WO2000074814A1 - Device for treating sample containing particles - Google Patents

Device for treating sample containing particles Download PDF

Info

Publication number
WO2000074814A1
WO2000074814A1 PCT/JP1999/003023 JP9903023W WO0074814A1 WO 2000074814 A1 WO2000074814 A1 WO 2000074814A1 JP 9903023 W JP9903023 W JP 9903023W WO 0074814 A1 WO0074814 A1 WO 0074814A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
filter
liquid
particles
sample
Prior art date
Application number
PCT/JP1999/003023
Other languages
French (fr)
Japanese (ja)
Inventor
Masuyoshi Yamada
Kenichi Kawabata
Shinichiro Umemura
Yoshitoshi Ito
Minoru Sakairi
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1999/003023 priority Critical patent/WO2000074814A1/en
Publication of WO2000074814A1 publication Critical patent/WO2000074814A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations

Definitions

  • the present invention relates to an apparatus for separating, capturing, and concentrating particles in a sample.
  • the form of ultrasonic waves used to capture particles is as follows: 1) Forming a standing wave using a planar ultrasonic transducer and reflector to concentrate red blood cells in blood (World Kongless on Ultrasonics) , Pp. 320, 199 7), 2) Using an ultrasonic transducer with a concave shape, a flat plate reflector was set at the focal point of the concave surface to form a standing wave, focusing on the target particle. There is one that captures and moves near the reflecting plate on the shaft (Japanese Patent Application Laid-Open No. 9-193055).
  • JP Hei 8-28 1 It is in the 0 220 publication.
  • JP Hei 8-28 1 It is in the 0 220 publication.
  • In 4) above there is no inlet between the vibrator and the reflecting member, and there is no disclosure about the configuration in the case where there is an inlet.
  • In 5) above there is a figure in which an inlet is provided between the ultrasonic vibrator and the reflective member, but there is no outlet between the ultrasonic vibrator and the reflective member, and the outlet is provided. There is no disclosure of the configuration in the case of Disclosure of the invention
  • the present invention is characterized by using the following apparatus and method.
  • an ultrasonic field is formed between the ultrasonic transducer and a filter using a filter with sufficient strength to reflect ultrasonic waves (thickness: 0.1mm or more).
  • the liquid containing particles is introduced from the inlet provided between the vibration member that generates ultrasonic waves and the filter, and the particles in the liquid are captured and concentrated in the liquid in a non-contact manner by the radiation pressure of the ultrasonic waves.
  • the liquid is discharged out of the apparatus through a filter used as a reflection member.
  • the particles to be captured are captured and concentrated without adhering to the filter, and are collected from an outlet provided between the vibration member that generates ultrasonic waves and the filter. Since the particles in the liquid do not adhere to the filter, the recovery rate is higher than that of the conventional suction filtration method. Also, regarding the clogging of the filter, the frequency of clogging is greatly reduced because particles do not adhere to the filter surface.
  • a pretreatment device for separating contaminants having a large particle size other than particles to be captured a non-contact capturing device using standing ultrasonic waves while flowing sample water is provided.
  • the target particles and microorganisms flow downstream without being captured. In other words, the liquid obtained downstream has only contaminants removed.
  • the separation device described in 3 above is used as a pretreatment device for the capture device described in 1 above.
  • the liquid treatment apparatus including the particles of the present application includes a separator 3 for removing foreign substances other than the capture target and a capturer 30 for capturing the target particles.
  • the sample liquid 1 containing particles is introduced into the inside of the apparatus using the pump 2.
  • the sample water first enters the separator 3, and only impurities having a large particle size remain in the separator 3, and the particles to be captured do not stay in the apparatus but are discharged downstream and enter the trap 30.
  • a filter 29 is provided, and the target particles are trapped in the device 30 in a non-contact manner.
  • the liquid is discharged downstream of the device 30.
  • each of the separator 3 and the trap 30 can be used as an independent device.
  • the concentrated liquid accumulated in the trap 30 can be taken out and observed with a microscope.
  • a water purification device monitor the concentration of particles collected in the separator 3 or the trap 30 with a sensor, and if an abnormal increase in concentration occurs, turn on a warning lamp or stop water intake.
  • this device can be used as a device for capturing and concentrating Cryptosporidium in water.
  • the conventional method for detecting cryptosporidium in water treatment plants is based on the provisional countermeasures guidelines issued by the Ministry of Health and Welfare in October 1996, and the procedure is as follows.
  • the above-mentioned cryptosporidium detection method requires a great deal of time to concentrate and recover particles in the sample water, and adheres to the filter when dissolving the filter to recover the residue remaining on the filter.
  • the recovery rate is low because some cryptosporidium cannot be recovered.
  • the cryptosporidium after removing contaminants by the separator 3, the cryptosporidium can be captured in a non-contact manner by the capture device 30, so that a configuration capable of improving the recovery rate and shortening the operation time is provided. I do.
  • the present invention provides a first container for separating a substance contained in a flowing sample, a vibration member for applying vibration to the sample in the first container, and a reflection member for reflecting vibration from the vibration member.
  • a separator for introducing a sample from the vibrating member side of the first container, and an outlet for discharging the sample separated by vibration on the reflecting member side.
  • a separator for separating a substance in a liquid having a vibrating member and a reflecting member which is a combination of the above, and a trap comprising a vibrating member and a filter downstream of the separator for capturing particles in the liquid.
  • a treatment device for a liquid containing particles having the following. Furthermore, a first supply pipe for supplying the liquid containing particles in parallel to the plurality of separators, and a second supply pipe for supplying the liquid containing particles discharged from the plurality of separators to the plurality of traps in parallel.
  • a liquid treatment apparatus including particles having a supply pipe.
  • the inlet for collecting the concentrated second liquid captured in the second container, and the filter A liquid treatment device containing particles having a second outlet for discharging the third liquid, and an inlet for introducing a gas for collecting the second liquid.
  • FIG. 1 is a block diagram of an apparatus for treating a liquid containing particles, provided with an apparatus for separating contaminants of liquid particles and a capturing apparatus according to the present invention.
  • FIG. 2 is a device configuration diagram of the separation device.
  • FIG. 3 is a cross-sectional view of the separation device.
  • FIG. 4 is a cross-sectional view of the separation device.
  • FIG. 5 is a conceptual diagram of ultrasonic capture when a spherical reflecting member is used.
  • FIG. 6 is a conceptual diagram of ultrasonic capture when a spherical reflecting member is used.
  • FIG. 7 is a conceptual diagram of ultrasonic capture when a planar reflecting member is used.
  • FIG. 8 is a conceptual diagram of ultrasonic capture when a planar reflecting member is used.
  • FIG. 1 is a block diagram of an apparatus for treating a liquid containing particles, provided with an apparatus for separating contaminants of liquid particles and a capturing apparatus according to the present invention.
  • FIG. 2 is a
  • FIG. 9 is a diagram of a flow path layout in the particle separation device.
  • FIG. 10 is a diagram showing an example of the result of the concentration rate of the particle separation device.
  • FIG. 11 is a diagram showing an example of the results of the separation performance of the particle separation device.
  • FIG. 12 is an apparatus configuration diagram according to the present invention using an optical sensor.
  • FIG. 13 is a configuration diagram when measuring scattered light as an optical sensor.
  • FIG. 14 is a configuration diagram when measuring scattered light as an optical sensor.
  • FIG. 15 is a configuration diagram when measuring transmitted light as an optical sensor.
  • FIG. 16 is a configuration diagram when a plurality of separation devices are connected in series.
  • FIG. 17 is a configuration diagram when a plurality of separation devices are connected in parallel.
  • FIG. 18 is a configuration diagram of a particle capturing device according to the present invention.
  • FIG. 19 is a configuration diagram of a particle capturing device according to the present invention.
  • FIG. 20 is a configuration diagram of a particle capturing device according to the present invention.
  • FIG. 21 is a cross-sectional view of the capturing device.
  • FIG. 22 is a cross-sectional view of the capturing device.
  • FIG. 23 is a device configuration diagram when a plurality of capturing devices are connected in series.
  • Figure 24 shows the separation device and capture device.
  • FIG. 3 is a device configuration diagram when a buffer tank is provided in FIG.
  • FIG. 25 is an apparatus configuration diagram when a plurality of separation devices and a plurality of capture devices are connected.
  • FIG. 26 is a diagram showing a comparison between the conventional method of Cryptosporidium inspection and the case of using the apparatus according to the present invention.
  • FIG. 27 is a diagram showing an example of application of a water inspection system according to the present invention.
  • FIG. 28 is a diagram showing an application example of the water treatment system according to the present invention.
  • FIG. 29 is a diagram showing an example of application of the water treatment system according to the present invention.
  • FIG. 30 is a diagram showing an application example of the drinking water purification device according to the present invention.
  • FIG. 2 shows an embodiment of the separation apparatus.
  • the sample liquid 1 containing the particles is introduced into the apparatus using the pump 2.
  • the liquid sample introduction flow rate is from several milliliters to several liters per minute.
  • the pump 2 has a mechanism capable of adjusting the discharge flow rate, such as a tube pump or a diaphragm pump.
  • the sample water that has passed through the pump 2 is branched and dispersed so that a location with a high flow velocity is not locally formed in the separation device, and a plurality of sample waters provided on the vibration member side between the vibration member 4 and the reflection member 5 are provided. Is introduced into the separation device 3 from the inlet of the separator.
  • the separation device 3 introduces the sample from the cylindrical wall, the vibration member 4 (the diameter is almost equal to the inner diameter of the separation device), the reflection member 5, and the vibration member 4 side between the vibration member 4 and the reflection member 5.
  • Inlet, and vibration member 4 and reflection member 5 An ultrasonic wave is generated between the vibrating member 4 and the facing reflecting member 5 which is constituted by an outlet for discharging the sample from the side of the reflecting member 5 therebetween.
  • a cylindrical device (the vibrating member 4 and the reflecting member 5 correspond to the top plate and the bottom plate) is used in consideration of the ease of manufacturing and processing, but may be a rectangular parallelepiped.
  • the vibration member 4 may be any member that generates vibration, but an ultrasonic vibrator made of piezoelectric ceramics is one example.
  • the frequency of the ultrasonic wave is about several hundred kHz to about 10 MHz. Particles collect and concentrate at the nodes of the standing ultrasound. If the length of the device is longer than the wavelength, there will be multiple standing ultrasound nodes in the device, and when the inside of the separation device 3 is observed with the naked eye, the captured particles will be striped like 6 ing.
  • the frequency of the ultrasonic wave used here is 4 MHz, the wavelength in water is about 0.38 mm, and the interval between nodes is about 0.19 mm, which is half. A stripe pattern of approximately 0.19 mm is formed inside the 80 mm long device.
  • Particles in the sample liquid are captured by receiving radiation pressure under ultrasonic irradiation, and the radiation pressure is described by the following equation (1).
  • ⁇ * ⁇ 4 / ⁇ 0 c 0 3
  • A (5 p, - 2 po) / (2/0 + / oo) _ oc. 2 ) Z, c)
  • R particle radius
  • ultrasonic angular velocity
  • density
  • c sound velocity
  • Is the pressure amplitude in the liquid by ultrasonic waves
  • the subscripts 0 and 1 represent particles and liquid, respectively.
  • the higher the flow rate of the sample liquid the greater the resistance force of the fluid acting on the particles. If the resistance force is higher than the radiation pressure of the ultrasonic waves, the particles escape from the capture and are discharged out of the separation device 3. Therefore By adjusting the flow rate of the sample water passing through the separation device or the intensity and frequency of the ultrasonic waves, contaminants other than the particles to be finally caught are captured and removed in a non-contact manner in the separation device 3. You can do it.
  • the presence or absence and concentration of the striped pattern 6 of the contaminants formed in the separation device 3 is detected by the optical sensor 7 installed on the side of the separation device 3 by irradiating the laser with one light on the striped pattern. Is done.
  • the laser beam is irradiated in parallel with the direction in which the ultrasonic wave travels in such a way that one laser beam passes through each of the stripe patterns formed in the device, and the change in the amount of transmitted light is measured to determine the stripe pattern.
  • the presence or absence and the density can also be detected.
  • the concentrated contaminants can be discharged in a timely manner. The specific method will be described later.
  • the liquid containing the target particles is discharged from a plurality of outlets provided in the same manner as the inlet, and the target particles are captured by the filter 8.
  • the target particles are cryptosporidium (diameter of 4 to 6 m)
  • a membrane filter having a pore diameter of 1 // m to 2 ⁇ is suitable as the filter 8 to be used. According to the detection method established by the Ministry of Health and Welfare, this filter can be stained for Cryptosporidium detection and observed under a microscope. At this time, since contaminants have been removed by the separation filter, measurement errors during microscopic observation are reduced, and laborious operations such as filter dissolution and centrifugation are not required.
  • Figure 3 shows a sectional view of the separation device.
  • the dimensions shown are just an example, so long as they have no attenuation of ultrasonic waves and can capture particles. The same applies to the shape.
  • the reason why there are a plurality of liquid inlets and outlets 9 is as described above because a portion having a high flow velocity is not locally formed as described above, and the number of inlets or outlets may be further increased.
  • the vibrator 4 is bonded to a solid wall, ultrasonic waves are irradiated through the solid wall into the liquid, and a standing wave is formed between the opposing reflecting members. Is also good. In this case as well, the same effect as in the case where the liquid in the device is brought into direct contact with the vibrator with the vibrator sandwiched between the packings can be obtained. If it is not desirable for the vibrator to directly contact the liquid inside the device, it is better to make it as shown in FIG. However, in this case, it is necessary to make the thickness of the bonded wall an integral multiple of half a wavelength so that the ultrasonic wave can be transmitted to the liquid efficiently.
  • the electrodes of the vibrator 4 have + and 1 silver electrodes on the front and back, respectively.However, it is preferable that the lead wire comes out from the side not in contact with water, so the electrode on the side that is in contact with water is opposite. It is partially folded on the side surface. However, since the electrode in contact with water is also coated with nickel, the silver electrode does not directly come into contact with water.
  • the position of the reflecting member 5 can be moved, but there is no problem if the reflecting member 5 is fixedly used.
  • the shape of the reflecting member if a plate with a spherical surface (radius of about 100 to 100 mm) is used, as shown in Fig. 5, even if the processing accuracy or assembly accuracy of the surface is somewhat poor, The positions where the ultrasonic waves are strengthened by the reflected waves are concentrated around the central axis of the cylindrical device. This is because the position where the traveling wave of the plane and the reflected wave of the concave surface strengthen each other forms a set of concentric concentric circles centered on the central axis. Set shape It is easy to capture particles stably just by distorting.
  • the particles in the liquid are captured in the form of a cone centered on the central axis of the device as shown in Fig. 6.
  • both the ultrasonic transducer and the reflecting member are made flat in shape and placed in parallel to form a standing wave, as shown in Fig. 7, the effect of slight surface distortion or parallelism distortion
  • the positions where the traveling wave and the reflected wave strengthen are dispersed, and the positions where the particles are captured are also dispersed as shown in FIG.
  • a concave shape may be used for the vibrating member, and a planar shape may be used for the reflecting member.
  • the vibrating member has a planar shape and the reflecting member has a concave shape in consideration of ease of manufacture.
  • the method of flowing the sample water in the separation device 3 is as follows.
  • the starch particles (particle size: about 100 m) in the sample water are sonicated by the two methods shown in Fig. 9 (A) and Fig. 9 (B).
  • Fig. 10 shows how they are captured and concentrated.
  • (B) can be concentrated about three times more than (A).
  • Fig. 9 (A) since the sample is introduced from the lower part of the device, a part where the flow velocity is high locally occurs in the lower part of the device.
  • Figure 11 shows the separation of contaminants and microorganisms using the device shown in Figure 3.
  • Soluble starch particle size is 20 // m or more
  • microorganism is a positive control of cryptosporidium (particle size).
  • the concentration of starch was 0.02 g / lit and the concentration of crisp was 0.56 / z g Zl.
  • the liquid containing these two types of particles was passed through a separation device.
  • the horizontal axis of the graph shows the flow rate of the sample water passing through the separation device, and the vertical axis shows the ratio of the concentration of particles compared to the stock solution. In other words, it indicates that when it is larger than 1, it becomes darker than the stock solution.
  • the concentration of Cryptosporidium passed through the device without changing the concentration from the undiluted solution in both the liquid in the device and the effluent.
  • starch with a large particle size has a higher concentration in the device when the flow rate is 40 m 1 / min or less, and is thinner in the discharged liquid.
  • Optical sensor 8 uses a laser oscillator 1 4 Contact and photodetector 1 5 provided outside the separation device, the changes in the transmitted light amount or scattered light from the sensor as an analog signal, as shown in FIG. 1 2, The time variation of the concentration of the captured contaminant particles can be displayed or recorded on the signal output screen 16 online.
  • Optical sensors measure the change in concentration over time: 1) irradiating the stripe pattern and measuring the scattered light; 2) irradiating the stripe pattern with laser light parallel to the direction in which the ultrasonic waves travel. Measurement of transmitted light. In the case of 2), when a concave shape is used for the reflecting member, stripes are formed in a conical shape around the center axis of the device as shown in Fig. 6.
  • the N ratio increases.
  • the positions where the particles are captured are dispersed as shown in Fig. 8, so that a single laser beam is irradiated in parallel to the direction in which the ultrasonic wave travels, It is better to measure the sum of and determine the concentration. Scattered by light passing through the separation device or captured contaminant particles When the emitted light reaches a certain level, that is, when a stripe pattern of a certain density or more is formed, an alarm can sound or a warning lamp can be turned on.
  • this device is used as a water treatment device, the concentration change over time is recorded and monitored.If the concentration increases sharply compared to the normal concentration increase, it is considered that there is an abnormality in the raw water intake. Judgment can be taken and measures can be taken such as stopping the intake or switching to another intake.
  • the specific concentration is determined as follows. First, the relationship of the concentration of the contaminant particles in the separation device and the time for applying ultrasonic waves to the device has the following equation (2).
  • C represents the concentration in the apparatus
  • N represents the concentration of raw water
  • t represents time
  • a semiconductor laser is incident from the entrance 17 on the side of the separation device, and the light scattered by hitting the trapped foreign particles is passed through the optical fiber 18
  • the concentration of trapped particles or the presence / absence of particles can be measured by converting them into electric signals by means of a photodiode.
  • a mirror 19 is installed on the side of the separation device to increase the sensitivity, and laser light can be repeatedly applied to particles in the device to increase the intensity of scattered light.
  • reflected scattered light as shown in FIG. 14, a light emitting / receiving optical fiber-to-optical fiber cable 20 and a lens 21 are installed on the reflecting member 5 so that the emitted laser light hits the particles.
  • the light emitting / receiving integrated optical fiber cable may be attached to the vibration member 4.
  • the optical fiber cable for laser emission 25 and the lens 26 on the reflecting member 5, and set the center of the vibrating member on the opposite side of the device.
  • a hole is made in the section, and an optical fiber 27 for receiving light is provided. Since the laser beam 28 emitted from the optical fiber cable 25 for optical projection passes through the lens 26 and passes through the lens 26 while being attenuated by each of the stripes 6 of the particles captured in the device, The light intensity decreases compared to the amount of incident light. By measuring the degree of this decrease in advance, the amount of captured particles can be relatively specified. This method is effective when the concentration of the sample water is low because the measurement is performed by integrating each stripe in the device.
  • a concave reflecting member when used as shown in FIG. 6, it is preferable to irradiate the laser beam so as to pass through the center of the formed cone where the particles are captured in order to increase the S / N ratio.
  • a flat reflecting member when used, it is better to irradiate a plurality of laser beams to make it a target of measurement as well as the center.
  • the scattered light measurement and transmitted light measurement described above can be used in an appropriate combination.
  • the first separator is discharged. If the outlet and the inlet of the second separator are connected by a pipe and the separation device is installed in series, it is possible to separate the impurities due to the difference in particle size or density. For example, among the separators installed in series, the first stage irradiates ultrasonic waves with low radiation pressure and produces relatively large particles. Capturing heavy or dense particles. The small-sized particles not captured in the first-stage separator are introduced into the second-stage separator together with the discharged liquid.
  • the second-stage separator is irradiated with ultrasonic waves having a radiation pressure stronger than that of the first stage, and the particles not captured in the first stage are captured.
  • the target particles and microorganisms that have passed through the first-stage and second-stage separators are captured by the filter 8. By adjusting the radiation pressure of the first and second stage separators, particles with an appropriate diameter can be separated.
  • the capturing device is provided with a vibrating member 4 and a filter 29, between which an ultrasonic wave is formed to capture the particles in a non-contact manner.
  • the sample water containing particles is introduced from the inlet 31 provided on the vibrating member side between the vibrating member 4 of the capturing device 30 and the filter, and flows in parallel with the traveling direction of the ultrasonic wave. Particles smaller than the filter pore size that have not been captured pass through the filter 29 together with the liquid, and are discharged out of the apparatus through the discharge port 32.
  • Particles larger than the filter pore diameter in the sample water form a striped pattern 6 at intervals corresponding to the half-wavelength of the ultrasonic wave due to the ultrasonic radiation pressure, and are captured in the capturing device in a non-contact manner.
  • the vibration member 4 is bonded to the filter 29 and the filter is directly vibrated to generate ultrasonic waves.
  • a standing ultrasonic wave can be formed at the same time. It is necessary to efficiently transmit the vibration of the vibrating member 4 to the filter 29. However, since the filter is directly vibrated, the effect of preventing clogging by vibration is maximized.
  • a filter When using a frequency of several tens of kHz (20 to 100 kHz), a filter is fixed to the bottom of a cylindrical vibrating member as shown in Fig. 20 and the vibrating member is perpendicular to the cylindrical surface. It is good to vibrate in the direction (respiratory vibration).
  • the ultrasonic vibrator 4 In the case of low frequency, the ultrasonic vibrator 4 is unlikely to cause thickness vibration as in the case of FIG. 19, and therefore, as shown in FIG. 20, the filter 29 fixed to the cylindrical vibrator 4 Causes lateral vibration in the direction perpendicular to the plane. If the frequency for driving the vibrator 4 is adjusted to a resonance frequency corresponding to the thickness and radius of the filter disk 29, the filter can be vibrated efficiently.
  • both of the lead wires 37 of the vibrator project outside, so that the electrode on the inner surface of the cylinder is partially folded back.
  • the electrode on the inner surface of the cylinder is coated so that it does not come into contact with water.
  • a cylindrical It is also possible to perform low-frequency ultrasonic irradiation using a vibrator that performs respiratory vibration.
  • Fig. 21 shows a cross-sectional view of the capturing device when the vibrating member and the filter are installed facing each other as shown in Fig. 18.
  • the dimensions shown are just an example, as long as they have no attenuation of ultrasonic waves and can capture particles. Also, the shape is not cylindrical, and it is sufficient that the vibrating member and the filter are installed to face each other and the filter surface is irradiated with ultrasonic waves.
  • Six liquid inlets 31 are provided concentrically between the vibrating member 35 and the filter 29. The reason why there are a plurality of inlets 31 is that, similarly to the case of the separation apparatus, a portion where the flow velocity is locally high is not formed, and the number of inlets or outlets may be further increased.
  • the material of the capture device 30 is made of Ataryl, so that the appearance of the capture can be seen from the outside. However, if there is no need to observe the inside, there is no problem with metal.
  • the ultrasonic vibrator is adhered to the metal plate 35. However, when the pressure loss in the filter 29 is small and the internal pressure of the capturing device is small, the ultrasonic vibrator may be installed so that the vibrator directly contacts the water. Frequency of the ultrasonic vibrator 4 is 4.3 due to the use of MH Z, thickness becomes about 0. 5 mm, when the internal pressure number kg / cm 2 G is applied to the oscillator damaged danger Runode, FIG It is better to adhere to the metal plate 35 like 20.
  • the plate thickness it is necessary to make the plate thickness an integral multiple of a half wavelength so that the ultrasonic waves generated from the ultrasonic transducer can be efficiently transmitted to the liquid side.
  • aluminum was used for the metal plate 35.
  • the sound velocity is 640 mZ s and the half wavelength is about 0.75 mm. In this example, 2.3 mm, which is five times the half wavelength, was used.
  • the metal plate and the The filter 29 is a flat surface, but the concave surface used in the separation device can also be used. However, in this case, the intensity of the ultrasonic wave decreases as the distance from the center axis increases, so it is necessary to use an ultrasonic wave of sufficient intensity so that particles do not adhere to the filter even at a position away from the center.
  • the flow rate of the sample water is set to 0, and the irradiation of the ultrasonic waves is stopped.
  • gas such as air and nitrogen is put into the downstream side of the filter 29 from the air inlet 33 and the pressure is made higher than that of the liquid side, the gas enters the device through the filter 29.
  • the inlet is branched and the concentrated liquid is discharged in order to use the recovery port also as the inlet, but the vibrating member 35 of the ultrasonic capture device 30 and the filter are used.
  • a separate collection port may be provided between 29 and 29. The gas enters from the filter and is taken out from the outlet as if the liquid was pushed out.
  • the capture device 30 Since the concentrate in the ultrasonic capture device 30 is extruded in reverse from the filter 29, particles near the filter 29 are almost completely discharged into the device. Further, the capture device 30 is provided with a nozzle 36 for measuring the internal pressure. Comparing the volume between the vibrating member 35 and the filter 29 and the volume of the portion provided with the outlet 32 downstream of the filter 29, the volume between the vibrating member 35 and the filter 29 is smaller. Is small. This is to prevent the pressure of the liquid passing through the filter from increasing and the pressure of the liquid containing particles between the vibrating member 35 and the filter from increasing unnecessarily.
  • optical sensor described for the separation device can be installed to automatically detect the concentration or presence or absence of the particles captured in the capture device.
  • FIG. 22 is a cross-sectional view of the capturing device in a case where the filter is adhered to the vibration member as shown in FIG. 20 and the filter is directly vibrated.
  • the configuration is almost the same as in Fig. 21, but the wall 42 facing the filter is not strong enough. The material and thickness can be freely adjusted.
  • each capture device can be used according to the difference in particle size. Separated. However, particles smaller than the pore size of the filter should pass through the filter, but if there are many large particles trapped in the device, they will adhere to them and will not be discharged downstream. There are also some.
  • the processing speed must be equal in both devices, but as shown in Fig. 24, a buffer tank is placed between the two devices. If 3 8 is provided, after removing impurities sufficiently in the tank at a slow processing speed in the separation device 3 and sending it to the capture device 30 in the subsequent stage, the same liquid is circulated several times in the separation device 3. It can be said that the impurities are sufficiently removed and sent to the subsequent stage.
  • a plurality of separation devices 3 and capture devices 30 at the previous stage are installed, and a supply pipe that supplies liquid containing particles to multiple separation devices, and a discharge pipe from multiple separation devices 3
  • a supply pipe that supplies liquid containing particles to a plurality of capture devices 30 it is possible to continuously remove impurities and concentrate / capture without using a buffer tank, according to the respective processing speeds.
  • the particles captured and recovered by the device shown in Fig. 24 or Fig. 25 although a considerable amount of impurities are removed by the separation device 3, they have the same size as the target particles Contaminants are also mixed. If the target particles are microorganisms such as Cryptosporium, observe with a microscope. The number and concentration can be measured by mixing a stain solution with the particles discharged from the capture device, selectively staining the target microorganism, and measuring only the fluorescently colored particles with an optical sensor.
  • Figure 26 shows a summary of the form of application as a cryptosporidium inspection device.
  • the operations of concentration, filter dissolution, and centrifugation are replaced with the automatic operations performed by this device.
  • cryptosporidium adheres to the filter paper in the conventional operation, it will not be possible to recover it.
  • sample water containing particles is placed in a tank or container and connected to the device.
  • this device is applied to detection of microorganisms in raw water and purified water, as shown in Fig. 27
  • Fig. 27 By connecting this device directly to rivers, ponds, water purification pipes, etc. that you want to investigate, labor for transporting sample water can be saved.
  • FIG. 28 An example of a purification system for tap water performed by the Waterworks Bureau is shown in Fig. 28.
  • This device can be used instead of sand filtration or chlorination.
  • the filtration and disinfection processes can be replaced with this device.
  • the captured particles and microorganisms can be collected and subjected to detailed inspection.
  • turbidity can be controlled by monitoring the concentration of captured particles and microorganisms.
  • the use of the capture device of the present invention can provide a storage water purification system that can reduce the frequency of filter maintenance and remove microorganisms and particles.
  • Fig. 29A shows a circulating microbial particle removal system, which constantly or periodically introduces the liquid in the stored water from the inlet of the capture device to remove the particles, and discharges the wastewater from the outlet to the water tank. And can be purified by circulation.
  • FIG. 29B when circulation is not required, the capture device of the present invention can be inserted into the water supply pipe to remove microorganisms and particles when water is supplied.
  • drinking water can be taken into a capturing device, and particles in the drinking water can be captured and concentrated, and then supplied as purified drinking water.

Abstract

A device for concentrating and recovering target particles using a concentration device in which filtering is combined with ultrasonic trapping after impurities in liquid are removed by no-contact trapping using a standing ultrasonic wave, or a water treatment device reduced in filter clogging frequency, which is particularly effective in detecting microorganisms in water. Specifically, a water treatment device for removing particles in water by a filter, wherein a frequency in maintenance including filter replacing and backwashing can be reduced.

Description

明細書  Specification
粒子を含む試料処理装置 技術分野 Sample processing equipment containing particles
本発明は、 試料中の粒子を分離 ·捕獲 ·濃縮する装置に関する。 背景技術  The present invention relates to an apparatus for separating, capturing, and concentrating particles in a sample. Background art
液体中の粒子を非接触的に捕獲する技術に、 超音波として液体を振 動させ、 その輻射圧を利用したものがある。 粒子を捕獲するために用 いる超音波の形態として、 1 ) 平面の超音波振動子および反射板を用 いて定在波を形成し、 血液中の赤血球を濃縮するもの (ワールドコン グレス オン ウルトラソニックス、 3 20頁、 1 9 9 7年) 、 2) 凹面形状を用いた超音波振動子を用いて、 凹面の焦点に平板反射板を 設置し定在波を形成し、 対象となる粒子を中心軸の反射板近傍に捕獲 し、 移動させるもの (日本国出願特開平 9一 1 9 30 5 5号公報) が ある。 上記 1 ) については、 試料導入口おょぴ排出口に関して振動子 ·反射板に対する相対的な位置関係についての開示がない。 上記 2) については、 静止液体中での粒子の捕獲で、 液体の導入口および排出 口が無く、 流体中での処理する構成についての開示が無い。  There is a technology that captures particles in a liquid in a non-contact manner by vibrating the liquid as ultrasonic waves and using the radiation pressure. The form of ultrasonic waves used to capture particles is as follows: 1) Forming a standing wave using a planar ultrasonic transducer and reflector to concentrate red blood cells in blood (World Kongless on Ultrasonics) , Pp. 320, 199 7), 2) Using an ultrasonic transducer with a concave shape, a flat plate reflector was set at the focal point of the concave surface to form a standing wave, focusing on the target particle. There is one that captures and moves near the reflecting plate on the shaft (Japanese Patent Application Laid-Open No. 9-193055). Regarding 1) above, there is no disclosure of the relative position of the sample inlet and outlet relative to the oscillator and reflector. Regarding the above 2), there is no disclosure of a configuration for processing in a fluid, because there is no liquid inlet and outlet for capturing particles in a stationary liquid.
また、 超音波を用いて、 液体と粒子を分離 ·濃縮する技術として、 3) 日本国出願特開平 7— 4 7 2 5 9号公報に公知技術がある。 上記 3 ) には、 超音波振動子と導入口 ·排出口を記した図があるが、 導入 口と超音波振動子との相対的な位置関係についての開示が無い。  As a technique for separating and concentrating liquid and particles using ultrasonic waves, there is a technique known in 3) Japanese Patent Application Laid-Open No. 7-47259. In 3) above, there is a diagram showing the ultrasonic transducer and the inlet and outlet, but there is no disclosure of the relative positional relationship between the inlet and the ultrasonic transducer.
また、 粒子を捕獲する装置としてフィルタを有し、 そのフィルタを 振動させることによりフィルタの目詰まりを防ぐ公知技術が、 4) 日 本国出願特開平 4一 2 7 1 8 1 6号公報および 5) 特開平 8— 28 1 0 2 0公報にある。 上記 4 ) には、 振動子と反射部材との間に導入口 が無く、 導入口がある場合の構成については開示が無い。 上記 5 ) に は、 超音波振動子と反射部材の間に導入口が設けられている図の記載 があるが、 超音波振動子と反射部材の間には排出口がなく、 排出口を 設けた場合の構成については開示が無い。 発明の開示 In addition, a known technology for preventing clogging of a filter by vibrating the filter as a device for trapping particles is disclosed in Japanese Patent Application Laid-Open No. Hei 21-18716 and 5). JP Hei 8-28 1 It is in the 0 220 publication. In 4) above, there is no inlet between the vibrator and the reflecting member, and there is no disclosure about the configuration in the case where there is an inlet. In 5) above, there is a figure in which an inlet is provided between the ultrasonic vibrator and the reflective member, but there is no outlet between the ultrasonic vibrator and the reflective member, and the outlet is provided. There is no disclosure of the configuration in the case of Disclosure of the invention
上記の従来の技術では、 粒子を含んだ液体の流速を速く していくにつ れ、 捕獲されずに逃げてしまう粒子が増え、 捕獲効率の低下につなが る。 また、 捕獲したい対象となる粒子以外の別の種類の粒子が混じつ ていた場合の分離については、 技術の開示がない。 In the above-described conventional technology, as the flow rate of the liquid containing particles is increased, the number of particles that escape without being captured increases, leading to a decrease in capture efficiency. In addition, there is no disclosure of technology for separation when particles of a different type other than the particles to be captured are mixed.
上記従来技術の問題を解決するために、 本発明は以下の装置 ·方法 を用いることを特徴とする。  In order to solve the above-mentioned problems of the prior art, the present invention is characterized by using the following apparatus and method.
1 . 対象とする粒子を捕獲する手段として、 超音波を反射させるのに 十分な強度 '厚さ (0.1mm 以上) を持ったフィルタを用いて超音波 振動子との間に超音波場を形成する。 粒子を含んだ液体は、 超音波を 発生する振動部材とフィルタの間に設けた導入口から導入され、 液体 中の粒子は、 超音波による輻射圧により液中に非接触的に捕獲 ·濃縮 される。 液体は、 反射部材として用いるフィルタを通って、 装置外へ 排出される。 捕獲の対象となる粒子は、 フィルタに付着せずに捕獲 · 濃縮され、 超音波を発生する振動部材とフィルタの間に設けた排出口 から回収される。 液中の粒子はフィルタに付着されないので、 回収す る際も、 従来の吸引ろ過法などに比べて回収率が向上する。 また、 フ イルクの目詰まりに関しても、 粒子がフィルタ表面に付着するという ことが無いので、 目詰まり頻度が大幅に減少する。  1. As a means to capture the target particles, an ultrasonic field is formed between the ultrasonic transducer and a filter using a filter with sufficient strength to reflect ultrasonic waves (thickness: 0.1mm or more). I do. The liquid containing particles is introduced from the inlet provided between the vibration member that generates ultrasonic waves and the filter, and the particles in the liquid are captured and concentrated in the liquid in a non-contact manner by the radiation pressure of the ultrasonic waves. You. The liquid is discharged out of the apparatus through a filter used as a reflection member. The particles to be captured are captured and concentrated without adhering to the filter, and are collected from an outlet provided between the vibration member that generates ultrasonic waves and the filter. Since the particles in the liquid do not adhere to the filter, the recovery rate is higher than that of the conventional suction filtration method. Also, regarding the clogging of the filter, the frequency of clogging is greatly reduced because particles do not adhere to the filter surface.
2 . 上記 1に述べた捕獲装置を複数個並列に設置し、 全体としての処 理速度を向上させる。 あるいは複数個直列に設置し、 それぞれの捕獲 装置内で粒径の異なる粒子を捕獲し分離する。 2. Install a plurality of the capture devices described in 1 above in parallel, and process them as a whole. Improve processing speed. Alternatively, multiple units are installed in series, and particles with different particle sizes are captured and separated in each capture unit.
3 . 捕獲対象となる粒子以外の粒径の大きな夾雑物を分離するための 前処理装置として、 試料水を流しながら定在超音波を用いて非接触的 に捕獲する分離装置を提供する。 但し、 対象とする粒子 ·微生物は捕 獲されずに下流に流れる。 つまり、 下流で得られる液は、 夾雑物のみ が取り除かれたものになる。  3. As a pretreatment device for separating contaminants having a large particle size other than particles to be captured, a non-contact capturing device using standing ultrasonic waves while flowing sample water is provided. However, the target particles and microorganisms flow downstream without being captured. In other words, the liquid obtained downstream has only contaminants removed.
4 . 上記 3に述べた分離装置を複数個並列に設置し、 全体としての処 理速度を向上させる。 あるいは複数個直列に設置し、 それぞれの捕獲 装置内で粒径の異なる夾雑物を捕獲し分離する。  4. Install multiple separation devices as described in 3 above in parallel to improve the overall processing speed. Alternatively, a plurality of contaminants having different particle sizes are captured and separated in each capturing device in series.
5 . 上記 1に述べた捕獲装置の前処理装置として上記 3に述べた分離 装置を用いる。  5. The separation device described in 3 above is used as a pretreatment device for the capture device described in 1 above.
まず、 本発明の概要を説明する。 基本的な構成として、 図 1に示す とおり、 本出願の粒子を含む液体処理装置は、 捕獲対象以外の夾雑物 を取り除く分離器 3と対象粒子を捕獲する捕獲器 3 0からなる。 まず 粒子を含んだ試料液 1をポンプ 2を用いて装置内部に導入する。 試料 水はまず分離器 3に入り、 粒径の大きな夾雑物のみが分離器 3内に残 り、 捕獲したい粒子は装置内に留まらず下流に排出され、 捕獲器 3 0 に入る。 捕獲器 3 0の詳細は後述するが、 フィルタ 2 9があり、 対象 粒子は装置 3 0内に非接触に捕獲される。 液体は装置 3 0の下流に排 出される。 但し、 分離器 3あるいは捕獲器 3 0はぞれぞれ単独の装置 としても使用できる。 捕獲したい対象の粒子が微生物の場合は、 捕獲 器 3 0内に溜まった濃縮液を取り出し、 顕微鏡で観察することができ る。 あるいは、 水浄化装置として、 分離器 3や捕獲器 3 0内に溜まつ た粒子の濃度をセンサで監視し、 異常に濃度が上昇した場合に警告ラ ンプをつけたり、 取水を停止したりすることができる。 特に本装置は、 水中のクリプトスポリジゥムの捕獲 ·濃縮装置とし ても使用できる。 水処理場における従来のクリプトスポリジゥム検出 方法は、 1 9 9 6年 1 0月に厚生省より出された暫定対策指針に沿つ て行われており、 その手順は以下のようになる。 原水の場合 1 0リ ツ トルの水を 1検体として孔径 1 m程度のろ紙でろ過し、 ろ紙上に残 つた残留物を回収するためフィルタをァセトンで溶解する。 溶解した 液を遠心分離にかけ、 ショ糖液を加えて他のゴミ等と分離する。 分離 された液をプレパラートに取り、 染色し、 顕微鏡で観察し、 クリブト スポリジゥムの有無を確認する。 ( 「水道のクリプトスポリジゥム対 策 暫定対策指針の解説」 金子光美 編 pp61-72) First, the outline of the present invention will be described. As a basic configuration, as shown in FIG. 1, the liquid treatment apparatus including the particles of the present application includes a separator 3 for removing foreign substances other than the capture target and a capturer 30 for capturing the target particles. First, the sample liquid 1 containing particles is introduced into the inside of the apparatus using the pump 2. The sample water first enters the separator 3, and only impurities having a large particle size remain in the separator 3, and the particles to be captured do not stay in the apparatus but are discharged downstream and enter the trap 30. Although details of the trap 30 will be described later, a filter 29 is provided, and the target particles are trapped in the device 30 in a non-contact manner. The liquid is discharged downstream of the device 30. However, each of the separator 3 and the trap 30 can be used as an independent device. When the particles to be captured are microorganisms, the concentrated liquid accumulated in the trap 30 can be taken out and observed with a microscope. Alternatively, as a water purification device, monitor the concentration of particles collected in the separator 3 or the trap 30 with a sensor, and if an abnormal increase in concentration occurs, turn on a warning lamp or stop water intake. Can be. In particular, this device can be used as a device for capturing and concentrating Cryptosporidium in water. The conventional method for detecting cryptosporidium in water treatment plants is based on the provisional countermeasures guidelines issued by the Ministry of Health and Welfare in October 1996, and the procedure is as follows. In the case of raw water Filter 10 liters of water as a sample through a filter paper with a pore size of about 1 m, and dissolve the filter with acetone to collect the residue remaining on the filter paper. Centrifuge the dissolved solution, add sucrose solution and separate from other waste. Take the separated solution, prepare it, stain it, and observe it under a microscope to check for the presence of Cryptosporidium. ("Explanation of the provisional countermeasures for measures against cryptosporidium in waterworks" Mitsumi Kaneko, pp61-72)
しかし、 上記のクリプトスポリジゥム検出法では、 試料水中の粒子 の濃縮 ·回収に多大な時間を要する上、 フィルタ上に残った残留物を 回収するためにフィルタを溶解する際、 フィルタに付着した一部のク リプトスポリジゥムが回収できないという回収率の低いという点もあ る。  However, the above-mentioned cryptosporidium detection method requires a great deal of time to concentrate and recover particles in the sample water, and adheres to the filter when dissolving the filter to recover the residue remaining on the filter. The recovery rate is low because some cryptosporidium cannot be recovered.
本発明では、 夾雑物を分離器 3で取り除いた後、 捕獲器 3 0にて非 接触的にクリプトスポリジゥムを捕獲できるので、 回収率の向上、 作 業時間の短縮ができる構成を提供する。  According to the present invention, after removing contaminants by the separator 3, the cryptosporidium can be captured in a non-contact manner by the capture device 30, so that a configuration capable of improving the recovery rate and shortening the operation time is provided. I do.
即ち、 本願は発明は、 流れてくる試料に含まれる物質を分離するため の第 1 の容器と、 第 1の容器に試料に振動を与える振動部材と、 振動 部材からの振動を反射する反射部材と、 試料を第 1の容器の振動部材 側から導入する導入口と、 反射部材側に振動によって分離された試料 を排出する排出口を設けた構成の分離器であり、 また、 第 1の試料に 含まれる物質を捕獲するための容器と、 容器に第 1の試料に振動を与 える振動部材と、 振動部材からの振動を反射すると共に第 1の試料か らろ過した第 2の試料を通過させるフィルタとを有する構成の捕獲装 置にある。 更に、 これらを組み合わせた、 振動部材と反射部材とを有 する液体中の物質を分離する分離器と、 分離器の下流に振動部材とフ ィルタとから成り液体中の粒子を捕獲する捕獲器とを有する粒子を含 む液体の処理装置。 更にまた、 粒子を含む液体が複数の分離器に対し 並列に供給する第 1の供給管と、 複数の分離器から排出された粒子を 含む液体を複数の捕獲器へ並列的に供給する第 2の供給管とを有する 粒子を含む液体処理装置。 並びに、 流れてくる試料に含まれる第 1の 物質を分離するための第 1の容器と、 第 1の容器に試料に振動を与え る振動部材と、 振動を反射する反射部材と、 第 1の容器の振動部材側 から導入する第 1の導入口と、 反射部材側に振動よつて分離された第 1の粒子を含む液体の第 1の排出口と、 第 1の排出口からの第 2の粒 子を含む液体を下流に流す通路管と、 第 2の粒子を含む液体を捕獲す る第 2の容器と、 第 2の容器の第 2の粒子を含む液体に振動を与える 振動部材と、 振動部材からの振動を反射すると共に第 2の粒子を含む 液体からろ過した第 3の液体を通過させるフィルタと、 第 2の粒子を 含む液体を第 2の容器の振動部材側から導入する第 2の導入口と、 第 2の容器内に捕獲 ·濃縮された第 2の液を回収する回収口と、 フィル タを通過した第 3の液体を排出する第 2の排出口と、 第 2の液体を回 収するために気体を送り込む導入口とを有する粒子を含む液体処理装 置で有り、 さらにこれらの応用として、 水道からの第 1の液体に含ま れる物質を捕獲するための容器と、 容器に第 1の液体に振動を与える 振動部材と、 前記振動部材からの振動を反射すると共に第 1の液体か らろ過た第 2の液体を通過させるフィルタと、 水道からの第 1の液体 を容器の振動部材側から導入する導入口と、 飲料水供給管へ戻すため のフィルタを通過した側に設けた排出口とを有する構成の水道水浄化 装置に有る。 以下、 前半で分離装置 3の詳細を説明し、 後半で分離装置 3 0の詳細 を説明する。 さらに分離装置と捕獲装置を組み合わせた水検査システ ム ·水処理システムにおいての適用についても述べる。 図面の簡単な説明 That is, the present invention provides a first container for separating a substance contained in a flowing sample, a vibration member for applying vibration to the sample in the first container, and a reflection member for reflecting vibration from the vibration member. A separator for introducing a sample from the vibrating member side of the first container, and an outlet for discharging the sample separated by vibration on the reflecting member side. A container for capturing the substance contained in the container, a vibrating member that applies vibration to the first sample in the container, and a second sample that reflects vibration from the vibrating member and that is filtered from the first sample Capture device having a filter for causing It is in the place. Further, there is provided a separator for separating a substance in a liquid having a vibrating member and a reflecting member, which is a combination of the above, and a trap comprising a vibrating member and a filter downstream of the separator for capturing particles in the liquid. A treatment device for a liquid containing particles having the following. Furthermore, a first supply pipe for supplying the liquid containing particles in parallel to the plurality of separators, and a second supply pipe for supplying the liquid containing particles discharged from the plurality of separators to the plurality of traps in parallel. A liquid treatment apparatus including particles having a supply pipe. A first container for separating the first substance contained in the flowing sample; a vibration member for applying vibration to the sample in the first container; a reflection member for reflecting the vibration; A first inlet for introducing the liquid from the vibrating member side of the container, a first outlet for the liquid containing the first particles separated by vibration on the reflecting member side, and a second outlet from the first outlet. A passage tube for flowing the liquid containing particles downstream, a second container for capturing the liquid containing the second particles, a vibration member for applying vibration to the liquid containing the second particles in the second container, A filter that reflects the vibration from the vibrating member and passes the third liquid filtered from the liquid containing the second particles, and a second filter that introduces the liquid containing the second particles from the vibrating member side of the second container. Through the filter, the inlet for collecting the concentrated second liquid captured in the second container, and the filter A liquid treatment device containing particles having a second outlet for discharging the third liquid, and an inlet for introducing a gas for collecting the second liquid. A container for capturing a substance contained in the first liquid from the container, a vibrating member for applying vibration to the first liquid in the container, and a member for reflecting the vibration from the vibrating member and filtering from the first liquid. A filter through which the second liquid passes, an inlet through which the first liquid from the water supply is introduced from the vibrating member side of the container, and an outlet provided through the filter for returning to the drinking water supply pipe. It is in the tap water purification device with the configuration. Hereinafter, the details of the separation device 3 will be described in the first half, and the details of the separation device 30 will be described in the second half. In addition, the application to a water inspection system and a water treatment system combining a separation device and a capture device is described. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明による液中粒子の夾雑物分離装置および捕獲装置を 備えた粒子を含む液体の処理装置構成図である。 図 2は、 分離装置の 装置構成図である。 図 3は、 分離装置の断面図である。 図 4は、 分離 装置の断面図である。 図 5は、 球面状の反射部材を用いた場合の超音 波捕獲の概念図である。 図 6は、 球面状の反射部材を用いた場合の超 音波捕獲の概念図である。 図 7は、 平面状の反射部材を用いた場合の 超音波捕獲の概念図である。 図 8は、 平面状の反射部材を用いた場合 の超音波捕獲の概念図である。 図 9は、 粒子分離装置内の流路レイァ ゥ ト図である。 図 1 0は、 粒子分離装置の濃縮率の結果の一例を示す 図である。 図 1 1は、 粒子分離装置の分離性能の結果の一例を示す図 である。 図 1 2は、 光センサを用いた本発明による装置構成図である 。 図 1 3は、 光学センサとして散乱光を計測する場合の構成図である 。 図 1 4は、 光学センサとして散乱光を計測する場合の構成図である 。 図 1 5は、 光学センサと して透過光を計測する場合の構成図である 。 図 1 6は、 複数個の分離装置を直列に繋いだ場合の構成図である。 図 1 7は、 複数個の分離装置を並列に繋いだ場合の構成図である。 図 1 8は、 本発明による粒子捕獲装置の構成図である。 図 1 9は、 本発 明による粒子捕獲装置の構成図である。 図 2 0は、 本発明による粒子 捕獲装置の構成図である。 図 2 1は、 捕獲装置の断面図である。 図 2 2は、 捕獲装置の断面図である。 図 2 3は、 複数の捕獲装置を直列に 繋いだ場合の装置構成図である。 図 2 4は、 分離装置と捕獲装置の間 にバッファタンクを設けた場合の装置構成図である。 図 2 5は、 複数 の分離装置と複数の捕獲装置を繋げた場合の装置構成図である。 図 2 6は、 クリプトスポリジゥムの検査の従来方法と本発明による装置を 用いた場合の比較を示す図である。 図 2 7は、 本発明による水検査シ ステム適用例を示す図である。 図 2 8は、 本発明による水処理システ ム適用例を示す図である。 図 2 9は、 本発明による水処理システム適 用例を示す図である。 図 3 0は、 本発明による飲料水浄化装置適用例 を示す図である。 発明を実施するための最良の形態 FIG. 1 is a block diagram of an apparatus for treating a liquid containing particles, provided with an apparatus for separating contaminants of liquid particles and a capturing apparatus according to the present invention. FIG. 2 is a device configuration diagram of the separation device. FIG. 3 is a cross-sectional view of the separation device. FIG. 4 is a cross-sectional view of the separation device. FIG. 5 is a conceptual diagram of ultrasonic capture when a spherical reflecting member is used. FIG. 6 is a conceptual diagram of ultrasonic capture when a spherical reflecting member is used. FIG. 7 is a conceptual diagram of ultrasonic capture when a planar reflecting member is used. FIG. 8 is a conceptual diagram of ultrasonic capture when a planar reflecting member is used. FIG. 9 is a diagram of a flow path layout in the particle separation device. FIG. 10 is a diagram showing an example of the result of the concentration rate of the particle separation device. FIG. 11 is a diagram showing an example of the results of the separation performance of the particle separation device. FIG. 12 is an apparatus configuration diagram according to the present invention using an optical sensor. FIG. 13 is a configuration diagram when measuring scattered light as an optical sensor. FIG. 14 is a configuration diagram when measuring scattered light as an optical sensor. FIG. 15 is a configuration diagram when measuring transmitted light as an optical sensor. FIG. 16 is a configuration diagram when a plurality of separation devices are connected in series. FIG. 17 is a configuration diagram when a plurality of separation devices are connected in parallel. FIG. 18 is a configuration diagram of a particle capturing device according to the present invention. FIG. 19 is a configuration diagram of a particle capturing device according to the present invention. FIG. 20 is a configuration diagram of a particle capturing device according to the present invention. FIG. 21 is a cross-sectional view of the capturing device. FIG. 22 is a cross-sectional view of the capturing device. FIG. 23 is a device configuration diagram when a plurality of capturing devices are connected in series. Figure 24 shows the separation device and capture device. FIG. 3 is a device configuration diagram when a buffer tank is provided in FIG. FIG. 25 is an apparatus configuration diagram when a plurality of separation devices and a plurality of capture devices are connected. FIG. 26 is a diagram showing a comparison between the conventional method of Cryptosporidium inspection and the case of using the apparatus according to the present invention. FIG. 27 is a diagram showing an example of application of a water inspection system according to the present invention. FIG. 28 is a diagram showing an application example of the water treatment system according to the present invention. FIG. 29 is a diagram showing an example of application of the water treatment system according to the present invention. FIG. 30 is a diagram showing an application example of the drinking water purification device according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
A . 分離装置 A. Separation device
•分離装置の基本構成および概念  • Basic configuration and concept of separation device
分離装置の実施例を図 2に示す。 粒子を含んだ試料液 1をポンプ 2 を用いて装置内部に導入する。 液体試料導入流量は毎分数ミ リ リッ ト ルから数リ ッ トル程度である。 ポンプ 2は、 吐出流量を調節できる仕 組みのもの、 例えば、 チューブポンプあるいはダイアフラムポンプ等 が良い。 ポンプ 2を通った試料水は、 分離装置内に局所的に流速が速 い箇所が出来ないように分岐 ·分散され、 振動部材 4と反射部材 5の 間の振動部材側に設けられた複数個の導入口より分離装置 3に導入さ れる。 1個所からの導入であると、 分離装置 3内に局所的流速が速い 箇所が生じ、 その近辺は粒子が捕獲から逃げてしまい、 安定に粒子が 捕獲されにくい欠点があるが、 流量が少なく安定な捕獲が出来るので あれば 1個所からの導入でも構わない。  FIG. 2 shows an embodiment of the separation apparatus. The sample liquid 1 containing the particles is introduced into the apparatus using the pump 2. The liquid sample introduction flow rate is from several milliliters to several liters per minute. The pump 2 has a mechanism capable of adjusting the discharge flow rate, such as a tube pump or a diaphragm pump. The sample water that has passed through the pump 2 is branched and dispersed so that a location with a high flow velocity is not locally formed in the separation device, and a plurality of sample waters provided on the vibration member side between the vibration member 4 and the reflection member 5 are provided. Is introduced into the separation device 3 from the inlet of the separator. If introduced from one point, there is a point in the separation device 3 where the local flow velocity is high, and particles escape from capture in the vicinity, and there is a drawback that particles are difficult to be captured stably, but the flow rate is small and stable As long as it can be captured, it can be introduced from one place.
分離装置 3は、 円筒形の壁、 振動部材 4 (直径は、 分離装置の内径 にほぼ等しい) 、 反射部材 5、 振動部材 4と反射部材 5の間の振動部 材 4側から試料を導入する導入口、 および振動部材 4と反射部材 5の 間の反射部材 5側から試料を排出する排出口より構成され、 振動部材 4と対面の反射部材 5との間に超音波を発生させる。 この実施例では 、 製作 ·加工のしゃすさを考慮し円筒形の装置 (振動部材 4と反射部 材 5が天板、 底板に当たる) になっているが、 直方体の形状でも良い 。 振動部材 4は、 振動を発生させるどのようなものでも良いが、 圧電 セラミクス製の超音波振動子はその一例である。 超音波の周波数は数 百 k H zから 1 0 MH z程度である。 粒子は、 定在超音波の節の位置 に集まり捕獲 ·濃縮される。 波長よりも装置の長さが長ければ、 装置 内に定在超音波の節が複数個存在し、 肉眼で分離装置 3内を観察する と、 捕獲された粒子は 6のような縞模様になっている。 ここで使用し ている超音波の周波数は 4 MH zで水中での波長は約 0. 3 8 mmと なり、 節の間隔は半分の約 0. 1 9 mmとなる。 長さ 8 0 mmの装置 内部に約 0. 1 9 mm間隔の縞模様ができる。 The separation device 3 introduces the sample from the cylindrical wall, the vibration member 4 (the diameter is almost equal to the inner diameter of the separation device), the reflection member 5, and the vibration member 4 side between the vibration member 4 and the reflection member 5. Inlet, and vibration member 4 and reflection member 5 An ultrasonic wave is generated between the vibrating member 4 and the facing reflecting member 5 which is constituted by an outlet for discharging the sample from the side of the reflecting member 5 therebetween. In this embodiment, a cylindrical device (the vibrating member 4 and the reflecting member 5 correspond to the top plate and the bottom plate) is used in consideration of the ease of manufacturing and processing, but may be a rectangular parallelepiped. The vibration member 4 may be any member that generates vibration, but an ultrasonic vibrator made of piezoelectric ceramics is one example. The frequency of the ultrasonic wave is about several hundred kHz to about 10 MHz. Particles collect and concentrate at the nodes of the standing ultrasound. If the length of the device is longer than the wavelength, there will be multiple standing ultrasound nodes in the device, and when the inside of the separation device 3 is observed with the naked eye, the captured particles will be striped like 6 ing. The frequency of the ultrasonic wave used here is 4 MHz, the wavelength in water is about 0.38 mm, and the interval between nodes is about 0.19 mm, which is half. A stripe pattern of approximately 0.19 mm is formed inside the 80 mm long device.
試料液中の粒子は、 超音波照射下で輻射圧を受けることにより捕獲 されるが、 その輻射圧は次の式 1にて記述される。  Particles in the sample liquid are captured by receiving radiation pressure under ultrasonic irradiation, and the radiation pressure is described by the following equation (1).
F = - (4π / 3 ) R 3 · ω * · Ρ 0 2 · A · s i n ( 2 k x ) (式 1 ) F = - (4π / 3) R 3 · ω * · Ρ 0 2 · A · sin (2 kx) ( Equation 1)
ここで、 ω*= ωΖ4 /ο 0 c 0 3、 A= ( 5 p , - 2 p o) / ( 2 /0 + /o o) _ o c。2) Z , c ) 、 Rは粒子半径、 ωは超音波角 速度、 ρは密度、 cは音速、 Ρ。は超音波による液体中の圧力振幅、 kは端数 (= 2 πΖλ ( :波長)) 、 添字の 0、 1はそれぞれ粒子、 液 体を表す。 粒子の半径 Rが大きくなるほど、 受ける輻射圧 (捕獲され る力) が大きくなり、 超音波の周波数あるいはパワーが大きくなるほ ど、 受ける輻射圧が大きくなる。 また、 試料液の流速が速いほど、 粒 子に働く流体からの抵抗力が大きくなり、 超音波による輻射圧より抵 抗力が優ると捕獲から逃れて、 分離装置 3の外へ排出される。 従って 、 分離装置内を通る試料水の流速あるいは超音波の強度や周波数を調 節することにより、 最終的に捕らえたい対象の粒子以外の夾雑物をこ の分離装置 3内に非接触に捕獲し除去することが出来る。 Here, ω * = ωΖ4 / ο 0 c 0 3, A = (5 p, - 2 po) / (2/0 + / oo) _ oc. 2 ) Z, c), R is particle radius, ω is ultrasonic angular velocity, ρ is density, c is sound velocity, Ρ. Is the pressure amplitude in the liquid by ultrasonic waves, k is the fraction (= 2πΖλ (: wavelength)), and the subscripts 0 and 1 represent particles and liquid, respectively. As the radius R of the particle increases, the radiation pressure (capture force) increases, and the higher the frequency or power of the ultrasonic wave, the higher the radiation pressure. In addition, the higher the flow rate of the sample liquid, the greater the resistance force of the fluid acting on the particles. If the resistance force is higher than the radiation pressure of the ultrasonic waves, the particles escape from the capture and are discharged out of the separation device 3. Therefore By adjusting the flow rate of the sample water passing through the separation device or the intensity and frequency of the ultrasonic waves, contaminants other than the particles to be finally caught are captured and removed in a non-contact manner in the separation device 3. You can do it.
分離装置 3内に形成された夾雑物の縞模様 6の有無や濃度は、 レー ザ一光を縞模様に照射し散乱された光を分離装置 3の側面に設置され る光学的センサ 7により検知される。 あるいは、 レーザ一光を装置内 にできた縞模様の一つ一つを通過させる形で、 超音波が進行する方向 と平行にレーザー光を照射し、 透過光量の変化を測定することにより 縞模様の有無や濃度を検知することもできる。 濃縮された夾雑物は、 適時、 排出することができる。 具体的な方法については、 後述する。 対象となる粒子を含んだ液は、 導入口と同様に複数個設けられた排 出口より排出され、 フィルタ 8で対象となる粒子が捕獲される。 対象 となる粒子がクリプトスポリジゥム (径が 4〜 6 m ) の場合、 用い るフィルタ 8 としては、 孔径 1 // mから 2 μ πιのメンブレンフィルタ が適当である。 厚生省の策定した検出方法に沿って、 クリプトスポリ ジゥムの検出のためにこのフィルタを染色し、 顕微鏡で観察すること もできる。 この際、 夾雑物が分離フィルタで除去されているので、 顕 微鏡観察時の測定誤差が減り、 またフィルタ溶解 ·遠心分離等の手間 のかかる作業も不要になる。  The presence or absence and concentration of the striped pattern 6 of the contaminants formed in the separation device 3 is detected by the optical sensor 7 installed on the side of the separation device 3 by irradiating the laser with one light on the striped pattern. Is done. Alternatively, the laser beam is irradiated in parallel with the direction in which the ultrasonic wave travels in such a way that one laser beam passes through each of the stripe patterns formed in the device, and the change in the amount of transmitted light is measured to determine the stripe pattern. The presence or absence and the density can also be detected. The concentrated contaminants can be discharged in a timely manner. The specific method will be described later. The liquid containing the target particles is discharged from a plurality of outlets provided in the same manner as the inlet, and the target particles are captured by the filter 8. When the target particles are cryptosporidium (diameter of 4 to 6 m), a membrane filter having a pore diameter of 1 // m to 2 μπι is suitable as the filter 8 to be used. According to the detection method established by the Ministry of Health and Welfare, this filter can be stained for Cryptosporidium detection and observed under a microscope. At this time, since contaminants have been removed by the separation filter, measurement errors during microscopic observation are reduced, and laborious operations such as filter dissolution and centrifugation are not required.
·分離装置の詳細な説明  · Detailed description of separation device
図 3に分離装置の断面図を示す。 記入してある寸法については、 一 例で、 超音波の減衰がなく、 粒子が捕獲できるものであればよい。 形 状についても同様である。 液体の導入口 ·排出口 9が複数あるのは、 前述の通り局所的に流速が速い部分を作らないためで、 導入口あるい は排出口の数をさらに増やしても構わない。  Figure 3 shows a sectional view of the separation device. The dimensions shown are just an example, so long as they have no attenuation of ultrasonic waves and can capture particles. The same applies to the shape. The reason why there are a plurality of liquid inlets and outlets 9 is as described above because a portion having a high flow velocity is not locally formed as described above, and the number of inlets or outlets may be further increased.
超音波振動子に交流電圧を印加し、 液中に超音波を発生させる。 超 音波振動子 4の設置方法については、 この実施例では、 フランジでパ ッキン 1 0を介して挟み込み試料液が直接振動子に接するようになつ ているが、 これは振動子 4の交換を容易にするためである。 超音波振 動子は、 共振周波数 (数百 k H z〜数 M H z ) によって厚みが変わる ので、 粒子に照射する周波数を変えるときは振動子を交換することに なるが、 組み立てが容易な方が都合が良い。 周波数を変える必要が無 ければ、 図 4のとおり、 振動子 4を固体壁に接着して固体壁を通して 超音波を液中に照射し、 相対する反射部材の間に定在波を形成しても 良い。 この場合も粒子捕獲に関しては、 パッキンで振動子を挟んで装 置内の液体が直接振動子に接するようにした場合と同様の効果が得ら れる。 振動子が直接装置内部の液体に接するのが好ましくない場合は 、 図 4のようにするのが良い。 但し、 この場合、 接着した壁の厚さを 半波長の整数倍になるようにして、 超音波が液体に効率よく伝わるよ うにする必要がある。 振動子 4の電極については表 ·裏にそれぞれ + と一の銀電極があるが、 リード線は水に接しない側から出した方が好 ましいので、 水に接する方の面の電極は反対側の面に一部折り返して ある。 但し、 水に接する側の電極もニッケルでコーティングされてい るので直接銀電極が水には接しない。 An AC voltage is applied to the ultrasonic vibrator to generate ultrasonic waves in the liquid. Super Regarding the method of installing the ultrasonic oscillator 4, in this embodiment, the sample liquid is sandwiched by the flange via the packing 10 so that the sample liquid directly contacts the oscillator, but this facilitates replacement of the oscillator 4. To do that. Since the thickness of the ultrasonic transducer changes depending on the resonance frequency (several hundreds of kHz to several MHz), the transducer must be replaced when changing the frequency of irradiating particles. Is convenient. If there is no need to change the frequency, as shown in Fig. 4, the vibrator 4 is bonded to a solid wall, ultrasonic waves are irradiated through the solid wall into the liquid, and a standing wave is formed between the opposing reflecting members. Is also good. In this case as well, the same effect as in the case where the liquid in the device is brought into direct contact with the vibrator with the vibrator sandwiched between the packings can be obtained. If it is not desirable for the vibrator to directly contact the liquid inside the device, it is better to make it as shown in FIG. However, in this case, it is necessary to make the thickness of the bonded wall an integral multiple of half a wavelength so that the ultrasonic wave can be transmitted to the liquid efficiently. The electrodes of the vibrator 4 have + and 1 silver electrodes on the front and back, respectively.However, it is preferable that the lead wire comes out from the side not in contact with water, so the electrode on the side that is in contact with water is opposite. It is partially folded on the side surface. However, since the electrode in contact with water is also coated with nickel, the silver electrode does not directly come into contact with water.
反射部材 5については、 この実施例では反射部材の位置を移動でき るようにしてあるが、 固定して使用しても問題ない。 反射部材の形状 について、 表面が球面の板 (半径は 1 0〜 1 0 0 m m程) を用いると 、 表面の加工精度あるいは組み立て精度が多少悪くても、 図 5に示す 様に、 進行波と反射波で超音波を強め合う位置が、 円筒形をなす装置 の中心軸を中心に集まる。 これは、 平面の進行波と凹面の反射波が強 め合う位置が中心軸を中心とした円錐状の同心円の集合を形成するた めで、 たとえ精度が多少悪くてもわずかに円錐状の同心円の集合の形 が歪むだけで安定に粒子を捕獲しやすい。 従って液中の粒子は図 6の ように装置の中心軸を中心にした円錐の形で捕獲される。 これに対し 、 超音波振動子および反射部材共に形状を平面にし、 それぞれを平行 に設置し、 定在波を形成すると、 図 7に示すように、 わずかな表面の 歪みあるいは平行度の歪みの影響を受け、 進行波と反射波の強め合う 位置が分散してしまい、 図 8のように粒子の捕獲される位置も分散さ れてしまう。 振動部材に凹面形状、 反射部材に平面形状を用いても良 いが、 本実施例では、 製作の容易さを考え、 振動部材を平面状に、 反 射部材を凹面状にしてある。 In this embodiment, the position of the reflecting member 5 can be moved, but there is no problem if the reflecting member 5 is fixedly used. Regarding the shape of the reflecting member, if a plate with a spherical surface (radius of about 100 to 100 mm) is used, as shown in Fig. 5, even if the processing accuracy or assembly accuracy of the surface is somewhat poor, The positions where the ultrasonic waves are strengthened by the reflected waves are concentrated around the central axis of the cylindrical device. This is because the position where the traveling wave of the plane and the reflected wave of the concave surface strengthen each other forms a set of concentric concentric circles centered on the central axis. Set shape It is easy to capture particles stably just by distorting. Therefore, the particles in the liquid are captured in the form of a cone centered on the central axis of the device as shown in Fig. 6. On the other hand, if both the ultrasonic transducer and the reflecting member are made flat in shape and placed in parallel to form a standing wave, as shown in Fig. 7, the effect of slight surface distortion or parallelism distortion As a result, the positions where the traveling wave and the reflected wave strengthen are dispersed, and the positions where the particles are captured are also dispersed as shown in FIG. A concave shape may be used for the vibrating member, and a planar shape may be used for the reflecting member. However, in the present embodiment, the vibrating member has a planar shape and the reflecting member has a concave shape in consideration of ease of manufacture.
分離装置 3内の試料水の流し方であるが、 図 9 ( A ) および図 9 ( B ) に示す 2通りの方法で、 試料水中のでんぷん粒子 (粒径 1 0 0 m程度) が超音波により捕獲され濃縮される様子を図 1 0に示す。 横 軸には試料水の流量 (=装置に入る流量 =装置から出る流量) と縦軸 に 1時間後の濃縮率の関係を示す。 図 9 ( A ) と図 9 ( B ) とでは、 ( B ) の方が約 3倍ほど (A ) より濃縮できることが分かる。 図 9 ( A ) では、 装置の下部から試料を導入しているため、 装置の下部では 局所的に流速が速い部分を生じる。 このため、 粒子が本来捕獲されて 溜まりやすい場所が攪拌されてしまい、 粒子が安定に縞を形成しにく い結果となったのが原因であると考えられる。 これに対し、 図 9 ( B ) では装置上部に攪拌域が出来るものの、 反射部材近傍の装置底部で は、 流速が均一となり、 平均化されゆっく りしているので、 縞が安定 に存在できるという結果になる。 従って、 試料の導入は、 振動部材 4 と振動部材 5の間の振動部材側から行い、 排出は、 振動部材 4と振動 部材 5の間の反射部材側から行うのが分離の効果が高くなる。  The method of flowing the sample water in the separation device 3 is as follows. The starch particles (particle size: about 100 m) in the sample water are sonicated by the two methods shown in Fig. 9 (A) and Fig. 9 (B). Fig. 10 shows how they are captured and concentrated. The horizontal axis shows the relationship between the flow rate of the sample water (= flow rate into the equipment = flow rate out of the equipment) and the vertical axis shows the concentration ratio after 1 hour. In FIG. 9 (A) and FIG. 9 (B), it can be seen that (B) can be concentrated about three times more than (A). In Fig. 9 (A), since the sample is introduced from the lower part of the device, a part where the flow velocity is high locally occurs in the lower part of the device. It is considered that this was because the place where particles were originally trapped and easily collected was agitated, and the particles were less likely to stably form stripes. On the other hand, in Fig. 9 (B), although a stirring area is formed at the top of the device, the flow velocity is uniform at the bottom of the device near the reflection member, and is averaged and slow, so that stripes can exist stably. Is the result. Therefore, the effect of separation is enhanced when the sample is introduced from the vibration member side between the vibration member 4 and the vibration member 5 and the sample is discharged from the reflection member side between the vibration member 4 and the vibration member 5.
·分離結果の例  · Example of separation result
図 1 1に、 図 3に示した装置を用いて、 夾雑物と微生物を分離した 例を示す。 夾雑物としては、 可溶性のでんぷん (粒径は 20 // m以上Figure 11 shows the separation of contaminants and microorganisms using the device shown in Figure 3. Here is an example. Soluble starch (particle size is 20 // m or more)
) を用い、 微生物はクリプトスポリジゥムの陽性コン トロール (粒径) And the microorganism is a positive control of cryptosporidium (particle size).
4〜 6 /z m) を用いた。 でんぷんの濃度は 0. 0 2 g/ l i t、 ク リ ブトの濃度は 0. 5 6 /z g Z lで、 この 2種類の粒子を含んだ液を分 離装置に通した。 グラフの横軸は分離装置を通る試料水流量、 縦軸は 原液と比較した粒子の濃度の比を示す。 つまり、 1より大きくなると 原液より濃くなつていることを示している。 クリプトスポリジゥムの 濃度は、 装置内液 ·排出液共に原液と濃度が変わらずに装置を通過し ていることがわかる。 これに対し、 粒径の大きなでんぷんは、 流量が 40 m 1 /m i n以下で装置内で濃縮される割合が増え、 排出液では 薄くなっていることがわかる。 4-6 / z m). The concentration of starch was 0.02 g / lit and the concentration of crisp was 0.56 / z g Zl. The liquid containing these two types of particles was passed through a separation device. The horizontal axis of the graph shows the flow rate of the sample water passing through the separation device, and the vertical axis shows the ratio of the concentration of particles compared to the stock solution. In other words, it indicates that when it is larger than 1, it becomes darker than the stock solution. It can be seen that the concentration of Cryptosporidium passed through the device without changing the concentration from the undiluted solution in both the liquid in the device and the effluent. On the other hand, it can be seen that starch with a large particle size has a higher concentration in the device when the flow rate is 40 m 1 / min or less, and is thinner in the discharged liquid.
•分離された夾雑物の検知  • Detection of separated impurities
光学的センサ 8は、 分離装置の外部に設けたレーザー発振器 1 4お よび受光器 1 5を用い、 センサからの透過光量あるいは散乱光量の変 化をアナログ信号として、 図 1 2に示すように、 捕獲された夾雑粒子 の濃度の時間変化をオンラインで信号出力画面 1 6に表示あるいは記 録することができる。 光学的センサで濃度の時間変化を測定する方法 としては、 1 ) 縞模様に照射して散乱された光を計測する、 2) 超音 波が進行する方向と平行にレーザー光を縞模様に照射し透過光を計測 する、 の 2つがある。 2) の場合、 反射部材に凹面の形状を用いた場 合は図 6のように縞が装置の中心軸を中心に円錐状に形成されるため 中心を通るようにレーザー光を照射すると S/N比が高くなるので好 ましい。 平面の形状を用いた場合は、 図 8の様に粒子が捕獲される位 置が分散されてしまうため、 複数個のレーザ一光を超音波が進行する 方向に平行に照射し、 それぞれの光量の総和を測定し、 濃度を求める のが良い。 分離装置を透過する光あるいは捕獲された夾雑粒子で散乱 された光がある一定の光量になったとき、 つまり、 ある濃度以上の縞 模様ができたときに、 アラームを鳴らしたり警告ランプをつけたりで きる。 また、 この装置を水処理装置として用いる場合は、 濃度の時間 変化を記録や監視し、 通常時の濃度上昇と比較して急激な濃度上昇が 見られた場合に、 原取水に異常があると判断して、 取水を停止する、 あるいは他の取水に切り替える等の対策が取れる。 Optical sensor 8 uses a laser oscillator 1 4 Contact and photodetector 1 5 provided outside the separation device, the changes in the transmitted light amount or scattered light from the sensor as an analog signal, as shown in FIG. 1 2, The time variation of the concentration of the captured contaminant particles can be displayed or recorded on the signal output screen 16 online. Optical sensors measure the change in concentration over time: 1) irradiating the stripe pattern and measuring the scattered light; 2) irradiating the stripe pattern with laser light parallel to the direction in which the ultrasonic waves travel. Measurement of transmitted light. In the case of 2), when a concave shape is used for the reflecting member, stripes are formed in a conical shape around the center axis of the device as shown in Fig. 6. It is preferable because the N ratio increases. When a planar shape is used, the positions where the particles are captured are dispersed as shown in Fig. 8, so that a single laser beam is irradiated in parallel to the direction in which the ultrasonic wave travels, It is better to measure the sum of and determine the concentration. Scattered by light passing through the separation device or captured contaminant particles When the emitted light reaches a certain level, that is, when a stripe pattern of a certain density or more is formed, an alarm can sound or a warning lamp can be turned on. When this device is used as a water treatment device, the concentration change over time is recorded and monitored.If the concentration increases sharply compared to the normal concentration increase, it is considered that there is an abnormality in the raw water intake. Judgment can be taken and measures can be taken such as stopping the intake or switching to another intake.
具体的な濃度の判断については、 下記の様に行う。 まず、 分離装置 内の夾雑粒子の濃度と、 装置に超音波をかける時間については、 下記 の式 2の関係がある。  The specific concentration is determined as follows. First, the relationship of the concentration of the contaminant particles in the separation device and the time for applying ultrasonic waves to the device has the following equation (2).
C N · t (式 2 )  C Nt (Equation 2)
ここで、 Cは装置内濃度、 Nは原水濃度、 tは時間を表す。 Here, C represents the concentration in the apparatus, N represents the concentration of raw water, and t represents time.
濃度 Cの測定については、 濃度 Cと散乱光の強さに単調増加の相関 があることから、 実際に装置内の液体を取り出さなく とも、 光学セン サの光量変化を監視していればよい。  Regarding the measurement of the concentration C, since there is a monotonically increasing correlation between the concentration C and the intensity of the scattered light, it is only necessary to monitor the change in the light amount of the optical sensor without actually removing the liquid from the apparatus.
光学的センサとして散乱光を計測する場合は、 図 1 3のように分離 装置側面の入射口 1 7から半導体レーザーを入射し、 捕獲された夾雑 粒子に当たって散乱された光を光ファイバ一 1 8を経由してフォ トダ ィォードで電気信号に変換することにより、 捕獲された粒子の濃度あ るいは粒子の有無を計測できる。 感度をあげるために図 1 3に示した 通り、 分離装置の側面にミラー 1 9を設置し、 レーザー光を繰り返し 装置内の粒子に当て、 散乱光の強度を強めることができる。 あるいは 、 反射型散乱光を用いる場合は、 図 1 4のように反射部材 5に投光 · 受光一体型光ファイバ一ケーブル 2 0およびレンズ 2 1を設置し、 投 光されたレーザー光が粒子に当たって散乱された光を測定することに より計測できる。 投光 ·受光一体型光ファイバ一ケーブルは振動部材 4に取り付けてもよい。 透過光を測定する場合は、 図 1 5に示す通り、 反射部材 5にレーザ ー投光用光ファイバ一ケーブル 2 5およびレンズ 2 6を設置し、 装置 の反対側に設置された振動部材の中心部に穴をあけ、 受光用の光ファ ィバー 2 7を設ける。 投光用光ファイバ一ケーブル 2 5より投光され たレーザ一光 2 8はレンズ 2 6を経由し、 装置内に捕獲された粒子の 縞 6の一つ一つで減衰しながら通過するため、 入射光量に比べ光強度 が減少する。 この減少度合いを予め測定しておくことにより粒子を捕 獲した量を相対的に特定することができる。 この方法では、 装置内の 一つ一つの縞を積分する形で計測するので、 試料水の濃度が薄い場合 に有効である。 When measuring scattered light as an optical sensor, as shown in Fig. 13, a semiconductor laser is incident from the entrance 17 on the side of the separation device, and the light scattered by hitting the trapped foreign particles is passed through the optical fiber 18 The concentration of trapped particles or the presence / absence of particles can be measured by converting them into electric signals by means of a photodiode. As shown in Fig. 13, a mirror 19 is installed on the side of the separation device to increase the sensitivity, and laser light can be repeatedly applied to particles in the device to increase the intensity of scattered light. Alternatively, when using reflected scattered light, as shown in FIG. 14, a light emitting / receiving optical fiber-to-optical fiber cable 20 and a lens 21 are installed on the reflecting member 5 so that the emitted laser light hits the particles. It can be measured by measuring the scattered light. The light emitting / receiving integrated optical fiber cable may be attached to the vibration member 4. When measuring transmitted light, as shown in Fig. 15, install the optical fiber cable for laser emission 25 and the lens 26 on the reflecting member 5, and set the center of the vibrating member on the opposite side of the device. A hole is made in the section, and an optical fiber 27 for receiving light is provided. Since the laser beam 28 emitted from the optical fiber cable 25 for optical projection passes through the lens 26 and passes through the lens 26 while being attenuated by each of the stripes 6 of the particles captured in the device, The light intensity decreases compared to the amount of incident light. By measuring the degree of this decrease in advance, the amount of captured particles can be relatively specified. This method is effective when the concentration of the sample water is low because the measurement is performed by integrating each stripe in the device.
特に図 6のように凹面状の反射部材を用いた場合は、 レーザ一光が 粒子が捕獲された形成された円錐の中心を通るように照射するのが S / N比を上げるのに好ましい。 平面状の反射部材を用いた場合は、 レ 一ザ一光を複数個照射して、 中心だけでなく測定の対象にする方が良 い。  In particular, when a concave reflecting member is used as shown in FIG. 6, it is preferable to irradiate the laser beam so as to pass through the center of the formed cone where the particles are captured in order to increase the S / N ratio. When a flat reflecting member is used, it is better to irradiate a plurality of laser beams to make it a target of measurement as well as the center.
光による検知方法として、 上に述べた散乱光測定 ·透過光測定を適 宜組み合わせて用いることもできる。  As a light detection method, the scattered light measurement and transmitted light measurement described above can be used in an appropriate combination.
光による検知方法以外では、 カメラを用いて捕獲された粒子を観察 し、 色 ·形等から粒子の種類を特定することも可能である。  In addition to the detection method using light, it is also possible to observe the captured particles using a camera and specify the type of particles based on their color and shape.
·複数の分離装置を用いた例  · Examples using multiple separation devices
最終的に捕獲したい粒子 ·微生物以外に夾雑物の種類 ·個数が多く て、 一段の分離装置だけでは、 夾雑物が排除しきれない場合、 図 1 6 のように、 第 1の分離器の排出口と第 2の分離器の導入口を配管で繋 ぎ、 分離装置を直列に設置すれば、 夾雑物の粒径の違いあるいは密度 の違いにより分離することができる。 例えば、 直列に設置された分離 器の内、 一段目では、 輻射圧の弱い超音波を照射し、 比較的粒径の大 きいあるいは密度の高い粒子を捕獲する。 一段目の分離器内に捕獲さ れなかった粒径の小さな粒子は、 排出された液体と共に二段目の分離 器内に導入される。 二段目の分離器には、 一段目より強い輻射圧をも つ超音波を照射し、 一段目で捕獲されなかった粒子を捕獲する。 一段 目、 二段目の分離器を通過した対象の粒子 ·微生物はフィルタ 8に捕 獲される。 一段目、 二段目の分離器の輻射圧を調節することにより、 適当な径の粒子を分離することができる。 If the type and number of contaminants other than the microorganisms and microorganisms that you want to ultimately capture are large and the number of contaminants cannot be completely eliminated by a single-stage separation device, as shown in Fig. 16, the first separator is discharged. If the outlet and the inlet of the second separator are connected by a pipe and the separation device is installed in series, it is possible to separate the impurities due to the difference in particle size or density. For example, among the separators installed in series, the first stage irradiates ultrasonic waves with low radiation pressure and produces relatively large particles. Capturing heavy or dense particles. The small-sized particles not captured in the first-stage separator are introduced into the second-stage separator together with the discharged liquid. The second-stage separator is irradiated with ultrasonic waves having a radiation pressure stronger than that of the first stage, and the particles not captured in the first stage are captured. The target particles and microorganisms that have passed through the first-stage and second-stage separators are captured by the filter 8. By adjusting the radiation pressure of the first and second stage separators, particles with an appropriate diameter can be separated.
また、 図 1 0に示すように試料水の流量を増やしていく と一つの分 離器で排除できる夾雑物の割合が減ってくるが、 排出された液を再び 装置に通す、 あるいは、 複数個の装置を直列につないで、 排除する割 合を高めることも出来る。  Also, as shown in Fig. 10, increasing the flow rate of the sample water reduces the proportion of impurities that can be removed by one separator, but the discharged liquid is passed through the device again, or Can be connected in series to increase the exclusion rate.
あるいは、 全体的な試料の処理速度を上げたい場合は、 図 1 7に示 すように第 1の分離器と第 2の分離器の導入口を配管で接続して、 並 列に複数個並べればよい。  Alternatively, if you want to increase the overall sample processing speed, connect the inlets of the first and second separators with pipes as shown in Fig. 17 and arrange them in parallel. I just need.
B . 捕獲装置 B. Capture device
•捕獲装置の基本構成および概念  • Basic configuration and concept of capture device
図 1 8に示す様に、 捕獲装置に、 振動部材 4およびフィルタ 2 9を 設け、 その間に超音波を形成し、 粒子を非接触的に捕獲する。 粒子を 含む試料水は、 捕獲装置 3 0の振動部材 4とフィルタの間の振動部材 側に設けた導入口 3 1から導入し、 超音波の進行方向と平行に流れる 。 捕獲されなかったフィルタ孔径より小さな粒子は液とともに、 フィ ルタ 2 9を通過し装置外に排出口 3 2より排出される。 試料水中のフ ィルタ孔径より大きな粒子は、 超音波の輻射圧により、 超音波の半波 長に相当する距離を間隔とする縞模様 6を形成し、 非接触的に捕獲装 置内に捕獲される。 上述の縞模様から逃れてフィルタ 2 9近傍まで移 動した、 フィルタ孔径より大きな粒子も超音波の輻射圧により、 フィ ノレタに付着することなく、 捕獲されるため、 フィルタの目詰まりが少 なくなる。 As shown in FIG. 18, the capturing device is provided with a vibrating member 4 and a filter 29, between which an ultrasonic wave is formed to capture the particles in a non-contact manner. The sample water containing particles is introduced from the inlet 31 provided on the vibrating member side between the vibrating member 4 of the capturing device 30 and the filter, and flows in parallel with the traveling direction of the ultrasonic wave. Particles smaller than the filter pore size that have not been captured pass through the filter 29 together with the liquid, and are discharged out of the apparatus through the discharge port 32. Particles larger than the filter pore diameter in the sample water form a striped pattern 6 at intervals corresponding to the half-wavelength of the ultrasonic wave due to the ultrasonic radiation pressure, and are captured in the capturing device in a non-contact manner. You. Particles larger than the filter pore diameter, which escaped from the above-mentioned stripes and moved to the vicinity of the filter 29, were also filtered by the ultrasonic radiation pressure. The filter is caught without sticking to the slag and clogging of the filter is reduced.
捕獲装置内に濃縮された粒子を回収する際は、 試料水の捕獲装置へ の導入を止め、 超音波の発生を止めた後、 フィルタの下流側に設けた 気体導入口 3 3から、 空気などの導入口を入れ振動部材とフィルタの 間に設けた回収口 3 4より試料を取り出せる。 この際も、 対象の粒子 がフィルタ表面あるいは内部に付着していないので、 高い回収率で取 り出せる。  When collecting particles concentrated in the capture device, stop introducing sample water into the capture device, stop generating ultrasonic waves, and then use the gas inlet 33 located downstream of the filter to remove air, etc. The sample can be taken out from the recovery port 34 provided between the vibrating member and the filter. Also in this case, the target particles do not adhere to the filter surface or inside, so that they can be extracted at a high recovery rate.
フィルタと定在超音波による非接触的な捕獲の組み合わせとして、 図 1 9に示す様に、 フィルタ 2 9に振動部材 4を接着させフィルタを 直接振動させ超音波を発生させ、 反射部材との間に定在超音波を形成 することもできる。 振動部材 4の振動を効率よくフィルタ 2 9に伝え ることが必要になるが、 フィルタを直接振動させるため、 目詰まりを 振動により防ぐ効果が最大限に得られる。  As a combination of non-contact capture by a filter and standing ultrasonic waves, as shown in Fig. 19, the vibration member 4 is bonded to the filter 29 and the filter is directly vibrated to generate ultrasonic waves. A standing ultrasonic wave can be formed at the same time. It is necessary to efficiently transmit the vibration of the vibrating member 4 to the filter 29. However, since the filter is directly vibrated, the effect of preventing clogging by vibration is maximized.
数十 k H z ( 2 0〜 1 0 0 k H z ) の周波数を用いる場合は、 図 2 0のように円筒形の振動部材の底面にフィルタを固定し、 振動部材を 円筒面に垂直な方向に振動 (呼吸振動) させると良い。 低周波の場合 は超音波振動子 4が図 1 9の場合の様な厚み振動は起こしにくいので 、 図 2 0のようにすると、 円筒の振動子 4に固定されたフィルタ 2 9 は円板の平面に垂直な方向の横振動を起こす。 振動子 4を駆動する周 波数を、 フィルタ円板 2 9の厚さ ·半径に応じた共振周波数に合わせ ると、 効率よくフィルタを振動させることができる。 この場合も振動 子のリード線 3 7は 2本とも外側に出ている方が良いので、 円筒内面 の電極を一部外側に折り返す。 円筒内面の電極はコーティングし、 水 に接しないようにする。  When using a frequency of several tens of kHz (20 to 100 kHz), a filter is fixed to the bottom of a cylindrical vibrating member as shown in Fig. 20 and the vibrating member is perpendicular to the cylindrical surface. It is good to vibrate in the direction (respiratory vibration). In the case of low frequency, the ultrasonic vibrator 4 is unlikely to cause thickness vibration as in the case of FIG. 19, and therefore, as shown in FIG. 20, the filter 29 fixed to the cylindrical vibrator 4 Causes lateral vibration in the direction perpendicular to the plane. If the frequency for driving the vibrator 4 is adjusted to a resonance frequency corresponding to the thickness and radius of the filter disk 29, the filter can be vibrated efficiently. In this case as well, it is better that both of the lead wires 37 of the vibrator project outside, so that the electrode on the inner surface of the cylinder is partially folded back. The electrode on the inner surface of the cylinder is coated so that it does not come into contact with water.
また、 フィルタを直に駆動しない図 1 8の例で振動子 4に円筒形の 呼吸振動を行う振動子を用いて、 低周波の超音波照射を行うこともで さる。 Also, in the example of Fig. 18 where the filter is not directly driven, a cylindrical It is also possible to perform low-frequency ultrasonic irradiation using a vibrator that performs respiratory vibration.
•捕獲装置の詳細な説明  • Detailed description of the capture device
図 2 1に図 1 8のよ うに振動部材とフィルタを対向に設置した場合 の捕獲装置の断面図を示す。 記入してある寸法については、 一例で、 超音波の減衰がなく、 粒子が捕獲できるものであればよい。 また、 形 状についても円筒形でなく、 振動部材とフィルタが対向に設置され、 フィルタ面に超音波が照射されるようになっていれば良い。 液体の導 入口 3 1は振動部材 3 5とフィルタ 2 9の間に同心円上に 6つ設けて ある。 導入口 3 1が複数個あるのは、 分離装置の場合と同様に局所的 に流速が速い部分を作らないためで、 導入口あるいは排出口の数をさ らに増やしても構わない。 捕獲装置 3 0の材質は外側からでも捕獲の 様子が分かるようにアタリルで製作してあるが、 内部を観察する必要 が無ければ金属でも問題無い。 超音波振動子は金属の板 3 5に接着し ているが、 フィルタ 2 9での圧損が小さく、 捕獲装置の内圧が小さい 場合は振動子が直接接水するように設置しても構わない。 超音波振動 子 4の周波数は 4 . 3 M H Zを使用したため、 厚みが 0 . 5 m m程に なり、 内圧数 k g / c m 2 Gが振動子にかかる場合は破損の恐れがあ るので、 図 2 0の様に金属板 3 5に接着する方がよい。 この場合は、 超音波振動子から発生した超音波が効率よく液側に伝わるように、 板 厚を半波長の整数倍にする必要がある。 この実施例では金属板 3 5に アルミを用いた。 音速は 6 4 2 0 m Z s で半波長は約 0 . 7 5 m mと なる。 この実施例では、 半波長の 5倍の 2 . 3 m mを用いた。 フィル タ 2 9の材質としては、 超音波を反射させるだけの充分な厚さと硬さ をもつものが良い。 通常手に入りやすいのは、 金属かセラミ クス製の ものである。 図 2 1では、 超音波振動子を接着した金属板およびフィ ルタ 2 9は平面であるが、 分離装置で用いた凹面を用いることもでき る。 但し、 この場合中心軸から離れるに従い、 超音波強度が弱まるこ とになるので、 中心から離れた位置でもフィルタに粒子が付着しない よう十分な強度の超音波を用いる必要がある。 Fig. 21 shows a cross-sectional view of the capturing device when the vibrating member and the filter are installed facing each other as shown in Fig. 18. The dimensions shown are just an example, as long as they have no attenuation of ultrasonic waves and can capture particles. Also, the shape is not cylindrical, and it is sufficient that the vibrating member and the filter are installed to face each other and the filter surface is irradiated with ultrasonic waves. Six liquid inlets 31 are provided concentrically between the vibrating member 35 and the filter 29. The reason why there are a plurality of inlets 31 is that, similarly to the case of the separation apparatus, a portion where the flow velocity is locally high is not formed, and the number of inlets or outlets may be further increased. The material of the capture device 30 is made of Ataryl, so that the appearance of the capture can be seen from the outside. However, if there is no need to observe the inside, there is no problem with metal. The ultrasonic vibrator is adhered to the metal plate 35. However, when the pressure loss in the filter 29 is small and the internal pressure of the capturing device is small, the ultrasonic vibrator may be installed so that the vibrator directly contacts the water. Frequency of the ultrasonic vibrator 4 is 4.3 due to the use of MH Z, thickness becomes about 0. 5 mm, when the internal pressure number kg / cm 2 G is applied to the oscillator damaged danger Runode, FIG It is better to adhere to the metal plate 35 like 20. In this case, it is necessary to make the plate thickness an integral multiple of a half wavelength so that the ultrasonic waves generated from the ultrasonic transducer can be efficiently transmitted to the liquid side. In this embodiment, aluminum was used for the metal plate 35. The sound velocity is 640 mZ s and the half wavelength is about 0.75 mm. In this example, 2.3 mm, which is five times the half wavelength, was used. As a material of the filter 29, a material having sufficient thickness and hardness to reflect the ultrasonic wave is preferable. The most commonly available ones are made of metal or ceramics. In Fig. 21, the metal plate and the The filter 29 is a flat surface, but the concave surface used in the separation device can also be used. However, in this case, the intensity of the ultrasonic wave decreases as the distance from the center axis increases, so it is necessary to use an ultrasonic wave of sufficient intensity so that particles do not adhere to the filter even at a position away from the center.
濃縮された粒子を回収するときは、 まず、 試料水の流量を 0にして 、 超音波の照射を止める。 フィルタ 2 9の下流側に空気導入口 3 3よ り空気 ·窒素などのガスをいれ、 液体側より も圧力を高くすると、 フ ィルタ 2 9を通って装置内に入る。 図 2 1では、 回収口を導入口と兼 用で用いるため、 導入口を分岐させ、 濃縮された液を排出するように してあるが、 超音波捕獲装置 3 0の振動部材 3 5 とフィルタ 2 9の間 に別個回収口を設けておいても構わない。 フィルタから気体が入り、 液体が押出される格好で排出口より取り出される。 超音波捕獲装置 3 0内の濃縮液はフィルタ 2 9から逆に押出されるので、 フィルタ 2 9 付近の粒子も装置内にほとんど残らず排出される。 また、 捕獲装置 3 0には、 内圧測定用のノズル 3 6が設けてある。 振動部材 3 5 とフィ ノレタ 2 9の間の体積と、 フィルタ 2 9の下流の排出口 3 2が設けてあ る部分の体積を比べると振動部材 3 5 とフィルタ 2 9の間の体積の方 が小さい。 これは、 フィルタを通過する排液の圧力が上がり、 振動部 材 3 5 とフィルタの間の粒子を含む液体の圧力が余計に上昇しないよ うにしたものである。  When collecting the concentrated particles, first, the flow rate of the sample water is set to 0, and the irradiation of the ultrasonic waves is stopped. When gas such as air and nitrogen is put into the downstream side of the filter 29 from the air inlet 33 and the pressure is made higher than that of the liquid side, the gas enters the device through the filter 29. In Fig. 21, the inlet is branched and the concentrated liquid is discharged in order to use the recovery port also as the inlet, but the vibrating member 35 of the ultrasonic capture device 30 and the filter are used. A separate collection port may be provided between 29 and 29. The gas enters from the filter and is taken out from the outlet as if the liquid was pushed out. Since the concentrate in the ultrasonic capture device 30 is extruded in reverse from the filter 29, particles near the filter 29 are almost completely discharged into the device. Further, the capture device 30 is provided with a nozzle 36 for measuring the internal pressure. Comparing the volume between the vibrating member 35 and the filter 29 and the volume of the portion provided with the outlet 32 downstream of the filter 29, the volume between the vibrating member 35 and the filter 29 is smaller. Is small. This is to prevent the pressure of the liquid passing through the filter from increasing and the pressure of the liquid containing particles between the vibrating member 35 and the filter from increasing unnecessarily.
捕獲装置内に捕獲された粒子の濃度あるいは有無を自動検知するた めに、 分離装置で述べた光学センサを設置することも、 もちろん出来 る。  Of course, the optical sensor described for the separation device can be installed to automatically detect the concentration or presence or absence of the particles captured in the capture device.
図 2 2に図 2 0のように振動部材とフィルタ接着し、 直接フィルタ を振動させる場合の捕獲装置の断面図を示す。 図 2 1の場合と構成は ほとんど同じだが、 フィルタに対向する壁 4 2は、 強度が十分であれ ば、 材質 ·厚さは自由に出来る。 FIG. 22 is a cross-sectional view of the capturing device in a case where the filter is adhered to the vibration member as shown in FIG. 20 and the filter is directly vibrated. The configuration is almost the same as in Fig. 21, but the wall 42 facing the filter is not strong enough. The material and thickness can be freely adjusted.
•複数の捕獲装置を用いた例  • Examples using multiple capture devices
試料液中の粒子に様々な粒径のものが混じっていて、 分離したい場 合には、 図 2 3に示すように、 第 1の捕獲装置の排出口と第 2の捕獲 装置の導入口を配管で接続して、 捕獲装置を複数個直列に並べ、 それ ぞれに用いるフィルタの孔径および照射する超音波の強度を適当に選 んでやれば、 粒径の違いに応じて、 それぞれの装置に分離される。 た だし、 フィルタの孔径より小さな粒子は、 本来フィルタを全て通過す るはずだが、 装置内に捕らえられた粒径の大きな粒子が多い場合、 そ れに付着してしまって、 下流に排出されないものも一部ある。  If particles of various sizes are mixed in the particles in the sample solution and you want to separate them, as shown in Fig. 23, set the outlet of the first capture device and the inlet of the second capture device. By connecting a plurality of capture devices in series by piping, and appropriately selecting the pore size of the filter used and the intensity of the ultrasonic wave to be irradiated, each capture device can be used according to the difference in particle size. Separated. However, particles smaller than the pore size of the filter should pass through the filter, but if there are many large particles trapped in the device, they will adhere to them and will not be discharged downstream. There are also some.
図 1に示したように分離装置 3と捕獲装置 3 0を直列に繋ぐと、 処 理速度が両方の装置で等しく しなければならないが、 図 2 4のように 2つの装置の間にバッファタンク 3 8を設けておけば、 分離装置 3で 遅い処理速度で十分夾雑物を除いてタンクに溜めた後に、 後段の捕獲 装置 3 0に送るということや、 分離装置 3は同じ液を数回循環させ、 夾雑物を十分取り除いて、 後段に送るということができる。  If the separation device 3 and the capture device 30 are connected in series as shown in Fig. 1, the processing speed must be equal in both devices, but as shown in Fig. 24, a buffer tank is placed between the two devices. If 3 8 is provided, after removing impurities sufficiently in the tank at a slow processing speed in the separation device 3 and sending it to the capture device 30 in the subsequent stage, the same liquid is circulated several times in the separation device 3. It can be said that the impurities are sufficiently removed and sent to the subsequent stage.
または、 図 2 5のように前段の分離装置 3および捕獲装置 3 0を複 数個設置し、 粒子を含む液体を複数の分離装置に供給する供給管と、 複数の分離装置 3から排出された粒子を含む液を複数の捕獲装置 3 0 に供給する供給管と、 を設置すれば、 それぞれの処理速度に応じて、 バッファタンクを使用せず連続的に夾雑物の除去および濃縮 ·捕獲が できる。  Alternatively, as shown in Fig. 25, a plurality of separation devices 3 and capture devices 30 at the previous stage are installed, and a supply pipe that supplies liquid containing particles to multiple separation devices, and a discharge pipe from multiple separation devices 3 By installing a supply pipe that supplies liquid containing particles to a plurality of capture devices 30 and, it is possible to continuously remove impurities and concentrate / capture without using a buffer tank, according to the respective processing speeds. .
図 2 4あるいは図 2 5に示した装置で捕獲 ·回収された粒子の中に は、 分離装置 3でかなりの夾雑物が除かれているものの、 対象となる 粒子と同じ程度の粒径をもつ夾雑物も混じっている。 対象となる粒子 がクリブトスポリジゥムなどの微生物の場合は、 顕微鏡で観察するか 、 捕獲装置から排出される粒子に染色液を混ぜ、 対象の微生物を選択 的に染色し、 光センサで蛍光発色した粒子のみを計測することにより 、 個数 ·濃度が測定できる。 Among the particles captured and recovered by the device shown in Fig. 24 or Fig. 25, although a considerable amount of impurities are removed by the separation device 3, they have the same size as the target particles Contaminants are also mixed. If the target particles are microorganisms such as Cryptosporium, observe with a microscope. The number and concentration can be measured by mixing a stain solution with the particles discharged from the capture device, selectively staining the target microorganism, and measuring only the fluorescently colored particles with an optical sensor.
C . クリプトスポリジゥム (病原菌) の検査装置としての適用  C. Cryptosporidium (pathogen) application as an inspection device
クリプトスポリジゥムの検査装置として適用する形態を纏めると、 図 2 6のようになる。 従来の検査手順の内、 濃縮やフィルタ溶解や遠 心分離の操作が、 本装置が行う自動操作に置き換わる。 さらに、 従来 の操作ではろ紙にクリプトスポリジゥムが付着してしまうと回収出来 なくなるが、 本装置ではろ紙を使用していないのでその心配がない。  Figure 26 shows a summary of the form of application as a cryptosporidium inspection device. Among the conventional inspection procedures, the operations of concentration, filter dissolution, and centrifugation are replaced with the automatic operations performed by this device. In addition, if cryptosporidium adheres to the filter paper in the conventional operation, it will not be possible to recover it. However, there is no worry because the filter paper is not used in this device.
1検体の試料水を検査したあとは、 装置内部に純水や洗浄水で数倍 から数十倍の流量で洗浄するのが良い。  After testing one sample water, it is recommended to wash the inside of the device with pure water or washing water at a flow rate several to several tens of times.
D . 水検査システムでの適用  D. Application in water inspection system
以上の説明では、 粒子を含む試料水はタンクあるいは容器にいれ、 装置に繋ぐ形となっているが、 たとえば原水 ·浄水中の微生物の検知 に本装置を適用する場合は、 図 2 7のように調べたい河川 ·池 ·浄水 配管等に直接本装置を繋げば、 試料水の搬送の手間が省ける。  In the above description, sample water containing particles is placed in a tank or container and connected to the device.For example, when this device is applied to detection of microorganisms in raw water and purified water, as shown in Fig. 27 By connecting this device directly to rivers, ponds, water purification pipes, etc. that you want to investigate, labor for transporting sample water can be saved.
E . 水の浄水システムでの適用  E. Application in water purification system
水道局で行っている水道水用の浄化システムの一例は図 2 8の通り であるが、 本装置はこの内、 砂ろ過あるいは塩素消毒の代わりに用い ることができる。 つまり、 水中の粒子や微生物を取り除くことができ るため、 ろ過、 消毒の過程を本装置に置き換えることが出来る。 さら に捕獲した粒子や微生物を回収して、 詳細な検査にかけることが出来 る。 あるいは、 捕獲した粒子や微生物の濃度を監視し、 濁度を管理す ることも出来る。 近年、 塩素消毒に代わり、 膜分離により微生物を含 む粒子を除去する浄化システムを導入しつつあるが、 膜分離装置では 、 膜に粒子付着させて取り除く性質上、 膜に付着した粒子が増えてく ると、 フィルタの目詰まりが起き、 処理能力が低下してしまう という 問題がある。 従って、 定期的な逆洗等のメインテナンスが必要になる 本発明の捕獲装置を適用すると、 上記に述べたように、 フィルタに 粒子が付着することが少ないので、 水処理装置と して、 水中の有害な 粒子あるいは微生物をフィルタで取り除く ことができる上に、 フィル タの目詰まり頻度が少なくなり、 メインテナンスの頻度が減少すると いう効果もある。 An example of a purification system for tap water performed by the Waterworks Bureau is shown in Fig. 28. This device can be used instead of sand filtration or chlorination. In other words, since the particles and microorganisms in the water can be removed, the filtration and disinfection processes can be replaced with this device. Furthermore, the captured particles and microorganisms can be collected and subjected to detailed inspection. Alternatively, turbidity can be controlled by monitoring the concentration of captured particles and microorganisms. In recent years, instead of chlorine disinfection, a purification system that removes particles containing microorganisms by membrane separation is being introduced.However, in a membrane separation device, the number of particles attached to the membrane is increasing due to the property of removing particles by attaching them to the membrane. Then, there is a problem that the filter is clogged and the processing capacity is reduced. Therefore, maintenance such as regular backwashing is required. When the capture device of the present invention is applied, as described above, particles are less likely to adhere to the filter. In addition to filtering out harmful particles or microorganisms, the frequency of clogging of the filter is reduced and the frequency of maintenance is reduced.
また、 ビルの貯水設備などの中規模の水浄化システムが必要な場合 も  Also, when a medium-scale water purification system such as a building's water storage system is needed,
図 2 9 Aあるいは Bに示すように、 本発明の捕獲装置を用いると、 フ ィルタのメインテナンスの頻度が少なく、 微生物 ·粒子を除去できる 貯水浄化システムを提供できる。 図 2 9 Aは、 循環型の微生物 '粒子 除去システムで、 常時あるいは定期的に、 貯水中の液を前記捕獲装置 の導入口から導入し粒子を取り除いたあとの排液を排出口から貯水槽 に戻し、 循環することにより浄化できる。 図 2 9 Bの様に、 循環が不 要な場合は、 水補給配管に本発明の捕獲装置を挿入すれば、 水が補給 される際に、 微生物 ·粒子を除去できる。 As shown in FIG. 29A or B, the use of the capture device of the present invention can provide a storage water purification system that can reduce the frequency of filter maintenance and remove microorganisms and particles. Fig. 29A shows a circulating microbial particle removal system, which constantly or periodically introduces the liquid in the stored water from the inlet of the capture device to remove the particles, and discharges the wastewater from the outlet to the water tank. And can be purified by circulation. As shown in FIG. 29B, when circulation is not required, the capture device of the present invention can be inserted into the water supply pipe to remove microorganisms and particles when water is supplied.
あるいは、 図 3 0のよ うに、 飲料水の浄化装置として、 飲料水を捕 獲装置に取り込み、 飲料水中の粒子を捕獲 ·濃縮したのち排液を浄化 した飲料水として、 供給することもできる。  Alternatively, as shown in FIG. 30, as a drinking water purifying device, drinking water can be taken into a capturing device, and particles in the drinking water can be captured and concentrated, and then supplied as purified drinking water.

Claims

請求の範囲 The scope of the claims
1 . 流れてくる試料に含まれる物質を分離するための第 1の容器と、 前記第 1の容器に試料に振動を与える振動部材と、 前記振動部材から の振動を反射する反射部材と、 試料を前記第 1の容器の前記振動部材 と前記反射部材との間の前記振動部材側から導入する導入口と、 前記 振動部材と前記反射部材との間の前記反射部材側に前記振動部材によ り振動によって分離された試料を排出する排出口を設けたことを特徴 する試料処理装置。 1. A first container for separating a substance contained in a flowing sample, a vibration member that applies vibration to the sample in the first container, a reflection member that reflects vibration from the vibration member, and a sample. An introduction port for introducing the first container from the vibration member side between the vibration member and the reflection member, and the vibration member on the reflection member side between the vibration member and the reflection member. A sample outlet provided with an outlet for discharging a sample separated by vibration.
2 . 前記試料が粒子を含む液体であることを特徴とする請求の範囲第 1項記載の分離装置。  2. The separation device according to claim 1, wherein the sample is a liquid containing particles.
3 . 前記振動部材又は前記反射部材のいずれかに投光受光一体型光フ アイバを接続したことを特徴する請求の範囲第 1項又は第 2項記載の 分離装置。  3. The separation device according to claim 1, wherein a light-projecting / light-receiving integrated optical fiber is connected to either the vibration member or the reflection member.
4 . 前記振動部材と前記反射部材とで形成された試料から分離された 物質を検出する検出器を第 1の容器の外部に設けたことを特徴とする 請求の範囲第 1項又は 2項に記載の分離装置。  4. The detector according to claim 1 or 2, wherein a detector for detecting a substance separated from the sample formed by the vibration member and the reflection member is provided outside the first container. The separation device as described in the above.
5 . 前記分離器を複数有し、 前記複数の分離器を直列的に接続するた め第 1の分離器の前記排出口と第 2の分離器の導入口とを接続する配 管を有することを特徴する請求の範囲第 1項記載の分離装置。  5. A plurality of the separators, and a pipe connecting the outlet of the first separator and the inlet of the second separator to connect the plurality of separators in series. The separation device according to claim 1, wherein:
6 . 前記分離器を複数有し、 前記複数の分離器を並列的に接続するた め第 1 と第 2の分離器の前記導入口を接続する配管を有することを特 徴する請求の範囲第 1項記載の分離装置。 6. The first aspect of the present invention, wherein a plurality of the separators are provided, and a pipe connecting the inlets of the first and second separators is provided to connect the plurality of separators in parallel. The separation device according to Item.
7 . 第 1の試料に含まれる物質を捕獲するための容器と、 前記容器に 第 1の試料に振動を与える振動部材と、 前記振動部材からの振動を反 射すると共に第 1 の試料からろ過した第 2の試料を通過させるフィル タと、 を有することを特徴する捕獲装置。 7. A container for capturing a substance contained in the first sample, a vibrating member for applying vibration to the first sample in the container, and a member for preventing vibration from the vibrating member. A filter that emits and passes a second sample filtered from the first sample.
8 . 第 1の試料に含まれる物質を捕獲するための容器と、 前記容器に 第 1 の試料に振動を与える振動部材と、 前記振動部材からの振動を反 射すると共に第 1 の試料からろ過した第 2の試料を通過させるフィル タと、 を有し、 前記振動部材と前記フィルタの間の体積の方が、 前記 フィルタを通過した前記第 2の試料が溜まる部分の体積のよりも小さ いことを特徴する捕獲装置。  8. A container for capturing a substance contained in the first sample, a vibrating member for applying vibration to the first sample in the container, and a filter for reflecting the vibration from the vibrating member and filtering from the first sample. And a filter that allows the second sample to pass therethrough, wherein a volume between the vibrating member and the filter is smaller than a volume of a portion where the second sample passes through the filter and accumulates. A capture device, characterized in that:
9 . 前記第 1及び第 2の試料が粒子を含む液体であることを特徴する 請求の範囲第 7項あるいは第 8項記載の捕獲装置。  9. The capture device according to claim 7, wherein the first and second samples are liquids containing particles.
1 0 . 前記第 1及び第 2の試料が気体であることを特徴する請求の範 囲第 7項あるいは第 8項記載の捕獲装置。  10. The capture device according to claim 7, wherein the first and second samples are gases.
1 1 . 前記捕獲装置は前記第 1の粒子を含む液体を前記容器の前記振 動部材とフィルタとの間の前記振動部材側から導入する導入口と、 前 記振動部材とフィルタの間の前記容器内に捕獲 ·濃縮された前記第 1 の液を回収する回収口と、 前記フィルタを通過した側に前記第 2の液 体を排出する排出口と、 前記フィルタを通過した側に前記第 1 の液体 を回収するために気体を送り込む導入口と、 を有することを特徴する 請求の範囲第 7項あるいは第 8項記載の捕獲装置。  11. The capture device is configured to introduce a liquid containing the first particles from the vibrating member side of the container between the vibrating member and the filter, and the inlet between the vibrating member and the filter. A collection port for collecting the first liquid captured and concentrated in the container, a discharge port for discharging the second liquid on a side passing the filter, and a first port on a side passing the filter. 9. The capture device according to claim 7, further comprising: an inlet through which a gas is sent to collect the liquid.
1 2 . 前記フィルタに振動を与える振動部材を取り付けたことを特徴 とする請求の範囲第第 7項あるいは第 8項の捕獲装置。  12. The capture device according to claim 7, wherein a vibration member that applies vibration is attached to the filter.
1 3 . 貯水槽からの第 1の液体に含まれる物質を捕獲するための容器 と、 前記容器に第 1 の試料に振動を与える振動部材と、 前記振動部材 からの振動を反射すると共に第 1の試料からろ過した第 2の液体を通 過させるフィルタと、 貯水槽からの前記第 1の液体を前記容器の前記 振動部材とフィルタ との間の前記振動部材側から導入する導入口と、 貯水槽へ戻し循環させるための前記フィルタを通過した側に設けた排 出口と、 を有することを特徴する循環型捕獲装置。 13. A container for capturing a substance contained in the first liquid from the water storage tank, a vibrating member that applies vibration to the first sample in the container, and a first member that reflects vibration from the vibrating member and receives the first sample. A filter that allows the second liquid filtered from the sample to pass therethrough, and an inlet that introduces the first liquid from a water storage tank from the vibration member side between the vibration member and the filter of the container. And a discharge outlet provided on the side passing through the filter for returning and circulating to the water storage tank.
1 4 . 振動部材と反射部材とを有する液体中の物質を分離する分離器 と、 前記分離器の下流に振動部材とフィルタとから成り液体中の粒子 を捕獲する捕獲器とを有することを特徴する粒子を含む液体の処理装 置。  14. A separator having a vibrating member and a reflecting member for separating a substance in a liquid, and a catcher comprising a vibrating member and a filter for capturing particles in the liquid downstream of the separator. Equipment for treating liquids containing particles.
1 5 . 粒子を含む液体が複数の分離器に対し並列に供給する第 1の供 給管と、 前記複数の分離器から排出された粒子を含む液体を複数の捕 獲器へ並列的に供給する第 2の供給管と、 を有することを特徴する粒 子を含む液体処理装置。  15. A first supply pipe that supplies liquid containing particles to a plurality of separators in parallel, and supplies liquid containing particles discharged from the plurality of separators to a plurality of traps in parallel. A liquid processing apparatus including particles, comprising:
1 6 . 流れてくる試料に含まれる第 1の物質を分離するための第 1の 容器と、 前記第 1の容器に試料に振動を与える振動部材と、 前記振動 部材からの振動を反射する反射部材と、 試料を前記第 1の容器の前記 振動部材と前記反射部材との間の前記振動部材側から導入する第 1の 導入口と、 前記振動部材と前記反射部材との間の前記反射部材側に前 記振動部材により振動よつて分離された第 1の粒子を含む液体を排出 する第 1の排出口と、 前記第 1の排出口からの第 2の粒子を含む液体 を下流に流す通路管と、 前記通路管の第 2の粒子を含む液体から第 2 の粒子を含む液体を捕獲する第 2の容器と、 前記第 2の容器の第 2の 粒子を含む液体に振動を与える振動部材と、 前記振動部材からの振動 を反射すると共に第 2の粒子を含む液体からろ過した第 3の液体を通 過させるフィルタと、 前記第 2の粒子を含む液体を前記第 2の容器の 前記振動部材とフィルタとの間の前記振動部材側から導入する第 2の 導入口と、 前記振動部材とフィルタの間の前記第 2の容器内に捕獲 · 濃縮された前記第 2の液を回収する回収口と、 前記フィルタを通過し た前記第 3の液体を排出する第 2の排出口と、 前記第 2の液体を回収 するために気体を送り込む導入口と、 を有する粒子を含むことを特徴 する液体処理装置。 16. A first container for separating a first substance contained in the flowing sample, a vibration member for applying vibration to the sample in the first container, and a reflection for reflecting vibration from the vibration member A member, a first inlet for introducing a sample from the vibration member side of the first container between the vibration member and the reflection member, and the reflection member between the vibration member and the reflection member A first outlet for discharging the liquid containing the first particles separated by vibration by the vibrating member, and a passage for flowing the liquid containing the second particles from the first outlet downstream. A pipe, a second container that captures liquid containing second particles from liquid containing second particles in the passage tube, and a vibration member that applies vibration to the liquid containing second particles in the second container. And filtering the liquid containing the second particles while reflecting the vibration from the vibrating member. A filter that allows a third liquid to pass therethrough; a second inlet that introduces the liquid containing the second particles from the vibration member side of the second container between the vibration member and the filter; A recovery port for recovering the second liquid captured and concentrated in the second container between the vibration member and the filter, and a second discharge port for discharging the third liquid that has passed through the filter And recovering the second liquid A liquid processing apparatus, comprising: an inlet through which a gas is sent to perform the cleaning;
1 7 . 水道からの第 1の液体に含まれる物質を捕獲するための容器と 、 前記容器に第 1の液体に振動を与える振動部材と、 前記振動部材か らの振動を反射すると共に第 1の液体からろ過た第 2の液体を通過さ せるフィルタと、 水道からの前記第 1の液体を前記容器の前記振動部 材とフィルタ との間の前記振動部材側から導入する導入口と、 飲料水 供給管へ戻すための前記フィルタを通過した側に設けた排出口と、 を 有することを特徴する水道水浄化装置。  17. A container for capturing a substance contained in the first liquid from the water supply, a vibrating member that applies vibration to the first liquid in the container, and a first member that reflects the vibration from the vibrating member and receives the first member. A filter that allows a second liquid filtered from the liquid to pass therethrough, an introduction port that introduces the first liquid from a water supply from the vibration member side between the vibration member and the filter of the container, and a beverage. And a discharge port provided on the side passing through the filter for returning to the water supply pipe.
PCT/JP1999/003023 1999-06-07 1999-06-07 Device for treating sample containing particles WO2000074814A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/003023 WO2000074814A1 (en) 1999-06-07 1999-06-07 Device for treating sample containing particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/003023 WO2000074814A1 (en) 1999-06-07 1999-06-07 Device for treating sample containing particles

Publications (1)

Publication Number Publication Date
WO2000074814A1 true WO2000074814A1 (en) 2000-12-14

Family

ID=14235912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003023 WO2000074814A1 (en) 1999-06-07 1999-06-07 Device for treating sample containing particles

Country Status (1)

Country Link
WO (1) WO2000074814A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1094036A2 (en) * 1999-10-19 2001-04-25 Malcolm Robert Snowball Fluid treatment by filtration and vibration
JP2011528980A (en) * 2008-07-25 2011-12-01 スミス アンド ネフュー ピーエルシー Separator controller
CN109205883A (en) * 2018-10-08 2019-01-15 冷应杰 A kind of technique for treating industrial wastewater
US10537831B2 (en) 2004-07-29 2020-01-21 Triad National Security, Llc Ultrasonic analyte concentration and application in flow cytometry
US11287362B2 (en) 2007-12-19 2022-03-29 Triad National Security, Llc Particle analysis in an acoustic cytometer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61220786A (en) * 1985-03-26 1986-10-01 Agency Of Ind Science & Technol Device for purifying liquid by sound wave
JPH09193055A (en) * 1996-01-23 1997-07-29 Agency Of Ind Science & Technol Noncontact micromanipulation method using ultrasonic wave

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61220786A (en) * 1985-03-26 1986-10-01 Agency Of Ind Science & Technol Device for purifying liquid by sound wave
JPH09193055A (en) * 1996-01-23 1997-07-29 Agency Of Ind Science & Technol Noncontact micromanipulation method using ultrasonic wave

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1094036A2 (en) * 1999-10-19 2001-04-25 Malcolm Robert Snowball Fluid treatment by filtration and vibration
EP1094036A3 (en) * 1999-10-19 2001-12-05 Malcolm Robert Snowball Fluid treatment by filtration and vibration
US10537831B2 (en) 2004-07-29 2020-01-21 Triad National Security, Llc Ultrasonic analyte concentration and application in flow cytometry
US11287362B2 (en) 2007-12-19 2022-03-29 Triad National Security, Llc Particle analysis in an acoustic cytometer
US11287363B2 (en) 2007-12-19 2022-03-29 Triad National Security, Llc Particle analysis in an acoustic cytometer
JP2011528980A (en) * 2008-07-25 2011-12-01 スミス アンド ネフュー ピーエルシー Separator controller
US8997998B2 (en) 2008-07-25 2015-04-07 Smith & Nephew Plc Controller for an acoustic standing wave generation device in order to prevent clogging of a filter
US9636609B2 (en) 2008-07-25 2017-05-02 Smith & Nephew Plc Controller for an acoustic standing wave generation device in order to prevent clogging of a filter
CN109205883A (en) * 2018-10-08 2019-01-15 冷应杰 A kind of technique for treating industrial wastewater
CN109205883B (en) * 2018-10-08 2021-05-11 潍坊东元连海环保科技有限公司 Industrial wastewater treatment process

Similar Documents

Publication Publication Date Title
EP0773055B1 (en) Apparatus for handling particles by acoustic radiation
JP4445569B2 (en) Filtrated water monitoring device and filtered water monitoring system
JP5054760B2 (en) Ultrafiltration system for online analyzer
CN107167416B (en) Sorting type flow cytometer
CN108827752A (en) Detection device and method
JP2013148391A (en) Viable particle counter for purified water, viable particle counting method for purified water, and purified water monitoring system
FR3014330A1 (en) METHOD OF CONTROLLING THE INTEGRITY OF FILTRATION MEMBRANES DURING THEIR OPERATION
WO2000074814A1 (en) Device for treating sample containing particles
US20090299651A1 (en) Filtration testing system
US20100059381A1 (en) Apparatus for measuring the turbidity of water
KR20040043180A (en) Method and device for controlling the integrity of membrane filtration units
JP2007155458A (en) Filtration film breakage detector, film filtration device, and filtration film breakage detection method
JPH08252440A (en) Method for detecting breakage of membrane and device therefor
EP0716869A2 (en) Gas-liquid separator and particle monitor provided with the gasliquid separator
US7229562B2 (en) Integrated dual cross flow filtration and ultrasonic transducer assembly
JP4591702B2 (en) Film processing apparatus and film damage detection method
KR101530879B1 (en) Apparatus and Method for Detecting Damage of Filtration Membrane
KR20230074905A (en) Equipment of pretreatment using ultrasonic
JP2003024938A (en) Membrane filter system and operation method therefor
JP3922365B2 (en) Particle state detection apparatus and particle state detection method
EP2607881B1 (en) Concentration device
KR102079635B1 (en) Fiber filter type reducing pollution apparatus for improving backwashing efficiency
JP3723078B2 (en) Film breakage detector
JP2003161689A (en) Probe for detecting states of particles and aggregation monitoring apparatus
JP3728512B2 (en) How to remove dioxins

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 501342

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase