WO2000071840A1 - Vibration control member formed integrally with elasto-plastic and viscoelastic damper - Google Patents

Vibration control member formed integrally with elasto-plastic and viscoelastic damper Download PDF

Info

Publication number
WO2000071840A1
WO2000071840A1 PCT/JP1999/002614 JP9902614W WO0071840A1 WO 2000071840 A1 WO2000071840 A1 WO 2000071840A1 JP 9902614 W JP9902614 W JP 9902614W WO 0071840 A1 WO0071840 A1 WO 0071840A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
buckling prevention
prevention member
damping
damping material
Prior art date
Application number
PCT/JP1999/002614
Other languages
French (fr)
Japanese (ja)
Inventor
Eiichiro Saeki
Atsushi Watanabe
Kazuaki Suzuki
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to PCT/JP1999/002614 priority Critical patent/WO2000071840A1/en
Publication of WO2000071840A1 publication Critical patent/WO2000071840A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/30Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium with solid or semi-solid material, e.g. pasty masses, as damping medium
    • F16F9/306Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium with solid or semi-solid material, e.g. pasty masses, as damping medium of the constrained layer type, i.e. comprising one or more constrained viscoelastic layers
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, or groups of buildings, or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake, extreme climate
    • E04H9/02Buildings, or groups of buildings, or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake, extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/022Bearing, supporting or connecting constructions specially adapted for such buildings and comprising laminated structures of alternating elastomeric and rigid layers

Abstract

A vibration control member formed integrally with an elasto-plastic and viscoelastic damper for bracing materials and studs used mainly as earthquake and wind resistant members of a structural body, low in cost, and high in reducing effect of vibration by large, medium, and small earthquakes and strong wind, wherein damping material (3) is filled around a steel center axial force member (1), the outer side of the damping material (3) is covered by a first steel buckling prevention member (2a), damping material (3) is filled to the outside of the first steel buckling prevention member (2a), the outside of the damping material (3) is covered by a second steel buckling member (2b), one end of the steel buckling prevention member (2a) is fixed to one end of the steel center axial force member (1), one end of the second steel buckling prevention member (2b) is fixed to the other end of the steel center axial force member (1), and the first steel buckling prevention member (2a) is in contact viscoelastically with the second steel buckling prevention member (2b) through the damping material (3).

Description

明 細 書 弹塑性 · 粘弾性ダンパーを一体化した制振部材 技術分野  Specification 弹 Vibration damping member with integrated plastic and viscoelastic damper
本発明は、 主と して構造物の耐震, 耐風部材 (以下耐震部材とい う) と して利用される筋交い材, 間柱等における弾塑性 · 粘弹性ダ ンパ一を一体化した制振部材に関する。  The present invention relates to a vibration damping member that integrates an elastic-plastic and viscous damper for a brace member, a stud, and the like that are mainly used as an earthquake-resistant and wind-resistant member (hereinafter referred to as an earthquake-resistant member) of a structure. .
背景技術 Background art
構造物の筋交い材ゃ間柱における耐震部材の構造は、 大別すると 次の ( I ) 、 ( Π ) に分類される。  The structure of the seismic members in the strut ゃ studs of the structure can be roughly classified into the following (I) and (Π).
( I ) 筋交い材ゃ間柱に組込んだ鋼材, 鉛などの金属の弾塑性挙 動によるエネルギー吸収の弾塑性ダンバ一構造。 (図 1 2 ( a ) に はそのエネルギー量を面積で示している。 )  (I) Brace material 弾 Elasto-plastic damper structure that absorbs energy due to elasto-plastic behavior of metals such as steel and lead incorporated in studs. (Fig. 12 (a) shows the energy amount by area.)
( Π ) 筋交い材ゃ間柱に組合わせた高減衰ゴム, ポ リ マー, シ リ コー ン, オイルなどの粘性 · 弾性によるエネルギー吸収の粘弾性ダ ンパー構造。 (図 1 2 ( b ) にはそのエネルギー量を面積で示して いる。 )  (Ii) Brace material (1) Visco-elastic damper structure that absorbs energy by viscous and elastic materials such as high damping rubber, polymer, silicone, and oil combined with studs. (Figure 12 (b) shows the energy amount in terms of area.)
しかし、 ( I ) は製作コス トは安いが、 弾性範囲ではエネルギー を吸収しないので、 中小地震に対しては殆ど効果を発揮しない。 ま た、 強風に対しては、 低サイ クル疲労の問題が生じ易く 、 また、 ( Π ) では、 大、 中、 小の地震レベルに対して均等に効果がある。 し かし、 強風に対する振動低減効果も高いが、 製作コス トは高いとい う問題がある。 このよう に、 ( I ) , ( Π ) の構造にはそれぞれ一 長一短がある。  However, (I) has a low production cost, but does not absorb energy in the elastic range, so it has little effect on small and medium-sized earthquakes. In addition, the problem of low cycle fatigue is likely to occur against strong winds, and (Π) is equally effective for large, medium and small earthquake levels. However, it has a high vibration reduction effect against strong winds, but has the problem of high manufacturing costs. Thus, each of the structures (I) and (Π) has advantages and disadvantages.
前記 ( Π ) に属する従来の座屈拘束筋交い構造の概念図を図 1 3 に示し、 その配置例を図 1 4 に示す。 この座屈拘束筋交い 1 0 では 、 鋼製中心軸カ部材 1 の外側に減衰材 3 を充填し、 減衰材 3 の外側 に鋼製座屈防止部材 2 を接着して構成される。 この座屈拘束筋交い 1 0力 図 1 4 に示す構造物 7 における梁 5 と 6 に対し、 同図 ( a ) の V字状配置又は、 同図 ( b ) の傾斜配置に設けられる。 Figure 13 shows a conceptual diagram of the conventional buckling-restraint braced structure belonging to (前 記) above. Figure 14 shows an example of the arrangement. The buckling restraint brace 10 is constructed by filling the outside of the steel center shaft member 1 with the damping material 3 and bonding the steel buckling prevention member 2 to the outside of the damping material 3. This buckling restraint brace 10 force is provided for the beams 5 and 6 of the structure 7 shown in Fig. 14 in the V-shaped arrangement shown in Fig. 14 (a) or the inclined arrangement shown in Fig. 14 (b).
前記において、 図 1 3 ( a ) に示すよう に鋼製中心軸カ部材 1 が 地震により引張力を受けたとき、 同図 ( c ) に示すよう に鋼製座屈 防止部材 2が伸びる。 この場合、 鋼製座屈防止部材 2 の軸剛性は減 衰材 3 に比べてはるかに高いので、 この鋼製座屈防止部材 2 は軸変 形をほとんど生じない。 この結果、 鋼製中心軸カ部材 1 の両側に接 着されている減衰材 3 は同図 ( b ) のようなせん断変形を生ずる。 即ち、 減衰材 3 のせん断変形は中央部では 0 であり、 また両端部の せん断変形量は鋼製中心軸カ部材 1 の伸び量の半分なので、 せん断 変形量は全体と しては少なく 、 この結果、 減衰材 3 による減衰効果 は後述する本発明に比べて少ない。 発明の開示  In the above, when the steel central shaft member 1 receives a tensile force due to an earthquake as shown in FIG. 13 (a), the steel buckling prevention member 2 expands as shown in FIG. 13 (c). In this case, the shaft stiffness of the steel buckling prevention member 2 is much higher than that of the attenuating material 3, and therefore, the steel buckling prevention member 2 hardly undergoes shaft deformation. As a result, the damping material 3 attached to both sides of the steel center shaft member 1 undergoes shear deformation as shown in FIG. That is, the shear deformation of the damping material 3 is 0 at the center and the amount of shear deformation at both ends is half of the amount of elongation of the steel central shaft member 1, so the amount of shear deformation is small as a whole. As a result, the damping effect of the damping material 3 is smaller than that of the present invention described later. Disclosure of the invention
本発明は前記従来の課題を解決し、 コス トが安く 、 しかも大, 中 , 小の地震や強風に対する振動低減効果のある制振部材を実現する こ とを目的と し、 従来の ( I ) 弹塑性ダンパーと、 ( Π ) 粘弾性ダ ンパーとを有機的結合することで、 両者の長所を生かし、 欠点を克 服するこ とにある。 すなわち、 前記 ( I ) の座屈止めおよび絶縁材 を前記 ( Π ) の粘弾性ダンパーと して兼用するこ とで、 それぞれ別 々 に作るより も安価に製作でき、 耐震性能も飛躍的に向上させるこ とができる。  An object of the present invention is to solve the above-mentioned conventional problems and to realize a vibration damping member which is inexpensive and has a vibration reducing effect against large, medium and small earthquakes and strong winds. (4) By organically connecting the plastic damper and the (Π) viscoelastic damper, the advantages of both can be exploited and the disadvantages can be overcome. That is, by using the buckling stopper and the insulating material of the above (I) as the viscoelastic damper of the above (Π), they can be manufactured at a lower cost than separately manufactured, and the seismic performance is dramatically improved. It can be done.
前記の目的と優れた耐震性能を達成するため、 本発明に係る第一 の特徴は、 弹塑性 · 粘弾性ダンパーを一体化した制振部材は、 鋼製 中心軸カ部材 1 の外側に減衰材 3 を充填し、 当該減衰材 3 の外側を 第 1 の鋼製座屈防止部材 2 aで覆い、 更に当該第 1 の鋼製座屈防止 部材 2 aの外側に減衰材 3 を充塡し、 当該減衰材 3 の外側を第 2 の 鋼製座屈防止部材 2 bで覆い、 当該第 1 の鋼製座屈防止部材 2 aの 一端と鋼製中心軸カ部材 1 の一端を固着し、 当該第 2 の鋼製座屈防 止部材 2 bの一端と鋼製中心軸カ部材 1 の他の一端を固着し、 当該 第 1 の鋼製座屈防止部材 2 a と当該第 2 の鋼製座屈防止部材 2 bは 減衰材 3 を介して粘弹性的に接触しているこ とを特徴とする。 In order to achieve the above object and excellent seismic performance, the first feature of the present invention is that: a vibration damping member integrating a plastic and viscoelastic damper is made of steel The outside of the central shaft member 1 is filled with the damping material 3, the outside of the damping material 3 is covered with the first steel buckling prevention member 2a, and the first steel buckling prevention member 2a is further covered. The outside is filled with the damping material 3, and the outside of the damping material 3 is covered with the second steel buckling prevention member 2b. One end of the first steel buckling prevention member 2a and the steel center shaft are provided. One end of the power member 1 is fixed, and one end of the second steel buckling prevention member 2b and the other end of the steel center shaft power member 1 are fixed, and the first steel buckling prevention member is fixed. 2 a and the second steel buckling prevention member 2 b are characterized by being in viscous contact with each other via the damping material 3.
本発明の第二の特徴は、 前記鋼製中心軸カ部材 1 と、 前記第 1 の 鋼製座屈防止部材 2 a及び第 2 の鋼製座屈防止部材 2 bの断面が平 板からなり、 減衰材 3 は、 当該鋼製中心軸カ部材 1 及び第 1 の鋼製 座屈防止部材 2 aの間の空間並びに、 当該鋼製中心軸カ部材 1 及び 第 2 の鋼製座屈防止部材 2 bの間の空間にそれぞれ平板状に充塡さ れているこ とを特徴とする。  A second feature of the present invention is that a cross section of the steel central shaft member 1, the first steel buckling prevention member 2a, and the second steel buckling prevention member 2b is a flat plate. The damping material 3 includes a space between the steel center shaft power member 1 and the first steel buckling prevention member 2a, and the steel center shaft power member 1 and the second steel buckling prevention member. It is characterized in that the space between 2b is filled in a plate shape.
本発明の第三の特徴は、 前記鋼製中心軸カ部材 1 及び前記第 1 の 鋼製座屈防止部材 2 aの断面が平板からなり、 当該鋼製中心軸力部 材 1 及び第 1 の鋼製座屈防止部材 2 aの間の空間及び、 周囲に充填 された減衰材 3 の外側に、 第 2 の鋼製座屈防止部材 2 bが矩形断面 に配置されている こ とを特徴とする。  A third feature of the present invention is that the steel central shaft power member 1 and the first steel buckling prevention member 2a are formed of flat plates, and the steel central axial force member 1 and the first steel The second steel buckling prevention member 2b is arranged in a rectangular cross section outside the space between the steel buckling prevention members 2a and the outside of the damping material 3 filled in the periphery. I do.
本発明の第四の特徴は、 前記鋼製中心軸カ部材 1 の両端部には、 断面が十字型に鋼材が固着されているこ とを特徴とする。  A fourth feature of the present invention is that a steel material is fixed to both ends of the steel center shaft member 1 in a cross-shaped cross section.
本発明の第五の特徴は、 前記鋼製中心軸カ部材 1 及び前記第 1 の 鋼製座屈防止部材 2 aの端部並びに、 鋼製中心軸カ部材 1 の他の端 部及び第 2 の鋼製座屈防止部材 2 bには、 それぞれ鋼板を固着して いることを特徴とする。  A fifth feature of the present invention is that the steel central shaft power member 1 and the first steel buckling prevention member 2a have an end portion, and the steel central shaft power member 1 has another end portion and a second end portion. Each of the steel buckling prevention members 2b has a steel plate fixed thereto.
本発明の第六の特徴は、 前記第 2 の鋼製座屈防止部材 2 bの外側 に更に減衰材 3 を充填し、 当該減衰材 3 の外側を第 3 の鋼製座屈防 止部材 2 cで覆う こ とを特徴とする。 図面の簡単な説明 A sixth feature of the present invention is that the outside of the second steel buckling prevention member 2b is further filled with a damping material 3, and the outside of the damping material 3 is covered with a third steel buckling prevention member. It is characterized by being covered with a stop member 2c. BRIEF DESCRIPTION OF THE FIGURES
図 1 ( a ) 、 図 1 ( b ) は本発明の第 1 実施例に係わる制振部 材の概念図、 図 1 ( c ) は第 1 、 第 2実施例に係わる減衰材の歪み 分布図である。  1 (a) and 1 (b) are conceptual diagrams of the vibration damping member according to the first embodiment of the present invention, and FIG. 1 (c) is a strain distribution diagram of the damping material according to the first and second embodiments. It is.
図 2 は、 本発明の第 2実施例に係わるに係わる制振部材の概念図 である。  FIG. 2 is a conceptual diagram of a vibration damping member according to a second embodiment of the present invention.
図 3 ( a ) は本発明の第 1 実施例に係わる制振部材の斜視図、 図 3 ( b ) はその使用例の配置説明図である。  FIG. 3A is a perspective view of the vibration damping member according to the first embodiment of the present invention, and FIG. 3B is a layout explanatory view of a usage example thereof.
図 4 は本発明の第 2実施例に係わる制振部材の側面図と平面図で ある。  FIG. 4 is a side view and a plan view of a vibration damping member according to a second embodiment of the present invention.
図 5 は、 図 4の C一 C断面図である。  FIG. 5 is a cross-sectional view taken along the line C-C of FIG.
図 6 ( a ) は、 図 4の B— B断面図であり、 図 6 ( b ) は図 4の D— D断面図である。  FIG. 6A is a sectional view taken along line BB of FIG. 4, and FIG. 6B is a sectional view taken along line DD of FIG.
図 7 は、 図 4の A— A断面図である。  FIG. 7 is a sectional view taken along line AA of FIG.
図 8 ( a ) は第 3実施例に係わる制振部材の側面図、 ( b ) , ( c ) , ( d ) は同図 ( a ) の D— D, E— E, F— F断面図である 図 9 ( a ) , ( b ) , ( c ) , ( d ) は本発明の実施例に係わる 制振部材の使用例の配置説明図である。  Fig. 8 (a) is a side view of the vibration damping member according to the third embodiment, and (b), (c), and (d) are D-D, E-E, and F-F cross-sectional views of (a). FIGS. 9 (a), 9 (b), 9 (c), and 9 (d) are explanatory diagrams of the arrangement of a use example of the vibration damping member according to the embodiment of the present invention.
図 1 0 ( a ) は第 3実施例に係わる制振部材の斜視図、 ( b ) は その使用例の配置説明図である。  FIG. 10 (a) is a perspective view of a vibration damping member according to a third embodiment, and FIG. 10 (b) is a layout explanatory view of a usage example thereof.
図 1 1 は、 本発明による制振部材と従来例の制振部材の制振効果 の比較を示す図である。  FIG. 11 is a diagram showing a comparison of the vibration damping effects of the vibration damping member according to the present invention and the conventional vibration damping member.
図 1 2 ( a ) , ( b ) はそれぞれ弾塑性ダンパーと粘弾性ダンバ 一の地震エネルギー量を面積で示す図である。 図 1 3 ( a ) 従来の座屈拘束筋かいの引張力を与える前の概念図 、 ( b ) は引張後の粘弾性体の歪み分布図、 ( c ) は引張力を与え た後の概念図である。 Figures 12 (a) and (b) show the seismic energy of the elasto-plastic damper and the viscoelastic damper by area, respectively. Fig. 13 (a) Conceptual diagram of conventional buckling restraint brace before applying tensile force, (b) Strain distribution diagram of viscoelastic body after tension, (c) Concept after applying tensile force FIG.
図 1 4 ( a ) , ( b ) は従来の座屈拘束筋かいの使用例の配置説 明図である。 発明を実施するための最良の実施形態  Figures 14 (a) and 14 (b) are illustrations of the arrangement of a conventional buckling restraint bracing. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明の実施の形態を図を参照して詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
図 1 ( a ) , ( b ) は本発明の第 1 例に係る制振部材 8 を示す概 念図で、 鋼製中心軸カ部材 1 の外側に減衰材 3 における第 1 の減衰 材 3 aを接着して充塡し、 当該減衰材 3 a の外側を第 1 の鋼製座屈 防止部材 2 aで接着して覆い、 更に、 当該第 1 の鋼製座屈防止部材 2 a の外側に第 2 の減衰材 3 bを接着して充塡し、 当該減衰材 3 b の外側を第 2 の鋼製座屈防止部材 2 bで接着して覆い、 当該第 1 の 鋼製座屈防止部材 2 aの一端と、 鋼製中心軸カ部材 1 の他の一端を 固着し、 当該第 1 の鋼製座屈防止部材 2 a と当該第 2 の鋼製座屈防 止部材 2 b とを第 2 の減衰材 3 bを介して粘性的に接着している。 前記減衰材 3 は、 各種粘弾性材料 (具体例と して、 高減衰ゴム, ァ ク リ ル系ポリ マー, ゴムァスフ ァノレ ト, シ リ コー ンゴムなど) など 応力一ひずみ関係が楕円となる特性を持つ材料であればいずれでも よい。 また、 前記鋼製座屈防止部材 2 a , 2 bはせん断歪み発生部 材でもよい。  FIGS. 1 (a) and 1 (b) are conceptual diagrams showing a vibration damping member 8 according to a first embodiment of the present invention, in which a first damping material 3a of a damping material 3 is provided outside a steel central shaft member 1. FIG. The first damping member 3a is bonded and covered with a first steel buckling prevention member 2a, and the outside is further covered with the first steel buckling prevention member 2a. The second damping member 3b is bonded and filled, and the outside of the damping member 3b is bonded and covered with a second steel buckling prevention member 2b, and the first steel buckling prevention member is bonded. 2a and one end of the steel center shaft member 1 are fixedly attached to each other, and the first steel buckling prevention member 2a and the second steel buckling prevention member 2b are connected to each other. Viscously adhered through the damping material 3b of 2. The damping material 3 is made of various viscoelastic materials (for example, high damping rubber, acrylic polymer, rubber phenolate, silicone rubber, etc.). Any material can be used as long as it has Further, the steel buckling prevention members 2a and 2b may be shear strain generating members.
前記において、 図 1 ( a ) の制振部材 8 における鋼製中心軸力部 材 1 の両端部に、 地震による引張り力が生じた場合、 鋼製中心軸力 部材 1 が伸びる。 このとき、 第 1 の鋼製座屈防止部材 2 a の伸び及 び第 2 の鋼製座屈防止部材 2 b の軸剛性は、 第 1 と第 2 の減衰材 3 a , 3 bに比べてはるかに高いので、 第 1 と第 2 の減衰材 3 a, 3 bがせん断変形を生ずる。 第 1 と第 2 の減衰材 3 a , 3 bのせん断 変形量の合計 (すなわち、 減衰効果) は、 図 1 3 のせん断変形のそ れぞれ 2倍〜 4倍であり、 図 1 の機構が第 1 と第 2 の減衰材 3 a,In the above, when a tensile force is generated at both ends of the steel central axial force member 1 in the vibration damping member 8 of FIG. 1A, the steel central axial force member 1 extends. At this time, the elongation of the first steel buckling prevention member 2a and the axial rigidity of the second steel buckling prevention member 2b are smaller than those of the first and second damping members 3a and 3b. Since it is much higher, the first and second dampers 3a, 3 b causes shear deformation. The total amount of shear deformation (ie, damping effect) of the first and second damping materials 3a and 3b is 2 to 4 times the shear deformation in Fig. 13 respectively, and the mechanism in Fig. 1 Are the first and second damping materials 3a,
3 bを効率的に変形させることがわかる。 こ こで、 鋼製中心軸力部 材 1 と接する第 1 の減衰材 3 aの歪は、 一端 (根元側) でゼロ、 他 端で鋼製中心軸カ部材 1 の歪量と等し く なる。 一方、 第 2 の減衰材It can be seen that 3b is efficiently deformed. Here, the distortion of the first damping material 3a in contact with the steel central axial force member 1 is zero at one end (root side) and equal to the distortion amount of the steel central axial force member 1 at the other end. Become. On the other hand, the second damping material
3 bの歪は、 全領域にわたった鋼製中心軸カ部材 1 の歪量と等し く なる。 The strain 3b is equal to the strain of the steel center shaft member 1 over the entire area.
図 1 ( a ) , ( b ) で述べた減衰効果は、 圧縮力に対しても同様 である。 つま り、 鋼製中心軸カ部材 1 に圧縮力が生じても、 第 1 の 鋼製座屈防止部材 2 a と第 2 の鋼製座屈防止部材 2 bの座屈拘束効 果により座屈は生じない。  The damping effects described in Figs. 1 (a) and (b) are the same for compressive forces. In other words, even if a compressive force is generated in the steel central shaft member 1, buckling is caused by the buckling restraint effect of the first steel buckling prevention member 2a and the second steel buckling prevention member 2b. Does not occur.
図 2 は本発明の第 2例に係わる制振部材 8 aを示す概念図である 。 この第 2例の制振部材 8 aが第 1 例の制振部材 8 と異なる点は、 この第 1 例の制振部材 8 における第 2 の鋼製座屈防止部材 2 bの外 側にさ らに第 3 の減衰材 3 cを充塡し、 この第 3 の減衰材 3 cの外 側を第 3 の鋼製座屈防止部材 2 cで覆っている点であり、 他の構成 は第 1 例の制振部材 8 と同じである。  FIG. 2 is a conceptual diagram showing a vibration damping member 8a according to a second example of the present invention. The difference between the damping member 8a of the second example and the damping member 8 of the first example is that the damping member 8 of the first example is located outside the second steel buckling prevention member 2b in the damping member 8 of the first example. In addition, the third damping material 3c is filled, and the outside of the third damping material 3c is covered with a third steel buckling prevention member 2c. It is the same as vibration damping member 8 in one example.
図 2 の制振部材 8 a において、 地震力により鋼製中心軸カ部材 1 に引張力が働いて、 これが伸長したときは、 図 1 の制振部材 8 と同 じ原理で、 第 1 と第 2 と第 3 の減衰材 3 a, 3 b, 3 cを効率的に 変形させ、 より大きな地震力に対しても、 この制振部材 8 aの有す る弹塑性 · 粘弾性ダンパー作用により、 この地震力を有効に吸収で きる。 実施例  When the tensile force acts on the steel central shaft member 1 due to the seismic force in the vibration damping member 8a in Fig. 2, and when it expands, the first and the second dampers have the same principle as the vibration damping member 8 in Fig. 1. The second and third damping materials 3a, 3b, 3c are efficiently deformed, and even with a larger seismic force, the 制 plastic / viscoelastic damper action of the damping member 8a allows This seismic force can be effectively absorbed. Example
次に、 図 3 〜図 1 0 を参照して本発明の実施例を説明する。 図 3 は本発明の第 1 実施例を示す。 同図に示すよう に、 互いに間 隔を有して平行に配設された鋼製中心軸カ部材 (主に鋼材) 1 と、 第 1 の鋼製座屈防止部材 (主に鋼材) 2 aのそれぞれの一端部同士 を第 1 接合用鋼材 4 aで接合し、 また、 鋼製中心軸カ部材 1 の他端 部と第 2 の鋼製座屈防止部材 (主に鋼材) の他端部とを第 2接合用 鋼材 4 bで接合し、 かつ、 鋼製中心軸カ部材 1 と第 1 と第 2 の鋼製 座屈防止部材 2 a と 2 bの間に形成される平行な間隔に第 1 と第 2 の減衰材 3 a, 3 bを充填して制振部材 8 を構成する。 そ して、 こ の制振部材 8 を図 3 ( b ) に示すよう に梁 5 と柱 6 とからなる構造 物 7 に対し、 V字状ブレースの様に接合する。 Next, an embodiment of the present invention will be described with reference to FIGS. FIG. 3 shows a first embodiment of the present invention. As shown in the figure, a steel center shaft power member (mainly steel) 1 and a first steel buckling prevention member (mainly steel) 2a are arranged in parallel with a space between each other. The other end of the steel central shaft member 1 and the other end of the second steel buckling prevention member (mainly steel) are joined together with the first joining steel member 4a. And the second joint steel member 4b, and at the parallel interval formed between the steel center shaft member 1 and the first and second steel buckling prevention members 2a and 2b. The first and second damping materials 3 a and 3 b are filled to form the vibration damping member 8. Then, as shown in FIG. 3 (b), the vibration damping member 8 is joined to a structure 7 composed of a beam 5 and a column 6 like a V-shaped brace.
前記において、 地震時に、 構造物が水平変形を生じると、 前記制 振部材 8 に引張り //圧縮降伏が生じ、 第 1 と第 2 の減衰材 3 a, 3 bにせん断変形が生じる。 この結果、 第 1 と第 2 の減衰材 3 a , 3 bが図 1 2 ( b ) に示すようなエネルギー吸収を行なう。 さ らに、 この、 引張力/圧縮力が大きい場合、 鋼製中心軸カ部材 1 に引張り Z圧縮降伏が生じ、 図 1 2 ( a ) に示すようなエネルギー吸収を行 なう。 また、 鋼製中心軸カ部材 1 に圧縮力が生じても、 第 1 の鋼製 座屈防止部材 2 a と、 第 2 の鋼製座屈防止部材 2 bの座屈拘束効果 により、 座屈は生じない。  In the above, when a structure undergoes horizontal deformation during an earthquake, tension // compression yield occurs in the damping member 8, and shear deformation occurs in the first and second damping materials 3a and 3b. As a result, the first and second damping members 3a and 3b absorb energy as shown in FIG. 12 (b). Further, when the tensile / compressive force is large, tensile Z-compression yield occurs in the steel central shaft member 1, and energy is absorbed as shown in Fig. 12 (a). Even if a compressive force is generated in the steel central shaft member 1, the buckling is effected by the buckling restraint effect of the first steel buckling prevention member 2a and the second steel buckling prevention member 2b. Does not occur.
図 4 〜図 7 は本発明の第 2 実施例を示す。  4 to 7 show a second embodiment of the present invention.
第 2実施例において、 鋼製中心軸カ部材 1 の中間部は、 図 4 の C 一 C断面と して図 5 に示すよう に板状で、 左右の両端部は図 4 の A — A断面、 B— B断面、 D— D断面と して図 6 ( a ) 、 ( b ) およ び図 7 に示すように、 前記扳部材に補強中心軸カ部材 1 1 が取付け られて十字状断面に構成されている。  In the second embodiment, the middle portion of the steel center shaft member 1 is plate-shaped as shown in FIG. 5 as a C-C cross section in FIG. 4, and both left and right end portions are cross-sections A—A in FIG. As shown in FIG. 6 (a), (b) and FIG. 7 as B-B section and D-D section, a cross-shaped Is configured.
鋼製中心軸カ部材 1 の外側に、 摩擦緩和材 2 6 を貼付し、 その外 側に第 3 の鋼製座屈防止部材 2 cが鋼製中心軸カ部材 2 bを挟むよ う に 2枚平行に設けられている。 その一端では、 図 6 ( a ) B— B 断面に示すように、 固定ボル トを介して鋼製中心軸カ部材 1 に固定 されている。 A friction-reducing material 26 is attached to the outside of the steel center shaft member 1, and a third steel buckling prevention member 2c sandwiches the steel center shaft member 2b on the outside. The two are provided in parallel. At one end, as shown in Fig. 6 (a) BB section, it is fixed to a steel center shaft power member 1 via a fixing bolt.
第 3 の鋼製部材 2 cの外側に一定の厚さを持つ減衰材 3 を配置し 、 更に前記鋼製部材 2 cの外側に第 2 の鋼製座屈防止部材 2 bが鋼 製部材 2 c を挟むように 2枚平行に設けられている。 前記鋼製部材 2 cを鋼製中心軸カ部材 1 と固定した端部と異なる端部では、 フ ィ ラープレー ト 2 4 を介して鋼製中心軸カ部材 1 と鋼製座屈防止部材 2 bはボル ト 1 9、 2 0 を用いて固定されている。 また、 鋼製中心 軸カ部材 1 力 軸方向に伸縮を生じた場合、 減衰材 3 が剪断変形を 生じるよう に構成されている。 鋼製座屈防止部材 2 bは、 両端にお いて補強中心軸カ部材 1 1 と空間的にぶっかる部分はコの字状の開 口部を設けている。  A damping material 3 having a certain thickness is arranged outside the third steel member 2c, and a second steel buckling prevention member 2b is provided outside the steel member 2c. Two pieces are provided in parallel so as to sandwich c. At an end different from the end where the steel member 2c is fixed to the steel center shaft member 1, a steel center shaft member 1 and a steel buckling prevention member 2b are connected via a filler plate 24. Are fixed using bolts 19 and 20. In addition, the steel center shaft power member 1 is configured such that when it expands and contracts in the force axis direction, the damping material 3 generates shear deformation. The steel buckling prevention member 2b has a U-shaped opening at both ends in a portion that spatially collides with the reinforcing central shaft member 11 at both ends.
第 2 の鋼製部材 2 bの両側面に、 第 1 の鋼製部材 2 aを配置し、 固定ボル トで前記鋼製部材 2 a と第 2 の鋼製部材 2 bが結合された こ とで図 5 C— C断面に示すよう に閉断面になり座屈防止効果が飛 躍的に向上する。  The first steel member 2a is arranged on both side surfaces of the second steel member 2b, and the steel member 2a and the second steel member 2b are connected by a fixed bolt. As shown in Fig. 5C-C section, the section becomes closed and the buckling prevention effect is dramatically improved.
この第 2実施例においても、 第 1 実施例と同様地震時に、 構造物 が水平変形を生じると、 前記制振部材 8 に引張り /圧縮降伏が生じ 、 第 1 と第 2 の減衰材 3 a, 3 bにせん断変形が生じる。 この結果 、 第 1 と第 2減衰材 3 a, 3 bが図 1 2 ( b ) に示すようなェネル ギ一吸収を行なう。 さ らに、 この引張力/圧縮力が大きい場合、 鋼 製中心軸カ部材 1 に引張り /圧縮降伏が生じ、 図 1 2 ( a ) に示す ようなェネルギー吸収を行なう。 また、 鋼製中心軸カ部材 1 に圧縮 力が生じても、 第 1 の鋼製座屈防止部材 2 a と第 2 の鋼製座屈防止 部材 2 bの座屈拘束効果により、 座屈は生じない。  In the second embodiment, as in the first embodiment, when the structure undergoes horizontal deformation during an earthquake, tension / compression yield occurs in the damping member 8, and the first and second damping members 3a, Shear deformation occurs in 3b. As a result, the first and second damping materials 3a and 3b perform energy absorption as shown in FIG. 12 (b). Further, when the tensile force / compressive force is large, tensile / compressive yield occurs in the steel central shaft member 1, and energy is absorbed as shown in Fig. 12 (a). Even if a compressive force is generated in the steel central shaft member 1, buckling is suppressed by the buckling restraint effect of the first steel buckling prevention member 2a and the second steel buckling prevention member 2b. Does not occur.
図 8 ( a ) 〜 ( b ) は本発明の第 3実施例を示す。 第 3実施例の おいては、 鋼製中心軸カ部材 1 は、 図 8 ( a ) の D _ D, E— E, F— F断面図と して、 同図 ( b ) , ( c ) , ( d ) に示すところか ら分かるように全長にわたって略十字状断面に構成されている。 この十字状断面の鋼製中心軸カ部材 1 の外側に、 図 8 ( b ) , ( c ) , ( d ) に断面図で示す配設構造で、 第 1 と第 2 の鋼製座屈防 止部材 2 a, 2 b と、 第 1 と第 2 の減衰材 (粘弾性材料) 3 a, 3 b と、 接合用鋼材 1 8が設けられている。 FIGS. 8A and 8B show a third embodiment of the present invention. Of the third embodiment In this case, the steel center shaft member 1 is shown in cross-sections D-D, E-E, and F-F in Fig. 8 (a), as shown in (b), (c), (d) As can be seen from the figure, it has a substantially cross-shaped cross section over the entire length. The first and second steel buckling prevention members are provided on the outer side of the steel shaft member 1 having a cross-shaped cross-section, as shown in the cross-sectional views of FIGS. Stop members 2a and 2b, first and second damping materials (viscoelastic materials) 3a and 3b, and a joining steel material 18 are provided.
さ らに説明すると、 図 8 ( a ) の左端部では図 8 ( b ) に示すよ う に十字状断面中心軸カ部材 1 の外側に 4 つの断面 L字形の接合用 鋼材 1 8が配設され、 この接合用鋼材 1 8 の外側にはスぺ一サ 1 8 aを介して 4 つの断面 L字形の第 2 の鋼製座屈防止部材 2 bが配設 され、 その翼部において各部材を貫通する固定用ボル ト 1 9 とナツ ト 2 0 により接合用鋼材 1 8 を介して中心軸カ部材 1 と第 2 の鋼製 座屈防止部材 2 b とが結合されている。  More specifically, at the left end of Fig. 8 (a), as shown in Fig. 8 (b), four steel members 18 having an L-shaped cross section are arranged outside the center shaft member 1 having a cross-shaped cross section. Outside the joining steel material 18, four second L-shaped steel buckling prevention members 2 b having an L-shaped cross section are arranged via a spacer 18 a. The center shaft power member 1 and the second steel buckling prevention member 2b are connected via a joining steel material 18 by a fixing bolt 19 and a nut 20 penetrating therethrough.
図 8 ( a ) の中間部では図 8 ( c ) に示すように、 十字状断面の 中心軸カ部材 1 の外側に、 内から順にそれぞれ断面 L字形の薄層の 第 1 の減衰材 3 a と、 第 1 の鋼製座屈防止部材 2 a と、 第 2 の減衰 材 3 b と、 第 2 の鋼製座屈防止部材 2 b とが積層され、 各内外層部 材は第 1 と第 2 の減衰材 3 a , 3 b に接合されている。  In the middle part of Fig. 8 (a), as shown in Fig. 8 (c), outside the central shaft member 1 having a cross-shaped cross section, the first damping material 3a of a thin layer having an L-shaped cross section is sequentially arranged from the inside in order. And a first steel buckling prevention member 2a, a second damping material 3b, and a second steel buckling prevention member 2b, and the inner and outer layer members are first and second layers. It is joined to 2 damping materials 3a and 3b.
図 8 ( a ) の右端部では図 8 ( c ) に示すよう に、 十字状断面の 中心軸カ部材 1 の外側にフィ ラープレー ト 2 4 を介して第 1 の鋼製 座屈防止部材 2 aが配設され、 その翼部において、 各部材を貫通す る固定用ボル ト 1 9 とナツ ト 2 0 により両部材が結合されている。 さ らに図 8 ( a ) の左端から右方向に伸長する第 2鋼製座屈防止部 材 2 bの先端 2 1 は、 第 2 の鋼製座屈防止部材 2 bの基端段部 2 3 と近接する位置で停止している。 また、 図 8 ( b ) の右端から左方 向に伸長する第 1 の鋼製座屈防止部材 2 aの先端 2 2 は、 接合用鋼 材 1 8 と近接する位置で停止している。 At the right end of Fig. 8 (a), as shown in Fig. 8 (c), the first steel buckling prevention member 2a is provided on the outside of the central shaft member 1 having a cross-section through a filler plate 24. At the wings, the two members are connected by fixing bolts 19 and nuts 20 penetrating the respective members. In addition, the distal end 21 of the second steel buckling prevention member 2b extending rightward from the left end in FIG. 8 (a) is the base step 2 of the second steel buckling prevention member 2b. It stops at a position close to 3. Further, the tip 22 of the first steel buckling prevention member 2a extending leftward from the right end in FIG. It stops at a position close to timber 18.
この第 3実施例においても、 第 1 , 第 2 実施例と同様地震時に、 構造物が水平変形を生じると、 前記制振部材 8 に引張り /圧縮降伏 が生じ、 第 1 と第 2 の減衰材 3 a, 3 bにせん断変形が生じる。 こ の結果、 第 1 と第 2 の減衰材 3 a , 3 bによってエネルギー吸収が 行われる。 さ らに、 引張力 Z圧縮力が大きい場合、 鋼製中心軸力部 材 1 に引張り Z圧縮降伏が生じエネルギー吸収が行われる。 また、 鋼製中心軸カ部材 1 に圧縮力が生じても、 第 1 の鋼製座屈防止部材 2 a と第 2 の鋼製座屈防止部材 2 bの座屈拘束効果により、 座屈は 生じない。  In the third embodiment, as in the first and second embodiments, when the structure undergoes horizontal deformation during an earthquake, a tension / compression yield occurs in the damping member 8, and the first and second damping members are provided. Shear deformation occurs in 3a and 3b. As a result, energy is absorbed by the first and second damping materials 3a and 3b. In addition, when the tensile force Z compressive force is large, tensile Z compressive yield occurs in the steel central axial force member 1 and energy is absorbed. Even if a compressive force is generated in the steel central shaft member 1, the buckling is suppressed by the buckling restraint effect of the first steel buckling prevention member 2a and the second steel buckling prevention member 2b. Does not occur.
図 9 には、 第 1 実施例と第 2 実施例に係る各制振部材 8 , 8 a、 構造物 7 における柱 6 と梁 5 への配置例を示し、 通常のブレースと 同じように、 図 9 ( a ) では V字状配置、 同図 ( b ) では山形配置 、 同図 ( c ) では右上り傾斜配置、 同図 ( d ) は左上り傾斜の配置 の例を示す。 また、 各制振部材 8, 8 aの柱 6 や梁 5 に対する固定 構造も通常のブレースと同様で、 鋼製中心軸カ部材 1 をボル ト, 溶 接などを用いて固定する。  Fig. 9 shows an example of the arrangement of the damping members 8 and 8a according to the first and second embodiments on the columns 6 and the beams 5 in the structure 7, as in the case of ordinary braces. 9 (a) shows an example of a V-shaped arrangement, FIG. (B) shows an example of a chevron-shaped arrangement, FIG. (C) shows an example of an upper-right inclined arrangement, and FIG. The structure for fixing the damping members 8 and 8a to the column 6 and the beam 5 is the same as that of a normal brace, and the steel center shaft member 1 is fixed using bolts, welding, and the like.
図 1 0 は本発明の第 3実施例を示す。 同図に示すようにこの制振 部材 8 は、 互いに間隔を有して平行に配設された鋼製中心軸カ部材 1 と、 第 1 の鋼製座屈防止部材 (又はせん断歪発生部材) 2 aの一 端部同士を複数のボル ト穴 1 6 を有する角板状の第 1 接合用鋼材 1 7 aで接合し、 また、 鋼製中心軸カ部材 1 の他端部と、 第 2 の鋼製 座屈防止部材 (又はせん断歪発生部材) 2 bの他端部とを同 じ く 複 数のボル ト穴 1 6 を有する角板状の第 2接合用鋼材 1 7 bで接合し 、 かつ、 鋼製中心軸カ部材 1 と、 第 1 , 第 2 の鋼製座屈防止部材 2 a, 2 bの間に形成される平行な間隙に第 1 と第 2 の減衰材 (粘弾 性材料) 3 a , 3 bを充填して制振部材 8 を構成する。 第 3実施例の制振部材 8 の上下端は、 柱 6 と梁 5 が組まれた構造 物 7 における上下の梁 5 に固定ボル トを用いて固定される。 FIG. 10 shows a third embodiment of the present invention. As shown in the figure, the vibration damping member 8 is composed of a steel central shaft member 1 and a first steel buckling prevention member (or a shear strain generating member) which are arranged in parallel with a space therebetween. One end of 2a is joined with a first joining steel member 17a in the form of a square plate having a plurality of bolt holes 16 and the other end of the central steel shaft member 1 Buckling prevention member (or shear strain generating member) 2b and the other end of b are also joined by a square plate-shaped second joining steel member 17b having a plurality of bolt holes 16 in the same manner. And a first and second damping material (viscoelastic) in a parallel gap formed between the steel center shaft member 1 and the first and second steel buckling prevention members 2a and 2b. Filling 3a and 3b to form the vibration damping member 8. The upper and lower ends of the damping member 8 of the third embodiment are fixed to the upper and lower beams 5 of the structure 7 in which the columns 6 and the beams 5 are assembled by using fixing bolts.
図 1 0 の制振部材 8 において、 鋼製中心軸カ部材 1 は地震時に、 せん断変形を生じる。 このとき、 鋼製中心軸カ部材 1 は、 第 1 と第 2 の鋼製座屈防止部材 2 a, 2 b と第 1 と第 2 の減衰材 3 a, 3 b で拘束されているため、 局部座屈を生じる こ とがない。 そ して、 あ る荷重を越えた場合、 せん断降伏を生じ、 図 1 2 ( a ) で示すよう な復元力特性を示し、 エネルギーを吸収する。 また、 第 1 と第 2 の 鋼製座屈防止部材 2 a, 2 bは、 せん断剛性が高いので、 ほとんど 変形しない。 したがって、 地震時に、 鋼製中心軸カ部材 1 と第 1 の 鋼製座屈防止部材 2 a との間及び、 第 1 と第 2 の鋼製座屈防止部材 2 a , 2 b との間に相対変位が生じ、 第 1 と第 2 の減衰材 3 a , 3 bがせん断変形を生じる。 この結果、 図 1 2 ( b ) に示すような復 元力特性を示し、 エネルギーを吸収する。 なお、 第 3 実施例におい て薄層の減衰材 3 a はなく ても構わない。  In the damping member 8 shown in Fig. 10, the steel central shaft member 1 undergoes shear deformation during an earthquake. At this time, the steel central shaft member 1 is restrained by the first and second steel buckling prevention members 2a, 2b and the first and second damping members 3a, 3b. Does not cause local buckling. When a certain load is exceeded, shear yield occurs and exhibits the restoring force characteristics as shown in Fig. 12 (a), absorbing energy. Also, the first and second steel buckling prevention members 2a and 2b hardly deform because of their high shear rigidity. Therefore, at the time of the earthquake, between the steel central shaft member 1 and the first steel buckling prevention member 2a and between the first and second steel buckling prevention members 2a and 2b. A relative displacement occurs, and the first and second damping members 3a, 3b undergo shear deformation. As a result, it shows a restoring force characteristic as shown in Fig. 12 (b) and absorbs energy. In the third embodiment, the thin-layer damping material 3a may be omitted.
表 1 に、 本発明による制振部材と従来の制振部材とのコス ト比較 および大, 中, 小の地震や強風に対する振動低減効果の性能比較を 示した。  Table 1 shows the cost comparison between the vibration damping member according to the present invention and the conventional vibration damping member, and the performance comparison of the vibration reduction effect against large, medium and small earthquakes and strong winds.
表 1  table 1
また、 図 1 1 には本発明と従来の制振部材との性能比較を層剪断 力との関係で示した。 同図に示すように、 弾塑性ダンパーは強風や 中小地震ではほぼ線形挙動を示すので、 地震エネルギー吸収量が少 ないが、 大地震時には地震エネルギー吸収量が大きい。 一方、 粘弾 性ダンパーは、 強風, 中小地震, 大地震に対して、 常に安定したェ ネルギー吸収を行なう。 しかし、 粘弾性ダンパーは、 コス トが高い という欠点をもつ。 本発明の各実施形態では、 前記弹塑性ダンパー と粘弾性ダンパーの欠点を捕いつつ、 合体して構成されており、 コ ス トを抑えながら、 強風, 中小地震, 大地震に対して、 常に安定し たエネルギー吸収性能を持つこ とが分かる。 FIG. 11 shows the performance comparison between the present invention and the conventional vibration damping member in relation to the layer shear force. As shown in the figure, the elasto-plastic damper shows almost linear behavior in strong winds and small and medium-sized earthquakes. However, during a large earthquake, the seismic energy absorption is large. On the other hand, viscoelastic dampers always provide stable energy absorption against strong winds, small and medium-sized earthquakes, and large earthquakes. However, viscoelastic dampers have the disadvantage of being expensive. In each of the embodiments of the present invention, the structure is formed by combining the plastic damper and the viscoelastic damper while capturing the drawbacks of the plastic damper and the viscoelastic damper. It can be seen that it has stable energy absorption performance.
産業上の利用分野 Industrial applications
本発明によれば、 弹塑性ダンパーと粘弾性ダンパーとを有機的結 合するこ とで、 両者の長所を生かし、 欠点を克服でき、 大、 中、 小 の地震レベルおよび強風に対するに振動低減効果があると共に、 製 造コス ト も安い。 特に、 制振 (耐震) 部材の位置 · 個所 · 数は、 一 般に建物の平面計画上制限がある。 このよう に限られた位置に、 粘 弾性, 弹塑性ダンバ一を一体化したものを使う ことは、 粘弾性ダン パーや弹塑性ダンパーを単独に別々 に設置するより も、 効果ゃコ ス 卜の点で優れる。  According to the present invention, by combining the plastic damper and the viscoelastic damper organically, the advantages of both can be utilized and the disadvantages can be overcome. And the manufacturing cost is low. In particular, the location, location, and number of damping (seismic) members are generally limited by the floor plan of the building. The use of an integrated viscoelastic and 弹 plastic damper in such a limited position is more effective and cost effective than installing a viscoelastic damper and a ダ ン plastic damper separately. Excellent in point.

Claims

請 求 の 範 囲 The scope of the claims
1 . 鋼製中心軸カ部材 1 の外側に減衰材 3 を充塡し、 当該減衰材 3 の外側を第 1 の鋼製座屈防止部材 2 aで覆い、 更に当該第 1 の鋼 製座屈防止部材 2 aの外側に減衰材 3 を充塡し、 当該減衰材 3 の外 側を第 2 の鋼製座屈防止部材 2 bで覆い、 当該第 1 の鋼製座屈防止 部材 2 aの一端と鋼製中心軸カ部材 1 の一端を固着し、 当該第 2 の 鋼製座屈防止部材 2 bの一端と鋼製中心軸カ部材 1 の他の一端を固 着し、 当該第 1 の鋼製座屈防止部材 2 a と当該第 2 の鋼製座屈防止 部材 2 bは減衰材 3 を介して粘弹性的に接触しているこ とを特徴と する弾塑性 · 粘弾性ダンパーを一体化した制振部材。 1. Fill the outside of the steel center shaft member 1 with the damping material 3, cover the outside of the damping material 3 with the first steel buckling prevention member 2a, and furthermore, cover the first steel buckling member. The outside of the prevention member 2a is filled with the damping material 3, and the outer side of the damping material 3 is covered with the second steel buckling prevention member 2b, and the first steel buckling prevention member 2a is One end is fixed to one end of the steel center shaft member 1, and one end of the second steel buckling prevention member 2 b is fixed to the other end of the steel center shaft member 1. The steel buckling prevention member 2a and the second steel buckling prevention member 2b are integrated with an elasto-plastic and visco-elastic damper characterized in that they are in viscous contact with each other via the damping material 3. Vibration damping member.
2 . 前記鋼製中心軸カ部材 1 と、 前記第 1 の鋼製座屈防止部材 2 a及び第 2 の鋼製座屈防止部材 2 bの断面が平板からなり、 減衰材 3 は、 当該鋼製中心軸カ部材 1 及び第 1 の鋼製座屈防止部材 2 aの 間の空間並びに、 当該鋼製中心軸カ部材 1 及び第 2 の鋼製座屈防止 部材 2 bの間の空間にそれぞれ平板状に充塡されているこ とを特徵 とする請求項 1 記載の弹塑性 · 粘弾性ダンバ一を一体化した制振部 材。  2. The cross section of the steel central shaft member 1, the first steel buckling prevention member 2 a and the second steel buckling prevention member 2 b is a flat plate, and the damping material 3 is In the space between the steel center shaft member 1 and the first steel buckling prevention member 2a and in the space between the steel center shaft member 1 and the second steel buckling prevention member 2b, respectively. 2. The vibration damping member according to claim 1, wherein the vibration damping member is integrated in a flat plate shape.
3 . 前記鋼製中心軸カ部材 1 及び前記第 1 の鋼製座屈防止部材 2 aの断面が平板からなり、 当該鋼製中心軸カ部材 1 及び第 1 の鋼製 座屈防止部材 2 aの間の空間及び、 周囲に充塡された減衰材 3 の外 側に、 第 2 の鋼製座屈防止部材 2 bが矩形断面に配置されているこ とを特徴とする請求項 1 記載の弹塑性 · 粘弾性ダンバ一を一体化し た制振部材。  3. The cross section of the steel center shaft power member 1 and the first steel buckling prevention member 2a is a flat plate, and the steel center shaft power member 1 and the first steel buckling prevention member 2a are formed. The second steel buckling prevention member 2b is arranged in a rectangular cross section in the space between the two and outside of the damping material 3 filled in the periphery.振 Plastic · Vibration damper with integrated viscoelastic damper.
4 . 前記鋼製中心軸カ部材 1 の両端部には、 断面が十字型に鋼材 が固着されていることを特徴とする請求項 2又は 3記載の弾塑性 · 粘弾性ダンパーを一体化した制振部材。 4. The elasto-plastic visco-elastic damper according to claim 2 or 3, wherein a steel material is fixed to both ends of the steel center shaft power member 1 in a cross-shaped cross section. Vibration member.
5 . 前記鋼製中心軸カ部材 1 及び前記第 1 の鋼製座屈防止部材 2 aの端部並びに、 鋼製中心軸カ部材 1 の他の端部及び第 2 の鋼製座 屈防止部材 2 bには、 それぞれ鋼板を固着しているこ とを特徴とす る請求項 1 〜 4 の何れか 1 項に記載の弹塑性 · 粘弾性ダンバ一を一 体化した制振部材。 5. Ends of the steel center shaft power member 1 and the first steel buckling prevention member 2a, and other ends of the steel center shaft power member 1 and a second steel buckling prevention member 5. The vibration damping member according to claim 1, wherein a steel plate is fixedly attached to 2 b. 6.
6 . 前記第 2 の鋼製座屈防止部材 2 bの外側に更に減衰材 3 を充 塡し、 当該減衰材 3 の外側を第 3 の鋼製座屈防止部材 2 cで覆う こ とを特徴とする請求項 1 〜 5 の何れか 1 項に記載の弹塑性 · 粘弾性 ダンパーを一体化した制振部材。  6. The outside of the second steel buckling prevention member 2b is further filled with a damping material 3, and the outside of the damping material 3 is covered with a third steel buckling prevention member 2c. A vibration damping member comprising the plastic / viscoelastic damper according to any one of claims 1 to 5.
PCT/JP1999/002614 1999-05-19 1999-05-19 Vibration control member formed integrally with elasto-plastic and viscoelastic damper WO2000071840A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/002614 WO2000071840A1 (en) 1999-05-19 1999-05-19 Vibration control member formed integrally with elasto-plastic and viscoelastic damper

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP1999/002614 WO2000071840A1 (en) 1999-05-19 1999-05-19 Vibration control member formed integrally with elasto-plastic and viscoelastic damper
HK01107457A HK1036491A1 (en) 1999-05-19 2001-10-26 Vibration control member formed integrally with elastoplastic and viscoelastic damper

Publications (1)

Publication Number Publication Date
WO2000071840A1 true WO2000071840A1 (en) 2000-11-30

Family

ID=14235741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/002614 WO2000071840A1 (en) 1999-05-19 1999-05-19 Vibration control member formed integrally with elasto-plastic and viscoelastic damper

Country Status (2)

Country Link
HK (1) HK1036491A1 (en)
WO (1) WO2000071840A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102635175A (en) * 2012-05-03 2012-08-15 同济大学 Multipurpose structural seismic resistance energy consumption connecting piece
CN102912855A (en) * 2012-11-06 2013-02-06 沈阳建筑大学 Self-resetting sliding seismic isolation bearing of cross-shaped multi-layer friction plates
WO2014003940A1 (en) * 2012-06-27 2014-01-03 The Boeing Company Damping mechanical linkage
CN103572893A (en) * 2012-08-10 2014-02-12 空思太客有限公司 Structure of boundary beam for connecting interlayer anti-seismic walls
US20150143764A1 (en) * 2013-11-22 2015-05-28 Kabushiki Kaisha Grape Framework wall structure, building and framework wall construction method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01250539A (en) * 1988-03-31 1989-10-05 Kajima Corp Damper
JPH03253675A (en) * 1990-03-01 1991-11-12 Shimizu Corp Earthquake resisting reinforced k type brace
JPH10299284A (en) * 1997-04-25 1998-11-10 Shimizu Corp Damper device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01250539A (en) * 1988-03-31 1989-10-05 Kajima Corp Damper
JPH03253675A (en) * 1990-03-01 1991-11-12 Shimizu Corp Earthquake resisting reinforced k type brace
JPH10299284A (en) * 1997-04-25 1998-11-10 Shimizu Corp Damper device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102635175A (en) * 2012-05-03 2012-08-15 同济大学 Multipurpose structural seismic resistance energy consumption connecting piece
WO2014003940A1 (en) * 2012-06-27 2014-01-03 The Boeing Company Damping mechanical linkage
US8827586B2 (en) 2012-06-27 2014-09-09 The Boeing Company Damping mechanical linkage
US9353819B2 (en) 2012-06-27 2016-05-31 The Boeing Company Damping mechanical linkage
CN103572893A (en) * 2012-08-10 2014-02-12 空思太客有限公司 Structure of boundary beam for connecting interlayer anti-seismic walls
CN102912855A (en) * 2012-11-06 2013-02-06 沈阳建筑大学 Self-resetting sliding seismic isolation bearing of cross-shaped multi-layer friction plates
CN102912855B (en) * 2012-11-06 2014-10-15 沈阳建筑大学 Self-resetting sliding seismic isolation bearing of cross-shaped multi-layer friction plates
US20150143764A1 (en) * 2013-11-22 2015-05-28 Kabushiki Kaisha Grape Framework wall structure, building and framework wall construction method

Also Published As

Publication number Publication date
HK1036491A1 (en) 2002-01-04

Similar Documents

Publication Publication Date Title
EP1948878B1 (en) Structure with increased damping by means of fork configuration dampers
US7185462B1 (en) Double core brace
JP2009513898A5 (en)
JP2003034984A (en) Vibration control brace
JPH11153194A (en) Damping member integrating elasto-plastic and visco-elastic damper
WO2000071840A1 (en) Vibration control member formed integrally with elasto-plastic and viscoelastic damper
JP2000027292A (en) Vibration control member
JP2000213200A (en) Damping construction
JP2001248324A (en) Friction joint type energy absorbing device for frame
JP2002213531A (en) Damping device
JP3616889B2 (en) Damping damper
JPH10220062A (en) Vibration damping structure for building
JP6912102B2 (en) Energy absorption mechanism and wooden building
JP4427197B2 (en) Axial-type vibration control device that can be used for both earthquake and wind
JP2009280963A (en) Vibration control frame using composite damper
JP3750037B2 (en) Damper device
JP5305756B2 (en) Damping wall using corrugated steel
JP2020060264A (en) Viscoelastic damper
JP6037298B1 (en) Energy absorption mechanism
JP4878338B2 (en) Reinforcement structure of buildings and structures
JP4956340B2 (en) Building or building reinforcement
JP3209800U (en) Damping structure and damping panel
JP3100130B2 (en) Damping brace
TW382036B (en) Damping member having elastoplastic/viscoelastic damper integral therewith
JP4971667B2 (en) Vibration-proof structure

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99802413.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN SG