WO2000058999A3 - Semiconductor structures having a strain compensated layer and method of fabrication - Google Patents

Semiconductor structures having a strain compensated layer and method of fabrication Download PDF

Info

Publication number
WO2000058999A3
WO2000058999A3 PCT/IB2000/000892 IB0000892W WO0058999A3 WO 2000058999 A3 WO2000058999 A3 WO 2000058999A3 IB 0000892 W IB0000892 W IB 0000892W WO 0058999 A3 WO0058999 A3 WO 0058999A3
Authority
WO
WIPO (PCT)
Prior art keywords
layer
fabrication
strain compensated
constituent
material under
Prior art date
Application number
PCT/IB2000/000892
Other languages
French (fr)
Other versions
WO2000058999A9 (en
WO2000058999A2 (en
WO2000058999B1 (en
Inventor
Toru Takayama
Takaaki Baba
James S Harris Jr
Original Assignee
Matsushita Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Corp filed Critical Matsushita Electric Corp
Priority to JP2000608410A priority Critical patent/JP2002540618A/en
Priority to EP00940681A priority patent/EP1183761A2/en
Publication of WO2000058999A2 publication Critical patent/WO2000058999A2/en
Publication of WO2000058999A3 publication Critical patent/WO2000058999A3/en
Publication of WO2000058999B1 publication Critical patent/WO2000058999B1/en
Publication of WO2000058999A9 publication Critical patent/WO2000058999A9/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors
    • H01L31/1105Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors the device being a bipolar phototransistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Semiconductor Lasers (AREA)
  • Bipolar Transistors (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Led Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

The present invention provides a semiconductor structure which includes a strain compensated superlattice layer comprising a plurality of pairs of constituent layers, with the first constituent layer comprising a material under tensile stress, and the second constituent layer comprising a material under compressive stress, such that the stresses of the adjacent layer compensate one another and lead to reduced defect generation. Appropriate selection of materials provides increased band gap and optical confinement in at least some implementations. The structure is particularly suited to the construction of laser diodes, photodiodes, phototransistors, and heterojunction field effect and bipolar transistors.
PCT/IB2000/000892 1999-03-26 2000-03-01 Semiconductor structures having a strain compensated layer and method of fabrication WO2000058999A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000608410A JP2002540618A (en) 1999-03-26 2000-03-01 Semiconductor structure having strain compensation layer and manufacturing method
EP00940681A EP1183761A2 (en) 1999-03-26 2000-03-01 Semiconductor structures having a strain compensated layer and method of fabrication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US27731999A 1999-03-26 1999-03-26
US09/277,319 1999-03-26

Publications (4)

Publication Number Publication Date
WO2000058999A2 WO2000058999A2 (en) 2000-10-05
WO2000058999A3 true WO2000058999A3 (en) 2001-01-04
WO2000058999B1 WO2000058999B1 (en) 2001-08-02
WO2000058999A9 WO2000058999A9 (en) 2002-08-29

Family

ID=23060339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2000/000892 WO2000058999A2 (en) 1999-03-26 2000-03-01 Semiconductor structures having a strain compensated layer and method of fabrication

Country Status (4)

Country Link
EP (1) EP1183761A2 (en)
JP (1) JP2002540618A (en)
CN (1) CN1347581A (en)
WO (1) WO2000058999A2 (en)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6906352B2 (en) * 2001-01-16 2005-06-14 Cree, Inc. Group III nitride LED with undoped cladding layer and multiple quantum well
US6558973B2 (en) * 2001-01-22 2003-05-06 Honeywell International Inc. Metamorphic long wavelength high-speed photodiode
EP2034530B1 (en) 2001-06-15 2015-01-21 Cree, Inc. GaN based LED formed on a SiC substrate
GB2406968B (en) * 2003-10-11 2006-12-06 Intense Photonics Ltd Control of output beam divergence in a semiconductor waveguide device
US7339255B2 (en) 2004-08-24 2008-03-04 Kabushiki Kaisha Toshiba Semiconductor device having bidirectionally inclined toward <1-100> and <11-20> relative to {0001} crystal planes
KR100609583B1 (en) * 2004-08-26 2006-08-09 엘지이노텍 주식회사 Nitride semiconductor LED and fabrication method thereof
WO2006030845A1 (en) 2004-09-16 2006-03-23 Nec Corporation Group iii nitride semiconductor optical device
KR100662191B1 (en) * 2004-12-23 2006-12-27 엘지이노텍 주식회사 Nitride semiconductor LED and fabrication method thereof
JP4369438B2 (en) * 2005-04-26 2009-11-18 シャープ株式会社 Field effect transistor
CN1326298C (en) * 2005-06-29 2007-07-11 武汉电信器件有限公司 Method for raising semiconductor laser yield
WO2007043009A2 (en) 2005-10-11 2007-04-19 Koninklijke Philips Electronics N.V. Mr rf antenna with integrated electronics
JP2007250991A (en) * 2006-03-17 2007-09-27 Nippon Telegr & Teleph Corp <Ntt> Semiconductor structure comprising superlattice structure, and semiconductor device equipped therewith
JP4908886B2 (en) * 2006-03-23 2012-04-04 日本電信電話株式会社 Semiconductor device
JP2007258528A (en) * 2006-03-24 2007-10-04 Rohm Co Ltd Semiconductor light emitting element
EP1883140B1 (en) 2006-07-27 2013-02-27 OSRAM Opto Semiconductors GmbH LD or LED with superlattice clad layer and graded doping
EP1883141B1 (en) 2006-07-27 2017-05-24 OSRAM Opto Semiconductors GmbH LD or LED with superlattice cladding layer
PL1883119T3 (en) 2006-07-27 2016-04-29 Osram Opto Semiconductors Gmbh Semiconductor layer structure with overlay grid
JP2010182993A (en) * 2009-02-09 2010-08-19 Toyota Central R&D Labs Inc Semiconductor device, and method of manufacturing the same
US8183577B2 (en) 2009-06-30 2012-05-22 Koninklijke Philips Electronics N.V. Controlling pit formation in a III-nitride device
JP2010021576A (en) * 2009-10-19 2010-01-28 Ricoh Co Ltd Method of manufacturing semiconductor device
GB2487531A (en) * 2011-01-20 2012-08-01 Sharp Kk Substrate system consisting of a metamorphic transition region comprising a laminate of AlxGa1-x N and the same material as the substrate.
DE102011077542B4 (en) * 2011-06-15 2020-06-18 Osram Opto Semiconductors Gmbh OPTOELECTRONIC SEMICONDUCTOR BODY AND METHOD FOR PRODUCING AN OPTOELECTRONIC SEMICONDUCTOR BODY
JP5653327B2 (en) 2011-09-15 2015-01-14 株式会社東芝 Semiconductor light emitting device, wafer, method for manufacturing semiconductor light emitting device, and method for manufacturing wafer
CN102368519B (en) * 2011-10-27 2016-04-20 华灿光电股份有限公司 A kind of method improving semiconductor diode multiple quantum well light emitting efficiency
CN102623575A (en) * 2012-04-17 2012-08-01 中国科学院苏州纳米技术与纳米仿生研究所 Structure and method for growing indium gallium arsenide (InGaAs) battery layer on indium phosphide (InP) substrate
CN103022211B (en) * 2012-12-28 2015-02-11 南京大学 Polarization-reinforced p-i-n junction InGaN solar cell
CN103137799B (en) * 2013-01-27 2015-03-04 厦门大学 Preparation method of steep interface GaN or AlGaN superlattice
CN103151435B (en) * 2013-01-30 2015-05-06 东南大学 Gallium nitride base light-emitting diode with composite potential barrier
CN103715606A (en) * 2013-12-18 2014-04-09 武汉华工正源光子技术有限公司 Method for modulating doped type multi-period strain compensation quantum well epitaxial growth
US11322643B2 (en) 2014-05-27 2022-05-03 Silanna UV Technologies Pte Ltd Optoelectronic device
KR102427203B1 (en) 2014-05-27 2022-07-29 실라나 유브이 테크놀로지스 피티이 리미티드 Electronic devices comprising n-type and p-type superlattices
JP6817072B2 (en) 2014-05-27 2021-01-20 シランナ・ユー・ブイ・テクノロジーズ・プライベート・リミテッドSilanna Uv Technologies Pte Ltd Optoelectronic device
CN106537617B (en) 2014-05-27 2019-04-16 斯兰纳Uv科技有限公司 Use the advanced electronics structure of semiconductor structure and superlattices
KR102390624B1 (en) 2015-06-05 2022-04-26 오스텐도 테크놀로지스 인코포레이티드 Light-emitting structure in which carriers are selectively injected into a plurality of active layers
CN105118904B (en) * 2015-08-14 2017-11-17 湘能华磊光电股份有限公司 LED epitaxial layer structures growing method and gained epitaxial layer structure and LED chip
US10396240B2 (en) 2015-10-08 2019-08-27 Ostendo Technologies, Inc. III-nitride semiconductor light emitting device having amber-to-red light emission (>600 nm) and a method for making same
JP2016054321A (en) * 2015-12-08 2016-04-14 株式会社リコー Semiconductor device
CN105514234A (en) * 2015-12-14 2016-04-20 安徽三安光电有限公司 Nitride light emitting diode and growth method thereof
CN105514239B (en) * 2016-02-23 2018-12-04 安徽三安光电有限公司 A kind of light emitting diode
WO2017221519A1 (en) * 2016-06-20 2017-12-28 ソニー株式会社 Nitride semiconductor element, nitride semiconductor substrate, method for manufacturing nitride semiconductor element, and method for manufacturing nitride semiconductor substrate
DE102017117135A1 (en) 2017-07-28 2019-01-31 Osram Opto Semiconductors Gmbh Method for producing a plurality of laser diodes and laser diode
CN107564999B (en) * 2017-08-29 2019-05-10 湘能华磊光电股份有限公司 A kind of LED epitaxial growth method of improving luminous efficiency
CN110808531B (en) * 2019-09-29 2021-04-02 武汉云岭光电有限公司 Epitaxial structure of semiconductor laser
CN110783176B (en) * 2019-10-30 2022-07-12 广西大学 Preparation method of low-stress semiconductor material
CN111785813B (en) * 2020-06-05 2022-03-11 北京飓芯科技有限公司 MicroLED preparation method based on three-dimensional mask substrate
CN111653934B (en) * 2020-06-05 2021-11-30 北京飓芯科技有限公司 Semiconductor laser device preparation method based on three-dimensional mask substrate
CN114389151B (en) * 2020-10-21 2024-01-02 山东华光光电子股份有限公司 Low-power AlGaInP red light semiconductor laser with superlattice electron blocking layer and preparation method thereof
CN113675284B (en) * 2021-07-06 2023-12-19 扬州大学 Wide-band ultraviolet detector based on semi-polar superlattice structure and preparation method thereof
CN115050866B (en) * 2022-08-16 2022-11-08 江苏第三代半导体研究院有限公司 Polarization-controllable quantum dot Micro-LED homoepitaxial structure and preparation method thereof
CN116247506B (en) * 2023-05-12 2023-08-29 武汉鑫威源电子科技有限公司 High-performance gallium nitride-based laser and N-type GaN layer and growth method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5574741A (en) * 1992-07-09 1996-11-12 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser with superlattice cladding layer
US5671242A (en) * 1994-09-02 1997-09-23 Mitsubishi Denki Kabushiki Kaisha Strained quantum well structure
WO1998031055A1 (en) * 1997-01-09 1998-07-16 Nichia Chemical Industries, Ltd. Nitride semiconductor device
WO1998042024A1 (en) * 1997-03-19 1998-09-24 Northwestern University Iii-nitride superlattice structures
US5870419A (en) * 1995-04-28 1999-02-09 Mitsubishi Denki Kabushiki Kaisha Double heterojunction semiconductor laser having improved light confinement
EP0896405A2 (en) * 1997-08-05 1999-02-10 Canon Kabushiki Kaisha Method for fabricating surface-emitting semiconductor device, surface-emitting semiconductor device fabricated by the method, and display device using the device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5574741A (en) * 1992-07-09 1996-11-12 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser with superlattice cladding layer
US5671242A (en) * 1994-09-02 1997-09-23 Mitsubishi Denki Kabushiki Kaisha Strained quantum well structure
US5870419A (en) * 1995-04-28 1999-02-09 Mitsubishi Denki Kabushiki Kaisha Double heterojunction semiconductor laser having improved light confinement
WO1998031055A1 (en) * 1997-01-09 1998-07-16 Nichia Chemical Industries, Ltd. Nitride semiconductor device
WO1998042024A1 (en) * 1997-03-19 1998-09-24 Northwestern University Iii-nitride superlattice structures
EP0896405A2 (en) * 1997-08-05 1999-02-10 Canon Kabushiki Kaisha Method for fabricating surface-emitting semiconductor device, surface-emitting semiconductor device fabricated by the method, and display device using the device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AKIHIKO KIKUCHI ET AL: "600nm-range GaInP/AlInP MQW lasers grown on misorientated substrates", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 30, no. 12B PART 01, 1 December 1991 (1991-12-01), pages 3865 - 3872, XP000263369, ISSN: 0021-4922 *
BYKHOVSKI A ET AL: "Elastic strain relaxation and piezoeffect in GaN-AlN, GaN-AlGaN and GaN-InGaN superlattices", JOURNAL OF APPLIED PHYSICS, 1 MAY 1997, vol. 81, no. 9, pages 6332 - 6338, XP002152677, ISSN: 0021-8979 *
KHAN M ET AL: "Optoelectronic devices based on GaN, AlGaN, InGaN homo-heterojunctions and superlattices", OE INTEGRATED CIRCUIT, SAN JOSE, FEB 1995, vol. 2397, pages 283 - 293, XP000964569, ISSN: 0277-786X *

Also Published As

Publication number Publication date
CN1347581A (en) 2002-05-01
WO2000058999A9 (en) 2002-08-29
JP2002540618A (en) 2002-11-26
WO2000058999A2 (en) 2000-10-05
EP1183761A2 (en) 2002-03-06
WO2000058999B1 (en) 2001-08-02

Similar Documents

Publication Publication Date Title
WO2000058999A3 (en) Semiconductor structures having a strain compensated layer and method of fabrication
DE69827824D1 (en) CONTROL OF TENSION DENSITY BY USING GRADIENT LAYERS AND BY PLANARIZATION
WO2001039282A3 (en) Optical semiconductor device comprising a multiple quantum well structure
US5306924A (en) Semiconductor device with strained-layer superlattice
WO2002097904A3 (en) Group iii nitride based light emitting diode structures with a quantum well and superlattice
JP4554526B2 (en) Semiconductor light emitting device
JP2002329929A5 (en)
TW200633331A (en) Semiconductor laser device and fabricating method thereof
JP2009212523A (en) Light-emitting device of group iii nitride compound semiconductor
EP1286439A3 (en) Semiconductor optical device and method of manufacturing the same
TW200711243A (en) Semiconductor laser device and method for fabricating the same
ATE448572T1 (en) SEMICONDUCTOR HETEROSTRUCTURE
EP0582942A3 (en) A strained multiple quantum well semiconductor laser and a method for producing the same
EP0908988A3 (en) Light-emitting device and fabricating method thereof
EP0814548A3 (en) Semiconductor laser
DE60220803D1 (en) Semiconductor structure for infrared and manufacturing process
EP1679774A3 (en) InP based VCSEL with zinc-doped tunnel-junction and diffusion blocking layer
WO2009039811A3 (en) Radiation-emitting semiconductor chip
WO2009011184A1 (en) Semiconductor laser and method for manufacturing the same
TW200512995A (en) Monolithic semiconductor laser and method of manufacturing the same
EP1195864A3 (en) Semiconductor laser device
CA2220093A1 (en) A laser amplifier, an optical system comprising such a laser amplifier and a method of forming such a laser amplifier
JP2008263196A (en) Light-emitting element
EP0959541A3 (en) Semiconductor laser and method of manufacturing the same
SE0200750D0 (en) Method for manufacturing photonic device and a photonic device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00805556.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): CN JP

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): CN JP

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: B1

Designated state(s): CN JP

AL Designated countries for regional patents

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

B Later publication of amended claims
WWE Wipo information: entry into national phase

Ref document number: 2000940681

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2000 608410

Country of ref document: JP

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2000940681

Country of ref document: EP

AK Designated states

Kind code of ref document: C2

Designated state(s): CN JP

AL Designated countries for regional patents

Kind code of ref document: C2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

COP Corrected version of pamphlet

Free format text: PAGE 10, DESCRIPTION, REPLACED BY A NEW PAGE 10; AFTER RECTIFICATION OF OBVIOUS ERRORS AS AUTHORIZED BY THE INTERNATIONAL SEARCHING AUTHORITY; PAGES 1/20-20/20, DRAWINGS, REPLACED BY NEW PAGES 1/21-21/21

WWW Wipo information: withdrawn in national office

Ref document number: 2000940681

Country of ref document: EP

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)