WO2000056088A1 - Method and arrangement for transmitting multimedia-related information in a packet-switched cellular radio network - Google Patents

Method and arrangement for transmitting multimedia-related information in a packet-switched cellular radio network Download PDF

Info

Publication number
WO2000056088A1
WO2000056088A1 PCT/FI2000/000206 FI0000206W WO0056088A1 WO 2000056088 A1 WO2000056088 A1 WO 2000056088A1 FI 0000206 W FI0000206 W FI 0000206W WO 0056088 A1 WO0056088 A1 WO 0056088A1
Authority
WO
WIPO (PCT)
Prior art keywords
protocol
multimedia
layer
arrangement
related information
Prior art date
Application number
PCT/FI2000/000206
Other languages
French (fr)
Inventor
Jarkko Sevanto
Mikko Puuskari
Original Assignee
Nokia Mobile Phones Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Mobile Phones Ltd. filed Critical Nokia Mobile Phones Ltd.
Priority to EP00912693A priority Critical patent/EP1159837A1/en
Priority to KR1020017011762A priority patent/KR20020001774A/en
Priority to AU34354/00A priority patent/AU3435400A/en
Priority to BR0009056-5A priority patent/BR0009056A/en
Priority to JP2000605414A priority patent/JP2002539728A/en
Publication of WO2000056088A1 publication Critical patent/WO2000056088A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L51/00User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
    • H04L51/58Message adaptation for wireless communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/70Media network packetisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1101Session protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/08Protocols for interworking; Protocol conversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/326Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the transport layer [OSI layer 4]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/12Messaging; Mailboxes; Announcements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems

Definitions

  • the invention concerns generally the use of certain protocols and services for conveying certain types of information between the different nodes of a telecommunication network. Especially the invention concerns the transmission of multimedia-related information between a terminal of a cellular radio network and a node computer of a fixed packet-switched network.
  • Multimedia is generally understood as the synchronized presentation of audiovisual objects to a user. It is typical to multimedia-related information that it may contain elements of highly different nature, like text, still images, simple graphical elements, video and sound.
  • MMS Multimedia Messaging Service
  • MMS should be applicable for conveying such messages to and from the terminals of packet-switched cellular radio networks such as GPRS (General Packet Radio Service) and the packet-switched parts of UMTS (Universal Mobile Telecommunication System) in a store-and-forward manner much like the SMS (Short Messaging Service) text messages are conveyed in the second generation digital cellular networks, e.g. GSM (Global System for Mobile telecommunications).
  • GPRS General Packet Radio Service
  • UMTS Universal Mobile Telecommunication System
  • Fig. 1 illustrates some system aspects of a known proposal for arranging the transmission of MMS messages between two mobile te-rminals 101 and 102.
  • each terminal is operating in a cellular telephone system of its own: terminal 101 is a UMTS te ⁇ ninal operating in a UMTS network 103 and terminal 102 is an enhanced GSM terminal operating in an enhanced GSM network 104. From both networks there is a connection to a GPRS network 105.
  • the UMTS network 103 comprises a UTRAN or UMTS Terrestrial Radio Access Network 106 as well as a CN or Core Network 107.
  • a BSS or Base Station Subsystem 108 and an MSC or a Mobile Switching Centre 109 are shown.
  • the detailed structure of the network elements is unessential to the present invention, but it is known that for example a UTRAN consists of a number of Radio Network Subsystems, each of which in turn comprises a Radio Network Controller and a number of Node Bs roughly corresponding to base stations.
  • a BSS in turn comprises a Base Station Controller and a number of Base Transceiver Stations operating under it.
  • Various mixed-mode cellular telephone systems are possible; for example the BSS 108 might operate under the same CN as the UTRAN 106.
  • the terminals could also be exactly similar terminals operating close to each other in a single cell.
  • Fig. 1 there is a connection both from the UTRAN 106 and from the BSS 108 to a corresponding SGSN or Serving GPRS Support Node 110 and 111. Both of these are in turn coupled, through the GPRS trunk lines, to a GGSN or Gateway GPRS Support Node 112 which here also operates as an MMSC or a Multimedia Messaging Service Center.
  • a terminal 101 may transmit an MMS message by identifying both the intended recipient's terminal 102 and the MMSC through which the message is to be transmitted (actually the latter may even be left out if there is a default MMSC for each terminal).
  • a Packet Control Unit or a corresponding functionality in the UTRAN 106 takes the MMS transmission and routes it through the current SGSN 110 to the MMSC 112 which stores the MMS message and commences the attempts for delivering it to the intended recipient. If there is an existing connection to the recipient's te ⁇ ninal 102 the MMSC may deliver the message through the corresponding SGSN 111 and the BSS 108 to the terminal 102. If, however, the terminal 102 is temporarily shut off, out of coverage or otherwise unreachable, the MMSC retries the delivery at certain time intervals until either the message is successfully delivered or a timeout expires indicating that the message is obsolete and can be deleted undelivered. A positive or negative acknowledgement, depending on the success in delivery, may be returned to the transmitting te ⁇ ninal 101 if required.
  • the objects of the invention are met by using the OSP or Octet Stream Protocol, known as such, to carry a data stream comprising the required multimedia-related information.
  • the method according to the invention is characterized in that it comprises the steps of - defining a multimedia messaging transport protocol layer as a certain layer above an octet stream protocol layer in certain first and second protocol stacks and
  • the Octet Stream Protocol or OSP is a previously defined way in GPRS for carrying relatively unstructured information in the form of octet streams between a mobile terminal and a GGSN.
  • An octet is a group of eight consecutive bits.
  • PDP Type for OSP, and in the known protocol stacks related to GPRS the OPS entity is directly on top of the SNDCP (Subnetwork Dependent Convergence Protocol) layer in the terminal and on top of the GTP (GPRS Tunneling Protocol) in the GGSN.
  • the MMS-TP protocol entity will be placed on top of the respective OSP entities in the terminal and the MMSC.
  • a PDP Context activation procedure between a terminal and a MMSC is required to enable the transmission of MMS messages in the framework of OSP.
  • the device that initiates the activation procedure transmits an Activate PDP Context Request that contains a set of parameters that are required to identify and define the desired PDP Context.
  • the SGSN may need to select the appropriate GGSN on the basis of the parameters contained within the activation request and possibly using also previously stored information about the home location of the terminal. If the MMSC functionality is not implemented within a GGSN, a specific interface may be needed to define the transmission of information therebetween.
  • MMS messages are conveyed as an octet stream by using either the octet mode, where the OSP protocol entity applies a packet assembly / disassembly function, or the block mode where no separate packet assembling or disassembling is performed.
  • the invention has several advantageous features. Using OSP as the bearer for MMS makes it possible to minimize protocol overheads because OSP does not require a large amount of associated control information.
  • the PDP Context used to convey MMS messages may be completely separated from all other PDP Contexts even without defining a new PDP Type, which makes it easy to define a separate charging scheme for MMS.
  • No IP addresses or other addresses of an external network are required for the transmission of MMS messages, which decreases configuration efforts, bypasses dynamic address allocation procedures and saves the operators from assigning static external network addresses to all users wishing to use MMS. Only the terminal and the MMSC or GGSN must interpret the data travelling through a "transparent tunnel" between a terminal and a SGSN on one hand and between a SGSN and a GGSN on the other hand.
  • Fig. 1 illustrates some known system aspects of packet-switched data transmission
  • Fig. 2 illustrates an arrangement of protocol stacks according to the invention
  • Fig. 3 is a schematic illustration of a method according to the invention.
  • Fig. 4 is a schematic illustration of an Activate PDP Context Request used in association with the invention
  • Fig. 5 illustrates schematically an arrangement according to the invention
  • Fig. 6 summarizes some aspects of certain protocol layers according to the invention.
  • Fig. 1 has been already discussed above within the description of prior art.
  • Fig. 2 illustrates an advantageous arrangement of protocol stacks in a terminal or Mobile Station (MS), an Base Station Subsystem (BSS), a Serving GPRS Support Node (SGSN) and a Multimedia Messaging Service Center (MMSC).
  • MS Mobile Station
  • BSS Base Station Subsystem
  • SGSN Serving GPRS Support Node
  • MMSC Multimedia Messaging Service Center
  • the terminal would be designated as the UE (User Equipment) and the BSS would be substituted by one of the network devices belonging to a UTRAN, e.g. a Node B or a Radio Network Controller.
  • a UTRAN e.g. a Node B or a Radio Network Controller.
  • Within the BSS or the UTRAN there may be a specific interface unit that takes care of all data traffic to and from such packet data networks that do not share the switching facilities (the core networks) with the cellular telephone systems.
  • the protocol layers related to the application of the invention in the MS are, from bottom to top, Layer 1 201, Medium Access Control 202, Radio Link Control 203, Logical Link Control 204, Subnetwork Dependent Convergence Protocol 205, Octet Stream Protocol 206 and Multimedia Messaging Service - Transport Protocol 207.
  • Some sources refer to some of these layers as sublayers, which has no practical importance to the present invention.
  • the "MS” is a general notation for the apparatus or arragement of apparatuses which are operative at a te ⁇ ninal end: one possible “MS” arrangement is a mobile telephone or other cellular network terminal coupled to a laptop computer, whereby for example the OSP protocol layer 206 may reside in the mobile telephone and the MMS-TP protocol layer 207 may reside in the laptop computer.
  • the three lowest layers 211, 212 and 213 are the same and on top of them there is LLC Relay layer 214 for perfo-rming the required conversions between the left-hand and right-hand sides of the BSS.
  • the three right- hand layers of the BSS are, from bottom to top, Layer 1 221, Frame Relay layer 222 and BSS GPRS Protocol layer 223.
  • the three lowest left-hand side layers 231, 232 and 233 are same as on the right-hand side of the BSS, and above them is the Logical Link Control layer 234 which is the peer entity of the similarly named layer in the MS.
  • the Layer 1 241, Layer 2 242 and Internet Protocol 243 layers are the Layer 1 241, Layer 2 242 and Internet Protocol 243 layers.
  • the protocol layers of the MMSC are, from bottom to top, Layer 1 251, Layer 2 252, Internet Protocol 253, GPRS Tunneling Protocol 254, Octet Stream Protocol 255 and Multimedia Messaging Service - Transport Protocol 256.
  • GGSN/MMSC end there may be a division of the protocol layers to those implemented within an actual GGSN (e.g. layers 251 to 255) and those implemented within a separate MMSC entity (e.g. layer 256).
  • a mobile-originated procedure for enabling the exchange of MMS messages between a MS and a MMSC.
  • the MS transmits an Activate PDP Context Request message in a way basically known as such.
  • the MS needs to incorporate a certain set of parameters in the message. These parameters are schematically illustrated in Fig. 4 and they have the following meaning:
  • the Network Service Access Point Identifier or NSAPI 401 is selected by the MS. NSAPI identifies the PDP context to be activated within the GPRS/UMTS network. For identifying the user the message comprises also the TLLI (Temporary Logical Link Identity) and IMSI (International Mobile Subscriber Identity) information elements (not shown in Fig. 4).
  • the PDP Type 402 shall have a two-part value. The first part 402a shall identify the protocol as OSP, and the second part 402b shall identify the service being used and thereby allow the SGSN to select a GGSN (i.e. MMSC in this case) that can provide the service.
  • the two-part value of the PDP Type field can be expressed as OSP MMS. This is a new OSP type that does not exist in the standards at the priority date of this patent application but introduced by this invention.
  • the Access Point Name or APN 404 is selected by the MS.
  • the selected APN identifies the GGSN and MMSC which the MS wants to use for this context.
  • the actual APN to be used i.e. GGSN and MMSC to be used
  • the actual APN to be used can be restricted by the operator by subscription.
  • the HLR Home Location Register
  • the MS may omit the APN from the Activate PDP Context Request message if the APN is configured in the HLR. Otherwise the user may include an APN in the message. If there is no APN in the message and no APN is configured in the HLR, the SGSN is free to choose any GGSN/MMSC for multimedia messaging context (If Dynamic Allocation in the visited network is allowed by the HLR record).
  • the QoS Requested 405 (where QoS comes from Quality of Service) is selected by the MS.
  • the requested service quality comprises a number of factors and their selection typically depends on the desired characteristics of the MMS-TP.
  • class 2 is seen as the most advantageous, meaning RLC&LLC retransmissions as well as the use of UDP (User Datagram Protocol) at the GPRS backbone network.
  • Bit rates can be negotiated to be anything without the invention limiting their negotiation.
  • MMS message transmission is in general time- insensitive, so delay class should reflect that; long delays are allowed. Service precedence is most advantageously high if it indicates dropping precedence which results in few packet losses.
  • the PDP Configuration Options field 406 can be used e.g. for informing the MMSC about certain capabilities of the MS, such as supported content-types etc.
  • MS-MMSC configuration information can be included in this information element if these are not implemented into the MMS-TP protocol itself. If there are many choices for the MMS-TP protocol (either totally separate protocols or different versions of the same protocol), the PDP Configuration options can be used for mforming the MMSC which protocol(s) the MS supports on top of OSP.
  • the BSS recognizes the Activate PDP Context Request message as concerning packet- switched services and consequently routes it to the cu ⁇ ent SGSN in a known way.
  • the SGSN selects the GGSN based on the HLR records and/or the MS-provided APN string.
  • the GGSN receives the message and recognizes from the context type that the new context is for MMS. If the MMSC functionality is not incorporated into the GGSN itself, the GGSN would additionally select an external MMSC element based on the APN in the context activation at step 304.
  • a proprietary interface or some standard can in this case be provided between the GGSN and the MMSC.
  • the GGSN/MMSC creates an association with the service attributes and the established tunnel (identified by TID consisting of the user's IMSI and the NSAPI value of the PDP context).
  • the GGSN/MMSC After activating the service and possibly configuring some MMS-related parameters (e.g. according to the information delivered in the Protocol Configuration Options information element), the GGSN/MMSC sends at step 305 a PDP Context Activation Response message via the SGSN to the MS.
  • the reception 306 of this message at the MS finalizes the context activation. No PDP address need to be assigned for the context, although such an assignment is not precluded by the invention.
  • the activation of the PDP Context for transmitting MMS messages may also take place upon the initiative of the MMSC, for example in such a case where an MMS message has been stored for delivery to an MS which cu ⁇ ently does not have an active PDP Context with the MMSC.
  • the MS is always the one to transmit the initial Activate PDP Context Request message, but it is possible for the MMSC to indicate to the MS through a simple signalling message that there is a stored MMS message waiting for delivery, so that it is left to the MS's discretion to choose the moment for activating the PDP Context by commencing the procedures illustrated in Fig. 3.
  • an MMSC-originating PDP Context activation could be nearly identical to the MS-originating one described above, with the exception that the initial activation message and the response thereto would travel into opposite directions than above.
  • the identification information in the former would then serve to identify a particular MS instead of a SGSN-GGSN/MMSC combination, whereby the routing of the message could involve the known inquiries to the location registers which store the current location information of the MS.
  • the occu ⁇ ence of said fixed NSAPI in a packet would immediately indicate to all the devices taking part in the communication that the packet carries multimedia-related information, so especially the BSS and the SGSN could arrange its routing accordingly.
  • the IMSI and the NSAPI together, as well as with possible other identification information of the packet, serve to identify the MS to which such a packet belongs.
  • a specific APN entry would probably be required in each user's HLR records so that a SGSN would find the co ⁇ ect GGSN/MMSC for each user.
  • Fig. 5 illustrates an arrangement according to the invention comprising a terminal or MS (or UE) 501, a BSS or UTRAN 502, a SGSN 503 and a combined GGSN/MMSC 504.
  • the hardware of the terminal comprises a radio transceiver block 512, a decoding/demultiplexing block 513, an encoding/multiplexing block 514, a control block 515 and a user data part 516.
  • the decoding/demultiplexing block 513 is a ⁇ anged to separate received signalling information from received user data and to direct the former into the control block 515; similarly the encoding/multiplexing block 514 is arranged to take signalling information from the control block 515 and to multiplex it for transmission with user data coming from the user data part 516. All other blocks operate under the supervision of the control block.
  • the control connections are shown with thinner lines than the user data and signalling information connections.
  • the MS protocol stack seen in greater detail in Fig. 2 is implemented within the control block 515 by programming the co ⁇ esponding operations into a memory in the form of machine-readable processing instructions. If the terminal a ⁇ angement comprises a number of separate functional entities, the control block may be understood to consist of the control functions distributed into the physical controlling entities of the separate devices.
  • the MMSC is basically a large-capacity data storage 521 with a transmission unit 522 arranged to couple it to the trunk lines of the GPRS network (or a co ⁇ esponding packet data network) as well as a control unit 523 to control the setting up, maintaining and tearing down of connections.
  • the MMSC protocol stack seen in greater detail in Fig. 2 is implemented within the control block 523 by programming the co ⁇ esponding operations into a memory in the form of machine- readable processing instructions.
  • Fig. 6 summarizes the functions of the MMS-TP, OSP and lower protocol layers in all such protocol stacks where the MMS-TP and OSP layers are located.
  • the MMS- TP protocol layer 601 is arranged to indicate to the OSP layer 602 the need for setting up a OSP:MMS type PDP Context with a first primitive 603; this primitive should contain at least the APN, QoS Requested and PDP Configuration Options information elements refe ⁇ ed to above.
  • the OSP layer 602 is in general capable of indicating to the lower layers the need for setting up PDP Contexts, and especially capable of indicating with a setup request primitive 604 that a PDP Context of the OSP:MMS tyope should be requested.
  • This second primitive 604 should contain at least the PDP Type, APN, QoS Requested and PDP Configuration Options information elements refe ⁇ ed to above.
  • the lower layers are in general capable of informing the OPS layer 602 about the completed activation of the PDP Context with a third primitive 605, and the OPS layer 602 is in turn capable of forwarding the same information to the MMS-TP layer 601 in a fourth primitive 606.
  • the MMS-TP layer 601 is arranged to exchange user data with the OSP layer according to the arrow 607, and the OSP layer is a ⁇ anged to transmit the user data to be transmitted further down in the protocol stack according to arrow 608 either in the octet mode or in the block mode.
  • the former refers to the known use of a PAD or Packet Assembly / Disassembly function to assemble /disassemble a number of octets into / from a single packet for more effective transport by the underlying protocols.
  • the block mode refers to the bypassing of the PAD function, whereby the MMS-TP layer 601 provides the message data to the OSP layer 602 in blocks of octets, and each block of octets is delivered as a single OSP PDU (Protocol Data Unit) to the underlying layers.
  • OSP PDU Protocol Data Unit
  • the block mode is regarded as more advantageous for use in association with the invention, because each MMS message could be handled as an independent block of octets between the MMS-TP layer 601 and the OSP layer 602.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Communication Control (AREA)

Abstract

A method is provided for transmitting multimedia-related information between a first device and a second device coupled to a packet-switched data transmission network. A first protocol stack (201, 202, 203, 204, 205, 206, 207) is defined for the first device and a second protocol stack (251, 252, 253, 254, 255, 256) is defined for the second device. The protocol stacks consist of layers and serve the arranging of the mutual exchange of information between the first device and the second device. An octet stream protocol layer (206, 255) is defined for the transmission of unstructured octet streams as a certain layer in the first protocol stack and a certain layer in the second protocol stack. A multimedia messaging transport protocol layer (207, 256) is also defined as a certain layer above the octet stream protocol layer (206, 255) in the first and second protocol stacks. Multimedia-related information is exchanged between the multimedia messaging transport protocol layer (207) in the first device and the multimedia messaging transport protocol layer (256) in the second device through the use of the octet stream protocol layer (206, 255) as well as other lower layers in the first and second protocol stacks.

Description

Method and arrangement for transmitting multimedia-related information in a packet-switched cellular radio network
The invention concerns generally the use of certain protocols and services for conveying certain types of information between the different nodes of a telecommunication network. Especially the invention concerns the transmission of multimedia-related information between a terminal of a cellular radio network and a node computer of a fixed packet-switched network.
Multimedia is generally understood as the synchronized presentation of audiovisual objects to a user. It is typical to multimedia-related information that it may contain elements of highly different nature, like text, still images, simple graphical elements, video and sound.
MMS or Multimedia Messaging Service is a proposed way for arranging the delivery of messages containing multimedia-related information from one telecommunication device to another. With "multimedia-related" information we mean both the actual payload data that represents presentable objects and the control information that tells a presentation device how to handle the payload data. According to the proposals, MMS should be applicable for conveying such messages to and from the terminals of packet-switched cellular radio networks such as GPRS (General Packet Radio Service) and the packet-switched parts of UMTS (Universal Mobile Telecommunication System) in a store-and-forward manner much like the SMS (Short Messaging Service) text messages are conveyed in the second generation digital cellular networks, e.g. GSM (Global System for Mobile telecommunications).
Fig. 1 illustrates some system aspects of a known proposal for arranging the transmission of MMS messages between two mobile te-rminals 101 and 102. In Fig. 1 each terminal is operating in a cellular telephone system of its own: terminal 101 is a UMTS teπninal operating in a UMTS network 103 and terminal 102 is an enhanced GSM terminal operating in an enhanced GSM network 104. From both networks there is a connection to a GPRS network 105. The UMTS network 103 comprises a UTRAN or UMTS Terrestrial Radio Access Network 106 as well as a CN or Core Network 107. In the enhanced GSM network 104 a BSS or Base Station Subsystem 108 and an MSC or a Mobile Switching Centre 109 are shown. The detailed structure of the network elements is unessential to the present invention, but it is known that for example a UTRAN consists of a number of Radio Network Subsystems, each of which in turn comprises a Radio Network Controller and a number of Node Bs roughly corresponding to base stations. A BSS in turn comprises a Base Station Controller and a number of Base Transceiver Stations operating under it. Various mixed-mode cellular telephone systems are possible; for example the BSS 108 might operate under the same CN as the UTRAN 106. The terminals could also be exactly similar terminals operating close to each other in a single cell.
In Fig. 1 there is a connection both from the UTRAN 106 and from the BSS 108 to a corresponding SGSN or Serving GPRS Support Node 110 and 111. Both of these are in turn coupled, through the GPRS trunk lines, to a GGSN or Gateway GPRS Support Node 112 which here also operates as an MMSC or a Multimedia Messaging Service Center. In analogy with the known SMS arrangements a terminal 101 may transmit an MMS message by identifying both the intended recipient's terminal 102 and the MMSC through which the message is to be transmitted (actually the latter may even be left out if there is a default MMSC for each terminal). A Packet Control Unit or a corresponding functionality in the UTRAN 106 takes the MMS transmission and routes it through the current SGSN 110 to the MMSC 112 which stores the MMS message and commences the attempts for delivering it to the intended recipient. If there is an existing connection to the recipient's teπninal 102 the MMSC may deliver the message through the corresponding SGSN 111 and the BSS 108 to the terminal 102. If, however, the terminal 102 is temporarily shut off, out of coverage or otherwise unreachable, the MMSC retries the delivery at certain time intervals until either the message is successfully delivered or a timeout expires indicating that the message is obsolete and can be deleted undelivered. A positive or negative acknowledgement, depending on the success in delivery, may be returned to the transmitting teπninal 101 if required.
At the time of filing this patent application there does not exist an unambiguously defined way of using the lower-level protocol layers and PDP Contexts (Packet Data Protocol) in the terminals and fixed network devices to convey the MMS messages. Somewhere at a relatively high level in the protocol stacks of both the terminals and the MMSC there must be an MMS-TP (Multimedia Messaging Service - Transport Protocol) entity that uses the services offered by the lower level protocols to convey an MMS message first from the transmitting device to the MMSC and then further to the receiving device. Additionally the MMS messages must be mapped into PDP Contexts of certain type; the mapping will be closely related to the choice of lower protocol layers under the MMS-TP entity. We anticipate that network operators will require the MMS messaging to be distinguishable from other forms of packet-switched data transmission in order to arrange for a suitable charging scheme for the MMS services.
Two prior art solutions have been proposed for conveying MMS messages. One of them is to have a PDP Type separately defined for MMS, and to set up a PDP Context of that type between a terminal and an MMSC each time an MMS message has to be conveyed in either direction. This approach has the drawback of requiring a considerable amount of completely new specification and standardization work. Additionally new PDP Types are only very reluctantly accepted to the already frozen standards. The other proposed prior art approach is to build the MMS messaging on top of the known IP or Internet Protocol PDP Type. The latter approach would require the GGSNs to reserve and allocate dynamic IP addresses to mobile users. The use of dynamic addresses is not efficiently combined to MMS services, and in any case using the IP PDP Type for MMS messaging would consume the scarce IP addresses and involve the whole complexity of allocating and maintaining IP addresses and dynamically configuring hosts. A terminal roaming in another network should in practice always use the MMSC of its home network, because there is no possibility of dynamically telling the IP addresses of other MMSCs to the terminal.
It is an object of the present invention to provide a feasible method and a corresponding arrangement for conveying MMS messages between terminals and MMSCs. It is an additional object of the invention that the proposed method does not require exhaustive respecification in the framework of existing standards and proposals. A further object of the invention is to n-nnimize the required protocol overhead in the MMS traffic between the terminals and the MMSCs. -An even further object of the invention is to provide means for distinguishing the MMS traffic from other types of packet-switched information transfer.
The objects of the invention are met by using the OSP or Octet Stream Protocol, known as such, to carry a data stream comprising the required multimedia-related information.
The method according to the invention is characterized in that it comprises the steps of - defining a multimedia messaging transport protocol layer as a certain layer above an octet stream protocol layer in certain first and second protocol stacks and
- exchanging multimedia-related information between the multimedia messaging transport protocol layer in a first device and the multimedia messaging transport protocol layer in a second device through the use of the octet stream protocol layer as well as other lower layers in the first and second protocol stacks.
The invention also applies to a terminal which is characterized in that its control block is arranged to - implement a multimedia messaging transport protocol layer in a protocol stack and
- exchange multimedia-related information between said multimedia messaging transport protocol layer in the protocol stack and a network device through the use of an octet stream protocol layer as well as other lower layers in the protocol stack..
Additionally the invention applies to a network device which is characterized in that its control block is arranged to
- implement a multimedia messaging transport protocol layer in a protocol stack and
- exchange multimedia-related information between said multimedia messaging transport protocol layer in the protocol stack and a terminal through the use of an octet stream protocol layer as well as other lower layers in the protocol stack.
The Octet Stream Protocol or OSP is a previously defined way in GPRS for carrying relatively unstructured information in the form of octet streams between a mobile terminal and a GGSN. An octet is a group of eight consecutive bits. There exists a ready specified PDP Type for OSP, and in the known protocol stacks related to GPRS the OPS entity is directly on top of the SNDCP (Subnetwork Dependent Convergence Protocol) layer in the terminal and on top of the GTP (GPRS Tunneling Protocol) in the GGSN. According to the invention the MMS-TP protocol entity will be placed on top of the respective OSP entities in the terminal and the MMSC.
A PDP Context activation procedure between a terminal and a MMSC is required to enable the transmission of MMS messages in the framework of OSP. The device that initiates the activation procedure transmits an Activate PDP Context Request that contains a set of parameters that are required to identify and define the desired PDP Context. In the case of terminal-initiated PDP Context activation the SGSN may need to select the appropriate GGSN on the basis of the parameters contained within the activation request and possibly using also previously stored information about the home location of the terminal. If the MMSC functionality is not implemented within a GGSN, a specific interface may be needed to define the transmission of information therebetween.
fter the PDP Context setup has been accomplished, MMS messages are conveyed as an octet stream by using either the octet mode, where the OSP protocol entity applies a packet assembly / disassembly function, or the block mode where no separate packet assembling or disassembling is performed.
The invention has several advantageous features. Using OSP as the bearer for MMS makes it possible to minimize protocol overheads because OSP does not require a large amount of associated control information. The PDP Context used to convey MMS messages may be completely separated from all other PDP Contexts even without defining a new PDP Type, which makes it easy to define a separate charging scheme for MMS. No IP addresses or other addresses of an external network are required for the transmission of MMS messages, which decreases configuration efforts, bypasses dynamic address allocation procedures and saves the operators from assigning static external network addresses to all users wishing to use MMS. Only the terminal and the MMSC or GGSN must interpret the data travelling through a "transparent tunnel" between a terminal and a SGSN on one hand and between a SGSN and a GGSN on the other hand.
The utilization of an unstructured octet stream between a terminal and a MMSC or GGSN enables the operators to direct the MMS-carrying PDP Contexts of desired users always to a particular MMSC/GGSN; for example the one residing in the user's home network. On the other hand, operators may also allow any MMSCs to be used, but this may restrict the service to the mobile-originated alternative only. In any case the control possibilities are much more flexible than in the IP -based prior art solutions. A terminal may even select a desired MMSC / GGSN by using a certain predefined parameter in an Activate PDP Context Request.
The novel features which are considered as characteristic of the invention are set forth in particular in the appended Claims. The invention itself, however, both as to its construction and its method of operation, together with additional objects and advantages thereof, will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings. Fig. 1 illustrates some known system aspects of packet-switched data transmission,
Fig. 2 illustrates an arrangement of protocol stacks according to the invention,
Fig. 3 is a schematic illustration of a method according to the invention,
Fig. 4 is a schematic illustration of an Activate PDP Context Request used in association with the invention,
Fig. 5 illustrates schematically an arrangement according to the invention and
Fig. 6 summarizes some aspects of certain protocol layers according to the invention.
Fig. 1 has been already discussed above within the description of prior art.
Fig. 2 illustrates an advantageous arrangement of protocol stacks in a terminal or Mobile Station (MS), an Base Station Subsystem (BSS), a Serving GPRS Support Node (SGSN) and a Multimedia Messaging Service Center (MMSC). The notation refers to the application of the invention in association with an enhanced GSM network; this should not be construed as an implicit limitation to the applicability of the invention. In the context of UMTS, for example, the terminal would be designated as the UE (User Equipment) and the BSS would be substituted by one of the network devices belonging to a UTRAN, e.g. a Node B or a Radio Network Controller. Within the BSS or the UTRAN there may be a specific interface unit that takes care of all data traffic to and from such packet data networks that do not share the switching facilities (the core networks) with the cellular telephone systems.
The protocol layers related to the application of the invention in the MS are, from bottom to top, Layer 1 201, Medium Access Control 202, Radio Link Control 203, Logical Link Control 204, Subnetwork Dependent Convergence Protocol 205, Octet Stream Protocol 206 and Multimedia Messaging Service - Transport Protocol 207. Some sources refer to some of these layers as sublayers, which has no practical importance to the present invention. It has to be noted that the "MS" is a general notation for the apparatus or arragement of apparatuses which are operative at a teπninal end: one possible "MS" arrangement is a mobile telephone or other cellular network terminal coupled to a laptop computer, whereby for example the OSP protocol layer 206 may reside in the mobile telephone and the MMS-TP protocol layer 207 may reside in the laptop computer.
On the left-hand side of the BSS the three lowest layers 211, 212 and 213 are the same and on top of them there is LLC Relay layer 214 for perfo-rming the required conversions between the left-hand and right-hand sides of the BSS. The three right- hand layers of the BSS are, from bottom to top, Layer 1 221, Frame Relay layer 222 and BSS GPRS Protocol layer 223. In the SGSN the three lowest left-hand side layers 231, 232 and 233 are same as on the right-hand side of the BSS, and above them is the Logical Link Control layer 234 which is the peer entity of the similarly named layer in the MS. On the right-hand side of the SGSN there are the Layer 1 241, Layer 2 242 and Internet Protocol 243 layers. On top of the SGSN protocol stack there is a conversion entity consisting of an SNDCP half 235 and a GPRS Tunneling Protocol half 244. The protocol layers of the MMSC are, from bottom to top, Layer 1 251, Layer 2 252, Internet Protocol 253, GPRS Tunneling Protocol 254, Octet Stream Protocol 255 and Multimedia Messaging Service - Transport Protocol 256.
Also at the GGSN/MMSC end there may be a division of the protocol layers to those implemented within an actual GGSN (e.g. layers 251 to 255) and those implemented within a separate MMSC entity (e.g. layer 256).
The use of the above-mentioned protocol layers in context of the present invention is explained in more detail in the following, with reference also to Figs. 3 and 4. As an example we will use a mobile-originated procedure for enabling the exchange of MMS messages between a MS and a MMSC. At step 301 the MS transmits an Activate PDP Context Request message in a way basically known as such. In order to use said message to set up a PDP Context suitable for MMS transmission using the OSP, the MS needs to incorporate a certain set of parameters in the message. These parameters are schematically illustrated in Fig. 4 and they have the following meaning:
* The Network Service Access Point Identifier or NSAPI 401 is selected by the MS. NSAPI identifies the PDP context to be activated within the GPRS/UMTS network. For identifying the user the message comprises also the TLLI (Temporary Logical Link Identity) and IMSI (International Mobile Subscriber Identity) information elements (not shown in Fig. 4). * The PDP Type 402 shall have a two-part value. The first part 402a shall identify the protocol as OSP, and the second part 402b shall identify the service being used and thereby allow the SGSN to select a GGSN (i.e. MMSC in this case) that can provide the service. The two-part value of the PDP Type field can be expressed as OSP MMS. This is a new OSP type that does not exist in the standards at the priority date of this patent application but introduced by this invention.
* The PDP Address field 403 is most advantageously empty.
* The Access Point Name or APN 404 is selected by the MS. The selected APN identifies the GGSN and MMSC which the MS wants to use for this context. The actual APN to be used (i.e. GGSN and MMSC to be used) can be restricted by the operator by subscription. If that is the case, the HLR (Home Location Register) record of each user for multimedia messaging context includes the APN that is always used for MMS contexts. The MS may omit the APN from the Activate PDP Context Request message if the APN is configured in the HLR. Otherwise the user may include an APN in the message. If there is no APN in the message and no APN is configured in the HLR, the SGSN is free to choose any GGSN/MMSC for multimedia messaging context (If Dynamic Allocation in the visited network is allowed by the HLR record).
* The QoS Requested 405 (where QoS comes from Quality of Service) is selected by the MS. The requested service quality comprises a number of factors and their selection typically depends on the desired characteristics of the MMS-TP. Of the known reliability classes, class 2 is seen as the most advantageous, meaning RLC&LLC retransmissions as well as the use of UDP (User Datagram Protocol) at the GPRS backbone network. Bit rates can be negotiated to be anything without the invention limiting their negotiation. MMS message transmission is in general time- insensitive, so delay class should reflect that; long delays are allowed. Service precedence is most advantageously high if it indicates dropping precedence which results in few packet losses.
* The PDP Configuration Options field 406 can be used e.g. for informing the MMSC about certain capabilities of the MS, such as supported content-types etc.
MS-MMSC configuration information can be included in this information element if these are not implemented into the MMS-TP protocol itself. If there are many choices for the MMS-TP protocol (either totally separate protocols or different versions of the same protocol), the PDP Configuration options can be used for mforming the MMSC which protocol(s) the MS supports on top of OSP.
At step 302 the BSS recognizes the Activate PDP Context Request message as concerning packet- switched services and consequently routes it to the cuπent SGSN in a known way. At step 303 the SGSN selects the GGSN based on the HLR records and/or the MS-provided APN string. At step 304 the GGSN receives the message and recognizes from the context type that the new context is for MMS. If the MMSC functionality is not incorporated into the GGSN itself, the GGSN would additionally select an external MMSC element based on the APN in the context activation at step 304. A proprietary interface or some standard (e.g. TCP/UDP socket interface) can in this case be provided between the GGSN and the MMSC. The GGSN/MMSC creates an association with the service attributes and the established tunnel (identified by TID consisting of the user's IMSI and the NSAPI value of the PDP context).
After activating the service and possibly configuring some MMS-related parameters (e.g. according to the information delivered in the Protocol Configuration Options information element), the GGSN/MMSC sends at step 305 a PDP Context Activation Response message via the SGSN to the MS. The reception 306 of this message at the MS finalizes the context activation. No PDP address need to be assigned for the context, although such an assignment is not precluded by the invention. After that, there is a logical tunnel in place between the MS and the GGSN, where MMS-TP protocol messages can be delivered transparently as illustrated by block 307.
The activation of the PDP Context for transmitting MMS messages may also take place upon the initiative of the MMSC, for example in such a case where an MMS message has been stored for delivery to an MS which cuπently does not have an active PDP Context with the MMSC. According to the adopted practice within GPRS, the MS is always the one to transmit the initial Activate PDP Context Request message, but it is possible for the MMSC to indicate to the MS through a simple signalling message that there is a stored MMS message waiting for delivery, so that it is left to the MS's discretion to choose the moment for activating the PDP Context by commencing the procedures illustrated in Fig. 3. In other network aπangements an MMSC-originating PDP Context activation (though probably with different designations of the participating devices and associated messages) could be nearly identical to the MS-originating one described above, with the exception that the initial activation message and the response thereto would travel into opposite directions than above. The identification information in the former would then serve to identify a particular MS instead of a SGSN-GGSN/MMSC combination, whereby the routing of the message could involve the known inquiries to the location registers which store the current location information of the MS. There exists even a possibilty of allocating a fixed NSAPI to identify a PDP Context of the OSP:MMS type, whereby an explicit PDP Context activation between the MS and the MMSC could be completely avoided. In such a case the occuπence of said fixed NSAPI in a packet would immediately indicate to all the devices taking part in the communication that the packet carries multimedia-related information, so especially the BSS and the SGSN could arrange its routing accordingly. The IMSI and the NSAPI together, as well as with possible other identification information of the packet, serve to identify the MS to which such a packet belongs. A specific APN entry would probably be required in each user's HLR records so that a SGSN would find the coπect GGSN/MMSC for each user.
Fig. 5 illustrates an arrangement according to the invention comprising a terminal or MS (or UE) 501, a BSS or UTRAN 502, a SGSN 503 and a combined GGSN/MMSC 504. The hardware of the terminal comprises a radio transceiver block 512, a decoding/demultiplexing block 513, an encoding/multiplexing block 514, a control block 515 and a user data part 516. The decoding/demultiplexing block 513 is aπanged to separate received signalling information from received user data and to direct the former into the control block 515; similarly the encoding/multiplexing block 514 is arranged to take signalling information from the control block 515 and to multiplex it for transmission with user data coming from the user data part 516. All other blocks operate under the supervision of the control block. The control connections are shown with thinner lines than the user data and signalling information connections. The MS protocol stack seen in greater detail in Fig. 2 is implemented within the control block 515 by programming the coπesponding operations into a memory in the form of machine-readable processing instructions. If the terminal aπangement comprises a number of separate functional entities, the control block may be understood to consist of the control functions distributed into the physical controlling entities of the separate devices.
The MMSC is basically a large-capacity data storage 521 with a transmission unit 522 arranged to couple it to the trunk lines of the GPRS network (or a coπesponding packet data network) as well as a control unit 523 to control the setting up, maintaining and tearing down of connections. The MMSC protocol stack seen in greater detail in Fig. 2 is implemented within the control block 523 by programming the coπesponding operations into a memory in the form of machine- readable processing instructions. Fig. 6 summarizes the functions of the MMS-TP, OSP and lower protocol layers in all such protocol stacks where the MMS-TP and OSP layers are located. The MMS- TP protocol layer 601 is arranged to indicate to the OSP layer 602 the need for setting up a OSP:MMS type PDP Context with a first primitive 603; this primitive should contain at least the APN, QoS Requested and PDP Configuration Options information elements refeπed to above. The OSP layer 602 is in general capable of indicating to the lower layers the need for setting up PDP Contexts, and especially capable of indicating with a setup request primitive 604 that a PDP Context of the OSP:MMS tyope should be requested. This second primitive 604 should contain at least the PDP Type, APN, QoS Requested and PDP Configuration Options information elements refeπed to above. The lower layers are in general capable of informing the OPS layer 602 about the completed activation of the PDP Context with a third primitive 605, and the OPS layer 602 is in turn capable of forwarding the same information to the MMS-TP layer 601 in a fourth primitive 606.
During operation the MMS-TP layer 601 is arranged to exchange user data with the OSP layer according to the arrow 607, and the OSP layer is aπanged to transmit the user data to be transmitted further down in the protocol stack according to arrow 608 either in the octet mode or in the block mode. The former refers to the known use of a PAD or Packet Assembly / Disassembly function to assemble /disassemble a number of octets into / from a single packet for more effective transport by the underlying protocols. The block mode refers to the bypassing of the PAD function, whereby the MMS-TP layer 601 provides the message data to the OSP layer 602 in blocks of octets, and each block of octets is delivered as a single OSP PDU (Protocol Data Unit) to the underlying layers. The block mode is regarded as more advantageous for use in association with the invention, because each MMS message could be handled as an independent block of octets between the MMS-TP layer 601 and the OSP layer 602.
Tearing down of the OSP:MMS type PDP Context follows the known procedures of tearing down PDP Contexts.

Claims

Claims
1. A method for transmitting multimedia-related information between a terminal arrangement and a network device arrangement coupled to a packet-switched data transmission network, comprising the steps of - defining a first protocol stack (201,202,203,204,205,206,207) for the terminal arrangement and a second protocol stack (251, 252, 253, 254, 255, 256) for the network device arrangement, the protocol stacks consisting of layers, for arranging the mutual exchange of information between the terminal aπangement and the network device arrangement and - defining an octet stream protocol layer (206, 255) for the transmission of unstructured octet streams as a certain layer in the first protocol stack and a certain layer in the second protocol stack, characterized in that it additionally comprises the steps of
- defining a multimedia messaging transport protocol layer (207, 256) as a certain layer above the octet stream protocol layer (206, 255) in the first and second protocol stacks and
- exchanging multimedia-related information between the multimedia messaging transport protocol layer (207) in the teπninal arrangement and the multimedia messaging transport protocol layer (256) in the network device aπangement through the use of the octet stream protocol layer (206, 255) as well as other lower layers in the first and second protocol stacks.
2. A method according to claim 1, characterized in that comprises the step of defining a default PDP Context between the terminal arrangement and the network device arrangement for the exchange of multimedia-related information, said default PDP Context being of a specific type defined for the exchange of multimedia- related information and existing without explicit PDP Context activation.
3. A method according to claim 1, characterized in that comprises the step of activating a PDP Context (301, 305) between the terminal arrangement and the network device aπangement for the exchange of multimedia-related information, said PDP Context being of a specific type defined for the exchange of multimedia- related information.
4. A method according to claim 3, characterized in that the activation of the PDP Context involves the transmission of an Activate PDP Context message (301) comprising - a Network Service Access Point Identifier (401) for identifying the PDP context to be activated,
- a PDP Type value (402) for identifying the protocol as an octet stream protocol and for identifying the service being used as the transmission of multimedia-related information,
- an Access Point Name (404) for identifying the intended recipient device of the Activate PDP Context message,
- a QoS Requested field (405) for indicating the requested quality of service for the PDP context to be activated and - a PDP Configuration Options field 406 for carrying other information related to the PDP context to be activated.
5. A terminal aπangement for exchanging multimedia-related information with a network device arrangement through a packet-switched data transmission network, comprising
- a radio transceiver block (512),
- a control entity (515),
- a user data part (516)
- a decoding/demultiplexing block (513) aπanged to separate received signalling information from received user data and to direct the former into the control entity (515) and
- an encoding/multiplexing block (514) arranged to take signalling information from the control entity (515) and to multiplex it for transmission with user data coming from the user data part (516); wherein the control entity is arranged to implement a protocol stack and an octet stream protocol layer (206) for the transmission of unstructured octet streams as a certain layer in the protocol stack, for aπanging the mutual exchange of information between the terminal aπangement and the network device aπangement, characterized in that the control entity is aπanged to - implement a multimedia messaging transport protocol layer (207) in the protocol stack and
- exchange multimedia-related information between said multimedia messaging transport protocol layer (207) in the protocol stack and the network device arrangement through the use of the octet stream protocol layer (206) as well as other lower layers in the protocol stack.
6. A terminal arrangement according to claim 5, characterized in that it comprises a communication device and a presentation device coupled to said communication device, whereby the control entity consists of parts distributed into said communication device and said presentation device, so that said octet stream protocol layer (206) is implemented in said communication device and said multimedia messaging transport protocol layer (207) is implemented in said presentation device.
7. A network device arrangement for exchanging multimedia-related information with a terminal arrangement through a packet-switched data transmission network, comprising - a transmission unit (522),
- a control entity (523) and
- a data storage (521); wherein the control entity is arranged to implement a protocol stack and an octet stream protocol layer (255) for the transmission of unstructured octet streams as a certain layer in the protocol stack for aπanging the mutual exchange of information between the network device aπangement and the teπninal arrangement, characterized in that the control entity is arranged to
- implement a multimedia messaging transport protocol layer (256) in the protocol stack and - exchange multimedia-related information between said multimedia messaging transport protocol layer (256) in the protocol stack and the terminal aπangement through the use of the octet stream protocol layer (255) as well as other lower layers in the protocol stack.
8. A network device arrangement according to claim 7, characterized in that it comprises a node device of the packet-switched data transmission network and a multimedia messaging device coupled to said node device, whereby the control entity consists of parts distributed into said node device and said multimedia messaging device, so that said octet stream protocol layer (255) is implemented in said node device and said multimedia messaging transport protocol layer (256) is implemented in said multimedia messaging device.
PCT/FI2000/000206 1999-03-16 2000-03-15 Method and arrangement for transmitting multimedia-related information in a packet-switched cellular radio network WO2000056088A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP00912693A EP1159837A1 (en) 1999-03-16 2000-03-15 Method and arrangement for transmitting multimedia-related information in a packet-switched cellular radio network
KR1020017011762A KR20020001774A (en) 1999-03-16 2000-03-15 Method and arrangement for transmitting multimedia-related information in a packet-switched cellular radio network
AU34354/00A AU3435400A (en) 1999-03-16 2000-03-15 Method and arrangement for transmitting multimedia-related information in a packet-switched cellular radio network
BR0009056-5A BR0009056A (en) 1999-03-16 2000-03-15 Method and device for transmitting multimedia-related information over a packet-switched cellular radio network
JP2000605414A JP2002539728A (en) 1999-03-16 2000-03-15 Method and arrangement for transmitting multimedia related information in a packet switched cellular wireless network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI990586 1999-03-16
FI990586A FI107425B (en) 1999-03-16 1999-03-16 Method and arrangement for transporting multimedia-related information in a cellular radio network

Publications (1)

Publication Number Publication Date
WO2000056088A1 true WO2000056088A1 (en) 2000-09-21

Family

ID=8554211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FI2000/000206 WO2000056088A1 (en) 1999-03-16 2000-03-15 Method and arrangement for transmitting multimedia-related information in a packet-switched cellular radio network

Country Status (9)

Country Link
US (1) US6600732B1 (en)
EP (1) EP1159837A1 (en)
JP (1) JP2002539728A (en)
KR (1) KR20020001774A (en)
CN (1) CN1350753A (en)
AU (1) AU3435400A (en)
BR (1) BR0009056A (en)
FI (1) FI107425B (en)
WO (1) WO2000056088A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001049047A2 (en) * 1999-12-23 2001-07-05 Nokia Corporation A messaging service
WO2002011398A1 (en) * 2000-08-02 2002-02-07 Nokia Corporation Method for forming a multimedia streaming session
EP1271989A2 (en) * 2001-06-25 2003-01-02 Siemens Aktiengesellschaft Method for providing data on Multimedia Messaging Service (MMS), corresponding apparatuses and software programs
US6820116B1 (en) 2001-12-21 2004-11-16 Nokia Corporation Mobile browsing booster system
US6996393B2 (en) 2001-08-31 2006-02-07 Nokia Corporation Mobile content delivery system
CN100371921C (en) * 2001-12-12 2008-02-27 诺基亚公司 Synchronous media playback and messaging system
US9642177B2 (en) 2000-06-29 2017-05-02 Nokia Technologies Oy Method for establishing a connection between a terminal of a first type and a core network of a second type in a telecommunications network

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI106088B (en) * 1997-09-12 2000-11-15 Nokia Networks Oy Method of transmitting data between the network portion of a General Packet Radio Service and a subscriber terminal
FI108834B (en) * 1999-03-29 2002-03-28 Nokia Corp IP mobility management in a mobile communication system
FI108603B (en) * 1999-04-19 2002-02-15 Nokia Corp A method and system for transmitting multimedia information in a packet switched cellular radio network having an external interface
KR100694026B1 (en) * 1999-11-01 2007-03-12 삼성전자주식회사 Wideband radio transmitting method and device thereof
FI111314B (en) * 1999-11-05 2003-06-30 Nokia Corp Multimedia messaging service
FI108501B (en) 1999-11-05 2002-01-31 Sonera Oyj Mediation of a multimedia message
JP3825693B2 (en) * 2000-03-16 2006-09-27 ノキア コーポレイション Method and system for activating a packet data subscriber context for packet data
KR100362867B1 (en) * 2000-04-26 2002-12-11 삼성전자 주식회사 Apparatus for multi media servicing in wireless telecommunication unit and method thereof
DE10027872B4 (en) * 2000-06-06 2005-10-13 Siemens Ag Mobile communication system and operating method therefor
US7039025B1 (en) * 2000-09-29 2006-05-02 Siemens Communications, Inc. System and method for providing general packet radio services in a private wireless network
US20020049062A1 (en) * 2000-10-02 2002-04-25 Robert Petersen Distributed admission control
US7684786B2 (en) * 2003-08-26 2010-03-23 Nokia Corporation Method and system for establishing a connection between network elements
FI111595B (en) * 2000-12-20 2003-08-15 Nokia Corp Arrangements for the realization of multimedia messaging
US7092381B2 (en) * 2000-12-29 2006-08-15 Telefonaktiebolaget Lm Ericsson (Publ) Delivery of broadcast teleservice messages over packet data networks
US6947738B2 (en) * 2001-01-18 2005-09-20 Telefonaktiebolaget Lm Ericsson (Publ) Multimedia messaging service routing system and method
US6950876B2 (en) * 2001-03-19 2005-09-27 Lucent Technologies Inc. Multiple-protocol home location register and method of use
EP1437020B1 (en) * 2001-09-21 2013-02-27 Nokia Siemens Networks Oy System and method for enabling mobile edge services
RU2332705C2 (en) * 2002-07-16 2008-08-27 Нокиа Корпорейшн Method for compensating delay in packages transmission during multimedia data-flow transfer
CN1249965C (en) * 2002-11-12 2006-04-05 华为技术有限公司 Method for forwarding multimedia message among different multimedia message centers
CN1274125C (en) * 2002-11-12 2006-09-06 华为技术有限公司 Method for forwarding multimedia message between terminal and value added service provider application
WO2004102905A1 (en) * 2003-04-09 2004-11-25 Nec Corporation RADIO NETWORK CONTROL DEVICE AND QoS CONTROL METHOD USED FOR THE SAME
DE10325889A1 (en) * 2003-06-06 2004-12-23 Siemens Ag Method of transmitting messages
US7327746B1 (en) * 2003-08-08 2008-02-05 Cisco Technology, Inc. System and method for detecting and directing traffic in a network environment
US8732239B2 (en) * 2003-10-02 2014-05-20 Hong Kong Applied Science And Technology Research Institute Co., Ltd. System and method for providing multimedia wireless messages across a broad range and diversity of networks and user terminal display equipment
KR100564528B1 (en) * 2003-10-17 2006-03-29 에스케이 텔레콤주식회사 Settlement of Quality of Service about default Access Point Name in WCDMA Packet Network
US7680484B2 (en) * 2004-02-13 2010-03-16 Edwin A. Kauppila System and method for performing wireless remote monitoring
US20060150213A1 (en) * 2004-12-16 2006-07-06 Zechary Chang Executing module and method thereof for playing multimedia in a wireless communication apparatus
US20080153484A1 (en) * 2006-12-21 2008-06-26 Telefonaktiebolaget Lm Ericsson (Publ) Quality of service improvement in mobile networks
JPWO2009013957A1 (en) * 2007-07-26 2010-09-30 日本電気株式会社 Multimedia communication system, multimedia communication apparatus and terminal
KR101508571B1 (en) * 2009-05-08 2015-04-07 노키아 솔루션스 앤드 네트웍스 오와이 Method and apparatus configured to provide local breakout services with a single apn
EP2483792A4 (en) * 2009-09-30 2014-08-06 Unwired Planet Internat Ltd Method and system for managing multimedia messages using a message intermediation module
US9762634B2 (en) * 2012-04-06 2017-09-12 At&T Intellectual Property I, L.P. System and method to transmit digital broadcast grade video via a cellular data network

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998056197A1 (en) * 1997-06-04 1998-12-10 Telia Ab Improvements in, or relating to, cellular radio communication systems

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444702A (en) * 1992-09-14 1995-08-22 Network Equipment Technologies, Inc. Virtual network using asynchronous transfer mode
JP3614907B2 (en) * 1994-12-28 2005-01-26 株式会社東芝 Data retransmission control method and data retransmission control system
JPH09275402A (en) * 1996-04-04 1997-10-21 Sony Corp Communication control system, communication control equipment, data transmitter/receiver and communication control method
SE510664C2 (en) 1996-10-29 1999-06-14 Ericsson Telefon Ab L M Methods and apparatus for message management in a communication system
FI115747B (en) 1998-02-12 2005-06-30 Nokia Corp Procedure for data transfer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998056197A1 (en) * 1997-06-04 1998-12-10 Telia Ab Improvements in, or relating to, cellular radio communication systems

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"ETSI EN 301 344 V7.1.1 (2001-01)", ETSI EN 301 344 V7.1.1, XX, XX, 1 January 2000 (2000-01-01), XX, pages 57 - 106, XP002948975 *
"UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM (UMTS) MULTIMEDIA MESSAGING SERVICE (MMS), FUNCTIONAL DESCRIPTION STAGE 2", ETSI TS 123 140 V3.0.1, XX, XX, 1 March 2000 (2000-03-01), XX, pages 06 - 17, XP002948976 *
SEVANTO J.: "Multimedia messaging service for GPRS and UMTS", IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE,, vol. 3, 21 September 1999 (1999-09-21) - 24 September 1999 (1999-09-24), pages 1422 - 1426, XP002901764 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001049047A3 (en) * 1999-12-23 2002-05-02 Nokia Corp A messaging service
WO2001049047A2 (en) * 1999-12-23 2001-07-05 Nokia Corporation A messaging service
US7127489B2 (en) 1999-12-23 2006-10-24 Nokia Mobile Phones, Ltd. Messaging service
US9642177B2 (en) 2000-06-29 2017-05-02 Nokia Technologies Oy Method for establishing a connection between a terminal of a first type and a core network of a second type in a telecommunications network
US10863566B2 (en) 2000-06-29 2020-12-08 Nokia Technologies Oy Method for establishing a connection between a terminal of a first type and a core network of a second type in a telecommunications network
WO2002011398A1 (en) * 2000-08-02 2002-02-07 Nokia Corporation Method for forming a multimedia streaming session
US10581792B2 (en) 2000-08-02 2020-03-03 Conversant Wireless Licensing S.A R.L. Streaming of media in a multimedia messaging service
US9800538B2 (en) 2000-08-02 2017-10-24 Conversant Wireless Licensing S.A R.L. Communication service
EP1271989A2 (en) * 2001-06-25 2003-01-02 Siemens Aktiengesellschaft Method for providing data on Multimedia Messaging Service (MMS), corresponding apparatuses and software programs
EP1271989A3 (en) * 2001-06-25 2003-07-30 Siemens Aktiengesellschaft Method for providing data on Multimedia Messaging Service (MMS), corresponding apparatuses and software programs
US6996393B2 (en) 2001-08-31 2006-02-07 Nokia Corporation Mobile content delivery system
US7398080B2 (en) 2001-08-31 2008-07-08 Nokia Corporation Mobile content delivery system
US8417827B2 (en) 2001-12-12 2013-04-09 Nokia Corporation Synchronous media playback and messaging system
CN100371921C (en) * 2001-12-12 2008-02-27 诺基亚公司 Synchronous media playback and messaging system
US6820116B1 (en) 2001-12-21 2004-11-16 Nokia Corporation Mobile browsing booster system

Also Published As

Publication number Publication date
KR20020001774A (en) 2002-01-09
CN1350753A (en) 2002-05-22
EP1159837A1 (en) 2001-12-05
JP2002539728A (en) 2002-11-19
FI990586A0 (en) 1999-03-16
AU3435400A (en) 2000-10-04
FI107425B (en) 2001-07-31
BR0009056A (en) 2002-01-02
US6600732B1 (en) 2003-07-29
FI990586A (en) 2000-09-17

Similar Documents

Publication Publication Date Title
US6600732B1 (en) Method and arrangement for transmitting multimedia-related information in a packet-switched cellular radio network
CA2301419C (en) Method and arrangement for preparing for the transmission of multimedia-related information in a packet-switched cellular radio network
US6658011B1 (en) Use of wireless application protocol in a packet-switched radio telecommunication system
JP4230106B2 (en) Selection of multiple Internet service providers by GPRS subscribers
US6747989B1 (en) Method and arrangement for transmitting multimedia-related information in a packet-switched cellular radio network with external connection
US7042855B1 (en) Method for routing data in a communication system
JP3625769B2 (en) Transport of QoS mapping information in packet radio networks
EP1192829B1 (en) Method and arrangement for indicating the specific use of a pdp context
MXPA01006861A (en) TRANSPORTING QoS MAPPING INFORMATION IN A PACKET RADIO NETWORK
MXPA00002912A (en) Gprs-subscriber selection of multiple internet service providers

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00807494.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2000912693

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020017011762

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2000 605414

Country of ref document: JP

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2000912693

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017011762

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2000912693

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1020017011762

Country of ref document: KR