WO2000046197A1 - Indole derivatives and their use as mcp-1 receptor antagonists - Google Patents

Indole derivatives and their use as mcp-1 receptor antagonists Download PDF

Info

Publication number
WO2000046197A1
WO2000046197A1 PCT/GB2000/000271 GB0000271W WO0046197A1 WO 2000046197 A1 WO2000046197 A1 WO 2000046197A1 GB 0000271 W GB0000271 W GB 0000271W WO 0046197 A1 WO0046197 A1 WO 0046197A1
Authority
WO
WIPO (PCT)
Prior art keywords
optionally substituted
group
formula
alkyl
hydrogen
Prior art date
Application number
PCT/GB2000/000271
Other languages
French (fr)
Inventor
Alan Wellington Faull
Jason Kettle
Original Assignee
Astrazeneca Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astrazeneca Ab filed Critical Astrazeneca Ab
Priority to DE60005485T priority Critical patent/DE60005485T2/en
Priority to AT00901738T priority patent/ATE250577T1/en
Priority to JP2000597268A priority patent/JP2002536360A/en
Priority to EP00901738A priority patent/EP1150953B1/en
Priority to US09/889,493 priority patent/US6613760B1/en
Priority to AU23043/00A priority patent/AU2304300A/en
Publication of WO2000046197A1 publication Critical patent/WO2000046197A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/30Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
    • C07D209/42Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems

Definitions

  • the present invention relates to chemical compounds, to their production as well as to pharmaceutical compositions containing them as well as to their use in therapy, in particular of inflammatory disease.
  • MCP-1 is a member of the chemokine family of pro-inflammatory cytokines which mediate leukocyte chemotaxis and activation.
  • MCP-1 is a C-C chemokine which is one of the most potent and selective T-cell and monocyte chemoattractant and activating agents known.
  • MCP-1 has been implicated in the pathophysiology of a large number of inflammatory diseases including rheumatoid arthritis, glomerular nephritides, lung fibrosis, restenosis (International Patent Application WO 94/09128), alveolitis (Jones et al.. 1992, J. Immunol. 149, 2147) and asthma.
  • MCP-1 myocardial infarction
  • atherosclerosis e.g. Koch et al., 1992, J. Clin. Invest., 90, 772 -779.
  • psoriasis (Deleuran et al., 1996, J. Dermatological Science, 13,. 228-236), delayed-type hypersensitivity reactions of the skin, inflammatory bowel disease (Grimm et al., 1996, J. Leukocyte Biol, 59,. 804-812), multiple sclerosis and brain trauma (Berman et al. 1996, J. Immunol, 156,. 3017-3023).
  • An MCP-1 inhibitor may also be useful to treat stroke, reperfusion injury, ischemia, myocardial infarction and transplant rejection.
  • MCP-1 acts through the MCP-1 receptor (also known as the CCR2 receptor).
  • MCP-2 and MCP-3 may also act, at least in part, through the MCP-1 receptor. Therefore in this specification, when reference is made to "inhibition or antagonism of MCP-1" or “MCP-1 mediated effects” this includes inhibition or antagonism of MCP-2 and/or MCP-3 mediated effects when MCP-2 and/or MCP-3 are acting through the MCP- 1 receptor.
  • indole derivatives as NMDA antagonists is described is USP5051442, WO9312780, EP-483881.
  • Other indoles and their use as inhibitors of leukotriene biosynthesis is described in for example, EP-A- 275-667. The applicants have found a particular substitution on the indole ring produces advantageous results when used therapeutically as inhibitors of MCP-1.
  • X is CH 2 or SO 2 R ! is an optionally substituted aryl or heteroaryl ring;
  • R 2 is carboxy, cyano, -C(O)CH 2 OH, -CONHR 8 , -SO 2 NHR 9 , tetrazol-5-yl, SO-H, or a group of formula (VI)
  • R 8 is selected from hydrogen, alkyl, aryl, cyano, hydroxy, -SO 2 R 12 where R 12 is alkyl, aryl, heteroaryl, or haloalkyl, or R s is a group-(CHR l3 ),-COOH where r is an integer of 1 -3 and each R 13 group is independently selected from hydrogen or alkyl;
  • R 9 is hydrogen, alkyl, optionally substituted aryl such as optionally substituted phenyl or optionally subtituted heteroaryl such as 5 or 6 membered heteroaryl groups, or a group COR 14 where R ⁇ is alkyl, aryl, heteroaryl or haloalkyl; R'° and R" are independently selected from hydrogen or alkyl.
  • R 3 is hydrogen, a functional group, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally substituted heterocyclyl, optionally substituted alkoxy, optionally substituted aralkyl, optionally substituted aralkyloxy, optionally substituted cycloalkyl;
  • R is a group C(O)NR 15 R 16 or a group (CH,), R 17 ; where R' 3 and R 16 are independently selected from hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl.
  • R and R 16 are not both hydrogen, or R 15 and R' 6 together with the nitrogen atom to which they are attached form an optionally substituted heterocyclic ring which optionally contains further heteroatoms
  • R' 7 is selected from NR 18 R 19 , OR 20 or S(O) s R 21 where R' s and R ⁇ y are independently selected from hydrogen, optionally substituted hydrocarbyl or optionally substituted heterocyclyl, or R 18 and R
  • R 20 is substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl or optionally substituted heterocyclyl
  • R 21 is optionally substituted hydrocarbyl or optionally substituted heterocyclyl
  • s is 0, 1 or 2 and t is an integer of from 1-4
  • R 5 , R ft and R 7 are independently selected from hydrogen, a functional group or an optionally substituted hydrocarbyl groups or optionally substituted heterocyclyl groups.
  • the invention provides a pharmaceutically acceptable salt, in vivo hydrolysable ester, or amide of the compound of formula (I).
  • Compounds of formula (I) are inhibitors of monocyte chemoattractant protein- 1. In addition, they appear to inhibit RANTES induced chemotaxis. RANTES is another chemokine from the same family as MCP-1, with a similar biological profile, but acting though the CCR1 receptor. As a result, these compounds can be used to treat disease mediated by these agents, in particular inflammatory disease. Thus the invention further provides a compound of formula (I) for use in the treatment of inflammatory disease.
  • the term 'alkyl when used either alone or as a suffix includes straight chained, branched structures. These groups may contain up to 10, preferably up to 6 and more preferably up to 4 carbon atoms.
  • alkenyl and alkynyl refer to unsaturated straight or branched structures containing for example from 2 to 10, preferably from 2 to 6 carbon atoms. Cyclic moieties such as cycloalkyl, cycloalkenyl and cycloalkynyl are similar in nature but have at least 3 carbon atoms. Terms such as “alkoxy” comprise alkyl groups as is understood in the art. The term “halo” includes fluoro, chloro, bromo and iodo. References to aryl groups include aromatic carbocylic groups such as phenyl and naphthyl.
  • heterocyclyl or “heterocyclic” includes aromatic or non-aromatic rings, for example containing from 4 to 20, suitably from 5 to 8 ring atoms, at least one of which is a heteroatom such as oxygen, sulphur or nitrogen. Nitrogen heteroatoms may be substituted for example with hydrogen or hydrocarbyl depending on the available bonds. Sulphur atoms may be in the form of S, S(O) or S(O) 2 .
  • Examples of such groups include furyl, thienyl, pyrrolyl, pyrrolidinyl, imidazolyl, triazolyl, thiazolyl, tetrazolyl, oxazolyl, isoxazolyl, pyrazolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, triazinyl, quinolinyl, isoquinolinyl, quinoxalinyl, benzothiazolyl, benzoxazolyl, benzothienyl or benzo furyl.
  • Heteroaryl refers to those groups described above which have an aromatic character.
  • aralkyl refers to aryl substituted alkyl groups such as benzyl.
  • hydrocarbyl which refers to any structure comprising carbon and hydrogen atoms.
  • these may be alkyl, alkenyl, alkynyl, aryl, heterocyclyl, alkoxy, aralkyl, cycloalkyl, cycloalkenyl or cycloalkynyl.
  • R 23 and R 24 include halo, perhaloalkyl such as trifluoromethyl, mercapto, hydroxy, carboxy, alkoxy, heteroaryl. heteroaryloxy, alkenyloxy, alkynyloxy, alkoxyalkoxy, aryloxy (where the aryl group may be substituted by halo, nitro. or hydroxy).
  • R 23 and R 24 form a heterocyclic group, this may be optionally substituted b ⁇ hydrocarbyl such as alkyl as well as those substituents listed above for hydrocarbyl groups.
  • Suitable substituents for hydrocarbyl or heterocylic groups R 5 , R 6 and R 7 include those listed above for R 22 , R 23 and R 24 .
  • R 1 is an optionally substituted phenyl, pyridyl, naphthyl, furyl or thienyl ring. and in particular is a substituted phenyl or pyridyl ring.
  • Suitable optional substitutents for R 1 in formula (I) include alkyl. alkenyl, alkynyl. halo, haloalkyl including perhaloalkyl such as trifluoromethyl, mercapto, alkoxy. haloalkoxy. alkenyloxy, alkynyloxy, hydroxyalkoxy, alkoxyalkoxy, alkanoyl, alkanoyloxy, cyano. nitro, amino, mono- or di-alkyl amino, oximino, sulphonamido, carbamoyl, mono or dialkylcarbamoyl or S(O) m R 26 where m is as defined above and R 26 is hydrocarbyl.
  • substituents R 5 , R 6 and R 7 include hydrogen, hydroxy, halo, optionally substituted alkyl such as aralkyl, carboxyalkyl or the amide derivative thereof: alkoxy; aryloxy; aralkyloxy; or an amino group which is optionally substituted with alkyl, aryl or aralkyl.
  • a specific functional group which is suitable for R 5 , R 6 and/or R 7 is a group of sub-formula (IV).
  • R 3 , R 6 and R 7 are hydrogen, hydroxy, halo or alkox .
  • R 6 and R 7 are hydrogen.
  • R 5 may be hydrogen but in addition is suitably a small subsitutent such as hydroxy, halo or methoxy.
  • Particular substituents for R' include trifluoromethyl.
  • Preferred substituents for R' are one or more non-polar substituents such as halo.
  • R 1 is substituted by one or more halo groups, in particular chlorine.
  • a particular example of an R' group is 3,4-dichlorophenyl, 3-fluoro-4-chlorophenyl, 3-chloro-4- fluorophenyl or 2,3-dichloropyrid-5-yl.
  • R 2 examples include carboxy; cyano: tetrazol-5-yl; SO.H; -CONHR 8 where R 8 is selected from cyano, hydroxy, -SO-R 12 where R ]2 is alkyl such as C,. 4 alkyl. aryl such as phenyl, heteroaryl or trifluoromethyl.
  • R 8 is a group-(CHR I0 ),-COOH where r is an integer of 1 -3 and each R'° group is independently selected from hydrogen or alkyl such as C alkyl; or R 2 is a group -SO 2 NHR 9 where R 9 is an optionally substituted phenyl or an optionally substituted 5 or 6 membered heteroaryl group, or a group COR 14 where R 14 is alkyl such as C,. 4 alkyl, aryl such as phenyl, heteroaryl or trifluoromethyl, or R 2 is a group of formula (VI)
  • R 10 and R" are independently selected from hydrogen or alkyl, particularly C alkyl.
  • R 2 is carboxy or a pharmaceutically acceptable salt or ester thereof.
  • Suitable groups R 3 include hydrogen, fluoro, chloro, bromo, iodo, methyl, cyano, trifluoromethyl, hydroxymethyl, alkoxyalkyl such as C alkoxymethyl, methoxy, benzyloxy, carboxyalkoxy such as carboxymethoxy, methylsulphanyl, methylsulphinyl. methylsulphonyl or carboxy C W) cycloalkyl, -(CHR 27 ),-NR 28 R 29 (where r is 0-2.
  • each R 27 is independently hydrogen or alkyl, in particular C alkyl
  • R 28 and R 29 are independently selected from H and C,. 4 alkyl or R 2S and R 29 together with the nitrogen to which they are attached form a 5 or 6 membered ring optionally containing one further heteroatom selected from O, N, S, S(O) or SO,.
  • R 28 and R 29 together form a heterocyhc ring such as morpholino or piperazinyl.
  • Other such groups R 3 include optionally substituted aryl groups, such as optionally substituted phenyl or naphthyl group. Suitable substituents for phenyl groups R 3 include one or more groups selected from chlorine, fluorine, methyl, trifluoromethyl. trifluoromethoxy, amino. formyl, phenyl. methoxy. phenoxy or phenyl.
  • R 3 may comprise a range of substituents as listed above, in particular, hydrogen or a small substituent group such as C,. alkyl in particular methyl, or trifluoromethyl, and is preferably hydrogen.
  • R 18 , R 19 , R 20 and R 21 as they appear in the definition of R 4 include those listed above in relation to R 22 , R 2 , and R 24
  • R 4 are groups C(0)NR 15 R 16 where one of R' 5 or R 16 is hydrogen or alkyl such as methyl, and the other is optionally substituted heterocyclyl or optionally substituted alkyl such as C, . , alkyl in particular methyl, or R 15 and R' 6 together with the nitrogen atom to which they are attached form an optionally substituted heterocyclic ring which optionally contains further heteroatoms.
  • Suitable optional substitutents for heterocyclic groups R 15 or R 16 in this case are alkyl groups such as methyl, or oxo groups.
  • Suitable optional substitutents for alkyl groups R' 3 and R 16 include one or more groups selected from amino ; mono- or di- alkyl amino; carboxy; heterocyclyl optionally substituted with for example an alkyl groups such as methyl or an oxo group; or a group NHSO 2 R 30 where R 30 is alkyl such as methyl.
  • R 4 is a group C(O)NR l5 R 16 where one of R 15 or R 16 is hydrogen and the other is heterocyclyl or alkyl substituted with one or more groups selected from amino, mono- or di-alkyl amino, carboxy or optionally substituted heterocyclyl. or R 13 and R' 6 together with the nitrogen atom to which they are attached form an optionally substituted heterocyclic ring which optionally contains further heteroatoms.
  • R' 5 or R 16 examples of suitable heterocyclyls for the other include imidazole, imidazolinone, or tetrahydrothiophene- 1 , 1 - dioxide.
  • R 15 or R 16 is hydrogen and the other is optionally substituted alkyl, for example C,_ 2 alkyl.
  • Suitable substituents include one or more groups selected from amino. mono- or di-alkyl amino, a group NHSO,R 30 where R 30 is methyl, carboxy or optionally substituted heterocyclyl, such as isoxazole optionally substituted mono or di-substituted with alkyl, such as methyl.
  • R 15 and R 16 together with the nitrogen atom to which they are attached form an optionally substituted heterocyclic ring which optionally contains further heteroatoms, that -o- ring is, for example a morpholine ring.
  • R 4 is a group of sub-formula (IV) as listed above.
  • R 4 is preferably a group (CH 2 ), R 17 where t is 1 and R 17 is a group NR 18 R 19 .
  • R 18 and R 19 include hydrogen and optionally substituted alkyl, or R' 8 and R 19 together with the nitrogen atom to which they are attached form an optionally substituted heterocyclic ring which optionally contains further heteroatoms. such as pyrazole or tetrahydropyranyl.
  • R 18 and R' 9 together form a morpholine ring.
  • X is CH, or SO, and is preferably CH 2 .
  • Suitable pharmaceutically acceptable salts of compounds of formula (I) include acid addition salts such as methanesulfonate, fumarate, hydrochloride, hydrobromide, citrate, maleate and salts formed with phosphoric and sulphuric acid.
  • suitable salts are base salts such as an alkali metal salt for example sodium, an alkaline earth metal salt for example calcium or magnesium, an organic amine salt for example triethylamine, morpholine, N-methylpiperidine, N-ethylpiperidine, procaine, dibenzylamine, N,N-dibenzylethylamine or amino acids for example lysine.
  • a preferred pharmaceutically acceptable salt is a sodium salt.
  • An in vivo hydrolysable ester of a compound of the formula (I) containing carboxy or hydroxy group is, for example, a pharmaceutically acceptable ester which is hydrolysed in the human or animal body to produce the parent acid or alcohol.
  • esters for carboxy include alkyl esters, such as C,. 6 alkyl esters for example, ethyl esters, C ⁇ alkoxymethyl esters for example methoxymethyl, C,. 6 alkanoyloxymethyl esters for example pivaloyloxymethyl, phthalidyl esters, C 3 . 8 cycloalkoxy-carbonyloxyC,. 6 alkyl esters for example 1-cyclohexylcarbonyloxyethyl; l ,3-dioxolen-2-onylmethyl esters for example
  • alkyl esters such as C,. 6 alkyl esters for example, ethyl esters, C ⁇ alkoxymethyl esters for example methoxymethyl, C,. 6 alkanoyloxymethyl esters for example pivaloyloxymethyl, phthalidyl esters, C 3 . 8 cycloalkoxy-carbonyloxyC,. 6 alkyl esters for example 1-cyclohe
  • inorganic esters such as phosphate esters and -acyloxyalkyl ethers and related compounds which as a result of the in vivo hydrolysis of the ester breakdown to give the parent hydroxy group.
  • ⁇ -acyloxyalkyl ethers include acetoxymethoxy and 2,2-dimethylpropionyloxymethoxy.
  • a selection of in vivo hydrolysable ester forming groups for hydroxy include alkanoyl, benzoyl, phenylacetyl and substituted benzoyl and phenylacetyl, alkoxycarbonyl (to give alkyl carbonate esters), dialkylcarbamoyl and N-(dialkylaminoethyl)-N-alkylcarbamoyl (to give carbamates), dialkylaminoacetyl and carboxy acetyl.
  • Esters which are not in vivo hydrolysable are useful as intermediates in the production of the compounds of formula (I) and therefore these form a further aspect of the invention.
  • compounds of formula (I) include the following:
  • compositions comprising a compound of formula (I) as defined above.
  • Compounds of formula (I) are suitably prepared by methods such as those described in International Patent Application Nos. PCT/GB98/02340 and PCT/GB98/02341.
  • R 40 is a group C(O) or a group
  • Suitable leaving groups for Z include halo such as chloro.
  • the reaction is suitably effected in an organic solvent such as dichloromethane or tetrahydrofuran in the presence of a base such as triethylamine. Moderate temperatures, for example of from 0° to 50°C and conveniently ambient temperature may be employed.
  • the compounds of formula (VII) suitably have an ester group as R 2 . Such compounds can then be converted to the corresponding acid by desterification, for example using sodium hydroxide in a mixture of methanol and tetrahydrofuran.
  • Suitable leaving groups for Z 1 include halide such as chloride, bromide or iodide, as well as mesylate or tosylate.
  • the reaction is suitably effected in an organic solvent such as dimethylformamide (DMF) tetrahydrofuran (THF) or DCM in the presence of a base such as sodium hydride, sodium hydroxide, potassium carbonate.
  • a suitable phase transfer catalyst such as sodium hydride, sodium hydroxide, potassium carbonate.
  • the choice of base and solvent is interdependent to a certain extent in that certain solvents are compatible with some bases only as is understood in the art.
  • sodium hydride may preferably be used with dimethylformamide or tetrahydrofuran and sodium hydroxide is preferably used with dichloromethane and a phase transfer catalyst.
  • the reaction can be carried out at moderate temperatures, for example from 0 to 50°C and conveniently at about ambient temperature.
  • R 2 is an ester group in the compound of formula IX and this may be subsequently converted to an acid or to another ester or salt, by conventional methods later in the process.
  • Suitable protecting groups R 41 include acetyl, benzyl or tetrahydrpyranyl.
  • the reaction conditions employed will be variable depending upon the nature of the protecting group R 40 and would be apparent to a skilled person.
  • Acetyl groups may be removed by reaction with a strong base such as sodium methoxide, whereas benzyl groups may be removed by hydrogenation, for example in the presence of a catalyst such as palladium catalyst.
  • Removal of tetrahydropyranyl protecting groups may be effected using p-toluenesulphonic acid as illustrated hereinafter.
  • R ⁇ R 6 , R 7 and R 41 are as defined above and R 42 and R 4 ' represent a combination of moieties which can cyclise to form an appropriately substituted pyrrole ring.
  • R 43 may be nitro and R 42 may be a group of formula -CH 2 C(O)R 2 where
  • R 2' is as defined above in relation to formula (VII). These compounds will cyclise in the presence of a catalyst such as palladium on carbon in the presence of hydrogen. The reaction may be effected at moderate temperatures for example of from 0 to 80°C, conveniently at about ambient temperature.
  • a catalyst such as palladium on carbon in the presence of hydrogen.
  • the reaction may be effected at moderate temperatures for example of from 0 to 80°C, conveniently at about ambient temperature.
  • compounds of formula (XIII) include compounds of formula (XIV) and (XV)
  • reaction may be effected in an organic solvent such as ethanol at low temperatures of from -20 to 0°C, suitably at about 0°C.
  • organic solvent such as ethanol
  • the reaction is suitably effected in the presence of a base such as an alkoxide, in particular an ethoxide, for example potassium ethoxide.
  • R 3 can be converted from hydrogen to a different group R 3 subsequently in the reaction scheme, using conventional methods.
  • Compounds of formula (XVII) are suitably prepared by reacting a compound of formula (XVIII) R 47 CH,R 2' (XVIII) where R 2 is as defined above and R 47 is a leaving group such as halide and in particular bromide, with an azide salt, such as an alkali metal azide salt in particular sodium azide.
  • Compounds of formula (XV) may be prepared by reacting a compound of formula
  • the compounds are used in methods of treatment of inflammatory disease.
  • a method for antagonising an MCP- 1 mediated effect in a warm blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I), or a pharmaceutically acceptable salt, or an in vivo hydrolysable ester thereof.
  • the invention also provides a compound of formula (I) as defined herein, or a pharmaceutically acceptable salt, or an in vivo hydrolysable ester thereof, for use as a medicament.
  • the compositions of the invention may be in a form suitable for oral use (for example as tablets, lozenges, hard or soft capsules, aqueous or oily suspensions, emulsions, dispersible powders or granules, syrups or elixirs), for topical use (for example as creams, ointments, gels, or aqueous or oily solutions or suspensions), for administration by inhalation (for example as a finely divided powder or a liquid aerosol), for administration by insufflation (for example as a finely divided powder) or for parenteral administration (for example as a sterile aqueous or oily solution for intravenous, subcutaneous, intramuscular or intramuscular dosing or as a suppository for rectal dosing).
  • compositions of the invention may be obtained by conventional procedures using conventional pharmaceutical excipients, well known in the art.
  • compositions intended for oral use may contain, for example, one or more colouring, sweetening, flavouring and/or preservative agents.
  • Suitable pharmaceutically acceptable excipients for a tablet formulation include, for example, inert diluents such as lactose, sodium carbonate, calcium phosphate or calcium carbonate, granulating and disintegrating agents such as corn starch or algenic acid; binding agents such as starch; lubricating agents such as magnesium stearate, stearic acid or talc; preservative agents such as ethyl or propyl p-hydroxybenzoate, and anti-oxidants, such as ascorbic acid. Tablet formulations may be uncoated or coated either to modify their disintegration and the subsequent absorption of the active ingredient within the gastrointestinal track, or to improve their stability and/or appearance, in either case, using conventional coating agents and procedures well known in the art.
  • inert diluents such as lactose, sodium carbonate, calcium phosphate or calcium carbonate
  • granulating and disintegrating agents such as corn starch or algenic acid
  • binding agents such as starch
  • lubricating agents
  • Compositions for oral use may be in the form of hard gelatin capsules in which the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules in which the active ingredient is mixed with water or an oil such as peanut oil, liquid paraffin, or olive oil.
  • an inert solid diluent for example, calcium carbonate, calcium phosphate or kaolin
  • water or an oil such as peanut oil, liquid paraffin, or olive oil.
  • Aqueous suspensions generally contain the active ingredient in finely powdered form together with one or more suspending agents, such as sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose, sodium alginate, polyvinyl-pyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents such as lecithin or condensation products of an alkylene oxide with fatty acids (for example polyoxyethylene stearate), or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol mono
  • the aqueous suspensions may also contain one or more preservatives (such as ethyl or propyl p-hydroxybenzoate, anti-oxidants (such as ascorbic acid), colouring agents, flavouring agents, and/or sweetening agents (such as sucrose, saccharine or aspartame).
  • preservatives such as ethyl or propyl p-hydroxybenzoate, anti-oxidants (such as ascorbic acid), colouring agents, flavouring agents, and/or sweetening agents (such as sucrose, saccharine or aspartame).
  • Oily suspensions may be formulated by suspending the active ingredient in a vegetable oil (such as arachis oil, olive oil, sesame oil or coconut oil) or in a mineral oil (such as liquid paraffin).
  • the oily suspensions may also contain a thickening agent such as beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set out above, and flavouring agents may be added to provide a palatable oral preparation.
  • These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.
  • Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water generally contain the active ingredient together with a dispersing or wetting agent, suspending agent and one or more preservatives.
  • compositions of the invention may also be in the form of oil-in-water emulsions.
  • the oily phase may be a vegetable oil, such as olive oil or arachis oil, or a mineral oil, such as for example liquid paraffin or a mixture of any of these.
  • Suitable emulsifying agents may be, for example, naturally-occurring gums such as gum acacia or gum tragacanth, naturally-occurring phosphatides such as soya bean, lecithin, an esters or partial esters derived from fatty acids and hexitol anhydrides (for example sorbitan monooleate) and condensation products of the said partial esters with ethylene oxide such as polyoxyethylene sorbitan monooleate.
  • the emulsions may also contain sweetening, flavouring and preservative agents.
  • Syrups and elixirs may be formulated with sweetening agents such as glycerol, propylene glycol, sorbitol, aspartame or sucrose, and may also contain a demulcent, preservative, flavouring and/or colouring agent.
  • sweetening agents such as glycerol, propylene glycol, sorbitol, aspartame or sucrose, and may also contain a demulcent, preservative, flavouring and/or colouring agent.
  • compositions may also be in the form of a sterile injectable aqueous or oily suspension, which may be formulated according to known procedures using one or more of the appropriate dispersing or wetting agents and suspending agents, which have been mentioned above.
  • a sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example a solution in 1 ,3-butanediol.
  • Suppository formulations may be prepared by mixing the active ingredient with a suitable non-irritating excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug.
  • Suitable excipients include, for example, cocoa butter and polyethylene glycols.
  • Topical formulations such as creams, ointments, gels and aqueous or oily solutions or suspensions, may generally be obtained by formulating an active ingredient with a conventional, topically acceptable, vehicle or diluent using conventional procedure well known in the art.
  • compositions for administration by insufflation may be in the form of a finely divided powder containing particles of average diameter of, for example, 30 ⁇ or much less, the powder itself comprising either active ingredient alone or diluted with one or more physiologically acceptable carriers such as lactose.
  • the powder for insufflation is then conveniently retained in a capsule containing, for example, 1 to 50mg of active ingredient for use with a turbo-inhaler device, such as is used for insufflation of the known agent sodium cromoglycate.
  • Compositions for administration by inhalation may be in the form of a conventional pressurised aerosol arranged to dispense the active ingredient either as an aerosol containing finely divided solid or liquid droplets.
  • Conventional aerosol propellants such as volatile fluorinated hydrocarbons or hydrocarbons may be used and the aerosol device is conveniently arranged to dispense a metered quantity of active ingredient.
  • the amount of active ingredient that is combined with one or more excipients to produce a single dosage form will necessarily vary depending upon the host treated and the particular route of administration.
  • a formulation intended for oral administration to humans will generally contain, for example, from 0.5 mg to 2 g of active agent compounded with an appropriate and convenient amount of excipients which may vary from about 5 to about 98 percent by weight of the total composition.
  • Dosage unit forms will generally contain about 1 mg to about 500 mg of an active ingredient.
  • the size of the dose for therapeutic or prophylactic purposes of a compound of the Formula I will naturally vary according to the nature and severity of the conditions, the age and sex of the animal or patient and the route of administration, according to well known principles of medicine. As mentioned above, compounds of the Formula I are useful in treating diseases or medical conditions which are due alone or in part to the effects of farnesylation of rats.
  • a daily dose in the range for example, 0.5 mg to 75 mg per kg body weight is received, given if required in divided doses.
  • lower doses will be administered when a parenteral route is employed.
  • a dose in the range for example, 0.5 mg to 30 mg per kg body weight will generally be used.
  • a dose in the range for example, 0.5 mg to 25 mg per kg body weight will be used.
  • Oral administration is however preferred.
  • N-(3,4-Dichlorobenzyl)-2-ethoxycarbonylindole-4-carboxylic acid 150 mg
  • L- histidine methyl ester dihydrochloride 93 mg
  • 2-ethoxy-l-ethoxycarbonyl-l,2- dihydroquinoline 123 mg
  • triethylamine 107 ⁇ l
  • reaction mixture was concentrated in vacuo and the residue purified by column chromatography using ethyl acetate : iso-hexane (gradient 10/90 - 100/0) then 10% methanol : ethyl acetate as eluent to give product as a white gum (35 mg, 17%); M/z (+) 543.2 (MT).
  • Example 9 Biological Assays for hMCP-1 Antagonists Biological Testing.
  • BCA Bicinchroninic acid (used, with copper sulphate, to assay protein )
  • AMPLITAQTM available from Perkin-Elmer Cetus, is used as the source of thermostable DNA polymerase.
  • Binding Buffer is 50 mM HEPES. 1 mM CaCl,, 5 mM MgCl,, 0.5% foetal calf serum, adjusted to pH 7.2 with 1 M NaOH.
  • Non-Essential Amino Acids (100X concentrate) is: L-Alanine, 890 mg/1;
  • L-Asparagine 1320 mg/1; L-Aspartic acid, 1330 mg/1; L-Glutamic acid, 1470 mg/1; Glycine, 750 mg/1; L-Proline, 1 150 mg/1 and; L-Serine, 1050 mg/1.
  • Hypoxanthine and Thymidine Supplement (50x concentrate) is: hypoxanthine, 680 mg/1 and; thymidine, 194 mg/1.
  • Penicillin-Streptomycin is: Penicillin G (sodium salt); 5000 units/ml; Streptomycin sulphate, 5000 ⁇ g/ml.
  • Human monocytic cell line THP-1 cells are available from ATCC, accession number ATCC TIB-202.
  • HBSS Hank's Balanced Salt Solution
  • RPMI 1640 was obtained from Gibco; it contains inorganic salts [Ca(NO 3 ),.4H 2 O 100 mg/1; KC1 400 mg/1; MgSO 4 .7H,O 100 mg/1; NaCl 6000 mg/1; NaHCO 3 2000 mg/1 & Na,HPO 4 (anhyd) 800 mg/1], D-Glucose 2000 mg/1, reduced glutathione 1 mg/1, amino acids and vitamins.
  • FURA-2/AM is l-[2-(5-carboxyoxazol-2-yl)-6-aminobenzofuran-5-oxy]-2-
  • Blood Sedimentation Buffer contains 8.5g/l ⁇ aCl and lOg/1 hydroxyethyl cellulose.
  • Lysis Buffer is 0.15M ⁇ H 4 C1 " , lOmM KHCO 3 , ImM EDTA Whole Cell Binding Buffer is 50 mM HEPES, 1 mM CaCl,, 5 mM MgCl,, 0.5% BSA,
  • Wash buffer is 50mM HEPES. ImM CaCl,, 5mM MgCl,, 0.5% heat inactivated FCS, 0.5MNaCl adjusted to pH7.2 with 1M NaOH.
  • the MCP-1 receptor B (CCR2B) cDNA was cloned by PCR from THP-1 cell RNA using suitable oligonucleotide primers based on the published MCP-1 receptor sequences (Charo et al , 1994, Proc. Natl. Acad. Sci. USA, 91, 2752). The resulting PCR products were cloned into vector PCR-IITM (InVitrogen, San Diego, CA.). Error free CCR2B cDNA was subcloned as a Hind III-Not I fragment into the eukaryotic expression vector pCDNA3 (InVitrogen) to generate pCDNA3/CC-CKR2A and pCDNA3/CCR2B respectively.
  • Linearised pCDNA3/CCR2B DNA was transfected into CHO-K1 cells by calcium phosphate precipitation (Wigler et al, 1979, Cell, 16, 777). Transfected cells were selected by the addition of Geneticin Sulphate (G418, Gibco BRL) at lmg/ml, 24 hours after the cells had been transfected. Preparation of RNA and Northern blotting were carried out as described previously (Needham et al, 1995, Prot. Express. Purific, 6, 134). CHO-K1 clone 7 (CHO-CCR2B) was identified as the highest MCP-1 receptor B expressor. ii) Preparation of membrane fragments
  • CHO-CCR2B cells were grown in DMEM supplemented with 10% foetal calf serum, 2 mM glutamine, lx Non-Essential Amino Acids, lx Hypoxanthine and Thymidine Supplement and Penicillin-Streptomycin (at 50 ⁇ g streptomycin/ml, Gibco BRL).
  • Membrane fragments were prepared using cell lysis/differential centrifugation methods as described previously (Siciliano et al, 1990, J. Biol. Chem., 265, 19658). Protein concentration was estimated by BCA protein assay (Pierce, Rockford, Illinois) according to the manufacturer ' s instructions.
  • Filter mats (Brandel GF/B) were pre-soaked for 60 minutes in 0.3% polyethylenimine prior to use. Following filtration individual filters were separated into 3.5ml tubes (Sarstedt No. 55.484) and bound 125 I-labeled MCP-1 was determined (LKB 1277 Gammamaster). Cold competition studies were performed as above using 100 pM 12 T-labeled MCP-1 in the presence of varying concentrations of unlabelled MCP-1. Non-specific binding was determined by the inclusion of a 200-fold molar excess of unlabelled MCP-1 in the reaction.
  • Test compounds dissolved in DMSO (5 ⁇ l) were tested in competition with 100 pM labelled MCP-1 over a concentration range (0.01-50 ⁇ M) in duplicate using eight point dose-response curves and IC 50 concentrations were calculated.
  • Compounds tested of the present invention had IC 50 values of 50 ⁇ M or less in the b.MCP-1 receptor binding assay described herein.
  • MCP-1 mediated calcium flux in THP-1 cells The human monocytic cell line THP-1 was grown in a synthetic cell culture medium RPMI 1640 supplemented with 10 % foetal calf serum, 6mM glutamine and Penicillin-Streptomycin (at 50 ⁇ g streptomycin/ml, Gibco BRL).
  • THP-1 cells were washed in HBSS (lacking Ca 2+ and Mg 2+ ) + 1 mg/ml BSA and resuspended in the same buffer at a density of 3 x 10 6 cells/ml. The cells were then loaded with ImM FURA-2/AM for 30 min at 37°C, washed twice in HBSS, and resuspended at lxlO 6 cells/ml. THP-1 cell suspension (0.9 ml) was added to a 5 ml disposable cuvette containing a magnetic stirrer bar and 2.1 ml of prewarmed (37°C) HBSS containing 1 mg/ml BSA, 1 mM MgCl, and 2 mM CaCl,.
  • [Ca + ]i K d (R-Rmin) (Sf2/Sb2) (Rmax-R) where the K d for FURA-2 Ca 2+ complex at 37 °C was taken to be 224nm.
  • R ]nax is the maximal fluorescence ratio determined after addition of 10 mM Ionomycin
  • R mm is the minimal ratio determined by the subsequent addition of a Ca 2+ free solution containing 5 mM EGTA
  • Sf2/Sb2 is the ratio of fluorescence values at 380 nm excitation determined at R,, administrat n and R, procedura a , respectively.
  • THP-1 Cell migration through polycarbonate membranes was measured by enumerating those passing through either directly by Coulter counting or indirectly by use of a colourimetric viability assay measuring the cleavage of a tetrazolium salt by the mitochondrial respiratory chain (Scudiero D.A. et al. 1988, Cancer Res., 48, 4827-4833).
  • Chemoattractants were introduced into a 96-well microtitre plate which forms the lower well of a chemotaxis chamber fitted with a PVP-free 5 ⁇ m poresize polycarbonate adhesive framed filter membrane (NeuroProbe MB series, Cabin John, MD 20818. USA) according to the manufacturer's instructions.
  • the chemoattractant was diluted as appropriate in synthetic cell culture medium, RPMI 1640 (Gibco) or supplemented with 2 mM glutamine and 0.5% BSA, or alternatively with HBSS with Ca 2 ⁇ and Mg 2+ without Phenol Red (Gibco) plus 0.1% BSA.
  • THP-1 cells 5xl0 5 in 100 ⁇ l RPMI 1640 + 0.5%oBSA
  • chemoattractant was kept at a constant submaximal concentration determined previously (InM MCP-1) and added to the lower well together with the test compounds dissolved in DMSO (final DMSO concentration ⁇ 0.05% v/v) at varying concentrations.
  • the chamber was incubated for 2 h at 37°C under 5 % CO,.
  • the medium was removed from the upper wells which were then washed out with 200 ⁇ l physiological saline before opening the chamber, wiping dry the membrane surface and centrifuging the 96-well plate at 600 g for 5 min to harvest the cells.
  • Supernatant 150 ⁇ l was aspirated and 10 ⁇ l of cell proliferation reagent, WST-1, ⁇ 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-l ,3-phenyl disulfonate ⁇ plus an electron coupling reagent (Boehringer Mannheim, Cat.no. 1644 807) was added back to the wells.
  • the plate was incubated at 37°C for 3 h and the absorbance of the soluble formazan product was read on a microtitre plate reader at 450 nm.
  • the data was input into a spreadsheet, corrected for any random migration in the absence of chemoattractant and the average absorbance values, standard error of the mean, and significance tests were calculated.
  • hMCP-1 induced concentration dependent cell migration with a characteristic biphasic response, maximal 0.5-1.0 nm.
  • fluorescently tagged cells can be used in order to assist in end point detection.
  • the THP-1 cells used are fluorescently tagged by incubation in the presence of 5mM Calcein AM (Glycine, N,N'-[[3',6'- bis(acetyloxy)-3-oxospiro[isobenzofuran-l(3H),9'-[9H]xanthene]-2'.7'-diyl]bis(methylene)] bis[N-[2-[(acetyloxy)methoxy]-2-oxoethyl]]-bis[(acetyloxy)methyl] ester; Molecular Probes) for 45 minutes in the dark.
  • 5mM Calcein AM Glycine, N,N'-[[3',6'- bis(acetyloxy)-3-oxospiro[isobenzofuran-l(3H),9'-[9H]xanthene]-2'.7'-diyl
  • Cells are harvested by centrifugation and resuspended in HBSS (without Phenol Red) with Ca 2 ⁇ Mg 2 ⁇ and 0.1% BSA. 50 ⁇ l (2x105 cells) of the cell suspension are placed on the filter above each well and, as above, the unit is incubated at 37°C for 2 hours under 5% CO,. At the end of the incubation, cells are washed off the upper face of the filter with phosphate buffered saline, the filter removed from the plate and the number of 5 cells attracted to either the underside of the filter or the lower well estimated by reading fluorescence at 485nm excitation, 538nm emission wavelengths (fmax. Molecular Devices). The data was input into a spreadsheet, corrected for any random migration in the absence of chemoattractant and the average fluorescence values, standard error of the mean, percentage inhibition and IC 50 of compounds under test and significance tests can be calculated. In
  • Fresh human blood (200ml) was obtained from volunteer donors, collected into
  • [ l25 I]MCP-l was prepared using Bolton and Hunter conjugation (Bolton et al, 1973, Biochem. J, 133, 529; Amersham International pic]. Equilibrium binding assays were carried out using the method of Ernst et al, 1994, J. Immunol, 152, 3541. Briefly, 50 ⁇ l of 12 T-labeled MCP-1 (final concentration lOOpM) was added to 40 ⁇ l (5x10 5 cells) of cell suspension in a 96
  • Filter mats (Brandel GF/B) were pre-soaked for 60 minutes in 0.3% polyethylenimine plus 0.2% BSA prior to use. Following filtration individual filters were separated into 3.5ml tubes (Sarstedt No. 55.484) and bound l2 T-labeled MCP-1 was determined (LKB 1277 Gammamaster).
  • Test compound potency was determined by assay in duplicate using six point dose-response curves and IC 5C concentrations were determined.
  • Compounds tested of the present invention had IC 50 values of less than 5 ⁇ M in the hMCP-1 receptor binding assay described herein.
  • compound 9 had an IC, 0 of 0.64 ⁇ M.
  • Compound X in the above formulation may comprise a compound illustrated in Examples 1 to 6 herein.
  • the above formulations may be obtained by conventional procedures well known in the pharmaceutical art.
  • the tablets (a)-(c) may be enteric coated by conventional means, for example to provide a coating of cellulose acetate phthalate.
  • the aerosol formulations (h)-(k) may be used in conjunction with standard, metered dose aerosol dispensers, and the suspending agents sorbitan trioleate and soya lecithin may be replaced by an alternative suspending agent such as sorbitan monooleate, sorbitan sesquioleate. polysorbate 80, polyglycerol oleate or oleic acid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Urology & Nephrology (AREA)
  • Rheumatology (AREA)
  • Transplantation (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Pain & Pain Management (AREA)
  • Pulmonology (AREA)
  • Dermatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Indole Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

A compound of formula (I) wherein X is CH2 or SO2; R1 is an optionally substituted aryl or heteroaryl ring; R4 is a group C(O)NR15R16 or a group (CH¿2)tR?17; where R?15, R16 and R17¿ are specified groups, and R?2, R3, R5, R6 and R7¿ are specified organic groups; or a pharmaceutically acceptable salt, in vivo hydrolysable ester, or amide of the compound of formula (I). These compounds are useful in therapy, in particular of inflammatory disease, and methods of producing them as well as pharmaceutical compositions containing them are also described and claimed.

Description

INDOLE DERIVATIVES AND THEIR USE AS MCP-1 RECEPTOR ANTAGONISTS
The present invention relates to chemical compounds, to their production as well as to pharmaceutical compositions containing them as well as to their use in therapy, in particular of inflammatory disease.
MCP-1 is a member of the chemokine family of pro-inflammatory cytokines which mediate leukocyte chemotaxis and activation. MCP-1 is a C-C chemokine which is one of the most potent and selective T-cell and monocyte chemoattractant and activating agents known. MCP-1 has been implicated in the pathophysiology of a large number of inflammatory diseases including rheumatoid arthritis, glomerular nephritides, lung fibrosis, restenosis (International Patent Application WO 94/09128), alveolitis (Jones et al.. 1992, J. Immunol. 149, 2147) and asthma. Other disease areas where MCP-1 is thought to play a part in their pathology are atherosclerosis (e.g. Koch et al., 1992, J. Clin. Invest., 90, 772 -779). psoriasis (Deleuran et al., 1996, J. Dermatological Science, 13,. 228-236), delayed-type hypersensitivity reactions of the skin, inflammatory bowel disease (Grimm et al., 1996, J. Leukocyte Biol, 59,. 804-812), multiple sclerosis and brain trauma (Berman et al. 1996, J. Immunol, 156,. 3017-3023). An MCP-1 inhibitor may also be useful to treat stroke, reperfusion injury, ischemia, myocardial infarction and transplant rejection.
MCP-1 acts through the MCP-1 receptor (also known as the CCR2 receptor). MCP-2 and MCP-3 may also act, at least in part, through the MCP-1 receptor. Therefore in this specification, when reference is made to "inhibition or antagonism of MCP-1" or "MCP-1 mediated effects" this includes inhibition or antagonism of MCP-2 and/or MCP-3 mediated effects when MCP-2 and/or MCP-3 are acting through the MCP- 1 receptor.
Copending International Patent Application Nos. PCT/GB98/02340 and PCT/GB98/02341 describe and claim groups of compounds based upon the indole ring structure which are inhibitors of MCP-1 and therefore have applications in therapy.
The use of certain indole derivatives as NMDA antagonists is described is USP5051442, WO9312780, EP-483881. Other indoles and their use as inhibitors of leukotriene biosynthesis is described in for example, EP-A- 275-667. The applicants have found a particular substitution on the indole ring produces advantageous results when used therapeutically as inhibitors of MCP-1.
According to the present invention there is provided a compound of formula (I)
Figure imgf000004_0001
(I) X is CH2 or SO2 R! is an optionally substituted aryl or heteroaryl ring;
R2 is carboxy, cyano, -C(O)CH2OH, -CONHR8, -SO2NHR9, tetrazol-5-yl, SO-H, or a group of formula (VI)
Figure imgf000004_0002
(VI) where R8 is selected from hydrogen, alkyl, aryl, cyano, hydroxy, -SO2R12 where R12 is alkyl, aryl, heteroaryl, or haloalkyl, or Rs is a group-(CHRl3),-COOH where r is an integer of 1 -3 and each R13 group is independently selected from hydrogen or alkyl; R9 is hydrogen, alkyl, optionally substituted aryl such as optionally substituted phenyl or optionally subtituted heteroaryl such as 5 or 6 membered heteroaryl groups, or a group COR14 where Rμ is alkyl, aryl, heteroaryl or haloalkyl; R'° and R" are independently selected from hydrogen or alkyl. particularly C alkyl; R3 is hydrogen, a functional group, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally substituted heterocyclyl, optionally substituted alkoxy, optionally substituted aralkyl, optionally substituted aralkyloxy, optionally substituted cycloalkyl; R is a group C(O)NR15R16 or a group (CH,), R17 ; where R'3 and R16 are independently selected from hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl. optionally substituted cycloalkyl or optionally substituted heterocyclyl provided that R and R16 are not both hydrogen, or R15 and R'6 together with the nitrogen atom to which they are attached form an optionally substituted heterocyclic ring which optionally contains further heteroatoms; R'7 is selected from NR18R19, OR20 or S(O)s R21 where R's and Rιy are independently selected from hydrogen, optionally substituted hydrocarbyl or optionally substituted heterocyclyl, or R18 and R|y together with the nitrogen atom to which they are attached form an optionally substituted heterocyclic ring which optionally contains further heteroatoms;
R20 is substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl or optionally substituted heterocyclyl, R21 is optionally substituted hydrocarbyl or optionally substituted heterocyclyl, s is 0, 1 or 2 and t is an integer of from 1-4; R5, Rft and R7 are independently selected from hydrogen, a functional group or an optionally substituted hydrocarbyl groups or optionally substituted heterocyclyl groups.
In addition, the invention provides a pharmaceutically acceptable salt, in vivo hydrolysable ester, or amide of the compound of formula (I).
Compounds of formula (I) are inhibitors of monocyte chemoattractant protein- 1. In addition, they appear to inhibit RANTES induced chemotaxis. RANTES is another chemokine from the same family as MCP-1, with a similar biological profile, but acting though the CCR1 receptor. As a result, these compounds can be used to treat disease mediated by these agents, in particular inflammatory disease. Thus the invention further provides a compound of formula (I) for use in the treatment of inflammatory disease. In this specification the term 'alkyl" when used either alone or as a suffix includes straight chained, branched structures. These groups may contain up to 10, preferably up to 6 and more preferably up to 4 carbon atoms. Similarly the terms "alkenyl" and "alkynyl" refer to unsaturated straight or branched structures containing for example from 2 to 10, preferably from 2 to 6 carbon atoms. Cyclic moieties such as cycloalkyl, cycloalkenyl and cycloalkynyl are similar in nature but have at least 3 carbon atoms. Terms such as "alkoxy" comprise alkyl groups as is understood in the art. The term "halo" includes fluoro, chloro, bromo and iodo. References to aryl groups include aromatic carbocylic groups such as phenyl and naphthyl. The term "heterocyclyl" or "heterocyclic" includes aromatic or non-aromatic rings, for example containing from 4 to 20, suitably from 5 to 8 ring atoms, at least one of which is a heteroatom such as oxygen, sulphur or nitrogen. Nitrogen heteroatoms may be substituted for example with hydrogen or hydrocarbyl depending on the available bonds. Sulphur atoms may be in the form of S, S(O) or S(O)2.
Examples of such groups include furyl, thienyl, pyrrolyl, pyrrolidinyl, imidazolyl, triazolyl, thiazolyl, tetrazolyl, oxazolyl, isoxazolyl, pyrazolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, triazinyl, quinolinyl, isoquinolinyl, quinoxalinyl, benzothiazolyl, benzoxazolyl, benzothienyl or benzo furyl.
"Heteroaryl" refers to those groups described above which have an aromatic character. The term "aralkyl" refers to aryl substituted alkyl groups such as benzyl.
Other expressions used in the specification include "hydrocarbyl" which refers to any structure comprising carbon and hydrogen atoms. For example, these may be alkyl, alkenyl, alkynyl, aryl, heterocyclyl, alkoxy, aralkyl, cycloalkyl, cycloalkenyl or cycloalkynyl.
The term "functional group" refers to reactive substituents. They may comprise electron-donating or electron- withdrawing. Examples of such groups include halo, cyano, nitro, C(O)„R22, OR22, S(O)mR22, NR2 R24, C(O)NR23R24, OC(O)NR2 R24, -NR23C(O)nR22, - NR22CONR23R24, -N=CR22R23, S(O)mNR23R24 or -NR23S(O)π,R22 where R22 , R23 and R24 are independently selected from hydrogen or optionally substituted hydrocarbyl, or R23 and R24 together form an optionally substituted heterocyclic ring as defined above, which optionally contains further heteroatoms such as sulphur, S(O), SO2 , oxygen and nitrogen, n is an integer of 1 or 2, m is an integer of 1-2.
Suitable optional substituents for hydrocarbyl or groups R22. R23 and R24 include halo, perhaloalkyl such as trifluoromethyl, mercapto, hydroxy, carboxy, alkoxy, heteroaryl. heteroaryloxy, alkenyloxy, alkynyloxy, alkoxyalkoxy, aryloxy (where the aryl group may be substituted by halo, nitro. or hydroxy). cyano. nitro. amino. mono- or di-alkyl amino. oximino or S(O)m R2' where m' is 1 or 2 and R21 is alkyl.
Where R23 and R24 form a heterocyclic group, this may be optionally substituted b\ hydrocarbyl such as alkyl as well as those substituents listed above for hydrocarbyl groups. Suitable substituents for hydrocarbyl or heterocylic groups R5, R6 and R7 include those listed above for R22, R23 and R24.
Suitably R1 is an optionally substituted phenyl, pyridyl, naphthyl, furyl or thienyl ring. and in particular is a substituted phenyl or pyridyl ring.
Suitable optional substitutents for R1 in formula (I) include alkyl. alkenyl, alkynyl. halo, haloalkyl including perhaloalkyl such as trifluoromethyl, mercapto, alkoxy. haloalkoxy. alkenyloxy, alkynyloxy, hydroxyalkoxy, alkoxyalkoxy, alkanoyl, alkanoyloxy, cyano. nitro, amino, mono- or di-alkyl amino, oximino, sulphonamido, carbamoyl, mono or dialkylcarbamoyl or S(O)m R26 where m is as defined above and R26 is hydrocarbyl.
Particular examples of substituents R5, R6 and R7 include hydrogen, hydroxy, halo, optionally substituted alkyl such as aralkyl, carboxyalkyl or the amide derivative thereof: alkoxy; aryloxy; aralkyloxy; or an amino group which is optionally substituted with alkyl, aryl or aralkyl. A specific functional group which is suitable for R5, R6 and/or R7 is a group of sub-formula (IV).
Figure imgf000007_0001
(IV)
Particular examples of groups R3, R6 and R7 are hydrogen, hydroxy, halo or alkox . In particular R6 and R7 are hydrogen. R5 may be hydrogen but in addition is suitably a small subsitutent such as hydroxy, halo or methoxy.
Particular substituents for R' include trifluoromethyl. C alkyl. halo, trifluoromethoxy, C alkoxy, C, 4alkanoyl, C alkanoyloxy. nitro, carbamoyl, C alkoxycarbonyl, C alkylsulphanyl, CMalkylsulphinyl, C,.4alkylsulphonyl, sulphonamido. carbamoylC,.4alkyl, N-(C|.4alkyl)carbamoylC,.4alkyl, N-(C,.4alkyl)2carbamoyl-C|.4alkyl. hydroxyC|.4alkyl or CMalkoxyCMalkyl. Additionally or alternatively, two such substituents together may form a divalent radical of the formula -O(CH,) O- attached to adjacent carbon atoms on the R1 ring.
Preferred substituents for R' are one or more non-polar substituents such as halo.
In particular, R1 is substituted by one or more halo groups, in particular chlorine. A particular example of an R' group is 3,4-dichlorophenyl, 3-fluoro-4-chlorophenyl, 3-chloro-4- fluorophenyl or 2,3-dichloropyrid-5-yl.
Examples of groups R2 include carboxy; cyano: tetrazol-5-yl; SO.H; -CONHR8 where R8 is selected from cyano, hydroxy, -SO-R12 where R]2 is alkyl such as C,.4 alkyl. aryl such as phenyl, heteroaryl or trifluoromethyl. or R8 is a group-(CHRI0),-COOH where r is an integer of 1 -3 and each R'° group is independently selected from hydrogen or alkyl such as C alkyl; or R2 is a group -SO2NHR9 where R9 is an optionally substituted phenyl or an optionally substituted 5 or 6 membered heteroaryl group, or a group COR14 where R14 is alkyl such as C,.4 alkyl, aryl such as phenyl, heteroaryl or trifluoromethyl, or R2 is a group of formula (VI)
Figure imgf000008_0001
(VI) where R10 and R" are independently selected from hydrogen or alkyl, particularly C alkyl. Preferably R2 is carboxy or a pharmaceutically acceptable salt or ester thereof. Suitable groups R3 include hydrogen, fluoro, chloro, bromo, iodo, methyl, cyano, trifluoromethyl, hydroxymethyl, alkoxyalkyl such as C alkoxymethyl, methoxy, benzyloxy, carboxyalkoxy such as carboxymethoxy, methylsulphanyl, methylsulphinyl. methylsulphonyl or carboxy CW)cycloalkyl, -(CHR27),-NR28R29 (where r is 0-2. each R27 is independently hydrogen or alkyl, in particular C alkyl, R28 and R29 are independently selected from H and C,.4alkyl or R2S and R29 together with the nitrogen to which they are attached form a 5 or 6 membered ring optionally containing one further heteroatom selected from O, N, S, S(O) or SO,. Suitably R28 and R29 together form a heterocyhc ring such as morpholino or piperazinyl. Other such groups R3 include optionally substituted aryl groups, such as optionally substituted phenyl or naphthyl group. Suitable substituents for phenyl groups R3 include one or more groups selected from chlorine, fluorine, methyl, trifluoromethyl. trifluoromethoxy, amino. formyl, phenyl. methoxy. phenoxy or phenyl.
R3 may comprise a range of substituents as listed above, in particular, hydrogen or a small substituent group such as C,. alkyl in particular methyl, or trifluoromethyl, and is preferably hydrogen.
Suitable substitutents for hydrocarbyl and heterocyclic groups R'3, R'6. R18, R19, R20 and R21 as they appear in the definition of R4 include those listed above in relation to R22, R2 , and R24
Examples of R4 are groups C(0)NR15R16 where one of R'5 or R16 is hydrogen or alkyl such as methyl, and the other is optionally substituted heterocyclyl or optionally substituted alkyl such as C,., alkyl in particular methyl, or R15 and R'6 together with the nitrogen atom to which they are attached form an optionally substituted heterocyclic ring which optionally contains further heteroatoms. Suitable optional substitutents for heterocyclic groups R15 or R16 in this case are alkyl groups such as methyl, or oxo groups. Suitable optional substitutents for alkyl groups R'3 and R16 include one or more groups selected from amino ; mono- or di- alkyl amino; carboxy; heterocyclyl optionally substituted with for example an alkyl groups such as methyl or an oxo group; or a group NHSO2R30 where R30 is alkyl such as methyl.
A preferred group for R4 is a group C(O)NRl5R16 where one of R15 or R16 is hydrogen and the other is heterocyclyl or alkyl substituted with one or more groups selected from amino, mono- or di-alkyl amino, carboxy or optionally substituted heterocyclyl. or R13 and R'6 together with the nitrogen atom to which they are attached form an optionally substituted heterocyclic ring which optionally contains further heteroatoms.
Where one of R'5 or R16 is hydrogen, examples of suitable heterocyclyls for the other include imidazole, imidazolinone, or tetrahydrothiophene- 1 , 1 - dioxide. Preferably one of R15 or R16 is hydrogen and the other is optionally substituted alkyl, for example C,_2 alkyl. Suitable substituents include one or more groups selected from amino. mono- or di-alkyl amino, a group NHSO,R30 where R30 is methyl, carboxy or optionally substituted heterocyclyl, such as isoxazole optionally substituted mono or di-substituted with alkyl, such as methyl. Where R15 and R16 together with the nitrogen atom to which they are attached form an optionally substituted heterocyclic ring which optionally contains further heteroatoms, that -o- ring is, for example a morpholine ring. Alternatively, R4 is a group of sub-formula (IV) as listed above.
Alternatively, R4 is preferably a group (CH2), R17 where t is 1 and R17 is a group NR18R19. Particular examples of R18 and R19 include hydrogen and optionally substituted alkyl, or R'8 and R19 together with the nitrogen atom to which they are attached form an optionally substituted heterocyclic ring which optionally contains further heteroatoms. such as pyrazole or tetrahydropyranyl. In particular, R18 and R'9 together form a morpholine ring.
X is CH, or SO, and is preferably CH2.
Suitable pharmaceutically acceptable salts of compounds of formula (I) include acid addition salts such as methanesulfonate, fumarate, hydrochloride, hydrobromide, citrate, maleate and salts formed with phosphoric and sulphuric acid. In another aspect suitable salts are base salts such as an alkali metal salt for example sodium, an alkaline earth metal salt for example calcium or magnesium, an organic amine salt for example triethylamine, morpholine, N-methylpiperidine, N-ethylpiperidine, procaine, dibenzylamine, N,N-dibenzylethylamine or amino acids for example lysine. There may be more than one cation or anion depending on the number of charged functions and the valency of the cations or anions. A preferred pharmaceutically acceptable salt is a sodium salt.
An in vivo hydrolysable ester of a compound of the formula (I) containing carboxy or hydroxy group is, for example, a pharmaceutically acceptable ester which is hydrolysed in the human or animal body to produce the parent acid or alcohol.
Suitable pharmaceutically acceptable esters for carboxy include alkyl esters, such as C,.6 alkyl esters for example, ethyl esters, C^alkoxymethyl esters for example methoxymethyl, C,.6alkanoyloxymethyl esters for example pivaloyloxymethyl, phthalidyl esters, C3.8cycloalkoxy-carbonyloxyC,.6alkyl esters for example 1-cyclohexylcarbonyloxyethyl; l ,3-dioxolen-2-onylmethyl esters for example
5-methyl-l ,3-dioxolen-2-onylmethyl; and C,.6alkoxycarbonyloxyethyl esters for example 1-methoxycarbonyloxyethyl and may be formed at any carboxy group in the compounds of this invention.
Suitable pharmaceutically acceptable esters of compounds of formula (I) are in vivo hydrolysable ester of a compound of the formula (I) containing a hydroxy group includes inorganic esters such as phosphate esters and -acyloxyalkyl ethers and related compounds which as a result of the in vivo hydrolysis of the ester breakdown to give the parent hydroxy group. Examples of α-acyloxyalkyl ethers include acetoxymethoxy and 2,2-dimethylpropionyloxymethoxy. A selection of in vivo hydrolysable ester forming groups for hydroxy include alkanoyl, benzoyl, phenylacetyl and substituted benzoyl and phenylacetyl, alkoxycarbonyl (to give alkyl carbonate esters), dialkylcarbamoyl and N-(dialkylaminoethyl)-N-alkylcarbamoyl (to give carbamates), dialkylaminoacetyl and carboxy acetyl.
Esters which are not in vivo hydrolysable are useful as intermediates in the production of the compounds of formula (I) and therefore these form a further aspect of the invention. Thus examples of compounds of formula (I) include the following:
Table 1
Figure imgf000011_0001
Figure imgf000011_0002
Figure imgf000012_0001
where * indicates the point of attachment of the group to the indole ring.
Yet a further aspect of the invention provides pharmaceutical compositions comprising a compound of formula (I) as defined above. Compounds of formula (I) are suitably prepared by methods such as those described in International Patent Application Nos. PCT/GB98/02340 and PCT/GB98/02341.
In particular compounds of formula (I) can be prepared by reacting a compound of formula (VII)
Figure imgf000013_0001
(VII) where X, R1, R3, R\ R6 and R7 are as defined in relation to formula (I) and R2 is a group R2 as
defined in relation to formula (I) or a protected form thereof, R40 is a group C(O) or a group
(CH2), where t is as defined in relation to formula (I) and Z is a leaving group,
either (a) when R40 is C(O), with a compound of formula (VIII)
HNR,5R16 (VIII) where R'3 and R16 are as defined in relation to formula (I); or (b) where R40 is group (CH,), with a compound of formula (IX)
HR17
(IX) where R17 is as defined in relation to formula (I) ; and thereafter if necessary or desirable, deprotecting a group R2 to a group R2 or changing a group R2 to a different such group.
Suitable leaving groups for Z include halo such as chloro. The reaction is suitably effected in an organic solvent such as dichloromethane or tetrahydrofuran in the presence of a base such as triethylamine. Moderate temperatures, for example of from 0° to 50°C and conveniently ambient temperature may be employed. The compounds of formula (VII) suitably have an ester group as R2 . Such compounds can then be converted to the corresponding acid by desterification, for example using sodium hydroxide in a mixture of methanol and tetrahydrofuran.
Compounds of formula (VII) where R40 is C(O) are suitably prepared in situ by reaction of the corresponding carboxylic acid with a halogenating agent such as oxalyl chloride. The acid is suitably derived from a compound of formula (X)
Figure imgf000014_0001
(X) where X, R1, R2 '• R3, R5, R6 and R7 are as defined above, by a sequence of reactions in which the hydroxy methyl group is first converted to a carboxaldehyde for example by reaction with 2,3-dichloro-5,6-dicyanobenzoquinone, which is then oxidised to the corresponding acid using conventional methods.
Compounds of formula (X) are suitably prepared by reacting a compound of formula (XI)
Figure imgf000014_0002
(XI) where X, R2 R3, R5, R6 and R7 are as defined above and R41 is a protecting group, with a compound of formula (XII) R'-X-Z'
(XII) where R1 and X are as defined in relation to formula (I) and Z1 is a leaving group; and thereafter removing the protecting group R41.
Suitable leaving groups for Z1 include halide such as chloride, bromide or iodide, as well as mesylate or tosylate. The reaction is suitably effected in an organic solvent such as dimethylformamide (DMF) tetrahydrofuran (THF) or DCM in the presence of a base such as sodium hydride, sodium hydroxide, potassium carbonate. Optionally the reaction is effected in the presence of a suitable phase transfer catalyst. The choice of base and solvent is interdependent to a certain extent in that certain solvents are compatible with some bases only as is understood in the art. For example, sodium hydride may preferably be used with dimethylformamide or tetrahydrofuran and sodium hydroxide is preferably used with dichloromethane and a phase transfer catalyst.
The reaction can be carried out at moderate temperatures, for example from 0 to 50°C and conveniently at about ambient temperature.
Preferably, R2 is an ester group in the compound of formula IX and this may be subsequently converted to an acid or to another ester or salt, by conventional methods later in the process.
Suitable protecting groups R41 include acetyl, benzyl or tetrahydrpyranyl. The reaction conditions employed will be variable depending upon the nature of the protecting group R40 and would be apparent to a skilled person. Acetyl groups may be removed by reaction with a strong base such as sodium methoxide, whereas benzyl groups may be removed by hydrogenation, for example in the presence of a catalyst such as palladium catalyst. Removal of tetrahydropyranyl protecting groups may be effected using p-toluenesulphonic acid as illustrated hereinafter.
Compounds of formula (X) may be prepared by cyclisation of a compound of formula (XIII)
Figure imgf000016_0001
where R\ R6, R7 and R41 are as defined above and R42 and R4' represent a combination of moieties which can cyclise to form an appropriately substituted pyrrole ring. For example, R42 can be a group of formula -CH=C(R44)N3 where R44 is a group R2 as defined above, or a protected form thereof, and R43 may be hydrogen. Cyclisation to form a compound of formula (XII) may then be effected by heating for example under reflux in an organic solvent, in particular a high boiling aprotic solvent such as xylene or toluene. Alternatively, R43 may be nitro and R42 may be a group of formula -CH2C(O)R2 where
R2' is as defined above in relation to formula (VII). These compounds will cyclise in the presence of a catalyst such as palladium on carbon in the presence of hydrogen. The reaction may be effected at moderate temperatures for example of from 0 to 80°C, conveniently at about ambient temperature. Thus examples of compounds of formula (XIII) include compounds of formula (XIV) and (XV)
Figure imgf000016_0002
(XIV)
Figure imgf000017_0001
(XV)
Compounds of formula (XIII) where R3 is hydrogen may be prepared for example by reacting a compound of formula (XVI)
Figure imgf000017_0002
with a compound of formula (XVII)
N3CH2R2
(XVII) where R5, R6, R7, R41, and R2 are as defined hereinbefore. The reaction may be effected in an organic solvent such as ethanol at low temperatures of from -20 to 0°C, suitably at about 0°C. The reaction is suitably effected in the presence of a base such as an alkoxide, in particular an ethoxide, for example potassium ethoxide.
Where necessary or desired, R3 can be converted from hydrogen to a different group R3 subsequently in the reaction scheme, using conventional methods.
Compounds of formula (XVII) are suitably prepared by reacting a compound of formula (XVIII) R47CH,R2' (XVIII) where R2 is as defined above and R47 is a leaving group such as halide and in particular bromide, with an azide salt, such as an alkali metal azide salt in particular sodium azide. Compounds of formula (XV) may be prepared by reacting a compound of formula
(XIX)
Figure imgf000018_0001
where R\ R , R , R , R and R are as defined above, with a compound of formula (XX)
Figure imgf000018_0002
(XX) where R2 is as defined above and R48 leaving group such as hydroxy. Examples of compounds of formula (XX) are oxalates such as diethyloxalate. The reaction is suitably effected in the presence of a base such as sodium hydride in an organic solvent such as THF. Moderate temperatures of from 0° to 40°C and conveniently ambient temperature is employed.
Compounds of formula (VII) where R40 is (CH2), may be prepared by halogenation of a compound of formula (XXI)
Figure imgf000019_0001
(XXI)
where t, R1, R2 , R3, R5, R6 and R7 are as defined above. Compound (X) above is a particular example of a compound of formula (XXI) and others may be prepared by analogous methods to those described for formula (X).
Compounds of formula (XI), (XVI), (XVII), (XVIII), (XIX) and (XX) are either known compounds or they can be prepared from known compounds by conventional methods.
According to a further aspect of the invention there is provided a compound of the formula (I) as defined herein, or a pharmaceutically acceptable salt or an in vivo hydrolysable ester thereof, for use in a method of treatment of the human or animal body by therapy. In particular, the compounds are used in methods of treatment of inflammatory disease.
According to a further aspect of the present invention there is provided a method for antagonising an MCP- 1 mediated effect in a warm blooded animal, such as man, in need of such treatment, which comprises administering to said animal an effective amount of a compound of formula (I), or a pharmaceutically acceptable salt, or an in vivo hydrolysable ester thereof.
The invention also provides a compound of formula (I) as defined herein, or a pharmaceutically acceptable salt, or an in vivo hydrolysable ester thereof, for use as a medicament. The compositions of the invention may be in a form suitable for oral use (for example as tablets, lozenges, hard or soft capsules, aqueous or oily suspensions, emulsions, dispersible powders or granules, syrups or elixirs), for topical use (for example as creams, ointments, gels, or aqueous or oily solutions or suspensions), for administration by inhalation (for example as a finely divided powder or a liquid aerosol), for administration by insufflation (for example as a finely divided powder) or for parenteral administration (for example as a sterile aqueous or oily solution for intravenous, subcutaneous, intramuscular or intramuscular dosing or as a suppository for rectal dosing).
The compositions of the invention may be obtained by conventional procedures using conventional pharmaceutical excipients, well known in the art. Thus, compositions intended for oral use may contain, for example, one or more colouring, sweetening, flavouring and/or preservative agents.
Suitable pharmaceutically acceptable excipients for a tablet formulation include, for example, inert diluents such as lactose, sodium carbonate, calcium phosphate or calcium carbonate, granulating and disintegrating agents such as corn starch or algenic acid; binding agents such as starch; lubricating agents such as magnesium stearate, stearic acid or talc; preservative agents such as ethyl or propyl p-hydroxybenzoate, and anti-oxidants, such as ascorbic acid. Tablet formulations may be uncoated or coated either to modify their disintegration and the subsequent absorption of the active ingredient within the gastrointestinal track, or to improve their stability and/or appearance, in either case, using conventional coating agents and procedures well known in the art.
Compositions for oral use may be in the form of hard gelatin capsules in which the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules in which the active ingredient is mixed with water or an oil such as peanut oil, liquid paraffin, or olive oil. Aqueous suspensions generally contain the active ingredient in finely powdered form together with one or more suspending agents, such as sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose, sodium alginate, polyvinyl-pyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents such as lecithin or condensation products of an alkylene oxide with fatty acids (for example polyoxyethylene stearate), or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monooleate. The aqueous suspensions may also contain one or more preservatives (such as ethyl or propyl p-hydroxybenzoate, anti-oxidants (such as ascorbic acid), colouring agents, flavouring agents, and/or sweetening agents (such as sucrose, saccharine or aspartame).
Oily suspensions may be formulated by suspending the active ingredient in a vegetable oil (such as arachis oil, olive oil, sesame oil or coconut oil) or in a mineral oil (such as liquid paraffin). The oily suspensions may also contain a thickening agent such as beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set out above, and flavouring agents may be added to provide a palatable oral preparation. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid. Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water generally contain the active ingredient together with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients such as sweetening, flavouring and colouring agents, may also be present. The pharmaceutical compositions of the invention may also be in the form of oil-in-water emulsions. The oily phase may be a vegetable oil, such as olive oil or arachis oil, or a mineral oil, such as for example liquid paraffin or a mixture of any of these. Suitable emulsifying agents may be, for example, naturally-occurring gums such as gum acacia or gum tragacanth, naturally-occurring phosphatides such as soya bean, lecithin, an esters or partial esters derived from fatty acids and hexitol anhydrides (for example sorbitan monooleate) and condensation products of the said partial esters with ethylene oxide such as polyoxyethylene sorbitan monooleate. The emulsions may also contain sweetening, flavouring and preservative agents.
Syrups and elixirs may be formulated with sweetening agents such as glycerol, propylene glycol, sorbitol, aspartame or sucrose, and may also contain a demulcent, preservative, flavouring and/or colouring agent.
The pharmaceutical compositions may also be in the form of a sterile injectable aqueous or oily suspension, which may be formulated according to known procedures using one or more of the appropriate dispersing or wetting agents and suspending agents, which have been mentioned above. A sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example a solution in 1 ,3-butanediol. Suppository formulations may be prepared by mixing the active ingredient with a suitable non-irritating excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug. Suitable excipients include, for example, cocoa butter and polyethylene glycols. Topical formulations, such as creams, ointments, gels and aqueous or oily solutions or suspensions, may generally be obtained by formulating an active ingredient with a conventional, topically acceptable, vehicle or diluent using conventional procedure well known in the art.
Compositions for administration by insufflation may be in the form of a finely divided powder containing particles of average diameter of, for example, 30μ or much less, the powder itself comprising either active ingredient alone or diluted with one or more physiologically acceptable carriers such as lactose. The powder for insufflation is then conveniently retained in a capsule containing, for example, 1 to 50mg of active ingredient for use with a turbo-inhaler device, such as is used for insufflation of the known agent sodium cromoglycate.
Compositions for administration by inhalation may be in the form of a conventional pressurised aerosol arranged to dispense the active ingredient either as an aerosol containing finely divided solid or liquid droplets. Conventional aerosol propellants such as volatile fluorinated hydrocarbons or hydrocarbons may be used and the aerosol device is conveniently arranged to dispense a metered quantity of active ingredient.
For further information on Formulation the reader is referred to Chapter 25.2 in Volume 5 of Comprehensive Medicinal Chemistry (Corwin Hansch; Chairman of Editorial Board), Pergamon Press 1990.
The amount of active ingredient that is combined with one or more excipients to produce a single dosage form will necessarily vary depending upon the host treated and the particular route of administration. For example, a formulation intended for oral administration to humans will generally contain, for example, from 0.5 mg to 2 g of active agent compounded with an appropriate and convenient amount of excipients which may vary from about 5 to about 98 percent by weight of the total composition. Dosage unit forms will generally contain about 1 mg to about 500 mg of an active ingredient. For further information on Routes of Administration and Dosage Regimes the reader is referred to Chapter 25.3 in Volume 5 of Comprehensive Medicinal Chemistry (Corwin Hansch: Chairman of Editorial Board). Pergamon Press 1990.
The size of the dose for therapeutic or prophylactic purposes of a compound of the Formula I will naturally vary according to the nature and severity of the conditions, the age and sex of the animal or patient and the route of administration, according to well known principles of medicine. As mentioned above, compounds of the Formula I are useful in treating diseases or medical conditions which are due alone or in part to the effects of farnesylation of rats.
In using a compound of the Formula I for therapeutic or prophylactic purposes it will generally be administered so that a daily dose in the range, for example, 0.5 mg to 75 mg per kg body weight is received, given if required in divided doses. In general lower doses will be administered when a parenteral route is employed. Thus, for example, for intravenous administration, a dose in the range, for example, 0.5 mg to 30 mg per kg body weight will generally be used. Similarly, for administration by inhalation, a dose in the range, for example, 0.5 mg to 25 mg per kg body weight will be used. Oral administration is however preferred.
The invention is further illustrated, but not limited by the following Examples in which the following general procedures were used unless stated otherwise.
Preparation 1
Ethyl N-(3,4-dichIorobenzvI)-4-(2-tetrahvdropyranyloxy)methylindoIe-2-carboxylate
Ethyl-4-(2-tetrahydropyranyloxy)methylindole-2-carboxylate (5.1 g) (Chung-gi Shen et al., Heterocycles, 43, 1996, 891-898) and sodium hydride (741 mg, 60% in mineral oil) were stirred in DMF (100 ml) under argon at ambient temperature for 20 minutes. 3,4- Dichlorobenzyl chloride (2.79 ml) was added and the mixture stirred overnight, then partitioned between ethyl acetate (150 ml) and water (150 ml). The organic phase was washed with water (2 x 150 ml), dried (MgSO4), concentrated in vacua and the residue purified by column chromatography using /-.o-hexane, then ethyl acetate : /-.-ø-hexane (5/95) as eluent to give the product as a yellow oil (4.39 g, 56%); ΝMR δ (CDC13) 1.40 (t, 3H), 1.50 - 2.00 (m. 6H), 3.60 (m, IH), 4.00 (m, IH), 4.35 (q, 2H), 4.75 (m, IH), 4.85 (d, IH), 5.10 (d, 1FΪ), 5.80 (s, 2H), 6.85 (m,lH), 7.15 - 7.40 (m, 5H), 7.50 (s,lH); Mlz (+) 462.5 ( H+). Preparation 2
Ethyl N-(3,4-dichIorobenzyl)-4-hvdroxy ethvIindole-2-carboxyIate
Ethyl N-(3,4-dichlorobenzyl)-4-(2-tetrahydropyranyloxy)methylindole-2-carboxylate (4.38 g) and / toluenesulphonic acid (100 mg) in ethanol (100 ml) was stirred at ambient temperature for 3 hours, then concentrated in vacuo and the residue dissolved in ethyl acetate (100 ml), washed with water (100 ml), dried (MgSO4) and concentrated to give the product as an off-white solid (3.22 g, 90%); ΝMR δ (CD3SOCD3) 1.25 (t, 3H), 4.25 (q, 2H), 4.80 (d, 2H), 5.20 (m, IH), 5.80 (s, 2H), 6.85 (m,lH), 7.10 (d, IH), 7.30 (m, 2H), 7.50 (m, 3H); M/z ( ) 378.3 (M-f).
Preparation 3
Ethyl 4-formyl-N-(3,4-dichIorobenzyl)indole-2-carboxylate
Ethyl N-(3,4-dichlorobenzyl)-4-hydroxymethylindole-2-carboxylate (5.17 g) and 2,3- dichloro-5,6-dicyanobenzoquinone (3.10 g) were stirred in dioxane (100 ml) at ambient temperature, overnight. The reaction mixture was concentrated in vacuo and the residue dissolved in dichloromethane (100 ml) and filtered. The filtrate was concentrated in vacuo and the residue purified by column chromatography using 10% ethyl acetate : /-vo-hexane as eluent to give product as a yellow solid (4.88 g, 95%); ΝMR δ (CD3SOCD3) 1.30 (t, 3H), 4.30 (q, 2H), 5.90 (s, 2H), 6.85 (m,lH), 7.90 (m, IH), 8.00 (m, IH), 10.22 (s, IH); M/z (+) 376.3 (MH+).
Preparation 4 7V-(3,4-Dichlorobenzyl -2-ethoxycarbonylindole-4-carboxylic acid
A solution of sodium chlorite (9.70 g) and sodium dihydrogen orthophosphate (13.02 g) in water (50 ml) was added dropwise to a solution of ethyl 4-formyl-N-(3,4- dichlorobenzyl)indole-2-carboxylate ( 4.47 g) and 2-methylbut-2-ene (50 ml) in tert-butyl alcohol (100 ml) and the mixture stirred for 72 hours at ambient temperature, then concentrated in vacuo and the resulting precipitate was filtered and dried to give the product as an off-white solid (4.16 g, 89%); ΝMR δ (CD3SOCD3) 1.25 (t, 3FI), 4.30 (q, 2H), 5.85 (s, 2H), 6.85 (m,lH), 7.35 (m, IH), 7.40 (q, IH), 7.50 (m, IH), 7.80 (m, 3H); M/z (-) 390.1 (M- H+)- Preparation 5
Ethyl 4-chloromethv.-N-(3,4-dichlorobenzyl)indole-2-carboxylate
Ethyl N-(3,4-dichlorobenzyl)-4-hydroxymethylindole-2-carboxylate (0.89 g). dimethylformamide (0.5 ml) and thionyl chloride (189 μl) in dichloromethane (40 ml) were stirred at ambient temperature overnight and the resulting precipitate was filtered and dried in vacuo to give the product as a white solid (0.62 g, 67%); NMR δ (CD3SOCD3) 1.30 (t, 3H), 4.30 (q, 2H), 5.10 (s, 2H), 5.85 (s, 2H), 6.90 (m, IH), 7.30 (m, 3H), 7.55 (m. 3H); M/z (+) 396.2 (MT).
Preparation 6
Ethyl 5-hydroxyindoIe-2-carboxylate
Boron tribromide (64.58 g) was added dropwise to a stirred solution of ethyl 5- methoxyindole-2-carboxylate (20 g) in dry dichloromethane (1000 ml) at -78°C under an atmosphere of argon. The reaction was allowed to warm to room temperature and stirred for a further 2 hours. The reaction was poured into ice / saturated aqueous sodium hydrogen carbonate solution with stirring and extracted with ethyl acetate. Combined organic extracts were washed with saturated aqueous sodium hydrogen carbonate solution, water, aqueous saturated sodium chloride solution and dried (MgSO4). The solution was concentrated in vacuo and the residue was purified by column chromatography using 0 - 60% diethyl ether ; wo-hexane as eluent to give product as a white solid (9.02 g, 48%); NMR δ (CD3SOCD,) 1.31 (t, 3H), 4.29 (q, 2H), 6.79 (dd, IH), 6.90 (dd, IH), 7.22 (d. 1FI), 8.84 (s, IH). 1 1.52 (brs. IH): M/z (+) 206 (MH+).
Preparation 7 Ethyl 5-acetoxyindoIe-2-carboxylate
A stirred solution of ethyl 5-hydroxyindole-2-carboxylate (7.79 g) and DMAP (20 mg) in acetic anhydride (80 ml) was heated at 80°C for 4 hours. The reaction was concentrated in vacuo and the residue was dissolved in ethyl acetate. Combined organic extracts were washed with hydrochloric acid (2.0 M), saturated aqueous sodium hydrogen carbonate solution, water, aqueous saturated sodium chloride solution and dried (MgSO4). The solution was concentrated in vacuo to give the product as a yellow solid (9.39 g.l OO %): NMR δ (CD3SOCD3) 1.20 (t, 3H), 2.10 (s, 3H), 4.19 (q. 2H). 6.86 (dd, IH). 6.97 (d, IH), 7.20 (s. I H). 7.29 (d, IH); M/z (+) 248 ( H+)-
Preparation 8 5 Ethyl 5-acetoxy-N-(3,4-dichIorobenzyl)indole-2-carboxylate
3,4-Dichlorobenzyl bromide (5.96 g) was added to a stirred solution of ethyl 5- acetoxyindole-2-carboxylate (5.4 g) and potassium carbonate (6.94 g) in acetonitrile (500 ml) under an atmosphere of argon. The reaction was heated at 80°C for 16 hours, then concentrated in vacuo and the residue partitioned between ethyl acetate and water. Combined 10 organic extracts were washed with water, saturated aqueous sodium chloride and dried (MgSO4). The solvent was removed in vacuo and the residue was triturated with Λrø-hexane to give the product as a cream solid (5.55 g, 63%); NMR δ (CD,SOCD3) 1.27 (t, 3H), 2.27 (s, 3H), 4.28 (q, 2H), 5.82 (s, 2H), 6.90 (d, IH), 7.09 (dd, IH), 7.33 - 7.40 (m, 2H), 7.46 (d, IH) 7.52 (d, IH), 7.60 (d, IH).
15
Preparation 9
Ethyl N-(3,4-dichlorobenzvD-5-hvdroxyindole-2-carboxylate
Sodium ethoxide (1.86 g) was added to a stirred solution of ethyl 5-acetoxy-N-(3,4- dichlorobenzyl)indole-2-carboxylate (5.55 g) in ethanol (50 ml) under an atmosphere of
20 argon. The reaction was stirred at room temperature for 2 hours, then concentrated in vacuo and the residue acidified with aqueous hydrochloric acid (2.0 M) and extracted with dichloromethane. Combined organic extracts were washed with water, saturated aqueous sodium chloride solution and dried (MgSO4). The solvent was removed in vacuo and the residue was triturated with hexane / diethyl ether to give the product as a white solid (3.17 g,
25 92%); ΝMR δ (CD3SOCD3) 1.26 (t, 3H), 4.25 (q, 2H), 5.75 (s, 2H), 6.81 - 6.91 (m, 2H), 6.98 (d, IH), 7.19 (s, IH), 7.29 (d, IH), 7.38 (d, IH) 7.50 (d, IH), 9.06 (s, IH); M/z (+) 364 (MW ).
Example 1
Compound 1 ethyl ester
30 N-(3,4-Dichlorobenzyl)-2-ethoxycarbonylindole-4-carboxylic acid (100 mg), DMF (1 drop) and a solution of oxalyl chloride in dichloromethane (2M. 140 μl) were stirred in dichloromethane (4 ml) under argon, at ambient temperature, for 7 hours. The reaction mixture was concentrated in vacuo and dissolved in dichloromethane (4 ml). 3-amino- tetrahydrothiophene- 1 ,1 -dioxide (69 mg) and triethylamine (71 μl) were added and the reaction stirred under argon, overnight. The reaction mixture was diluted with dichloromethane (20 ml), washed with aq. 2M HCl (30 ml) and water (30 ml), dried (MgSO4), concentrated in vacuo and the residue purified by column chromatography using ethyl acetate : iso- exane (gradient 25/75-100/0) as eluent to give the product as an off-white solid (73 mg. 56%). M/z (+) 509.3 (MR+).
Example 2
The procedure described in Example 1 above was repeated using the appropriate amine. Thus were obtained the compounds described below.
Compound 4 ethyl ester
48% yield; M/z (+) 461.5 ( H+)-
Compound 2 ethyl ester
96% yield; M/z (+) 500.4 (MR+).
Compound 3 ethyl ester
60% yield; M/z (+) 509.3 (MR+).
Compound 6 ethyl ester
63% yield; M/z (+) 462.2 (MT).
Compound 7 ethyl ester 72% yield; M/z (+) 503.2 (MH+).
Compound 8 ethyl ester
51% yield; M/z (+) 500.2 (MW).
Compound 9 ethyl ester
13% yield; M/z (+) 512.1 (MYV). Example 3
Compound 10 ethyl methyl diester
N-(3,4-Dichlorobenzyl)-2-ethoxycarbonylindole-4-carboxylic acid (150 mg), L- histidine methyl ester dihydrochloride (93 mg), 2-ethoxy-l-ethoxycarbonyl-l,2- dihydroquinoline (123 mg) and triethylamine (107 μl) were stirred in dichloromethane (15 ml) at ambient temperature, overnight. The reaction mixture was concentrated in vacuo and the residue purified by column chromatography using ethyl acetate : iso-hexane (gradient 10/90 - 100/0) then 10% methanol : ethyl acetate as eluent to give product as a white gum (35 mg, 17%); M/z (+) 543.2 (MT).
Example 4 Compound 4
Compound 4 ethyl ester (50 mg) was dissolved in tetrahydrofuran (2 ml). Aqueous sodium hydroxide (2M, 2 ml) and methanol (1 ml) were added and the mixture stirred at ambient temperature for 2 hours, then concentrated in vαcuo and the residue dissolved in water (4 ml), acidified with acetic acid and resulting precipitate filtered, washed with water and dried in vαcuo to give the product as a white solid (19mg, 40%); ΝMR δ (CD3SOCD3) 3.30 - 3.90 (m, 8H), 6.00 (s, 2H), 7.05 (m, IH), 7.20 (m, 2H), 7.40 (t, IH), 7.50 (m, IH), 7.60 (m, IH), 7.70 (m, IH); M/z (-) 431.4 (M-K).
Example 5
The procedure described in Example 4 above was repeated using the appropriate ester. Thus were obtained the compounds described below.
Compound 1
77% yield; ΝMR δ (CD3SOCD3) 2.20 (m, IH), 3.05 - 3.60 (m, 5H), 4.70 (m, IH), 5.90 (s, 2H), 6.90 (m, IH), 7.30 (m, 2H), 7.50 (m, 2H), 7.60 (s, IH), 7.70 (m, IH), 8.70 (d, IH); M/z(-) 481.3 (M-K). Compound 2
90% yield; NMR δ (CD SOCD3) 2.20 (s, 3H), 2.40 (s, 3H). 4.20 (d, 2H). 6.00 (s, 2H). 7.00 (m, IH), 7.20 (t, IH). 7.35 (m, 3H). 7.50 (m, IH). 7.55 (m. IH). 8.60 (t. IH); M/z (-) 470.1 5 (M-K).
Compound 3
53% yield; M/z (-) 479.1 (M-H").
10 Compound 6
81% yield; NMR δ (CD SOCD3) 2.40 (m, 6H), 2.75 (m. 2H), 3.45 (m, 2H), 5.85 (s, 2H). 6.85 (m, IH), 7.25 (m, 2H), 7.45 (m, 2H), 7.60 (m, 2H), 8.35 (m.lH); M/z (-) 432.2 (M-H ).
Compound 7
15 98% yield; NMR δ (CD3SOCD3) 3.22 (m, 2H), 3.40 (m, 2H), 5.90 (s, 2H), 6.23 (s, IH), 6.90 (m, IH), 7.30 (m, 2H), 7.50 (m, 2H), 7.65 (m, 2H), 8.40 (m, IH); M/z (-) 473.2 (M-H').
Compound 8
100% yield; M/z (-) 470.2 (M-H"). 20
Compound 9
85% yield; NMR δ (CD SOCD3) 2.90 (s, 3H), 3.15 (m, 2H), 3.40 (m, 2FI), 5.95 (s, 2H). 6.90
(m, IH), 7.15 (m, IH), 7.30 (m, 2H), 7.50 (m, 2H), 7.60 (m,lFI), 7.65 (m, IH), 8.40 (m,lH);
M/z (-) 482.4 (M-H"). 25
Compound 10
51% yield; M/z (-) 499.1 (M-H").
Compound 11
30 50% yield; NMR δ (CD3SOCD3) 2.40 (m, 4H), 3.50 (m, 4H), 3.70 (s. 2H), 5.85 (s, 2H). 6.90 (m, IH), 7.05 (m, IH), 7.20 (m, IH), 7.30 - 7.60 (m, 4H): M/z (-) 417.2 (M-H"). Example 6
Compound 11 ethyl ester
Ethyl 4-chloromethyl-N-(3,4-dichlorobenzyl)indole-2-carboxylate (150 mg), 5 morpholine (50 μl) and triethylamine (106 μl) in tetrahydrofuran (5 ml) were stirred at ambient temperature for 4 days, then concentrated in vacuo. The residue was dissolved in ethyl acetate (30 ml), washed with water (30 ml), dried (MgS04), and concentrated in vacuo. The crude residue was triturated with toluene and the resulting white solid filtered and dried (79 mg, 47%); ΝMR δ (CDC13) 1.42 (t, 3H), 2.98 (m, 2H), 3.37 (m, 2H), 3.95 (m, 2H), 4.20 - 10 4.60 (m, 6H), 5.80 (s, 2H), 6.90 (m, IH), 7.20 (m, IH), 7.25 - 7.60(m, 4H), 7.70 (m,lH); M/z (+) 447.3 (MH+)-
Example 7
Ethyl N-(3,4-dichlorobenzyl)-4-dimethylaminomethyl-5-hvdroxyindole-2-carboxylate 15 (Ethyl ester of Compound 5)
To a stirred solution of ethyl N-(3,4-dichlorobenzyl)-5-hydroxyindole-2-carboxylate (2.1 g) in ethanol (50 ml) was added successively aqueous dimethylamine (40%, 0.5 ml) and aqueous formaldehyde (0.5 ml). The solution was allowed to stand overnight and the resulting crystals filtered and dried in vacuo to give the product as pale yellow crystals (1.7 g, 20 70%); ΝMR δ (CD3SOCD3) 1.24 (t, 3H), 2.23 (s. 6H), 3.81 (s, 2H), 4.24 (q, 2H), 5.75 (s, 2H), 6.82 (d, IH), 6.90 (dd, IH), 7.30 (m, 3H), 7.50 (d, IH); M/z (+) 423. 421 (MK), 378, 376.
Example 8
N-(3,4-Dichlorobenzv0-4-dimethylaminomethyl-5-hvdroxyindole-2-carboxylic acid 25 (Compound 5)
Using the method of Example 5, the ester from Example 7 was converted to the title compound.
72% yield: ΝMR δ (CD3SOCD3) 2.43 (s, 6H), 4.04 (s, 2H), 5.85 (s, 2H), 6.78 (d, IH). 7.00 (dd, IH), 7.18 (s, IH), 7.22 (d, IH), 7.34 (s, IH), 7.42 (d, IH): M/z (+) 393, 391 (MK). 348, 30 347.
Example 9 Biological Assays for hMCP-1 Antagonists Biological Testing.
The following biological test methods, data and Examples serve to illustrate the present invention. Abbreviations:
ATCC American Type Culture Collection, Rockville, USA.
BCA Bicinchroninic acid. (used, with copper sulphate, to assay protein )
BSA Bovine Serum Albumin
DMEM Dulbecco's modified Eagle's medium
EGTA Ethylenebis(oxyethylenenitrilo)tetraacetic acid
FCS Foetal calf serum
HEPES (N-[2-Hydroxyethyl]piperazine-N'-[2-ethanesulphonic acid])
HBSS Hank's Balanced Salt Solution hMCP- 1 Human Monocyte Chemoattractant Protein- 1
PBS Phosphate buffered saline
PCR Polymerase chain reaction
AMPLITAQ™, available from Perkin-Elmer Cetus, is used as the source of thermostable DNA polymerase.
Binding Buffer is 50 mM HEPES. 1 mM CaCl,, 5 mM MgCl,, 0.5% foetal calf serum, adjusted to pH 7.2 with 1 M NaOH. Non-Essential Amino Acids (100X concentrate) is: L-Alanine, 890 mg/1;
L-Asparagine, 1320 mg/1; L-Aspartic acid, 1330 mg/1; L-Glutamic acid, 1470 mg/1; Glycine, 750 mg/1; L-Proline, 1 150 mg/1 and; L-Serine, 1050 mg/1.
Hypoxanthine and Thymidine Supplement (50x concentrate) is: hypoxanthine, 680 mg/1 and; thymidine, 194 mg/1. Penicillin-Streptomycin is: Penicillin G (sodium salt); 5000 units/ml; Streptomycin sulphate, 5000 μg/ml.
Human monocytic cell line THP-1 cells are available from ATCC, accession number ATCC TIB-202.
Hank's Balanced Salt Solution (HBSS) was obtained from Gibco; see Proc. Soc. Exp Biol. Med, 1949, 71, 196. Synthetic cell culture medium. RPMI 1640 was obtained from Gibco; it contains inorganic salts [Ca(NO3),.4H2O 100 mg/1; KC1 400 mg/1; MgSO4.7H,O 100 mg/1; NaCl 6000 mg/1; NaHCO3 2000 mg/1 & Na,HPO4 (anhyd) 800 mg/1], D-Glucose 2000 mg/1, reduced glutathione 1 mg/1, amino acids and vitamins. FURA-2/AM is l-[2-(5-carboxyoxazol-2-yl)-6-aminobenzofuran-5-oxy]-2-
(2'-amino-5'-methylphenoxy)-ethane-N,N,N',N'-tetraacetic acid pentaacetoxymethyl ester and was obtained from Molecular Probes, Eugene, Oregon, USA.
Blood Sedimentation Buffer contains 8.5g/l ΝaCl and lOg/1 hydroxyethyl cellulose.
Lysis Buffer is 0.15M ΝH4C1" , lOmM KHCO3, ImM EDTA Whole Cell Binding Buffer is 50 mM HEPES, 1 mM CaCl,, 5 mM MgCl,, 0.5% BSA,
0.01% NaN , adjusted to pH 7.2 with 1M NaOH.
Wash buffer is 50mM HEPES. ImM CaCl,, 5mM MgCl,, 0.5% heat inactivated FCS, 0.5MNaCl adjusted to pH7.2 with 1M NaOH.
General molecular biology procedures can be followed from any of the methods described in "Molecular Cloning - A Laboratory Manual" Second Edition, Sambrook, Fritsch and Maniatis (Cold Spring Harbor Laboratory, 1989). i Cloning and expression of hMCP-1 receptor
The MCP-1 receptor B (CCR2B) cDNA was cloned by PCR from THP-1 cell RNA using suitable oligonucleotide primers based on the published MCP-1 receptor sequences (Charo et al , 1994, Proc. Natl. Acad. Sci. USA, 91, 2752). The resulting PCR products were cloned into vector PCR-II™ (InVitrogen, San Diego, CA.). Error free CCR2B cDNA was subcloned as a Hind III-Not I fragment into the eukaryotic expression vector pCDNA3 (InVitrogen) to generate pCDNA3/CC-CKR2A and pCDNA3/CCR2B respectively.
Linearised pCDNA3/CCR2B DNA was transfected into CHO-K1 cells by calcium phosphate precipitation (Wigler et al, 1979, Cell, 16, 777). Transfected cells were selected by the addition of Geneticin Sulphate (G418, Gibco BRL) at lmg/ml, 24 hours after the cells had been transfected. Preparation of RNA and Northern blotting were carried out as described previously (Needham et al, 1995, Prot. Express. Purific, 6, 134). CHO-K1 clone 7 (CHO-CCR2B) was identified as the highest MCP-1 receptor B expressor. ii) Preparation of membrane fragments
CHO-CCR2B cells were grown in DMEM supplemented with 10% foetal calf serum, 2 mM glutamine, lx Non-Essential Amino Acids, lx Hypoxanthine and Thymidine Supplement and Penicillin-Streptomycin (at 50 μg streptomycin/ml, Gibco BRL). Membrane fragments were prepared using cell lysis/differential centrifugation methods as described previously (Siciliano et al, 1990, J. Biol. Chem., 265, 19658). Protein concentration was estimated by BCA protein assay (Pierce, Rockford, Illinois) according to the manufacturer's instructions. iii) Assay l25I MCP-1 was prepared using Bolton and Hunter conjugation (Bolton et al. 1973, Biochem. J, 133, 529; Amersham International pic]. Equilibrium binding assays were carried out using the method of Ernst et al, 1994, J. Immunol, 152, 3541. Briefly, varying amounts of l25I-labeled MCP-1 were added to 7μg of purified CHO-CCR2B cell membranes in 100 μl of Binding Buffer. After 1 hour incubation at room temperature the binding reaction mixtures were filtered and washed 5 times through a plate washer (Brandel MLR-96T Cell Harvester) using ice cold Binding Buffer. Filter mats (Brandel GF/B) were pre-soaked for 60 minutes in 0.3% polyethylenimine prior to use. Following filtration individual filters were separated into 3.5ml tubes (Sarstedt No. 55.484) and bound 125I-labeled MCP-1 was determined (LKB 1277 Gammamaster). Cold competition studies were performed as above using 100 pM 12T-labeled MCP-1 in the presence of varying concentrations of unlabelled MCP-1. Non-specific binding was determined by the inclusion of a 200-fold molar excess of unlabelled MCP-1 in the reaction. Ligand binding studies with membrane fragments prepared from CHO-CCR2B cells showed that the CCR2B receptor was present at a concentration of 0.2 pmoles/mg of membrane protein and bound MCP-1 selectively and with high affinity (IC50 = 1 10 pM. Kd =120 pM). Binding to these membranes was completely reversible and reached equilibrium after 45 minutes at room temperature, and there was a linear relationship between MCP- 1 binding and CHO-CCR2B cell membrane concentration when using MCP-1 at concentrations between 100 pM and 500 pM.
Test compounds dissolved in DMSO (5μl) were tested in competition with 100 pM labelled MCP-1 over a concentration range (0.01-50μM) in duplicate using eight point dose-response curves and IC50 concentrations were calculated. Compounds tested of the present invention had IC50 values of 50μM or less in the b.MCP-1 receptor binding assay described herein. b) MCP-1 mediated calcium flux in THP-1 cells The human monocytic cell line THP-1 was grown in a synthetic cell culture medium RPMI 1640 supplemented with 10 % foetal calf serum, 6mM glutamine and Penicillin-Streptomycin (at 50 μg streptomycin/ml, Gibco BRL). THP-1 cells were washed in HBSS (lacking Ca2+ and Mg2+) + 1 mg/ml BSA and resuspended in the same buffer at a density of 3 x 106 cells/ml. The cells were then loaded with ImM FURA-2/AM for 30 min at 37°C, washed twice in HBSS, and resuspended at lxlO6 cells/ml. THP-1 cell suspension (0.9 ml) was added to a 5 ml disposable cuvette containing a magnetic stirrer bar and 2.1 ml of prewarmed (37°C) HBSS containing 1 mg/ml BSA, 1 mM MgCl, and 2 mM CaCl,. The cuvette was placed in a fluorescence spectrophotometer (Perkin Elmer, Norwalk, CT) and preincubated for 4 min at 37°C with stirring. Fluorescence was recorded over 70 sec and cells were stimulated by addition of hMCP-1 to the cuvette after 10 sec. [Ca2+]i was measured by excitation at 340 ran and 380 nm alternately and subsequent measurement of the intensity of the fluorescence emission at 510 nm. The ratio of the intensities of the emitted fluorescent light following excitation at 340 nm and 380 nm, (R), was calculated and displayed to give and estimate of cytoplasmic [Ca2+] according to the equation:-
[Ca +]i =Kd (R-Rmin) (Sf2/Sb2) (Rmax-R) where the Kd for FURA-2 Ca2+ complex at 37 °C was taken to be 224nm. R]nax is the maximal fluorescence ratio determined after addition of 10 mM Ionomycin, Rmm is the minimal ratio determined by the subsequent addition of a Ca2+ free solution containing 5 mM EGTA, and Sf2/Sb2 is the ratio of fluorescence values at 380 nm excitation determined at R,,„n and R,„a , respectively.
Stimulation of THP-1 cells with hMCP-1 induced a rapid, transient rise in [Ca2+]j in a specific and dose dependent manner. Dose response curves indicated an approximate EC50 of 2 nm. Test compounds dissolved in DMSO (lOμl) were assayed for inhibition of calcium release by adding them to the cell suspension 10 sec prior to ligand addition and measuring the reduction in the transient rise in [Ca2+]i. Test compounds were also checked for lack of agonist activity by addition in place of hMCP-1. c) hMCP-1 and RANTES mediated chemotaxis. In vitro chemotaxis assays were performed using the human monocytic cell line
THP-1. Cell migration through polycarbonate membranes was measured by enumerating those passing through either directly by Coulter counting or indirectly by use of a colourimetric viability assay measuring the cleavage of a tetrazolium salt by the mitochondrial respiratory chain (Scudiero D.A. et al. 1988, Cancer Res., 48, 4827-4833).
Chemoattractants were introduced into a 96-well microtitre plate which forms the lower well of a chemotaxis chamber fitted with a PVP-free 5 μm poresize polycarbonate adhesive framed filter membrane (NeuroProbe MB series, Cabin John, MD 20818. USA) according to the manufacturer's instructions. The chemoattractant was diluted as appropriate in synthetic cell culture medium, RPMI 1640 (Gibco) or supplemented with 2 mM glutamine and 0.5% BSA, or alternatively with HBSS with Ca2^ and Mg2+ without Phenol Red (Gibco) plus 0.1% BSA. Each dilution was degassed under vacuum for 30 min and was placed (400 μl) in the lower wells of the chamber and THP-1 cells (5xl05 in 100 μl RPMI 1640 + 0.5%oBSA) were incubated in each well of the upper chamber. For the inhibition of chemotaxis the chemoattractant was kept at a constant submaximal concentration determined previously (InM MCP-1) and added to the lower well together with the test compounds dissolved in DMSO (final DMSO concentration < 0.05% v/v) at varying concentrations. The chamber was incubated for 2 h at 37°C under 5 % CO,. The medium was removed from the upper wells which were then washed out with 200 μl physiological saline before opening the chamber, wiping dry the membrane surface and centrifuging the 96-well plate at 600 g for 5 min to harvest the cells. Supernatant (150 μl) was aspirated and 10 μl of cell proliferation reagent, WST-1, {4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-l ,3-phenyl disulfonate} plus an electron coupling reagent (Boehringer Mannheim, Cat.no. 1644 807) was added back to the wells. The plate was incubated at 37°C for 3 h and the absorbance of the soluble formazan product was read on a microtitre plate reader at 450 nm. The data was input into a spreadsheet, corrected for any random migration in the absence of chemoattractant and the average absorbance values, standard error of the mean, and significance tests were calculated. hMCP-1 induced concentration dependent cell migration with a characteristic biphasic response, maximal 0.5-1.0 nm.
In an alternative form of the above assay, fluorescently tagged cells can be used in order to assist in end point detection. In this case, the THP-1 cells used are fluorescently tagged by incubation in the presence of 5mM Calcein AM (Glycine, N,N'-[[3',6'- bis(acetyloxy)-3-oxospiro[isobenzofuran-l(3H),9'-[9H]xanthene]-2'.7'-diyl]bis(methylene)] bis[N-[2-[(acetyloxy)methoxy]-2-oxoethyl]]-bis[(acetyloxy)methyl] ester; Molecular Probes) for 45 minutes in the dark. Cells are harvested by centrifugation and resuspended in HBSS (without Phenol Red) with Ca2\ Mg2^ and 0.1% BSA. 50μl (2x105 cells) of the cell suspension are placed on the filter above each well and, as above, the unit is incubated at 37°C for 2 hours under 5% CO,. At the end of the incubation, cells are washed off the upper face of the filter with phosphate buffered saline, the filter removed from the plate and the number of 5 cells attracted to either the underside of the filter or the lower well estimated by reading fluorescence at 485nm excitation, 538nm emission wavelengths (fmax. Molecular Devices). The data was input into a spreadsheet, corrected for any random migration in the absence of chemoattractant and the average fluorescence values, standard error of the mean, percentage inhibition and IC50 of compounds under test and significance tests can be calculated. In
10 addition to MCP-1 induced chemotaxis, this alternative form of the assay was also used to measure inhibition of RANTES (2nM) induced chemotaxis. d) Binding to human peripheral blood mononuclear cells(PBMCs) i) Preparation of human PBMCs
Fresh human blood (200ml) was obtained from volunteer donors, collected into
15 sodium citrate anticoagulant to give a final concentration of 0.38%. The blood was mixed with Sedimentation Buffer and incubated at 37°C for 20 minutes. The supernatant was collected and centrifuged at 1700rpm for 5 minutes (Sorvall RT6000D). The pellet obtained was resuspended in 20 ml RPMI/BSA (1 mg/ml) and 4 x 5mls of cells were carefully layered over 4 x 5mls of Lymphoprepa (Nycomed) in 15ml centrifuge tubes. Tubes were spun at
20 1700rpm for 30 minutes (Sorvall RT6000D) and the resultant layer of cells was removed and transferred to 50ml Falcon tubes. The cells were washed twice in Lysis Buffer to remove any remaining red blood cells followed by 2 washes in RPMI/BSA. Cells were resuspended in 5mls of Binding Buffer. Cell number was measured on a Coulter counter and additional binding buffer was added to give a final concentration of 1.25x107 PBMCs /ml.
25 ii) Assay
[l25I]MCP-l was prepared using Bolton and Hunter conjugation (Bolton et al, 1973, Biochem. J, 133, 529; Amersham International pic]. Equilibrium binding assays were carried out using the method of Ernst et al, 1994, J. Immunol, 152, 3541. Briefly, 50μl of 12T-labeled MCP-1 (final concentration lOOpM) was added to 40μl (5x105 cells) of cell suspension in a 96
30 well plate. Compounds, diluted in Whole Cell Binding Buffer from a stock solution of lOmM in DMSO were added in a final volume of 5μl to maintain a constant DMSO concentration in the assay of 5%. Total binding was determined in the absence of compound. Non-specific binding was defined by the addition of 5μl cold MCP-1 to give a final assay concentration of lOOnM. Assay wells were made up to a final volume of l OOμl with Whole Cell Binding Buffer and the plates sealed. Following incubation at 37°C for 60 minutes the binding reaction mixtures were filtered and washed for 10 seconds using ice cold Wash Buffer using a plate washer (Brandel MLR-96T Cell Harvester). Filter mats (Brandel GF/B) were pre-soaked for 60 minutes in 0.3% polyethylenimine plus 0.2% BSA prior to use. Following filtration individual filters were separated into 3.5ml tubes (Sarstedt No. 55.484) and bound l2T-labeled MCP-1 was determined (LKB 1277 Gammamaster).
Test compound potency was determined by assay in duplicate using six point dose-response curves and IC5C concentrations were determined.
Compounds tested of the present invention had IC50 values of less than 5μM in the hMCP-1 receptor binding assay described herein. For example compound 9 had an IC,0 of 0.64μM.
No physiologically unacceptable toxicity was observed at the effective dose for compounds tested of the present invention.
Example 10
Pharmaceutical Compositions
The following Example illustrates, but is not intended to limit, pharmaceutical dosage forms of the invention as defined herein (the active ingredient being termed "Compound X"). for therapeutic or prophylactic use in humans:
(a)
Figure imgf000037_0001
(b)
Figure imgf000038_0001
(f)
Figure imgf000039_0001
0)
Figure imgf000040_0001
Note:
Compound X in the above formulation may comprise a compound illustrated in Examples 1 to 6 herein. The above formulations may be obtained by conventional procedures well known in the pharmaceutical art. The tablets (a)-(c) may be enteric coated by conventional means, for example to provide a coating of cellulose acetate phthalate. The aerosol formulations (h)-(k) may be used in conjunction with standard, metered dose aerosol dispensers, and the suspending agents sorbitan trioleate and soya lecithin may be replaced by an alternative suspending agent such as sorbitan monooleate, sorbitan sesquioleate. polysorbate 80, polyglycerol oleate or oleic acid.

Claims

Claims
A compound of formula (I)
Figure imgf000042_0001
(I) X is CH, or SO2
R1 is an optionally substituted aryl or heteroaryl ring; R2 is carboxy, cyano, -C(O)CH2OH, -CONHR8, -SO,NHR9, tetrazol-5-yl, SO3H, or a group of formula (VI)
Figure imgf000042_0002
(VI) where R8 is selected from hydrogen, alkyl, aryl, cyano, hydroxy, -SO2R12 where R12 is alkyl, aryl, heteroaryl, or haloalkyl, or R8 is a group-(CHR13),-COOH where r is an integer of 1 -3 and each R'3 group is independently selected from hydrogen or alkyl; R9 is hydrogen, alkyl, optionally substituted aryl such as optionally substituted phenyl or optionally subtituted heteroaryl such as 5 or 6 membered heteroaryl groups, or a group COR'4 where R'4 is alkyl, aryl, heteroaryl or haloalkyl; R10 and R" are independently selected from hydrogen or alkyl, particularly C alkyl;
R3 is hydrogen, a functional group, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally substituted heterocyclyl, optionally substituted alkoxy, optionally substituted aralkyl, optionalh- substituted aralkyloxy, optionally substituted cycloalkyl;
R4 is a group C(O)NRl 5R16 or a group (CH2), R17 ; where R15 and R16 are independently selected from hydrogen, optionalh' substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionalh' substituted cycloalkyl or optionally substituted heterocyclyl provided that R'3 and R16 are not both hydrogen, or R'5 and R16 together with the nitrogen atom to which they are attached form an optionally substituted heterocyclic ring which optionally contains further heteroatoms;
R'7 is selected from NR,8R19, OR20 or S(O)sR21 where R18 and R19 are independently selected from hydrogen, optionalh' substituted hydrocarbyl or optionally substituted heterocyclyl, or R18 and R19 together with the nitrogen atom to which they are attached form an optionally substituted heterocyclic ring which optionally contains further heteroatoms;
R20 is substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl or optionally substituted heterocyclyl,
R21 is optionally substituted hydrocarbyl or optionally substituted heterocyclyl, s is 0, 1 or 2 and t is an integer of from 1-4;
R5, R6 and R7 are independently selected from hydrogen, a functional group or an optionally substituted hydrocarbyl groups or optionally substituted heterocyclyl groups, or a pharmaceutically acceptable salt, in vivo hydrolysable ester, or amide of the compound of formula (I).
2. A compound according to claim 1 where R4 is a group C(O)NR,:ιR16 where one of R15 or R16 is hydrogen or alkyl and the other is optionally substituted heterocyclyl or optionally substituted alkyl, or R15 and R16 together with the nitrogen atom to which they are attached form an optionally substituted heterocyclic ring which optionally contains further heteroatoms.
3. A compound according to claim 2 wherein R4 is a group C(O)NR'5R16 where one of R15 or Rκ> is hydrogen and the other is heterocyclyl or alkyl substituted with one or more groups selected from amino, mono- or di-alkyl amino. carboxy or optionally substituted heterocyclyl.
4. A compound according to claim 2 wherein R4 is a group C(O)NRl5R16 and
R15 and R16 together with the nitrogen atom to which they are attached form a morpholine ring, or R4 is a group of sub-formula (IV)
Figure imgf000044_0001
5. A compound according to claim 1 wherein R4 is preferably a group (CH,), R17 where t is 1 and R17 is a group NR18R19 and R18 and R19 are as defined in claim 1.
6. A compound according to any one of the preceding claims wherein R1 is 3,4- dichlorophenyl, 3-fluoro-4-chlorophenyl, 3-chloro-4-fluorophenyl or 2,3-dichloropyrid-5-yl.
7. A compound according to any one of the preceding claims wherein X is CH2.
8. A pharmaceutical composition comprising a compound according to any one of the preceding claims in combination with a pharmaceutically acceptable carrier.
9. A compound according to any one of claims 1 to 7 for use in the preparation of a medicament for use in the treatment of inflammatory disease.
10. A method of making a compound of formula (I) as defined in claim 1 which method comprises reacting a compound of formula (VII)
Figure imgf000044_0002
(VII) where X, R1, R3, R\ R6 and R7 are as defined in relation to formula (I) and R2 is a group R: as
defined in relation to formula (I) or a protected form thereof, R40 is a group C(O) or a group
(CH2), where t is as defined in relation to formula (I) and Z is a leaving group,
either (a) when R40 is C(O), with a compound of formula (VIII)
HNR15R16
(VIII) where R'5 and R16 are as defined in relation to formula (I); or (b) where R40 is group (CH,), with a compound of formula (IX)
HR17 (IX) where R17 is as defined in relation to formula (I) ; and thereafter if necessary or desirable, deprotecting a group R2 to a group R2 or changing a group R2 to a different such group.
PCT/GB2000/000271 1999-02-05 2000-01-31 Indole derivatives and their use as mcp-1 receptor antagonists WO2000046197A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE60005485T DE60005485T2 (en) 1999-02-05 2000-01-31 INDOLDER DERIVATIVES AND THEIR USE AS MCP-1 RECEPTOR ANTAGONISTS
AT00901738T ATE250577T1 (en) 1999-02-05 2000-01-31 INDOLE DERIVATIVES AND THEIR USE AS MCP-1 RECEPTOR ANTAGONISTS
JP2000597268A JP2002536360A (en) 1999-02-05 2000-01-31 Indole derivatives and their use as MCP-1 receptor antagonists
EP00901738A EP1150953B1 (en) 1999-02-05 2000-01-31 Indole derivatives and their use as mcp-1 receptor antagonists
US09/889,493 US6613760B1 (en) 1999-02-05 2000-01-31 Indole derivatives and their use as MCP-1 receptor antagonists
AU23043/00A AU2304300A (en) 1999-02-05 2000-01-31 Indole derivatives and their use as mcp-1 receptor antagonists

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9902453.1 1999-02-05
GBGB9902453.1A GB9902453D0 (en) 1999-02-05 1999-02-05 Chemical compounds

Publications (1)

Publication Number Publication Date
WO2000046197A1 true WO2000046197A1 (en) 2000-08-10

Family

ID=10847076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2000/000271 WO2000046197A1 (en) 1999-02-05 2000-01-31 Indole derivatives and their use as mcp-1 receptor antagonists

Country Status (8)

Country Link
US (1) US6613760B1 (en)
EP (1) EP1150953B1 (en)
JP (1) JP2002536360A (en)
AT (1) ATE250577T1 (en)
AU (1) AU2304300A (en)
DE (1) DE60005485T2 (en)
GB (1) GB9902453D0 (en)
WO (1) WO2000046197A1 (en)

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002070523A1 (en) * 2001-03-07 2002-09-12 Pfizer Products Inc. Modulators of chemokine receptor activity
US6737435B1 (en) 1999-02-05 2004-05-18 Astrazeneca Ab Indole derivatives and their use as MCP-1 antagonist
US6787651B2 (en) 2000-10-10 2004-09-07 Smithkline Beecham Corporation Substituted indoles, pharmaceutical compounds containing such indoles and their use as PPAR-γ binding agents
US6953809B2 (en) 1997-08-07 2005-10-11 Zeneca Limited Monocyte chemoattractant protein-1 inhibitor compounds
US7056943B2 (en) 2002-12-10 2006-06-06 Wyeth Substituted indole oxo-acetyl amino acetic acid derivatives as inhibitors of plasminogen activator inhibitor-1 (PAI-1)
US7074817B2 (en) 2001-06-20 2006-07-11 Wyeth Substituted indole acid derivatives as inhibitors of plasminogen activator inhibitor-1 (PAI-1)
US7078429B2 (en) 2002-12-10 2006-07-18 Wyeth Substituted 3-carbonyl-1H-indol-1-yl acetic acid derivatives as inhibitors of plasminogen activator inhibitor-1 (PAI-1)
US7101903B2 (en) 2002-12-10 2006-09-05 Wyeth Substituted dihydropyrano indole-3,4-dione derivatives as inhibitiors of plasminogen activator inhibitor-1 (PAI-1)
US7141592B2 (en) 2003-09-25 2006-11-28 Wyeth Substituted oxadiazolidinediones
WO2006129679A1 (en) 2005-05-31 2006-12-07 Ono Pharmaceutical Co., Ltd. Spiropiperidine compound and medicinal use thereof
US7163954B2 (en) 2003-09-25 2007-01-16 Wyeth Substituted naphthyl benzothiophene acids
WO2007049771A1 (en) 2005-10-28 2007-05-03 Ono Pharmaceutical Co., Ltd. Compound containing basic group and use thereof
WO2007058322A1 (en) 2005-11-18 2007-05-24 Ono Pharmaceutical Co., Ltd. Basic group-containing compound and use thereof
US7259182B2 (en) 2002-12-10 2007-08-21 Wyeth Aryl, aryloxy, and aklyloxy substituted 1H-indol-3-yl glyoxylic acid derivatives as inhibitors of plasminogen activator inhibitor-1 (PAI-1)
US7265148B2 (en) 2003-09-25 2007-09-04 Wyeth Substituted pyrrole-indoles
US7268159B2 (en) 2003-09-25 2007-09-11 Wyeth Substituted indoles
WO2007105637A1 (en) 2006-03-10 2007-09-20 Ono Pharmaceutical Co., Ltd. Nitrogenated heterocyclic derivative, and pharmaceutical agent comprising the derivative as active ingredient
WO2007132846A1 (en) 2006-05-16 2007-11-22 Ono Pharmaceutical Co., Ltd. Compound having acidic group which may be protected, and use thereof
WO2008016006A1 (en) 2006-07-31 2008-02-07 Ono Pharmaceutical Co., Ltd. Compound having cyclic group bound thereto through spiro binding and use thereof
US7332521B2 (en) 2003-09-25 2008-02-19 Wyeth Substituted indoles
US7348351B2 (en) 2002-12-10 2008-03-25 Wyeth Substituted 3-alkyl and 3-arylalkyl 1H-indol-1yl acetic acid derivatives as inhibitors of plasminogen activator inhibitor-1 (PAI-1)
US7351726B2 (en) 2003-09-25 2008-04-01 Wyeth Substituted oxadiazolidinediones
US7351730B2 (en) 2001-06-20 2008-04-01 Wyeth Substituted naphthyl indole derivatives as inhibitors of plasminogen activator inhibitor type-1 (PAI-1)
WO2008055945A1 (en) 2006-11-09 2008-05-15 Probiodrug Ag 3-hydr0xy-1,5-dihydr0-pyrr0l-2-one derivatives as inhibitors of glutaminyl cyclase for the treatment of ulcer, cancer and other diseases
WO2008065141A1 (en) 2006-11-30 2008-06-05 Probiodrug Ag Novel inhibitors of glutaminyl cyclase
WO2008104580A1 (en) 2007-03-01 2008-09-04 Probiodrug Ag New use of glutaminyl cyclase inhibitors
WO2008110196A1 (en) 2007-03-09 2008-09-18 High Point Pharmaceuticals, Llc Indole- and benzimidazole amides as hydroxysteroid dehydrogenase inhibitors
US7435830B2 (en) 2004-03-03 2008-10-14 Chemocentryx, Inc. Bicyclic and bridged nitrogen heterocycles
US7435831B2 (en) 2004-03-03 2008-10-14 Chemocentryx, Inc. Bicyclic and bridged nitrogen heterocycles
US7442805B2 (en) 2003-09-25 2008-10-28 Wyeth Substituted sulfonamide-indoles
US7446201B2 (en) 2003-09-25 2008-11-04 Wyeth Substituted heteroaryl benzofuran acids
US7449576B1 (en) 2002-06-12 2008-11-11 Chemocentryx, Inc. Substituted piperazines
US7582773B2 (en) 2003-09-25 2009-09-01 Wyeth Substituted phenyl indoles
US7589199B2 (en) 2002-06-12 2009-09-15 Chemocentryx, Inc. Substituted piperazines
US7645752B2 (en) 2006-01-13 2010-01-12 Wyeth Llc Sulfonyl substituted 1H-indoles as ligands for the 5-hydroxytryptamine receptors
US7683091B2 (en) 2005-08-17 2010-03-23 Wyeth Substituted indoles and methods of their use
US7696240B2 (en) 2005-12-15 2010-04-13 Hoffmann-La Roche Inc. Fused pyrrole derivatives
US7705023B2 (en) 2004-06-18 2010-04-27 Biolipox Ab Indoles useful in the treatment of inflammation
US7754747B2 (en) 2004-08-23 2010-07-13 Wyeth Llc Oxazolo-naphthyl acids
US7803835B2 (en) 2003-09-25 2010-09-28 Wyeth Llc Substituted acetic acid derivatives
US7842693B2 (en) 2002-06-12 2010-11-30 Chemocentryx, Inc. Substituted piperazines
WO2011029920A1 (en) 2009-09-11 2011-03-17 Probiodrug Ag Heterocylcic derivatives as inhibitors of glutaminyl cyclase
WO2011107530A2 (en) 2010-03-03 2011-09-09 Probiodrug Ag Novel inhibitors
EP2364982A1 (en) 2003-04-18 2011-09-14 ONO Pharmaceutical Co., Ltd. Spiro-piperidine compounds as chemokine receptor antagonists and medicinal use thereof
WO2011110613A1 (en) 2010-03-10 2011-09-15 Probiodrug Ag Heterocyclic inhibitors of glutaminyl cyclase (qc, ec 2.3.2.5)
WO2011131748A2 (en) 2010-04-21 2011-10-27 Probiodrug Ag Novel inhibitors
EP2385040A1 (en) 2003-03-14 2011-11-09 ONO Pharmaceutical Co., Ltd. Nitrogen-containing heterocyclic derivatives and drugs containing the same as the active ingredient
US8097623B2 (en) 2005-01-19 2012-01-17 Biolipox Ab Indoles useful in the treatment of inflammation
WO2012123563A1 (en) 2011-03-16 2012-09-20 Probiodrug Ag Benz imidazole derivatives as inhibitors of glutaminyl cyclase
EP2546234A1 (en) 2004-09-13 2013-01-16 Ono Pharmaceutical Co., Ltd. Nitrogeneous heterocyclic derivative and medicine containing the same as an active ingredient
WO2014144747A1 (en) * 2013-03-15 2014-09-18 Epizyme, Inc. Substituted 6,5-fused bicyclic heteroaryl compounds
EP2865670A1 (en) 2007-04-18 2015-04-29 Probiodrug AG Thiourea derivatives as glutaminyl cyclase inhibitors
US9045477B2 (en) 2013-03-15 2015-06-02 Epizyme, Inc. Substituted 6,5-fused bicyclic heteroaryl compounds
US10117931B2 (en) 2009-04-28 2018-11-06 Kameran Lashkari Methods for treatment of age-related macular degeneration
EP3461819A1 (en) 2017-09-29 2019-04-03 Probiodrug AG Inhibitors of glutaminyl cyclase
WO2020002611A1 (en) 2018-06-28 2020-01-02 Phenex-Fxr Gmbh Novel lxr modulators with bicyclic core moiety

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0302035D0 (en) * 2003-07-09 2003-07-09 Biolipox Ab New compound
DE602005014233D1 (en) * 2004-06-18 2009-06-10 Biolipox Ab INDOORS SUITABLE FOR THE TREATMENT OF IGNITIONS
AU2005254783A1 (en) * 2004-06-18 2005-12-29 Biolipox Ab Indoles useful in the treatment of inflammation
EP1671972A1 (en) * 2004-11-24 2006-06-21 Pfizer Limited Octahydropyrrolo[3,4-c]pyrrole derivatives
CA2587141A1 (en) * 2004-11-24 2006-06-01 Pfizer Inc. Octahydropyrrolo[3,4-c]pyrrole derivatives
US20090042949A1 (en) * 2005-01-19 2009-02-12 Benjamin Pelcman Indoles Useful in the Treatment of Inflammation
JP2008527032A (en) * 2005-01-19 2008-07-24 バイオリポックス エービー Thienopyrrole useful for the treatment of inflammation
US20090048285A1 (en) * 2005-01-19 2009-02-19 Benjamin Pelcman Pyrrolopyridines Useful in the Treatment of Inflammation
US20100197687A1 (en) * 2005-01-19 2010-08-05 Benjamin Pelcman Indoles Useful in the Treatment of Inflammation
WO2006077364A1 (en) * 2005-01-19 2006-07-27 Biolipox Ab Indoles useful in the treatment of inflammation
US20080076120A1 (en) * 2006-09-14 2008-03-27 Millennium Pharmaceuticals, Inc. Methods for the identification, evaluation and treatment of patients having CC-Chemokine receptor 2 (CCR-2) mediated disorders

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5081145A (en) * 1990-02-01 1992-01-14 Merck Frosst Canada, Inc. Indole-2-alkanoic acids compositions of and anti allergic use thereof
WO1996018393A1 (en) * 1994-12-13 1996-06-20 Smithkline Beecham Corporation Novel compounds
WO1996037469A1 (en) * 1995-05-22 1996-11-28 Merck Frosst Canada Inc. N-benzylindol-3-yl propanic acid derivatives as cyclooxygenase-2 inhibitors
WO1996037467A1 (en) * 1995-05-22 1996-11-28 Merck Frosst Canada Inc. N-benzylindol-3-yl butanoic acid derivatives as cyclooxygenase-2 inhibitors
WO1998006703A1 (en) * 1996-08-14 1998-02-19 Warner-Lambert Company 2-phenyl benzimidazole derivatives as mcp-1 antagonists
WO1999007678A1 (en) * 1997-08-07 1999-02-18 Zeneca Limited Indole derivatives as mcp-1 receptor antagonists
WO1999007351A2 (en) * 1997-08-07 1999-02-18 Zeneca Limited Indole derivatives and their use as mcp-1 antagonists

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3196162A (en) * 1961-03-13 1965-07-20 Merck & Co Inc Indolyl aliphatic acids
US3557142A (en) 1968-02-20 1971-01-19 Sterling Drug Inc 4,5,6,7-tetrahydro-indole-lower-alkanoic acids and esters
US3776923A (en) 1970-01-06 1973-12-04 American Cyanamid Co 2-nitro-4-oxo-4,5,6,7-tetrahydroindole
US3997557A (en) 1974-04-23 1976-12-14 American Hoechst Corporation Substituted N-aminoalkylpyrroles
US4496742A (en) 1981-10-13 1985-01-29 The Upjohn Company Analogs of 5,6-dihydro PGI2
FR2537974A1 (en) 1982-12-16 1984-06-22 Adir NOVEL THIENO (2,3-B) PYRROLE DERIVATIVES, PREPARATION METHOD THEREOF AND PHARMACEUTICAL COMPOSITIONS COMPRISING THE SAME
US4529724A (en) 1983-10-11 1985-07-16 Mcneilab, Inc. 6H-indolo[2,1-c][1,4]benzodiazepines and 12-oxo derivatives useful as antihypertensives
FR2565981B1 (en) 1984-06-15 1986-09-19 Adir NOVEL THIENO (2,3-B) PYRROLE DERIVATIVES, THEIR PREPARATION PROCESS AND THE PHARMACEUTICAL COMPOSITIONS CONTAINING THEM
WO1986000896A1 (en) 1984-07-30 1986-02-13 Schering Corporation NOVEL PROCESS FOR THE PREPARATION OF CIS, ENDOOCTAHYDROCYCLOPENTA ADb BDPYRROLE-2-CARBOXYLATE
US4675332A (en) 1984-12-10 1987-06-23 Warner-Lambert Company Acidic tetrazolyl substituted indole compounds and their use as antiallergy agents
EP0189690B1 (en) 1984-12-12 1989-03-01 Merck & Co. Inc. Substituted aromatic sulfonamides, their preparation and ophthalmic compositions containing them
US4721725A (en) 1986-01-27 1988-01-26 E. R. Squibb & Sons, Inc. Aryl-cycloalkyl[b]pyrrole derivatives
IL84796A (en) 1986-12-17 1992-03-29 Merck Frosst Canada Inc Substituted n-benzyl-indoles and pharmaceutical compositions containing them
JPS63284177A (en) 1987-05-14 1988-11-21 Sumitomo Chem Co Ltd Formylypyrrolopyrroles and production thereof
US4751231A (en) 1987-09-16 1988-06-14 Merck & Co., Inc. Substituted thieno[2,3-b]pyrrole-5-sulfonamides as antiglaucoma agents
DE3907388A1 (en) 1989-03-08 1990-09-13 Kali Chemie Pharma Gmbh METHOD FOR PRODUCING INDOLCARBONIC ACID DERIVATIVES
US5272145A (en) 1989-08-22 1993-12-21 Merck Frosst Canada, Inc. (Quinolin-2-ylmethoxy)indoles as inhibitors of the biosynthesis of leukotrienes
NZ234883A (en) 1989-08-22 1995-01-27 Merck Frosst Canada Inc Quinolin-2-ylmethoxy indole derivatives, preparation and pharmaceutical compositions thereof
DD298913A5 (en) 1989-11-17 1992-03-19 Arzneimittelwerk Dresden Gmbh,De PROCESS FOR PREPARING N-SUBSTITUTED 3-AMINO-PRYROLES
DE3943225A1 (en) 1989-12-23 1991-06-27 Schering Ag NEW SS CARBOLINE, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE IN MEDICINAL PRODUCTS
WO1992004343A1 (en) 1990-09-04 1992-03-19 Yamanouchi Pharmaceutical Co., Ltd. Novel tetrahydrobenzazole derivative
US5260322A (en) 1990-10-08 1993-11-09 Merck & Co., Inc. Angiotension II antagonists in the treatment of hyperuricemia
JPH04273857A (en) 1991-02-26 1992-09-30 Taisho Pharmaceut Co Ltd N-substituted phenylsulfonylindole derivative
US5389650A (en) 1991-09-30 1995-02-14 Merck Frosst Canada, Inc. (Azaarylmethoxy)indoles as inhibitors of leukotriene biosynthesis
US5273980A (en) 1991-09-30 1993-12-28 Merck Frosst Canada Inc. Bicyclic-azaarylmethoxy) indoles as inhibitors of leukotriene biosynthesis
US5308850A (en) 1991-09-30 1994-05-03 Merck Frosst Canada, Inc. (Bicyclic-hetero-arylmethoxy)indoles as inhibitors of leukotriene biosynthesis
US5190968A (en) 1991-09-30 1993-03-02 Merck Frosst Canada, Inc. (Polycyclic-arylmethoxy) indoles as inhibitors of leukotriene biosynthesis
CA2079374C (en) 1991-09-30 2003-08-05 Merck Frosst Canada Incorporated (bicyclic-azaarylmethoxy)indoles as inhibitors of leukotriene biosynthesis
US5290798A (en) 1991-09-30 1994-03-01 Merck Frosst Canada, Inc. (hetero-arylmethoxy)indoles as inhibitors of leukotriene biosynthesis
US5318985A (en) * 1991-12-20 1994-06-07 Merrell Dow Pharmaceuticals Inc. Potentiation of NMDA antagonists
CA2129429A1 (en) 1992-02-13 1993-08-14 Richard Frenette (azaaromaticalkoxy) indoles as inhibitors of leukotriene biosynthesis
PL175347B1 (en) 1992-04-03 1998-12-31 Upjohn Co Tricyclic pharmaceutically active heterocyclic amines
US5334719A (en) 1992-06-17 1994-08-02 Merck Frosst Canada, Inc. Bicyclic(azaaromatic)indoles as inhibitors of leukotriene bisynthesis
US5288743A (en) 1992-11-20 1994-02-22 Abbott Laboratories Indole carboxylate derivatives which inhibit leukotriene biosynthesis
ZA939516B (en) 1992-12-22 1994-06-06 Smithkline Beecham Corp Endothelin receptor antagonists
EP0639573A1 (en) 1993-08-03 1995-02-22 Hoechst Aktiengesellschaft Benzocondensed five membered heterocycles, process of their preparation, their use as drug, as diagnostic means and pharmaceuticals containing it
US5852046A (en) 1993-08-03 1998-12-22 Hoechst Aktiengesellschaft Benzo-fused heterocyclic compounds having a 5-membered ring processes for their preparation their use as medicaments their use as diagnostic agents and medicaments containing them
US5399699A (en) 1994-01-24 1995-03-21 Abbott Laboratories Indole iminooxy derivatives which inhibit leukotriene biosynthesis
MX9700696A (en) 1994-07-27 1997-04-30 Sankyo Co Heterocyclic compounds, useful as allosteric effectors at muscarinic receptors.
US5482960A (en) * 1994-11-14 1996-01-09 Warner-Lambert Company Nonpeptide endothelin antagonists
US5684032A (en) 1994-12-13 1997-11-04 Smithkline Beecham Corporation Compounds
CZ299246B6 (en) 1995-04-04 2008-05-28 Encysive Pharmaceuticals Inc. Sulfonamide, pharmaceutical composition containing thereof and its use for preparing a medicament
IT1282797B1 (en) 1995-04-21 1998-03-31 Colla Paolo PYRRYL-(INDOLYL)-ARIL-SULFONES AND RELATED PRODUCTION PROCESS AND USE IN THE THERAPY OF AIDS VIRUS INFECTIONS
WO1997012613A1 (en) 1995-10-05 1997-04-10 Warner-Lambert Company Method for treating and preventing inflammation and atherosclerosis
TR199801665T2 (en) 1996-02-26 1998-12-21 Advanced Research & Technology Institute Use of carbonic anhydrase inhibitors to prevent macular edema.
EP1021181A4 (en) 1996-03-28 2002-06-26 Smithkline Beecham Corp Carboxylic acid indole inhibitors of chemokines
US5859044A (en) 1996-07-31 1999-01-12 Pfizer Inc. β-adrenergic agonists
EP1042287B1 (en) 1997-12-24 2005-04-20 Aventis Pharma Deutschland GmbH Indole derivatives as inhibitors of factor xa

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5081145A (en) * 1990-02-01 1992-01-14 Merck Frosst Canada, Inc. Indole-2-alkanoic acids compositions of and anti allergic use thereof
WO1996018393A1 (en) * 1994-12-13 1996-06-20 Smithkline Beecham Corporation Novel compounds
WO1996037469A1 (en) * 1995-05-22 1996-11-28 Merck Frosst Canada Inc. N-benzylindol-3-yl propanic acid derivatives as cyclooxygenase-2 inhibitors
WO1996037467A1 (en) * 1995-05-22 1996-11-28 Merck Frosst Canada Inc. N-benzylindol-3-yl butanoic acid derivatives as cyclooxygenase-2 inhibitors
WO1998006703A1 (en) * 1996-08-14 1998-02-19 Warner-Lambert Company 2-phenyl benzimidazole derivatives as mcp-1 antagonists
WO1999007678A1 (en) * 1997-08-07 1999-02-18 Zeneca Limited Indole derivatives as mcp-1 receptor antagonists
WO1999007351A2 (en) * 1997-08-07 1999-02-18 Zeneca Limited Indole derivatives and their use as mcp-1 antagonists

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6953809B2 (en) 1997-08-07 2005-10-11 Zeneca Limited Monocyte chemoattractant protein-1 inhibitor compounds
US6737435B1 (en) 1999-02-05 2004-05-18 Astrazeneca Ab Indole derivatives and their use as MCP-1 antagonist
US6787651B2 (en) 2000-10-10 2004-09-07 Smithkline Beecham Corporation Substituted indoles, pharmaceutical compounds containing such indoles and their use as PPAR-γ binding agents
US6821964B2 (en) 2001-03-07 2004-11-23 Pfizer Inc Modulators of chemokine receptor activity
WO2002070523A1 (en) * 2001-03-07 2002-09-12 Pfizer Products Inc. Modulators of chemokine receptor activity
US7629377B2 (en) 2001-06-20 2009-12-08 Wyeth Substituted naphthyl indole derivatives as inhibitors of plasminogen activator inhibitor type-1 (PAI-1)
US7368471B2 (en) 2001-06-20 2008-05-06 Wyeth Substituted indole acid derivatives as inhibitors of plasminogen activator inhibitor-1 (PAI-1)
US7074817B2 (en) 2001-06-20 2006-07-11 Wyeth Substituted indole acid derivatives as inhibitors of plasminogen activator inhibitor-1 (PAI-1)
US7351730B2 (en) 2001-06-20 2008-04-01 Wyeth Substituted naphthyl indole derivatives as inhibitors of plasminogen activator inhibitor type-1 (PAI-1)
US7589199B2 (en) 2002-06-12 2009-09-15 Chemocentryx, Inc. Substituted piperazines
US8324216B2 (en) 2002-06-12 2012-12-04 Chemocentryx, Inc. Substituted piperazines
US7449576B1 (en) 2002-06-12 2008-11-11 Chemocentryx, Inc. Substituted piperazines
US7842693B2 (en) 2002-06-12 2010-11-30 Chemocentryx, Inc. Substituted piperazines
US7674818B2 (en) 2002-12-10 2010-03-09 Wyeth Llc Aryl, aryloxy, alkyloxy substituted 1H-indol-3-yl glyoxylic acid derivatives as inhibitors of plasminogen activator inhibitor-1 (PAI-1)
US7259182B2 (en) 2002-12-10 2007-08-21 Wyeth Aryl, aryloxy, and aklyloxy substituted 1H-indol-3-yl glyoxylic acid derivatives as inhibitors of plasminogen activator inhibitor-1 (PAI-1)
US7101903B2 (en) 2002-12-10 2006-09-05 Wyeth Substituted dihydropyrano indole-3,4-dione derivatives as inhibitiors of plasminogen activator inhibitor-1 (PAI-1)
US7078429B2 (en) 2002-12-10 2006-07-18 Wyeth Substituted 3-carbonyl-1H-indol-1-yl acetic acid derivatives as inhibitors of plasminogen activator inhibitor-1 (PAI-1)
US7566791B2 (en) 2002-12-10 2009-07-28 Wyeth Substituted 3-carbonyl-1h-indol-1yl acetic acid derivatives as inhibitors of plasminogen activator inhibitor-1 (PAI-1)
US7459478B2 (en) 2002-12-10 2008-12-02 Wyeth Substituted dihydropyrano indole-3,4-dione derivatives as inhibitors of plasminogen activator inhibitor-1 (PAI-1)
US7160918B2 (en) 2002-12-10 2007-01-09 Hassan Mahmoud Elokdah Substituted indole oxo-acetyl amino acetic acid derivatives as inhibitors of plasminogen activator inhibitor (PAI-1)
US7348351B2 (en) 2002-12-10 2008-03-25 Wyeth Substituted 3-alkyl and 3-arylalkyl 1H-indol-1yl acetic acid derivatives as inhibitors of plasminogen activator inhibitor-1 (PAI-1)
US7056943B2 (en) 2002-12-10 2006-06-06 Wyeth Substituted indole oxo-acetyl amino acetic acid derivatives as inhibitors of plasminogen activator inhibitor-1 (PAI-1)
EP2385040A1 (en) 2003-03-14 2011-11-09 ONO Pharmaceutical Co., Ltd. Nitrogen-containing heterocyclic derivatives and drugs containing the same as the active ingredient
EP2364982A1 (en) 2003-04-18 2011-09-14 ONO Pharmaceutical Co., Ltd. Spiro-piperidine compounds as chemokine receptor antagonists and medicinal use thereof
US7268159B2 (en) 2003-09-25 2007-09-11 Wyeth Substituted indoles
US7582773B2 (en) 2003-09-25 2009-09-01 Wyeth Substituted phenyl indoles
US7265148B2 (en) 2003-09-25 2007-09-04 Wyeth Substituted pyrrole-indoles
US7141592B2 (en) 2003-09-25 2006-11-28 Wyeth Substituted oxadiazolidinediones
US7803835B2 (en) 2003-09-25 2010-09-28 Wyeth Llc Substituted acetic acid derivatives
US7351726B2 (en) 2003-09-25 2008-04-01 Wyeth Substituted oxadiazolidinediones
US7163954B2 (en) 2003-09-25 2007-01-16 Wyeth Substituted naphthyl benzothiophene acids
US7332521B2 (en) 2003-09-25 2008-02-19 Wyeth Substituted indoles
US7442805B2 (en) 2003-09-25 2008-10-28 Wyeth Substituted sulfonamide-indoles
US7446201B2 (en) 2003-09-25 2008-11-04 Wyeth Substituted heteroaryl benzofuran acids
US7435831B2 (en) 2004-03-03 2008-10-14 Chemocentryx, Inc. Bicyclic and bridged nitrogen heterocycles
US7435830B2 (en) 2004-03-03 2008-10-14 Chemocentryx, Inc. Bicyclic and bridged nitrogen heterocycles
US7705023B2 (en) 2004-06-18 2010-04-27 Biolipox Ab Indoles useful in the treatment of inflammation
US7754747B2 (en) 2004-08-23 2010-07-13 Wyeth Llc Oxazolo-naphthyl acids
EP2546234A1 (en) 2004-09-13 2013-01-16 Ono Pharmaceutical Co., Ltd. Nitrogeneous heterocyclic derivative and medicine containing the same as an active ingredient
US8097623B2 (en) 2005-01-19 2012-01-17 Biolipox Ab Indoles useful in the treatment of inflammation
WO2006129679A1 (en) 2005-05-31 2006-12-07 Ono Pharmaceutical Co., Ltd. Spiropiperidine compound and medicinal use thereof
US7683091B2 (en) 2005-08-17 2010-03-23 Wyeth Substituted indoles and methods of their use
WO2007049771A1 (en) 2005-10-28 2007-05-03 Ono Pharmaceutical Co., Ltd. Compound containing basic group and use thereof
WO2007058322A1 (en) 2005-11-18 2007-05-24 Ono Pharmaceutical Co., Ltd. Basic group-containing compound and use thereof
US7696240B2 (en) 2005-12-15 2010-04-13 Hoffmann-La Roche Inc. Fused pyrrole derivatives
US7645752B2 (en) 2006-01-13 2010-01-12 Wyeth Llc Sulfonyl substituted 1H-indoles as ligands for the 5-hydroxytryptamine receptors
WO2007105637A1 (en) 2006-03-10 2007-09-20 Ono Pharmaceutical Co., Ltd. Nitrogenated heterocyclic derivative, and pharmaceutical agent comprising the derivative as active ingredient
WO2007132846A1 (en) 2006-05-16 2007-11-22 Ono Pharmaceutical Co., Ltd. Compound having acidic group which may be protected, and use thereof
WO2008016006A1 (en) 2006-07-31 2008-02-07 Ono Pharmaceutical Co., Ltd. Compound having cyclic group bound thereto through spiro binding and use thereof
WO2008055945A1 (en) 2006-11-09 2008-05-15 Probiodrug Ag 3-hydr0xy-1,5-dihydr0-pyrr0l-2-one derivatives as inhibitors of glutaminyl cyclase for the treatment of ulcer, cancer and other diseases
WO2008065141A1 (en) 2006-11-30 2008-06-05 Probiodrug Ag Novel inhibitors of glutaminyl cyclase
WO2008104580A1 (en) 2007-03-01 2008-09-04 Probiodrug Ag New use of glutaminyl cyclase inhibitors
EP2481408A2 (en) 2007-03-01 2012-08-01 Probiodrug AG New use of glutaminyl cyclase inhibitors
WO2008110196A1 (en) 2007-03-09 2008-09-18 High Point Pharmaceuticals, Llc Indole- and benzimidazole amides as hydroxysteroid dehydrogenase inhibitors
EP2865670A1 (en) 2007-04-18 2015-04-29 Probiodrug AG Thiourea derivatives as glutaminyl cyclase inhibitors
US10117931B2 (en) 2009-04-28 2018-11-06 Kameran Lashkari Methods for treatment of age-related macular degeneration
WO2011029920A1 (en) 2009-09-11 2011-03-17 Probiodrug Ag Heterocylcic derivatives as inhibitors of glutaminyl cyclase
WO2011107530A2 (en) 2010-03-03 2011-09-09 Probiodrug Ag Novel inhibitors
WO2011110613A1 (en) 2010-03-10 2011-09-15 Probiodrug Ag Heterocyclic inhibitors of glutaminyl cyclase (qc, ec 2.3.2.5)
WO2011131748A2 (en) 2010-04-21 2011-10-27 Probiodrug Ag Novel inhibitors
WO2012123563A1 (en) 2011-03-16 2012-09-20 Probiodrug Ag Benz imidazole derivatives as inhibitors of glutaminyl cyclase
WO2014144747A1 (en) * 2013-03-15 2014-09-18 Epizyme, Inc. Substituted 6,5-fused bicyclic heteroaryl compounds
US9045477B2 (en) 2013-03-15 2015-06-02 Epizyme, Inc. Substituted 6,5-fused bicyclic heteroaryl compounds
US9365570B2 (en) 2013-03-15 2016-06-14 Epizyme, Inc. Substituted 6, 5-fused bicyclic heteroaryl compounds
US9776996B2 (en) 2013-03-15 2017-10-03 Epizyme, Inc. Substituted 6,5-fused bicyclic heteroaryl compounds
US10174019B2 (en) 2013-03-15 2019-01-08 Epizyme, Inc. Substituted 6,5-fused bicyclic heteroaryl compounds
EP3461819A1 (en) 2017-09-29 2019-04-03 Probiodrug AG Inhibitors of glutaminyl cyclase
WO2020002611A1 (en) 2018-06-28 2020-01-02 Phenex-Fxr Gmbh Novel lxr modulators with bicyclic core moiety
US11618747B2 (en) 2018-06-28 2023-04-04 Orsobio, Inc. LXR modulators with bicyclic core moiety
US11970484B2 (en) 2018-06-28 2024-04-30 Orsobio, Inc. LXR modulators with bicyclic core moiety

Also Published As

Publication number Publication date
ATE250577T1 (en) 2003-10-15
DE60005485T2 (en) 2004-07-01
AU2304300A (en) 2000-08-25
JP2002536360A (en) 2002-10-29
US6613760B1 (en) 2003-09-02
EP1150953B1 (en) 2003-09-24
DE60005485D1 (en) 2003-10-30
EP1150953A1 (en) 2001-11-07
GB9902453D0 (en) 1999-03-24

Similar Documents

Publication Publication Date Title
EP1150953B1 (en) Indole derivatives and their use as mcp-1 receptor antagonists
EP1159269B1 (en) Anti-imflammatory indole derivatives
EP1150954B1 (en) Anti-imflammatory indole derivatives
US6833387B1 (en) Chemical compounds
AU770856B2 (en) Indole derivatives and their use as MCP-1 antagonists
EP1054667B1 (en) Bicyclic pyrrole compounds, pharmaceutical compositions containing them and their use as antiinflammatory and immunomodulating agents
AU780992B2 (en) Indole derivatives as MCP-1 receptor antagonists
AU779502B2 (en) Indole derivatives as MCP-1 receptor antagonists
MXPA00007733A (en) Chemical compounds
MXPA01007903A (en) Anti-inflammatory indole derivatives
MXPA01007904A (en) Chemical compounds

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09889493

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000901738

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 597268

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 2000901738

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2000901738

Country of ref document: EP