WO2000047886A1 - Method and device for controlling temperature of sucked air - Google Patents

Method and device for controlling temperature of sucked air Download PDF

Info

Publication number
WO2000047886A1
WO2000047886A1 PCT/JP2000/000647 JP0000647W WO0047886A1 WO 2000047886 A1 WO2000047886 A1 WO 2000047886A1 JP 0000647 W JP0000647 W JP 0000647W WO 0047886 A1 WO0047886 A1 WO 0047886A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
temperature
negative pressure
intake
outside air
Prior art date
Application number
PCT/JP2000/000647
Other languages
French (fr)
Japanese (ja)
Inventor
Kazumi Ubukata
Norio Suda
Original Assignee
Nippon Thermostat Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Thermostat Co., Ltd. filed Critical Nippon Thermostat Co., Ltd.
Publication of WO2000047886A1 publication Critical patent/WO2000047886A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/04Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture
    • F02M31/06Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture by hot gases, e.g. by mixing cold and hot air
    • F02M31/062Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture by hot gases, e.g. by mixing cold and hot air with thermostat and pneumatic actuator both working on the air mixture control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/04Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture
    • F02M31/06Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture by hot gases, e.g. by mixing cold and hot air
    • F02M31/07Temperature-responsive control, e.g. using thermostatically-controlled valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a method and a device for controlling the temperature of intake air.
  • the present invention relates to a method and a device for controlling the temperature of intake air in an internal combustion engine.
  • carburetor-based engines often suffered icing from late fall to early spring. This phenomenon occurs when the humidity is high and sufficient warm air cannot be obtained, such as on a rainy day. When icing was used, it caused problems with idling or stalling.
  • FIG. 5 is a schematic diagram showing a temperature control system equipped with a conventional device.
  • the conventional device 100 is mounted in an intake system as shown in FIG.
  • the intake air from which dust and the like have been removed by the air cleaner 101 becomes an air-fuel mixture through the carburetor 102, and is sent to the intake manifold 103.
  • the air-fuel mixture sent to the intake manifold 103 is further sent to the engine 107 for combustion.
  • the air-fuel mixture (exhaust) after combustion is sent from the exhaust manifold # 04 to the exhaust system.
  • a hot air cover 105 is provided around the outer periphery of the exhaust manifold 104. When the engine 107 starts, the air in the hot air cover 105 is warmed and heated. This warm air is sent to the conventional device 100 through the warm air passage HW.
  • the other air hereinafter, referred to as outside air
  • an outside air intake 100b connected to the outside air passage CW and a warm air intake 100c connected to the warm air passage HW are provided inside the passage main body 100a of the conventional device 100.
  • a swinging plate-shaped hot air valve 100d is disposed between the warm air inlet 100c and the outside air inlet 100b, and the hot air valve 100d swings (see the arrow in FIG. 5). ),
  • the outside air intake 100b and the warm air intake 100c are opened and closed.
  • the ratio of the opening and closing, that is, the opening degree of the hot air valve 100d determines the mixing ratio of warm air and outside air, and determines the temperature of the intake air.
  • the thermostat 106 controls the opening of the hot air valve 1 OOd.
  • the thermostat 106 is provided in the passage main body 100a, and includes a spring holder 106a and a shaft 106b that move forward and backward.
  • the shaft 106b is mounted on the front of the spring holder 106a, and moves forward and backward together with the spring holder 106a by the expansion and contraction of wax and the action of the spring 106c.
  • the tip of the shaft 106b is connected to the bottom of the hot air valve 100D via a link mechanism.
  • the bottom of the hot air valve 1OOd is pivotally supported from both sides, and swings around the bottom as the shaft advances and retreats.
  • the opening of the throttle valve is closely related to the vehicle speed. Simply opening the throttle valve increases the engine speed and consequently increases the speed. In other words, it does not eliminate the bombing loss during low load driving.
  • the temperature of the intake air is set to be high, the intake air thermally expands, so that the actual flow rate of the intake air decreases. Then, the throttle valve can be opened, and the throttle valve can be opened even when the vehicle is running at a low load such as idling or partial driving, so that the pumping loss can be reduced.
  • full load operation when the accelerator is fully depressed (hereinafter referred to as full load operation), the throttle valve is in the fully open state, and the intake resistance is minimal.
  • full load operation a large output is required, so it is necessary to open the throttle valve or reduce the temperature of the intake air, and it is necessary to adjust the temperature of the intake air according to the load condition of the vehicle.
  • an improved intake air temperature control device (hereinafter referred to as an improved conventional device) which is an improvement of the conventional device 100 has been developed and disclosed in Japanese Patent Application Laid-Open No. Hei 6-193523. .
  • This improved conventional device has a configuration similar to that of the conventional device 100, and further includes control means for closing the hot air valve in response to a change in negative pressure in the intake chamber 1.
  • control means for closing the hot air valve in response to a change in negative pressure in the intake chamber 1.
  • the control means does not operate, and the temperature of the intake air is kept in a certain range as in the conventional device. If this temperature is set to a relatively high temperature, the bombing loss that was large during partial load operation, especially during low load driving, is reduced. As described above, according to the improved conventional device, the fuel efficiency can be improved as compared with the conventional device 100.
  • An object of the present invention is to solve the above-mentioned problems by reducing the pumping loss during partial load operation and effectively preventing a decrease in output during full load operation to improve fuel efficiency. With the goal. Disclosure of the invention
  • the opening / closing amount of the hot air valve is changed according to a change in the temperature of the intake air consisting of warm air, outside air, or both, and the mixing ratio of warm air to outside air is controlled so that the temperature of the intake air is within a certain range. While controlling the mixing ratio between the warm air and the outside air based on the negative pressure change in the intake chamber and also based on the load condition specified from the engine control parameters. And the hot air valve is forcibly brought into the outside air irrespective of the temperature of the intake air.
  • a hot-air valve that opens and closes each intake port of warm air and outside air, and an opening and closing amount of the hot air valve to control the amount of intake air composed of the warm air, the outside air, or both of them.
  • a negative pressure circuit that operates in response to a negative pressure change in the intake chamber, a solenoid that opens and closes the negative pressure circuit to control the operation of the negative pressure circuit, and a load state is specified from engine control parameters, and this load is determined.
  • the mixing ratio between the warm air and the outside air is controlled based on a change in the negative pressure in the intake chamber and a load state specified from the engine control parameter. Under a specific condition, there is no relation to the temperature of the intake air.
  • the intake air temperature control device is characterized in that the hot air valve is forcibly brought into the outside air introduction state by the operation of the pressure actuator.
  • FIG. 1 is a configuration diagram of the intake air temperature control device according to the present embodiment
  • FIG. 2 is a longitudinal sectional view showing the inside of the passage main body
  • FIG. 3 is a diagram of the intake air temperature control device according to the present embodiment.
  • FIG. 4 is a table showing a control pattern according to the intake air temperature control method according to the present embodiment
  • FIG. 5 is a temperature control system equipped with a conventional intake air temperature control device.
  • FIG. 1 is a configuration diagram of an intake air temperature control device 1 (hereinafter, referred to as a control device 1) according to the present embodiment, and the band-shaped arrows in FIG. 1 indicate flow paths of warm air, outside air, and intake air. Is shown.
  • a control device 1 an intake air temperature control device 1 (hereinafter, referred to as a control device 1) according to the present embodiment, and the band-shaped arrows in FIG. 1 indicate flow paths of warm air, outside air, and intake air. Is shown.
  • a passage body 2 is attached.
  • a passage 23 through which the intake air flows is formed inside the passage body 2, and the passage 23 is forked.
  • One of the two branches is formed with an outside air intake 21 to which the outside air path CW is connected, and the other is formed with a warm air intake 22 to which the warm air path HW is connected.
  • a hot air valve 3 is provided at a location where the outside air inlet 21 and the warm air inlet 22 are connected, and the hot air valve 3 is swingable about the bottom 31 as a fulcrum (see the arrow in FIG. 1). is there.
  • the hot air valve 3 has a plate shape, and opens and closes the outside air inlet 21 and the warm air inlet 22 by the swing.
  • a shaft 41 forming a link mechanism is rotatably connected to the bottom 31 of the hot air valve 3.
  • the shaft 41 moves forward and backward by the action of the element 43, and the hot air valve 3 swings by the forward and backward movement.
  • an advancing / retracting rod 51 of the negative pressure actuator 5 is connected to the bottom 31 of the hot air valve 3 so as to be rotatable and form a link mechanism.
  • the reciprocating rod 51 is normally in the retracted position (the position on the left side in FIG. 1) due to the operation of the negative pressure actuator 5, and does not interfere with the reciprocating movement of the shaft 41 and affects the swing of the hot air valve 3. Without giving ,.
  • the negative pressure actuator 5 is released and moves to the standing position (moves to the right in FIG. 1), the bottom 31 of the hot air valve 3 is forcibly pushed out. As a result, the hot air valve 3 opens the outside air inlet 21 and completely closes the warm air inlet 22.
  • the intake air is only the outside air, only the warm air, or a mixture thereof, and the temperature of the intake air is determined by the mixture ratio of the outside air and the warm air. Since the generation of warm air has been described in the related art, a detailed description thereof will be omitted. The greater the percentage of warm air warmed with the start of engine 107 (see Figure 5), the higher the temperature of the intake air.
  • the mixing ratio between the outside air and the warm air is determined by the amount by which the hot air valve 3 opens and closes the outside air inlet 21 and the warm air inlet 22 (hereinafter, referred to as the valve opening / closing amount).
  • the hot air valve 3 has a relationship in which the opening / closing amount is changed by swinging, and if one is opened, the other is closed. Therefore, in the following description, for convenience, the state in which the warm air inlet 22 is closed is referred to, and "open j" means that the warm air inlet 22 is opened from the closed state. Means a movement in a direction to close the outside air intake 21, and “close” means the opposite. A state in which the outside air intake 21 is opened and the warm air intake 22 is completely closed is an “outside air introduction state”. The intake air is sent to the air cleaner 101 through the passage 23 in the passage body 2.
  • the intake air from which dust and the like have been removed by the cleaner 101 passes through the throttle chamber 11 whose flow path diameter is narrowed.
  • a throttle valve 8 is provided in the throttle chamber 11. The amount of rotation of the throttle valve 8 is interlocked with the depression of the accelerator, and rotates from a closed position perpendicular to the flow direction of the intake air to a fully open position parallel thereto.
  • a negative pressure source intake 71 is formed, and the negative pressure source intake 71 and the negative pressure actuator 5 are connected to each other.
  • a negative pressure circuit 7 is formed between the two.
  • the throttle valve 8 restricts the flow rate of the intake air, so that the negative pressure in the intake chamber 13 increases.
  • the load state is specified from the change in the negative pressure.
  • the negative pressure circuit 7 operates, and the negative pressure actuator 5 operates. That is, when the negative pressure actuator 5 is operated, the reciprocating rod 51 moves backward (moves to the left in FIG. 1) against the spring 52, and the interference with the hot air valve 3 is released. As a result, the swing of the hot-air valve 3 is exclusively affected by the thermostat 4.
  • the throttle valve 8 opens, and the intake resistance decreases according to the opening of the throttle valve 8. Then, the negative pressure in intake chamber 13 decreases.
  • the load state is specified from the change in the negative pressure, and the negative pressure circuit 7 operates based on the load state, and the operation of the negative pressure actuator 5 is released.
  • the reciprocating rod 51 moves to the standing position, that is, to the right in FIG. 1, by the action of the spring 52, and the hot air valve 3 is forcibly pushed down to enter the outside air.
  • the negative pressure circuit 7 is provided with a solenoid 6 composed of a three-port solenoid valve.
  • the solenoid 6 opens and closes the negative pressure circuit 7 and controls the operation of the negative pressure circuit 7. That is, when the solenoid 6 opens the negative pressure circuit 7, the negative pressure change of the intake chamber 13 directly acts on the negative pressure actuator 5 as an operation of the negative pressure circuit 7, and when the negative pressure circuit is closed, The intake chamber 13 side is closed and the negative pressure actuator 5 side is opened to the atmosphere. Normally, solenoid 6 is open.
  • the solenoid 6 closes the negative pressure circuit 7 under a specific condition, that is, at full load operation.
  • the ECU as the load specifying means specifies the load state.
  • Engine control parameters (hereinafter referred to as control parameters) are sent to the ECU as information.
  • the control parameters own vehicle information such as “accelerator opening”, “engine speed”, “engine water temperature”, and “vehicle speed” shown in FIG. 1 are exemplified, but the present invention is not limited to this example. Instead, other information may be used as long as it is sufficient to specify the load state.
  • the ECU determines the negative value of engine 107 (see Fig. 5). Identify the loading status. Then, when it is specified that the operation is at full load operation, an electric signal is sent to the solenoid 6 to close the negative pressure circuit 7.
  • the vehicle speed is ⁇ low speed J '' despite the accelerator opening force being ⁇ open, '' Identify that it is at full load operation.
  • the load state is specified from the negative pressure change in the intake chamber 113 and the control parameter, and the mixing ratio between the warm air and the outside air is controlled based on the load state. Further, for example, during the full load operation as in the present embodiment, the hot air valve 3 is forcibly brought into the outside air introduction state by the operation of the negative pressure actuator 5 irrespective of the temperature of the intake air.
  • FIG. 2 is a longitudinal sectional view showing the inside of the passage body 2.
  • the spring holder 42 has a front inner hole 42b and a rear inner hole 42c formed on both front and rear sides of the center inner wall 42d, and the front end of the front inner hole 42b and the rear end of the rear inner hole 42c are open. Te shiru.
  • the base end 41a of the shaft 41 is housed in the front inner hole 42b, and the piston 43a of the element 43 is slidably fitted in the rear inner hole 42c.
  • the spring holder 42 and the element 43 are supported by front and rear support members 12a and 12b, and are positioned vertically. Incidentally, the spring holder 42 is supported by the front support member 12a so as to be able to advance and retreat in the front-rear direction, and the element 43 is fixed by the rear support member 12b.
  • a flange 42a is formed on the outer periphery of the rear end of the spring holder 42, and a spring 44 is provided between the flange 42a and the front support member 12a. This spring 4
  • a flange-shaped base end 41a formed at the rear end of the shaft 41 has its outer periphery slidably inscribed in the front inner hole 42b of the spring holder 42.
  • a coil spring 41b is provided between the base end 41a and the central inner wall 42d, and constantly urges the shaft 41 forward.
  • the opening formed at the front end of the front inner hole 42b is bent toward the center to prevent the base end 41a from coming off.
  • a rod 43b protrudes and retracts from the front end (the front side in FIG. 2) of the piston portion 43a housed in the rear inner hole 42c of the spring holder 42.
  • the rod 43b is raised and lowered by the action of wax and an elastic member (not shown) housed in the element 43.
  • the above is the structure of the thermostat 4. Next, the connection relationship between the shaft 41 and the reciprocating rod 51 and the bottom 31 of the hot water valve 3 will be described.
  • the bottom 31 of the hot air valve 3 is pivotally supported on both sides by the passage body 2, and the hot air valve 3 swings around the bottom 31.
  • An upper connecting portion 31a and a lower connecting portion 31b are formed at upper and lower positions with the bottom portion 31 therebetween.
  • the top end of the rod 51 is rotatably connected to the upper connecting part 31a via a pin 33a, and the end of the shaft 41 is rotatably connected to the lower connecting part 31b via a pin 33b. Be linked.
  • the reciprocating directions of the reciprocating rod 51 and the shaft 41 are parallel to each other.
  • the shaft 41 can allow the pin 33b to move up and down due to the swing of the hot air valve 3 when moving forward and backward.
  • a slit 51a is formed at the distal end of the advancing / retracting rod 51 of the negative pressure actuator 5 (see FIG. 1), and a pin 33a is movable in the slit 51a. Accordingly, when the negative pressure actuator 5 (see FIG. 1) is actuated and the reciprocating rod 51 is in the retracted position, the pin 33a automatically moves through the slit 51a of the reciprocating rod 51 as the hot air valve 3 swings. Move for free. Therefore, the reciprocating rod 51 does not interfere with the swing of the hot air valve 3.
  • FIG. 3 is a schematic sectional view showing the operation of the control device 1.
  • FIG. 3 (a) shows a state immediately after the engine is started
  • FIG. 3 (b) shows a state in which the hot air valve 3
  • FIG. 3 (c) shows a state where the air is oscillating and the outside air is introduced.
  • the hot air valve 3 is fully opened in FIG. 4A
  • the hot air valve 3 is opened in response to the temperature of the intake air in FIG. 4B
  • the hot air valve 3 is closed in FIG. ing.
  • the band-shaped arrows in the figure indicate the flow of outside air, warm air, or intake air
  • the normal arrows indicate the swing direction of the hot-air valve 3 or the retreating direction of the reciprocating rod 51.
  • the temperature of the intake air is kept in a certain range.
  • the negative pressure actuator 5 (see FIG. 1) is always operated, and the advance / retreat rod 51 is at the retracted position.
  • the retraction rod 51 is in the standing position as shown in Fig. 3 (c), forcibly entering the outside air, and the intake air Is all open air.
  • FIG. 4 is a table showing a control pattern by the control method according to the present embodiment.
  • the throttle valve 8 restricts the flow of the intake air in the throttle chamber 11. In particular, during idling or partial, the throttle valve 8 is closed, so that the intake resistance becomes maximum and the bombing loss becomes maximum.
  • the thermostat 4 keeps the temperature of the intake air at a higher temperature, so that the throttle valve 8 is opened and the flow rate of the intake air is substantially reduced. Can be restricted to As a result, the intake resistance can be reduced, and the pumping loss is reduced. More specifically, when the temperature of the intake air rises and is kept within a certain range, the volume of the intake air expands and the density decreases. Then, even if the opening of the throttle valve 8 is increased, the flow rate of the intake air sent into the engine 107 is substantially restricted. As a result, the intake resistance decreases and the pumping loss decreases.
  • the intake air is set to an appropriate temperature (target temperature) determined by comparing, for example, the occurrence of bombing loss and the combustion efficiency, and is stabilized within a certain range based on the target temperature.
  • the setting of the target temperature is performed by selecting the thermal expansion and contraction rates of the wax in the thermostat 4 and the elastic moduli of the coil spring 41b and the spring 44. This is because the opening / closing amount of the hot air valve 3 corresponding to the temperature of the intake air is determined by selecting the thermal expansion and shrinkage of the wax in the thermostat 4.
  • the above control pattern that is, the control pattern at the time of partial load operation, is shown by the A pattern and the B pattern in FIG. That is, the pattern A corresponds to FIG. 3 (a), and indicates the state immediately after the engine is started. That is, in this state, the hot air valve 3 is closed by the control device 1, and only the warm air is used as the intake air. Therefore, the temperature of the intake air is a rising temperature that has not reached the target temperature. Further, in this case, the opening of the throttle valve 8 needs to be in accordance with the temperature rising characteristic of the intake air, so that the intake resistance also corresponds to this opening.
  • the thermostat 4 When the temperature of the intake air rises from this state, the thermostat 4 is activated to keep the temperature of the intake air within a certain range based on the target temperature (FIG. 3 (b)).
  • This control state is indicated by the B button.
  • the throttle valve 8 In the B pattern, the throttle valve 8 can be opened due to the expansion of the volume accompanying the rise in the temperature of the intake air. That is, in the B pattern, the throttle valve 8 is opened to reduce the intake resistance, and the bombing loss is reduced so as to cope with the partial load operation.
  • the above is the control method at the time of ordinary traveling (during partial load operation). If the running state changes during full-load operation such as climbing a hill or sudden acceleration from this normal traveling, if the temperature of the intake air is still the set temperature, climbing hill, sudden acceleration, etc.
  • the negative pressure actuator 5 (see FIG. 1) is operated to open the hot air valve 3, and all the intake air is outside air.
  • the temperature of the intake air drops instantaneously, and the combustion efficiency is improved, and a state can be accommodated during full load operation.
  • control pattern described above that is, the control pattern at the time of full load operation, is shown by the C and D patterns in FIG. This control pattern corresponds to FIG. 3 (c).
  • Pattern C is for full load operation when the engine is started.
  • the negative pressure actuator 5 in the control device 1 is released, and the hot air valve 3 is forcibly brought into the outside air introducing state.
  • combustion efficiency is improved, and a decrease in output is prevented.
  • the throttle valve 8 is fully opened, and the intake resistance is a resistance corresponding to the opening of the throttle valve 8.
  • the D pattern suddenly changes to full load operation. Also in this case, the negative pressure actuator 5 is released, and the hot air valve 3 is forcibly brought into the outside air introducing state. As a result, the combustion efficiency is improved, and a decrease in output is prevented. Also in this case, the throttle valve 8 is fully opened, and the intake resistance is the resistance corresponding to the opening degree I of the throttle valve 8.
  • the full load operation is described as an example of the “certain specific condition”.
  • “certain conditions” are not limited to full load operation, and include a wide range of situations where large output is required.
  • the load state is specified not only by the negative pressure change in the intake chamber 13 but also by a load specifying means based on the control parameter. As a result, it is possible to more accurately specify the load state.
  • ADVANTAGE OF THE INVENTION According to this invention, generation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

A method of controlling a sucked air temperature in an internal combustion engine, characterized by comprising the steps of varying the opening and closing amount of a hot air valve (3) according to a variation in temperature of the sucked air comprising warm air, outside air, or both of them, maintaining the temperature of the sucked air within a constant range by controlling the hot air-outside air mixing ratio, controlling the hot air-outside air mixing ratio based on a variation of negative pressure in an intake chamber (13) and also based on the load conditions specified from engine control parameters and, in a particular condition, bringing the hot air valve (3) forcibly into an outside air introducing state irrespective of the temperature of the sucked air.

Description

明細書  Specification
吸入空気の温度制御方法、およびその装置 技術分野 TECHNICAL FIELD The present invention relates to a method and a device for controlling the temperature of intake air.
本発明は、内燃機関における吸入空気の温度を制御する方法、およびその装置に関す る。 背景技術  The present invention relates to a method and a device for controlling the temperature of intake air in an internal combustion engine. Background art
自動車エンジンの内、気化器を使ったエンジンでは、晩秋から春先にかけてアイシングを 起こすという問題がよくあつた。これは、雨の日等、湿度が高くて暖気が十分取れない場合 に起きる現象であり、アイシングした場合には、アイドリング不調やエンストするといつた不 具合を生じさせた。  Of the car engines, carburetor-based engines often suffered icing from late fall to early spring. This phenomenon occurs when the humidity is high and sufficient warm air cannot be obtained, such as on a rainy day. When icing was used, it caused problems with idling or stalling.
このような不具合を軽減するため、排気マ二ホールド周りに生じた暖気を、適宜吸入空気 として送り込む自動温調エアクリーナ力 現在使用されている。この自動温調エアクリーナ (従来装置という)について、第 5図を参照しながら説明する。なお、第 5図は、従来装置を 備え付けた温度制御システムを示す模式図である。  In order to reduce such problems, an automatic temperature control air cleaner that uses warm air generated around the exhaust manifold as appropriate intake air is currently used. This automatic temperature control air cleaner (referred to as a conventional device) will be described with reference to FIG. FIG. 5 is a schematic diagram showing a temperature control system equipped with a conventional device.
従来装置 1 00は、第 5図の如 吸気システム内に取り付けられている。エアクリーナ 1 0 1によって塵等を除去された吸入空気は、気化器 1 02を通って混合気となり、吸気マ二ホー ルド 1 03に送られる。吸気マ二ホールド 1 03に送られた混合気は、さらにエンジン 1 07内 に送られ、燃焼する。燃焼後の混合気(排気)は、排気マ二ホールド Ί 04から排気システム へ送られる。排気マ二ホールド 1 04の外周りには、ホットエアカバー 1 05が備え付けられて おり、エンジン 1 07が始動すると、ホットエアカバー 1 05内の空気が暖められて暖気となる。 この暖気が、暖気路 HWを通って従来装置 1 00に送り込まれる。一方、他方の空気(以下、 外気という)は、エンジンルームを通過し、外気路 CWを通って従来装置 1 00に送り込まれ る。  The conventional device 100 is mounted in an intake system as shown in FIG. The intake air from which dust and the like have been removed by the air cleaner 101 becomes an air-fuel mixture through the carburetor 102, and is sent to the intake manifold 103. The air-fuel mixture sent to the intake manifold 103 is further sent to the engine 107 for combustion. The air-fuel mixture (exhaust) after combustion is sent from the exhaust manifold # 04 to the exhaust system. A hot air cover 105 is provided around the outer periphery of the exhaust manifold 104. When the engine 107 starts, the air in the hot air cover 105 is warmed and heated. This warm air is sent to the conventional device 100 through the warm air passage HW. On the other hand, the other air (hereinafter, referred to as outside air) passes through the engine room and is sent into the conventional device 100 through the outside air passage CW.
従来装置 1 00の通路本体 1 00a内には、外気路 CWに接続する外気取入口 1 00bと暖 気路 HWに接続する暖気取入口 1 00cとが設けられている。暖気取入口 1 00c及び外気取 入口 1 00bの間には、揺動するプレート状のホットエアバルブ 1 00dが配設されており、こ のホットエアバルブ 1 00dの揺動動作(第 5図の矢印参照)によって外気取入口 1 00bと暖 気取入口 1 00cの開閉が行われる。この開閉の割り合い、つまりホットエアバルブ 100dの 開度によって暖気と外気の混合比が決まり、吸入空気の温度が決まる。したがって、ホット エアバルブ 1 OOdの開度を制御することによって暖気と外気の混合比が調節され、吸入空 気の温度制御が行われる。 ホットエアバルブ 1 OOdの開度制御を、サーモスタット 1 06が行う。サーモスタット 1 06は、 通路本体 1 00a内に配設され、進退動するスプリングホルダ一 1 06a及びシャフト 1 06bを 備える。シャフト 1 06bは、スプリングホルダー 1 06aの前部に装着されており、ワックスの 膨張、収縮、及びスプリング 1 06cの作用によってスプリングホルダー 1 06aとともに進退 動する。さらに、シャフト 1 06bの先端は、リンク機構を介してホットエアバルブ 1 OOdの底部 に連結する。ホットエアバルブ 1 OOdの底部は両側方から軸支されており、シャフトの進退 動に応じ、前記底部を支点に揺動する。 Inside the passage main body 100a of the conventional device 100, an outside air intake 100b connected to the outside air passage CW and a warm air intake 100c connected to the warm air passage HW are provided. A swinging plate-shaped hot air valve 100d is disposed between the warm air inlet 100c and the outside air inlet 100b, and the hot air valve 100d swings (see the arrow in FIG. 5). ), The outside air intake 100b and the warm air intake 100c are opened and closed. The ratio of the opening and closing, that is, the opening degree of the hot air valve 100d determines the mixing ratio of warm air and outside air, and determines the temperature of the intake air. Therefore, by controlling the opening of the hot air valve 1OOd, the mixture ratio of warm air and outside air is adjusted, and the temperature of the intake air is controlled. The thermostat 106 controls the opening of the hot air valve 1 OOd. The thermostat 106 is provided in the passage main body 100a, and includes a spring holder 106a and a shaft 106b that move forward and backward. The shaft 106b is mounted on the front of the spring holder 106a, and moves forward and backward together with the spring holder 106a by the expansion and contraction of wax and the action of the spring 106c. Further, the tip of the shaft 106b is connected to the bottom of the hot air valve 100D via a link mechanism. The bottom of the hot air valve 1OOd is pivotally supported from both sides, and swings around the bottom as the shaft advances and retreats.
以上の従来装置 1 00によれば、吸入空気の通路内、特にスロットルバルブ付近でァイシ ング (凍結)が生じ、アイドリング不調等の不都合を生じるという問題は、回避される。  According to the conventional apparatus 100 described above, the problem that icing (freezing) occurs in the passage of the intake air, particularly in the vicinity of the throttle valve, thereby causing inconvenience such as idling malfunction is avoided.
その一方で、燃費の面から以下の問題を生じた。つまり、一般走行を行っている状態(以 下、部分負荷運転時という)、特にアイドリング、又はパーシャル時等の低負荷走行時には、 スロットルバルブは、吸入空気の通路をほとんど閉塞した状態にあり、吸気抵抗が最大と なってボンビングロスが増加する。  On the other hand, the following problems have arisen in terms of fuel efficiency. In other words, during normal driving (hereinafter, referred to as partial load operation), especially during low load driving such as idling or partial driving, the throttle valve is in a state where the intake air passage is almost blocked, and The resistance becomes maximum and the bombing loss increases.
このポンビングロスを減少させるためには、スロットルバルブを開く必要がある。しかし、ス ロットルバルブの開度は、車速と密接に関係しており、単にスロットルバルブを開けただけ では、エンジン回転数が上がり、結果的にスピードが出てしまう。つまり、低負荷走行時の ボンビングロス解消にはならない。しかし、吸入空気の温度を高く設定すると、吸入空気が 熱膨張するため、実質的な吸入空気の流量が減る。すると、スロットルバルブを開とするこ とができ、アイドリング、又はパーシャル時等の低負荷走行時にもスロットルバルブを開け て、ポンビングロスを減少させることが可能になる。  In order to reduce this pumping loss, it is necessary to open a throttle valve. However, the opening of the throttle valve is closely related to the vehicle speed. Simply opening the throttle valve increases the engine speed and consequently increases the speed. In other words, it does not eliminate the bombing loss during low load driving. However, if the temperature of the intake air is set to be high, the intake air thermally expands, so that the actual flow rate of the intake air decreases. Then, the throttle valve can be opened, and the throttle valve can be opened even when the vehicle is running at a low load such as idling or partial driving, so that the pumping loss can be reduced.
また一方、アクセルを全て踏み込んだような状態(以下、全負荷運転時という)では、スロ ットルバルブは全開状態にあるので、吸気抵抗は最小である。しかし、全負荷運転時には、 大きな出力を必要とするため、よりスロットルバルブを開けるか、吸入空気の温度を下げる 必要があり、車両の負荷状態に合わせて吸入空気の温度を調整する必要がある。  On the other hand, when the accelerator is fully depressed (hereinafter referred to as full load operation), the throttle valve is in the fully open state, and the intake resistance is minimal. However, during full load operation, a large output is required, so it is necessary to open the throttle valve or reduce the temperature of the intake air, and it is necessary to adjust the temperature of the intake air according to the load condition of the vehicle.
以上の課題を解決するため、前記従来装置 1 00を改良した改良型の吸入空気温度制御 装置(以下、改良型従来装置という)が開発され、特開平 6 - 1 93523号公報に開示され ている。  In order to solve the above problems, an improved intake air temperature control device (hereinafter referred to as an improved conventional device) which is an improvement of the conventional device 100 has been developed and disclosed in Japanese Patent Application Laid-Open No. Hei 6-193523. .
この改良型従来装置は、従来装置 1 00と同様の構成を備え、さらに、インテークチャンバ 一内の負圧変化に対応してホットエアバルブを閉じる制御手段を備える。スロットルバルブ が全開(全負荷運転時)になると、インテークチャンバ一内の負圧は小となる力 この負圧 を検出した前記制御手段は、吸入空気の温度に関係無ぐ強制的にホットエアバルブを閉 じる。その結果、大きな出力が必要とされる全負荷運転時に、低温の外気導入が図られ、 燃焼効率が向上する。  This improved conventional device has a configuration similar to that of the conventional device 100, and further includes control means for closing the hot air valve in response to a change in negative pressure in the intake chamber 1. When the throttle valve is fully opened (at the time of full load operation), the negative pressure in the intake chamber becomes a small force. When the negative pressure is detected, the control means forcibly activates the hot air valve regardless of the temperature of the intake air. close. As a result, during full load operation where a large output is required, low-temperature outside air is introduced, and the combustion efficiency is improved.
一方、部分負荷運転時には、前記制御手段は作用せず、従来装置と同様に吸入空気の 温度を一定の範囲に保つ。この温度の設定を、比較的高い温度にしておけば、部分負荷 運転時、特に低負荷走行時に大きかったボンビングロスを軽減する。 以上、改良型従来装置によれば、従来装置 1 00に比較して燃費を向上させることができ た。 On the other hand, at the time of the partial load operation, the control means does not operate, and the temperature of the intake air is kept in a certain range as in the conventional device. If this temperature is set to a relatively high temperature, the bombing loss that was large during partial load operation, especially during low load driving, is reduced. As described above, according to the improved conventional device, the fuel efficiency can be improved as compared with the conventional device 100.
改良型従来装置では、インテ一クチヤンバー内の負圧変化のみに基づいて、全負荷運転 時等を特定していた。そのため、その特定のための精度に問題があり、実質的な燃費の向 上が図れなかった。  In the improved conventional device, the full load operation and the like are specified based only on the negative pressure change in the intake chamber. As a result, there was a problem with the accuracy of the identification, and a substantial improvement in fuel efficiency could not be achieved.
また、この負圧変化のみを特定の材料としていたため、負圧変化によって自車両状態を 判断できる場合にし力、、外気導入状況をつくることができず、汎用性に欠けた。  In addition, since only this negative pressure change was used as a specific material, power and external air introduction status could not be created when the vehicle state could be determined based on the negative pressure change, and lacked versatility.
本発明は、前記問題を解消することを課題としておリ、部分負荷運転時のボンピングロス を減少し、かつ、全負荷運転時等の出力低下を効果的に防止して燃費の向上を図ることを 目的とする。 発明の開示  An object of the present invention is to solve the above-mentioned problems by reducing the pumping loss during partial load operation and effectively preventing a decrease in output during full load operation to improve fuel efficiency. With the goal. Disclosure of the invention
前記の課題を解決するための方法として、内燃機関における吸入空気の温度を制御する 方法であって、  As a method for solving the above problem, a method for controlling the temperature of intake air in an internal combustion engine,
暖気、外気、もしくはその両方からなる前記吸入空気の温度変化に応じてホットエアバル ブの開閉量を変化させ、暖気と外気との混合比を制御することによって前記吸入空気の温 度を一定の範囲に保つとともに、インテークチャンバ一内の負圧変化に基づき、及びェンジ ン制御パラメータから特定した負荷状態に基づいても前記暖気と外気との混合比を制御し、 ある特定条件には、前記吸入空気の温度に関係無く前記ホットエアバルブを強制的に外気 導入状態とすることを特徴とする吸入空気温度制御装置とした。  The opening / closing amount of the hot air valve is changed according to a change in the temperature of the intake air consisting of warm air, outside air, or both, and the mixing ratio of warm air to outside air is controlled so that the temperature of the intake air is within a certain range. While controlling the mixing ratio between the warm air and the outside air based on the negative pressure change in the intake chamber and also based on the load condition specified from the engine control parameters. And the hot air valve is forcibly brought into the outside air irrespective of the temperature of the intake air.
また、前記課題を解決するための装置として、暖気と外気の各取入口を開閉するホットェ ァバルブと、このホットエアバルブの開閉量を制御して前記暖気、前記外気、もしくはその 両方からなる吸入空気の温度を一定の範囲に保つサーモスタットとを有する内燃機関用の 吸入空気温度制御装置であって、  Further, as a device for solving the above-mentioned problem, a hot-air valve that opens and closes each intake port of warm air and outside air, and an opening and closing amount of the hot air valve to control the amount of intake air composed of the warm air, the outside air, or both of them. An intake air temperature control device for an internal combustion engine having a thermostat for maintaining a temperature in a certain range,
インテ一クチヤンバー内の負圧変化に応じて作用する負圧回路と、この負圧回路を開閉 し、前記負圧回路の作用を制御するソレノイドと、エンジン制御パラメータから負荷状態を 特定し、この負荷状態から前記ソレノイドに負圧回路の開閉を行わせる負荷特定手段と、 前記負圧回路の作用によって作動する負圧ァクチユエ一タとを備え、  A negative pressure circuit that operates in response to a negative pressure change in the intake chamber, a solenoid that opens and closes the negative pressure circuit to control the operation of the negative pressure circuit, and a load state is specified from engine control parameters, and this load is determined. Load specifying means for causing the solenoid to open and close a negative pressure circuit from a state, and a negative pressure actuator operated by the action of the negative pressure circuit;
前記インテークチャンバ一内の負圧変化と前記エンジン制御パラメータから特定した負荷 状態に基づいて前記暖気と外気との混合比を制御し、ある特定条件には、前記吸入空気 の温度に関係無 前記負圧ァクチユエ一夕の作動によって前記ホットエアバルブを強制的 に外気導入状態とすることを特徴とする吸入空気温度制御装置とした。  The mixing ratio between the warm air and the outside air is controlled based on a change in the negative pressure in the intake chamber and a load state specified from the engine control parameter. Under a specific condition, there is no relation to the temperature of the intake air. The intake air temperature control device is characterized in that the hot air valve is forcibly brought into the outside air introduction state by the operation of the pressure actuator.
以上の手段により、部分負荷運転時のボンビングロスを減少し、かつ、全負荷運転時の 出力低下を防止できる。 図面の簡単な説明 第 1図は本実施の形態に係る吸入空気温度制御装置の構成図、第 2図は通路本体の内 部を示す縦断面図、第 3図は本実施の形態に係る吸入空気温度制御装置の作用を示す概 略断面図、第 4図は本実施の形態に係る吸入空気温度制御方法による制御パターンを示 す表であり、第 5図は従来の吸入空気温度制御装置を備え付けた温度制御システムを示 す模式図である。 発明を実施するための最良の形態 By the above means, it is possible to reduce the bombing loss during the partial load operation and prevent the output from decreasing during the full load operation. BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a configuration diagram of the intake air temperature control device according to the present embodiment, FIG. 2 is a longitudinal sectional view showing the inside of the passage main body, and FIG. 3 is a diagram of the intake air temperature control device according to the present embodiment. FIG. 4 is a table showing a control pattern according to the intake air temperature control method according to the present embodiment, and FIG. 5 is a temperature control system equipped with a conventional intake air temperature control device. FIG. BEST MODE FOR CARRYING OUT THE INVENTION
本発明を、実施の形態に基づき、図面を參照しながら具体的に説明する。  The present invention will be specifically described based on embodiments with reference to the drawings.
第 1図は、本実施の形態に係る吸入空気温度制御装置 1 (以下、制御装置 1という)の構 成図であり、第 1図中の帯状矢印は、暖気、外気、吸入空気の流路を示す。  FIG. 1 is a configuration diagram of an intake air temperature control device 1 (hereinafter, referred to as a control device 1) according to the present embodiment, and the band-shaped arrows in FIG. 1 indicate flow paths of warm air, outside air, and intake air. Is shown.
エアクリ一ナ 1 01の入り口には、通路本体 2が取り付けられている。通路本体 2の内部は 吸入空気が流動する通路 23が形成され、この通路 23が二股に分かれている。そして、こ の二股に分かれた一方に、外気路 CWが接続する外気取入口 21が形成され、他方に暖気 路 HWが接続する暖気取入口 22が形成される。外気取入口 21と暖気取入口 22とが接続 する箇所には、ホットエアバルブ 3が配設されており、このホットエアバルブ 3は、底部 31を 支点として揺動自在(第 1図の矢印参照)である。  At the entrance of the air cleaner 101, a passage body 2 is attached. A passage 23 through which the intake air flows is formed inside the passage body 2, and the passage 23 is forked. One of the two branches is formed with an outside air intake 21 to which the outside air path CW is connected, and the other is formed with a warm air intake 22 to which the warm air path HW is connected. A hot air valve 3 is provided at a location where the outside air inlet 21 and the warm air inlet 22 are connected, and the hot air valve 3 is swingable about the bottom 31 as a fulcrum (see the arrow in FIG. 1). is there.
本実施の形態に係るホットエアバルブ 3は、プレート状であり、前記揺動によって外気取 入口 21及び暖気取入口 22を開閉する。ホットエアバルブ 3の底部 31には、リンク機構を 形成すベぐンャフト 41が回動自在に連結する。シャフト 41は、エレメント 43の作用により進 退動し、この進退動によってホットエアバルブ 3を揺動させる。  The hot air valve 3 according to the present embodiment has a plate shape, and opens and closes the outside air inlet 21 and the warm air inlet 22 by the swing. To the bottom 31 of the hot air valve 3, a shaft 41 forming a link mechanism is rotatably connected. The shaft 41 moves forward and backward by the action of the element 43, and the hot air valve 3 swings by the forward and backward movement.
また、ホットエアバルブ 3の底部 31には、前記シャフト 41の他に負圧ァクチユエータ 5の 進退ロッド 51が回動自在、かつリンク機構を形成すべく連結する。進退ロッド 51は、通常、 負圧ァクチユエ一タ 5の作動により後退位置(第 1図の左側の位置)にあり、シャフト 41の進 退動に干渉せず、ホットエアバルブ 3の揺動に影響を与えなし、。しかし、負圧ァクチユエータ 5の作動が解かれてスタンディングポジションに移動(第 1図の右方へ移動)すると、ホット エアバルブ 3の底部 31を強制的に押し出す。その結果、ホットエアバルブ 3は、外気取入 口 21を開き、暖気取入口 22を完全に閉じる。  In addition to the shaft 41, an advancing / retracting rod 51 of the negative pressure actuator 5 is connected to the bottom 31 of the hot air valve 3 so as to be rotatable and form a link mechanism. The reciprocating rod 51 is normally in the retracted position (the position on the left side in FIG. 1) due to the operation of the negative pressure actuator 5, and does not interfere with the reciprocating movement of the shaft 41 and affects the swing of the hot air valve 3. Without giving ,. However, when the negative pressure actuator 5 is released and moves to the standing position (moves to the right in FIG. 1), the bottom 31 of the hot air valve 3 is forcibly pushed out. As a result, the hot air valve 3 opens the outside air inlet 21 and completely closes the warm air inlet 22.
吸入空気は、外気のみ、暖気のみ、もしくはそれらが混ざり合ったものであり、吸入空気 の温度は、外気と暖気の混合比によって決まる。なお、暖気の生成については、従来の技 術で説明しているので、ここでの詳述は省略する。エンジン 1 07 (第 5図参照)の始動に伴 つて温められた暖気の割り合いが大きい程、吸入空気の温度は上昇する。この外気と暖気 の混合比は、ホットエアバルブ 3が外気取入口 21及び暖気取入口 22を開閉する量(以下、 バルブの開閉量という)によって決まる。  The intake air is only the outside air, only the warm air, or a mixture thereof, and the temperature of the intake air is determined by the mixture ratio of the outside air and the warm air. Since the generation of warm air has been described in the related art, a detailed description thereof will be omitted. The greater the percentage of warm air warmed with the start of engine 107 (see Figure 5), the higher the temperature of the intake air. The mixing ratio between the outside air and the warm air is determined by the amount by which the hot air valve 3 opens and closes the outside air inlet 21 and the warm air inlet 22 (hereinafter, referred to as the valve opening / closing amount).
なお、本実施の形態に係るホットエアバルブ 3は、揺動によってこの開閉量を変化させ、 一方を開けば、他方を閉じる関係にある。したがって、以下の説明では、便宜上、暖気取入 口 22を閉じた状態を基準にし、「開く jとは、前記閉じた状態から暖気取入口 22を開き、か つ外気取入口 21を閉じる方向への移動を意味し、「閉じる」とは、その逆を意味する。また、 外気取入口 21を開いて暖気取入口 22を完全に閉じた状態が「外気導入状態」である。 吸入空気は、通路本体 2内の通路 23を通って、エアクリーナ 1 01に送り込まれる。このェ ァクリーナ 1 01によって塵等が除去された吸入空気は、流路径が絞られたスロットルチヤン バ一 1 1を通る。スロットルチヤンバー 1 1には、スロットルバルブ 8が配設される。このスロッ トルバルブ 8の回転量は、アクセルの踏み込みと連動しており、吸入空気の流動方向に垂 直となる閉塞位置から平行となる全開位置まで回転する。 It should be noted that the hot air valve 3 according to the present embodiment has a relationship in which the opening / closing amount is changed by swinging, and if one is opened, the other is closed. Therefore, in the following description, for convenience, the state in which the warm air inlet 22 is closed is referred to, and "open j" means that the warm air inlet 22 is opened from the closed state. Means a movement in a direction to close the outside air intake 21, and “close” means the opposite. A state in which the outside air intake 21 is opened and the warm air intake 22 is completely closed is an “outside air introduction state”. The intake air is sent to the air cleaner 101 through the passage 23 in the passage body 2. The intake air from which dust and the like have been removed by the cleaner 101 passes through the throttle chamber 11 whose flow path diameter is narrowed. A throttle valve 8 is provided in the throttle chamber 11. The amount of rotation of the throttle valve 8 is interlocked with the depression of the accelerator, and rotates from a closed position perpendicular to the flow direction of the intake air to a fully open position parallel thereto.
スロットルバルブ 8からエンジン 1 07 (第 5図参照)に至るインテークチャンバ一 1 3内には、 負圧源取入口 71が形成され、この負圧源取入口 7 1と負圧ァクチユエ一タ 5との間に負圧 回路 7が形成される。部分負荷運転時には、スロットルバルブ 8が、吸入空気の流量を制 限するため、インテークチャンバ一 1 3内の負圧が大きくなる。すると、この負圧変化から負 荷状態が特定され、その結果、負圧回路 7が作用し、負圧ァクチユエ一夕 5が作動する。つ まり、負圧ァクチユエ一タ 5が作動すると、進退ロッド 51がスプリング 52に反して後退(第 1 図の左方への移動)し、ホットエアバルブ 3への干渉が解かれる。その結果、ホットェアバ ルブ 3の揺動は、専らサーモスタット 4の影響を受ける。  In the intake chamber 13 extending from the throttle valve 8 to the engine 107 (see FIG. 5), a negative pressure source intake 71 is formed, and the negative pressure source intake 71 and the negative pressure actuator 5 are connected to each other. A negative pressure circuit 7 is formed between the two. During the partial load operation, the throttle valve 8 restricts the flow rate of the intake air, so that the negative pressure in the intake chamber 13 increases. Then, the load state is specified from the change in the negative pressure. As a result, the negative pressure circuit 7 operates, and the negative pressure actuator 5 operates. That is, when the negative pressure actuator 5 is operated, the reciprocating rod 51 moves backward (moves to the left in FIG. 1) against the spring 52, and the interference with the hot air valve 3 is released. As a result, the swing of the hot-air valve 3 is exclusively affected by the thermostat 4.
—方、全負荷運転時には、スロットルバルブ 8が開き、このスロットルバルブ 8の開度に応 じて吸気抵抗が減少する。すると、インテークチャンバー1 3内の負圧は減少する。その結 果、この負圧変化から負荷状態が特定され、この負荷状態に基づいて負圧回路 7が作用し、 負圧ァクチユエータ 5の作動を解除する。その結果、進退ロッド 51がスプリング 52の作用 によってスタンディングポジション、つまり第 1図の右方向へ移動し、ホットエアバルブ 3は、 強制的に押し倒されて外気導入状態となる。  On the other hand, during full load operation, the throttle valve 8 opens, and the intake resistance decreases according to the opening of the throttle valve 8. Then, the negative pressure in intake chamber 13 decreases. As a result, the load state is specified from the change in the negative pressure, and the negative pressure circuit 7 operates based on the load state, and the operation of the negative pressure actuator 5 is released. As a result, the reciprocating rod 51 moves to the standing position, that is, to the right in FIG. 1, by the action of the spring 52, and the hot air valve 3 is forcibly pushed down to enter the outside air.
負圧回路 7には、 3ポートソレノイドバルブからなるソレノイド 6が配設され、このソレノイド 6が負圧回路 7を開閉し、負圧回路 7の作用を制御する。つまり、ソレノイド 6が負圧回路 7 を開くと、インテ一クチャンバ一 1 3の負圧変化が負圧回路 7の作用として直接負圧ァクチュ ェ一タ 5に作用し、負圧回路を閉じると、インテークチャンバ一 1 3側は閉じられ、負圧ァクチ ユエ一タ 5側が大気開放される。通常、ソレノイド 6は開いている。しかし、ソレノイド 6力負圧 回路 7を閉じて大気開放すると、負圧ァクチユエータ 5の作動は強制的に解かれ、進退ロッ ド 51がスプリング 52の作用によってスタンディングポジションとなり、ホットエア/くルブ 3は、 強制的に押し倒されて外気導入状態となる。  The negative pressure circuit 7 is provided with a solenoid 6 composed of a three-port solenoid valve. The solenoid 6 opens and closes the negative pressure circuit 7 and controls the operation of the negative pressure circuit 7. That is, when the solenoid 6 opens the negative pressure circuit 7, the negative pressure change of the intake chamber 13 directly acts on the negative pressure actuator 5 as an operation of the negative pressure circuit 7, and when the negative pressure circuit is closed, The intake chamber 13 side is closed and the negative pressure actuator 5 side is opened to the atmosphere. Normally, solenoid 6 is open. However, when the solenoid 6 negative pressure circuit 7 is closed and opened to the atmosphere, the operation of the negative pressure actuator 5 is forcibly released, and the reciprocating rod 51 is in the standing position by the action of the spring 52, and the hot air / lube 3 is It is forcibly pushed down and enters the outside air introduction state.
本実施の形態に係るソレノイド 6は、ある特定条件、つまり全負荷運転時に負圧回路 7を 閉じる。この場合の前提として、負荷特定手段である ECUが負荷状態の特定を行う。以下、 ECUによる負荷状態の特定を説明する。 ECUには、エンジン制御パラメータ(以下、制御 パラメータという)が情報として送られてくる。本実施の形態では、制御パラメータとして、第 1図に示す「アクセル開度」、「エンジン回転数」、「エンジン水温」、「車速」等の自車両情報 を例示するが、かかる例に限定されず、負荷状態を特定するに足りるものであれば、他の 情報であっても良い。 ECUは、これら制御パラメータから、エンジン 1 07 (第 5図参照)の負 荷状態を特定する。そして、全負荷運転時であると特定した場合には、ソレノイド 6に電気 信号を送り、負圧回路 7を閉じさせる。ちなみに、全負荷運転時であると判断する場合とは、 例えば、アクセル開度力「開」であるにもかかわらず、車速が「低速 Jである場合などで、こ の場合には登坂状態の全負荷運転時であると特定する。 The solenoid 6 according to the present embodiment closes the negative pressure circuit 7 under a specific condition, that is, at full load operation. As a premise in this case, the ECU as the load specifying means specifies the load state. Hereinafter, the specification of the load state by the ECU will be described. Engine control parameters (hereinafter referred to as control parameters) are sent to the ECU as information. In the present embodiment, as the control parameters, own vehicle information such as “accelerator opening”, “engine speed”, “engine water temperature”, and “vehicle speed” shown in FIG. 1 are exemplified, but the present invention is not limited to this example. Instead, other information may be used as long as it is sufficient to specify the load state. From these control parameters, the ECU determines the negative value of engine 107 (see Fig. 5). Identify the loading status. Then, when it is specified that the operation is at full load operation, an electric signal is sent to the solenoid 6 to close the negative pressure circuit 7. By the way, when it is determined that the vehicle is operating at full load, for example, the vehicle speed is `` low speed J '' despite the accelerator opening force being `` open, '' Identify that it is at full load operation.
つまり、インテークチャンバ一 1 3内の負圧変化と前記制御パラメータから負荷状態が特 定され、この負荷状態に基づいて前記暖気と外気との混合比が制御される。さらに、本実 施の形態の如ぐ例えば、全負荷運転時には、前記吸入空気の温度に関係無ぐ負圧ァク チユエータ 5の作動によってホットエアバルブ 3が強制的に外気導入状態とされる。  That is, the load state is specified from the negative pressure change in the intake chamber 113 and the control parameter, and the mixing ratio between the warm air and the outside air is controlled based on the load state. Further, for example, during the full load operation as in the present embodiment, the hot air valve 3 is forcibly brought into the outside air introduction state by the operation of the negative pressure actuator 5 irrespective of the temperature of the intake air.
以上が、本実施の形態に係る制御装置 1の概要である。続いて、シャフト 41の進退動を 行うサーモスタット 4の具体的な構造、さらに進退ロッド 51及びシャフト 41とホットエアバル ブの底部 3 1との連結状態を、第 2図を参照しつつ説明する。ちなみに、第 2図は、通路本 体 2の内部を示す縦断面図である。  The above is the outline of the control device 1 according to the present embodiment. Next, the specific structure of the thermostat 4 for moving the shaft 41 forward and backward, and the connection between the forward and backward rods 51 and the shaft 41 and the bottom 31 of the hot air valve will be described with reference to FIG. FIG. 2 is a longitudinal sectional view showing the inside of the passage body 2.
まず、サーモスタット 4の構造について説明する。  First, the structure of the thermostat 4 will be described.
スプリングホルダー 42には、中央内壁 42dを挟んだ前後両側に前部内穴 42bと後部内 穴 42cが穿設されており、さらに前部内穴 42bの前端と後部内穴 42cの後端とは開口して し、る。そして、前部内穴 42bには、シャフト 41の基端部 41 aが内装され、後部内穴 42cに は、エレメント 43のピストン部 43aが摺動可能に嵌入される。  The spring holder 42 has a front inner hole 42b and a rear inner hole 42c formed on both front and rear sides of the center inner wall 42d, and the front end of the front inner hole 42b and the rear end of the rear inner hole 42c are open. Te shiru. The base end 41a of the shaft 41 is housed in the front inner hole 42b, and the piston 43a of the element 43 is slidably fitted in the rear inner hole 42c.
スプリングホルダ一 42、及びエレメント 43とは、前後の支持部材 1 2a, 1 2bによって支え られ、上下方向の位置決めがなされている。ちなみに、スプリングホルダー 42は、前側の 支持部材 1 2aによって前後方向に進退自在な状態で支えられ、エレメント 43は、後側の支 持部材 1 2bによって固定されている。  The spring holder 42 and the element 43 are supported by front and rear support members 12a and 12b, and are positioned vertically. Incidentally, the spring holder 42 is supported by the front support member 12a so as to be able to advance and retreat in the front-rear direction, and the element 43 is fixed by the rear support member 12b.
また、スプリングホルダー 42の後端外周には、フランジ部 42aが形成され、このフランジ 部 42aと前側の支持部材 1 2aとの間に、スプリング 44が配設されている。このスプリング 4 A flange 42a is formed on the outer periphery of the rear end of the spring holder 42, and a spring 44 is provided between the flange 42a and the front support member 12a. This spring 4
4は、スプリングホルダー 42を常時後方へ付勢する。 4 always biases the spring holder 42 rearward.
シャフト 41の後端に形成されるフランジ状の基端部 41 aは、その外周がスプリングホル ダ一42の前部内穴 42bに摺動自在に内接する。基端部 41 aと中央内壁 42dとの間には、 コイルスプリング 41 bが配設され、シャフト 41を常時前方に付勢する。なお、前部内穴 42b の前端に形成された開口は、中心に向けて折り曲げられ、基端部 41 aの抜けを防止する。 一方、スプリングホルダー 42の後部内穴 42cに内装されるピストン部 43aには、その先 端(第 2図の前側)から、ロッド 43bが出没する。このロッド 43bの出没は、エレメント 43内 に収納されたワックスと弾性部材(図示せず)の作用によって起こる。つまり、吸入空気の 温度変化が、温度感知部 43cを介して熱量としてワックスに伝播すると、ワックスは膨張、 収縮してロッド 43bに干渉する。この干渉は、弾性部材との間で釣り合つており、膨張時に はロッド 43bが突出し、収縮時には没する。  A flange-shaped base end 41a formed at the rear end of the shaft 41 has its outer periphery slidably inscribed in the front inner hole 42b of the spring holder 42. A coil spring 41b is provided between the base end 41a and the central inner wall 42d, and constantly urges the shaft 41 forward. The opening formed at the front end of the front inner hole 42b is bent toward the center to prevent the base end 41a from coming off. On the other hand, a rod 43b protrudes and retracts from the front end (the front side in FIG. 2) of the piston portion 43a housed in the rear inner hole 42c of the spring holder 42. The rod 43b is raised and lowered by the action of wax and an elastic member (not shown) housed in the element 43. That is, when a change in the temperature of the intake air propagates as heat to the wax via the temperature sensing unit 43c, the wax expands and contracts and interferes with the rod 43b. This interference is balanced with the elastic member, and the rod 43b projects when inflated, and sinks when contracted.
以上が、サーモスタット 4の構造である。続いて、シャフト 41及び進退ロッド 51とホットェ ァバルブ 3の底部 31との連結関係を説明する。 ホットエアバルブ 3の底部 31は、両側面を通路本体 2によって軸支され、この底部 3 1を 支点にホットエアバルブ 3は揺動する。この底部 31を挟んだ上下の位置には、上部連接部 31 a .下部連接部 31 bが突出形成されている。上部連接部 31 aには、進退ロッド 51の先 端部がピン 33aを介して回転自在に連結され、下部連接部 31 bには、シャフト 41の先端部 がピン 33 bを介して回転自在に連結される。なお、進退ロッド 51とシャフト 41の各進退方 向は、互いに平行である。 The above is the structure of the thermostat 4. Next, the connection relationship between the shaft 41 and the reciprocating rod 51 and the bottom 31 of the hot water valve 3 will be described. The bottom 31 of the hot air valve 3 is pivotally supported on both sides by the passage body 2, and the hot air valve 3 swings around the bottom 31. An upper connecting portion 31a and a lower connecting portion 31b are formed at upper and lower positions with the bottom portion 31 therebetween. The top end of the rod 51 is rotatably connected to the upper connecting part 31a via a pin 33a, and the end of the shaft 41 is rotatably connected to the lower connecting part 31b via a pin 33b. Be linked. The reciprocating directions of the reciprocating rod 51 and the shaft 41 are parallel to each other.
シャフト 41は、進退動の際に、ホットエアバルブ 3の揺動に伴うピン 33bの上下ぶれを許 容し得る。一方、負圧ァクチユエータ 5 (第 1図参照)の進退ロッド 51の先端部には、進退方 向に沿ったスリット 51 aが形成され、このスリット 51 a内をピン 33aが移動可能である。 したがって、負圧ァクチユエータ 5 (第 1図参照)が作動して進退ロッド 51が後退位置にあ れぱ、ピン 33aは、ホットエアバルブ 3の揺動に伴って進退ロッド 51のスリット 51 a内を自 由に移動する。そのため、進退ロッド 51がホットエアバルブ 3の揺動に干渉しない。  The shaft 41 can allow the pin 33b to move up and down due to the swing of the hot air valve 3 when moving forward and backward. On the other hand, a slit 51a is formed at the distal end of the advancing / retracting rod 51 of the negative pressure actuator 5 (see FIG. 1), and a pin 33a is movable in the slit 51a. Accordingly, when the negative pressure actuator 5 (see FIG. 1) is actuated and the reciprocating rod 51 is in the retracted position, the pin 33a automatically moves through the slit 51a of the reciprocating rod 51 as the hot air valve 3 swings. Move for free. Therefore, the reciprocating rod 51 does not interfere with the swing of the hot air valve 3.
しかし、負圧ァクチユエータ 5 (第 1図参照)の作動が解除され、進退ロッド 51がスタンディ ングポジションになると、ホットエアバルブ 3の揺動に影響を与える。つまり、負圧ァクチユエ —タ 5 (第 1図参照)の作動解除によって進退ロッド 51が前進(第 2図の後方への移動)する と、スリット 51 aがピン 33に引っ掛かる。その結果、連接部 31 aが強制的に押し出され、ホ ットエアバルブ 3が閉じる。なお、この押し出しに伴い、シャフト 41とスプリングホルダ一 42 とは引っ張られる。その結果、スプリングホルダ一 42とピストン部 43aから突出するロッド 4 3bとは、一時的に離間する。  However, when the operation of the negative pressure actuator 5 (see FIG. 1) is released and the reciprocating rod 51 is in the standing position, the swing of the hot air valve 3 is affected. That is, when the operation of the negative pressure actuator 5 (see FIG. 1) causes the advance / retreat rod 51 to move forward (moving backward in FIG. 2), the slit 51 a is hooked on the pin 33. As a result, the connecting portion 31a is forcibly pushed out, and the hot air valve 3 is closed. In addition, the shaft 41 and the spring holder 42 are pulled by this extrusion. As a result, the spring holder 42 and the rod 43b projecting from the piston portion 43a are temporarily separated.
制御装置 1の作用を、第 3図を参照しながら説明する。なお、第 3図は制御装置 1の作用 を示す概略断面図であり、同図(a)は、エンジン始動直後、同図(b)は、吸入空気の温度変 化に伴ってホットエアバルブ 3が揺動している状態、同図(c)は外気導入状態を示す。した 力 て、同図(a)ではホットエアバルブ 3が完全に開き、同図(b)では吸入空気の温度に対 応してホットエアバルブ 3が開き、同図(c)ではホットエアバルブ 3が閉じている。また、同図 中の帯状矢印は外気、暖気、あるいは吸入空気の流れを示し、通常の矢印はホットェアバ ルブ 3の揺動方向もしくは進退ロッド 51の後退方向を示す。  The operation of the control device 1 will be described with reference to FIG. FIG. 3 is a schematic sectional view showing the operation of the control device 1. FIG. 3 (a) shows a state immediately after the engine is started, and FIG. 3 (b) shows a state in which the hot air valve 3 FIG. 3 (c) shows a state where the air is oscillating and the outside air is introduced. As a result, the hot air valve 3 is fully opened in FIG. 4A, the hot air valve 3 is opened in response to the temperature of the intake air in FIG. 4B, and the hot air valve 3 is closed in FIG. ing. In addition, the band-shaped arrows in the figure indicate the flow of outside air, warm air, or intake air, and the normal arrows indicate the swing direction of the hot-air valve 3 or the retreating direction of the reciprocating rod 51.
同図(a)の状態から、吸入空気の温度が上昇すると、温度感知部 43cを介して温度変化 分の熱量が内部のワックスに伝播し、この伝播によってワックスが膨張してロッド 43bが突 出する(同図(b)参照)。その結果、この突出量に応じてスプリングホルダ一 42が前方に移 動し、この移動に伴ってシャフト 41が前進する。シャフト 41の先端は、ホットエアバルブ 3の 下部連接部 31 bにつながっているため、この前進によってホットエアバルブ 3の上端 32h が傾倒する。その結果、外気の流入量が増え、逆に暖気の流入量が減って温度が低下す る。逆に、吸入空気の温度が低下し過ぎた場合、サ一モスタツト 4のシャフト 41力 後退し、 ホットエアバルブ 3の上端 32hは、起き上がる。その結果、外気の流入量が減り、暖気の流 入量が増えて温度が上昇する。前記作用により、吸入空気の温度は、一定の範囲に保た れる。 以上の作用状態では、常時、負圧ァクチユエ一タ 5 (第 1図参照)が作動し、進退ロッド 51 が後退位置にある。しかし、負圧ァクチユエ一夕 5 (第 1図参照)の作動が解除されると、進 退ロッド 51力 第 3図(c)の如くスタンディングポジションとなり、強制的に外気導入状態と なり、吸入空気の全てが外気となる。 When the temperature of the intake air rises from the state shown in FIG. 3A, the amount of heat corresponding to the temperature change propagates to the internal wax via the temperature sensing unit 43c, and the wax expands due to the propagation, and the rod 43b projects. (See FIG. 2B). As a result, the spring holder 42 moves forward according to the amount of protrusion, and the shaft 41 moves forward with this movement. Since the tip of the shaft 41 is connected to the lower connecting portion 31b of the hot air valve 3, the forward movement causes the upper end 32h of the hot air valve 3 to tilt. As a result, the inflow of outside air increases, and conversely, the inflow of warm air decreases and the temperature decreases. Conversely, if the temperature of the intake air is too low, the shaft 41 of the thermostat 4 is retracted, and the upper end 32h of the hot air valve 3 rises. As a result, the inflow of outside air decreases, the inflow of warm air increases, and the temperature rises. By the above operation, the temperature of the intake air is kept in a certain range. In the above operation state, the negative pressure actuator 5 (see FIG. 1) is always operated, and the advance / retreat rod 51 is at the retracted position. However, when the operation of the negative pressure actuator 5 (see Fig. 1) is released, the retraction rod 51 is in the standing position as shown in Fig. 3 (c), forcibly entering the outside air, and the intake air Is all open air.
本実施の形態に係る制御装置 1の作用を利用した制御方法、及び具体的な制御パター ンについて、第 4図を参照しつつ説明する。第 4図は本実施の形態に係る制御方法による 制御パターンを示す表である。  A control method using the operation of the control device 1 according to the present embodiment and a specific control pattern will be described with reference to FIG. FIG. 4 is a table showing a control pattern by the control method according to the present embodiment.
部分負荷運転時には、吸入空気の実質的な流量を抑える必要がある。そのため、通常は、 スロットルバルブ 8がスロットルチヤンバー 1 1内の吸入空気の流れを制限する必要がある。 特に、アイドル、又はパーシャル時には、スロットルバルブ 8を閉塞状態にするため、吸気 抵抗が最大となってボンビングロスが最大となる。  During the partial load operation, it is necessary to suppress the substantial flow rate of the intake air. Therefore, it is usually necessary that the throttle valve 8 restricts the flow of the intake air in the throttle chamber 11. In particular, during idling or partial, the throttle valve 8 is closed, so that the intake resistance becomes maximum and the bombing loss becomes maximum.
しかし、本実施の形態の如く制御装置 1を配設していれば、サーモスタット 4が吸入空気 の温度をより高い温度で一定に保っため、スロットルバルブ 8を開きつつ、吸入空気の流量 を実質的に制限できる。その結果、吸気抵抗を減少させることが可能になり、ボンピングロ スが減少する。より詳しく説明すると、吸入空気の温度が上昇して一定の範囲に保たれると、 吸入空気の体積は膨張し、密度が低下する。すると、スロットルバルブ 8の開度を上げても エンジン 1 07に送り込まれる吸入空気の流量は実質的に制限された状態となる。その結果、 吸気抵抗が減少し、ポンビングロスが減少する。  However, if the control device 1 is provided as in the present embodiment, the thermostat 4 keeps the temperature of the intake air at a higher temperature, so that the throttle valve 8 is opened and the flow rate of the intake air is substantially reduced. Can be restricted to As a result, the intake resistance can be reduced, and the pumping loss is reduced. More specifically, when the temperature of the intake air rises and is kept within a certain range, the volume of the intake air expands and the density decreases. Then, even if the opening of the throttle valve 8 is increased, the flow rate of the intake air sent into the engine 107 is substantially restricted. As a result, the intake resistance decreases and the pumping loss decreases.
なお、本来であれば、吸入空気の温度は、低い方が燃焼効率の増加につながって望まし し、。そこで、吸入空気を、例えばボンビングロスの発生と燃焼効率とを比較して定めた適当 な温度(目標温度)に設定し、この目標温度を基準とした一定の範囲で安定させる。この目 標温度の設定を、サーモスタット 4内のワックスの熱膨張、収縮率、コイルスプリング 41 b、 スプリング 44の弾性率を選択することによって行う。サーモスタット 4内のワックスの熱膨 張、収縮率等の選択により、吸入空気の温度に対応したホットエアバルブ 3の開閉量が定 まるからである。  Originally, it is desirable that the lower the intake air temperature, the higher the combustion efficiency. Therefore, the intake air is set to an appropriate temperature (target temperature) determined by comparing, for example, the occurrence of bombing loss and the combustion efficiency, and is stabilized within a certain range based on the target temperature. The setting of the target temperature is performed by selecting the thermal expansion and contraction rates of the wax in the thermostat 4 and the elastic moduli of the coil spring 41b and the spring 44. This is because the opening / closing amount of the hot air valve 3 corresponding to the temperature of the intake air is determined by selecting the thermal expansion and shrinkage of the wax in the thermostat 4.
以上の制御パターン、つまり部分負荷運転時の制御パターンを第 4図の Aパターン、 Bパ ターンが示す。つまり、 Aパターンは、第 3図(a)に対応しており、エンジン始動直後を示す。 つまり、この状態では、制御装置 1によってホットエアバルブ 3を閉じ、暖気のみを吸入空気 とする。したがって、吸入空気の温度は、目標温度に達していない上昇中の温度である。ま た、この場合のスロットルバルブ 8は、吸入空気の昇温特性に応じた開度とする必要がある ため、吸気抵抗も、この開度に応じたものとなる。  The above control pattern, that is, the control pattern at the time of partial load operation, is shown by the A pattern and the B pattern in FIG. That is, the pattern A corresponds to FIG. 3 (a), and indicates the state immediately after the engine is started. That is, in this state, the hot air valve 3 is closed by the control device 1, and only the warm air is used as the intake air. Therefore, the temperature of the intake air is a rising temperature that has not reached the target temperature. Further, in this case, the opening of the throttle valve 8 needs to be in accordance with the temperature rising characteristic of the intake air, so that the intake resistance also corresponds to this opening.
この状態から吸入空気の温度が上昇すると、サーモスタット 4を作用させ、吸入空気の温 度を、目標温度を基準にした一定の範囲に保たせる(第 3図(b) )。この制御状態を、 Bバタ —ンが示している。 Bパターンでは、吸入空気の温度上昇に伴う体積の膨張により、スロッ トルバルブ 8を開くことが可能になる。つまり、 Bパターンでは、スロットルバルブ 8を開いて 吸気抵抗を小とし、ボンビングロスを減少させた状態にて部分負荷運転に対応させる。 以上は、一般走行時(部分負荷運転時)における制御方法である。この一般走行時から、 登坂、急加速等の全負荷運転時に走行状態が変更した場合、吸入空気の温度が相変わら ず設定された温度であれば、燃焼効率の関係で、登坂、急加速等(全負荷運転時)に対応 しきれない場合が生じる。そこで、この不具合を低減するため、全負荷運転時には、負圧ァ クチユエ一タ 5 (第 1図参照)を作動させてホットエアバルブ 3を開き、吸入空気を全て外気と する。その結果、吸入空気の温度は瞬時に低下し、燃焼効率の向上を図って全負荷運転 時に対応し得る状態となる。 When the temperature of the intake air rises from this state, the thermostat 4 is activated to keep the temperature of the intake air within a certain range based on the target temperature (FIG. 3 (b)). This control state is indicated by the B button. In the B pattern, the throttle valve 8 can be opened due to the expansion of the volume accompanying the rise in the temperature of the intake air. That is, in the B pattern, the throttle valve 8 is opened to reduce the intake resistance, and the bombing loss is reduced so as to cope with the partial load operation. The above is the control method at the time of ordinary traveling (during partial load operation). If the running state changes during full-load operation such as climbing a hill or sudden acceleration from this normal traveling, if the temperature of the intake air is still the set temperature, climbing hill, sudden acceleration, etc. (During full load operation). Therefore, in order to reduce this problem, at the time of full load operation, the negative pressure actuator 5 (see FIG. 1) is operated to open the hot air valve 3, and all the intake air is outside air. As a result, the temperature of the intake air drops instantaneously, and the combustion efficiency is improved, and a state can be accommodated during full load operation.
以上の制御パターン、つまり全負荷運転時の制御パターンを第 4図の Cバタ一ン、 Dバタ —ンが示す。なお、この制御パターンは、第 3図(c)に対応する。  The control pattern described above, that is, the control pattern at the time of full load operation, is shown by the C and D patterns in FIG. This control pattern corresponds to FIG. 3 (c).
Cパターンはエンジン始動時の全負荷運転時である。この場合には、制御装置 1における 負圧ァクチユエ一夕 5を解除し、ホットエアバルブ 3を強制的に外気導入状態とする。その結 果、燃焼効率が向上し、出力の低下が防止される。なお、 Cパターンでは、スロットルバル ブ 8は全開で、吸気抵抗はスロットルバルブ 8の開度に応じた抵抗である。  Pattern C is for full load operation when the engine is started. In this case, the negative pressure actuator 5 in the control device 1 is released, and the hot air valve 3 is forcibly brought into the outside air introducing state. As a result, combustion efficiency is improved, and a decrease in output is prevented. In the pattern C, the throttle valve 8 is fully opened, and the intake resistance is a resistance corresponding to the opening of the throttle valve 8.
暖気が、エンジン 1 07 (第 5図参照)の駆動によって十分に暖められた後、急に、全負荷 運転時としたのが、 Dパターンである。この場合にも、負圧ァクチユエータ 5を解除し、ホット エアバルブ 3を強制的に外気導入状態とする。その結果、燃焼効率が向上し、出力の低下 が防止される。この場合もスロットルバルブ 8は全開であり、吸気抵抗はスロットルバルブ 8 の開度 Iこ応じた抵抗である。  After the warm air has been sufficiently warmed by driving the engine 107 (see Fig. 5), the D pattern suddenly changes to full load operation. Also in this case, the negative pressure actuator 5 is released, and the hot air valve 3 is forcibly brought into the outside air introducing state. As a result, the combustion efficiency is improved, and a decrease in output is prevented. Also in this case, the throttle valve 8 is fully opened, and the intake resistance is the resistance corresponding to the opening degree I of the throttle valve 8.
なお、本実施の形態では、全負荷運転時を「ある特定条件」の例として説明している。しか し、「ある特定条件」は、全負荷運転時に限定されず、大きな出力が必要とされる状態を広 く含む。また、負荷状態の特定を、インテ一クチャンバ一 1 3内の負圧変化のみによらず、制 御パラメータに基づいた負荷特定手段によっても行っている。その結果、負荷状態の特定 を、より精度良く行うことが可能となる。  In the present embodiment, the full load operation is described as an example of the “certain specific condition”. However, “certain conditions” are not limited to full load operation, and include a wide range of situations where large output is required. In addition, the load state is specified not only by the negative pressure change in the intake chamber 13 but also by a load specifying means based on the control parameter. As a result, it is possible to more accurately specify the load state.
本発明によれば、部分負荷運転時のボンビングロスの発生を減少でき、かつ、ある特定 条件、例えば、全負荷運転時の出力の低下を効果的に防止できる。その結果、燃費の向 上を図ることが可能になる。  ADVANTAGE OF THE INVENTION According to this invention, generation | occurrence | production of the bombing loss at the time of a partial load driving | operation can be reduced, and a specific condition, for example, the fall of the output at the time of full load driving | operation can be prevented effectively. As a result, it is possible to improve fuel efficiency.

Claims

請求の範囲 The scope of the claims
1 . 内燃機関における吸入空気の温度を制御する方法であって、 1. A method for controlling the temperature of intake air in an internal combustion engine,
暖気、外気、もしくはその両方からなる前記吸入空気の温度変化に応じてホットエアバル ブの開閉量を変化させ、暖気と外気との混合比を制御することによって前記吸入空気の温 度を一定の範囲に保つとともに、インテークチャンバ一内の負圧変化に基づき、及びェンジ ン制御パラメータから特定した負荷状態に基づいても前記暖気と外気との混合比を制御し、 ある特定条件には、前記吸入空気の温度に関係無く前記ホットエアバルブを強制的に外気 導入状態とすることを特徴とする吸入空気温度制御方法。  The opening / closing amount of the hot air valve is changed according to a change in the temperature of the intake air consisting of warm air, outside air, or both, and the mixing ratio of warm air to outside air is controlled so that the temperature of the intake air is within a certain range. While controlling the mixing ratio between the warm air and the outside air based on the negative pressure change in the intake chamber and also based on the load condition specified from the engine control parameters. A method for controlling the temperature of the intake air, wherein the hot air valve is forcibly brought into the outside air state irrespective of the temperature of the intake air.
2.暖気と外気の各取入口を開閉するホットエアバルブと、このホットエアバルブの開閉量 を制御して前記暖気、前記外気、もしくはその両方からなる吸入空気の温度を一定の範囲 に保つサーモスタットとを有する内燃機関用の吸入空気温度制御装置であって、  2.A hot air valve that opens and closes each intake port of warm air and outside air, and a thermostat that controls the opening and closing amount of the hot air valve to keep the temperature of the intake air consisting of the warm air, the outside air, or both within a certain range. An intake air temperature control device for an internal combustion engine having
イン亍ークチャンバ一内の負圧変化に応じて作用する負圧回路と、この負圧回路を開閉 し、前記負圧回路の作用を制御するソレノイドと、エンジン制御パラメータから負荷状態を 特定し、この負荷状態から前記ソレノイドに負圧回路の開閉を行わせる負荷特定手段と、 前記負圧回路の作用によって作動する負圧ァクチユエ一タとを備え、  A negative pressure circuit that operates in response to a change in negative pressure in the intake chamber, a solenoid that opens and closes the negative pressure circuit, controls the operation of the negative pressure circuit, and specifies a load state from engine control parameters. Load specifying means for causing the solenoid to open and close a negative pressure circuit from a load state, and a negative pressure actuator operated by the action of the negative pressure circuit,
前記インテークチャンバ一内の負圧変化と前記エンジン制御パラメータから特定した負荷 状態に基づいて前記暖気と外気との混合比を制御し、ある特定条件には、前記吸入空気 の温度に関係無ぐ前記負圧ァクチユエータの作動によって前記ホットエアバルブを強制的 に外気導入状態とすることを特徴とする吸入空気温度制御装置。  The mixing ratio between the warm air and the outside air is controlled based on a change in the negative pressure in the intake chamber and a load state specified from the engine control parameter, and under a specific condition, the mixture ratio is independent of the temperature of the intake air. An intake air temperature control device characterized in that the hot air valve is forcibly brought into an outside air introduction state by operation of a negative pressure actuator.
PCT/JP2000/000647 1999-02-12 2000-02-07 Method and device for controlling temperature of sucked air WO2000047886A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11034866A JP2000234568A (en) 1999-02-12 1999-02-12 Temperature control method and device for intake air
JP11/34866 1999-02-12

Publications (1)

Publication Number Publication Date
WO2000047886A1 true WO2000047886A1 (en) 2000-08-17

Family

ID=12426096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/000647 WO2000047886A1 (en) 1999-02-12 2000-02-07 Method and device for controlling temperature of sucked air

Country Status (3)

Country Link
JP (1) JP2000234568A (en)
TW (1) TW451027B (en)
WO (1) WO2000047886A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2085602A2 (en) * 2006-02-22 2009-08-05 Cummins Inc. Engine intake air temperature management system
EP3760483A1 (en) * 2019-07-04 2021-01-06 Carrier Corporation Engine for a transport refrigeration unit with air management valve
EP3967865A1 (en) * 2020-08-18 2022-03-16 Paccar Inc Detecting a state of an air diverter valve of an air induction system for a vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6449077B2 (en) 2015-03-27 2019-01-09 愛三工業株式会社 Intake air temperature control device for vehicle engine
CN113250865B (en) * 2021-05-31 2022-10-28 武汉飞恩微电子有限公司 Engine air intake control system and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738652A (en) * 1980-08-15 1982-03-03 Nippon Denso Co Ltd Suction air temperature control method for internal combustion engine
JPS6248956A (en) * 1985-08-27 1987-03-03 Honda Motor Co Ltd Suction temperature controller in internal combustion engine
JPH03225059A (en) * 1990-01-31 1991-10-04 Nissan Motor Co Ltd Intake temperature control device for internal combustion engine
JPH0578963U (en) * 1992-03-31 1993-10-26 日産ディーゼル工業株式会社 Intake device for diesel engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738652A (en) * 1980-08-15 1982-03-03 Nippon Denso Co Ltd Suction air temperature control method for internal combustion engine
JPS6248956A (en) * 1985-08-27 1987-03-03 Honda Motor Co Ltd Suction temperature controller in internal combustion engine
JPH03225059A (en) * 1990-01-31 1991-10-04 Nissan Motor Co Ltd Intake temperature control device for internal combustion engine
JPH0578963U (en) * 1992-03-31 1993-10-26 日産ディーゼル工業株式会社 Intake device for diesel engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2085602A2 (en) * 2006-02-22 2009-08-05 Cummins Inc. Engine intake air temperature management system
EP2085602A3 (en) * 2006-02-22 2011-05-11 Cummins Inc. Engine intake air temperature management system
US7963832B2 (en) 2006-02-22 2011-06-21 Cummins Inc. Engine intake air temperature management system
EP3760483A1 (en) * 2019-07-04 2021-01-06 Carrier Corporation Engine for a transport refrigeration unit with air management valve
US11338648B2 (en) 2019-07-04 2022-05-24 Carrier Corporation Engine for a transport refrigeration unit with air management valve
EP3967865A1 (en) * 2020-08-18 2022-03-16 Paccar Inc Detecting a state of an air diverter valve of an air induction system for a vehicle
US11339729B2 (en) 2020-08-18 2022-05-24 Paccar Inc. Detecting a state of an air diverter valve of an air induction system for a vehicle

Also Published As

Publication number Publication date
TW451027B (en) 2001-08-21
JP2000234568A (en) 2000-08-29

Similar Documents

Publication Publication Date Title
US3885545A (en) Carburetor cold enrichment device
WO2000047886A1 (en) Method and device for controlling temperature of sucked air
JP2675253B2 (en) Control device for controlling temperature of intake air of internal combustion engine
US4053544A (en) Fuel induction system for internal combustion engines
JPS5821093B2 (en) Carburetor air-fuel ratio control device
JPS5932655B2 (en) carburetor
JP4109788B2 (en) Bypass control device in throttle body
JPS5924856Y2 (en) Thermostatic valve for internal combustion engine intake air temperature compensation
JPS5918124Y2 (en) Internal combustion engine speed control device
JP3386542B2 (en) Cooling system for internal combustion engine
JP3986719B2 (en) Hot water type first idle device
US3907944A (en) Choke control system for internal combustion engines
JP3875468B2 (en) Bypass intake air amount control device
JPS6151140B2 (en)
JPH0444830Y2 (en)
JPS60128968A (en) Suction heating mechanism for internal-combustion engine
JP4010672B2 (en) Air-fuel ratio adjusting device for air-fuel ratio in carburetor
KR200142171Y1 (en) Engine idle speed adjusting device of a vehicle
JPH0734187Y2 (en) Throttle valve device
JP3724656B2 (en) Bister device
JPS6050234A (en) Engine intake air control method
JPH0623733Y2 (en) Vaporizer with auto choke
JPS5916532Y2 (en) Engine ignition timing control device
JPH0683947U (en) Auxiliary air regulating valve for engine
JP2896723B2 (en) Automatic starter for vaporizer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase