WO2000072426A1 - Core for rotating machine, method of manufacturing the same, piece for core, and rotating machine - Google Patents

Core for rotating machine, method of manufacturing the same, piece for core, and rotating machine Download PDF

Info

Publication number
WO2000072426A1
WO2000072426A1 PCT/JP2000/002975 JP0002975W WO0072426A1 WO 2000072426 A1 WO2000072426 A1 WO 2000072426A1 JP 0002975 W JP0002975 W JP 0002975W WO 0072426 A1 WO0072426 A1 WO 0072426A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
core back
teeth
rotating machine
back portion
Prior art date
Application number
PCT/JP2000/002975
Other languages
French (fr)
Japanese (ja)
Inventor
Yuji Enomoto
Yukinori Taneda
Noriaki Yamamoto
Takashi Ishigami
Toshihiko Sakai
Suetaro Shibukawa
Masaharu Senoh
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Publication of WO2000072426A1 publication Critical patent/WO2000072426A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/18Windings for salient poles

Definitions

  • the present invention relates to a rotating machine core, a method of manufacturing the same, a core back constituting the core, a piece constituting a core back, and a rotating machine using the rotating machine core.
  • the present invention relates to a technology for realizing a rotating machine core having a high profile.
  • Rotating machines such as induction motors, synchronous motors, DC motors, and other induction motors, induction generators, synchronous generators, DC generators, and other generators have a basic structure consisting of a stator (station) and a rotor (mouth). Evening)
  • the stator has a core and a coil. The coils are mounted in slots provided in the core.
  • an insulator overnight method is known.
  • a coil wound in a predetermined shape is set in a coil guide called a blade in advance, and this is set in a stream using hydraulic pressure or the like.
  • a method is used in which a core is inserted into the core slot with a pushing jig called a hopper.
  • the electrical insulation between the coil and the core uses a method in which a slot insulating paper is placed in advance on the inner peripheral surface of the slot of the core and the coil is inserted into it.
  • the winding at that time is a winding method called distributed winding, which spans multiple core teeth. Take the form of winding.
  • a winding method called concentrated winding This is a method of winding one coil on one tooth.
  • This winding method a series winding method in which a wire is wound directly from the inner periphery of the core, and a stator core is divided as shown in Japanese Patent Application Laid-Open No. 6-105487, The mainstream method is to apply a winding to each of the divided cores, weld the core pieces with the wound coils, and assemble them.
  • the conventional technology has the following problems.
  • the material utilization rate of the core is as low as 30 to 40% in both the Insa overnight method and the series winding method, since a round stay core is used from a square material. Also, even if the core is divided and stripping is taken into account, it is currently about 50 to 60%.
  • a first object of the present invention is to provide a technique for increasing the utilization rate of a core material in a stator of a rotating machine.
  • a second object of the present invention is to provide a technique that enables a portion requiring a high magnetic flux density and a portion not requiring a high magnetic flux density to be configured using optimal materials. Disclosure of the invention
  • a rotating machine core having a core back portion and a plurality of tooth portions, the core back portion, the plurality of tooth portions,
  • the core back portion has a plurality of teeth connecting portions connecting the respective tooth portions on an inner peripheral side thereof, and the teeth portion has a base end connected to the tooth connecting portion.
  • Attached A core for a rotating machine is provided, wherein the core is connected to the core back portion, and the core back portion has a structure in which a plurality of pieces are continuously arranged in a ring shape and a plurality of layers are stacked.
  • a rotating machine core having a core back portion and a plurality of teeth portions
  • the core back portion and the plurality of teeth portions are provided separately, and the core back portion is provided.
  • the part has a plurality of teeth connecting parts connecting the respective teeth parts on an inner peripheral side thereof, and the teeth part is connected to the core back part with its base end attached to the teeth connecting part.
  • the core back portion has a structure in which a block in which a plurality of pieces are stacked is arranged in a row to form a ring, and a rotating machine core is provided.
  • a core back portion in a core for a rotating machine, a core back portion, a plurality of teeth portions mounted on an inner peripheral side thereof, and a fastening member for fastening the core back portion from the outside are provided.
  • the core back portion has a structure divided at a plurality of positions in a circumferential direction, and the tightening member tightens the core back portion from outside, and the divided portions of the core back portion are circumferentially divided.
  • the present invention provides a rotating machine core characterized by being closely attached to a rotating machine.
  • the core back portion and the plurality of teeth portions are provided separately, and the core back portion is A plurality of teeth connecting portions for connecting the respective teeth portions on an inner peripheral side thereof, wherein the teeth portion has a base end attached to the tooth connecting portion and connected to the core back portion;
  • the tip of each tooth is formed in an arc shape, and when attached to the core back portion, forms a circumference together with the tips of other adjacent teeth in order. Is done.
  • a rotating machine core having a core back portion and a plurality of teeth portions, the core back portion, the plurality of teeth portions,
  • the core back portion has a plurality of teeth connecting portions for connecting the respective tooth portions on an inner peripheral side thereof, and the base portion of the tooth portion has a base end connected to the tooth connecting portion. It is attached and connected to the core back portion, and the tip of each tooth portion is formed in a straight line, and in the state of being attached to the core back portion, is sequentially polygonal with the tip of another adjacent tooth portion.
  • the core back used for the rotating machine core has a structure in which a plurality of pieces are continuously arranged in a ring and a plurality of pieces are stacked. A featured core back is provided.
  • the element for forming the core back that constitutes the rotating machine core has a curved form in which a plurality of sheets are connected to form a ring by stacking a plurality of layers.
  • a core back piece having a connection portion for connecting teeth of a rotating machine on a side which is an inner periphery of the core back.
  • a member constituting a core back portion having a tooth connecting portion to which the tooth portion is to be connected is provided.
  • the core backing portion is cut to a length corresponding to the size of the core to be manufactured, and the members constituting the core back portion are laminated to a desired thickness.
  • the core back portion is formed by fixing both ends of the member, and has a connection portion with a tooth connection portion of a member constituting the core back portion, and a tip end of each tooth portion is connected.
  • the member in the state is punched out of the band-shaped member, cut to a length corresponding to the size of the core to be manufactured, and a plurality of members constituting the teeth portion are laminated to a desired thickness, and simultaneously.
  • the teeth are bent in a ring shape with the tips of the teeth facing outward, and both ends of the member are fixed to form a teeth assembly.
  • Molded coil Attach a body insert the tooth assembly into the inner periphery of the core back portion, attach the connecting portion of the tooth member to the tooth connecting portion, and attach each tooth portion to the core back portion.
  • the present invention provides a method of manufacturing a core for a rotating machine, characterized by being fixed to a core.
  • the core back portion is formed in a structure divided into a plurality of circumferential portions.
  • a housing having an inner diameter smaller than the outer diameter of the core is expanded by applying a temperature difference, and the core back portion is fitted in the housing, and the housing cools and contracts.
  • the teeth portion and the core back portion are each formed by laminating plate materials
  • a method for manufacturing a core for a rotating machine characterized in that, after processing the portions to be joined to each other to be thinner than the original plate material, the teeth portion is joined to the core back portion.
  • a rotating mechanism having a stage formed by winding a coil formed in advance around a tooth portion of the core for a rotating machine described above. Machine is provided.
  • a rotating machine core having a core back portion and a plurality of tooth portions.
  • a core for a rotating machine is provided, wherein the core back portion is formed of a silicon steel plate, and the core back portion is formed of a non-oriented silicon steel plate.
  • FIG. 1 is a partially cutaway perspective view showing a general structure of a motor to which the present invention is applied.
  • FIG. 2 is a perspective view showing a general structure of a motor stay to which the present invention is applied.
  • FIG. 3 is a perspective view showing an example of a coil formed body used in the rotating machine of the present invention.
  • FIG. 4 is a plan view showing an example of the core according to the present invention.
  • FIG. 5 is an explanatory diagram showing a mounting position of a coil molded body on a core according to the present invention.
  • FIG. 6 is a partial cross-sectional view showing a mounted state of a coil formed body on a tooth portion used in the present invention.
  • FIG. 7 is an explanatory diagram showing a forming state of a coil formed body used in the rotating machine of the present invention.
  • FIG. 8 is an explanatory view showing a state before molding in a coil molded body having another shape.
  • FIG. 9 is an explanatory diagram showing a cross-sectional forming dimension relationship after forming in a coil formed body used in the rotating machine of the present invention.
  • FIG. 10 is a table showing a relationship between an excess load, a forming dimension, and a pinhole when forming a coil formed body used in the rotating machine of the present invention.
  • FIG. 11 is a graph showing a relationship between a load and a forming dimension when forming a coil formed body used in the rotating machine of the present invention.
  • FIG. 12 is an explanatory diagram showing a change in cross-sectional area before and after forming of a coil winding used in the rotating machine of the present invention.
  • Fig. 13 (a) is an explanatory view showing a state where a general coil winding is attached to the teeth
  • Fig. 13 (b) is a cross-sectional view taken along line A-A
  • Fig. 13 (c) is B — B sectional view
  • Fig. 13 (d) is an explanatory view showing the winding state after coil forming
  • Fig. 13 (e) shows the A-A cross-sectional view.
  • Fig. 14 (a) is a plan view showing a state where the members constituting the teeth assembly are punched out of the band-shaped member
  • Fig. 14 (b) is a diagram showing a state where the members constituting the core back portion are punched out of the band-shaped member. It is a top view showing a state.
  • FIG. 15 (a) is a perspective view showing a state in which the coil is formed by the coil forming body and the core of the present invention
  • FIG. 15 (b) is a state in which the coil is mounted on the teeth assembly
  • FIG. 15 (c) is an explanatory view showing a state where a coil is mounted on the teeth assembly.
  • FIG. 16 (a) is a partial plan view showing another first embodiment of the connection relationship between the core back portion and the tooth portion
  • FIG. 16 (b) is a partial plan view showing the core back portion and the tooth portion
  • FIG. 16 (c) is a partial plan view showing another third form of the connection relationship between the core back portion and the teeth portion
  • FIG. FIG. 6 (d) is a partial plan view showing another fourth embodiment of the connection relationship between the core back portion and the teeth portion
  • FIG. 16 (e) is another partial connection diagram showing the connection relationship between the core back portion and the teeth portion.
  • FIG. 16 (f) is a partial plan view showing a fifth embodiment of the present invention
  • FIG. 16 (g) is a partial plan view showing another sixth embodiment of the connection relationship between the core back portion and the teeth portion.
  • FIG. 21 is a partial plan view showing another seventh embodiment of the connection relationship between the core back portion and the teeth portion.
  • FIG. 17 (a) is a plan view of a core having adjacent teeth separated from each other
  • FIG. 17 (b) is a perspective view showing the stacked teeth.
  • FIG. 18 (a) is a plan view showing an example of a piece constituting the core back portion
  • FIG. 18 (b) is a plan view showing a state where the piece is bent
  • FIG. 18 (c) is a perspective view showing a state in which the core back portion is formed by laminating pieces
  • Fig. 18 (d) is a plan view showing a shape in which the core back portion and the teeth portion are assembled.
  • FIG. 19 (a) is an explanatory view showing a state where the housing is shrink-fitted to the core
  • Fig. 19 (b) is an explanatory diagram showing the state after the eight housings have been fitted and contracted.
  • FIG. 20 is an explanatory view showing a state where a band-shaped member such as a steel band is fastened to the core to assemble the core.
  • FIG. 21 (a) is a plan view showing a state in which a divided end and a notch on the outer periphery of the core are fixed by welding
  • FIG. 21 (b) is a perspective view thereof.
  • FIG. 22 (a) is an explanatory view showing a step of resin-molding the core
  • FIG. 22 (b) is a perspective view showing the resin-molded core.
  • FIGS. 23 (a) to (f) are explanatory diagrams showing various modifications of the element constituting the core back portion, respectively.
  • FIG. 23 (g) shows a state in which the element is punched from a strip-shaped plate material.
  • FIG. 24 (a) is an explanatory diagram showing the state in which the pieces are stacked with a shift of one slot pitch for each layer
  • Fig. 24 (b) is a block in which a plurality of pieces are stacked for each layer.
  • FIG. 4 is an explanatory view showing a state in which layers are shifted by one slot pitch.
  • FIG. 25 (a) is a plan view showing an example where the assembled shape of the core back portion and the tooth portion has a ⁇ shape in which the tips of the tooth portions are abutted
  • FIG. 25 (b) is a core back portion.
  • FIG. 25 (c) is a plan view showing a second form in which the shape ⁇ assembled with the tooth part is a shape in which the tip of the tooth part is abutted.
  • FIG. 25 (c) shows the core back part shown in FIG. 23 (a).
  • FIG. 5 is a plan view showing an example in which the teeth are assembled into a shape in which the tips of the teeth are butted.
  • FIG. 26 (a) is a plan view showing a joint shape between the core back portion and the teeth portion
  • FIG. 26 (b) is a plan view showing a second form of the joint shape between the core back portion and the teeth portion
  • FIG. 26 (c) is a plan view showing a third form of the joint shape between the core back portion and the teeth portion.
  • FIG. 27 (a) is an explanatory view illustrating a state in which the teeth are punched out of the strip
  • FIG. 27 (b) is a perspective view showing the teeth in a stacked state
  • FIG. 28 (a) is an explanatory view showing an embodiment in which the pieces are shifted by one slot pitch
  • FIG. 28 (b) is a sectional view thereof
  • FIG. 28 (c) is a piece
  • FIG. 28 (d) is an explanatory view showing another mode in which the state is shifted by one slot pitch.
  • FIG. 29 (a) is a plan view showing a state where the base end portion of the teeth portion is thinned
  • FIG. 29 (b) is a cross-sectional view showing a state where the teeth are stacked.
  • FIG. 30 (a) is a perspective view showing that the teeth are assembled by adjusting the thickness by a finish press before fitting and assembling to the core back
  • FIG. 30 (b) is the core back
  • FIG. 6 is a perspective view showing that the stacking is performed by adjusting the stack thickness by a finishing press before fitting and assembling the teeth.
  • the induction motor and the synchronous motor have a stator (steering station) 3 and a rotor (rotor) 6 as a basic structure.
  • the stator 3 has a core 2 and a coil 1.
  • a molded coil molded body is used as the coil 1.
  • the core 2 is composed of a core back portion 22 and a tooth portion 21 protruding inward from the core back portion 22. Inside the core 2, the space between the tooth portions 21 becomes a slot 23.
  • the coil molded body 1 is mounted on the teeth 21, and the coil 1 is inserted into the slot 23.
  • a new device has been devised with respect to the core 2 and its manufacturing method.
  • New methods have been devised for the assembling method and the like.
  • the coil formed body 1 is formed in a state where the wire is wound in an annular shape while holding the through hole la.
  • the through hole la is formed in a cross-sectional shape that can be fitted to the tooth portion 21. .
  • the inner part of the coil molded body 1 forming the through hole 1a preferably has a shape in which the sides are parallel. This is because both sides of the coil mounting portion of the teeth 21 are formed in parallel. Therefore, when the shape of the tooth portion is different, the cross-sectional shape of the through-hole 1a is changed accordingly.
  • the coil molded body 1 has a lead wire 12 for making an electrical connection.
  • the coil molded body 1 has a shape in which a side surface of a portion accommodated in the slot 23 spreads in a fan shape from one end side to the other end side of the through hole 1a.
  • the shape spreading in a fan shape is sandwiched between two adjacent radii of the core 2 passing through the center of each slot 23 when the coil forming body 1 is accommodated in the slot 23.
  • the fan-shaped expansion coincides with the expansion of this region. By doing so, it is possible to accommodate more windings. Also, spatial interference between adjacent coil compacts 1 can be avoided. As a result, when assembling the stay, it is possible to avoid the contact of the coil molded body 1 and to prevent the occurrence of damage, insulation failure, etc. due to contact, friction, etc. between adjacent coils during assembly. it can.
  • the wire constituting the coil formed body 1 is composed of a metal wire and an insulating film for insulating the surface of the metal wire.
  • the metal wire for example, copper is generally used.
  • the insulating film for example, polyesterimide is used.
  • PEW polyethylene imide wire
  • the end of one end side (the narrow side of the sector) of the coil molded body 1 is located at the tooth tip end 2 11 1 side. 1 c, and the other end (the wide side of the fan)
  • the end face Id is located on the side of the lock portion 22.
  • the end surface 1a located on the tip end 2 11 1 side of the tooth portion has a shape that is receded and inclined toward the inner peripheral side. This is in accordance with the fact that the rear surface of the tip 2 1 1 of the tooth portion 2 1 1 is inclined. Of course, this end face la does not necessarily have to be inclined.
  • FIG. 4 shows an example of a core without a coil.
  • FIG. 5 shows an example of a core in a state where the coil molded body is mounted.
  • FIG. 14 (a) shows an example of members constituting the teeth assembly, and
  • FIG. 14 (b) shows members constituting the core back portion.
  • the core 2 is composed of a coil back part 22 and a toothed solid body 21a.
  • the teeth assembly 21a is composed of 12 teeth portions 21 connected at the tips.
  • the core knocking part 22 and the tooth assembly 21a are both formed in a ring shape.
  • a band-shaped plate material is used for each component. That is, the members (plates) shown in FIGS. 14 (a) and 14 (b) are laminated to a desired thickness, and are bent into a ring shape.
  • a silicon steel plate is usually used, but from the viewpoint of realizing a high magnetic flux density, a material having as large a saturation magnetization as possible is preferable.
  • An example of such a material is a material having anisotropy such that the saturation magnetization is large in a specific direction of the material.
  • One example is a grain-oriented silicon steel sheet. Therefore, when a grain-oriented silicon steel sheet is used in accordance with the direction of the magnetic flux according to the direction of the large saturation magnetization, favorable results can be expected.
  • this grain-oriented silicon steel sheet is characterized by being difficult to process and being expensive. Therefore, a grain-oriented silicon steel sheet is used as the material for core 2. In doing so, it is necessary to consider these points as well.
  • the core back portion 22 and the plurality of teeth portions 21 are separately formed, it is possible to use a material suitable for each. That is, since the magnetic flux density needs to be increased in the teeth 21 where the magnetic flux is directed in the radial direction, a material having a large saturation magnetization is used for the teeth 21 and the core back 22 where the magnetic flux is divided in the circumferential direction is used. Since it is not required to increase the magnetic flux density, the material of the core back portion 22 can be distinguished, for example, by using a relatively small material.
  • the teeth portion 21 requiring a large magnetic flux density is made of a material having a large saturation magnetization, for example, a grain oriented silicon steel sheet, and the core back portion 22 not requiring a large magnetic flux density.
  • a material having a large saturation magnetization for example, a grain oriented silicon steel sheet
  • the core back portion 22 not requiring a large magnetic flux density Use other materials, for example, non-oriented silicon steel sheet, pure iron, soft iron, etc., which are relatively inexpensive and easy to process. This can be applied to other embodiments described later.
  • the core back portion 22 is formed in a belt-like shape in which 12 unit members 22a corresponding to the number of the teeth portions 21 are connected.
  • This can be manufactured from a band-shaped member (hoop) not shown, for example, by punching.
  • the unit member 22 a has a tooth connecting portion 22 1 connecting to the connecting portion 21 3 of the tooth portion 21 on the side facing the inner peripheral side, and a member when the member is bent in a ring shape.
  • Notches 2 2 2 are provided to absorb contraction on the inner peripheral side of the member, and cutouts 2 2 3 are provided on the side facing the outer peripheral side to absorb the elongation of the member on the outer peripheral side when the member is bent into a ring shape. ing.
  • the members constituting the core back portion are fixed in a state where they are bent into a ring shape and both ends are in contact with each other.
  • the fixing can be performed by, for example, welding, caulking, or the like.
  • caulking for example, a silicon steel plate is plastically deformed and connected.
  • the core back part 22 has a unit part.
  • Each of the members 22a is provided with a caulking portion 229 for caulking with another unit member 22a vertically adjacent to each other when they are laminated.
  • the swaged portion 229 is partially cut into a member, for example, a convex shape projecting to the lower surface side by half blanking, and the upper surface side of the member is a concave shape. It is processed to become. Then, at the time of lamination, it is caulked in a state where the convex portion is fitted into the concave portion of another unit member. Note that the relationship between the concavities and convexities in the caulked portion 229 may be upside down.
  • the teeth connecting portion 221 has a shape that does not come off by being fitted to a connecting portion 213 on the side of the teeth 21 described later. For this reason, in the present embodiment, the teeth 21 have a connecting portion 213 on the side thereof, and the teeth connecting portion 221 has a shape having a groove.
  • the tooth assembly 21a is formed by laminating a plurality of members 210 forming a tooth portion.
  • the members 210 constituting the teeth portion are alternately arranged in such a manner that the portions to be the teeth portions 21 face each other alternately. It is manufactured by punching from a hoop. In this case as well, the teeth 21 are made into a unit, and they are manufactured in a connected state. Then, it is formed to have a length that becomes a necessary number of teeth portions 21. Such a shape is suitable for mass-producing the teeth 21. Further, as shown in FIG. 14 (a), since two sets of members 210 are taken from the belt-shaped member, the use efficiency of the material can be greatly improved.
  • the tooth assembly 2 1a is formed by the lateral end 2 1 1a of the tip 2 1 1 of each tooth 2 1 and the lateral end 2 1 la of the tip 2 1 1 of the adjacent tooth 2 1. It is articulated. With such an articulated structure, the teeth 21 can be treated integrally. For this reason, handling is convenient during manufacturing and assembly. In addition, there is an advantage that the strength is increased structurally.
  • Each tooth 21 has a substantially T-shape, and the back surface of the protruding portion on the tip side is oblique. Cut for As described above, the connecting portion 21 for connecting to the core back portion 22 is provided on the base end side of the tooth portion 21.
  • each tooth portion 21 is provided with a caulking portion 219 for caulking with another tooth portion 21 vertically adjacent when stacked. ing.
  • the swaged portion 219 is formed by half-blanking to form a part of the member forming the tooth portion 21, for example, a convex shape projecting to the lower surface side.
  • the upper surface side of the member is processed so as to have a concave shape. Then, at the time of lamination, it is caulked in a state where the convex portion is fitted into the concave portion of another unit member. Note that the relationship between the unevenness in the caulked portion 2 19 may be upside down.
  • FIG. 17 (a) shows an example in which the tips 211 of the adjacent tooth portions 21 are separated from each other.
  • the tooth portions 21 are formed by cutting the respective tooth portions 21 from the connected tooth assembly 21a.
  • the cutting can be performed after attaching to the core back member 22 as shown in FIG. 17 (a).
  • the teeth 21 may be punched out one by one from the time of punching and laminated.
  • the core 2 of the present invention is different from the conventional one-piece core in the method of assembling the windings. For this reason, in the core 2 of the present invention, there is no need to provide a gap for inserting a winding. For this reason, even when the teeth 21 are punched out one by one, for example, as shown in FIG. 25 (a), the adjacent teeth 21 are inserted into the core back 22. In this state, it is possible to adopt a structure in which the adjacent lateral end portions 211a are in contact with each other. In this way, by bringing the adjacent lateral end portions 211a of the teeth portions 21 into contact with each other and abutting each other, it is possible to secure accuracy on the inner circumferential side of the stay.
  • a core member 22 shown in FIG. 4 is formed by processing a plurality of unit members 22a into a ring shape and laminating a plate material. Can also be applied. Also, as shown in FIG. 18 (a) and FIG. 23, a plurality of pieces 220 are arranged in a ring in a row, and a plurality of layers are stacked, as shown in FIG. 18 (c). Such a structure can also be applied.
  • the present invention has a structure in which the core back portion 22 and the teeth portion 21 are divided and independently formed.
  • Each member is formed by laminating members manufactured by punching from a band-shaped plate material. Therefore, it is easy to take out the material, and the utilization efficiency of the material can be increased.
  • the teeth 21 have a structure in which the members 210 constituting the two sets of teeth are alternately arranged, it is possible to further increase the material use efficiency. Become.
  • the useless portion is mainly a cutting margin 21c for separating the two sets. Therefore, by cutting in the cutting allowance 21c as much as possible, it is possible to achieve a material utilization rate of, for example, about 81%.
  • the material utilization rate can be 85%. Therefore, according to the present embodiment, both the teeth portion and the core back portion can have a material utilization of 80% or more. For this reason, the material utilization rate can be significantly improved as compared with the conventional structure.
  • the teeth portion 21 and the core back portion 22 should be formed separately.
  • the teeth 21 having a high magnetic flux density can be made of a material having a high saturation magnetization, while the core back 22 having a relatively low magnetic flux density has a high saturation magnetization. Since it may be smaller than the tooth part 21, it is easy to process and a cheap material can be used.
  • FIGS. 7 to 9 show a molding die and a molding process using the molding die.
  • FIG. 10 and FIG. 11 show the molding conditions.
  • FIGS. 12 and 13 show the compression state of the winding.
  • FIG. 7 shows a coil forming die used for forming a coil formed body.
  • FIG. 7 shows a state after the coil has already been compression-molded.
  • the mold shown in FIG. 7 has a pobin 15a for winding a wire constituting a coil, and a pressing mold 15b for pressing a group of wires 11 wound on the pobin 15a. , 15c and 15d.
  • a pressure device (not shown) and a control device for controlling the pressure are used.
  • the pressure source for example, hydraulic pressure or pneumatic pressure is used.
  • the pressing mold 15 b presses a side surface of the group of the coil windings 11, that is, a portion to be the side surface 1 b of the coil molded body 1.
  • the pressing dies 15 c and 15 d press the end faces of the group of the coil windings 11, that is, the portions that become the end faces 1 c of the coil molded body 1.
  • the pressing die 15c presses in a direction orthogonal to the pressing die 15b.
  • the lower end surface of the pressing die 15 d and the upper end surface of the pressing die 15 c are obliquely brought into contact with each other, and the slope 15 e is orthogonal to the pressing force of the pressing die 15 d.
  • the component force in the direction is taken out, and the pressing mold 15c is configured to be pressed laterally. By doing so, there is an advantage that the pressing force can be performed from the same direction by a common pressure source.
  • the wire 11 is wound around the pobin 15a, and is pressed by the above-described pressing dies 15b, 15c, and 15d.
  • the gap between the wires 11 is crushed, and at the same time, the wires 11 themselves are deformed and, in some cases, compressed, to form the coil formed body 1.
  • the insulating film (not shown) covering each wire also deforms with the deformation of the wire itself.
  • the insulating coating of the wire was not broken by the molding.
  • the shape of the mold is appropriately selected according to the shape of the coil molded body.
  • the mold shown in FIG. 7 is used for molding a structure in which the end surface on one end side of the coil molded body 1 has an inclined surface as described above.
  • the mold shown in FIGS. 8 and 9 is used in a case where the end surface of one end of the coil molded body 1 does not have an inclined surface.
  • the coil cross-sectional dimension when the wire 11 is wound is clearly different from the cross-sectional dimension of the coil formed body 1 after forming. That is, assuming that the diameter of the wire 11 is d, the dimension D 1 in the lateral direction of the drawing is ⁇ + ⁇ 30 2 (the number of steps—1) ⁇ .
  • the vertical dimension L1 is (dX number).
  • the coil cross-sectional area is (D 1 XL 1). Therefore, the cross-sectional dimension in the winding state cannot be geometrically smaller than this cross-sectional area.
  • the coil cross-sectional area is made smaller than that in the winding state by adding molding to the slot insertion portion of the coil after winding. If the cross-sectional area of the wire itself is equivalent, by adding forming, the coil cross-sectional area after forming (D 2 XL 2) will be smaller than the coil cross-sectional area after winding (D 1 XL 1). Is also smaller. If the cross-sectional area of the wire itself is reduced by compression, the cross-sectional area (D 2 XL 2) of the entire coil cross section will be about 80% of the original value due to the compression forming up to the compression limit. Thus, the present invention changes the cross-sectional area of the coil by adding a forming step from the state of the winding.
  • the wires are neatly arranged in the slot.
  • the molding is performed so that the cross-sectional area of the portion accommodated in the slot in the cross section at the same portion satisfies (Sp ⁇ S 0).
  • FIG. 11 shows a graph of this relationship.
  • the load is represented by a load applied per 480 mm 2 .
  • the figure also shows the case where a wire rod with a wire diameter of 1.2 mm is used.
  • FIGS. 10 and 11 when the pressing force during molding is increased, the cross-sectional dimension is reduced.
  • the load is more than a certain level, for example, 6 ton or more, there is no significant change.
  • the number of pinholes shown in FIG. 10 means the number of locations where the insulating film of the wire is broken. Normally, this is a test method that checks how much electricity leaks when the wires are immersed in the electrolyte. Inspection results are represented by numbers. In the present embodiment, in the range shown in FIG. 10, the number of pinholes is 0 even if the load increases. Therefore, this shows that the molding did not damage the insulating film.
  • FIG. Fig. 13 (a) to Fig. 13 (e) show the state of the winding around the teeth.
  • the bobbin and the teeth 21 are in close contact with the winding base material (see Fig. 13 (b)), and are wound with the most clearance from the winding base material at the center of the side.
  • FIG. 13 (c) it can be seen that there is a considerable gap with the base material at the center of the side.
  • the coil is assembled as a motor stay in this state, the space will decrease due to this gap, and the motor performance will decrease. Therefore, as described above, by applying a forming force to the side portion of the coil in the wound state after winding, as shown in FIGS. 13 (d) and 13 (e), the coil Also in the side part, a coil having a shape in which the wire is in close contact with the base material is used. This makes it possible to assemble the motor stator with a high space factor.
  • the space factor can be improved as compared with the case without molding.
  • the cross-sectional shape of the slot insertion portion matches the shape shown in Fig. 6, that is, the internal shape of the 1Z2 portion of the slot 23. It can be formed as follows. This is preferable because the space factor can be further improved.
  • the cross-sectional shape of the coil shape in the slot is similar to the cross-sectional shape of the slot. This is also an advantage of splitting the core.
  • an insulator such as a pobin
  • the cross section of the wire is not formed, and even in the case of a low space factor coil, the coil cross section is similar to the slot shape, so there is a margin.
  • One winding This has the effect of improving the life of insulation deterioration.
  • the coil wound on the pobin 15a is pressed using the pressing dies 15a, 15b and 15c as shown in Fig. 7, and the coil winding is compression molded. I do.
  • a coil molded body 1 as shown in FIG. 3 is obtained.
  • the belt-shaped member is used to form the tooth assembly 21a and the core back portion 22.
  • These members are formed by punching or the like. The production of these members is not limited to punching. It may be performed by another method. Thereafter, the necessary number of members 210 constituting the teeth portion and the member constituting the core back portion 22 are laminated.
  • the core back portion 22 is bent. That is, they are bent so as to form a ring shape. After bending, both ends are fixed by, for example, welding, caulking, or the like. Thus, the core back 22 and the teeth assembly 21a are manufactured.
  • each coil formed body 1 is fitted into each tooth portion 21 of the tooth assembly 21a. That is, the through hole 1 a of the coil forming body 1 and the teeth 21 are fitted. At this time, each coil molded body 1 is fitted to the teeth 21 with the end face 1a facing the inner peripheral side. This state is shown in Fig. 15 (c).
  • the tooth assembly 21a on which the coil molded body 1 is mounted is fitted to the inner periphery of the core back portion 22. This At this time, circumferential alignment is performed so that the teeth connecting portion 2 21 of the core back portion 22 and the connecting portion 2 13 of the teeth portion 21 are fitted.
  • the steps shown in FIG. 5 are obtained together with the formation of the core.
  • the coil molded body 1 is pushed into the tooth assembly 21 a so that each tooth portion 21 is inserted into the through hole 1 a of the coil molded body 1.
  • the mounting of the coil on the core is very easy because it can be mounted.
  • the coil molded body 1 maintains a certain shape, no special jig is required for mounting so that the coil is not disturbed.
  • the coil can be mounted with high density on the coil molded body 1 itself, the space factor in the slot 23 can be increased.
  • the material utilization rate can be increased while maintaining a high space factor.
  • FIG. 16 a description will be given of a structure capable of further improving the performance of such a structure.
  • Fig. 16 (a) to (g) show various forms related to the connection between the core back and the teeth. These embodiments are examples in which a gap that may occur between the connecting portion 2 13 of the tooth portion 21 and the connecting portion 2 21 of the core back portion 22 is eliminated.
  • Fig. 16 (a) shows the bending center of the core of the core back part 22 placed on the extension of the teeth part 21. After the coil molded body and the core 2 are assembled, the final When assembling the housing 4 as shown in FIG. 19 to the outer peripheral portion of the core back portion 22, the bent portion is further compressed by press-fitting the core 2 into the housing 4. Tighten the joint between the teeth 21 and the teeth 21. Therefore, the cuts 224 are provided in the core back member 22 in advance. The form of the cuts 2 2 4 is variously possible.
  • Figure 16 (a) shows an example of a deep V-shaped cut. The cuts 224 are provided on the inner peripheral side of the core back portion 22 so that the circumferential length of the connecting portion 221 of the core back portion 22 can be increased or decreased.
  • the connecting portion 2 13 of the tooth portion 21 can be easily fitted into the connecting portion 2 21 of the core back portion 22, and the circumferential length of the connecting portion 2 13 can be reduced.
  • the connecting portion 21 of the tooth portion 21 can be securely and firmly connected to the connecting portion 21 of the core back portion 22.
  • the notches 224 also function as weak portions against the stress applied during assembly. This facilitates bending of the core back portion 22.
  • Fig. 16 (b) shows the connecting part 2 13 of the tooth part 21 with the core pack part 22 and the connecting part 21 of the core back part 22 with the tooth part 21.
  • Each is an example of a V-shaped tapered shape.
  • the connecting part 21 13 is pressed by the slope of the connecting part 22 1.
  • the tooth portion 21 is not displaced toward the inner peripheral side because the lateral end portions of the teeth 21 abut on other lateral end portions adjacent to each other at the distal end side.
  • the tooth portion 21 is firmly held in the core back 22 by the force acting in the circumferential direction at its own tip and the force acting on the connecting portion 21.
  • this connection form has a structure in which the connection portion is further compressed by press-fitting and shrink-fitting the housing and the core, and the connection portion 2 13 between the core back portion 22 and the teeth portion 21 is tightened.
  • the connecting portion 22 1 of the core back portion 22 is formed into a shape that is cut long in the circumferential direction.
  • FIG. 16 (d) shows a structure in which the core back portion 22 and the teeth portion 21 are connected via another member 24 connecting the core back portion 22 and the teeth portion 21.
  • the core back portion 22 is provided with a notch 2 25 in the axial direction.
  • a similar notch 2 14 is provided in the connecting portion 2 13 of the tooth portion 21.
  • the member 24 has a planar shape penetrating into a hole-shaped space formed by the notches 2 25 and 2 14 that is generated when the teeth portion 21 is connected to the core back portion 22.
  • the assembling can be performed by inserting the member 24 into a stack in which the teeth portion 21 is connected to the core back portion 22. With such a structure, the connection between the core back portion 22 and the teeth portion 21 can be strengthened.
  • Fig. 16 (e) and Fig. 16 (f) both use the coupling method called the pole expansion method. That is, the hole 226 is provided in the core back portion 22 at a position sandwiching the connecting portion 213 of the tooth portion 21 or the hole 215 is provided in the connecting portion of the tooth portion 21. With each connected, pass a slightly larger pole and shaft through the holes to widen the holes. As a result, the core back portion 22 or the tooth portion 21 is plastically deformed to obtain a bonding force.
  • FIG. 16 (g) shows the shape of the teeth 21 and the core back 22 as the dovetail structure as in the above-described embodiment.
  • a wedge 26 commonly known as a force razor, is driven into position.
  • the gap between the core back portion and the teeth portion can be reduced as much as possible. For this reason, vibration noise can be further suppressed. As a result, it is possible to obtain a stationary core with a reduced influence on the service life and characteristics.
  • a second embodiment of the core according to the present invention will be described with reference to FIG. 18 and FIG.
  • the present embodiment relates to a rotating machine core including a core back portion and a plurality of teeth portions, and the core back portion and the plurality of teeth portions are provided separately.
  • the core back portion 22 is formed by bending a piece 220 as shown in FIG. 18 (a) into a plurality of pieces as shown in FIG. 18 (b). They are arranged in a ring and have a structure in which they are stacked in multiple layers as shown in Fig. 18 (c).
  • core back portion 22 in the present embodiment has a plurality of teeth connecting portions 22a connecting inner teeth portions 21 on its inner peripheral side.
  • tooth connecting portions 221b are also provided at portions located on the inner side of the core at both ends thereof.
  • the teeth connecting portion 221a is provided in a form to be fitted with the connecting portion 213 on the teeth portion 21 side.
  • the shape has a form that forms a dovetailed groove structure.
  • a cutout 228a is provided in the connecting portion 221a.
  • a shallow cut 228b is provided on the outer peripheral side of the position where the cut 228a is provided.
  • the notch 228a is cut out in a V-shape at an angle where the edges of the notch 228a do not overlap with each other when the element piece 220 is bent.
  • the notch 228b is intended to spread and facilitate bending when the piece 220 is bent. Therefore, any other shape may be used as long as it has such a function.
  • the end face (divided end part 220 b) on which the connecting part 221 b is provided is formed with a shape that constitutes a dovetailable groove structure.
  • the inner peripheral side is cut off diagonally so that a gap, for example, a V-shaped gap is formed when connecting.
  • the core of the present embodiment is formed by laminating the above-mentioned pieces 220. In the present embodiment, first, a piece as shown in FIG. 18 (a) is punched out and bent as shown in FIG. 18 (b) to bend. Then, using the plurality of pieces 220 thus processed, as shown in FIG. 18 (c), the plurality of pieces 220 are arranged in a row in a row, and A plurality of these are laminated to form a core back portion 22.
  • the element 220 is provided with a caulking portion 229 for caulking when laminating. Therefore, after all the pieces 220 are stacked, the whole is pressurized, and the caulking part 229 is caulked.
  • the element 220 constituting the core back portion 22 is preferably made of a material having a large saturation magnetization.
  • the above-described directional silicon steel sheet or the like is used.
  • the element 220 used in the present embodiment is
  • the teeth portion 21 for example, as shown in FIG. 17 (b), a member obtained by laminating members obtained by individually punching plate materials is used.
  • the tooth portion 21 is also caulked by the caulking portion 2 19.
  • a material as described above, for example, a non-oriented silicon steel sheet is used.
  • the piece 220 forming the core back portion 22 is formed into a punched shape as shown in FIG. 18 (a), that is, the portion 221, in which the teeth 21 are arranged, is formed.
  • the sheet is punched out in a bent shape, and bent as shown in FIG.
  • the core back portions 22 are formed by lamination.
  • the base end 213 of the tooth part 21 is attached to the tooth connecting part 221 of the core back part 22.
  • the teeth portion 21 incorporating the coil 1 is press-fitted into the core back portion 22 to obtain a stay.
  • the teeth part 21 is the same as the teeth part of the core back part 22 described above.
  • the base 2 13 is fitted into the joint 2 2 1.
  • the fitting can be performed, for example, by fitting the base end 2 13 into the teeth connecting portion 2 21 along the axial direction of the core and displacing the teeth portion 21 in the axial direction in this manner.
  • the state in which the teeth 21 are attached to the core back 22 is shown in FIG. 18 (d).
  • FIG. 18 (d) does not show the state in which the coil is mounted, but actually, the teeth 21 are mounted on the core back 22 after the coil molded body 1 is mounted thereon. Is done.
  • a housing In order to hold this stay core, it is assembled to an outer frame called a housing.
  • a cylinder is used as the housing.
  • the material for example, iron, aluminum, or the like is used.
  • the thickness of the cylinder is, for example, about 2 to 10 mm.
  • Assembling of the core back portion 22 to the housing 4 is performed by press fitting, shrink fitting, or the like.
  • shrink fitting the cylindrical housing 4 is heated and expanded.
  • the inner diameter of the housing is 100.693 mm, which is larger than the outer diameter of the stay.
  • the amount of tightening at this time is determined by the housing, the thickness of the stay, the material, and the like.
  • the final housing inner diameter is 100.
  • the outer diameter of the stay becomes 10.2 mm at the same time. Therefore, it can be said that the outer diameter shrank by 0.3 mm from the dimensions after assembly.
  • the teeth are arranged at the divided end 220b and the cut-out portion 228a of the core back portion 22, so that the gap of the core back portion 22 is reduced to reduce the assembly gap of the teeth portion. Tighten at the same time be able to. Therefore, it is possible to increase the mechanical strength of the teeth portion and the core back portion.
  • the sleeve is a method of assembling a cylinder of stainless steel or iron with a wall thickness of 0.2 to 0.3 mm, and has the advantage that the outer diameter of the motor can be reduced. Further, it is also conceivable that the steel band 7 as shown in FIG. 20 is wound around and tightened by fastening such as welding or caulking at the joint of the band 7.
  • the outer peripheral portion of the divided end portion 22Ob of the core back portion 22 is welded while being tightened from the outer periphery, The tightened state can be maintained.
  • the notch 228b is also welded for reinforcement. Welding of the notch 2 228 b can be omitted.
  • the notation of coils is omitted.
  • FIG. 22 there is a method of fastening a core by a mold as shown in FIG.
  • the coil end of the stay core is wrapped with a resin material.
  • the wound core 2 is set in a mold 9 and resin 10 is poured into both ends (coil end) of the mold. I do.
  • the resin 10 is poured in a state where the core 2 is tightened by the molding die 9, and the grooves provided inside the slot portion of the core 2 and on the outer periphery of the core are filled with the resin.
  • the steel overnight core 2 will be concluded.
  • Fig. 22 shows a method of fastening a core by a mold as shown in FIG.
  • the core can be fixed while keeping the clearance of the core back joint portion reduced by tightening. According to this method, the core can be fastened without increasing the outer peripheral portion of the core.
  • the gap between the core divided portions is reduced, and the coupling strength with the teeth portion is obtained. Also in the embodiment described above, the material can be used efficiently for the same reason as described above.
  • the segment 220 is not limited to the above-described embodiment.
  • the shapes shown in FIG. 23 are possible, each having advantages.
  • the shape shown in FIG. 23 (a) is an example in which the core back portion 22 described above is punched in a shape after being bent in advance.
  • the layers are laminated without bending.
  • the mechanical strength in the circumferential direction can be increased.
  • This is a method by which the decrease in magnetic resistance can be halved.
  • the shapes shown in FIG. 23 (b) and FIG. 23 (c) are punched out in the shape after the bending as in the example shown in FIG. 23 (a). In these examples, to provide a stress concentration portion for reducing the circumferential length by shrink fitting stress etc.
  • the slit grooves 228c and 228d are formed in the joint at the time of punching. This is to create the shape that is inserted. According to this shape, joint strength with the teeth portion and minimization of the gap can be realized by the stress generated by shrink fitting or the like, that is, the stress that reduces the gap as described above. There is a difference in this point from the shape in Fig. 23 (a).
  • Fig. 23 (d) and Fig. 23 (e) are punched in the shape after bending at the time of punching press.
  • the thinned portions 228 e and 228 f are formed by stamping and thinning the joint portion with the teeth portion.
  • the above-mentioned piece 220 can be provided in a series from a band-shaped material, for example, as shown in FIG. 14 (b). Further, as shown in FIG. 23 (g), it can be formed so as to be individually punched from the strip.
  • FIGS. 24 (a) and 24 (b) This embodiment is basically the same as the above-described embodiment except that the mode of lamination of the pieces 220 is different. For example, it is configured in the same way when mounting coils, assembling a housing, and manufacturing a rotating machine. Therefore, the description will focus on the differences.
  • FIG. 24 (a) relates to a rotating machine core having a core back portion and a plurality of teeth portions.
  • core back portion 22 and a plurality of teeth portions 21 are provided separately.
  • the core back portion 22 has a plurality of teeth connecting portions 22 1 a and 22 lb connecting the respective tooth portions 21 on its inner peripheral side.
  • the teeth portion 21 has a structure in which the base end 21 is attached to the teeth connecting portion 22 a or 22 lb and connected to the core back portion 22.
  • the core back portion 22 has a structure in which a plurality of pieces 220 are continuously arranged in a ring shape and a plurality of layers are stacked. Further, the core back portions 22 are arranged such that the pieces 220 are shifted in the circumferential direction in units of slot pitch between adjacent layers. At the time of lamination, caulking is performed in the caulking part 229. With such a configuration, the tooth connecting portions 22a and 22b are arranged at an equal pitch (slot pitch) on the inner peripheral edge of the core as in the above-described embodiment. These tooth connecting portions 22a and 22b extend along the axial direction of the core.
  • FIG. 24 (b) relates to a rotating machine core having a core back portion and a plurality of teeth portions, similarly to FIG. 24 (b). It is.
  • the core back portion 22 has a plurality of blocks 220 formed by laminating a plurality of pieces 220 and is arranged in a ring shape, and a plurality of the blocks 220 a are laminated. It is the structure which did.
  • Other configurations are the same as those in FIG. 24 (a).
  • the core back portion 22 is arranged such that the blocks 220a are shifted in the circumferential direction by a slot pitch between adjacent layers.
  • the tooth portions can be connected by using the other embodiments described above.
  • a tooth part 21 having a form as shown in FIGS. 27 (a) and 27 (b) can be used.
  • the plates which are individually punched from the band-shaped plate and which have the caulking portions 219 at two places are laminated and crimped to obtain a plate as shown in FIG. 27 (b). ) Can be used.
  • the material utilization rate is improved.
  • the material utilization rate is 70% or more.
  • the teeth 21 are individually punched from a band-shaped plate in the form as shown in FIG. 27, for example, a material utilization rate of 70% or more can be achieved.
  • FIG. Fig. 26 (a), (b) and (c) are all combinations of the presence (proximal end 21 3) and the presence groove (teeth connecting portion 22 1).
  • FIG. 26 (a) shows the corners of the dovetail and the dovetail groove having an R-chamfered shape. Also, Fig. 26 (b) shows the two sloped shapes with each other. The shape with a dovetail groove is shown.
  • FIG. 26 (c) has a connection portion similar to that of FIG. 26 (b), and the core back portion has at least two cuts 228 (or a thin portion). . Tightening stress is applied to both sides of the notch, thin wall, etc. at the center, and when stress is applied, the teeth 21 are tightened by the stress.
  • the callback section 22 does not necessarily need to use a material connected in series. Therefore, as described above, the element pieces are punched out, arranged so as to be continuous along the circumference of the core back portion, and laminated. In addition, a configuration in which a block is formed by stacking a plurality of element pieces, and the blocks are connected along the circumference of the core back portion and are stacked.
  • Fig. 28 shows the method of laminating laminated steel sheets.
  • Laminated steel plate is a method of combining the upper and lower plates with the half-opened portion such as HAC caulking or dowel caulking.
  • HAC caulking or dowel caulking the half-opened portion
  • the caulking method shown in FIG. 28 (a) is an assembling method in which the pieces 220 are staggered by one slot pitch alternately one layer at a time, as described in FIG. 24.
  • two or more force-screws 22 2 ′ 9 are provided on the piece 220, and one of the force-screws 22 a is half-blanked.
  • a convex portion 229 c is provided, and the other caulked portion 229 b is processed in a fully punched state to form a through hole 229 d.
  • the caulking portions 229a and 229b are provided at intervals of one slot pitch. Therefore, if the upper and lower segments 220 are shifted by one slot pitch in the circumferential direction, caulking can be performed at the positions shifted by one slot pitch.
  • the crimping mode is the same even if the upper and lower pieces 220 are shifted.
  • the half-opened projections 229c are formed by stacking the segments 220 alternately. It is connected to the through hole 229 d of the upper plate, but not to the through hole 229 d of the upper plate.
  • the projection 229 c of the upper plate is inserted and connected, and there is no connection with the lower plate.
  • FIGS. 29 (a) and 29 (b) show a laminated structure of a portion of the teeth portion 21 connected to the teeth connecting portion of the core back portion.
  • a core having notches, grooves, thin portions, and the like described in FIG. 23 there is a possibility that the metal surface will come into electrical contact due to burrs and the like generated during processing of that portion. Therefore, the electrical contact is obstructed by shifting the part up and down. Therefore, in the connecting portion as shown in FIG. 29 (a), as shown in FIG. 29 (b), one of the members to be connected, in FIG.
  • the thickness of 3 is stamped with a press or the like to make the thickness smaller than the plate thickness.
  • thinning is not limited to the base end portion 2 13 of the teeth portion 21.
  • the tooth connection portion 221 of the core back portion 22 may be thinned.
  • the wound coil is inserted by using the gap in the slot. If the stator coil is inserted after the winding by the insulator method, the space factor ( There is a problem that the ratio of the cross-sectional area of the wire to the cross-sectional area of the core slot cannot be large. At present, the limit of the space factor is 60-65%.
  • the wire is inserted using the gap of the core slot as in the case of the insulator overnight method, so the space factor is not very high (about 60%). Every time) .
  • the space factor is high due to the dimensional relationship such as clearance when assembling the core, uneven winding between wires, and interference between adjacent coils. I can't take it.
  • the problem of improving the space factor of the stator winding in the rotating machine has been solved by using a coil molded body that has been molded in advance. That is, by changing the cross-sectional shape of the coil, the cross-sectional dimensional accuracy can be increased, and the space factor can be improved. As a result, the efficiency of the rotating machine can be improved. In addition, by reducing the size of the core to improve the efficiency, the size of the rotating machine itself can be reduced, and the number of conductors used can be reduced, thereby reducing material costs.
  • the rotating machine particularly the electric motor, is a key part of the set product, so that the set product using the motor can be reduced in size, weight, and cost.

Abstract

A core for a rotating machine in which the rate of use of an iron core material of a stator of the rotating machine, and most suitable materials are respectively used for a part where high magnetic density is required and a part where it is not required. A core (2) for a rotating machine has a core back part (22) and teeth parts (21). The core back part (22) and the teeth parts (21) are provided separately. The core back part (22) has teeth connecting parts (221) for connecting the teeth parts on the inner circumference side. The base ends (213) of the teeth parts (21) are fitted to the teeth connecting parts (221) to connect the teeth parts (21) to the core back part (22). The core back part (22) has a structure of a stack of rings in which pieces (220) are continuously connected in a ring shape.

Description

明 細 書  Specification
回転機用コア、 その製造方法、 Core for rotating machine, manufacturing method thereof,
コア用素片および回転機  Core piece and rotating machine
技術分野 Technical field
本発明は、 回転機用コア、 その製造方法、 当該コアを構成するコアバ ック、 コアバックを構成する素片、 および、 回転機用コアを用いた回転 機に係り、 特に、 材料の利用効率の高い形状を有する回転機用コアを実 現する技術に関する。  The present invention relates to a rotating machine core, a method of manufacturing the same, a core back constituting the core, a piece constituting a core back, and a rotating machine using the rotating machine core. The present invention relates to a technology for realizing a rotating machine core having a high profile.
背景技術 Background art
誘導電動機、 同期電動機、 直流電動機等の電動機、 誘導発電機、 同期 発電機、 直流発電機等の発電機などの回転機は、 基本構造として、 固定 子 (ステ一夕) と回転子 (口一夕) とを有する。 その固定子は、 コアと コイルとを有する。 コイルは、 コアに多数設けられたスロッ トに装着さ れる。  Rotating machines such as induction motors, synchronous motors, DC motors, and other induction motors, induction generators, synchronous generators, DC generators, and other generators have a basic structure consisting of a stator (station) and a rotor (mouth). Evening) The stator has a core and a coil. The coils are mounted in slots provided in the core.
この固定子の製造方法としては、 例えば、 小形のモー夕では、 一般的 にィンサ一夕方式が知られている。 例えば、 特開平 9 — 1 3 5 5 5 5号 公報に示されるように、 予め所定の形状に巻線されたコイルをブレード と呼ばれるコイルガイ ドにセッ トし、 これを油圧などを利用してストリ ッパーと呼ばれる押し込み治具でコアのスロッ 卜の中に挿入する方法が 採られている。 コイルとコアの間の電気的絶縁は、 線材被膜に加えて、 コアのスロッ ト内周面にスロッ ト絶縁紙をあらかじめ配置しておき、 そ の中にコイルを挿入する方法が採られている。 また、 そのときの巻線は、 分布巻と呼ばれる巻線方法で、 コアのスロッ トティースを複数個跨って 巻線される形態をとる。 As a method for manufacturing the stator, for example, in the case of a small-sized motor, generally, an insulator overnight method is known. For example, as shown in Japanese Patent Application Laid-Open No. 9-1355555, a coil wound in a predetermined shape is set in a coil guide called a blade in advance, and this is set in a stream using hydraulic pressure or the like. A method is used in which a core is inserted into the core slot with a pushing jig called a hopper. The electrical insulation between the coil and the core, in addition to the wire coating, uses a method in which a slot insulating paper is placed in advance on the inner peripheral surface of the slot of the core and the coil is inserted into it. . In addition, the winding at that time is a winding method called distributed winding, which spans multiple core teeth. Take the form of winding.
これに対して、 集中巻と呼ばれる巻線法がある。 これは、 1つのティ ースに 1つのコイルを巻線する方法である。 この巻線法には、 コアの内 周部から直接線材を巻き付ける直巻巻線方式と、 特開平 6— 1 0 5 4 8 7号公報に示されるように、 固定子コアを分割して、 その分割したコア 1つ 1つに巻線を施し、巻線コイルを施されたコアピースを溶接接合し、 組み立てる方法とが、 主流として採られている。  On the other hand, there is a winding method called concentrated winding. This is a method of winding one coil on one tooth. In this winding method, a series winding method in which a wire is wound directly from the inner periphery of the core, and a stator core is divided as shown in Japanese Patent Application Laid-Open No. 6-105487, The mainstream method is to apply a winding to each of the divided cores, weld the core pieces with the wound coils, and assemble them.
しかし、 従来の技術には、 次の問題がある。 コアの材料利用率につい てみると、 インサ一夕方式、 直巻方式とも、 四角い材料から丸いステー 夕コアをとるため、 材料の利用率は 3 0〜 4 0 %と低い。 また、 コアを 分割して、 板取りを考慮したとしても、 5 0〜 6 0 %程度となっている のが現状である。  However, the conventional technology has the following problems. Regarding the material utilization rate of the core, the material utilization rate is as low as 30 to 40% in both the Insa overnight method and the series winding method, since a round stay core is used from a square material. Also, even if the core is divided and stripping is taken into account, it is currently about 50 to 60%.
また、 コアについて、 磁束密度をより大きく しょうとすると、 高価な 材料を大量に使用することになり、 回転機のコス卜が上昇するという問 題がある。  Also, if the magnetic flux density of the core is to be increased, expensive materials will be used in large amounts, and the cost of the rotating machine will increase.
本発明の第 1の目的は、 回転機の固定子における鉄心材料の利用率を 高める技術を提供することにある。  A first object of the present invention is to provide a technique for increasing the utilization rate of a core material in a stator of a rotating machine.
本発明の第 2の目的は、 大きな磁束密度が要求される部分と、 そうで はない部分とについてそれぞれ最適な材料を用いて構成することを可能 とする技術を提供することにある。 発明の開示  A second object of the present invention is to provide a technique that enables a portion requiring a high magnetic flux density and a portion not requiring a high magnetic flux density to be configured using optimal materials. Disclosure of the invention
前記第 1の目的を達成するため、 本発明の第 1の態様によれば、 コア バック部と複数のティ一ス部とを有する回転機用コアにおいて、 前記コ ァバック部と複数のティース部とは別体に設けられ、 前記コアバック部 は、 その内周側に前記各ティ一ス部を連結する複数のティース連結部を 有し、 前記ティース部は、 その基端が前記ティース連結部に装着されて 前記コアバック部に連結され、 かつ、 前記コアバック部は、 複数枚の素 片を連ねて環状に配置すると共に、 複数層積層した構造であることを特 徵とする回転機用コアが提供される。 In order to achieve the first object, according to a first aspect of the present invention, in a rotating machine core having a core back portion and a plurality of tooth portions, the core back portion, the plurality of tooth portions, The core back portion has a plurality of teeth connecting portions connecting the respective tooth portions on an inner peripheral side thereof, and the teeth portion has a base end connected to the tooth connecting portion. Attached A core for a rotating machine is provided, wherein the core is connected to the core back portion, and the core back portion has a structure in which a plurality of pieces are continuously arranged in a ring shape and a plurality of layers are stacked. You.
本発明の第 2の態様によれば、 コアバック部と複数のティ一ス部とを 有する回転機用コアにおいて、 前記コアバック部と複数のティース部と は別体に設けられ、 前記コアバック部は、 その内周側に前記各ティース 部を連結する複数のティース連結部を有し、 前記ティース部は、 その基 端が前記ティース連結部に装着されて前記コアバック部に連結され、 か つ、 前記コアバック部は、 複数枚の素片を積層したブロックを連ねて環 状に配置した構造であることを特徴とする回転機用コアが提供される。 本発明の第 3の態様によれば、 回転機用コアにおいて、 コアバック部、 および、 その内周側に装着された複数のティース部と、 前記コアバック 部を外側から締め付ける締め付け部材とを有し、 前記コアバック部は、 周方向の複数箇所で分割された構造を有し、 前記締め付け部材は、 前記 コアバック部を外側から締め付けて、 前記コアバック部の分割された各 部分を周方向に密接させていることを特徴とする回転機用コアが提供さ れる。  According to a second aspect of the present invention, in a rotating machine core having a core back portion and a plurality of teeth portions, the core back portion and the plurality of teeth portions are provided separately, and the core back portion is provided. The part has a plurality of teeth connecting parts connecting the respective teeth parts on an inner peripheral side thereof, and the teeth part is connected to the core back part with its base end attached to the teeth connecting part. The core back portion has a structure in which a block in which a plurality of pieces are stacked is arranged in a row to form a ring, and a rotating machine core is provided. According to a third aspect of the present invention, in a core for a rotating machine, a core back portion, a plurality of teeth portions mounted on an inner peripheral side thereof, and a fastening member for fastening the core back portion from the outside are provided. The core back portion has a structure divided at a plurality of positions in a circumferential direction, and the tightening member tightens the core back portion from outside, and the divided portions of the core back portion are circumferentially divided. The present invention provides a rotating machine core characterized by being closely attached to a rotating machine.
本発明の第 4の態様によれば、 コアバック部と複数のティース部とを 有する回転機用コアにおいて、 前記コアバック部と複数のティース部と は別体に設けられ、 前記コアバック部は、 その内周側に前記各ティース 部を連結する複数のティース連結部を有し、 前記ティース部は、 その基 端が前記ティース連結部に装着されて前記コアバック部に連結され、 か つ、 各ティース部の先端は、 円弧状に形成され、 コアバック部に装着さ れた状態で、 順次隣接する他のティース部の先端と共に円周を構成する ことを特徴とする回転機用コアが提供される。  According to a fourth aspect of the present invention, in a rotating machine core having a core back portion and a plurality of teeth portions, the core back portion and the plurality of teeth portions are provided separately, and the core back portion is A plurality of teeth connecting portions for connecting the respective teeth portions on an inner peripheral side thereof, wherein the teeth portion has a base end attached to the tooth connecting portion and connected to the core back portion; The tip of each tooth is formed in an arc shape, and when attached to the core back portion, forms a circumference together with the tips of other adjacent teeth in order. Is done.
本発明の第 5の態様によれば、 コアバック部と複数のティース部とを 有する回転機用コアにおいて、 前記コアバック部と複数のティース部と は別体に設けられ、 前記コアバック部は、 その内周側に前記各ティ一ス 部を連結する複数のティース連結部を有し、 前記ティース部は、 その基 端が前記ティース連結部に装着されて前記コアバック部に連結され、 か つ、 各ティース部の先端は、 直線状に形成され、 コアバック部に装着さ れた状態で、 順次隣接する他のティース部の先端と共に多角形を構成す ることを特徴とする回転機用コアが提供される。 According to a fifth aspect of the present invention, in a rotating machine core having a core back portion and a plurality of teeth portions, the core back portion, the plurality of teeth portions, The core back portion has a plurality of teeth connecting portions for connecting the respective tooth portions on an inner peripheral side thereof, and the base portion of the tooth portion has a base end connected to the tooth connecting portion. It is attached and connected to the core back portion, and the tip of each tooth portion is formed in a straight line, and in the state of being attached to the core back portion, is sequentially polygonal with the tip of another adjacent tooth portion. Thus, there is provided a core for a rotating machine characterized by the following.
本発明の第 6の態様によれば回転機用コアに用いられるコアバックに おいて、 複数枚の素片を連ねて環状に配置すると共に、 素片を複数層積 層した構造であることを特徴とするコアバックが提供される。  According to the sixth aspect of the present invention, the core back used for the rotating machine core has a structure in which a plurality of pieces are continuously arranged in a ring and a plurality of pieces are stacked. A featured core back is provided.
本発明の第 7の態様によれば、 複数層積層することで、 回転機用コア を構成するコアバックを形成するための素片において、 複数枚を連ねる ことによって環を形成する湾曲形態を有し、 コアバックの内周となる側 に、 回転機のティースを連結するための連結部を有することを特徴とす るコアバック用素片が提供される。  According to the seventh aspect of the present invention, the element for forming the core back that constitutes the rotating machine core has a curved form in which a plurality of sheets are connected to form a ring by stacking a plurality of layers. In addition, there is provided a core back piece having a connection portion for connecting teeth of a rotating machine on a side which is an inner periphery of the core back.
本発明の第 8の態様によれば、 コアバック部とティース部とを有する 回転機用コアの製造方法において、 前記ティース部を連結すべきティー ス連結部を有するコアバック部を構成する部材を帯状部材から打ち抜く と共に、 製造すべきコアの大きさに応じた長さに切断し、 前記コアバッ ク部を構成する部材を目的の厚さとなるまで積層すると共に、 前記ティ —ス連結部を内周側として屈曲し、 当該部材の両端を固定してコアバッ ク部を形成し、 前記コアバック部を構成する部材のティ一ス連結部との 連結部を有すると共に、 各ティース部の先端がつながった状態の部材を 帯状部材から打ち抜くと共に、 製造すべきコアの大きさに応じた長さに 切断し、 前記ティース部を構成する部材を目的の厚さとなるまで複数枚 積層すると同時または順次 (順不同) に、 ティース部先端を外向きにし てリング状に屈曲して、 当該部材の両端を固定して、 ティース組立体を 形成し、 前記ティース組立体の各ティース部に、 予め成形したコイル成 形体を装着し、 前記コアバック部の内周に前記ティ一ス組立体を挿入す る共に、 ティース連結部に前記ティ一ス部材の連結部を装着して、 各テ ィース部をコアバック部に固定することを特徴とする回転機用コアの製 造方法が提供される。 According to an eighth aspect of the present invention, in a method for manufacturing a rotating machine core having a core back portion and a tooth portion, a member constituting a core back portion having a tooth connecting portion to which the tooth portion is to be connected is provided. In addition to punching out from the belt-shaped member, the core backing portion is cut to a length corresponding to the size of the core to be manufactured, and the members constituting the core back portion are laminated to a desired thickness. The core back portion is formed by fixing both ends of the member, and has a connection portion with a tooth connection portion of a member constituting the core back portion, and a tip end of each tooth portion is connected. The member in the state is punched out of the band-shaped member, cut to a length corresponding to the size of the core to be manufactured, and a plurality of members constituting the teeth portion are laminated to a desired thickness, and simultaneously. Alternatively, in order (in any order), the teeth are bent in a ring shape with the tips of the teeth facing outward, and both ends of the member are fixed to form a teeth assembly. Molded coil Attach a body, insert the tooth assembly into the inner periphery of the core back portion, attach the connecting portion of the tooth member to the tooth connecting portion, and attach each tooth portion to the core back portion. The present invention provides a method of manufacturing a core for a rotating machine, characterized by being fixed to a core.
本発明の第 9の態様によれば、 コアバック部とティース部とを有する 回転機用コアの製造方法において、 前記コアバック部を、 周方向の複数 '箇所で分割された構造に形成すると共に、 ティース部連結し、 コアの外 径部よりも小さい内径をもつハウジングを温度差を与えて膨張させて、 その内部に前記コアバック部を、 ハウジング内にはめ込み、 前記ハウジ ングが冷えて収縮することにより、 前記コアの円周方向に応力がかかる 状態とすることを特徴とする回転機用コアの製造方法が提供される。 本発明の第 1 0の態様によれば、 コアバック部とティース部とを有す る回転機用コアの製造方法において、 ティース部およびコアバック部を それぞれ板材を積層して形成すると共に、 両者の互いに結合する部分に ついて、 もとの板材の厚みよりも薄く加工した後、 ティース部をコアバ ック部に結合させることを特徴とする回転機用コアの製造方法が提供さ れる。  According to a ninth aspect of the present invention, in the method for manufacturing a rotating machine core having a core back portion and a teeth portion, the core back portion is formed in a structure divided into a plurality of circumferential portions. A housing having an inner diameter smaller than the outer diameter of the core is expanded by applying a temperature difference, and the core back portion is fitted in the housing, and the housing cools and contracts. This provides a method for manufacturing a core for a rotating machine, wherein a stress is applied in a circumferential direction of the core. According to a tenth aspect of the present invention, in a method for manufacturing a rotating machine core having a core back portion and a teeth portion, the teeth portion and the core back portion are each formed by laminating plate materials, and A method for manufacturing a core for a rotating machine, characterized in that, after processing the portions to be joined to each other to be thinner than the original plate material, the teeth portion is joined to the core back portion.
また、 本発明の第 1 1の態様によれば、 前述した回転機用コアのティ ース部に、 予め成形されたコイルを巻き付けて構成されるステ一夕を有 することを特徴とする回転機が提供される。  Further, according to the eleventh aspect of the present invention, there is provided a rotating mechanism having a stage formed by winding a coil formed in advance around a tooth portion of the core for a rotating machine described above. Machine is provided.
また、 前記第 2の目的を達成するため、 本発明の第 1 2の態様によれ ば、コアバック部と複数のティ一ス部とを有する回転機用コアにおいて、 前記ティース部は、 方向性珪素鋼板で形成され、 前記コアバック部は、 無方向性珪素鋼板で形成されることを特徴とする回転機用コアが提供さ れる。 図面の簡単な説明 According to a twelfth aspect of the present invention, there is provided a rotating machine core having a core back portion and a plurality of tooth portions. A core for a rotating machine is provided, wherein the core back portion is formed of a silicon steel plate, and the core back portion is formed of a non-oriented silicon steel plate. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明が適用されるモー夕の一般的構造を示す一部切欠斜 視図である。  FIG. 1 is a partially cutaway perspective view showing a general structure of a motor to which the present invention is applied.
第 2図は、 本発明が適用されるモー夕のステ一夕の一般的構造を示す 斜視図である。  FIG. 2 is a perspective view showing a general structure of a motor stay to which the present invention is applied.
第 3図は、 本発明の回転機に用いられるコイル成形体の一例を示す斜 視図である。  FIG. 3 is a perspective view showing an example of a coil formed body used in the rotating machine of the present invention.
第 4図は、 本発明に係るコアの一例を示す平面図である。  FIG. 4 is a plan view showing an example of the core according to the present invention.
第 5図は、 本発明に係るコアへのコイル成形体の装着位置を示す説明 図である。  FIG. 5 is an explanatory diagram showing a mounting position of a coil molded body on a core according to the present invention.
第 6図は、 本発明で用いられるティ一ス部へのコイル成形体の装着状 態を示す部分断面図である。  FIG. 6 is a partial cross-sectional view showing a mounted state of a coil formed body on a tooth portion used in the present invention.
第 7図は、 本発明の回転機に用いられるコイル成形体における成形状 態を示す説明図である。  FIG. 7 is an explanatory diagram showing a forming state of a coil formed body used in the rotating machine of the present invention.
第 8図は、 他の形状のコイル成形体における成形前の状態を示す説明 図である。  FIG. 8 is an explanatory view showing a state before molding in a coil molded body having another shape.
第 9図は、 本発明の回転機に用いられるコイル成形体における成形後 の断面成形寸法関係を示す説明図である。  FIG. 9 is an explanatory diagram showing a cross-sectional forming dimension relationship after forming in a coil formed body used in the rotating machine of the present invention.
第 1 0図は、 本発明の回転機に用いられるコイル成形体を成形する際 の過重と成形寸法およびピンホールとの関係を示す図表である。  FIG. 10 is a table showing a relationship between an excess load, a forming dimension, and a pinhole when forming a coil formed body used in the rotating machine of the present invention.
第 1 1図は、 本発明の回転機に用いられるコイル成形体を成形する際 の過重と成形寸法との関係を示すグラフを示す。  FIG. 11 is a graph showing a relationship between a load and a forming dimension when forming a coil formed body used in the rotating machine of the present invention.
第 1 2図は、 本発明の回転機に用いられるコイル巻線に関する成形前 後の断面積の変化を示す説明図である。  FIG. 12 is an explanatory diagram showing a change in cross-sectional area before and after forming of a coil winding used in the rotating machine of the present invention.
第 1 3図 ( a ) は一般なコイル巻線をティース部に装着した状態を示 す説明図、 第 1 3図 ( b ) はその A— A断面図、 第 1 3図 ( c ) は B— B断面図、 第 1 3図 (d ) はコイル成形後の巻線状態を示す説明図、 第 1 3図 ( e ) はその A— A断面図を示す。 Fig. 13 (a) is an explanatory view showing a state where a general coil winding is attached to the teeth, Fig. 13 (b) is a cross-sectional view taken along line A-A, and Fig. 13 (c) is B — B sectional view, Fig. 13 (d) is an explanatory view showing the winding state after coil forming, Fig. 13 (e) shows the A-A cross-sectional view.
第 1 4図 ( a) はティース組立体を構成する部材を帯状部材から打ち 抜いた状態を示す平面図、 第 1 4図 (b) は、 コアバック部を構成する 部材を帯状部材から打ち抜いた状態を示す平面図である。  Fig. 14 (a) is a plan view showing a state where the members constituting the teeth assembly are punched out of the band-shaped member, and Fig. 14 (b) is a diagram showing a state where the members constituting the core back portion are punched out of the band-shaped member. It is a top view showing a state.
第 1 5図 ( a ) はコイル形成体と本発明のコアとによりステ一夕を組 み立てる状態を示す斜視図、 第 1 5図 (b) はティース組立体にコイル を装着する状態を示す説明図、 第 1 5図 ( c ) は、 ティース組立体にコ ィルを装着した状態を示す説明図である。  FIG. 15 (a) is a perspective view showing a state in which the coil is formed by the coil forming body and the core of the present invention, and FIG. 15 (b) is a state in which the coil is mounted on the teeth assembly. FIG. 15 (c) is an explanatory view showing a state where a coil is mounted on the teeth assembly.
第 1 6図 ( a) は、 コアバック部とティース部との連結関係の他の第 1の形態を示す部分平面図、 第 1 6図 (b) は、 コアバック部とティ一 ス部との連結関係の他の第 2の形態を示す部分平面図、 第 1 6図 ( c ) 、 コアバック部とティース部との連結関係の他の第 3の形態を示す部分平 面図、 第 1 6図 (d) 、 コアバック部とティース部との連結関係の他の 第 4の形態を示す部分平面図、 第 1 6図 ( e ) 、 コアバック部とティー ス部との連結関係の他の第 5の形態を示す部分平面図、 第 1 6図 ( f ) 、 コアバック部とティース部との連結関係の他の第 6の形態を示す部分平 面図、 第 1 6図 (g) 、 コアバック部とティース部との連結関係の他の 第 7の形態を示す部分平面図である。  FIG. 16 (a) is a partial plan view showing another first embodiment of the connection relationship between the core back portion and the tooth portion, and FIG. 16 (b) is a partial plan view showing the core back portion and the tooth portion. FIG. 16 (c) is a partial plan view showing another third form of the connection relationship between the core back portion and the teeth portion, and FIG. FIG. 6 (d) is a partial plan view showing another fourth embodiment of the connection relationship between the core back portion and the teeth portion, and FIG. 16 (e) is another partial connection diagram showing the connection relationship between the core back portion and the teeth portion. FIG. 16 (f) is a partial plan view showing a fifth embodiment of the present invention, and FIG. 16 (g) is a partial plan view showing another sixth embodiment of the connection relationship between the core back portion and the teeth portion. FIG. 21 is a partial plan view showing another seventh embodiment of the connection relationship between the core back portion and the teeth portion.
第 1 7図 ( a) は、 隣接するティース部の先端を互いに分離したもの を装着したコアの平面図、 第 1 7図 (b) は、 積層した状態のティース 部を示す斜視図である。  FIG. 17 (a) is a plan view of a core having adjacent teeth separated from each other, and FIG. 17 (b) is a perspective view showing the stacked teeth.
第 1 8図 ( a) はコアバック部を構成する素片の一例を示す平面図、 第 1 8図 (b) は素片を曲げ加工した状態を示す平面図、 第 1 8図 ( c ) は素片を積層してコアバック部を構成する状態を示す斜視図、 第 1 8 図 (d) はコアバック部とティース部を組み立てた形状を示す平面図を 示す。  FIG. 18 (a) is a plan view showing an example of a piece constituting the core back portion, FIG. 18 (b) is a plan view showing a state where the piece is bent, and FIG. 18 (c). Fig. 18 (d) is a perspective view showing a state in which the core back portion is formed by laminating pieces, and Fig. 18 (d) is a plan view showing a shape in which the core back portion and the teeth portion are assembled.
第 1 9図 ( a ) はコアにハウジングを焼嵌めする状態を示す説明図、 第 1 9図 ( b) は八ウジングがはめ込まれて収縮した後の状態を示す説 明図である。 FIG. 19 (a) is an explanatory view showing a state where the housing is shrink-fitted to the core, Fig. 19 (b) is an explanatory diagram showing the state after the eight housings have been fitted and contracted.
第 2 0図は、 コアにスチールバンドなど帯状の部材を締付けて、 コア を組み立てる状態を示す説明図である。  FIG. 20 is an explanatory view showing a state where a band-shaped member such as a steel band is fastened to the core to assemble the core.
第 2 1図 ( a ) はコア外周の分割端部および切り欠き部を溶接により 固定した状態を示す平面図、 第 2 1図 ( b) はその斜視図である。  FIG. 21 (a) is a plan view showing a state in which a divided end and a notch on the outer periphery of the core are fixed by welding, and FIG. 21 (b) is a perspective view thereof.
第 2 2図 ( a ) はコアを樹脂モールドする工程を示す説明図、 第 2 2 図 (b) 樹脂モールドされたコアを示す斜視図である。  FIG. 22 (a) is an explanatory view showing a step of resin-molding the core, and FIG. 22 (b) is a perspective view showing the resin-molded core.
第 2 3図 ( a) 〜 ( f ) は、 それぞれコアバック部を構成する素片の 各種変形例を示す説明図であり、 第 2 3図 (g) は素片を帯状板材から 打抜く状態を示す説明図である。  FIGS. 23 (a) to (f) are explanatory diagrams showing various modifications of the element constituting the core back portion, respectively. FIG. 23 (g) shows a state in which the element is punched from a strip-shaped plate material. FIG.
第 2 4図 ( a ) は素片を 1層毎に 1スロッ トピッチずらして積層する 状態を示す説明図、 第 2 4図 (b) は素片を複数枚積層したブロックを、 1層毎に 1スロッ トピッチずらして積層する状態を示す説明図である。 第 2 5図 ( a) はコアバック部とティ一ス部を組み立てた形状がティ —ス部先端を突き合わせた ^状となる例を示す平面図、 第 2 5図 (b) はコアバック部とティ一ス部を組み立てた形^がティース部先端を突き 合わせた形状となる第 2の形態を示す平面図、 第 2 5図 ( c ) は第 2 3 図 ( a) のコアバック部とティース部を組み立てた形状がティース部先 端を突き合わせた形状となる例を示す平面図である。  Fig. 24 (a) is an explanatory diagram showing the state in which the pieces are stacked with a shift of one slot pitch for each layer, and Fig. 24 (b) is a block in which a plurality of pieces are stacked for each layer. FIG. 4 is an explanatory view showing a state in which layers are shifted by one slot pitch. FIG. 25 (a) is a plan view showing an example where the assembled shape of the core back portion and the tooth portion has a ^ shape in which the tips of the tooth portions are abutted, and FIG. 25 (b) is a core back portion. FIG. 25 (c) is a plan view showing a second form in which the shape ^ assembled with the tooth part is a shape in which the tip of the tooth part is abutted. FIG. 25 (c) shows the core back part shown in FIG. 23 (a). FIG. 5 is a plan view showing an example in which the teeth are assembled into a shape in which the tips of the teeth are butted.
第 2 6図 ( a) はコアバック部とティース部の結合形状を示す平面図 、 第 2 6図 (b) はコアバック部とティ一ス部の結合形状の第 2の形態 を示す平面図、 第 2 6図 ( c ) はコアバック部とティース部の結合形状 の第 3の形態を示す平面図である。  FIG. 26 (a) is a plan view showing a joint shape between the core back portion and the teeth portion, and FIG. 26 (b) is a plan view showing a second form of the joint shape between the core back portion and the teeth portion. FIG. 26 (c) is a plan view showing a third form of the joint shape between the core back portion and the teeth portion.
第 2 7図 ( a) はティース部を帯状材から打ち抜く状態を説明する説 明図、 第 2 7図 (b) は積層された状態のティース部を示す斜視図を示 す。 第 2 8図 ( a ) は素片を 1スロッ トピッチずつずらした状態でか示す 一態様を示す説明図、 第 2 8図 (b ) はその断面図、 第 2 8図 ( c ) は 素片を 1スロッ トピツチずつずらした状態でか示す他の態様を示す説明 図、 第 2 8図 (d ) はその断面図である。 FIG. 27 (a) is an explanatory view illustrating a state in which the teeth are punched out of the strip, and FIG. 27 (b) is a perspective view showing the teeth in a stacked state. FIG. 28 (a) is an explanatory view showing an embodiment in which the pieces are shifted by one slot pitch, FIG. 28 (b) is a sectional view thereof, and FIG. 28 (c) is a piece FIG. 28 (d) is an explanatory view showing another mode in which the state is shifted by one slot pitch.
第 2 9図 ( a ) はティース部の基端部を薄肉化した状態を示す平面図 、 第 2 9図 (b ) はその積層した状態を示す断面図である。  FIG. 29 (a) is a plan view showing a state where the base end portion of the teeth portion is thinned, and FIG. 29 (b) is a cross-sectional view showing a state where the teeth are stacked.
第 3 0図 ( a ) はティース部について、 コアバック部に嵌合組立する 前に積厚を仕上げプレスにより合わせてから組立てることを示す斜視図, 、 第 3 0図 (b ) はコアバック部について、 ティース部を嵌合組立する 前に積厚を仕上げプレスにより合わせてから組立てることを示す斜視図 である。 発明を実施するための最良の形態  FIG. 30 (a) is a perspective view showing that the teeth are assembled by adjusting the thickness by a finish press before fitting and assembling to the core back, and FIG. 30 (b) is the core back. FIG. 6 is a perspective view showing that the stacking is performed by adjusting the stack thickness by a finishing press before fitting and assembling the teeth. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態について、 図面を参照して説明する。 なお、 以下の実施の形態では、 インダクションモ一夕、 シンクロナスモータ等 のモー夕に適用されるコアを例として説明する。 しかし、 本発明は、 こ れに限られない。 発電機を含む、 種々の回転機に適用可能である。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, a core applied to a motor such as an induction motor or a synchronous motor will be described as an example. However, the present invention is not limited to this. It is applicable to various types of rotating machines, including generators.
インダクションモータ、 シンクロナスモータは、 基本構造として、 第 1図に示すように、 固定子 (ステ一夕) 3 と回転子 (ロータ) 6とを有 する。 その固定子 3は、 コア 2とコイル 1 とを有する。 本発明では、 コ ィル 1 として、 成形されたコイル成形体が用いられる。  As shown in FIG. 1, the induction motor and the synchronous motor have a stator (steering station) 3 and a rotor (rotor) 6 as a basic structure. The stator 3 has a core 2 and a coil 1. In the present invention, a molded coil molded body is used as the coil 1.
第 2図に示すように、 コア 2は、 コアバック部 2 2 と、 その内周側に 突出するティース部 2 1 とで構成される。 コア 2の内側において、 ティ —ス部 2 1に挟まれる空間がスロッ ト 2 3となる。 ティース部 2 1にコ ィル成形体 1が装着されて、 スロッ ト 2 3にコイル 1が挿入される。 本 発明では、 コア 2およびその製造方法に関し、 新たな工夫がなされてい る。 なお、 本発明に関連して、 この他に、 コイル成形体 1、 ステ一夕を 組み立てる方法等についても新たな工夫がなされている。 As shown in FIG. 2, the core 2 is composed of a core back portion 22 and a tooth portion 21 protruding inward from the core back portion 22. Inside the core 2, the space between the tooth portions 21 becomes a slot 23. The coil molded body 1 is mounted on the teeth 21, and the coil 1 is inserted into the slot 23. In the present invention, a new device has been devised with respect to the core 2 and its manufacturing method. In addition, in connection with the present invention, in addition to this, New methods have been devised for the assembling method and the like.
コイル成形体 1は、 第 3図に示すように、 線材が、 貫通孔 l aを保持 して環状に巻線された状態で成形される。 この貫通孔 l aは、 前記ティ ース部 2 1 と嵌合可能な断面形状に形成される。 .貫通孔 1 aを形成する コイル成形体 1の内側部分は、 辺部が平行な形状が望ましい。 これは、 ティース部 2 1のコイル装着部分の両辺部が平行に形成されるためであ る。 したがって、 ティ一ス部の形状が異なる場合には、 それに合わせて、 貫通孔 1 aの断面形状も変えることになる。 コイル成形体 1は、 電気的 接続を行なうための引き出し線 1 2を有する。  As shown in FIG. 3, the coil formed body 1 is formed in a state where the wire is wound in an annular shape while holding the through hole la. The through hole la is formed in a cross-sectional shape that can be fitted to the tooth portion 21. . The inner part of the coil molded body 1 forming the through hole 1a preferably has a shape in which the sides are parallel. This is because both sides of the coil mounting portion of the teeth 21 are formed in parallel. Therefore, when the shape of the tooth portion is different, the cross-sectional shape of the through-hole 1a is changed accordingly. The coil molded body 1 has a lead wire 12 for making an electrical connection.
また、 コイル成形体 1は、 スロッ ト 2 3に収容される部分の側面が、 前記貫通孔 1 aの一端側から他端側に向かって扇形状に広がる形状を有 する。 この場合、 扇形状に広がる形状は、 当該コイル形成体 1 をスロッ ト 2 3に収容した際に、 各スロッ ト 2 3の中心を通るコア 2の半径のう ち、 隣接する二つの半径によって挟まれる領域内に収容できる形状であ ればよい。 好ましくは、 この領域の広がりと一致する扇形状の広がりと する。 そのようにすることで、 より多くの巻線を収容することが可能と なる。 また、 隣接するコイル成形体 1 どうしの空間的干渉を避けること ができる。 その結果、 ステ一夕を組み立てる際に、 コイル成形体 1の当 接を回避できて、 組立時の隣接コイル間での当接、 摩擦等による、 損傷、 絶縁不良等の発生を防止することができる。  Further, the coil molded body 1 has a shape in which a side surface of a portion accommodated in the slot 23 spreads in a fan shape from one end side to the other end side of the through hole 1a. In this case, the shape spreading in a fan shape is sandwiched between two adjacent radii of the core 2 passing through the center of each slot 23 when the coil forming body 1 is accommodated in the slot 23. What is necessary is just to be a shape which can be accommodated in the area to be covered. Preferably, the fan-shaped expansion coincides with the expansion of this region. By doing so, it is possible to accommodate more windings. Also, spatial interference between adjacent coil compacts 1 can be avoided. As a result, when assembling the stay, it is possible to avoid the contact of the coil molded body 1 and to prevent the occurrence of damage, insulation failure, etc. due to contact, friction, etc. between adjacent coils during assembly. it can.
コイル成形体 1を構成する線材は、 金属線とその表面を絶縁被覆する 絶縁皮膜とからなる。 金属線としては、 例えば、 銅が一般的に用いられ る。 また、 絶縁皮膜としては、 例えば、 ポリエステルイミ ドが用いられ る。 本実施の形態では、 P E W (ポリエステルイミ ド線) を用いている。 また、 本実施の形態では、 第 1図および第 6図に示すように、 コイル 成形体 1の一端側 (扇形の幅の狭い側) の端部がティース部先端 2 1 1 側に位置する端面 1 c となり、 他端側 (扇形の幅の広い側) がコアバッ ク部 2 2側に位置する端面 I dとなる。 ここで、 ティ一ス部先端 2 1 1 側に位置する端面 1 aは、 内周側に向かって後退して傾斜する形状とし てある。 これは、 ティース部 2 1の先端 2 1 1の裏面側が傾斜している ことに合せたものである。 もちろん、 この端面 l aは、 必ずしも傾斜さ せなくともよい。 The wire constituting the coil formed body 1 is composed of a metal wire and an insulating film for insulating the surface of the metal wire. As the metal wire, for example, copper is generally used. As the insulating film, for example, polyesterimide is used. In the present embodiment, PEW (polyester imide wire) is used. Also, in the present embodiment, as shown in FIGS. 1 and 6, the end of one end side (the narrow side of the sector) of the coil molded body 1 is located at the tooth tip end 2 11 1 side. 1 c, and the other end (the wide side of the fan) The end face Id is located on the side of the lock portion 22. Here, the end surface 1a located on the tip end 2 11 1 side of the tooth portion has a shape that is receded and inclined toward the inner peripheral side. This is in accordance with the fact that the rear surface of the tip 2 1 1 of the tooth portion 2 1 1 is inclined. Of course, this end face la does not necessarily have to be inclined.
次に、 本発明に係るコアの第 1の実施形態について、 第 4図、 第 5図、 第 6図、 第 1 4図 ( a) および第 1 4図 ( b) を参照して説明する。 第 4図に、 コイルを装着していない状態のコアの一例を示す。 また、 第 5 図に、 コイル成形体を装着した状態のコアの一例を示す。 第 1 4図 ( a ) には、 ティース組立体を構成する部材の一例を示し、 第 1 4図 (b) には、 コアバック部を構成する部材を示す。  Next, a first embodiment of the core according to the present invention will be described with reference to FIG. 4, FIG. 5, FIG. 6, FIG. 14 (a) and FIG. 14 (b). Fig. 4 shows an example of a core without a coil. FIG. 5 shows an example of a core in a state where the coil molded body is mounted. FIG. 14 (a) shows an example of members constituting the teeth assembly, and FIG. 14 (b) shows members constituting the core back portion.
第 4図に示すように、 コア 2は、 コイルバック部 2 2と、 ティース組 立体 2 1 aとで構成される。 ティース組立体 2 1 aは、 先端で連接され た 1 2個のティース部 2 1からなる。 第 4図から明らかなように、 コア ノ ック部 2 2およびティース組立体 2 1 aは、 共に、 リング状に形成さ れている。 ただし、 それぞれを構成する部材は、 第 1 4図 ( a) および 第 1 4図 (b) に示すように、 帯状の板材が用いられる。 すなわち、 第 1 4図 ( a) および第 1 4図 (b) に示す部材 (板材) を目的の厚さと なるまで積層し、 これをリング状に屈曲させて構成される。  As shown in FIG. 4, the core 2 is composed of a coil back part 22 and a toothed solid body 21a. The teeth assembly 21a is composed of 12 teeth portions 21 connected at the tips. As is clear from FIG. 4, the core knocking part 22 and the tooth assembly 21a are both formed in a ring shape. However, as shown in Fig. 14 (a) and Fig. 14 (b), a band-shaped plate material is used for each component. That is, the members (plates) shown in FIGS. 14 (a) and 14 (b) are laminated to a desired thickness, and are bent into a ring shape.
コア 2の材料には、 通常、 珪素鋼板が用いられるが、 高い磁束密度の 実現の観点から、 できる限り飽和磁化の大きな材料が好ましい。 そのよ うな材料の一例として、 その材料の特定の方向について飽和磁化が大き いという異方性を有する材料がある。 その一例として、 方向性珪素鋼板 がある。 従って、 方向性珪素鋼板を、 磁束の方向をその飽和磁化の大き い方向に合わせて利用すると、 好ましい結果が期待できる。 また、 この 方向性珪素鋼板は、 加工しにくいこと、 および、 高価であることといつ た特徴を有する。 そこで、 方向性珪素鋼板をコア 2の材料として使用す るに際しては、 これらの点についても考慮する必要がある。 As the material of the core 2, a silicon steel plate is usually used, but from the viewpoint of realizing a high magnetic flux density, a material having as large a saturation magnetization as possible is preferable. An example of such a material is a material having anisotropy such that the saturation magnetization is large in a specific direction of the material. One example is a grain-oriented silicon steel sheet. Therefore, when a grain-oriented silicon steel sheet is used in accordance with the direction of the magnetic flux according to the direction of the large saturation magnetization, favorable results can be expected. In addition, this grain-oriented silicon steel sheet is characterized by being difficult to process and being expensive. Therefore, a grain-oriented silicon steel sheet is used as the material for core 2. In doing so, it is necessary to consider these points as well.
本発明では、 コアバック部 2 2と複数のティース部 2 1 とが、 それぞ れ別個に形成されるため、 それぞれに適した材料を使用することが可能 となる。 すなわち、 磁束が半径方向に向くティース部 2 1では磁束密度 を大きくする必要があるため、 ティース部 2 1については飽和磁化が大 きい材料を用い、 磁束が周方向に分かれるコアバック部 2 2では磁束密 度を大きくすることが要求されないため、コアバック部 2 2については、 相対的に小さい材料を用いるというように、 材料を区別して形成するこ とが可能となる。 従って、 本実施の形態では、 大きい磁束密度が要求さ れるティース部 2 1については、 飽和磁化の大きい材料、 例えば、 方向 性珪素鋼板を用い、 それほど大きい磁束密度が要求されないコアバック 部 2 2については、 他の材料、 例えば、 比較的安価で加工が容易な無方 向性珪素鋼板、 純鉄、 軟鉄等を用いる。 これについては、 後述する他の 実施の形態についても同様とすることができる。  In the present invention, since the core back portion 22 and the plurality of teeth portions 21 are separately formed, it is possible to use a material suitable for each. That is, since the magnetic flux density needs to be increased in the teeth 21 where the magnetic flux is directed in the radial direction, a material having a large saturation magnetization is used for the teeth 21 and the core back 22 where the magnetic flux is divided in the circumferential direction is used. Since it is not required to increase the magnetic flux density, the material of the core back portion 22 can be distinguished, for example, by using a relatively small material. Therefore, in the present embodiment, the teeth portion 21 requiring a large magnetic flux density is made of a material having a large saturation magnetization, for example, a grain oriented silicon steel sheet, and the core back portion 22 not requiring a large magnetic flux density. Use other materials, for example, non-oriented silicon steel sheet, pure iron, soft iron, etc., which are relatively inexpensive and easy to process. This can be applied to other embodiments described later.
コアバック部 2 2は、 第 1 4図 (b ) に示すように、 ティース部 2 1 の個数に対応する単位部材 2 2 aが 1 2個連接された帯状の形状に形成 される。 これは、 図示していない帯状部材 (フープ) から、 例えば、 打 ち抜きにより製造することができる。 単位部材 2 2 aには、 内周側に面 する側に、 ティース部 2 1の連結部 2 1 3と連結するティース連結部 2 2 1、 および、 部材をリング状に屈曲した際に、 部材の内周側での縮み を吸収する切り込み 2 2 2と、 外周側に面する側に、 部材をリング状に 屈曲した際の外周側の部材の伸びを吸収する切欠 2 2 3 とが設けられて いる。 これらは、 いずれも切り込んだ状態で設けられる。 コアバック部 を構成する部材は、リング状に曲げて両端を当接させた状態で固定する。 固定は、 例えば、 溶接、 かしめ等で行なうことができる。 かしめであれ ば、 例えば、 珪素鋼板を塑性変形させて接続することになる。  As shown in FIG. 14 (b), the core back portion 22 is formed in a belt-like shape in which 12 unit members 22a corresponding to the number of the teeth portions 21 are connected. This can be manufactured from a band-shaped member (hoop) not shown, for example, by punching. The unit member 22 a has a tooth connecting portion 22 1 connecting to the connecting portion 21 3 of the tooth portion 21 on the side facing the inner peripheral side, and a member when the member is bent in a ring shape. Notches 2 2 2 are provided to absorb contraction on the inner peripheral side of the member, and cutouts 2 2 3 are provided on the side facing the outer peripheral side to absorb the elongation of the member on the outer peripheral side when the member is bent into a ring shape. ing. These are all provided in a cut state. The members constituting the core back portion are fixed in a state where they are bent into a ring shape and both ends are in contact with each other. The fixing can be performed by, for example, welding, caulking, or the like. In the case of caulking, for example, a silicon steel plate is plastically deformed and connected.
また、 第 1 4図 (b ) に示すように、 コアバック部 2 2には、 単位部 材 2 2 a毎に、 積層した際に、 上下に隣接する他の単位部材 2 2 aとか しめるためのかしめ部 2 2 9が設けられている。このかしめ部 2 2 9は、 図示していないが、 半抜き加工により、 部材の一部が部材の、 例えば、 下面側に突出する凸部形態となると共に、 当該部材の上面側は凹部形態 となるように加工される。 そして、 積層の際、 凸部が他の単位部材の凹 部に嵌合した状態でかしめられる。 なお、 かしめ部 2 2 9における凹凸 の関係は、 上下が逆であってもよい。 As shown in FIG. 14 (b), the core back part 22 has a unit part. Each of the members 22a is provided with a caulking portion 229 for caulking with another unit member 22a vertically adjacent to each other when they are laminated. Although not shown, the swaged portion 229 is partially cut into a member, for example, a convex shape projecting to the lower surface side by half blanking, and the upper surface side of the member is a concave shape. It is processed to become. Then, at the time of lamination, it is caulked in a state where the convex portion is fitted into the concave portion of another unit member. Note that the relationship between the concavities and convexities in the caulked portion 229 may be upside down.
なお、 前記ティース連結部 2 2 1は、 後述するティース部 2 1側の連 結部 2 1 3 と嵌合して外れない形状とする。 このため、 本実施の形態で は、 ティース部 2 1側の連結部 2 1 3をありとし、 ティース連結部 2 2 1をあり溝とする形状としてある。  The teeth connecting portion 221 has a shape that does not come off by being fitted to a connecting portion 213 on the side of the teeth 21 described later. For this reason, in the present embodiment, the teeth 21 have a connecting portion 213 on the side thereof, and the teeth connecting portion 221 has a shape having a groove.
ティース組立体 2 1 aは、 ティ一ス部を構成する部材 2 1 0を複数枚 積層して形成される。 ティース部を構成する部材 2 1 0は、 第 1 4図 ( a ) に示すように、 ティース部 2 1 となるべき部分が互い違いに向き合 う形で交互に並んで、 二組が、 1本の帯状部材 (フープ) から打ち抜き で製作される。 この場合も、 ティース部 2 1を単位として、 それが連な つた状態で製作される。 そして、 必要な個数のティース部 2 1 となる長 さに形成される。 このような形状は、 ティース部 2 1を大量生産するこ とに適している。 また、 第 1 4図 ( a ) に示すように、 帯状部材から二 組の部材 2 1 0を取るので、 材料の利用効率を大幅に向上することがで さる。  The tooth assembly 21a is formed by laminating a plurality of members 210 forming a tooth portion. As shown in FIG. 14 (a), the members 210 constituting the teeth portion are alternately arranged in such a manner that the portions to be the teeth portions 21 face each other alternately. It is manufactured by punching from a hoop. In this case as well, the teeth 21 are made into a unit, and they are manufactured in a connected state. Then, it is formed to have a length that becomes a necessary number of teeth portions 21. Such a shape is suitable for mass-producing the teeth 21. Further, as shown in FIG. 14 (a), since two sets of members 210 are taken from the belt-shaped member, the use efficiency of the material can be greatly improved.
ティース組立体 2 1 aは、 各ティース部 2 1の先端 2 1 1の横方向端 部 2 1 1 aと、 隣接するティース部 2 1の先端 2 1 1の横方向端部 2 1 l aとで連接されている。 このような連接構造とすることで、 ティース 部 2 1を一体として扱える。 このため、 製造および組立の際に、 取り扱 いが便利である。 また、 構造上、 強度が増すという利点もある。  The tooth assembly 2 1a is formed by the lateral end 2 1 1a of the tip 2 1 1 of each tooth 2 1 and the lateral end 2 1 la of the tip 2 1 1 of the adjacent tooth 2 1. It is articulated. With such an articulated structure, the teeth 21 can be treated integrally. For this reason, handling is convenient during manufacturing and assembly. In addition, there is an advantage that the strength is increased structurally.
各ティース部 2 1は、 略 T字形状を有し、 先端側の突出部の裏面は斜 めにカッ トされている。 また、 ティース部 2 1の基端側には、 前述した ように、 コアバック部 2 2と連結するための連結部 2 1 3が設けられて いる。 Each tooth 21 has a substantially T-shape, and the back surface of the protruding portion on the tip side is oblique. Cut for As described above, the connecting portion 21 for connecting to the core back portion 22 is provided on the base end side of the tooth portion 21.
また、 各ティース部 2 1には、 第 1 4図 ( a ) に示すように、 積層し た際に、 上下に隣接する他のティース部 2 1 とかしめるためのかしめ部 2 1 9が設けられている。 このかしめ部 2 1 9は、 図示していないが、 半抜き加工により、 部材の一部がティース部 2 1 を構成する部材の、 例 えば、 下面側に突出する凸部形態となると共に、 当該部材の上面側は凹 部形態となるように加工される。 そして、 積層の際、 凸部が他の単位部 材の凹部に嵌合した状態でかしめられる。 なお、 かしめ部 2 1 9におけ る凹凸の関係は、 上下が逆であってもよい。  In addition, as shown in FIG. 14 (a), each tooth portion 21 is provided with a caulking portion 219 for caulking with another tooth portion 21 vertically adjacent when stacked. ing. Although not shown, the swaged portion 219 is formed by half-blanking to form a part of the member forming the tooth portion 21, for example, a convex shape projecting to the lower surface side. The upper surface side of the member is processed so as to have a concave shape. Then, at the time of lamination, it is caulked in a state where the convex portion is fitted into the concave portion of another unit member. Note that the relationship between the unevenness in the caulked portion 2 19 may be upside down.
第 1 7図 ( a ) に、 隣接するティース部 2 1 の先端 2 1 1を互いに分 離したものの例を示す。 この例では、 ティース部 2 1が連結されたティ —ス組立体 2 1 aからそれぞれのティース部 2 1 を切断して形成される, もちろん、 それに限定されない。 なお、 切断は、 第 1 7図 ( a ) に示す ように、 コアバック部材 2 2に取り付けてから行なうことができる。 ま た、 第 1 7図 (b ) に示すように、 打抜き時から、 ティース部 2 1を 1 つずつ打抜いて、 積層する構成としてもよい。  FIG. 17 (a) shows an example in which the tips 211 of the adjacent tooth portions 21 are separated from each other. In this example, the tooth portions 21 are formed by cutting the respective tooth portions 21 from the connected tooth assembly 21a. Of course, the present invention is not limited thereto. The cutting can be performed after attaching to the core back member 22 as shown in FIG. 17 (a). Further, as shown in FIG. 17 (b), the teeth 21 may be punched out one by one from the time of punching and laminated.
また、 本発明のコア 2は、 従来のような一体形のコアと比べると、 巻 線を組立てる方法が異なる。 このため、 本発明のコア 2では、 巻線を揷 入するためのすき間をとる必要がない。 このため、 ティース部 2 1を 1 つずつ打抜いたものであっても、 例えば、 第 2 5図 ( a ) に示すように、 隣り合うティース部 2 1がコアバック部 2 2に挿入された状態で、 互い に隣接する横方向先端部 2 1 1 aが接触する状態となる構造とすること ができる。 このように、 各ティース部 2 1の互いに隣接する横方向先端 部 2 1 1 aを接触させて突き合わせることにより、 ステ一夕内周側の精 度を確保することが可能となる。 このティース部 2 1の横方向端部 2 1 1 aを突き合わせて組み立てる 構造は、 コアバック部の形状によらない。 第 1 4図 (b ) に示すような、 単位部材 2 2 aが複数枚連接された板材を円環状に加工して積層した構 造の、第 4図に示すようなコアバック部 2 2にも適用することができる。 また、 第 1 8図 ( a ) 、 第 2 3図に示すような、 素片 2 2 0を複数枚連 ねて環状に配置すると共に、 複数層積層した、 第 1 8図 ( c ) に示すよ うな構造についても適用できる。 Further, the core 2 of the present invention is different from the conventional one-piece core in the method of assembling the windings. For this reason, in the core 2 of the present invention, there is no need to provide a gap for inserting a winding. For this reason, even when the teeth 21 are punched out one by one, for example, as shown in FIG. 25 (a), the adjacent teeth 21 are inserted into the core back 22. In this state, it is possible to adopt a structure in which the adjacent lateral end portions 211a are in contact with each other. In this way, by bringing the adjacent lateral end portions 211a of the teeth portions 21 into contact with each other and abutting each other, it is possible to secure accuracy on the inner circumferential side of the stay. The structure of assembling the tooth portions 21 by abutting the lateral ends 2 11 a of the teeth 21 does not depend on the shape of the core back portion. As shown in FIG. 14 (b), a core member 22 shown in FIG. 4 is formed by processing a plurality of unit members 22a into a ring shape and laminating a plate material. Can also be applied. Also, as shown in FIG. 18 (a) and FIG. 23, a plurality of pieces 220 are arranged in a ring in a row, and a plurality of layers are stacked, as shown in FIG. 18 (c). Such a structure can also be applied.
また、 第 2 5図 ( b ) に示すように、 ステ一夕内周側を円弧とせず、 ティース先端部 2 1 1の形状を直線的に形成することも可能である。 こ の形状は、 モータのコギングトルク低減に寄与する。  Further, as shown in FIG. 25 (b), it is also possible to form the tooth tip 211 linearly without making the inner circumferential side of the stay an arc. This shape contributes to reducing the cogging torque of the motor.
このように、 本発明では、 コアバック部 2 2と、 ティース部 2 1 とを 分割して、 それぞれ独立に形成する構造となっている。 かつ、 それぞれ、 帯状の板材から打ち抜きにより製作される部材を積層して構成される。 そのため、 材料の板取が容易であり、 しかも、 板材の利用効率を高くす ることができる。  Thus, the present invention has a structure in which the core back portion 22 and the teeth portion 21 are divided and independently formed. Each member is formed by laminating members manufactured by punching from a band-shaped plate material. Therefore, it is easy to take out the material, and the utilization efficiency of the material can be increased.
特に、 本実施の形態では、 ティース部 2 1については、 二組のティー ス部を構成する部材 2 1 0を交互に配置する構造とするため、 材料の利 用効率をさらに高めることが可能となる。 本実施の形態では、 第 1 4図 ( a ) からわかるように、 ティース部 2 1については、 無駄な部分は、 二組を切り離す切代 2 1 cが主である。 そこで、 この切代 2 1 cを可能 な限り追い込むことで、 例えば、 8 1 %程度の材料利用率とすることを 可能としている。 また、 コアバック部 2 2の場合には、 無駄が少ない形 状であるため、 例えば、 材料利用率を 8 5 %とすることができる。 した がって、 本実施の形態によれば、 ティース部およびコアバック部のいず れについても、 8 0 %以上の材料利用率とすることができる。 このため、 従来の構造のものに比べて、材料利用率を大幅に向上することができる。  In particular, in the present embodiment, since the teeth 21 have a structure in which the members 210 constituting the two sets of teeth are alternately arranged, it is possible to further increase the material use efficiency. Become. In the present embodiment, as can be seen from FIG. 14 (a), regarding the tooth portion 21, the useless portion is mainly a cutting margin 21c for separating the two sets. Therefore, by cutting in the cutting allowance 21c as much as possible, it is possible to achieve a material utilization rate of, for example, about 81%. Further, in the case of the core back portion 22, since the shape has little waste, for example, the material utilization rate can be 85%. Therefore, according to the present embodiment, both the teeth portion and the core back portion can have a material utilization of 80% or more. For this reason, the material utilization rate can be significantly improved as compared with the conventional structure.
また、 ティース部 2 1 とコアバック部 2 2とを分割して形成すること により、 磁束密度が大きくなるティース部 2 1 を飽和磁化の大きな材料 を用いることができ、 一方、 磁束密度がティース部 2 1 に比べて相対的 に小さいコアバック部 2 2には、 飽和磁化がティ一ス部 2 1に比べて小 さくてもよいため、 加工しやすく、 安価な材料を用いることができる。 次に、 上述したコイル成形体について、 第 7図から第 1 3図を参照し て説明する。 In addition, the teeth portion 21 and the core back portion 22 should be formed separately. As a result, the teeth 21 having a high magnetic flux density can be made of a material having a high saturation magnetization, while the core back 22 having a relatively low magnetic flux density has a high saturation magnetization. Since it may be smaller than the tooth part 21, it is easy to process and a cheap material can be used. Next, the above-described coil formed body will be described with reference to FIGS. 7 to 13. FIG.
第 7図から第 9図は、 成形の金型およびそれによる成形の工程を示す。 第 1 0図および第 1 1図は、 成形条件について示す。 第 1 2図および第 1 3図は、 巻線の圧縮状態について示す。 7 to 9 show a molding die and a molding process using the molding die. FIG. 10 and FIG. 11 show the molding conditions. FIGS. 12 and 13 show the compression state of the winding.
第 7図に、 コイル成形体を成形するために用いるコイル成形用金型を 示す。 なお、 第 7図では、 コイルが既に圧縮成形された後の状態を示す。 第 7図に示す金型は、 コイルを構成する線材を巻線するためのポビン 1 5 aと、 このポビン 1 5 aに巻線された線材 1 1の群を押圧する押圧 金型 1 5 b、 1 5 cおよび 1 5 dとで構成される。 成形には、 図示して いない加圧装置、 および、 加圧を制御する制御装置とが用いられる。 加 圧源には、 例えば、 油圧、 空気圧が用いられる。  FIG. 7 shows a coil forming die used for forming a coil formed body. FIG. 7 shows a state after the coil has already been compression-molded. The mold shown in FIG. 7 has a pobin 15a for winding a wire constituting a coil, and a pressing mold 15b for pressing a group of wires 11 wound on the pobin 15a. , 15c and 15d. For the molding, a pressure device (not shown) and a control device for controlling the pressure are used. As the pressure source, for example, hydraulic pressure or pneumatic pressure is used.
押圧金型 1 5 bは、 コイル巻線 1 1群の側面、 すなわち、 コイル成形 体 1の側面 1 bとなる部分を押圧する。押圧金型 1 5 cおよび 1 5 dは、 コイル巻線 1 1群の端面、 すなわち、 コイル成形体 1の端面 1 c となる 部分を押圧する。 この場合、 押圧金型 1 5 cは、 押圧金型 1 5 bとは直 交する方向に押圧する。 このため、 押圧金型 1 5 dの下端面と押圧金型 1 5 cの上端面とを斜めに当接させて、 この斜面 1 5 eにより、 押圧金 型 1 5 dの押圧力から直交する方向の分力を取り出して、 押圧金型 1 5 cを横方向に押圧するように構成してある。 このようにすることで、 押 圧を共通の圧力源により同一方向から行うことができる利点がある。  The pressing mold 15 b presses a side surface of the group of the coil windings 11, that is, a portion to be the side surface 1 b of the coil molded body 1. The pressing dies 15 c and 15 d press the end faces of the group of the coil windings 11, that is, the portions that become the end faces 1 c of the coil molded body 1. In this case, the pressing die 15c presses in a direction orthogonal to the pressing die 15b. For this reason, the lower end surface of the pressing die 15 d and the upper end surface of the pressing die 15 c are obliquely brought into contact with each other, and the slope 15 e is orthogonal to the pressing force of the pressing die 15 d. The component force in the direction is taken out, and the pressing mold 15c is configured to be pressed laterally. By doing so, there is an advantage that the pressing force can be performed from the same direction by a common pressure source.
ここで、 コイル成形体の成形条件について説明する。 なお、 説明を簡 単にするため、 コイル成形体 1は、 端面 1 cが傾斜していないものとす る。 Here, the forming conditions of the coil formed body will be described. For the sake of simplicity, it is assumed that the coil molded body 1 does not have an inclined end face 1c. You.
第 8図に示すように、 ポビン 1 5 aに線材 1 1が巻線された状態で、 上述した押圧金型 1 5 b、 1 5 c、 1 5 dにより押圧される。 これによ り、 第 9図に示すように、 各線材 1 1間の間隙が押しつぶされると共に、 線材 1 1 自体が変形し、 場合によっては圧縮されて、 コイル成形体 1が 形成される。 第 9図に示すように、 成形後は、 線材 1 1の変形によって、 全体の形状が維持される。 なお、 成形の際に、 各線材に被覆されている 絶縁皮膜 (図示せず) も、 線材自体の変形に伴って変形する。 ただし、 後述する第 1 0図に示すように、 本発明者らの実験によれば、 成形によ つて、 線材の絶縁被覆が破壊されることはなかった。  As shown in FIG. 8, the wire 11 is wound around the pobin 15a, and is pressed by the above-described pressing dies 15b, 15c, and 15d. As a result, as shown in FIG. 9, the gap between the wires 11 is crushed, and at the same time, the wires 11 themselves are deformed and, in some cases, compressed, to form the coil formed body 1. As shown in FIG. 9, after molding, the entire shape is maintained by the deformation of the wire 11. At the time of molding, the insulating film (not shown) covering each wire also deforms with the deformation of the wire itself. However, as shown in FIG. 10 described later, according to the experiment of the present inventors, the insulating coating of the wire was not broken by the molding.
なお、 金型の形状は、 コイル成形体の形状に応じて、 適宜選定する。 例えば、 第 7図に示す金型は、 上述したように、 コイル成形体 1の一端 側の端面を傾斜面とする構造のものを成形する場合に用いられる。一方、 第 8図、 第 9図に示す金型は、 コイル成形体 1の一端側の端面を傾斜面 としない構造とする場合に用いられる。  Note that the shape of the mold is appropriately selected according to the shape of the coil molded body. For example, the mold shown in FIG. 7 is used for molding a structure in which the end surface on one end side of the coil molded body 1 has an inclined surface as described above. On the other hand, the mold shown in FIGS. 8 and 9 is used in a case where the end surface of one end of the coil molded body 1 does not have an inclined surface.
次に、 コイル成形体の形状変化の概要について第 1 0図、 第 1 1図お よび第 1 2図を参照して説明する。 第 1 2図に示すように、 線材 1 1を 巻線した状態でのコイル断面寸法と、 成形後のコイル成形体 1の断面寸 法とは、 明らかに異なる。 すなわち、 線材 1 1の直径を dとすると、 図 面横方向の寸法 D 1は、 { +^3 0 2 (段数— 1 ) } となる。 ま た、 縦方向寸法 L 1は、 (d X本数) となる。 コイル断面積は、 (D 1 XL 1 ) となる。 したがって、 巻線状態での断面寸法は、 幾何学的にこ の断面積以下にはなり得ない。  Next, the outline of the shape change of the coil formed body will be described with reference to FIGS. 10, 11 and 12. As shown in FIG. 12, the coil cross-sectional dimension when the wire 11 is wound is clearly different from the cross-sectional dimension of the coil formed body 1 after forming. That is, assuming that the diameter of the wire 11 is d, the dimension D 1 in the lateral direction of the drawing is {+ ^ 30 2 (the number of steps—1)}. The vertical dimension L1 is (dX number). The coil cross-sectional area is (D 1 XL 1). Therefore, the cross-sectional dimension in the winding state cannot be geometrically smaller than this cross-sectional area.
本発明では、 巻線後に、 コイルのスロッ ト挿入部に成形を加えること によって、 コイル断面積を巻線状態のそれよりも小さくする。 線材自体 の断面積が同等であるならば、 成形を加えることにより、 成形後のコィ ル断面積 (D 2 XL 2 ) は、 巻線後のコイル断面積 (D 1 XL 1 ) より も小さくなる。 また、 線材の断面積自体を圧縮により小さくするならば、 その圧縮限界までの圧縮成形により、 コイル断面全体の断面積 (D 2 X L 2 ) はもとの約 8割となる。 本発明は、 このように、 巻線の状態から 成形工程を加えることによって、 コイルの断面積を変化させる。 In the present invention, the coil cross-sectional area is made smaller than that in the winding state by adding molding to the slot insertion portion of the coil after winding. If the cross-sectional area of the wire itself is equivalent, by adding forming, the coil cross-sectional area after forming (D 2 XL 2) will be smaller than the coil cross-sectional area after winding (D 1 XL 1). Is also smaller. If the cross-sectional area of the wire itself is reduced by compression, the cross-sectional area (D 2 XL 2) of the entire coil cross section will be about 80% of the original value due to the compression forming up to the compression limit. Thus, the present invention changes the cross-sectional area of the coil by adding a forming step from the state of the winding.
すなわち、 本発明のコイル成形体 1は、 線材の直径を d、 コアの半径 方向に並ぶ巻数を m、 コアの接線方向に並ぶ巻線の段数を nとして、 前 記スロッ 卜内に線材が整然と巻かれた状態での、 ある断面における断面 積 S 0を  That is, in the coil molded body 1 of the present invention, assuming that the diameter of the wire is d, the number of windings arranged in the radial direction of the core is m, and the number of windings arranged in the tangential direction of the core is n, the wires are neatly arranged in the slot. The cross-sectional area S 0 at a certain cross section in the wound state
S 0= { d +^3 dZ2 x ( n - 1 ) } X ( d Xm)  S 0 = {d + ^ 3 dZ2 x (n-1)} X (d Xm)
として、 同一部位での断面における前記スロッ トに収容される部分の断 面積 が、 (Sp< S 0) となるように成形する。 The molding is performed so that the cross-sectional area of the portion accommodated in the slot in the cross section at the same portion satisfies (Sp <S 0).
ここで、 断面寸法 D 2と、 成形時の荷重との関係を第 1 0図に示す。 そして、 この関係をグラフにしたものを第 1 1図に示す。 なお、 これら 関係において、 荷重は、 4 8 0 mm2当たりに加わる荷重で表している。 また、 線径 1. 2 mmの線材を用いた場合について示している。 第 1 0 図および第 1 1図に示すように、 成形時の押圧力を大きくすると、 断面 寸法が小さくなつている。 ただし、 ある程度以上の荷重、 例えば、 6 t o n以上では、 大きく変化しない。 Here, the relationship between the cross-sectional dimension D2 and the load during molding is shown in FIG. FIG. 11 shows a graph of this relationship. In these relations, the load is represented by a load applied per 480 mm 2 . The figure also shows the case where a wire rod with a wire diameter of 1.2 mm is used. As shown in FIGS. 10 and 11, when the pressing force during molding is increased, the cross-sectional dimension is reduced. However, when the load is more than a certain level, for example, 6 ton or more, there is no significant change.
また、 第 1 0図に示すピンホール数は、 線材の絶縁皮膜の破れた箇所 の個数を意味する。 通常、 電解液に電線を浸したときに、 何箇所から電 気がもれるかをチェックする検査法である。 検査結果は、 個数で表わさ れる。 本実施の形態では、 第 1 0図に示す範囲では、 荷重が増加しても ピンホール数は 0である。 したがって、 成形によって、 絶縁皮膜が損傷 することがなかったことを示している。  The number of pinholes shown in FIG. 10 means the number of locations where the insulating film of the wire is broken. Normally, this is a test method that checks how much electricity leaks when the wires are immersed in the electrolyte. Inspection results are represented by numbers. In the present embodiment, in the range shown in FIG. 10, the number of pinholes is 0 even if the load increases. Therefore, this shows that the molding did not damage the insulating film.
本発明のように、 コイルを成形することの効果について、 第 1 3図を 参照して説明する。 第 1 3図 (a) ないし第 1 3図 (e) に、 ティース 部への巻線状態を示す。 一般的に、 金型、 ポビン、 ティース部など、 角を有する多角形形状へ の巻線においては、 第 1 3図 ( a ) に示すように、 コイル 1の線材は、 角部で金型、 ボビン、 ティース部 2 1などの巻線母材に密着し (第 1 3 図 (b ) 参照) 、 辺中央部で巻線母材から最もすき間があいた状態で巻 線される。 第 1 3図 ( c ) の B— B断面に示すように、 辺中央部では、 母材との間でかなりのすき間を有することがわかる。このままの状態で、 コイルをモータステ一夕として組立した場合、 このすき間により占積率 が低下することになり、 モータ性能を低下することになる。 そこで、 上 述したように、 巻線後に、 巻線状態のコイルの辺部分に成形力を加える ことにより、 第 1 3図 (d ) および第 1 3図 ( e ) に示すように、 コィ ルの辺部分においても線材が母材に密着した形状のコイルとしている。 これにより、 占積率の高い状態でモータステータを組み立てることがで さる。 The effect of forming a coil as in the present invention will be described with reference to FIG. Fig. 13 (a) to Fig. 13 (e) show the state of the winding around the teeth. In general, when winding into a polygonal shape having corners such as a mold, a pobin, and a tooth portion, as shown in FIG. The bobbin and the teeth 21 are in close contact with the winding base material (see Fig. 13 (b)), and are wound with the most clearance from the winding base material at the center of the side. As shown in the BB section of FIG. 13 (c), it can be seen that there is a considerable gap with the base material at the center of the side. If the coil is assembled as a motor stay in this state, the space will decrease due to this gap, and the motor performance will decrease. Therefore, as described above, by applying a forming force to the side portion of the coil in the wound state after winding, as shown in FIGS. 13 (d) and 13 (e), the coil Also in the side part, a coil having a shape in which the wire is in close contact with the base material is used. This makes it possible to assemble the motor stator with a high space factor.
第 1 3図 ( e ) に示すような構造であっても、 成形しない場合に比べ て、 占積率を向上することができる。 また、 単に、 コイルの辺部を圧縮 するのみではなく、 スロッ ト挿入部分の断面形状を, 第 6図に示すよう な形状、 すなわち、 スロッ ト 2 3の 1 Z 2の部分の内部形状に一致する ように成形することができる。 このようにすれば、 占積率をより向上す ることができて好ましい。 コイルを組立る際に、 ティース部 2 1の外周 方向側からコイル 1を挿入する。 その時に、 隣り合うコイルに干渉する ことなく挿入することが可能となる形状に成形しておく必要がある。 こ れによって、 スロッ トの断面積内にはコイルが余すところ無く入ること が可能となり、 高い占積率を実現できる。 スロッ ト中のコイル形状断面 の形状はスロッ トの断面形状と相似形をなす。 また、 これは、 コアを分 割した場合の利点である。 ティースにポビン等の絶縁物をつけて巻線す る場合で、 線材の断面成形を行なわない、 低占積率コイルの場合にも、 コイル断面がスロッ ト形状と相似形であることにより、 余裕ある巻線が 可能となり、 絶縁劣化寿命などを向上させる効果がある。 Even with the structure shown in Fig. 13 (e), the space factor can be improved as compared with the case without molding. In addition to simply compressing the sides of the coil, the cross-sectional shape of the slot insertion portion matches the shape shown in Fig. 6, that is, the internal shape of the 1Z2 portion of the slot 23. It can be formed as follows. This is preferable because the space factor can be further improved. When assembling the coil, insert the coil 1 from the outer peripheral side of the teeth 21. At that time, it is necessary to shape the coil so that it can be inserted into adjacent coils without interference. This makes it possible for the coil to fully enter the slot's cross-sectional area, and achieves a high space factor. The cross-sectional shape of the coil shape in the slot is similar to the cross-sectional shape of the slot. This is also an advantage of splitting the core. When winding the teeth with an insulator such as a pobin, the cross section of the wire is not formed, and even in the case of a low space factor coil, the coil cross section is similar to the slot shape, so there is a margin. One winding This has the effect of improving the life of insulation deterioration.
次に、 第 3図、 第 5図、 第 6図、 第 7図、 第 1 4図および第 1 5図を 参照して、 回転機のステ一夕の組立について説明する。 なお、 組立は、 以下に述べる方法に限られない。 ただし、 以下の方法によれば、 各部材 の取り扱いが容易であるため、 自動化しやすいという利点がある。  Next, the assembly of the stay of the rotating machine will be described with reference to FIG. 3, FIG. 5, FIG. 6, FIG. 7, FIG. The assembly is not limited to the method described below. However, according to the following method, there is an advantage that the handling of each member is easy, so that automation is easy.
まず、 ポビン 1 5 aに巻線を行なったものを、 第 7図に示すように、 押圧金型 1 5 a、 1 5 bおよび 1 5 cを用いて押圧して、 コイル巻線を 圧縮成形する。 これにより、 第 3図に示すようなコイル成形体 1を得る。 一方、 上記とは別に、 第 1 4図 ( a ) および第 1 4図 (b ) に示すよ うに、 帯状部材から、 ティ一ス組立体 2 1 aとなる部材、 および、 コア バック部 2 2となる部材をそれぞれ打ち抜き等で形成する。 なお、 これ らの部材の製作は、 打ち抜きに限られない。 他の方法で行なってもよい。 この後、 ティース部を構成する部材 2 1 0、 および、 コアバック部 2 2 となる部材をそれぞれ必要な枚数積層する。 積層に際しては、 それぞれ 部材を重ねた後、 それぞれ積層方向に加圧してかしめを行う。 これによ り、 かしめ部 2 1 9およびかしめ部 2 2 9において強固に結合される。 この後、 コアバック部 2 2について、 曲げ成形を行なう。 すなわち、 そ れぞれリング状となるように曲げる。 曲げた後、 それぞれの両端部を、 例えば、 溶接、 かしめ等の方法により固定する。 これにより、 コアバッ ク部 2 2およびティース組立体 2 1 aが製作される。  First, the coil wound on the pobin 15a is pressed using the pressing dies 15a, 15b and 15c as shown in Fig. 7, and the coil winding is compression molded. I do. Thus, a coil molded body 1 as shown in FIG. 3 is obtained. On the other hand, apart from the above, as shown in FIGS. 14 (a) and 14 (b), the belt-shaped member is used to form the tooth assembly 21a and the core back portion 22. Are formed by punching or the like. The production of these members is not limited to punching. It may be performed by another method. Thereafter, the necessary number of members 210 constituting the teeth portion and the member constituting the core back portion 22 are laminated. At the time of lamination, after each member is laminated, caulking is performed by applying pressure in the lamination direction. As a result, the caulked portion 219 and the caulked portion 229 are firmly joined. Thereafter, the core back portion 22 is bent. That is, they are bent so as to form a ring shape. After bending, both ends are fixed by, for example, welding, caulking, or the like. Thus, the core back 22 and the teeth assembly 21a are manufactured.
次に、 第 1 5図 ( a ) および第 1 5図 (b ) に示すように、 コイル成 形体 1をティース組立体 2 1 aの各ティース部 2 1 に嵌め込む。 すなわ ち、 コイル形成体 1の貫通孔 1 aとティース部 2 1 とを嵌合させる。 こ の時、 各コイル成形体 1を、 その端面 1 aが内周側を向くようにして、 ティース部 2 1 と嵌合させる。 この状態を第 1 5図 ( c ) に示す。  Next, as shown in FIGS. 15 (a) and 15 (b), the coil formed body 1 is fitted into each tooth portion 21 of the tooth assembly 21a. That is, the through hole 1 a of the coil forming body 1 and the teeth 21 are fitted. At this time, each coil molded body 1 is fitted to the teeth 21 with the end face 1a facing the inner peripheral side. This state is shown in Fig. 15 (c).
ついで、 第 1 5図 ( a ) に示すように、 コアバック部 2 2の内周に、 コイル成形体 1が装着されたティース組立体 2 1 aを嵌合させる。 この 際、 コアバック部 2 2のティース連結部 2 2 1 と、 ティース部 2 1の連 結部 2 1 3とが嵌合するように、 円周方向の位置合わせを行なう。 この ようにして、 組み立てられると、 コアの形成と共に、 第 5図に示すよう なステ一夕が得られる。 Next, as shown in FIG. 15 (a), the tooth assembly 21a on which the coil molded body 1 is mounted is fitted to the inner periphery of the core back portion 22. this At this time, circumferential alignment is performed so that the teeth connecting portion 2 21 of the core back portion 22 and the connecting portion 2 13 of the teeth portion 21 are fitted. When assembled in this way, the steps shown in FIG. 5 are obtained together with the formation of the core.
このように、 本実施の形態では、 コイル成形体 1をティース組立体 2 1 aに対して、 各ティース部 2 1がコイル成形体 1の貫通孔 1 aに挿入 されるように押し込むことで、 装着することができるため、 コアへのコ ィルの装着が極めて容易に行なえる。 しかも、 コイル成形体 1は、 一定 の形態を保持しているため、 装着に際して、 コイルが乱れないようにす るための特別に治具を必要としない。 また、 コイル成形体 1 自体につい て、 高密度に巻線を実装することができるため、 スロッ ト 2 3における 占積率を高くすることができる。  As described above, in the present embodiment, the coil molded body 1 is pushed into the tooth assembly 21 a so that each tooth portion 21 is inserted into the through hole 1 a of the coil molded body 1. The mounting of the coil on the core is very easy because it can be mounted. In addition, since the coil molded body 1 maintains a certain shape, no special jig is required for mounting so that the coil is not disturbed. In addition, since the coil can be mounted with high density on the coil molded body 1 itself, the space factor in the slot 23 can be increased.
上述した構造のステ一夕は、 高い占積率を保ったまま、 材料の利用率 高くすることができる。 このような構造のステ一夕をさらに、 性能面で 向上し得る構造について、 第 1 6図を参照して説明する。  During the stay with the above-mentioned structure, the material utilization rate can be increased while maintaining a high space factor. With reference to FIG. 16, a description will be given of a structure capable of further improving the performance of such a structure.
第 1 6図 ( a ) から (g ) に示す例は、 コアバック部とティース部と の連結部に関する各種形態について示す。 これらの形態は、 ティース部 2 1の連結部 2 1 3と、 コアバック部 2 2の連結部 2 2 1 との間に生じ る可能性がある間隙を無くす例である。  The examples shown in Fig. 16 (a) to (g) show various forms related to the connection between the core back and the teeth. These embodiments are examples in which a gap that may occur between the connecting portion 2 13 of the tooth portion 21 and the connecting portion 2 21 of the core back portion 22 is eliminated.
第 1 6図 ( a ) は、 コアバック部 2 2のコアの曲げ成形の曲げ中心を ティース部 2 1の延長上に配置し、 コイル成形体とコア 2の組立を行な つたのち、 最終的にコアバック部 2 2の外周部に、 第 1 9図に示すよう なハウジング 4を組付ける際に、ハウジング 4へのコア 2の圧入により、 曲げ成形部分をさらに圧縮させ、 コアバック部分 2 2 とティース部 2 1 の結合部を締付ける構造をとる。 そのため、 切り込み 2 2 4をコアバッ ク部材 2 2に予め設けておく。切り込み 2 2 4の形態は種々可能である。 第 1 6図 ( a ) では、 深い V字形の切り込みの例が示されている。 切り込み 2 2 4は、 コアバック部 2 2の内周側に設けられ、 コアバッ ク部 2 2の連結部 2 2 1の周方向長さを増減可能としている。 これによ り、 ティース部 2 1の連結部 2 1 3をコアバック部 2 2の連結部 2 2 1 に容易にはめ込むことができ、 かつ、 連結部 2 1 3の周方向長さを縮め るように力を加えることで、 ティース部 2 1の連結部 2 1 3をコアバッ ク部 2 2の連結部 2 2 1に確実にかつ強固に連結させることができる。 また、 切り込み 2 2 4は、 組立の際に加わる応力に対して弱い部分とし ても働く。 これにより、 コアバック部 2 2を曲げ加工することが容易と なる。 Fig. 16 (a) shows the bending center of the core of the core back part 22 placed on the extension of the teeth part 21. After the coil molded body and the core 2 are assembled, the final When assembling the housing 4 as shown in FIG. 19 to the outer peripheral portion of the core back portion 22, the bent portion is further compressed by press-fitting the core 2 into the housing 4. Tighten the joint between the teeth 21 and the teeth 21. Therefore, the cuts 224 are provided in the core back member 22 in advance. The form of the cuts 2 2 4 is variously possible. Figure 16 (a) shows an example of a deep V-shaped cut. The cuts 224 are provided on the inner peripheral side of the core back portion 22 so that the circumferential length of the connecting portion 221 of the core back portion 22 can be increased or decreased. As a result, the connecting portion 2 13 of the tooth portion 21 can be easily fitted into the connecting portion 2 21 of the core back portion 22, and the circumferential length of the connecting portion 2 13 can be reduced. By applying such a force, the connecting portion 21 of the tooth portion 21 can be securely and firmly connected to the connecting portion 21 of the core back portion 22. The notches 224 also function as weak portions against the stress applied during assembly. This facilitates bending of the core back portion 22.
第 1 6図 ( b ) は、 ティ一ス部 2 1のコアパック部 2 2との連結部 2 1 3、 および、 コアバック部 2 2のティース部 2 1 との連結部 2 2 1を、 それぞれ V字形状のようなテーパ形状とした例である。 この例では、 コ ァバック部 2 2の外周部にハウジングを組付ける際に、 連結部 2 1 3を 連結部 2 2 1の斜面で押圧するように作用する。 このとき、 ティース部 2 1は、 前述したように、 その先端側で横方向先端部が互いに隣接する 他の横方向先端部と当接するため、 ティース部 2 1は、 内周側には変位 できない状態にある。 従って、 ティース部 2 1は、 それ自身の先端部で 周方向に作用する力と、 連結部 2 1 3に作用する力とで、 コアバック 2 2内に強固に保持されることとなる。 このように、 本結合形態は、 ハウ ジングとコアの圧入、 焼嵌めをすることにより、 結合部分をさらに圧縮 させ、 コアバック部 2 2とティース部 2 1 の連結部 2 1 3を締付ける構 造をとる。  Fig. 16 (b) shows the connecting part 2 13 of the tooth part 21 with the core pack part 22 and the connecting part 21 of the core back part 22 with the tooth part 21. Each is an example of a V-shaped tapered shape. In this example, when assembling the housing to the outer peripheral part of the core part 22, the connecting part 21 13 is pressed by the slope of the connecting part 22 1. At this time, as described above, the tooth portion 21 is not displaced toward the inner peripheral side because the lateral end portions of the teeth 21 abut on other lateral end portions adjacent to each other at the distal end side. In state. Therefore, the tooth portion 21 is firmly held in the core back 22 by the force acting in the circumferential direction at its own tip and the force acting on the connecting portion 21. As described above, this connection form has a structure in which the connection portion is further compressed by press-fitting and shrink-fitting the housing and the core, and the connection portion 2 13 between the core back portion 22 and the teeth portion 21 is tightened. Take.
第 1 6図 ( c ) は、 コアバック部 2 2の連結部 2 2 1を、 図に示すよ うに、 円周方向に長く切り込んだ形状とする。 これにより、 コアバック 部 2 2を構成する板材のばね性を利用して、 ティ一ス部 2 1の連結部 ( 図示せず) を組付ける時に、 コアバック部 2 2のティース連結部 2 2 1 を弾性変形させ、 ティースと結合させた後も連結部に締結力が残る構造 とする。 In FIG. 16 (c), as shown in the figure, the connecting portion 22 1 of the core back portion 22 is formed into a shape that is cut long in the circumferential direction. Thus, when the connecting portion (not shown) of the tooth portion 21 is assembled by utilizing the resiliency of the plate material constituting the core back portion 22, the tooth connecting portion 22 of the core back portion 22 is assembled. 1 is elastically deformed, so that the connecting part retains the fastening force even after it is connected to the teeth And
第 1 6図 ( d ) は、 コアバック部 2 2 とティース部 2 1 をつなぐ別の 部材 2 4を介してコアバック部 2 2とティース部 2 1分を連結する構造 である。 そのために、 コアバック部 2 2には、 軸方向の切欠 2 2 5を設 ける。 一方、 ティース部 2 1の連結部 2 1 3にも同様の切欠 2 1 4を設 ける。 部材 2 4は、 ティース部 2 1をコアバック部 2 2に連結した際に 生じる、 前記両切欠 2 2 5および 2 1 4からなる孔形状の空間に貫通す る平面形状を有する。 組立は、 コアバック部 2 2にティース部 2 1が連 結された状態で積層されたものに、 前記部材 2 4を挿入することにより 行うことができる。 このような構造とすることで、 コアバック部 2 2と ティース部 2 1 との結合を強固なものとすることができる。  FIG. 16 (d) shows a structure in which the core back portion 22 and the teeth portion 21 are connected via another member 24 connecting the core back portion 22 and the teeth portion 21. For this purpose, the core back portion 22 is provided with a notch 2 25 in the axial direction. On the other hand, a similar notch 2 14 is provided in the connecting portion 2 13 of the tooth portion 21. The member 24 has a planar shape penetrating into a hole-shaped space formed by the notches 2 25 and 2 14 that is generated when the teeth portion 21 is connected to the core back portion 22. The assembling can be performed by inserting the member 24 into a stack in which the teeth portion 21 is connected to the core back portion 22. With such a structure, the connection between the core back portion 22 and the teeth portion 21 can be strengthened.
第 1 6図 ( e ) および第 1 6図 ( f ) は、 共にポール拡管方式と呼ば れる結合方法を用いたものである。 すなわち、 コアバック部 2 2に孔 2 2 6を、 ティース部 2 1の連結部 2 1 3を挟む位置に設けるか、 ティー ス部 2 1の連結部に孔 2 1 5を設けておく。それぞれ連結された状態で、 それらの孔を拡げるように、 孔より若干大きめのポール及び軸を孔に通 す。 これにより、 コアバック部 2 2またはティース部 2 1を塑性変形さ せて、 結合力を得る。  Fig. 16 (e) and Fig. 16 (f) both use the coupling method called the pole expansion method. That is, the hole 226 is provided in the core back portion 22 at a position sandwiching the connecting portion 213 of the tooth portion 21 or the hole 215 is provided in the connecting portion of the tooth portion 21. With each connected, pass a slightly larger pole and shaft through the holes to widen the holes. As a result, the core back portion 22 or the tooth portion 21 is plastically deformed to obtain a bonding force.
第 1 6図 (g ) は、 ティース部 2 1 とコアバック部 2 2の形状を、 上 述した実施の形態のようにあり溝構造として、 あり ( 2 1 3 ) とあり溝 ( 2 2 1 ) との間に、 通称力ミソリと呼ばれる楔 2 6を打ち込んで位置 決めする構造である。  FIG. 16 (g) shows the shape of the teeth 21 and the core back 22 as the dovetail structure as in the above-described embodiment. ) And a wedge 26, commonly known as a force razor, is driven into position.
上記に示したような例を用いることにより、 コアバック部とティース 部の連結部分においては、 そのすき間を限りなく小さくすることが可能 となる。 このため、 振動騒音を一段と抑制することができる。 その結果、 寿命、 特性への影響をより低減したステ一夕コァを得ることが可能とな る。 次に、 本発明に係るコアの第 2の実施形態について、 第 1 8図、 第 1 9図を参照して説明する。 本実施の形態は、 コアバック部と複数のティ ース部とからなりコアバック部と複数のティース部とが別体に設けられ ている、 回転機用コアに関するものである。 By using the example as described above, the gap between the core back portion and the teeth portion can be reduced as much as possible. For this reason, vibration noise can be further suppressed. As a result, it is possible to obtain a stationary core with a reduced influence on the service life and characteristics. Next, a second embodiment of the core according to the present invention will be described with reference to FIG. 18 and FIG. The present embodiment relates to a rotating machine core including a core back portion and a plurality of teeth portions, and the core back portion and the plurality of teeth portions are provided separately.
本実施の形態では、 コアバック部 2 2は、 第 1 8図 ( a ) に示すよう な素片 2 2 0を、 第 1 8図 (b ) に示すように折り曲げ加工し、 複数連 ねて環状に配置すると共に、 それらを、 第 1 8図 ( c ) に示すように、 複数層積層した構造を有する。 本実施の形態におけるコアバック部 2 2 は、 第 1 8図 ( a ) に示すように、 その内周側に、 各ティース部 2 1を 連結する複数のティース連結部 2 2 1 aを有する。 また、 その両端のコ ァ内周側に位置する部分にも、 ティ一ス連結部 2 2 1 bが設けられる。 ティース連結部 2 2 1 aは、 ティース部 2 1側の連結部 2 1 3と嵌合 する形態に設けられる。 本実施の形態では、 あり溝構造となる形態に形 状を有する。 この連結部 2 2 1 aには、 第 1 8図 ( a ) に示すように、 切り込み 2 2 8 aが設けられる。 また、 素片 2 2 0には、 この切り込み 2 2 8 aが設けられている位置の外周側にも、 浅い切り込み 2 2 8 bが 設けられている。 切り込み 2 2 8 aは、 素片 2 2 0を折り曲げ加工した 状態で、 切り込み 2 2 8 aの縁が重なり合わない角度の V字形状に切り 欠いておく。 一方、 切り込み 2 2 8 bは、 素片 2 2 0を折り曲げ加工す る際、 拡がって曲げ加工を容易にするためのものである。 したがって、 そのように機能する形状であれば、 他の形状としてもよい。  In the present embodiment, the core back portion 22 is formed by bending a piece 220 as shown in FIG. 18 (a) into a plurality of pieces as shown in FIG. 18 (b). They are arranged in a ring and have a structure in which they are stacked in multiple layers as shown in Fig. 18 (c). As shown in FIG. 18 (a), core back portion 22 in the present embodiment has a plurality of teeth connecting portions 22a connecting inner teeth portions 21 on its inner peripheral side. Further, tooth connecting portions 221b are also provided at portions located on the inner side of the core at both ends thereof. The teeth connecting portion 221a is provided in a form to be fitted with the connecting portion 213 on the teeth portion 21 side. In the present embodiment, the shape has a form that forms a dovetailed groove structure. As shown in FIG. 18 (a), a cutout 228a is provided in the connecting portion 221a. In the element piece 220, a shallow cut 228b is provided on the outer peripheral side of the position where the cut 228a is provided. The notch 228a is cut out in a V-shape at an angle where the edges of the notch 228a do not overlap with each other when the element piece 220 is bent. On the other hand, the notch 228b is intended to spread and facilitate bending when the piece 220 is bent. Therefore, any other shape may be used as long as it has such a function.
両端にあるティース連結部 2 2 1 bは、 それぞれ、 互いに他の素片 2 2 0と隣接したとき、 ティース連結部 2 2 1 aと同様に、 ティース部 2 1の連結部 2 1 3 と嵌合可能なあり溝構造を構成する形状に形成される, また、 この連結部 2 2 1 bが設けられている端面 (分割端部 2 2 0 b ) は、 隣接する素片 2 2 0のと連接した際、 すき間、 例えば、 V字形状の すき間ができるように、 内周側を斜めに切り落とす加工がしてある。 本実施の形態のコアは、 上述した素片 2 2 0を積層して形成する。 本 実施の形態では、 まず、 第 1 8図 ( a ) に示すような素片を打ち抜き、 これを、 第 1 8図 (b ) に示すように、 湾曲させる曲げ加工を行う。 そ の後、 そのように加工した複数枚の素片 2 2 0を用いて、 第 1 8図 ( c ) に示すように、 複数の素片 2 2 0を連ねて環状に配置すると共に、 そ れを複数枚積層して、 コアバック部 2 2を形成する。 When the teeth connecting portions 2 2 1 b at both ends are adjacent to each other piece 220, respectively, the teeth connecting portions 2 2 1 b are fitted to the connecting portions 2 1 3 of the tooth portions 21 similarly to the tooth connecting portions 2 21 a. The end face (divided end part 220 b) on which the connecting part 221 b is provided is formed with a shape that constitutes a dovetailable groove structure. The inner peripheral side is cut off diagonally so that a gap, for example, a V-shaped gap is formed when connecting. The core of the present embodiment is formed by laminating the above-mentioned pieces 220. In the present embodiment, first, a piece as shown in FIG. 18 (a) is punched out and bent as shown in FIG. 18 (b) to bend. Then, using the plurality of pieces 220 thus processed, as shown in FIG. 18 (c), the plurality of pieces 220 are arranged in a row in a row, and A plurality of these are laminated to form a core back portion 22.
素片 2 2 0には、 積層する際にかしめを行うためのかしめ部 2 2 9が 設けられている。 従って、 すべての素片 2 2 0を積み重ねた後、 全体を 加圧して、 かしめ部 2 2 9のかしめを行う。  The element 220 is provided with a caulking portion 229 for caulking when laminating. Therefore, after all the pieces 220 are stacked, the whole is pressurized, and the caulking part 229 is caulked.
コアバック部 2 2を構成する素片 2 2 0は、 前述したように、 飽和磁 化が大きい材料が好ましい。 例えば、 前述した方向性珪素鋼板等が用い られる。 本実施の形態で用いる素片 2 2 0は、  As described above, the element 220 constituting the core back portion 22 is preferably made of a material having a large saturation magnetization. For example, the above-described directional silicon steel sheet or the like is used. The element 220 used in the present embodiment is
一方、 ティース部 2 1 としては、 例えば、 第 1 7図 (b ) に示すよう に、板材を個別に打ち抜いて得られた部材を積層したものが用いられる。 このティ一ス部 2 1についても、 かしめ部 2 1 9によりかしめを行う。 なお、 材料としては、 前述したように、 例えば、 無方向性珪素鋼板が用 レ られる。  On the other hand, as the teeth portion 21, for example, as shown in FIG. 17 (b), a member obtained by laminating members obtained by individually punching plate materials is used. The tooth portion 21 is also caulked by the caulking portion 2 19. As a material, as described above, for example, a non-oriented silicon steel sheet is used.
次に、 本実施の形態におけるコアの製造方法について説明する。  Next, a method of manufacturing a core according to the present embodiment will be described.
本実施の形態では、 コアバック部 2 2を構成する素片 2 2 0を、 第 1 8図 ( a ) に示すような打抜き形状、 すなわち、 ティース部 2 1が配置 される部分 2 2 1が折れ曲がる形状で打ち抜き、 同図 (b ) に示すよう に、 曲げ成形を行なう。 そして、 同図 ( c ) に示すように、 積層して、 コアバック部 2 2を形成する。 このコアバック部 2 2のティ一ス連結部 2 2 1に、 前記ティース部 2 1の基端 2 1 3が装着される。 このコアバ ック部 2 2に、 コイル 1を組み込んだティース部 2 1 を圧入し、 ステ一 夕を得る。  In the present embodiment, the piece 220 forming the core back portion 22 is formed into a punched shape as shown in FIG. 18 (a), that is, the portion 221, in which the teeth 21 are arranged, is formed. The sheet is punched out in a bent shape, and bent as shown in FIG. Then, as shown in FIG. 7C, the core back portions 22 are formed by lamination. The base end 213 of the tooth part 21 is attached to the tooth connecting part 221 of the core back part 22. The teeth portion 21 incorporating the coil 1 is press-fitted into the core back portion 22 to obtain a stay.
ここで、 ティース部 2 1は、 前述したコアバック部 2 2のティース連 結部 2 2 1 に、 その基端 2 1 3がはめ込まれる。 はめ込みは、 例えば、 基端 2 1 3をティース連結部 2 2 1にコアの軸方向に沿ってはめ込んで、 ティース部 2 1 を軸方向に相対変位させることにより行うことができる このようにして、 ティース部 2 1をコアバック部 2 2に装着した状態を 第 1 8図 ( d ) に示す。 なお、 第 1 8図 (d ) では、 コイルを装着した 状態を示していないが、 実際には、 ティース部 2 1は、 それにコイル成 形体 1が装着された後、 コアバック部 2 2に装着される。 Here, the teeth part 21 is the same as the teeth part of the core back part 22 described above. The base 2 13 is fitted into the joint 2 2 1. The fitting can be performed, for example, by fitting the base end 2 13 into the teeth connecting portion 2 21 along the axial direction of the core and displacing the teeth portion 21 in the axial direction in this manner. The state in which the teeth 21 are attached to the core back 22 is shown in FIG. 18 (d). FIG. 18 (d) does not show the state in which the coil is mounted, but actually, the teeth 21 are mounted on the core back 22 after the coil molded body 1 is mounted thereon. Is done.
このステ一夕コアを保持するために、 ハウジングと呼ばれる外枠に組 み付ける。 ハウジングとしては、 例えば、 円筒が用いられる。 材質は、 例えば、 鉄、 アルミニウム等が用いられる。 円筒の肉厚は、 例えば、 2 〜 1 0 m m程度のものが用いられる。  In order to hold this stay core, it is assembled to an outer frame called a housing. For example, a cylinder is used as the housing. As the material, for example, iron, aluminum, or the like is used. The thickness of the cylinder is, for example, about 2 to 10 mm.
ハウジング 4へのコアバック部 2 2の組み付けは、 圧入、 焼嵌め等に より行う。 焼嵌めによる場合、 円筒状のハウジング 4を加熱して膨張さ せた状態とする。  Assembling of the core back portion 22 to the housing 4 is performed by press fitting, shrink fitting, or the like. In the case of shrink fitting, the cylindrical housing 4 is heated and expanded.
この状態でハウジング 4に、 第 1 9図 ( a ) に示すように、 コイルおよ びティース部が装着されたコアバック部 2 2を挿入する。 この後、 ハウ ジング 4の温度が低下して、 収縮し、 内部のコアバック部 2 2に、 収縮 による応力が作用する。 すなわち、 コアバック部 2 2には、 半径方向に 沿い、 かつ、 中心に向かう応力が作用する。 このため、 コアバック部 2 1は、 全体として半径が小さくなるように収縮する。 具体的には、 切り 込み、 すき間等が塞がれるようになる。 この状態を、 第 1 9図 (b ) に 示す。 すなわち、 切り込み 2 2 8 aが塞がると共に、 各素片 2 2 0の端 部 (分割端部 2 2 0 b ) でのすき間もなくなるようになつている。 さら に、 各ティース部 2 1の先端 2 1 1の横方向端部 2 1 1 aと、 隣接する ティース部 2 1の先端 2 1 1の横方向端部 2 1 1 aとが互いに接触する 状態になっている。 In this state, as shown in FIG. 19 (a), insert the core back 22 into which the coil and the teeth are mounted, into the housing 4. Thereafter, the temperature of the housing 4 is reduced and contracted, and a stress due to the contraction acts on the inner core back portion 22. That is, a stress is applied to the core back portion 22 along the radial direction and toward the center. For this reason, the core back portion 21 contracts so that the radius becomes smaller as a whole. Specifically, cuts, gaps, etc. are blocked. This state is shown in FIG. 19 (b). That is, the cuts 228a are closed, and the gaps at the ends (divided ends 220b) of the respective pieces 220 are eliminated. In addition, the lateral end 2 11 a of the tip 2 1 1 of each tooth 2 1 and the lateral end 2 11 a of the tip 2 11 of the adjacent tooth 2 1 are in contact with each other. It has become.
このように、 本実施の形態では、 第 1 9図 (b ) に示すように、 ハウ ジング 4の焼嵌めによって、 コアバック部 2 2を圧縮する。 また、 本実 施の形態のステ一夕は、 素片 2.20によって構成されることから、 コア バック部 2 2が複数に分割された構造を持つ。 これにより、 ハウジング への組み付けを行なった時に、 連なる素片の各端部において分割端部 2 2 O bが生じる。 この分割端部 2 2 0 bのすき間、 および、 上述した切 り込みを小さくするように、 応力が発生する構造となる。 例えば、 組立 後のステ一タ外径を Φ 1 00. 5mmとした場合、 焼嵌めを行なう時の ハウジングを、 その内径が d = Φ 1 0 0 mm、 材質がアルミとした場合、 膨張率は α = 2 3. 1 X 1 0—6であるから、 常温から温度差 t = 3 00 上昇させると、 その膨張量は、 Thus, in the present embodiment, as shown in FIG. The core back 22 is compressed by shrink fitting of the jing 4. Further, since the stay of the present embodiment is composed of the element 2.20, the core back 22 is divided into a plurality of parts. As a result, when assembled to the housing, a divided end 22 Ob is generated at each end of the continuous piece. Stress is generated so as to reduce the gap between the divided ends 220b and the above-mentioned cuts. For example, if the outer diameter of the stator after assembly is Φ1000.5mm, if the housing for shrink fitting is d = Φ100mm and the material is aluminum, the expansion rate will be since it is α = 2 3. 1 X 1 0- 6, the temperature difference t = 3 00 increases from room temperature, the amount of expansion,
δ = a d t = 0. 6 9 3 mm  δ = a d t = 0.6.93 mm
となる。 よって、 ハウジング内径は、 1 00. 6 9 3mmとなり、 ステ 一夕外径に対して大きな寸法となる。 この寸法関係で組み付けを行い、 ハウジングを冷却することによって、 膨張したハウジング内径が小さく なり、 ステ一夕外径を締付ける。 Becomes Therefore, the inner diameter of the housing is 100.693 mm, which is larger than the outer diameter of the stay. By assembling in this dimensional relationship and cooling the housing, the inner diameter of the expanded housing becomes smaller, and the outer diameter of the stay is tightened.
このときの締付け量は、 ハウジング、 ステ一夕の肉厚、 材質等によつ て決まる。 例えば、 前述した例では、 最終的なハウジング内径が 1 0 0. The amount of tightening at this time is determined by the housing, the thickness of the stay, the material, and the like. For example, in the example above, the final housing inner diameter is 100.
2 mmとなる。 2 mm.
これによつて、 ステ一夕の外径も同時に 1 0 0. 2mmとなる。 そのた め、 組立後の寸法から、 0. 3 mmの外径の収縮がおきたといえる。 As a result, the outer diameter of the stay becomes 10.2 mm at the same time. Therefore, it can be said that the outer diameter shrank by 0.3 mm from the dimensions after assembly.
これによつて、 ステ一夕の分割端部 2 2 0 bのすき間は、 円周で 0. As a result, the gap between the two ends of the stay at the end of the stay is 0.
3 π = 0. 942 mm分小さくなる。 従って、 第 1 9図 (b) のように、 すき間および切り込みが 1 2個所あるとすれば、 1個所当り 0. 00 7 8 mmのすき間を詰めることが可能である。 3 π = 0.92 mm smaller. Therefore, as shown in Fig. 19 (b), if there are 12 gaps and cuts, it is possible to reduce the gap of 0.0078 mm per one place.
また、 本構造は、 ティース部をコアバック部 2 2の分割端部 220 b および切り込み部分 22 8 aに配置しているので、 コアバック部 22の すき間を詰めることにより、 ティース部の組立てすき間も同時に締める ことができる。 このため、 ティース部とコアバック部の機械的強度を増 すことが可能となる。 Also, in this structure, the teeth are arranged at the divided end 220b and the cut-out portion 228a of the core back portion 22, so that the gap of the core back portion 22 is reduced to reduce the assembly gap of the teeth portion. Tighten at the same time be able to. Therefore, it is possible to increase the mechanical strength of the teeth portion and the core back portion.
また、 ハウジングを締付ける方式としては、 ハウジングの焼嵌めのほ かに、 スリーブによる締付け、 スチールバンドによる締付けなどがある。 スリーブは肉厚が 0. 2〜 0. 3 mmのステンレス、 鉄などの円筒を組 み付ける方式であり、 モー夕外径が小さくできる等の利点がある。 また、 第 2 0図に示すようなスチールのバンド 7を巻き付けて締め込んだ状態 でのバンド 7の接合部の溶接、 かしめなどの締結によって締め込む方法 も考えられる。  As a method of tightening the housing, in addition to shrink fitting of the housing, there are a method of tightening with a sleeve and a method of tightening with a steel band. The sleeve is a method of assembling a cylinder of stainless steel or iron with a wall thickness of 0.2 to 0.3 mm, and has the advantage that the outer diameter of the motor can be reduced. Further, it is also conceivable that the steel band 7 as shown in FIG. 20 is wound around and tightened by fastening such as welding or caulking at the joint of the band 7.
また、 第 2 1図 ( a ) 、 第 2 1図 ( b ) に示すように、 外周から締付 けた状態でコアバック部 2 2の分割端部 2 2 O bの外周部を溶接して、 締付けた状態を保持することができる。 第 2 1図 ( a) に示すように、 本実施の形態では、 分割端部 2 2 0 bの他に、 切り欠き部 2 2 8 bにつ いても補強のため溶接している。 切り欠き部 2 2 8 bについての溶接は 省略することもできる。 なお、 第 2 1図 ( a) では、 コイルの表記を省 略している。  Also, as shown in FIGS. 21 (a) and 21 (b), the outer peripheral portion of the divided end portion 22Ob of the core back portion 22 is welded while being tightened from the outer periphery, The tightened state can be maintained. As shown in FIG. 21 (a), in the present embodiment, in addition to the divided end 220b, the notch 228b is also welded for reinforcement. Welding of the notch 2 228 b can be omitted. In Fig. 21 (a), the notation of coils is omitted.
さらに、 別の方法として、 第 2 2図に示すモールドによるコアの締結 がある。 この方法は、 ステ一夕コアのコイルエンド部分を樹脂材料で包 み込んでしまう技術である。 第 2 2図 ( a) に示すように、 モールド金 型 9のなかに、 巻線されたステ一夕コア 2をセッ トし、 その両端部 (コ ィルエンド部分) に樹脂 1 0を流し込んで成形する。 その際に、 モール ド金型 9でコア 2を締付けた状態にて樹脂 1 0を流し込んで、 コア 2の スロッ ト部内部、 コア外周に設けた溝を樹脂で埋める。 これにより、 ス テ一夕コア 2を締結する。 その結果、 第 2 2図 ( b) に示すように、 締 付けて小さく したコアバック部結合部のすき間を保ったまま、 コアを固 定できる。 この方法によると、 コア外周部を大きくすることなく、 コア の締結を可能にすることができる。 上記のいずれの方法も、 前述した分割構造を持つことによりコア分割 部のすき間を小さくし、 ティース部との結合強度を得るものである。 以上に述べた実施の形態においても、 上述したと同じ理由により、 材 料を効率よく使用することができる。 Further, as another method, there is a method of fastening a core by a mold as shown in FIG. In this method, the coil end of the stay core is wrapped with a resin material. As shown in Fig. 22 (a), the wound core 2 is set in a mold 9 and resin 10 is poured into both ends (coil end) of the mold. I do. At this time, the resin 10 is poured in a state where the core 2 is tightened by the molding die 9, and the grooves provided inside the slot portion of the core 2 and on the outer periphery of the core are filled with the resin. As a result, the steel overnight core 2 will be concluded. As a result, as shown in Fig. 22 (b), the core can be fixed while keeping the clearance of the core back joint portion reduced by tightening. According to this method, the core can be fastened without increasing the outer peripheral portion of the core. In any of the above methods, by having the above-mentioned divided structure, the gap between the core divided portions is reduced, and the coupling strength with the teeth portion is obtained. Also in the embodiment described above, the material can be used efficiently for the same reason as described above.
また、 素片 2 2 0は、 上述した形態に限られない。 例えば、 他の形態 として、 第 2 3図に示す形状が可能であり、 それぞれに利点を持つ。 第 2 3図 ( a ) に示す形状は、 前述したコアバック部 2 2をあらかじ め曲げた後の形状で打抜いた例である。 この例では、 曲げ加工を行うこ となく積層することになる。 この場合には、 円周方向の機械的強度を増 すことができる。磁気抵抗の低下も半分にすることができる方法である。 第 2 3図 (b ) および第 2 3図 ( c ) 図に示す形状は、 第 2 3図 ( a ) に示す例と同様に、 曲げ加工後の形状で打抜く ものである。 これらの 例では、 組立後に外周部から焼嵌め応力などにより円周長さを小さくす る場合の応力集中部を設けるため、 打抜き時に結合部にスリッ ト溝 2 2 8 c 、 2 2 8 dを入れた形状を作り込むものである。 この形状によると、 焼嵌めなどにより生じる応力、 すなわち、 前述したようにすき間を小さ くする応力により、 ティース部との接合強度、 すき間の極小化を実現で きる。 第 2 3図 ( a ) の形状と、 この点で相違がある。  Further, the segment 220 is not limited to the above-described embodiment. For example, as other forms, the shapes shown in FIG. 23 are possible, each having advantages. The shape shown in FIG. 23 (a) is an example in which the core back portion 22 described above is punched in a shape after being bent in advance. In this example, the layers are laminated without bending. In this case, the mechanical strength in the circumferential direction can be increased. This is a method by which the decrease in magnetic resistance can be halved. The shapes shown in FIG. 23 (b) and FIG. 23 (c) are punched out in the shape after the bending as in the example shown in FIG. 23 (a). In these examples, to provide a stress concentration portion for reducing the circumferential length by shrink fitting stress etc. from the outer peripheral portion after assembly, the slit grooves 228c and 228d are formed in the joint at the time of punching. This is to create the shape that is inserted. According to this shape, joint strength with the teeth portion and minimization of the gap can be realized by the stress generated by shrink fitting or the like, that is, the stress that reduces the gap as described above. There is a difference in this point from the shape in Fig. 23 (a).
第 2 3図 (d ) および第 2 3図 ( e ) に示す形状は、 打抜きプレス時 に、 曲げ加工後の形状で打抜くものである。 この例では、 ティース部と の接合部分をスタンビングして薄く加工して、 薄肉部 2 2 8 e 、 2 2 8 f を形成する。 これにより、 応力に対して弱い部分、 すなわち、 応力集 中部を積極的に設けて、 焼嵌めなどの応力、 すなわち、 すき間を小さく する応力により、 ティース部との接合強度、 すき間の極小化を実現でき るようにしたものである。  The shapes shown in Fig. 23 (d) and Fig. 23 (e) are punched in the shape after bending at the time of punching press. In this example, the thinned portions 228 e and 228 f are formed by stamping and thinning the joint portion with the teeth portion. As a result, the parts that are vulnerable to stress, that is, the stress concentrating parts, are actively provided, and the stress such as shrink fit, that is, the stress that reduces the gap, minimizes the joint strength with the teeth and minimizes the gap. It was made possible.
また、 これらの方式は、 いずれも、 第 2 3図 ( f ) に示すように、 コ ァバック部 3つつなげたものでも可能であり、 複数個のコアバック部を つなげた形状でも採用することは可能である。 In each of these methods, as shown in FIG. 23 (f), a structure in which the core back unit 3 is connected can be used. It is possible to adopt a connected shape.
上述した素片 2 2 0は、 例えば、 第 1 4図 (b ) に示したように、 帯 状材から一連に設けることができる。 また、 第 2 3図 ( g ) に示すよう に、 帯状材から個別に打ち抜くように形成することができる。  The above-mentioned piece 220 can be provided in a series from a band-shaped material, for example, as shown in FIG. 14 (b). Further, as shown in FIG. 23 (g), it can be formed so as to be individually punched from the strip.
次に、 本発明の第 3の実施形態について、 第 2 4図 ( a ) および図第 2 4 ( b ) を参照して説明する。 本実施の形態は、 素片 2 2 0の積層の 態様が異なる他は、 基本的に、 前述した実施の形態と同様である。 例え ば、 コイルの装着、 ハウジングの組み付け、 回転機の製造等において同 様に構成される。 従って、 相違点を中心として説明する。  Next, a third embodiment of the present invention will be described with reference to FIGS. 24 (a) and 24 (b). This embodiment is basically the same as the above-described embodiment except that the mode of lamination of the pieces 220 is different. For example, it is configured in the same way when mounting coils, assembling a housing, and manufacturing a rotating machine. Therefore, the description will focus on the differences.
第 2 4図 ( a ) に示す実施形態は、 コアバック部と複数のティース部 とを有する回転機用コアに関するものである。 本実施の形態では、 前述 した他の実施の形態と同様に、 コアバック部 2 2 と複数のティース部 2 1 とが別体に設けられる。 前記コアバック部 2 2は、 その内周側に前記 各ティース部 2 1を連結する複数のティース連結部 2 2 1 aおよび 2 2 l bを有する。 ティース部 2 1は、 その基端 2 1 3が前記ティース連結 部 2 2 1 aまたは 2 2 l bに装着されて、 コアバック部 2 2に連結され る構造を備える。  The embodiment shown in FIG. 24 (a) relates to a rotating machine core having a core back portion and a plurality of teeth portions. In this embodiment, similarly to the other embodiments described above, core back portion 22 and a plurality of teeth portions 21 are provided separately. The core back portion 22 has a plurality of teeth connecting portions 22 1 a and 22 lb connecting the respective tooth portions 21 on its inner peripheral side. The teeth portion 21 has a structure in which the base end 21 is attached to the teeth connecting portion 22 a or 22 lb and connected to the core back portion 22.
ここで、 コアバック部 2 2は、 複数枚の素片 2 2 0を連ねて環状に配 置すると共に、 複数層積層した構造である。 また、 コアバック部 2 2は、 隣接する層間で、 前記素片 2 2 0をスロッ トピッチ単位で周方向にずら せて配置している。 積層に際しては、 かしめ部 2 2 9において、 かしめ を行う。 このような構成により、 前述した実施の形態と同様に、 ティー ス連結部 2 2 1 aおよび 2 2 1 bが等ピッチ (スロッ トピッチ) でコア の内周縁に配置される。 これらのティース連結部 2 2 1 aおよび 2 2 1 bは、 コアの軸方向に沿って延びる。  Here, the core back portion 22 has a structure in which a plurality of pieces 220 are continuously arranged in a ring shape and a plurality of layers are stacked. Further, the core back portions 22 are arranged such that the pieces 220 are shifted in the circumferential direction in units of slot pitch between adjacent layers. At the time of lamination, caulking is performed in the caulking part 229. With such a configuration, the tooth connecting portions 22a and 22b are arranged at an equal pitch (slot pitch) on the inner peripheral edge of the core as in the above-described embodiment. These tooth connecting portions 22a and 22b extend along the axial direction of the core.
次に、 第 2 4図 (b ) に示す実施形態は、 第 2 4図 ( b ) と同様に、 コアバック部と複数のティース部とを有する回転機用コアに関するもの である。 本実施の形態では、 コアバック部 2 2が、 複数枚の素片 2 2 0 を積層したブロック 2 2 0 aを連ねて環状に配置すると共に、 前記プロ ック 2 2 0 aを複数層積層した構造である。 その他の構成は、 第 2 4図 ( a) と同じである。 Next, the embodiment shown in FIG. 24 (b) relates to a rotating machine core having a core back portion and a plurality of teeth portions, similarly to FIG. 24 (b). It is. In the present embodiment, the core back portion 22 has a plurality of blocks 220 formed by laminating a plurality of pieces 220 and is arranged in a ring shape, and a plurality of the blocks 220 a are laminated. It is the structure which did. Other configurations are the same as those in FIG. 24 (a).
コアバック部 2 2は、 前記ブロック 2 2 0 aを、 隣接する層間でスロ ッ トピッチ単位で周方向にずらせて配置している。  The core back portion 22 is arranged such that the blocks 220a are shifted in the circumferential direction by a slot pitch between adjacent layers.
本実施の形態では、 図示した素片 2 2 0の他、 前述した第 2 3図に示 す各種の形態の素片を用いることができる。  In the present embodiment, in addition to the illustrated piece 220, pieces of various forms shown in FIG. 23 described above can be used.
また、 本実施の形態では、 前述した他の実施の形態において用いてテ ィース部を連結することができる。 この他に、 例えば、 第 2 7図 ( a) および第 2 7図 (b) に示すような、 形態のティ一ス部 2 1 を用いるこ とができる。 すなわち、 第 2 7図 ( a) に示すように、 帯状板から個別 に打ち抜かれ、 かつ、 かしめ部 2 1 9を 2個所に有する板を、 積層し、 かしめて得られる第 2 7図 (b) に示すティース部 2 1を用いることが できる。  Further, in this embodiment, the tooth portions can be connected by using the other embodiments described above. In addition, for example, a tooth part 21 having a form as shown in FIGS. 27 (a) and 27 (b) can be used. In other words, as shown in FIG. 27 (a), the plates which are individually punched from the band-shaped plate and which have the caulking portions 219 at two places are laminated and crimped to obtain a plate as shown in FIG. 27 (b). ) Can be used.
上述した第 2 3図 ( a) 〜 ( f ) に示す各種素片の形態を採用すると、 材料利用率が向上する。 例えば、 第 2 3図 (g) に示すように、 板材か ら素片 2 2 0を打ち抜く場合には、 材料利用率が 7 0 %以上となる。 ま た、 第 2 7図に示すような形態で、 ティース部 2 1を帯状の板材から個 別に打ち抜く場合には、 例えば、 7 0 %以上の材料利用率とすることが 可能である。  When the various element shapes shown in FIGS. 23 (a) to (f) are used, the material utilization rate is improved. For example, as shown in FIG. 23 (g), when a piece 220 is punched from a plate material, the material utilization rate is 70% or more. When the teeth 21 are individually punched from a band-shaped plate in the form as shown in FIG. 27, for example, a material utilization rate of 70% or more can be achieved.
次に、 ティース部とコアバック部の結合部の構造に関する変形例につ いて、 第 2 6図を参照して説明する。 第 2 6図 ( a) 、 (b) および ( c ) は、 いずれもあり (基端部 2 1 3 ) とあり溝 (ティース連結部 2 2 1 ) との組み合わせである。  Next, a modification example of the structure of the joint portion between the tooth portion and the core back portion will be described with reference to FIG. Fig. 26 (a), (b) and (c) are all combinations of the presence (proximal end 21 3) and the presence groove (teeth connecting portion 22 1).
第 2 6図(a)は、 ありおよびあり溝の角部が、 R面取り形状になった ものである。 また、 第 2 6図 (b) は、 互いに傾斜形状のあり 2 1 3 と あり溝との形状を示す。 第 2 6図 ( c ) は、 第 2 6図 ( b ) と同様の連 結部を有し、 かつ、 コアバック部が少なくとも 2個所の切り込み 2 2 8 (または薄肉部) を持つ形状である。 切り込み、 薄肉などを中心として、 その両側から締付け応力がかかる形状で、 応力がかかったときに、 ティ —ス部 2 1がその応力によって締付けられる構造を持つ。 FIG. 26 (a) shows the corners of the dovetail and the dovetail groove having an R-chamfered shape. Also, Fig. 26 (b) shows the two sloped shapes with each other. The shape with a dovetail groove is shown. FIG. 26 (c) has a connection portion similar to that of FIG. 26 (b), and the core back portion has at least two cuts 228 (or a thin portion). . Tightening stress is applied to both sides of the notch, thin wall, etc. at the center, and when stress is applied, the teeth 21 are tightened by the stress.
次に、 コアの積層構造についての他の実施形態について、 第 2 8図を 参照して説明する。 コアバック部 2 2を構成する材料として、 上述した 第 1の実施形態では、 コアの材料利用率を高めるために直線的な形状で 打抜いたものを折り曲げて巻いていく形状を提案している。 しかし、 コ ァバック部 2 2は、 必ずしも一連に接続されている材料を用いる必要は ない。 そこで、 上述したように、 素片を打ち抜き、 これをコアバック部 の円周に沿って連なるように配置し、 積層する構成としている。 また、 複数枚の素片重ねてブロックを形成し、 このブロックを、 コアバック部 の円周に沿って連ねて、 積層する構成とすることもできる。 コアバック 部 2 2 0を構成するために、 上述したように素片を用いることで、 打抜 きのための金型は小さく、 また、 打抜き加工力も小さいものですむため、 機種交換の段取り替えなどが容易になるといった効果が期待できる。  Next, another embodiment of the laminated structure of the core will be described with reference to FIG. In the first embodiment described above, as a material constituting the core back portion 22, a shape in which a material punched in a linear shape is bent and wound to increase the material utilization rate of the core is proposed. . However, the callback section 22 does not necessarily need to use a material connected in series. Therefore, as described above, the element pieces are punched out, arranged so as to be continuous along the circumference of the core back portion, and laminated. In addition, a configuration in which a block is formed by stacking a plurality of element pieces, and the blocks are connected along the circumference of the core back portion and are stacked. By using the element pieces as described above to compose the core back part 220, the die for punching is small and the punching processing force is small, so setup change for model change Such an effect can be expected.
さて、 本願においては、 素片を積層するに際し、 さらに好ましい態様 を提案する。 第 2 8図および第 2 9図を参照して、  Now, in the present application, a more preferable embodiment is proposed when laminating pieces. Referring to FIGS. 28 and 29,
第 2 8図は積層鋼板の積層方法について示す。 積層鋼板は、 通常、 H A Cかしめ、 ダボかしめなどの半抜きにされた部分を、 上下の板同士を 組み合わせる手法である。 ただし、 その部分の板間絶縁が破れて、 電流 のループ等が発生するという問題が起こり得る。  Fig. 28 shows the method of laminating laminated steel sheets. Laminated steel plate is a method of combining the upper and lower plates with the half-opened portion such as HAC caulking or dowel caulking. However, there may be a problem that the insulation between the plates is broken at that portion and a current loop or the like occurs.
第 2 8図 ( a ) に示すかしめ締結方法は、 第 2 4図で説明したように、 素片 2 2 0を 1層ずつ互い違いに 1スロッ トピッチずつずらして組み立 てる組み立て方法である。 本実施の形態では、 素片 2 2 0に、 2個所以 上の力シメ部 2 2 ' 9を設け、 一方の力シメ部 2 2 9 aは、 半抜き加工し て凸部 2 2 9 cを設け、 他のかしめ部 2 2 9 bは全抜き状態に加工して 貫通孔 2 2 9 dを形成する。 かしめ部 2 2 9 aおよび 2 2 9 bは、 1ス ロッ トピッチ間隔で設けられる。 従って、 上下の素片 2 2 0を周方向に 1スロッ トピツチずらすと、 それぞれ 1スロッ トピツチずれた個所でか しめが行える。 The caulking method shown in FIG. 28 (a) is an assembling method in which the pieces 220 are staggered by one slot pitch alternately one layer at a time, as described in FIG. 24. In the present embodiment, two or more force-screws 22 2 ′ 9 are provided on the piece 220, and one of the force-screws 22 a is half-blanked. Then, a convex portion 229 c is provided, and the other caulked portion 229 b is processed in a fully punched state to form a through hole 229 d. The caulking portions 229a and 229b are provided at intervals of one slot pitch. Therefore, if the upper and lower segments 220 are shifted by one slot pitch in the circumferential direction, caulking can be performed at the positions shifted by one slot pitch.
ここで、 第 2 4図のように、 すべてを半抜き状態としている場合には、 上下の素片 2 2 0をずらしても、 かしめの態様は同じである。 ところが、 第 2 8図 ( a ) 〜第 2 9図 (d ) に示す例では、 素片 2 2 0を、 互い違 いに積層することにより、 半抜き状態の凸部 2 2 9 cは下の板の貫通孔 2 2 9 dと結合し、 上の板の貫通孔 2 2 9 dとは結合しない。 一方、 全 抜き状態の部分は上の板の凸部 2 2 9 cが挿入されて結合し、 下の板と の結合は無い状態になる。  Here, as shown in FIG. 24, when all are in a half-punched state, the crimping mode is the same even if the upper and lower pieces 220 are shifted. However, in the example shown in FIGS. 28 (a) to 29 (d), the half-opened projections 229c are formed by stacking the segments 220 alternately. It is connected to the through hole 229 d of the upper plate, but not to the through hole 229 d of the upper plate. On the other hand, in the part in the fully-extracted state, the projection 229 c of the upper plate is inserted and connected, and there is no connection with the lower plate.
これにより、 電流が流れるループの遮断が可能となり、 モータの特性 を向上させることができる。  This makes it possible to cut off the loop through which current flows, thereby improving the characteristics of the motor.
第 2 9図 ( a ) および第 2 9図 (b ) には、 ティース部 2 1のコアバ ック部のティース連結部に結合する部分の積層構造について示す。 第 2 3図にて説明した切り欠き、 溝、 薄肉部などを有するコアを積層する場 合に、 その部分の加工の際生じるバリなどにより金属表面が電気的に接 触する可能性がある。 そこで、 その部分を上下間でずらすことにより、 電気的な接触を妨げる。 そのため、 図 2 9 ( a ) に示すような連結部に おいて、 第 2 9図 (b ) に示すように、 連結する部材の一方、 同図では、 ティース部 2 1の基端部 2 1 3の厚さを、 プレスなどによりスタンピン グして厚みを板厚よりも薄くする。 これにより、 コアバック部とティー ス部などの結合部などで、 その加工のバリなどによる上下の板間の電気 的接触を避けることが可能となる。 このため、 かしめ部 2 2 9での接触 部低減も含めて、 モ一夕自体の効率を向上させることが可能となる。 なお、 薄肉化するのは、 ティース部 2 1の基端部 2 1 3に限られない。 例えば、 コアバック部 2 2のティ一ス連結部 2 2 1を薄肉加工する構成 としてもよい。 FIGS. 29 (a) and 29 (b) show a laminated structure of a portion of the teeth portion 21 connected to the teeth connecting portion of the core back portion. When laminating a core having notches, grooves, thin portions, and the like described in FIG. 23, there is a possibility that the metal surface will come into electrical contact due to burrs and the like generated during processing of that portion. Therefore, the electrical contact is obstructed by shifting the part up and down. Therefore, in the connecting portion as shown in FIG. 29 (a), as shown in FIG. 29 (b), one of the members to be connected, in FIG. The thickness of 3 is stamped with a press or the like to make the thickness smaller than the plate thickness. This makes it possible to avoid electrical contact between the upper and lower plates due to processing burrs and the like at the joint portion between the core back portion and the tooth portion. For this reason, it is possible to improve the efficiency of the motor itself, including the reduction of the contact part in the caulking part 229. Note that thinning is not limited to the base end portion 2 13 of the teeth portion 21. For example, the tooth connection portion 221 of the core back portion 22 may be thinned.
次に、 上述した各実施形態に適用できる、 改善策について第 3 0図を 参照して説明する。 すなわち、 第 3 0図 ( a ) および第 3 0図 ( b ) に 示すように、 コアバック部厚み L c とティース部厚みを L t とを、 プレ スなどの手段によって押しつぶして等しく成形する。 これにより、 組立 後の板厚方向のずれを防ぐことが期待できる。  Next, improvement measures that can be applied to the above-described embodiments will be described with reference to FIG. That is, as shown in FIGS. 30 (a) and 30 (b), the thickness Lc of the core back portion and the thickness Lt of the teeth portion are crushed and equalized by means of a press or the like. This can be expected to prevent displacement in the thickness direction after assembly.
なお、 本発明に関連する他の問題として、 コイルに関する問題がある ので、 それについても指摘しておく。  As another problem related to the present invention, there is a problem relating to a coil, and such a problem is also pointed out.
第 1に、 コイルインサ一夕方式は、 巻線されたコイルをスロッ トのす き間を利用して挿入する方式のため、 固定子コイルを巻線後にィンサー 夕方式で挿入すると、 占積率 (コアスロッ トの断面積に対する線材断面 積の比率) が大きくとれないという問題がある。 占積率として、 現状で は、 6 0〜 6 5 %が限界となっている。 第 2に、 集中巻方式においても、 直巻方式においては、 インサ一夕方式と同じくコアスロッ トのすき間を 利用して線材を挿入していくため、 占積率はさほど高くない ( 6 0 %程 度) 。 また、 コアを分割して巻線する方式をとつても、 コア組立の際の クリアランスや、 線材間の巻線むら、 隣り合わせたコイルの干渉を考慮 する等の寸法関係などから占積率は高くとれない状況にある。  First, in the coil-inser-one-time method, the wound coil is inserted by using the gap in the slot. If the stator coil is inserted after the winding by the insulator method, the space factor ( There is a problem that the ratio of the cross-sectional area of the wire to the cross-sectional area of the core slot cannot be large. At present, the limit of the space factor is 60-65%. Second, even in the concentrated winding method, in the series winding method, the wire is inserted using the gap of the core slot as in the case of the insulator overnight method, so the space factor is not very high (about 60%). Every time) . In addition, even when the core is divided and wound, the space factor is high due to the dimensional relationship such as clearance when assembling the core, uneven winding between wires, and interference between adjacent coils. I can't take it.
このような、 回転機における固定子巻線の占積率を向上する問題につ いて、 上述した各実施形態では、 予め成形したコイル成形体を用いるこ とで解決している。 すなわち、 コイルの断面形状を変化させることによ り断面寸法精度を高め、 占積率の向上をはかることができる。 これによ つて、 回転機の効率向上をはかることができる。 また、 効率向上分のコ ァ小形化によって、 回転機自体の体格を小形にすることができ、 また、 使用する導体も少なくできることから材料費の低減が可能となる。  In the above-described embodiments, the problem of improving the space factor of the stator winding in the rotating machine has been solved by using a coil molded body that has been molded in advance. That is, by changing the cross-sectional shape of the coil, the cross-sectional dimensional accuracy can be increased, and the space factor can be improved. As a result, the efficiency of the rotating machine can be improved. In addition, by reducing the size of the core to improve the efficiency, the size of the rotating machine itself can be reduced, and the number of conductors used can be reduced, thereby reducing material costs.
産業上の利用可能性 本発明によれば、 回転機の固定子における鉄心材料の利用率を高める 効果がある。 また、 本発明によれば、 高い磁束密度が要求される部分と、 そうではない部分とについてそれぞれ最適な材料を用いて構成すること が可能となる。 Industrial applicability ADVANTAGE OF THE INVENTION According to this invention, there exists an effect which raises the utilization rate of the iron core material in the stator of a rotary machine. Further, according to the present invention, it is possible to configure a portion requiring high magnetic flux density and a portion not requiring high magnetic flux density by using respective optimum materials.
さらに、 材料利用率の点からも、 材料費を大幅に低減することが可能 となる。 その結果、 回転機、 特に、 電動機は、 セッ ト製品のキ一パーツ であるため、 電動機を用いたセッ ト製品の小形、 軽量化、 低価格化が実 現できる。  In addition, material costs can be significantly reduced in terms of material utilization. As a result, the rotating machine, particularly the electric motor, is a key part of the set product, so that the set product using the motor can be reduced in size, weight, and cost.

Claims

% の I® % Of I®
1 .コアバック部と複数のティ一ス部とを有する回転機用コアにおいて、 前記ティース部は、 方向性珪素鋼板で形成され、 前記コアバック部は、 無方向性珪素鋼板で形成されることを特徴とする回転機用コア。  1. In a rotating machine core having a core back portion and a plurality of tooth portions, the teeth portion is formed of a directional silicon steel plate, and the core back portion is formed of a non-directional silicon steel plate. A core for a rotating machine.
2 .コアバック部と複数のティース部とを有する回転機用コアにおいて、 前記ティース部と前記コアバック部とは、 それぞれ異なる材料で形成 され、 ティース部はコアバック部より飽和磁化の大きい材料で形成され ることを特徴とする回転機用コア。 2. In the rotating machine core having a core back portion and a plurality of teeth portions, the teeth portion and the core back portion are each formed of different materials, and the teeth portions are materials having a higher saturation magnetization than the core back portion. A core for a rotating machine characterized by being formed.
3 . 請求項 1および 2のいずれか一項に記載の回転機用コアにおいて、 前記コアバック部は、 複数枚の素片を連ねて環状に配置すると共に、 複数層積層した構造であること  3. The core for a rotating machine according to any one of claims 1 and 2, wherein the core back portion has a structure in which a plurality of pieces are continuously arranged in a ring shape and a plurality of layers are stacked.
を特徴とする回転機用コア。 A core for a rotating machine.
4 .コアバック部と複数のティース部とを有する回転機用コアにおいて、 前記コアバック部と複数のティース部とは別体に設けられ、 前記コア バック部は、 その内周側に前記各ティース部を連結する複数のティース 連結部を有し、 前記ティース部は、 その基端が前記ティース連結部に装 着されて前記コアバック部に連結され、 かつ、  4. In a rotating machine core having a core back portion and a plurality of teeth portions, the core back portion and the plurality of teeth portions are provided separately from each other, and the core back portion is provided on the inner peripheral side thereof with each of the teeth. A plurality of teeth connecting portions for connecting the teeth, the teeth having a base end attached to the teeth connecting portion and connected to the core back portion; and
前記コアバック部は、 複数枚の素片を連ねて環状に配置すると共に、 複数層積層した構造であることを特徴とする回転機用コア。  The core for a rotating machine, wherein the core back portion has a structure in which a plurality of pieces are continuously arranged in a ring shape and a plurality of layers are stacked.
5 . 請求項 4に記載の回転機用コアにおいて、 5. The rotating machine core according to claim 4,
前記コアバック部は、 隣接する層間で、 前記素片をスロッ トピッチ単 位で周方向にずらせて配置していることを特徴とする回転機用コア。  The core for a rotating machine, wherein the core back portion is arranged such that the element pieces are shifted in a circumferential direction in slot pitch units between adjacent layers.
6 .コアバック部と複数のティース部とを有する回転機用コアにおいて、 前記コアバック部と複数のティース部とは別体に設けられ、 前記コア バック部は、 その内周側に前記各ティース部を連結する複数のティース 連結部を有し、 前記ティース部は、 その基端が前記ティース連結部に装 着されて前記コアバック部に連結され、 かつ、 前記コアバック部は、 複 数枚の素片を積層したブロックを連ねて環状に配置した構造であること を特徴とする回転機用コア。 6. In a rotating machine core having a core back portion and a plurality of teeth portions, the core back portion and the plurality of teeth portions are provided separately from each other, and the core back portion is provided on the inner peripheral side thereof with each of the teeth. A plurality of teeth connecting portions for connecting the teeth, a base end of the teeth portion is mounted on the teeth connecting portion and connected to the core back portion, and the core back portion has a plurality of teeth connecting portions. A rotating machine core having a structure in which blocks in each of which several pieces are stacked are arranged in a ring shape.
7 . 請求項 6に記載の回転機用コアにおいて、  7. The rotating machine core according to claim 6, wherein
前記コアバック部は、 前記ブロックを複数層積層した構造であること を特徴とする回転機用コア。  The core for a rotating machine, wherein the core back portion has a structure in which the blocks are stacked in a plurality of layers.
8 . 請求項 7に記載の回転機用コアにおいて、  8. The rotating machine core according to claim 7,
前記コアバック部は前記ブロックを、 隣接する層間でスロッ トピッチ 単位で周方向にずらせて配置していること  The core back portion disposes the blocks in a circumferential direction by a unit of a slot pitch between adjacent layers.
を特徴とする回転機用コア。 A core for a rotating machine.
9 . 請求項 4〜 8のいずれか一項に記載の回転機用コアにおいて、 前 記素片は、 湾曲形状を有することを特徴とする回転機用コア。  9. The rotating machine core according to any one of claims 4 to 8, wherein the element piece has a curved shape.
1 0 . 請求項 4〜 8のいずれか一項に記載の回転機用コアにおいて、 前記コアバック部を外側から締め付ける締め付け部材をさらに有し、 前記締め付け部材は、 前記コアバック部を外側から締め付けて、 前記コ ァバック部の各素片の各端部を互に周方向に接触させていることを特徴 とする回転機用コア。  10. The rotating machine core according to any one of claims 4 to 8, further comprising a fastening member for fastening the core back portion from outside, wherein the fastening member fastens the core back portion from outside. A core for a rotating machine, wherein each end of each piece of the core back portion is brought into circumferential contact with each other.
1 1 . 回転機用コアにおいて、  1 1. In the rotating machine core,
コアバック部、 および、 その内周側に装着された複数のティース部と、 前記コアバック部を外側から締め付ける締め付け部材とを有し、 前記コアバック部は、 周方向の複数箇所で分割された構造を有し、 前記締め付け部材は、 前記コアバック部を外側から締め付けて、 前記 コアバック部の分割された各部分を周方向に密接させていることを特徵 とする回転機用コア。  A core back portion, and a plurality of teeth portions mounted on an inner peripheral side thereof, and a fastening member for fastening the core back portion from outside, wherein the core back portion is divided into a plurality of portions in a circumferential direction. A core for a rotating machine, having a structure, wherein the fastening member fastens the core back portion from the outside and makes the divided portions of the core back portion closely contact in the circumferential direction.
1 2 . 請求項 1 1 に記載の回転機用コアにおいて、  1 2. The rotating machine core according to claim 11,
前記コアバック部は、 内周側に、 前記ティース部を連結するための連 結部を有し、 該連結部は、 スロッ トピッ ト対応に設けられていることを 特徴とする回転機用コア。 The core for a rotating machine, characterized in that the core back portion has a connecting portion on the inner peripheral side for connecting the teeth portion, and the connecting portion is provided corresponding to a slot pitch.
1 3 . 請求項 1 0 、 1 1および 1 2のいずれか一項に記載の回転機用コ ァにおいて、 13. The rotary machine core according to any one of claims 10, 11, and 12,
前記締め付け部材は、 スリーブで構成され、 その内側に前記コアバッ ク部をはめ込むことを特徴とする回転機用コア。  A core for a rotating machine, wherein the fastening member is formed of a sleeve, and the core back portion is fitted inside the sleeve.
1 4 . 請求項 1 0 、 1 1および 1 2のいずれか一項に記載の回転機用コ ァにおいて、  14. The rotary machine core according to any one of claims 10, 11 and 12, wherein:
前記締め付け部材は、 前記コアバック部外周に巻回された帯状部材で あることを特徴とする回転機用コア。  The rotating machine core, wherein the fastening member is a band-shaped member wound around the outer periphery of the core back portion.
1 5 . 請求項 1 0 、 1 1および 1 2のいずれか一項に記載の回転機用コ ァにおいて、  15. The rotary machine core according to any one of claims 10, 11 and 12, wherein:
前記締め付け部材は、 前記コアバック部外周を囲むモールド樹脂であ ることを特徴とする回転機用コア。  The rotating machine core, wherein the fastening member is a mold resin surrounding the outer periphery of the core back portion.
1 6 . 請求項 4〜 1 5のいずれか一項に記載の回転機用コアにおいて、 前記コアバック部は、 各素片の連なりが溶接されていることを特徴と する回転機用コア。  16. The rotating machine core according to any one of claims 4 to 15, wherein the core back portion is formed by welding a series of pieces.
1 7 . コアバック部と複数のティース部とを有する回転機用コアにおい て、  1 7. In a rotating machine core having a core back portion and a plurality of teeth portions,
前記コアバック部と複数のティース部とは別体に設けられ、 前記コア バック部は、 その内周側に前記各ティ一ス部を連結する複数のティース 連結部を有し、 前記ティース部は、 その基端が前記ティース連結部に 装着されて前記コアバック部に連結され、 かつ、 各ティース部の先端は、 円弧状に形成され、 コアバック部に装着された状態で、 順次隣接する他 のティ一ス部の先端と共に円周を構成することを特徴とする回転機用コ ァ。  The core back portion and the plurality of teeth portions are provided separately from each other, and the core back portion has a plurality of tooth connecting portions connecting the respective tooth portions on an inner peripheral side thereof. The base end is attached to the tooth connecting portion and connected to the core back portion, and the tip of each tooth portion is formed in an arc shape, and is sequentially attached to the core back portion while being attached to the core back portion. A rotating machine core, which forms a circumference with the tip of the tooth portion of the rotating machine.
1 8 . コアバック部と複数のティース部とを有する回転機用コアにおい て、 18. In a rotating machine core having a core back portion and a plurality of teeth portions,
前記コアバック部と複数のティース部とは別体に設けられ、 前記コア バック部は、 その内周側に前記各ティース部を連結する複数のティース 連結部を有し、 前記ティース部は、 その基端が前記ティース連結部に 装着されて前記コアバック部に連結され、 かつ、 各ティース部の先端は、 直線状に形成され、 コアバック部に装着された状態で、 順次隣接する他 のティース部の先端と共に多角形を構成することを特徴とする回転機用 コア。 The core back portion and the plurality of teeth portions are provided separately, and the core The back portion has a plurality of teeth connecting portions connecting the respective tooth portions on an inner peripheral side thereof, and the teeth portion has a base end attached to the tooth connecting portion and connected to the core back portion, A core for a rotating machine, wherein a tip of each tooth portion is formed in a straight line and, when attached to the core back portion, forms a polygon with the tips of other adjacent teeth in order.
1 9 . 請求項 1 〜 1 8に記載の回転機用コアにおいて、  1 9. The rotating machine core according to claim 1, wherein
前記ティース部は、 その先端側で連接した一体のティ一ス組立体であ ることを特徴とする回転機用コア。  A core for a rotating machine, wherein the teeth portion is an integral teeth assembly connected on the distal end side.
2 0 . 請求項 1〜: 1 8に記載の回転機用コアにおいて、 20. The rotating machine core according to claim 1, wherein:
前記ティース部は、 それぞれ独立の板材を積層して構成されるもので あることを特徴とする回転機用コア。  The core for a rotating machine, wherein the teeth are formed by laminating independent plate members.
2 1 . 請求項 4、 5 、 6 、 7 、 8 、 9 、 1 0 、 1 2 、 1 7 、 1 8 、 1 9 および 2 0のいずれか一項に記載の回転機用コアにおいて、  21. The rotating machine core according to any one of claims 4, 5, 6, 7, 8, 9, 9, 10, 12, 17, 18, 19 and 20.
前記コアバック部のティース連結部は、 あり溝構造を有し、 前記ティ ース部の基端部には、 前記あり溝に嵌合するありを連結部として有する ことを特徴とする回転機用コア。  The tooth connecting portion of the core back portion has a dovetail groove structure, and a dovetail that fits into the dovetail groove is provided at a base end portion of the tooth portion as a connecting portion. core.
2 2 . 請求項 4、 5 、 6 、 7 、 8 、 9 、 1 0 、 1 2 、 1 7 、 1 8 、 1 9 および 2 0のいずれか一項に記載の回転機用コアにおいて、  2 2. The rotating machine core according to claim 4, 5, 6, 7, 8, 9, 10, 12, 17, 18, 19 and 20.
前記コアバック部のティース連結部、 および、 前記ティース部の基端 部の一方の厚さを他の部分より薄くすることを特徴とする回転機用コア, A teeth connecting portion of the core back portion, and a rotating machine core, wherein one thickness of a base end portion of the teeth portion is made thinner than the other portion,
2 3 . 回転機用コアに用いられるコアバックにおいて、 2 3. In the core back used for the rotating machine core,
複数枚の素片を連ねて環状に配置すると共に、 素片を複数層積層した 構造であることを特徴とするコアバック。  A core back having a structure in which a plurality of pieces are arranged in a row in a ring and a plurality of pieces are stacked.
2 4 . 請求項 2 3に記載のコアバックにおいて、 24. In the core bag according to claim 23,
前記素片は、 コアバック部の内周側となる辺に、 ティース部を連結す るためのティース連結部を有し、 前記ティース連結部がコアの中心軸と 平行に一列に並ぶ位置関係を保って前記複数層積層されることを特徴と するコアバック。 The element has a tooth connecting portion for connecting a tooth portion to an inner peripheral side of a core back portion, and the tooth connecting portion is connected to a central axis of the core. A core back, wherein the plurality of layers are stacked while maintaining a positional relationship of being aligned in a line in parallel.
2 5 . 請求項 2 3および 2 4に記載のコアバックにおいて、  25. In the core bag according to claims 23 and 24,
前記素片は、 応力がかかると他の部分に比べて変形容易な部分をその 一部に有することを特徴とするコアバック。  A core back, characterized in that the element has, at a part thereof, a part which is easily deformed when stress is applied compared to other parts.
2 6 . 請求項 2 5に記載のコアバックにおいて、  26. In the core bag according to claim 25,
前記変形容易な部分として、 その曲げ中心部周辺に、 厚みを薄くする 薄肉部を設けることを特徴とするコアバック。  A core back, wherein a thin-walled portion for reducing the thickness is provided around the bending center portion as the easily deformable portion.
2 7 . 請求項 2 6に記載のコアバックにおいて、 27. In the core bag according to claim 26,
前記薄肉部は、 積層される素片相互で、 異なる位置となるように配置 されることを特徵とするコアバック。  A core back characterized in that the thin portions are arranged so as to be at different positions in the laminated pieces.
2 8 . 請求項 2 5に記載のコアバックにおいて、  28. In the core bag according to claim 25,
前記変形容易な部分として、 その曲げ中心部に切り欠きを設けること を特徵とするコアバック。  A core back, characterized in that a notch is provided at a bending center portion as the easily deformable portion.
2 9 . 請求項 2 8に記載のコアバックにおいて、 29. In the core bag according to claim 28,
前記切り欠きは、 積層される素片相互で、 異なる位置となるように配 置されることを特徴とするコアバック。  A core back, wherein the cutouts are arranged at different positions in the stacked pieces.
3 0 . 請求項 2 8に記載のコアバックにおいて、 前記切り欠きを 2個所 以上設けることを特徴とするコアバック。  30. The core back according to claim 28, wherein the notch is provided in two or more places.
3 1 . 請求項 2 3〜 3 0に記載のコアバックにおいて、 31. In the core back according to claims 23 to 30,
前記素片は、 積層する素片を相互に固定するためのかしめ部を複数個 所に有し、 かしめ部のうち一方は凸部であり、 他方は貫通孔であり、 前 記凸部は、 積層する他の素片の貫通孔に圧入するものであり、 前記貫通 孔は、 積層する他の素片の凸部が圧入されるものであり、 前記凸部と貫 通孔とは、 積層する上下の素片の貫通孔と凸部と対をなす位置関係に配 置されることを特徵とするコアバック。  The element has a plurality of caulked portions for fixing the laminated pieces to each other, one of the caulked portions is a convex portion, the other is a through hole, and the convex portion is The through-hole is press-fitted into a through-hole of another element to be laminated, and the through-hole is a part into which a convex portion of another element to be laminated is press-fitted, and the convex and the through-hole are laminated. A core back characterized in that it is arranged in a positional relationship that makes a pair with a through-hole and a convex portion of upper and lower element pieces.
3 2 . 複数層積層することで、 回転機用コアを構成するコアバックを形 成するための素片において、 3 2. By stacking multiple layers, the core back that forms the core for the rotating machine is formed. In the piece to form,
複数枚を連ねることによって環を形成する湾曲形態を有し、 コアバッ クの内周となる側に、 回転機のティースを連結するための連結部を有す ることを特徵とするコアバック用素片。  A core back element characterized by having a curved shape in which a plurality of sheets are connected to form a ring, and having a connecting portion for connecting teeth of a rotating machine on a side serving as an inner periphery of the core back. Pieces.
3 3 . 請求項 3 2に記載のコアバック用素片において、 33. The core back piece according to claim 32,
前記連結部は、 少なくとも両端に設けられ、 互いに他の素片と連接し た状態にあるとき、 前記ティ一スが連結可能となる形態に形成されてい ることを特徴とするコアバック用素片。  The connecting part is provided at least at both ends, and is formed in a form in which the teeth can be connected when connected to another element. .
3 4 . 請求項 3 2に記載のコアバック用素片において、  34. The core back piece according to claim 32,
前記連結部は、 中間部に少なくとも 1箇所に設けられていることを特 徵とするコアバック用素片。  A piece for a core back, wherein the connecting portion is provided at at least one position in an intermediate portion.
3 5 . 請求項 3 2 、 3 3および 3 4のいずれか一項に記載のコアバック 用素片において、  35. The core back piece according to any one of claims 32, 33 and 34,
前記連結部は、 中間部に少なくとも 1箇所と、 両端とに設けられ、 前 記両端に設けられる連結部は、 互いに他の素片と連接した状態にあると き、 前記ティースが連結可能となる形態に形成されていることを特徴と するコアバック用素片。  The connecting portion is provided at at least one position in an intermediate portion and at both ends. When the connecting portions provided at the both ends are in a state of being connected to another element, the teeth can be connected. A core back piece characterized in that it is formed in a form.
3 6 . コアバック部とティース部とを有する回転機用コアの製造方法に おいて、  36. In a method of manufacturing a rotating machine core having a core back portion and a teeth portion,
前記ティース部を連結すべきティ一ス連結部を有するコアバック部を 構成する部材を帯状部材から打ち抜くと共に、 製造すべきコアの大きさ に応じた長さに切断し、 前記コアバック部を構成する部材を目的の厚さ となるまで積層すると共に、前記ティース連結部を内周側として屈曲し、 当該部材の両端を固定してコアバック部を形成し、  A member constituting a core back portion having a tooth connecting portion to which the tooth portion is to be connected is punched out of a belt-shaped member, and cut into a length corresponding to a size of a core to be manufactured, thereby forming the core back portion. A member to be laminated is laminated to a desired thickness, the teeth connecting portion is bent with the inner peripheral side, and both ends of the member are fixed to form a core back portion,
前記コアバック部を構成する部材のティース連結部との連結部を有す ると共に、 各ティース部の先端がつながった状態の部材を帯状部材から 打ち抜くと共に、 製造すべきコアの大きさに応じた長さに切断し、 前記 ティース部を構成する部材を目的の厚さとなるまで複数枚積層すると同 時または順次 (順不同) に、 ティース部先端を外向きにしてリング状に 屈曲して、 当該部材の両端を固定して、 ティース組立体を形成し、 前記ティース組立体の各ティース部に、 予め成形したコイル成形体を 装着し、 前記コアバック部の内周に前記ティ一ス組立体を挿入する共 に、 ティース連結部に前記ティース部材の連結部を装着して、 各ティー ス部をコアバック部に固定することを特徴とする回転機用コアの製造方 法。 It has a connecting portion with the teeth connecting portion of the member constituting the core back portion, and punches out a member in a state where the tips of the teeth portions are connected from the belt-shaped member, according to the size of the core to be manufactured. Cut to length, said When a plurality of members constituting the teeth portion are laminated to a desired thickness, the teeth are bent in a ring shape at the same time or sequentially (in any order) with the tips of the teeth facing outward, and both ends of the member are fixed. A tooth assembly is formed, a pre-formed coil molded body is attached to each tooth portion of the tooth assembly, and the tooth assembly is inserted into the inner periphery of the core back portion. A method of manufacturing a core for a rotating machine, comprising: attaching a connecting portion of the tooth member to the core member; and fixing each tooth portion to a core back portion.
3 7 . 請求項 3 6に記載の回転機用コアの製造方法において、  37. The method of manufacturing a core for a rotating machine according to claim 36,
コアバック部の形成に際し、 少なく とも 2スロッ ト分の長さを有する 素片を板材から打抜き、 各素片をコアバックの周方向に順次連ねて環状 に配置すると共に、 1層おきに 1スロッ トピッチを含む複数スロッ トピ ツチずつずらして積層することを特徴とする回転機用コアの製造方法。  When forming the core back portion, a piece having a length of at least two slots is punched out of the plate material, and each piece is successively arranged in the circumferential direction of the core back in a ring shape, and one slot is provided every other layer. A method for manufacturing a core for a rotating machine, comprising laminating a plurality of slot pitches including a top pitch while shifting each other.
3 8 . 請求項 3 6に記載の回転機用コアの製造方法において、 38. In the method for manufacturing a rotating machine core according to claim 36,
コアバック部の形成に際しは、 少なく とも 2スロッ ト分の長さを有す る素片を板材から打抜き、 各素片を複数枚積層したプロックをコアバッ クの周方向に順次連ねて環状に配置すると共に、 前記ブロックの 1層お きに 1スロッ トピッチを含む複数スロッ トピツチずつずらして積層する ことを特徴とする回転機用コアの製造方法。  When forming the core back part, a piece having a length of at least 2 slots is punched out of the plate material, and a block formed by laminating a plurality of pieces is successively arranged in the circumferential direction of the core back and arranged in an annular shape. And a method of manufacturing a core for a rotating machine, wherein a plurality of slot pitches each including one slot pitch are shifted from each other for every one layer of the block.
3 9 . コアバック部とティース部とを有する回転機用コアの製造方法に おいて、 39. In a method of manufacturing a core for a rotating machine having a core back portion and a teeth portion,
前記コアバック部を、 周方向の複数箇所で分割された構造に形成する と共に、 ティース部連結し、  The core back portion is formed in a structure divided at a plurality of positions in a circumferential direction, and the teeth portion is connected,
コアの外径部よりも小さい内径をもつハウジングを温度差を与えて膨 張させて、 その内部に前記コアバック部を、 ハウジング内にはめ込み、 前記ハウジングが冷えて収縮することにより、 前記コアの円周方向に 応力がかかる状態とすることを特徴とする回転機用コアの製造方法。 A core having an inner diameter smaller than the outer diameter portion of the core is expanded by giving a temperature difference, and the core back portion is fitted in the housing, and the housing cools and contracts, thereby forming the core. A method of manufacturing a core for a rotating machine, wherein a stress is applied in a circumferential direction.
4 0 . コアバック部とティ一ス部とを有する回転機用コアの製造方法に おいて、 40. In a method for manufacturing a rotating machine core having a core back portion and a tooth portion,
前記コアバック部を、 周方向の複数箇所で分割された構造に形成する と共に、 ティース部連結し、  The core back portion is formed in a structure divided at a plurality of positions in a circumferential direction, and the teeth portion is connected,
前記コアバック部を締め付け部材により外側から締め付けて、 前記コ ァの円周方向に応力がかかる状態とすることを特徴とする回転機用コア の製造方法。  A method for manufacturing a core for a rotating machine, characterized in that the core back portion is tightened from outside by a tightening member so that stress is applied in a circumferential direction of the core.
4 1 . 請求項 4 0に記載の回転機用コアの製造方法において、  41. The method of manufacturing a core for a rotating machine according to claim 40,
前記締付けられた状態を保ったまま、 溶接により締付けた帯状部材を 締結することを特徴とする回転機用コアの製造方法。  A method for manufacturing a core for a rotating machine, comprising: fastening a belt-shaped member that has been tightened by welding while maintaining the tightened state.
4 2 .請求項 3 9および 4 0に記載の回転機用コアの製造方法において、 前記コアの円周方向に応力がかかる状態とし、 さらに、 コア外周部の 結合部を溶接等の手段で締結し、 締結後も内周側へ応力が残る構造とし たことを特徴とする回転機用コアの製造方法。  42. The method of manufacturing a core for a rotating machine according to claim 39 or 40, wherein a stress is applied in a circumferential direction of the core, and furthermore, a joint portion of the outer peripheral portion of the core is fastened by means such as welding. A method for producing a core for a rotating machine, wherein a stress remains on the inner peripheral side even after fastening.
4 3 . コアバック部とティース部とを有する回転機用コアの製造方法に おいて、 4 3. In a method of manufacturing a rotating machine core having a core back portion and a teeth portion,
分割されたコアバック部のすき間を小さくするための応力をかけるた め、 ステ一夕コイル組立後、 ステ一夕を樹脂成形金型で締付け圧力をか けながらコイルェンド部分およびス口ッ ト内空隙に樹脂を流し込み成形 すること特徴とする回転機用コアの製造方法。  In order to apply stress to reduce the gap between the divided core backs, after assembling the stay coil, tighten the stay with a resin mold to apply pressure to the coil end and the gap inside the slot. A method for manufacturing a core for a rotating machine, comprising casting a resin into a core.
4 4 . コアバック部とティース部とを有する回転機用コアの製造方法に おいて、  4 4. In a method of manufacturing a rotating machine core having a core back portion and a teeth portion,
ティース部およびコアバック部をそれぞれ板材を積層して形成すると 共に、 両者の互いに結合する部分について、 もとの板材の厚みよりも薄 く加工した後、 ティース部をコアバック部に結合させることを特徵とす る回転機用コアの製造方法。  The tooth part and the core back part are formed by laminating plate materials, and the parts that are connected to each other are processed to be thinner than the original plate material, and then the teeth part is bonded to the core back part. A special method for manufacturing cores for rotating machines.
4 5 . コアバック部とティース部とを有する回転機用コアの製造方法に おいて、 45. In a method of manufacturing a rotating machine core having a core back portion and a teeth portion. And
ティース部およびコアバック部をそれぞれ板材を積層して形成すると 共に、積層されたティース部およびコアバック部をそれぞれ圧縮成形し、 それぞれの積み厚さをそろえてから結合させることを特徴とする回転機 用コアの製造方法。  A rotating machine characterized in that the teeth portion and the core back portion are formed by laminating plate materials, respectively, and the laminated teeth portion and the core back portion are each compression-molded, and the respective stacked thicknesses are made uniform before being joined. Of manufacturing cores for
4 6 . 請求項 1〜 2 2に記載の回転機用コアのティース部に、 予め成形 されたコイルを巻き付けて構成されるステ一夕を有することを特徴とす る回転機。  46. A rotating machine characterized by having a stay formed by winding a preformed coil around a tooth portion of the rotating machine core according to any one of claims 1 to 22.
PCT/JP2000/002975 1999-05-25 2000-05-10 Core for rotating machine, method of manufacturing the same, piece for core, and rotating machine WO2000072426A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11144816A JP2000341889A (en) 1999-05-25 1999-05-25 Dynamo-electric machine core, manufacture thereof, core segments and dynamo-electric machine
JP11/144816 1999-05-25

Publications (1)

Publication Number Publication Date
WO2000072426A1 true WO2000072426A1 (en) 2000-11-30

Family

ID=15371139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002975 WO2000072426A1 (en) 1999-05-25 2000-05-10 Core for rotating machine, method of manufacturing the same, piece for core, and rotating machine

Country Status (2)

Country Link
JP (1) JP2000341889A (en)
WO (1) WO2000072426A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003065550A1 (en) * 2002-01-31 2003-08-07 Robert Bosch Gmbh Stator for electric machines
FR2848354A1 (en) * 2002-11-29 2004-06-11 Denso Corp COMBINED STATOR CORE FOR A ROTARY ELECTRIC MACHINE
WO2004093291A1 (en) * 2003-04-15 2004-10-28 Höganäs Ab Core back of an electrical machine and method for making the same
WO2009006951A1 (en) * 2007-07-12 2009-01-15 Cpm Compact Power Motors Gmbh Stator for electric motor
CN105409094A (en) * 2013-07-24 2016-03-16 三菱电机株式会社 Stator core, stator, method for manufacturing stator, rotating electrical machine, and electric power steering device
US9800100B2 (en) 2014-06-06 2017-10-24 Mitsubishi Electric Corporation Permanent magnet motor and driving apparatus-integrated permanent magnet motor
US10797540B2 (en) * 2016-05-30 2020-10-06 Mitsubishi Electric Corporation Stator, motor, compressor, and refrigeration air conditioner
TWI707522B (en) 2019-02-27 2020-10-11 穩正企業股份有限公司 External rotor motor and assembly method thereof
US11355975B2 (en) * 2019-01-24 2022-06-07 Ford Global Technologies, Llc Stator for motor and method of manufacturing
WO2023060063A1 (en) * 2021-10-08 2023-04-13 Crs Holdings, Llc Multi-material segmented stator

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002233116A (en) * 2001-02-06 2002-08-16 Fuji Heavy Ind Ltd Stator of rotating machine and manufacturing method of the machine, and winding jig used in the method
US20030094876A1 (en) * 2001-11-20 2003-05-22 Chun-Pu Hsu Stator structure with composite windings
JP3791492B2 (en) 2002-12-25 2006-06-28 株式会社日立製作所 Rotating electric machine, electric vehicle, and resin insert molding method
JP4612997B2 (en) * 2003-08-08 2011-01-12 日立アプライアンス株式会社 Commutator motor
JP2005295610A (en) * 2004-03-31 2005-10-20 Fuji Seratekku Kk Flux control permanent-magnet generator
JP2006230087A (en) * 2005-02-17 2006-08-31 Hitachi Ltd Electric motor, compressor, and air conditioner
KR100690685B1 (en) * 2005-07-11 2007-03-09 엘지전자 주식회사 Self-magnetizing motor comprising separable exciting pole
WO2008139531A1 (en) * 2007-04-27 2008-11-20 Mitsui High-Tec, Inc. Laminated iron core and production of the same
KR101143993B1 (en) 2006-03-09 2012-05-09 주식회사 동서전자 Stator of a motor
DE102007034195A1 (en) * 2007-07-23 2009-01-29 Robert Bosch Gmbh Stator in an internal rotor electric motor
JP5120019B2 (en) * 2008-03-28 2013-01-16 Jfeスチール株式会社 Stator core for electric motor
JP5217704B2 (en) 2008-07-07 2013-06-19 株式会社デンソー Stator manufacturing apparatus and stator manufacturing method for rotating electrical machine
US20100019598A1 (en) 2008-07-28 2010-01-28 Direct Drive Systems, Inc. Rotor for an electric machine
JP5620126B2 (en) * 2009-05-15 2014-11-05 株式会社三井ハイテック Laminated iron core
JP5445003B2 (en) * 2009-09-30 2014-03-19 Jfeスチール株式会社 Stator core for electric motor
JP5178688B2 (en) * 2009-10-30 2013-04-10 三菱電機株式会社 Permanent magnet type rotating electric machine stator
JP2011244671A (en) * 2010-05-21 2011-12-01 Ihi Corp Split stator
EP2582026A4 (en) * 2010-06-10 2016-12-07 Toyota Motor Co Ltd Stator manufacturing method and stator
JP5893247B2 (en) * 2010-12-13 2016-03-23 株式会社三井ハイテック Laminated iron core and method for manufacturing the same
JP5659770B2 (en) * 2010-12-17 2015-01-28 トヨタ紡織株式会社 Rotating electric machine core and method of manufacturing rotating electric machine core
JP2013135587A (en) * 2011-12-27 2013-07-08 Daikin Ind Ltd Stator, motor, compressor, and coil winding method
WO2014048464A1 (en) * 2012-09-26 2014-04-03 Siemens Aktiengesellschaft Active part of an electrical machine, radial magnetic bearing and method for producing a radial magnetic bearing
EP3487040A1 (en) * 2012-09-26 2019-05-22 Siemens Aktiengesellschaft Active part of an electrical machine and electrical machine
JP5901846B2 (en) * 2013-04-26 2016-04-13 三菱電機株式会社 Armature coil and manufacturing method thereof
SG11201704469YA (en) * 2014-12-05 2017-06-29 Mitsubishi Electric Corp Motor stator and method of manufacturing motor stator
TWI558068B (en) * 2015-08-05 2016-11-11 東元電機股份有限公司 Dislocation rotator core and manufacturing method thereof
JP6461381B2 (en) * 2016-02-18 2019-01-30 三菱電機株式会社 Rotating electric machine stator, rotating electric machine, and method of manufacturing rotating electric machine stator
CN109155545B (en) * 2016-05-30 2020-07-28 三菱电机株式会社 Stator, motor, compressor and refrigeration air conditioner
US10833544B2 (en) 2016-05-30 2020-11-10 Mitsubishi Electric Corporation Stator, motor, compressor, and refrigeration air conditioner
JP2018088820A (en) * 2018-02-28 2018-06-07 三菱電機株式会社 Stator of electric motor
JP7078424B2 (en) * 2018-03-07 2022-05-31 株式会社三井ハイテック Manufacturing method of laminated iron core
CN108667237A (en) * 2018-05-31 2018-10-16 广东美芝制冷设备有限公司 The manufacturing method of stator core
MX2021005903A (en) * 2018-11-20 2021-06-23 Crs Holdings Inc A method of making a multi-material segmented stator for a rotating electric machine and a stator made by said method.
CN116746030A (en) * 2021-01-27 2023-09-12 松下知识产权经营株式会社 Electric tool and motor
JP2023168728A (en) * 2022-05-16 2023-11-29 株式会社デンソー Stator and rotary electric machine

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5765044U (en) * 1980-10-07 1982-04-17
US4392073A (en) * 1978-09-15 1983-07-05 General Electric Company Dynamoelectric machine stator having concentric amorphous metal laminations and method of making same
JPS5976131A (en) * 1982-10-21 1984-05-01 Fuji Electric Co Ltd Laminated magnetic frame
JPH01198253A (en) * 1988-02-01 1989-08-09 Sanyo Electric Co Ltd Manufacture of electric compressor
JPH0428773U (en) * 1990-06-26 1992-03-06
JPH05316694A (en) * 1992-05-12 1993-11-26 Yaskawa Electric Corp Manufacture of motor stator
JPH06311675A (en) * 1993-04-23 1994-11-04 Sankyo Seiki Mfg Co Ltd Split annular core
JPH0767272A (en) * 1993-08-26 1995-03-10 Toyota Motor Corp Stator structure for synchronous machine, manufacture thereof and its tooth piece
JPH07194072A (en) * 1993-12-27 1995-07-28 Mitsui High Tec Inc Stacked iron core and its manufacture
JPH08275469A (en) * 1995-03-31 1996-10-18 Hitachi Ltd Laminated core and manufacture thereof
JPH0919089A (en) * 1995-06-30 1997-01-17 Asmo Co Ltd Stator of motor
JPH0984326A (en) * 1995-09-18 1997-03-28 Fuji Elelctrochem Co Ltd Stepping motor
JPH09308143A (en) * 1996-05-08 1997-11-28 Matsushita Electric Ind Co Ltd Material of core of rotary machine and manufacture of the core
JPH09308192A (en) * 1996-05-09 1997-11-28 Hitachi Ltd Iron core of dynamo-electric machine and its manufacture
JPH10271716A (en) * 1997-03-21 1998-10-09 Matsushita Electric Ind Co Ltd Stator core of motor and its manufacture

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05284677A (en) * 1992-03-27 1993-10-29 Yaskawa Electric Corp Stator core of electric rotating machine
JP3171303B2 (en) * 1995-01-12 2001-05-28 株式会社三井ハイテック Laminated core for stator
JPH1169670A (en) * 1997-08-12 1999-03-09 Shibaura Eng Works Co Ltd Stator core

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4392073A (en) * 1978-09-15 1983-07-05 General Electric Company Dynamoelectric machine stator having concentric amorphous metal laminations and method of making same
JPS5765044U (en) * 1980-10-07 1982-04-17
JPS5976131A (en) * 1982-10-21 1984-05-01 Fuji Electric Co Ltd Laminated magnetic frame
JPH01198253A (en) * 1988-02-01 1989-08-09 Sanyo Electric Co Ltd Manufacture of electric compressor
JPH0428773U (en) * 1990-06-26 1992-03-06
JPH05316694A (en) * 1992-05-12 1993-11-26 Yaskawa Electric Corp Manufacture of motor stator
JPH06311675A (en) * 1993-04-23 1994-11-04 Sankyo Seiki Mfg Co Ltd Split annular core
JPH0767272A (en) * 1993-08-26 1995-03-10 Toyota Motor Corp Stator structure for synchronous machine, manufacture thereof and its tooth piece
JPH07194072A (en) * 1993-12-27 1995-07-28 Mitsui High Tec Inc Stacked iron core and its manufacture
JPH08275469A (en) * 1995-03-31 1996-10-18 Hitachi Ltd Laminated core and manufacture thereof
JPH0919089A (en) * 1995-06-30 1997-01-17 Asmo Co Ltd Stator of motor
JPH0984326A (en) * 1995-09-18 1997-03-28 Fuji Elelctrochem Co Ltd Stepping motor
JPH09308143A (en) * 1996-05-08 1997-11-28 Matsushita Electric Ind Co Ltd Material of core of rotary machine and manufacture of the core
JPH09308192A (en) * 1996-05-09 1997-11-28 Hitachi Ltd Iron core of dynamo-electric machine and its manufacture
JPH10271716A (en) * 1997-03-21 1998-10-09 Matsushita Electric Ind Co Ltd Stator core of motor and its manufacture

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003065550A1 (en) * 2002-01-31 2003-08-07 Robert Bosch Gmbh Stator for electric machines
FR2848354A1 (en) * 2002-11-29 2004-06-11 Denso Corp COMBINED STATOR CORE FOR A ROTARY ELECTRIC MACHINE
US6960861B2 (en) 2002-11-29 2005-11-01 Denso Corporation Combined stator core for an electric rotary machine
WO2004093291A1 (en) * 2003-04-15 2004-10-28 Höganäs Ab Core back of an electrical machine and method for making the same
US7064469B2 (en) 2003-04-15 2006-06-20 Höganäs Ab Core back of an electrical machine and method for making the same
US8400043B2 (en) 2007-07-12 2013-03-19 Cpm Compact Power Motors Gmbh Stator for electric motor
WO2009006951A1 (en) * 2007-07-12 2009-01-15 Cpm Compact Power Motors Gmbh Stator for electric motor
CN105409094A (en) * 2013-07-24 2016-03-16 三菱电机株式会社 Stator core, stator, method for manufacturing stator, rotating electrical machine, and electric power steering device
US9800100B2 (en) 2014-06-06 2017-10-24 Mitsubishi Electric Corporation Permanent magnet motor and driving apparatus-integrated permanent magnet motor
US10797540B2 (en) * 2016-05-30 2020-10-06 Mitsubishi Electric Corporation Stator, motor, compressor, and refrigeration air conditioner
US11355975B2 (en) * 2019-01-24 2022-06-07 Ford Global Technologies, Llc Stator for motor and method of manufacturing
TWI707522B (en) 2019-02-27 2020-10-11 穩正企業股份有限公司 External rotor motor and assembly method thereof
WO2023060063A1 (en) * 2021-10-08 2023-04-13 Crs Holdings, Llc Multi-material segmented stator

Also Published As

Publication number Publication date
JP2000341889A (en) 2000-12-08

Similar Documents

Publication Publication Date Title
WO2000072426A1 (en) Core for rotating machine, method of manufacturing the same, piece for core, and rotating machine
JP3735197B2 (en) Method for manufacturing coil molded body and mold used therefor
JP3786664B2 (en) Rotating electrical machine core manufacturing method
US6794786B2 (en) Electric motor
EP0508937B1 (en) Apparatus and method for aligning stacked laminations of a dynamoelectric machine
US6806615B2 (en) Core, rotating machine using the core and production method thereof
US7926164B2 (en) Method for production of a stator and stator produced according thereto
US4472651A (en) Permanent magnet rotor
US7239059B2 (en) Stator of rotating electric machine and manufacturing method of the stator
CN112368912B (en) Radial gap type rotary motor with distributed winding method and stator thereof
US6979930B2 (en) Stator for an automotive alternator
WO2006028179A1 (en) Method for manufacturing laminated core
US8125113B2 (en) Slot wedges for electrical machines
US10530200B2 (en) Electric device stator and methods for winding
US4525925A (en) Method of making permanent magnet rotor
WO2009087835A1 (en) Stator iron-core structure for rotating electric machine, and method for manufacturing the same
JP2010148329A (en) Stator core structure of rotating electric machine
JP4313086B2 (en) Rotating machine and manufacturing method of rotating machine
JPWO2017195249A1 (en) Stator iron core and motor having the stator iron core
JP2008104288A (en) Capacitor motor, and manufacturing method therefor
JP3056738B1 (en) Manufacturing method of condenser motor stator
US6911760B2 (en) Electrical machine
TWI793700B (en) Electric machine, stator structure and method for manufacturing stator structure
JP2004500799A (en) Method of forming an annular stack of sheet metal for a stator of a linear motor and an annular stack of sheet metal
JPH053648A (en) Laminated core for stator of motor and its manufacture

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase