WO2000074078A1 - Low delay skew multi-pair cable and method of manufacture - Google Patents
Low delay skew multi-pair cable and method of manufacture Download PDFInfo
- Publication number
- WO2000074078A1 WO2000074078A1 PCT/US2000/014443 US0014443W WO0074078A1 WO 2000074078 A1 WO2000074078 A1 WO 2000074078A1 US 0014443 W US0014443 W US 0014443W WO 0074078 A1 WO0074078 A1 WO 0074078A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- twisted wire
- cable
- length
- strand twist
- lay
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B11/00—Communication cables or conductors
- H01B11/02—Cables with twisted pairs or quads
Definitions
- the present invention relates to a cable made of twisted wire pairs, and more particularly to a cable made of twisted wire pairs that is suitable for use in high-speed data communication applications.
- a twisted wire pair cable includes at least one pair of insulated conductors twisted about one another to form a two conductor pair.
- a number of methods known in the art may be employed to arrange and configure the twisted wire pairs into various high-performance transmission cable arrangements.
- a plastic jacket is typically extruded over them to maintain their configuration and to function as a protective layer.
- the combination is referred to as a multi-pair cable.
- the signals generated at one end of the cable should ideally arrive at the same time at the opposite end even if they travel along different twisted pair wires. Measured in nanoseconds, the timing difference in signal transmissions between the twisted wire pairs within a cable in response to a generated signal is commonly referred to as "delay skew.” Problems arise when the delay skew of the signal transmitted by one twisted wire pair and another is too large and the device receiving the signal is not able to properly reassemble the signal. Such a delay skew results in transmission errors or lost data.
- a number of factors can contribute to the timing differences in signal propagation or skew along different twisted wire pairs in a data transmission cable, each of which may have different lay lengths. Such factors include: the amount or degree of twist or "lay length" of each cable; the geometric configurations of the twisted wire pairs and the cable; the chemical and physical properties of the materials used; and the amount or degree of twist or "lay length" in the wire strands that form the individual conductors of the twisted wire pairs.
- lay length of the twisted wire pairs will hereinafter be referred to as the "strand twist length.”
- strand twist length When twisted wire pair cables are used in connection with high-speed data communication applications, controlling the various factors that affect signal propagation becomes increasingly important. Thus, there is a need for a twisted wire pair cable that addresses the limitations of the prior art to effectively control and minimize delay skew within multi-pair cables.
- the present invention recognizes that a number of factors contribute to differences in the signal propagation along different twisted wire pairs of a multi-pair cable. For instance, when other factors are the same, a signal from a twisted pair with a shorter twist length or lay length can potentially arrive much later than the signal sent through a twisted pair with a longer twist length or lay length. This is primarily due to the fact that an increased length of wire is needed to provide a shorter lay length, or, in other words, more wire is needed to provide a shorter, or "tighter,” twist length over a given length of cable. Likewise, the same principle holds true for the twisted wire strands that form the conductor of a stranded conductor.
- Standard test methods using commercially available instruments can determine the signal propagation characteristics of a twisted wire pair.
- One example of such an instrument is a network analyzer, which can determine the difference in phase between the signals of twisted wire pairs.
- Phase delay is a measurement of the amount of time that a simple sinusoidal signal is delayed when propagating through the length of a twisted wire pair.
- the delay skew or "skew” is the difference in the phase delay value of two twisted wire pairs. In multi-pair cables having more than two twisted wire pairs, the skew value is represented by the maximum difference in phase delay between any two twisted wire pairs.
- the present invention correlates several important factors that affect the transmission throughput of the twisted pairs to effectively minimize delay skew and improve the timing between the pairs of the cable.
- the present invention focuses on designing and constructing low skew multi-pair cables wherein the twisted wire pairs have different lay lengths and/or strand twist lengths.
- a multi-pair cable suitable for high-speed data transmission includes an outer jacket and at least two pairs of twisted wire cables having different lay lengths and being encased within the jacket.
- the wires of each twisted wire pair have a conductor surrounded by an insulating material, wherein the conductors of the respective twisted wire pairs have different strand twist lengths.
- lay lengths of the twisted wire pairs are correlated with the strand twist length of the conductors of the individual twisted wire pairs so that the phase delay of the twisted wire pairs of the cable is matched to within an acceptable range for data transmission.
- the strand twist lengths of the respective conductors of the individual twisted wire pairs can be correlated with the lay lengths of the twisted wire pairs so that the phase delay of the twisted wire pairs of the cable is brought to within an acceptable range for the intended application.
- a wire with a conductor comprised of wire strands which has a comparably short strand twist length relative to the strand twist length of the other twisted pairs will be included in a twisted pair which has a comparably long lay length.
- a wire with a stranded conductor which has a comparatively long strand twist length will be included in a twisted pair which has a comparatively short lay length.
- the amount of delay skew is significantly reduced by utilizing longer strand twist length with the tightly twisted pair and a shorter twisted strand twist length with the longer twisted pair because the signal travel path length, measured as "impedance" (or alternatively, as "capacitance”) is nearly equal between pairs.
- multi-pair cables constructed in accordance with this invention can be engineered to meet the stringent specifications of high-speed data transmission, such as Category 5 cables, and also to meet the stringent fire and smoke requirements necessary for certain applications.
- FIG. 1 is a perspective view of a portion of a multi-pair cable according to one embodiment of this invention, wherein the cable has four twisted wire pairs.
- FIG. 2 is a perspective view of a portion of a pair of twisted insulated wires.
- FIG. 3 is a perspective view of a portion of a stranded conductor.
- FIG. 1 shows a portion of a data transmission cable 10 having four pairs of twisted wires 14 disposed within an outer jacket 12.
- the individual wires 14 of a twisted wire pair 16 are each comprised of a conductor 18 surrounded by an insulating material 20.
- Examples of some acceptable conductive materials that can be used to form the conductors IS include copper, aluminum, copper-clad steel and plated copper. It has been found that copper is the optimal conductor material.
- Each of the twisted wire pairs 16 may also be individually or collectively wrapped in a foil shield or other type of conventional shield for additional protection, but FIG. 1 shows the cable 10 without such a shield.
- a cable 10 may include any plural number of twisted wire pairs.
- Outer jacket 12 is formed over the twisted wire pairs 16 and an optional foil shield (not illustrated), by any conventional process. Examples of some of the more common processes that may be used to form the outer jacket 12 include injection molding and extrusion molding.
- the jacket 12 is comprised of a plastic material, such as fluoropolymers, polyvinyl chloride (PVC), or a PVC equivalent that is suitable for cable communication use.
- the insulating material 20 protects both the conductor 18 and the signal being transmitted therein.
- the composition of the insulating material 20 is important because the dielectric constant of the chosen insulating material 20 will affect the velocity at which a signal will propagate through a conductor 18.
- the insulating material 20 may be an extruded polymer layer, which may be formed as a solid or foam. Any of the conventional polymers used in wire and cable manufacturing may be employed, such as, for example, a polyolefm or a fluorinated polymer. Some polyolefins that may be used include polyethylene and polypropylene.
- the cable when the cable is to be placed into a service environment where good flame resistance and low smoke generation characteristics are required, it may be desirable to use a fluorinated polymer as the insulating material 20 for one or more of the conductors 18.
- a conventional blowing agent is added during the processing.
- a portion of a conventional twisted wire pair 16 is shown in further detail.
- the individual wires 14 of the twisted pair 16 are "lay twisted" by a 360- degree revolution about a common axis along a predetermined length, referred to as a twist length or lay length.
- the dimension labeled LL represents one twist length or lay length of the depicted twisted wire pair 16.
- specified lay lengths can be configured by those skilled in the art by using a number of conventional methods.
- the conductor 18 of a wire 14 of a twisted wire pair may be comprised of a plurality of wire strands 22.
- stranded conductors can theoretically be formed from any number of strands, but will commonly be comprised of seven or nineteen strands 22. While the wire strands are depicted as having a generally circular cross-section, the strands 22 and the conductor 18 are generally not limited to a particular cross sectional form and, therefore, may be embodied in a number of cross-sectional geometric configurations. Wire strands 22 that form the conductor 18 can have different diameters and can optionally be coated with a metallic or non-metallic coating.
- the stranded conductor 18 is twisted by a 360-degree rotation about a common axis along a predetermined length, hereinafter referred to as a "strand twist length.”
- the lay lengths of some of the twisted wire pairs 16 of the illustrated cable 10 are different. It is known to those skilled in the art that a difference in the lay length of the twisted wire pairs 16 will result in differences in the distance that signals must travel in the respective wire pairs over a given length of cable, and can contribute to a difference in pair to pair timing phase delay or known in industry as "delay skew.” However, in accordance with one aspect of this invention, the delay skew can be matched by correlating and manipulating the lay lengths of the twisted wire pairs to the strand twist lengths of the conductors of the respective pairs.
- the delay skew can be matched by correlating and appropriately "pairing" the strand twist lengths of the conductors to the lay length of the respective twisted wire pairs.
- the term "matched” is intended to encompass differences in phase delay or delay skew of less than 25 nanoseconds per 100 meters of cable length.
- a stranded conductor is twisted to form a first central conductor.
- the lay length (strand twist length) of the first central conductor is between 0.5 to 1.5 inches in length. Insulation is then applied to the first stranded conductor to form an insulated conductor. Then, two insulated conductors are paired and twisted together to form a first twisted pair.
- the twisted central conductors have a strand twist length of 0.5 to 1.5 times the lay length of the twisted pair. Additional twisted pairs may be added to form a cable, and each additional twisted pair may have a different lay length than the first twisted pair.
- a second twisted pair may include central conductors having a strand twist length less than the chosen strand twist length of the first central conductor as long as the lay length of the second twisted pair is greater than the first twisted pair lay length.
- a cable is constructed of four twisted pairs (Pairs 1-4), having the characteristics shown in Table 1 :
- a cable of the present invention may achieve a capacitance of 12.5 ⁇ 0.5 pF/ft with a related impedance of 100 ⁇ 3 ohms, thereby reducing and substantially eliminating delay skew and its associated data loss.
- Table 1 also shows the inverse relationship between central conductor strand twist length and the insulated conductor twisted pair lay length, where longer strand twist lengths are used with shorter lay lengths to equalize capacitance between twisted pairs. It should further be noted that the central i
- conductor outer diameter of 0.24" is measured after compression of the strands to eliminate gaps and interstitial spaces therebetween. However, compression is not required to achieve the desired transmission characteristics.
- the phase delay of two twisted wire pairs can be better matched by appropriately controlling the physical configuration of the twisted wire pairs and the stranded conductor.
- the amount of phase skew or delay skew contributed by the difference in the strand twist length of two twisted wire pairs with respect to the lay length of one twisted wire pair can be determined empirically or by calculation, and can be compensated for by selecting an appropriately correlated lay length for the other twisted wire pair 16.
- the selection of wires with conductors having an appropriate strand twist length can be determined so as to better control the amount of delay skew that will result from that particular cable configuration.
- the skew value is represented by the maximum difference in phase delay between any two twisted wire pairs.
- the maximum difference in phase will be adjusted by modifying the lay lengths and/or strand twist lengths of the twisted wire pairs until the amount of delay skew is within an acceptable range of 25 nanoseconds per 100 meters of cable length.
- a network designer can further improve the signal transmission characteristics of the cable.
- Such modifications can include, for example, coating the wire strands 22 of the conductor 18 with a metal or non-metallic coating, providing wire strands 22 having the same or different cross-sectional diameters, utilizing different or modified insulating materials for the conductors 18, and providing insulation material 20 surrounding the conductors 18 that is formed of different and varying thickness values.
- Cables formed according to the present invention advantageously reduce the amount of delay skew significantly by utilizing longer strand twist length with the tightly twisted pair and a shorter strand twist length with the longer twisted pair. In this way, capacitance levels between dissimilar twisted pairs are optimally matched. Thus, signals generated at one end of the cable should ideally arrive at the same time at the opposite end even if they travel along different twisted wire pairs. In any event, a cable may be designed where the delay skew between any two twisted pairs within the cable is small enough that the a device receiving the signal is able to reassemble that signal, thereby eliminating data loss.
Landscapes
- Communication Cables (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP00937777A EP1198800A4 (en) | 1999-05-28 | 2000-05-25 | Low delay skew multi-pair cable and method of manufacture |
BRPI0011561-4A BR0011561B1 (en) | 1999-05-28 | 2000-05-25 | low delay distorted twisted pair cable and method of forming a low delay distorted twisted pair cable. |
CA002373503A CA2373503C (en) | 1999-05-28 | 2000-05-25 | Low delay skew multi-pair cable and method of manufacture |
AU52903/00A AU775768B2 (en) | 1999-05-28 | 2000-05-25 | Low delay skew multi-pair cable and method of manufacture |
MXPA01012337A MXPA01012337A (en) | 1999-05-28 | 2000-05-25 | Low delay skew multi-pair cable and method of manufacture. |
HK02109251A HK1047818A1 (en) | 1999-05-28 | 2002-12-20 | Low delay skew multi-pair cable and method of manufacture. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13667499P | 1999-05-28 | 1999-05-28 | |
US60/136,674 | 1999-05-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2000074078A1 true WO2000074078A1 (en) | 2000-12-07 |
Family
ID=22473869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2000/014443 WO2000074078A1 (en) | 1999-05-28 | 2000-05-25 | Low delay skew multi-pair cable and method of manufacture |
Country Status (10)
Country | Link |
---|---|
US (1) | US6323427B1 (en) |
EP (1) | EP1198800A4 (en) |
KR (1) | KR100708407B1 (en) |
CN (1) | CN1206665C (en) |
AU (1) | AU775768B2 (en) |
BR (1) | BR0011561B1 (en) |
CA (1) | CA2373503C (en) |
HK (1) | HK1047818A1 (en) |
MX (1) | MXPA01012337A (en) |
WO (1) | WO2000074078A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210188026A1 (en) * | 2018-05-25 | 2021-06-24 | Knorr-Bremse Systeme für Nutzfahrzeuge GmbH | Truck Trailer Interface |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6300687B1 (en) * | 1998-06-26 | 2001-10-09 | International Business Machines Corporation | Micro-flex technology in semiconductor packages |
FR2830156B1 (en) * | 2001-09-25 | 2004-11-26 | Henri Lee | TV DISTRIBUTION SYSTEM AND PROCESSING UNIT USED IN THIS DISTRIBUTION SYSTEM |
AU2003228748A1 (en) * | 2002-05-02 | 2003-11-17 | Belden Technologies, Inc. | Surfaced cable filler |
US6825410B2 (en) * | 2002-08-26 | 2004-11-30 | Hon Hai Precision Ind. Co., Ltd. | Bundle twisted-pair cable |
US7009105B2 (en) * | 2002-08-26 | 2006-03-07 | Hon Hai Precision Ind. Co., Ltd. | Bundle twisted-pair cable |
US7511225B2 (en) | 2002-09-24 | 2009-03-31 | Adc Incorporated | Communication wire |
US7078626B2 (en) * | 2004-03-12 | 2006-07-18 | Rgb Systems, Inc. | Cable apparatus for minimizing skew delay of analog signals and cross-talk from digital signals and method of making same |
US20040074668A1 (en) * | 2002-10-16 | 2004-04-22 | Steve Somers | Cable for minimizing skew delay and crosstalk |
JP5006036B2 (en) | 2003-07-11 | 2012-08-22 | パンドウィット・コーポレーション | Alien crosstalk suppression with enhanced patch cord |
GB2419225B (en) * | 2003-07-28 | 2007-08-01 | Belden Cdt Networking Inc | Skew adjusted data cable |
US7214884B2 (en) | 2003-10-31 | 2007-05-08 | Adc Incorporated | Cable with offset filler |
US7115815B2 (en) | 2003-10-31 | 2006-10-03 | Adc Telecommunications, Inc. | Cable utilizing varying lay length mechanisms to minimize alien crosstalk |
JP4423168B2 (en) * | 2004-11-02 | 2010-03-03 | 株式会社ミツトヨ | Surface texture measuring device |
US7259993B2 (en) * | 2005-06-03 | 2007-08-21 | Infineon Technologies Ag | Reference scheme for a non-volatile semiconductor memory device |
KR100725287B1 (en) * | 2005-07-28 | 2007-06-07 | 엘에스전선 주식회사 | UTP cable for transmitting high frequency signal |
KR100759629B1 (en) * | 2005-12-16 | 2007-09-17 | 엘에스전선 주식회사 | Data cable for telecommunication having spacer formed on inner surface of jacket |
US7329814B2 (en) | 2005-12-29 | 2008-02-12 | Capricorn Audio Technologies Ltd | Electrical cable |
US20070151747A1 (en) * | 2005-12-29 | 2007-07-05 | Jed Hacker | Electrical cable |
US7375284B2 (en) | 2006-06-21 | 2008-05-20 | Adc Telecommunications, Inc. | Multi-pair cable with varying lay length |
US7413466B2 (en) * | 2006-08-29 | 2008-08-19 | Adc Telecommunications, Inc. | Threaded connector and patch cord having a threaded connector |
WO2009009747A1 (en) * | 2007-07-12 | 2009-01-15 | Adc Telecommunications, Inc. | Telecommunication wire with low dielectric constant insulator |
CN101483361B (en) * | 2008-01-11 | 2011-12-07 | 德昌电机(深圳)有限公司 | Stator winding construction and winding method for slotless motor stator winding, and stator construction with the winding construction |
US8704094B1 (en) * | 2011-03-08 | 2014-04-22 | Superior Essex International LP | Twisted pair data cable |
WO2012177486A2 (en) | 2011-06-21 | 2012-12-27 | Adc Telecommunications, Inc. | Connector with cable retention feature and patch cord having the same |
US8684763B2 (en) | 2011-06-21 | 2014-04-01 | Adc Telecommunications, Inc. | Connector with slideable retention feature and patch cord having the same |
DE102014000897A1 (en) * | 2014-01-23 | 2015-07-23 | Rosenberger Hochfrequenztechnik Gmbh & Co. Kg | cable assembly |
WO2017168842A1 (en) * | 2016-03-31 | 2017-10-05 | 株式会社オートネットワーク技術研究所 | Electric wire for communication |
JP6075490B1 (en) | 2016-03-31 | 2017-02-08 | 株式会社オートネットワーク技術研究所 | Shield wire for communication |
JP6760392B2 (en) * | 2016-11-28 | 2020-09-23 | 株式会社オートネットワーク技術研究所 | Shielded cable for communication |
JP2019102268A (en) * | 2017-12-01 | 2019-06-24 | 住友電気工業株式会社 | Multicore cable |
CN108152631B (en) * | 2017-12-26 | 2020-06-30 | 常熟市景弘盛通信科技股份有限公司 | High-frequency signal line quality detection system |
AU2019282460B2 (en) * | 2018-06-07 | 2023-05-18 | Enertechnos Limited | Capacitive power transmission cable |
US11682501B2 (en) | 2020-09-22 | 2023-06-20 | Belden Inc. | Hybrid high frequency separator with parametric control ratios of conductive components |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5493071A (en) * | 1994-11-10 | 1996-02-20 | Berk-Tek, Inc. | Communication cable for use in a plenum |
US5619016A (en) * | 1995-01-31 | 1997-04-08 | Alcatel Na Cable Systems, Inc. | Communication cable for use in a plenum |
US5767441A (en) * | 1996-01-04 | 1998-06-16 | General Cable Industries | Paired electrical cable having improved transmission properties and method for making same |
US5814768A (en) * | 1996-06-03 | 1998-09-29 | Commscope, Inc. | Twisted pairs communications cable |
US5834697A (en) * | 1996-08-01 | 1998-11-10 | Cable Design Technologies, Inc. | Signal phase delay controlled data cables having dissimilar insulation materials |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2227600B (en) * | 1989-01-23 | 1993-05-26 | Secr Defence | Matched lay stranding of transmission wires |
US5763823A (en) * | 1996-01-12 | 1998-06-09 | Belden Wire & Cable Company | Patch cable for high-speed LAN applications |
SE506476C2 (en) | 1996-04-18 | 1997-12-22 | Interconnect Ab | Procedures for the manufacture of shielded cables, as well as cables made according to the procedures |
CA2206022C (en) * | 1996-06-03 | 2001-07-03 | Commscope, Inc. | Twisted pairs communications cable |
EP0992088B1 (en) | 1997-06-26 | 2001-11-28 | Interconnect AB | A patch cable and connector assembly, and a method for manufacturing the same |
US6096977A (en) * | 1998-09-04 | 2000-08-01 | Lucent Technologies Inc. | High speed transmission patch cord cable |
-
2000
- 2000-05-25 WO PCT/US2000/014443 patent/WO2000074078A1/en active Search and Examination
- 2000-05-25 CA CA002373503A patent/CA2373503C/en not_active Expired - Fee Related
- 2000-05-25 BR BRPI0011561-4A patent/BR0011561B1/en not_active IP Right Cessation
- 2000-05-25 AU AU52903/00A patent/AU775768B2/en not_active Ceased
- 2000-05-25 EP EP00937777A patent/EP1198800A4/en not_active Withdrawn
- 2000-05-25 US US09/578,982 patent/US6323427B1/en not_active Expired - Lifetime
- 2000-05-25 MX MXPA01012337A patent/MXPA01012337A/en active IP Right Grant
- 2000-05-25 KR KR1020017015108A patent/KR100708407B1/en not_active IP Right Cessation
- 2000-05-25 CN CNB008092052A patent/CN1206665C/en not_active Expired - Fee Related
-
2002
- 2002-12-20 HK HK02109251A patent/HK1047818A1/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5493071A (en) * | 1994-11-10 | 1996-02-20 | Berk-Tek, Inc. | Communication cable for use in a plenum |
US5619016A (en) * | 1995-01-31 | 1997-04-08 | Alcatel Na Cable Systems, Inc. | Communication cable for use in a plenum |
US5767441A (en) * | 1996-01-04 | 1998-06-16 | General Cable Industries | Paired electrical cable having improved transmission properties and method for making same |
US5814768A (en) * | 1996-06-03 | 1998-09-29 | Commscope, Inc. | Twisted pairs communications cable |
US5834697A (en) * | 1996-08-01 | 1998-11-10 | Cable Design Technologies, Inc. | Signal phase delay controlled data cables having dissimilar insulation materials |
Non-Patent Citations (1)
Title |
---|
See also references of EP1198800A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210188026A1 (en) * | 2018-05-25 | 2021-06-24 | Knorr-Bremse Systeme für Nutzfahrzeuge GmbH | Truck Trailer Interface |
US11858303B2 (en) * | 2018-05-25 | 2024-01-02 | Knorr-Bremse Systeme Fuer Nutzfahrzeuge Gmbh | Truck trailer interface |
Also Published As
Publication number | Publication date |
---|---|
MXPA01012337A (en) | 2003-06-24 |
CA2373503A1 (en) | 2000-12-07 |
CA2373503C (en) | 2009-12-01 |
KR100708407B1 (en) | 2007-04-18 |
US6323427B1 (en) | 2001-11-27 |
EP1198800A4 (en) | 2006-06-07 |
HK1047818A1 (en) | 2003-03-07 |
CN1206665C (en) | 2005-06-15 |
AU5290300A (en) | 2000-12-18 |
BR0011561B1 (en) | 2010-06-15 |
EP1198800A1 (en) | 2002-04-24 |
AU775768B2 (en) | 2004-08-12 |
BR0011561A (en) | 2002-02-26 |
KR20020036781A (en) | 2002-05-16 |
CN1357146A (en) | 2002-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2373503C (en) | Low delay skew multi-pair cable and method of manufacture | |
US6743983B2 (en) | Communication wire | |
CA2386896C (en) | A cable separator spline | |
US8664531B2 (en) | Communication wire | |
US7560648B2 (en) | Communication wire | |
EP1607985B1 (en) | Multi-pair data cable with configurable core filling and pair separation | |
JPH09501796A (en) | Twinaxial cable | |
AU5290900A (en) | Optimizing lan cable performance | |
WO2006127371A1 (en) | Low profile high speed transmission cable | |
EP1526555A2 (en) | Cable having a filler | |
WO2014035927A1 (en) | S-shield twisted pair cable design for multi-ghz performance | |
JP7111915B2 (en) | Communication cable and its manufacturing method | |
JP2024086660A (en) | Electric wire for communication |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 00809205.2 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 52903/00 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2373503 Country of ref document: CA Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: IN/PCT/2001/1640/CHE Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020017015108 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2001/012337 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2000937777 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2000937777 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1020017015108 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWG | Wipo information: grant in national office |
Ref document number: 52903/00 Country of ref document: AU |
|
WWG | Wipo information: grant in national office |
Ref document number: 1020017015108 Country of ref document: KR |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) |