素子 (熱電対) からのリード線および抵抗発 熱体の端部からの導電線を図 1 4に示したように配設し、 さらに、 このホットプ レートの支持容器 40を構成する円筒部 4 2を制御装置の放熱フィンに嵌め込み、 制御機器との配線の接続を行った。  (8) A thermocouple for temperature control was inserted into the bottomed hole, filled with polyimide resin, cured at 190 for 2 hours, and the production of the ceramic substrate for the hot plate was completed. Thereafter, the ceramic substrate having the resistance heating element is fitted into a support container 40 having a structure as shown in FIG. 14, and the lead wire from the temperature measuring element (thermocouple) and the end from the end of the resistance heating element are connected. The conductive wires were arranged as shown in FIG. 14, and the cylindrical portion 42 constituting the hot plate support container 40 was fitted into the radiating fins of the control device to connect the wires to the control device. .
(9) この後、 ホットプレートに通電し、 セラミック基板の加熱面を 2 5 O : に保持しながら、 シリコンウェハを加熱した。 その結果、 シリコンウェハは均一 に加熱され、 シリコンウェハの破損等は発生せず、 制御装置の温度も殆ど上昇せ ず、 ホットプレートを設計通りに動作させることができた。  (9) Thereafter, the silicon wafer was heated while energizing the hot plate and holding the heating surface of the ceramic substrate at 25 O :. As a result, the silicon wafer was heated uniformly, the silicon wafer was not damaged, the temperature of the control device hardly increased, and the hot plate could be operated as designed.
(実施例 7) ホッ トプレートの製造 (図 1 7参照)  (Example 7) Manufacturing of hot plate (see Fig. 17)
(1) 窒化アルミニウム粉末 (トクャマ社製、 平均粒径: 1. 1 ^m) 1 00 重量部、 酸化ィットリウム (Y2 03 :イットリア、 平均粒径: 0. 4 μτα) 4重 量部、 アクリルバインダ 1 1. 5重量部、 分散剤 0. 5重量部および 1ーブタノ ールとエタノールとからなるアルコール 5 3重量部を混合したペーストを用い、 ドクターブレード法により成形を行って、 厚さ 0. 4 7 mmのグリーンシート 5 00を作製した。 (1) the aluminum nitride powder (Tokuyama Corp., average particle size: 1. 1 ^ m) 1 00 parts by weight, oxide Ittoriumu (Y 2 0 3: yttria, average particle size: 0. 4 μτα) 4 by weight unit, Acrylic binder 11.5 parts by weight, dispersant 0.5 parts by weight, and a paste obtained by mixing 53 parts by weight of alcohol composed of 1-butanol and ethanol 53 were molded by a doctor blade method to a thickness of 0. A 47 mm green sheet 500 was produced.
(2) 次に、 このグリーンシート 500を 8 0でで 5時間乾燥させた後、 シリ コンウェハを支持する支持ピンを挿入するための貫通孔となる部分およびスルー ホールとなる部分等をパンチングにより形成した。  (2) Next, after drying this green sheet 500 at 80 for 5 hours, a portion serving as a through hole for inserting a support pin for supporting a silicon wafer and a portion serving as a through hole are formed by punching. did.
(3) 平均粒子径 1 μπιのタングステンカーバイ ト粒子 1 00重量部、 アタリ ル系バインダ 3. 0重量部、 α—テルビネオール溶媒 3. 5重量部および分散剤 0. 3重量部を混合して導体ペースト Αを調製した。  (3) 100 parts by weight of tungsten carbide particles having an average particle size of 1 μπι, 3.0 parts by weight of an atalyl binder, 3.5 parts by weight of an α-terbineol solvent, and 0.3 parts by weight of a dispersant are mixed. Conductor paste Α was prepared.
平均粒子径 3 /zmのタングステン粒子 1 00重量部、 ァクリル系パインダ 1. 9重量部、 α—テルビネオール溶媒 3. 7重量部および分散剤 0. 2重量部を混 合して導体ペースト Βを調製した。 100 parts by weight of tungsten particles having an average particle size of 3 / zm, 1.9 parts by weight of an acryl-based binder, 3.7 parts by weight of an α -terbineol solvent and 0.2 parts by weight of a dispersant are mixed to prepare a conductive paste Β. did.
そして、 スルーホール用の貫通孔に導体ペース ト Βを充填した後、 導体ペース ト Aをグリーンシート上にスクリーン印刷で印刷し、 抵抗発熱体 3 2用の導体べ 一ス ト層 3 2 0を形成した。 印刷パターンは、 同心円パターンとし、 導体ペース ト層の幅を 1 0mm、 その厚さを 1 2 // mとした。 After filling the through hole for the through hole with the conductor paste 、, the conductor paste A was printed on the green sheet by screen printing to form a conductor base layer 320 for the resistance heating element 32. The printing pattern was a concentric pattern, the width of the conductor paste layer was 10 mm, and its thickness was 12 // m.
上記処理の終わったグリーンシ一ト 5 0 0に、 タングステンペーストを印刷し ないグリーンシート 5 00を上側 (加熱面) に 3 7枚、 下側に 1 3枚、 1 3 0t:、 80 k g/c m2の圧力で積層した (図 1 7 (a) ) 。 On the green sheet 500 after the above processing, 37 sheets of green sheet 500 without tungsten paste printed on the upper side (heating surface), 13 sheets on the lower side, 130 t: 130 t :, 80 kg / The layers were laminated at a pressure of cm 2 (Fig. 17 (a)).
(4) 次に、 得られた積層体を窒素ガス中、 6 00°Cで 5時間脱脂し、 1 8 9 O ,圧力 1 50 k g/cm2で 1 0時間ホットプレスし、 厚さ 3mmの窒化ァ ルミニゥム焼結体を得た。 これを 23 Ommの円板状に切り出し、 内部に厚さ 6 μιη、 幅 1 Omm (ァスぺク ト比 : 1 6 6 6) の抵抗発熱体 3 2を有するホッ ト プレートとした (図 1 7 (b) ) 。 (4) Next, the obtained laminate was degreased in nitrogen gas at 600 ° C. for 5 hours, and hot-pressed at 189 O and a pressure of 150 kg / cm 2 for 10 hours to form a 3 mm thick plate. An aluminum nitride sintered body was obtained. This was cut into a 23 Omm disk and used as a hot plate with a resistance heating element 32 with a thickness of 6 μιη and a width of 1 Omm (aspect ratio: 1666) (see Fig. 1). 7 (b)).
(5) 次に、 (4) で得られた板状体を、 ダイヤモンド砥石で研磨した後、 マ スクを載置し、 S i C等によるブラスト処理で表面に熱電対のための有底孔を設 けた。  (5) Next, the plate obtained in (4) is polished with a diamond grindstone, a mask is placed on the plate, and a bottomed hole for a thermocouple is formed on the surface by blasting with SiC or the like. Was set up.
(6) さらに、 板状体にドリノレ加工を施して袋孔 3 8とし (図 1 7 (c) ) 、 この袋孔 3 8に W製のヮッシヤー 29を嵌め込んだ後、 導電線 3 3を中心孔に揷 入し、 N i—Au合金 (Au : 8 1. 5重量%、 N i : 1 8. 4重量0 /0、 不純物: 0. 1重量%) からなる金ろうを用い、 9 7 で加熱リフローすることにより、 ワッシャー 2 9および導電線 3 3をろう付けし、 導電線 3 3をスルーホール 3 8 を介して抵抗発熱体 3 2の端部と接続した (図 1 7 (d) ) 。 (6) Further, the plate-shaped body is subjected to dorinor processing to form a blind hole 38 (FIG. 17 (c)). After fitting a W-made mesh 29 into the blind hole 38, the conductive wire 33 is formed. center hole in揷input City, N i-Au alloy (Au: 8 1. 5 wt%, N i: 1 8. 4 weight 0/0, impurities: 0. 1 wt%) of gold braze used consisting, 9 7, the washer 29 and the conductive wire 33 were brazed, and the conductive wire 33 was connected to the end of the resistance heating element 32 through the through hole 38 (Fig. 17 (d )).
(7) 温度制御のための複数の熱電対を有底孔に埋め込み、 ポリイミド樹脂を 充填し、 1 9 0°Cで 2時間硬化させ、 ホットプレート用セラミック基板を製造し た。  (7) A plurality of thermocouples for temperature control were embedded in the bottomed holes, filled with a polyimide resin, and cured at 190 ° C for 2 hours to produce a ceramic substrate for a hot plate.
(8) この後、 実施例 6と略同様にして、 図 1 4に示した支持容器 40に嵌め 込んで配線等を行い、 さらに、 完成したホットプレートを制御装置に嵌め込み、 制御機器との配線を接続した。  (8) After that, in substantially the same manner as in Example 6, it is inserted into the support container 40 shown in FIG. 14 to perform wiring and the like. Further, the completed hot plate is inserted into the control device, and the wiring to the control device is performed. Connected.
(9) この後、 ホットプレートに通電し、 セラミック基板 3 1の加熱面 3 1 a を 2 50°Cに保持しながら、 シリ コンウェハを加熱した。 その結果、 シリコンゥ ェハは均一に加熱され、 シリコンウェハの破損等は発生せず、 制御装置の温度も 殆ど上昇せず、 ホッドプレートを設計通りに動作させることができた。 産業上利用の可能性 (9) Thereafter, the hot plate was energized, and the silicon wafer was heated while the heating surface 31a of the ceramic substrate 31 was kept at 250 ° C. As a result, the silicon wafer is heated uniformly, the silicon wafer is not damaged, etc., and the temperature of the control device is reduced. The hod plate was able to operate as designed with almost no rise. Possibility of industrial use
以上説明したように第一群の本発明によれば、 支持容器に、 その内外を連通さ せる冷媒供給管が設けられているので、 半導体製造'検査装置の全体を短時間で 均一に冷却することができる。  As described above, according to the first group of the present invention, since the support container is provided with the refrigerant supply pipe for communicating the inside and the outside thereof, the entire semiconductor manufacturing / inspection apparatus is uniformly cooled in a short time. be able to.
また、 第二群の本発明によれば、 支持容器に固定される板状体に開口が形成さ れているので、 高速降温を実現することができる。  Further, according to the second group of the present invention, since the opening is formed in the plate-shaped body fixed to the support container, high-speed temperature reduction can be realized.
更に、 第三群の本発明によれば、 上記支持容器の底部に支持容器の外枠より外 径の小さな円筒部が設けられているので、 従来から用いられている放熱フィン等 を備えた制御装置をそのまま使用することができる。  Further, according to the third group of the present invention, since a cylindrical portion having an outer diameter smaller than the outer frame of the support container is provided at the bottom of the support container, a control unit including a conventionally used radiation fin or the like is provided. The device can be used as it is.

Claims

請求の範囲 The scope of the claims
1 . 有底状の支持容器の開口部に、 抵抗発熱体を有するセラミック基板を設置 してなる半導体製造 ·検査装置であって、 1. A semiconductor manufacturing and inspection apparatus in which a ceramic substrate having a resistance heating element is installed in an opening of a bottomed supporting container,
前記支持容器には、 その內外を連通させる冷媒供給管が形成されていることを 特徴とする半導体製造 ·検査装置。  A semiconductor manufacturing / inspection apparatus, wherein a coolant supply pipe is formed in the support container to communicate the outside of the support vessel.
2 . 前記冷媒供給管は、 前記支持容器の底部に形成されている請求の範囲 1に 記載の半導体製造 ·検査装置。 2. The semiconductor manufacturing / inspection apparatus according to claim 1, wherein the refrigerant supply pipe is formed at a bottom of the support container.
3 . 前記冷媒供給管は、 複数個形成されている請求の範囲 1または 2記載の半 導体製造 ·検査装置。 3. The semiconductor manufacturing / inspection apparatus according to claim 1, wherein a plurality of the refrigerant supply pipes are formed.
4 . 前記支持容器の開口部の上縁と前記セラミック基板の底面外周部との間に は、 断熱リングが設けられている請求の範囲 1〜3のいずれか 1に記載の半導体 製造 ·検査装置。 4. The semiconductor manufacturing / inspection apparatus according to any one of claims 1 to 3, wherein a heat insulating ring is provided between an upper edge of the opening of the support container and an outer peripheral portion of a bottom surface of the ceramic substrate. .
5 . 前記支持容器における配線引き出し部には、 シール部材が設けられている 請求の範囲 1〜 4のいずれか 1に記載の半導体製造 ·検査装置。 5. The semiconductor manufacturing / inspection apparatus according to any one of claims 1 to 4, wherein a seal member is provided at a wiring lead-out portion of the support container.
6 . セラミック基板を支持する支持容器であって、 略円筒形状の外枠部および 該外枠部に連結固定される板状体からなり、 前記板状体には複数の開口が形成さ れていることを特徴とする支持容器。 6. A support container for supporting a ceramic substrate, comprising a substantially cylindrical outer frame portion and a plate-like body connected and fixed to the outer frame portion, wherein the plate-like body has a plurality of openings formed therein. A support container, characterized in that:
7 . 前記板状体の投影面積 S Aおよび前記板状体に設けられた開口の合計面積 Sの関係は、 0 . 0 3≤S Z S Aである請求の範囲 6に記載の支持容器。 7. The support container according to claim 6, wherein the relationship between the projected area S A of the plate-shaped body and the total area S of the openings provided in the plate-shaped body is 0.03 ≦ S Z S A.
8 . 前記外枠部の内側に設けられ、 断熱リングを介して嵌め込まれた前記セラ ミック基板を支持する円環形状の基板受け部を有する請求の範囲 6または 7に記 載の支持容器。 8. The method according to claim 6, further comprising an annular substrate receiving portion provided inside the outer frame portion and supporting the ceramic substrate fitted through a heat insulating ring. Support container.
9. 前記板状体には、 冷却媒体供給口が形成されてなる請求の範囲 6〜 8のい ずれか 1に記載の支持容器。 9. The support container according to any one of claims 6 to 8, wherein a cooling medium supply port is formed in the plate-like body.
10. 前記支持容器の重量 M (k g) およびセラミック基板の直径 L (mm) の関係は、 M≤Lノ 200である請求の範囲 6〜 9のいずれか 1に記載の支持容 10. The support container according to any one of claims 6 to 9, wherein the relationship between the weight M (kg) of the support container and the diameter L (mm) of the ceramic substrate is M≤L 200.
1 1. 請求の範囲 6〜 10のいずれか 1に記載の支持容器の外枠部にセラミッ ク基板が支持固定されてなることを特徴とする半導体製造 ·検査装置。 1 1. A semiconductor manufacturing / inspection apparatus, wherein a ceramic substrate is supported and fixed to an outer frame of the support container according to any one of claims 6 to 10.
12. 前記セラミック基板には抵抗発熱体が設けられてなる請求の範囲 1 1に 記載の半導体製造 ·検査装置。 12. The semiconductor manufacturing / inspection apparatus according to claim 11, wherein a resistance heating element is provided on said ceramic substrate.
13. セラミック基板を支持する支持容器であって、 略円筒形状の外枠部およ ぴ該外枠部に連結固定される板状体からなり、 前記支持容器の重量 M (k g) お よびセラミック基板の直径 L (mm) の関係は、 M≤LZ200であることを特 徴とする支持容器。 13. A supporting container for supporting a ceramic substrate, comprising a substantially cylindrical outer frame portion and a plate-like body connected and fixed to the outer frame portion, wherein the weight M (kg) of the supporting container and the ceramic A support container characterized in that the relationship between the substrate diameters L (mm) is M≤LZ200.
14. 前記板状体には複数の開口が形成されている請求の範囲 1 3に記載の支 持容器。 14. The support container according to claim 13, wherein a plurality of openings are formed in said plate-like body.
15. 支持容器を構成する部材の厚さは、 0. 1〜5mmである請求の範囲 1 3または 14に記載の支持容器。 15. The support container according to claim 13, wherein a thickness of a member constituting the support container is 0.1 to 5 mm.
1 6. 請求の範囲 1 3〜 1 5のいずれか 1に記載の支持容器の外枠部にセラミ ック基板が支持固定されてなることを特徴とする半導体製造 ·検査装置。 1 6. A semiconductor manufacturing / inspection apparatus, wherein a ceramic substrate is supported and fixed to an outer frame portion of the support container according to any one of claims 13 to 15.
1 7 . 前記セラミック基板には抵抗発熱体が設けられてなる請求の範囲 1 6に 記載の半導体製造 ·検査装置。 17. The semiconductor manufacturing / inspection apparatus according to claim 16, wherein the ceramic substrate is provided with a resistance heating element.
1 8 . ステージ基板を支持する支持容器であって、 略円筒形状の外枠部おょぴ 該外枠部の底部に延設された外枠部よりも直径の小さな円筒部からなることを特 徴とする支持容器。 18. A support container for supporting the stage substrate, which is characterized in that it comprises a substantially cylindrical outer frame portion and a cylindrical portion having a smaller diameter than the outer frame portion extending to the bottom of the outer frame portion. Support container to be featured.
1 9 . 前記外枠部よりも直径の小さな円筒部には放熱フィンが形成されてなる 請求の範囲 1 8に記載の支持容器。 19. The support container according to claim 18, wherein a radiation fin is formed in a cylindrical portion having a smaller diameter than the outer frame portion.
2 0 . 前記外枠部の内側上部に設けられ、 断熱リングを介して嵌め込まれた前 記ステージ基板を支持する円環形状の基板受け部を有する請求の範囲 1 8または 1 9に記載の支持容器。 20. The support according to claim 18 or 19, further comprising an annular substrate receiving portion provided at an upper portion inside the outer frame portion and supporting the stage substrate inserted through a heat insulating ring. container.
2 1 . 前記外枠部の内側下部に設けられ、 放熱防止用の遮熱板を連結部材を介 して支持する円環形状の遮熱板受け部が形成された請求の範囲 1 8〜2 0のいず れか 1に記載の支持容器。 21. An annular heat-shielding plate receiving portion provided at an inner lower portion of the outer frame portion and supporting a heat-shielding plate for preventing heat radiation through a connecting member is formed. The support container according to any one of 0.
2 2 . 表面もしくは内部に導体層が設けられた円板形状のセラミック基板と、 該セラミック基板を受ける略円筒形状の外枠部おょぴ該外枠部の底部に延設され た外枠部よりも直径の小さな円筒部を含んで構成される支持容器とからなること を特徴とする半導体製造 ·検査装置。 22. A disk-shaped ceramic substrate provided with a conductor layer on the surface or inside, and a substantially cylindrical outer frame portion for receiving the ceramic substrate, and an outer frame portion extending to the bottom of the outer frame portion A semiconductor manufacturing / inspection apparatus comprising: a support container including a cylindrical portion having a smaller diameter than that of the support container.
2 3 . 前記支持容器の外枠部よりも直径の小さな円筒部には、 放熱フィンが形 成されてなる請求の範囲 2 2に記載の半導体製造 ·検査装置。 23. The semiconductor manufacturing / inspection apparatus according to claim 22, wherein a radiation fin is formed in a cylindrical portion having a smaller diameter than an outer frame portion of the support container.
2 4 . 前記支持容器には、 前記外枠部の内側上部に設けられ、 断熱リングを介 して嵌め込まれた前記セラミック基板を支持する円環形状の基板受け部が形成さ れている請求の範囲 2 2または 2 3に記載の半導体製造 ·検査装置。 24. The support container is provided with an annular substrate receiving portion provided at an upper portion inside the outer frame portion and supporting the ceramic substrate fitted through a heat insulating ring. Semiconductor manufacturing and inspection equipment according to range 22 or 23.
2 5 . 前記支持容器は、 前記外枠部の内側下部に設けられ、 放熱防止用の遮熱 板を連結部材を介して支持する円環形状の遮熱板受け部を有する請求の範囲 2 2 〜 2 4のいずれか 1に記載の半導体製造 ·検査装置。 25. The support container has an annular heat shield plate receiving portion provided at a lower portion inside the outer frame portion and supporting a heat shield plate for preventing heat radiation through a connecting member. 25. The semiconductor manufacturing / inspection apparatus according to any one of items 24 to 24.
PCT/JP2000/005045 1999-08-09 2000-07-28 Support container and semiconductor manufacturing/inspecting device WO2001011664A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP11/225335 1999-08-09
JP22533599A JP4330717B2 (en) 1999-08-09 1999-08-09 Hot plate unit and method of using hot plate unit
JP2000093200 2000-03-30
JP2000/93200 2000-03-30
JP2000170452A JP2001345371A (en) 2000-03-30 2000-06-07 Supporting container, and semiconductor manufacturing and inspecting apparatus
JP2000170453 2000-06-07
JP2000/170452 2000-06-07
JP2000/170453 2000-06-07

Publications (1)

Publication Number Publication Date
WO2001011664A1 true WO2001011664A1 (en) 2001-02-15

Family

ID=27477172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/005045 WO2001011664A1 (en) 1999-08-09 2000-07-28 Support container and semiconductor manufacturing/inspecting device

Country Status (1)

Country Link
WO (1) WO2001011664A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0320297A2 (en) * 1987-12-10 1989-06-14 Canon Kabushiki Kaisha Method of temperature control of a wafer on a chuck
JPH04181724A (en) * 1990-11-16 1992-06-29 Ngk Insulators Ltd Heater
JPH0917849A (en) * 1995-06-28 1997-01-17 Ngk Insulators Ltd Semiconductor wafer holding device, its manufacture and its use method
JPH10165875A (en) * 1996-12-06 1998-06-23 Dainippon Screen Mfg Co Ltd Substrate rotating and holding device and rotary type substrate treating device
WO1998045875A1 (en) * 1997-04-07 1998-10-15 Komatsu Ltd. Temperature control device
JPH10303288A (en) * 1997-04-26 1998-11-13 Anelva Corp Board holder for plasma treatment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0320297A2 (en) * 1987-12-10 1989-06-14 Canon Kabushiki Kaisha Method of temperature control of a wafer on a chuck
JPH04181724A (en) * 1990-11-16 1992-06-29 Ngk Insulators Ltd Heater
JPH0917849A (en) * 1995-06-28 1997-01-17 Ngk Insulators Ltd Semiconductor wafer holding device, its manufacture and its use method
JPH10165875A (en) * 1996-12-06 1998-06-23 Dainippon Screen Mfg Co Ltd Substrate rotating and holding device and rotary type substrate treating device
WO1998045875A1 (en) * 1997-04-07 1998-10-15 Komatsu Ltd. Temperature control device
JPH10303288A (en) * 1997-04-26 1998-11-13 Anelva Corp Board holder for plasma treatment

Similar Documents

Publication Publication Date Title
US6921881B2 (en) Ceramic joint body
WO2002019399A1 (en) Ceramic substrate for semiconductor production and inspection
WO2001097264A1 (en) Hot plate
WO2002003434A1 (en) Ceramic heater for semiconductor manufacturing/testing apparatus
WO2001087018A1 (en) Hot plate unit
JP3565496B2 (en) Ceramic heater, electrostatic chuck and wafer prober
WO2002042241A1 (en) Aluminum nitride sintered body, method for producing aluminum nitride sintered body, ceramic substrate and method for producing ceramic substrate
WO2001078455A1 (en) Ceramic board
JP2002064133A (en) Support container and semiconductor manufacturing- inspection device
JP2003059789A (en) Connection structure and semiconductor manufacturing and inspecting apparatus
JP2002373846A (en) Ceramic heater and hot plate unit for semiconductor manufacturing and inspection apparatus
WO2002003452A1 (en) Apparatus for producing and inspecting semiconductor
JP2001257200A (en) Ceramic substrate for semiconductor manufacturing and checking device
JP2003077781A (en) Ceramic heater for semiconductor manufacturing/ inspecting device
JP2001237301A (en) Ceramic substrate for semiconductor manufacturing/ inspecting device
JP2001223257A (en) Ceramic substrate for semiconductor production and inspection device
JP2005026585A (en) Ceramic joined body
WO2001011664A1 (en) Support container and semiconductor manufacturing/inspecting device
JP2001345370A (en) Semiconductor manufacturing and inspecting apparatus
JP2004253799A (en) Semiconductor manufacturing/inspecting device
JP2002372351A (en) Supporting container and semiconductor manufacturing/ inspecting equipment
JP2002260829A (en) Hotplate unit
JP2001358205A (en) Apparatus for manufacturing and inspecting semiconductor
JP2002252270A (en) Hot plate unit
JP2003100818A (en) Support container and semiconductor-manufacturing/ inspecting apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase