WO2000042363A1 - Vapor compression system and method - Google Patents
Vapor compression system and method Download PDFInfo
- Publication number
- WO2000042363A1 WO2000042363A1 PCT/US2000/000663 US0000663W WO0042363A1 WO 2000042363 A1 WO2000042363 A1 WO 2000042363A1 US 0000663 W US0000663 W US 0000663W WO 0042363 A1 WO0042363 A1 WO 0042363A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- valve
- heat transfer
- transfer fluid
- evaporator
- inlet
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/04—Refrigeration circuit bypassing means
- F25B2400/0403—Refrigeration circuit bypassing means for the condenser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/07—Details of compressors or related parts
- F25B2400/075—Details of compressors or related parts with parallel compressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/22—Refrigeration systems for supermarkets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/01—Geometry problems, e.g. for reducing size
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/18—Optimization, e.g. high integration of refrigeration components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B47/00—Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
- F25B47/02—Defrosting cycles
- F25B47/022—Defrosting cycles hot gas defrosting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B5/00—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
- F25B5/02—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
Definitions
- This invention relates, generally, to vapor compression systems, and more particularly, to mechanically-controlled refrigeration systems using forward-flow defrost cycles.
- the heat transfer fluid changes state from a vapor to a liquid in the condenser, giving off heat, and changes state from a liquid to a vapor in the evaporator, absorbing heat during vaporization.
- a typical vapor-compression refrigeration system includes a compressor for pumping a heat transfer fluid, such as a freon, to a condenser, where heat is given off as the vapor condenses into a liquid.
- the liquid flows through a liquid line to a thermostatic expansion valve, where the heat transfer fluid undergoes a volumetric expansion.
- the heat transfer fluid exiting the thermostatic expansion valve is a low quality liquid vapor mixture.
- the term "low quality liquid vapor mixture” refers to a low pressure heat transfer fluid in a liquid state with a small presence of flash gas that cools off the remaining heat transfer fluid, as the heat transfer fluid continues on in a sub-cooled state.
- the expanded heat transfer fluid then flows into an evaporator, where the liquid refrigerant is vaporized at a low pressure absorbing heat while it undergoes a change of state from a liquid to a vapor.
- the heat transfer fluid now in the vapor state, flows through a suction line back to the compressor. Sometimes, the heat transfer fluid exits the evaporator not in a vapor state, but rather in a superheated vapor state.
- the efficiency of the vapor-compression cycle depends upon the ability of the system to maintain the heat transfer fluid as a high pressure liquid upon exiting the condenser.
- the cooled, high-pressure liquid must remain in the liquid state over the long refrigerant lines extending between the condenser and the thermostatic expansion valve.
- the proper operation of the thermostatic expansion valve depends upon a certain volume of liquid heat transfer fluid passing through the valve. As the high-pressure liquid passes through an orifice in the thermostatic expansion valve, the fluid undergoes a pressure drop as the fluid expands through the valve. At the lower pressure, the fluid cools an additional amount as a small amount of flash gas forms and cools of the bulk of the heat transfer fluid that is in liquid form.
- flash gas is used to describe the pressure drop in an expansion device, such as a thermostatic expansion valve, when some of the liquid passing through the valve is changed quickly to a gas and cools the remaining heat transfer fluid that is in liquid form to the corresponding temperature.
- This low quality liquid vapor mixture passes into the initial portion of cooling coils within the evaporator. As the fluid progresses through the coils, it initially absorbs a small amount of heat while it warms and approaches the point where it becomes a high quality liquid vapor mixture.
- the term "high quality liquid vapor mixture” refers to a heat transfer fluid that resides in both a liquid state and a vapor state with matched enthalpy, indicating the pressure and temperature of the heat transfer fluid are in correlation with each other. A high quality liquid vapor mixture is able to absorb heat very efficiently since it is in a change of state condition.
- the heat transfer fluid then absorbs heat from the ambient surroundings and begins to boil. The boiling process within the evaporator coils produces a saturated vapor within the coils that continues to absorb heat from the ambient surroundings. Once the fluid is completely boiled-off, it exits through the final stages of the cooling coil as a cold vapor.
- the heat transfer fluid Once the fluid is completely converted to a cold vapor, it absorbs very little heat. During the final stages of the cooling coil, the heat transfer fluid enters a superheated vapor state and becomes a superheated vapor. As defined herein, the heat transfer fluid becomes a "superheated vapor" when minimal heat is added to the heat transfer fluid while in the vapor state, thus raising the temperature of the heat transfer fluid above the point at which it entered the vapor state while still maintaining a similar pressure. The superheated vapor is then returned through a suction line to the compressor, where the vapor-compression cycle continues.
- the heat transfer fluid should change state from a liquid to a vapor in a large portion of the cooling coils within the evaporator.
- the heat transfer fluid changes state from a liquid to a vapor, it absorbs a great deal of energy as the molecules change from a liquid to a gas absorbing a latent heat of vaporization.
- relatively little heat is absorbed while the fluid is in the liquid state or while the fluid is in the vapor state.
- optimum cooling efficiency depends on precise control of the heat transfer fluid by the thermostatic expansion valve to insure that the fluid undergoes a change of state in as large of cooling coil length as possible.
- the cooling efficiency of the evaporator is lowered since a substantial portion of the evaporator contains fluid that is in a state which absorbs very little heat.
- a substantial portion, or an entire portion, of the evaporator should contain fluid that is in both a liquid state and a vapor state.
- the heat transfer fluid entering and exiting from the evaporator should be a high quality liquid vapor mixture.
- the thermostatic expansion valve plays an important role and regulating the flow of heat transfer fluid through the closed-loop system.
- the heat transfer fluid Before any cooling effect can be produced in the evaporator, the heat transfer fluid has to be cooled from the high-temperature liquid exiting the condenser to a range suitable of an evaporating temperature by a drop in pressure.
- the flow of low pressure liquid to the evaporator is metered by the thermostatic expansion valve in an attempt to maintain maximum cooling efficiency in the evaporator.
- a mechanical thermostatic expansion valve regulates the flow of heat transfer fluid by monitoring the temperature of the heat transfer fluid in the suction line near the outlet of the evaporator.
- the heat transfer fluid upon exiting the thermostatic expansion valve is in the form of a low pressure liquid having a small amount of flash gas.
- the presence of flash gas provides a cooling affect upon the balance of the heat transfer fluid in its liquid state, thus creating a low quality liquid vapor mixture.
- a temperature sensor is attached to the suction line to measure the amount of superheating experienced by the heat transfer fluid as it exits from the evaporator.
- Superheat is the amount of heat added to the vapor, after the heat transfer fluid has completely boiled-off and liquid no longer remains in the suction line. Since very little heat is absorbed by the superheated vapor, the thermostatic expansion valve meters the flow of heat transfer fluid to minimize the amount of superheated vapor formed in the evaporator. Accordingly, the thermostatic expansion valve determines the amount of low-pressure liquid flowing into the evaporator by monitoring the degree of superheating of the vapor exiting from the evaporator.
- the optimum operating efficiency of the refrigeration system depends upon periodic defrost of the evaporator. Periodic defrosting of the evaporator is needed to remove icing that develops on the evaporator coils during operation. As ice or frost develops over the evaporator, it impedes the passage of air over the evaporator coils reducing the heat transfer efficiency. In a commercial system, such as a refrigerated display cabinet, the build up of frost can reduce the rate of air flow to such an extent that an air curtain cannot form in the display cabinet. In commercial systems, such as food chillers, and the like, it is often necessary to defrost the evaporator every few hours.
- Narious defrosting methods exist, such as off-cycle methods, where the refrigeration cycle is stopped and the evaporator is defrosted by air at ambient temperatures. Additionally, electrical defrost off-cycle methods are used, where electrical heating elements are provided around the evaporator and electrical current is passed through the heating coils to melt the frost.
- refrigeration systems have been developed that rely on the relatively high temperature of the heat transfer fluid exiting the compressor to defrost the evaporator. In these techniques, the high-temperature vapor is routed directly from the compressor to the evaporator. In one technique, the flow of high temperature vapor is dumped into the suction line and the system is essentially operated in reverse.
- the high-temperature vapor is pumped into a dedicated line that leads directly from the compressor to the evaporator for the sole purpose of conveying high-temperature vapor to periodically defrost the evaporator.
- other complex methods have been developed that rely on numerous devices within the refrigeration system, such as bypass valves, bypass lines, heat exchangers, and the like.
- the present invention provides a refrigeration system that maintains high operating efficiency by feeding a saturated vapor into the inlet of an evaporator.
- saturated vapor refers to a heat transfer fluid that resides in both a liquid state and a vapor state with matched enthalpy, indicating the pressure and temperature of the heat transfer fluid are in correlation with each other. Saturated vapor is a high quality liquid vapor mixture.
- the refrigeration system provides a simple means of defrosting the evaporator.
- a multifunctional valve is employed that contains separate passageways feeding into a common chamber. In operation, the multifunctional valve can transfer either a saturated vapor, for cooling, or a high temperature vapor, for defrosting, to the evaporator.
- the vapor compression system includes an evaporator for evaporating a heat transfer fluid, a compressor for compressing the heat transfer fluid to a relatively high temperature and pressure, and a condenser for condensing the heat transfer fluid.
- a saturated vapor line is coupled from an expansion valve to the evaporator.
- the diameter and the length of the saturated vapor line is sufficient to insure substantial conversion of the heat transfer fluid into a saturated vapor prior to delivery of the fluid to the evaporator.
- a heat source is applied to the heat transfer fluid in the saturated vapor line sufficient to vaporize a portion of the heat transfer fluid before the heat transfer fluid enters the evaporator.
- a heat source is applied to the heat transfer fluid after the heat transfer fluid passes through the expansion valve and before the heat transfer fluid enters the evaporator.
- the heat source converts the heat transfer fluid from a low quality liquid vapor mixture to a high quality liquid vapor mixture, or a saturated vapor. Typically, at least about 5% of the heat transfer fluid is vaporized before entering the evaporator.
- the expansion valve resides within a multifunctional valve that includes a first inlet for receiving the heat transfer fluid in the liquid state, and a second inlet for receiving the heat transfer fluid in the vapor state.
- the multifunctional valve further includes passageways coupling the first and second inlets to a common chamber.
- Gate valves position within the passageways enable the flow of heat transfer fluid to be independently interrupted in each passageway.
- the ability to independently control the flow of saturated vapor and high temperature vapor through the refrigeration system produces high operating efficiency by both increased heat transfer rates at the evaporator and by rapid defrosting of the evaporator.
- the increased operating efficiency enables the refrigeration system to be charged with relatively small amounts of heat transfer fluid, yet the refrigeration system can handle relatively large thermal loads.
- FIG. 1 is a schematic drawing of a vapor-compression system arranged in accordance with one embodiment of the invention
- FIG. 2 is a side view, in partial cross-section, of a first side of a multifunctional valve in accordance with one embodiment of the invention
- FIG. 3 is a side view, in partial cross-section, of a second side of the multifunctional valve illustrated in FIG. 2;
- FIG. 4 is an exploded view of a multifunctional valve in accordance with one embodiment of the invention.
- FIG. 5 is a schematic view of a vapor-compression system in accordance with another embodiment of the invention.
- FIG. 6 is an exploded view of the multifunctional valve in accordance with another embodiment of the invention.
- FIG. 7 is a schematic view of a vapor-compression system in accordance with yet another embodiment of the invention
- FIG. 8 is an enlarged cross-sectional view of a portion of the vapor compression system illustrated in FIG. 7;
- FIG. 9 is a schematic view, in partial cross-section, of a recovery valve in accordance with one embodiment of this invention.
- FIG. 10 is a schematic view, in partial cross-section, of a recovery valve in accordance with yet another embodiment of this invention.
- Fig. 11 is a plan view, partially in section, of valve body on a multifunctional valve or device in accordance with a further embodiment of the present invention.
- Fig. 12 is a side elevational view of the valve body of the multifunctional valve shown in Fig. 11 ;
- Fig. 13 is an exploded view, partially in section, of the multifunctional valve or device shown in Figs. 11 and 12;
- Fig. 14 is an enlarged view of a portion of the multifunctional valve or device shown in Fig. 12;
- Fig. 15 is a plan view, partially in section, of valve body on a multifunctional valve or device in accordance with a further embodiment of the present invention.
- Fig. 16. is a schematic drawing of a vapor-compression system arranged in accordance with another embodiment of the invention.
- Refrigeration system 10 includes a compressor 12, a condenser 14, an evaporator 16, and a multifunctional valve 18.
- Compressor 12 is coupled to condenser 14 by a discharge line 20.
- Multifunctional valve 18 is coupled to condenser 14 by a liquid line 22 coupled to a first inlet 24 of multifunctional valve 18. Additionally, multifunctional valve 18 is coupled to discharge line 20 at a second inlet 26.
- a saturated vapor line 28 couples multifunctional valve 18 to evaporator 16, and a suction line 30 couples the outlet of evaporator 16 to the inlet of compressor 12.
- a temperature sensor 32 is mounted to suction line 30 and is operably connected to multifunctional valve 18.
- compressor 12, condenser 14, multifunctional valve 18 and temperature sensor 32 are located within a control unit 34.
- evaporator 16 is located within a refrigeration case 36.
- compressor 12, condenser 14, multifunctional valve 18, temperature sensor 32 and evaporator 16 are all located within a refrigeration case 36.
- the vapor compression system comprises control unit 34 and refrigeration case 36, wherein compressor 12 and condenser 14 are located within the control unit 34, and wherein evaporator 16, multifunctional valve 18, and temperature sensor 32 are located within refrigeration case 36.
- the vapor compression system of the present invention can utilize essentially any commercially available heat transfer fluid including refrigerants such as, for example, chlorofluorocarbons such as R-12 which is a dicholordifluoromethane, R-22 which is a monochlorodifluoromethane, R-500 which is an azeotropic refrigerant consisting of R-12 and R-152a, R-503 which is an azeotropic refrigerant consisting of R-23 and R-13, and R-502 which is an azeotropic refrigerant consisting of R-22 and R-l 15.
- refrigerants such as, for example, chlorofluorocarbons such as R-12 which is a dicholordifluoromethane, R-22 which is a monochlorodifluoromethane, R-500 which is an azeotropic refrigerant consisting of R-12 and R-152a, R-503 which is an azeotropic refrigerant consisting of R-
- the vapor compression system of the present invention can also utilize refrigerants such as, but not limited to refrigerants R-13, R-l 13, 141b, 123a, 123, R-l 14, and R-l 1. Additionally, the vapor compression system of the present invention can utilize refrigerants such as, for example, hydrochlorofluorocarbons such as 141b, 123a, 123, and 124, hydrofluorocarbons such as R-134a, 134, 152, 143a, 125, 32, 23, and azeotropic HFCs such as AZ-20 and AZ-50 (which is commonly known as R-507).
- refrigerants such as, but not limited to refrigerants R-13, R-l 13, 141b, 123a, 123, R-l 14, and R-l 1.
- refrigerants such as, for example, hydrochlorofluorocarbons such as 141b, 123a, 123, and 124, hydrofluorocarbons such as R-134a
- Blended refrigerants such as MP-39, HP-80, FC-14, R-717, and HP-62 may also be used as refrigerants in the vapor compression system of the present invention. Accordingly, it should be appreciated that the particular refrigerant or combination of refrigerants utilized in the present invention is not deemed to be critical to the operation of the present invention since this invention is expected to operate with a greater system efficiency with virtually all refrigerants than is achievable by any previously known vapor compression system utilizing the same refrigerant.
- compressor 12 compresses the heat transfer fluid, to a relatively high pressure and temperature.
- the temperature and pressure to which the heat transfer fluid is compressed by compressor 12 will depend upon the particular size of refrigeration system 10 and the cooling load requirements of the systems.
- Compressor 12 pumps the heat transfer fluid into discharge line 20 and into condenser 14.
- second inlet 26 is closed and the entire output of compressor 12 is pumped through condenser 14.
- condenser 14 a medium such as air, water, or a secondary refrigerant is blown past coils within the condenser causing the pressurized heat transfer fluid to change to the liquid state.
- the temperature of the heat transfer fluid drops about 10 to 40°F (5.6 to 22.2°C), depending on the particular heat transfer fluid, or glycol, or the like, as the latent heat within the fluid is expelled during the condensation process.
- Condenser 14 discharges the liquefied heat transfer fluid to liquid line 22. As shown in FIG. 1, liquid line 22 immediately discharges into multifunctional valve 18. Because liquid line 22 is relatively short, the pressurized liquid carried by liquid line 22 does not substantially increase in temperature as it passes from condenser 14 to multifunctional valve 18. By configuring refrigeration system 10 to have a short liquid line, refrigeration system 10 advantageously delivers substantial amounts of heat transfer fluid to multifunctional valve 18 at a low temperature and high pressure.
- the refrigeration system uses a relatively short liquid line 22, it is possible to implement the advantages of the present invention in a refrigeration system using a relatively long liquid line 22, as will be described below.
- the heat transfer fluid discharged by condenser 14 enters multifunctional valve 18 at first inlet 22 and undergoes a volumetric expansion at a rate determined by the temperature of suction line 30 at temperature sensor 32.
- Multifunctional valve 18 discharges the heat transfer fluid as a saturated vapor into saturated vapor line 28. Temperature sensor 32 relays temperature information through a control line 33 to multifunctional valve 18.
- refrigeration system 10 can be used in a wide variety of applications for controlling the temperature of an enclosure, such as a refrigeration case in which perishable food items are stored.
- compressor 12 discharges about 3 to 5 lbs/min (1.36 to 2.27 kg/min) of R-12 at a temperature of about 110°F (43.3°C) to about 120°F (48.9°C) and a pressure of about 150 lbs/in 2 (1.03 E5 N/m 2 ) to about 180 lbs/in. 2 (1.25 E5 N/m 2 )
- the inventive refrigeration system described herein positions a saturated vapor line between the point of volumetric expansion and the inlet of the evaporator, such that portions of the heat transfer fluid are converted to a saturated vapor before the heat transfer fluid enters the evaporator.
- the cooling efficiency is greatly increased.
- numerous benefits are realized by the refrigeration system. For example, less heat transfer fluid is needed to control the air temperature of refrigeration case 36 at a desired level. Additionally, less electricity is needed to power compressor 12 resulting in lower operating cost. Further, compressor 12 can be sized smaller than a prior art system operating to handle a similar cooling load.
- the refrigeration system avoids placing numerous components in proximity to the evaporator. By restricting the placement of components within refrigeration case 36 to a minimal number, the thermal loading of refrigeration case 36 is minimized.
- multifunctional valve 18 is positioned in close proximity to condenser 14, thus creating a relatively short liquid line 22 and a relatively long saturated vapor line 28, it is possible to implement the advantages of the present invention even if multifunctional valve
- multifunctional valve 18 is positioned immediately adjacent to the inlet of the evaporator 16, thus creating a relatively long liquid line 22 and a relatively short saturated vapor line 28.
- multifunctional valve 18 is positioned immediately adjacent to the inlet of the evaporator 16, thus creating a relatively long liquid line 22 and a relatively short saturated vapor line
- a heat source 25 is applied to saturated vapor line 28, as illustrated in FIGS. 7-8.
- Temperature sensor 32 is mounted to suction line 30 and operatively connected to multifunctional valve 18, wherein heat source 25 is of sufficient intensity so as to vaporize a portion of the heat transfer fluid before the heat transfer fluid enters evaporator 16.
- the heat transfer fluid entering evaporator 16 is converted to a saturated vapor wherein a portion of the heat transfer fluids exists in a liquid state 29, and another portion of the heat transfer fluid exists in a vapor state 31, as illustrated in FIG. 8.
- heat source 25 used to vaporize a portion of the heat transfer fluid comprises heat transferred to the ambient surroundings from condenser 14, however, heat source 25 can comprise any external or internal source of heat known to one of ordinary skill in the art, such as, for example, heat transferred to the ambient surroundings from the discharge line 20, heat transferred to the ambient surroundings from a compressor, heat generated by the compressor, heat generated from an electrical heat source, heat generated using combustible materials, heat generated using solar energy, or any other source of heat.
- Heat source 25 can also comprise an active heat source, that is, any heat source that is intentionally applied to a part of refrigeration system 10, such as saturated vapor line 28.
- the heat transfer fluid is in at least about a 1% superheated state upon exiting evaporator 16. In one preferred embodiment of the invention, the heat transfer fluid is between about a 1% liquid state and about a 1% superheated vapor state upon exiting evaporator 16. While the above embodiments rely on heat source 25 or the dimensions and length of saturated vapor line 28 to insure that the heat fransfer fluid enters the evaporator 16 as a saturated vapor, any means known to one of ordinary skill in the art which can convert the heat transfer fluid to a saturated vapor upon entering evaporator 16 can be used.
- any metering device known to one of ordinary skill in the art which can determine the state of the heat transfer fluid upon exiting the evaporator can be used, such as a pressure sensor, or a sensor which measures the density of the fluid.
- the metering device monitors the state of the heat transfer fluid exiting evaporator 16
- the metering device can also be placed at any point in or around evaporator 16 to monitor the state of the heat transfer fluid at any point in or around evaporator 16.
- FIG. 2 Shown in FIG. 2 is a side view, in partial cross-section, of one embodiment of multifunctional valve 18.
- Heat transfer fluid enters first inlet 24 and traverses a first passageway 38 to a common chamber 40.
- An expansion valve 42 is positioned in first passageway 38 near first inlet 22.
- Expansion valve 42 meters the flow of the heat transfer fluid through first passageway 38 by means of a diaphragm (not shown) enclosed within an upper valve housing 44.
- Expansion valve 42 can be any device known to one of ordinary skill in the art that can be used to meter the flow of heat transfer fluid, such as a thermostatic expansion valve, a capillary tube, or a pressure control.
- Control line 33 is connected to an input 62 located on upper valve housing 44.
- a gating valve 46 is positioned in first passageway 38 near common chamber 40.
- gating valve 46 is a solenoid valve capable of terminating the flow of heat transfer fluid through first passageway 38 in response to an electrical signal.
- Shown in FIG. 3 is a side view, in partial cross-section, of a second side of multifunctional valve 18.
- a second passageway 48 couples second inlet 26 to common chamber 40.
- Expansion valve 42 is seen to include expansion chamber 52 adjacent first inlet 22, valve assembly 54, and upper valve housing 44.
- Valve assembly 54 is actuated by a diaphragm (not shown) contained within the upper valve housing 44.
- First and second tubes 56 and 58 are located intermediate to expansion chamber 52 and a valve body 60.
- Gating valves 46 and 50 are mounted on valve body 60.
- refrigeration system 10 can be operated in a defrost mode by closing gating valve 46 and opening gating valve 50. In defrost mode, high temperature heat transfer fluid enters second inlet 26 and traverses second passageway 48 and enters common chamber 40.
- the high temperature vapors are discharged through outlet 41 and traverse saturated vapor line 28 to evaporator 16.
- the high temperature vapor has a temperature sufficient to raise the temperature of evaporator 16 by about 50 to 120°F (27.8 to 66.7°C).
- the temperature rise is sufficient to remove frost from evaporator 16 and restore the heat transfer rate to desired operational levels.
- any thermostatic expansion valve or throttling valve such as expansion valve 42 or even recovery valve 19, may be used to expand heat transfer fluid before entering evaporator 16.
- heat source 25 is applied to the heat fransfer fluid after the heat transfer fluid passes through expansion valve 42 and before the heat transfer fluid enters the inlet of evaporator 16 to convert the heat fransfer fluid from a low quality liquid vapor mixture to a high quality liquid vapor mixture, or a saturated vapor.
- heat source 25 is applied to a multifunctional valve 18.
- heat source 25 is applied within recovery valve 19, as illustrated in FIG. 9.
- Recovery valve 19 comprises a first inlet 124 connected to liquid line 22 and a first outlet 159 connected to saturated vapor line 28. Heat transfer fluid enters first inlet 124 of recovery valve 19 to a common chamber 140.
- heat source 125 comprises heat transferred to the ambient surroundings from a compressor
- heat source 125 may comprise any external or internal source of heat known to one of ordinary skill in the art, such as, for example, heat generated from an electrical heat source, heat generated using combustible materials, heat generated using solar energy, or any other source of heat.
- Heat source 125 can also comprise any heat source 25 and any active heat source, as previously defined.
- recovery valve 19 comprises third passageway 148 and third inlet 126. Third inlet 126 is connected to discharge line 20, and receives high temperature heat transfer fluid exiting compressor 12.
- a first gating valve capable of terminating the flow of heat transfer fluid through common chamber 140 is positioned near the first inlet 124 of common chamber 140.
- Third passageway 148 connects third inlet 126 to common chamber 140.
- a second gating valve (not shown) is positioned in third passageway 148 near common chamber 140.
- the second gating valve is a solenoid valve capable of terminating the flow of heat transfer fluid through third passageway 148 upon receiving an electrical signal.
- refrigeration system 10 can be operated in a defrost mode by closing the first gating valve located near first inlet 124 of common chamber 140 and opening the second gating valve positioned in third passageway 148 near common chamber 140.
- high temperature heat transfer fluid from compressor 12 enters third inlet 126 and traverses third passageway 148 and enters common chamber 140.
- the high temperature heat transfer fluid is discharged through first outlet 159 of recovery valve 19 and traverses saturated vapor line 28 to evaporator 16.
- the high temperature heat fransfer fluid has a temperature sufficient to raise the temperature of evaporator 16 by about 50 to 120°F (27.8 to 66.7°C). The temperature rise is sufficient to remove frost from evaporator 16 and restore the heat fransfer rate to desired operational levels.
- the saturated vapor line is also filled with a relatively low- density vapor, rather than a relatively high-density liquid.
- prior art systems compensate for low temperature ambient operations (e.g. winter time) by flooding the evaporator in order to reinforce a proper head pressure at the expansion valve.
- vapor compression system heat pressure is more readily maintained in cold weather, since the multifunctional value is positioned in close proximity to the condenser.
- the forward flow defrost capability of the invention also offers numerous operating benefits as a result of improved defrosting efficiency. For example, by forcing frapped oil back into the compressor, liquid slugging is avoided, which has the effect of increasing the useful life of the equipment.
- refrigeration systems operating in retail food outlets typically include a number of refrigeration cases that can be serviced by a common compressor system.
- multiple compressors can be used to increase the cooling capacity of the refrigeration system.
- FIG. 5 A vapor compression system 64 in accordance with another embodiment of the invention having multiple evaporators and multiple compressors is illustrated in FIG. 5.
- the multiple compressors, the condenser, and the multiple multifunctional valves are contained within a control unit 66.
- Saturated vapor lines 68 and 70 feed saturated vapor from control unit 66 to evaporators 72 and 74, respectively.
- Evaporator 72 is located in a first refrigeration case 76
- evaporator 74 is located in a second refrigeration case 78.
- First and second refrigeration cases 76 and 78 can be located adjacent to each other, or alternatively, at relatively great distance from each other. The exact location will depend upon the particular application.
- multiple compressors 80 feed heat fransfer fluid into an output manifold 82 that is connected to a discharge line 84.
- Discharge line 84 feeds a condenser 86 and has a first branch line 88 feeding a first multifunctional valve 90 and a second branch line 92 feeding a second multifunctional valve 94.
- a bifurcated liquid line 96 feeds heat transfer fluid from condenser 86 to first and second multifunctional valves 90 and 94.
- Saturated vapor line 68 couples first multifunctional valve 90 with evaporator 72
- saturated vapor line 70 couples second multifunctional valve 94 with evaporator 74.
- a bifurcated suction line 98 couples evaporators 72 and 74 to a collector manifold 100 feeding multiple compressors 80.
- a temperature sensor 102 is located on a first segment 104 of bifurcated suction line 98 and relays signals to first multifunctional valve 90.
- a temperature sensor 106 is located on a second segment 108 of bifurcated suction line 98 and relays signals to second multifunctional valve 94.
- a heat source such as heat source 25, can be applied to saturated vapor lines 68 and 70 to insure that the heat transfer fluid enters evaporators 72 and 74 as a saturated vapor.
- vapor compression system 64 can be made to address different refrigeration applications. For example, more than two evaporators can be added to the system in accordance with the general method illustrated in FIG. 5. Additionally, more condensers and more compressors can also be included in the refrigeration system to further increase the cooling capability.
- FIG. 6 A multifunctional valve 110 arranged in accordance with another embodiment of the invention is illustrated in FIG. 6.
- the heat transfer fluid exiting the condenser in the liquid state enters a first inlet 122 and expands in expansion chamber 152.
- the flow of heat transfer fluid is metered by valve assembly 154.
- a solenoid valve 112 has an armature 114 extending into a common seating area 116.
- armature 114 extends to the bottom of common seating area 116 and cold refrigerant flows through a passageway 118 to a common chamber 140, then to an outlet 120.
- hot vapor enters second inlet 126 and travels through common seating area 116 to common chamber 140, then to outlet 120.
- Multifunctional valve 110 includes a reduced number of components, because the design is such as to allow a single gating valve to control the flow of hot vapor and cold vapor through the valve.
- the flow of liquefied heat transfer fluid from the liquid line through the multifunctional valve can be controlled by a check valve positioned in the first passageway to gate the flow of the liquefied heat transfer fluid into the saturated vapor line.
- the flow of heat transfer fluid through the refrigeration system is controlled by a pressure valve located in the suction line in proximity to the inlet of the compressor.
- the compressor, condenser, multifunctional valve, and the evaporator can all be housed in a single unit and placed in a walk-in cooler.
- the condenser protrudes through the wall of the walk- in cooler and ambient air outside the cooler is used to condense the heat transfer fluid.
- the vapor compression system and method of the invention can be configured for air-conditioning a home or business. In this application, a defrost cycle is unnecessary since icing of the evaporator is usually not a problem.
- the vapor compression system and method of the invention can be used to chill water.
- the evaporator is immersed in water to be chilled.
- water can be pumped through tubes that are meshed with the evaporator coils.
- the vapor compression system and method of the invention can be cascaded together with another system for achieving extremely low refrigeration temperatures.
- two systems using different heat fransfer fluids can be coupled together such that the evaporator of a first system provide a low temperature ambient.
- a condenser of the second system is placed in the low temperature ambient and is used to condense the heat transfer fluid in the second system.
- Another embodiment of a multifunctional valve or device 225 is shown in
- Figs. 11-14 is generally designated by the reference numeral 225.
- This embodiment is functionally similar to that described in Figs. 2-4 and Fig. 6 which was generally designated by the reference numeral 18.
- this embodiment includes a main body or housing 226 which preferably is constructed as a single one-piece structure having a pair of threaded bosses 227, 228 that receive a pair of gating valves and collar assemblies, one of which being shown in Fig. 13 and designated by the reference numeral 229.
- This assembly includes a threaded collar 230, gasket 231 and solenoid-actuated gating valve receiving member 232 having a central bore 233, that receives a reciprocally movable valve pin 234 that includes a spring 235 and needle valve element 236 which is received with a bore 237 of a valve seat member 238 having a resilient seal 239 that is sized to be sealingly received in well 240 of the housing 226.
- a valve seat member 241 is snuggly received in a recess 242 of valve seat member 238.
- Valve seat member 241 includes a bore 243 that cooperates with needle valve element 236 to regulate the flow of refrigerant therethrough.
- a first inlet 244 receives liquid feed refrigerant from expansion valve 42
- a second inlet 245 receives hot gas from the compressor 12 during a defrost cycle.
- multifunctional valve 225 comprises first inlet 244, outlet 248, common chamber 246, and expansion valve 42, as illustrated in FIG. 16.
- expansion valve 42 is connected with first inlet 244.
- the valve body 226 includes a common chamber 246 (corresponding to common chamber 40 in the previously described embodiment).
- Expansion valve 42 receives refrigerant from the condenser 14 which then passes through inlet 244 into a semicircular well 247 which, when gating valve 229 is open, then passes into common chamber 246 and exits from the multifunctional valve 225 through outlet 248 (corresponding to outlet 41 in the previously described embodiment).
- the valve body 226 includes a first passageway 249 (corresponding to first passageway 38 of the previously described embodiment) which communicates first inlet 244 with common chamber 246.
- a second passageway 250 (corresponding to second passageway 48 of the previously described embodiment) communicates second inlet 245 with common chamber 246.
- the heat transfer fluid exits the condenser 14 in the liquid state passes through expansion valve 42.
- the heat transfer fluid changes from a liquid to a liquid vapor mixture.
- the heat transfer fluid enter the first inlet 244 as a liquid vapor mixture and expands in common chamber 246.
- the heat transfer fluid expands in a direction away from the flow of the heat transfer fluid.
- the heat transfer fluid expands in common chamber 246, the liquid separates from the vapor in the heat fransfer fluid.
- a pair of gating valves 229 can be used to control the flow of heat transfer fluid or hot vapor into common chamber 246.
- a first gating valve 229 is opened to allow refrigerant to flow through first inlet 244 and into common chamber 246, and then to outlet 248.
- a second gating valve 229 is opened to allow hot vapor to flow through second inlet 245 and into common chamber 246, and then to outlet 248.
- multifunctional valve 225 has been described as having multiple gating valves 229, multifunctional valve 225 can be designed with only one gating valve. Additionally, multifunctional valve 225 has been described as having a second inlet 245 for allowing hot vapor to flow through during defrost mode, multifunctional valve 225 can be designed with only first inlet 244.
- multifunctional valve comprises bleed line
- Bleed line 251 is connected with common chamber 246 and allows heat transfer fluid that is in common chamber 246 to travel to saturated vapor line 28 or first evaporative line 328.
- bleed line 251 allows the liquid that has separated from the liquid vapor mixture entering common chamber 246 to travel to saturated vapor line 28 or first evaporative line 328.
- bleed line 251 is connected to bottom surface 252 of common chamber 246, wherem bottom surface 252 is the surface of common chamber 246 located nearest the ground.
- multifunctional valve 225 is dimensioned as specified below in Table A and as illustrated in FIGS. 11-14.
- the length of common chamber 246 will be defined as the distance from outlet 248 to back wall 253.
- the length of common chamber 246 is represented by the letter G, as illustrated in FIG. 11.
- Common chamber 246 has a first portion adjacent to a second portion, wherein the first portion begins at outlet 248 and the second portion ends at back wall 253, as illustrated in FIG. 11.
- the first portion has a length equal to no more than about 75% of the length of common chamber 246. More preferably, the first portion has a length equal to no more than about 35% of the length of common chamber 246.
- the heat transfer fluid passes through expansion valve 42 and then enters the inlet of evaporator 16, as illustrated in FIG. 16.
- evaporator 16 comprises first evaporative line 328, evaporator coil 21, and second evaporative line 330.
- First evaporative line 328 is positioned between outlet 248 and evaporator coil 21, as illustrated in FIG. 16.
- Second evaporative line 330 is positioned between evaporative coil 21 and temperature sensor 32.
- Evaporator coil 21 is any conventional coil or device that absorbs heat.
- Multifunctional valve 18 is preferably connected with and adjacent evaporator 16.
- evaporator 16 comprises a portion of multifunctional valve 18, such as first inlet 244, outlet 248, and common chamber 246, as illustrated in FIG. 16.
- expansion valve 42 is positioned adjacent evaporator 16. Heat transfer fluid exits expansion valve 42 and then directly enters evaporator 16 at inlet 244. As the heat fransfer fluid exits expansion valve 42 and enters evaporator 16 at inlet 244, the temperature of the heat transfer fluid is at an evaporative temperature, that is the heat transfer fluid begins to absorb heat upon passing through expansion valve 42. Upon passing through inlet 244, common chamber 246, and outlet 248, the heat transfer fluid enters first evaporative line 328. Preferably, first evaporative line 328 is insulated. Heat transfer fluid then exits first evaporative line 328 and enters evaporative coil 21. Upon exiting evaporative coil 21 , heat transfer fluid enters second evaporative line 330. Heat transfer fluid exists second evaporative line 330 and evaporator 16 at temperature sensor 32.
- every element within evaporator 16, such as saturated vapor line 28, multifunctional valve 18, and evaporator coil 21, absorbs heat.
- the heat transfer fluid is at a temperature within 20°F of the temperature of the heat transfer fluid within the evaporator coil 21.
- the temperature of the heat transfer fluid in any element within evaporator 16, such as saturated vapor line 28, multifunctional valve 18, and evaporator coil 21, is within 20°F of the temperature of the heat transfer fluid in any other element within evaporator 16.
- every element of refrigeration system 10 described above, such as evaporator 16, liquid line 22, and suction line 30, can be scaled and sized to meet a variety of load requirements.
- the refrigerant charge of the heat transfer fluid in refrigeration system 10 is equal to or greater than the refrigerant charge of a conventional system.
- the nominal operating temperature of the evaporator was 20°F (-6.7°C) and the nominal operating temperature of the condenser was 120°F (48.9°C).
- the evaporator handled a cooling load of about 3000 Btu/hr (21 g cal/s).
- the multifunctional valve metered refrigerant into the saturated vapor line at a temperature of about 20°F (-6.7°C).
- the sensing bulb was set to maintain about 25°F (13.9°C) superheating of the vapor flowing in the suction line.
- the compressor discharged pressurized refrigerant into the discharge line at a condensing temperature of about 120°F (48.9°C), and a pressure of about 172 lbs/in 2 (118,560 N/m 2 ).
- the nominal operating temperature of the evaporator was -5°F (-20.5°C) and the nominal operating temperature of the condenser was 115°F (46.1 °C).
- the evaporator handled a cooling load of about 3000 Btu/hr (21 g cal/s).
- the multifunctional valve metered about 2975 ft/min (907 km/min) of refrigerant into the saturated vapor line at a temperature of about -5°F (-20.5°C).
- the sensing bulb was set to maintain about 20°F (11.1°C) superheating of the vapor flowing in the suction line.
- the compressor discharged about 2299 ft/min (701 m/min) of pressurized refrigerant into the discharge line at a condensing temperature of about 115°F (46.1°C), and a pressure of about 161 lbs/in 2 (110,977 N/m 2 ).
- the XDX system was operated substantially the same in low temperature operation as in medium temperature operation with the exception that the fans in the Tyler Chest Freezer were delayed for 4 minutes following defrost to remove heat from the evaporator coil and to allow water drainage from the coil.
- the XDX refrigeration system was operated for a period of about 24 hours at medium temperature operation and about 18 hours at low temperature operation.
- the temperature of the ambient air within the Tyler Chest Freezer was measured about every minute during the 23 hour testing period.
- the air temperature was measured continuously during the testing period, while the refrigeration system was operated in both refrigeration mode and in defrost mode.
- the refrigeration circuit was operated in defrost mode until the sensing bulb temperature reached about 50°F (10°C).
- the temperature measurement statistics appear in Table I below.
- the Tyler Chest Freezer described above was equipped with a bypass line extending between the compressor discharge line and the suction line for defrosting.
- the bypass line was equipped with a solenoid valve to gate the flow of high temperature refrigerant in the line.
- An electric heat element was energized instead of the solenoid during this test.
- a standard expansion valve was installed immediately adjacent to the evaporator inlet and the temperature sensing bulb was attached to the suction line immediately adjacent to the evaporator outlet. The sensing bulb was set to maintain about 6°F (3.33°C) superheating of the vapor flowing in the suction line. Prior to operation, the system was charged with about 48 oz. (1.36 kg) of R-12 refrigerant.
- the conventional refrigeration system was operated for a period of about 24 hours at medium temperature operation.
- the temperature of the ambient air within the Tyler Chest Freezer was measured about every minute during the 24 hour testing period.
- the air temperature was measured continuously during the testing period, while the refrigeration system was operated in both refrigeration mode and in reverse-flow defrost mode.
- the refrigeration circuit was operated in defrost mode until the sensing bulb temperature reached about 50°F (10°C).
- the temperature measurement statistics appear in Table I below.
- the XDX refrigeration system arranged in accordance with the invention maintains a desired the temperature withm the chest freezer with less temperature variation than the conventional systems.
- the standard deviation, the variance, and the range of the temperature measurements taken during the testing period are substantially less than the conventional systems This result holds for operation of the XDX system at both medium and low temperatures.
- the XDX system using forward-flow defrost through the multifunctional valve needs less time to completely defrost the evaporator, and substantially less time to return to refrigeration temperature.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
- Rotary Pumps (AREA)
- Bakery Products And Manufacturing Methods Therefor (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
- Air Conditioning Control Device (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Description
Claims
Priority Applications (24)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002358461A CA2358461C (en) | 1999-01-12 | 2000-01-11 | Vapor compression system and method |
AU25019/00A AU759907B2 (en) | 1999-01-12 | 2000-01-11 | Vapor compression system and method |
IL14414800A IL144148A0 (en) | 1999-01-12 | 2000-01-11 | Vapor compression system and method |
BRPI0007811-5A BR0007811B1 (en) | 1999-01-12 | 2000-01-11 | Steam compression system and Method to operate the system. |
DE60035409T DE60035409T2 (en) | 1999-01-12 | 2000-01-11 | STEAM COMPRESSION SYSTEM AND METHOD |
EP00903243A EP1144922B1 (en) | 1999-01-12 | 2000-01-11 | Vapor compression system and method |
MXPA01007080A MXPA01007080A (en) | 1999-01-12 | 2000-01-11 | Vapor compression system and method. |
JP2000593897A JP4610742B2 (en) | 1999-01-12 | 2000-01-11 | Vapor compression apparatus and method |
JP2001534990A JP2004500533A (en) | 1999-11-02 | 2000-05-26 | Vapor compression system and method for controlling conditions in the ambient environment |
CA002389695A CA2389695C (en) | 1999-11-02 | 2000-05-26 | Vapor compression system and method for controlling conditions in ambient surroundings |
US10/129,339 US6951117B1 (en) | 1999-01-12 | 2000-05-26 | Vapor compression system and method for controlling conditions in ambient surroundings |
MXPA02004397A MXPA02004397A (en) | 1999-11-02 | 2000-05-26 | Vapor compression system and method for controlling conditions in ambient surroundings. |
PCT/US2000/014648 WO2001033147A1 (en) | 1999-11-02 | 2000-05-26 | Vapor compression system and method for controlling conditions in ambient surroundings |
EP00936361A EP1226393B1 (en) | 1999-11-02 | 2000-05-26 | Vapor compression system and method for controlling conditions in ambient surroundings |
AU51685/00A AU777895B2 (en) | 1999-11-02 | 2000-05-26 | Vapor compression system and method for controlling conditions in ambient surroundings |
AT00936361T ATE343770T1 (en) | 1999-11-02 | 2000-05-26 | VAPOR COMPRESSION SYSTEM AND METHOD FOR CONTROLLING AMBIENT CONDITIONS |
DE60031565T DE60031565T2 (en) | 1999-11-02 | 2000-05-26 | STEAM COMPRESSION SYSTEM AND METHOD FOR CONTROLLING THE AMBIENT RATIO |
NZ516784A NZ516784A (en) | 1999-11-02 | 2000-05-26 | Vapor compression system and method for controlling conditions in ambient surroundings |
US09/902,900 US6581398B2 (en) | 1999-01-12 | 2001-07-10 | Vapor compression system and method |
HN2001000288A HN2001000288A (en) | 1999-11-02 | 2001-12-27 | VAPOR COMPRESSION SYSTEM AND METHOD TO CONTROL ENVIRONMENTAL CONDITIONS IN THE SURROUNDINGS. |
HK02105968.5A HK1044366A1 (en) | 1999-01-12 | 2002-08-14 | Vapor compression system and method |
HK03100692.8A HK1048658B (en) | 1999-11-02 | 2003-01-27 | Vapor compression system and method for controlling conditions in ambient surroundings |
US10/948,446 US7225627B2 (en) | 1999-11-02 | 2004-09-23 | Vapor compression system and method for controlling conditions in ambient surroundings |
US11/803,222 US20070220911A1 (en) | 1999-11-02 | 2007-05-14 | Vapor compression system and method for controlling conditions in ambient surroundings |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/228,696 US6314747B1 (en) | 1999-01-12 | 1999-01-12 | Vapor compression system and method |
US09/228,696 | 1999-01-12 | ||
US09/431,830 US6185958B1 (en) | 1999-11-02 | 1999-11-02 | Vapor compression system and method |
US09/431,830 | 1999-11-02 | ||
US09/443,071 | 1999-11-18 | ||
US09/443,071 US6644052B1 (en) | 1999-01-12 | 1999-11-18 | Vapor compression system and method |
Related Parent Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/228,696 Continuation-In-Part US6314747B1 (en) | 1999-01-12 | 1999-01-12 | Vapor compression system and method |
US09/431,830 Continuation-In-Part US6185958B1 (en) | 1999-01-12 | 1999-11-02 | Vapor compression system and method |
US09/443,071 Continuation-In-Part US6644052B1 (en) | 1999-01-12 | 1999-11-18 | Vapor compression system and method |
Related Child Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10129339 Continuation-In-Part | 2000-05-26 | ||
PCT/US2000/014648 Continuation-In-Part WO2001033147A1 (en) | 1999-01-12 | 2000-05-26 | Vapor compression system and method for controlling conditions in ambient surroundings |
US10/129,339 Continuation-In-Part US6951117B1 (en) | 1999-01-12 | 2000-05-26 | Vapor compression system and method for controlling conditions in ambient surroundings |
US09/902,900 Continuation US6581398B2 (en) | 1999-01-12 | 2001-07-10 | Vapor compression system and method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2000042363A1 true WO2000042363A1 (en) | 2000-07-20 |
Family
ID=27397867
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2000/000663 WO2000042363A1 (en) | 1999-01-12 | 2000-01-11 | Vapor compression system and method |
Country Status (13)
Country | Link |
---|---|
US (2) | US6951117B1 (en) |
EP (1) | EP1144922B1 (en) |
JP (1) | JP4610742B2 (en) |
CN (1) | CN1343296A (en) |
AT (1) | ATE366397T1 (en) |
AU (1) | AU759907B2 (en) |
BR (1) | BR0007811B1 (en) |
CA (1) | CA2358461C (en) |
CZ (1) | CZ301186B6 (en) |
DE (1) | DE60035409T2 (en) |
IL (1) | IL144148A0 (en) |
MX (1) | MXPA01007080A (en) |
WO (1) | WO2000042363A1 (en) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1396362A1 (en) * | 2002-09-05 | 2004-03-10 | Ford Global Technologies, Inc., A subsidiary of Ford Motor Company | Air conditioning unit for a vehicle |
US20060225350A1 (en) * | 2005-01-28 | 2006-10-12 | John Spallone | Systems and methods for controlling hydrogen generation |
KR100656083B1 (en) * | 2005-01-31 | 2006-12-11 | 엘지전자 주식회사 | Heat exchanger in an air harmonizing system |
AT500939B1 (en) * | 2005-06-08 | 2006-11-15 | Aht Cooling Systems Gmbh | Cooler for frozen products, has evaporator thermally impinging product chamber via sidewall of chamber and partly heating drain channel, when chamber is defrosted, where sidewall is equipped with drain channel |
US8034180B2 (en) * | 2005-10-11 | 2011-10-11 | Applied Materials, Inc. | Method of cooling a wafer support at a uniform temperature in a capacitively coupled plasma reactor |
US7988872B2 (en) * | 2005-10-11 | 2011-08-02 | Applied Materials, Inc. | Method of operating a capacitively coupled plasma reactor with dual temperature control loops |
US8157951B2 (en) * | 2005-10-11 | 2012-04-17 | Applied Materials, Inc. | Capacitively coupled plasma reactor having very agile wafer temperature control |
US8092638B2 (en) * | 2005-10-11 | 2012-01-10 | Applied Materials Inc. | Capacitively coupled plasma reactor having a cooled/heated wafer support with uniform temperature distribution |
US8021521B2 (en) * | 2005-10-20 | 2011-09-20 | Applied Materials, Inc. | Method for agile workpiece temperature control in a plasma reactor using a thermal model |
JP2007139209A (en) * | 2005-11-14 | 2007-06-07 | Denso Corp | Pressure control valve for refrigerating cycle |
CN101965492B (en) | 2008-05-15 | 2015-02-25 | Xdx创新制冷有限公司 | Surged vapor compression heat transfer system with reduced defrost |
US20090293523A1 (en) | 2008-06-02 | 2009-12-03 | Dover Systems, Inc. | System and method for using a photovoltaic power source with a secondary coolant refrigeration system |
US9657973B2 (en) | 2008-06-02 | 2017-05-23 | Hill Phoenix, Inc. | Refrigeration system with photovoltaic power source |
US8156750B2 (en) * | 2008-07-29 | 2012-04-17 | Agri Control Technologies, Inc. | Dynamic superheat control for high efficiency refrigeration system |
AU2011258052B2 (en) | 2010-05-27 | 2016-06-16 | XDX Global, LLC | Surged heat pump systems |
US9664424B2 (en) | 2010-11-17 | 2017-05-30 | Hill Phoenix, Inc. | Cascade refrigeration system with modular ammonia chiller units |
US9541311B2 (en) * | 2010-11-17 | 2017-01-10 | Hill Phoenix, Inc. | Cascade refrigeration system with modular ammonia chiller units |
US9657977B2 (en) | 2010-11-17 | 2017-05-23 | Hill Phoenix, Inc. | Cascade refrigeration system with modular ammonia chiller units |
US9234685B2 (en) | 2012-08-01 | 2016-01-12 | Thermo King Corporation | Methods and systems to increase evaporator capacity |
EP2960602B1 (en) * | 2013-02-25 | 2020-10-07 | Mitsubishi Electric Corporation | Air conditioner |
CN105980795A (en) * | 2013-10-17 | 2016-09-28 | 开利公司 | Motor and drive arrangement for refrigeration system |
US10215465B2 (en) * | 2015-10-30 | 2019-02-26 | Heatcraft Refrigeration Products Llc | Systems and methods for low load compressor operations |
US10955164B2 (en) | 2016-07-14 | 2021-03-23 | Ademco Inc. | Dehumidification control system |
DE102023200844A1 (en) | 2023-02-02 | 2024-08-08 | Robert Bosch Gesellschaft mit beschränkter Haftung | Combined heat and power device and building heat pump, air conditioning system, household refrigeration appliance with a combined heat and power device and method for operating a combined heat and power device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2707868A (en) * | 1951-06-29 | 1955-05-10 | Goodman William | Refrigerating system, including a mixing valve |
US2944411A (en) * | 1955-06-10 | 1960-07-12 | Carrier Corp | Refrigeration system control |
EP0355180A2 (en) * | 1988-08-17 | 1990-02-28 | Nippon Telegraph And Telephone Corporation | Cooling apparatus and control method |
WO1993006422A1 (en) * | 1991-09-19 | 1993-04-01 | Mayer Holdings S.A. | Thermal inter-cooler |
WO1995003515A1 (en) * | 1993-07-26 | 1995-02-02 | Hiross International Corporation B.V. | Evaporator device with a piping provided with ribs |
DE19752259A1 (en) * | 1996-12-09 | 1998-06-10 | Valeo Climatisation | Motor vehicle coolant circulation with air-conditioning loop and heating loop |
Family Cites Families (175)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1907885A (en) | 1927-06-07 | 1933-05-09 | John J Shively | Refrigeration system and method |
US2084755A (en) * | 1935-05-03 | 1937-06-22 | Carrier Corp | Refrigerant distributor |
US2164761A (en) * | 1935-07-30 | 1939-07-04 | Carrier Corp | Refrigerating apparatus and method |
US2323408A (en) * | 1935-11-18 | 1943-07-06 | Honeywell Regulator Co | Air conditioning system |
US2112039A (en) | 1936-05-05 | 1938-03-22 | Gen Electric | Air conditioning system |
US2200118A (en) * | 1936-10-15 | 1940-05-07 | Honeywell Regulator Co | Air conditioning system |
US2126364A (en) * | 1937-07-14 | 1938-08-09 | Young Radiator Co | Evaporator distributor head |
US2229940A (en) * | 1939-12-28 | 1941-01-28 | Gen Electric | Refrigerant distributor for cooling units |
US2471448A (en) | 1941-03-18 | 1949-05-31 | Int Standard Electric Corp | Built-in heat exchanger in expansion valve structure |
US2571625A (en) | 1943-12-14 | 1951-10-16 | George E Seldon | Thermal and auxiliary valve combination |
US2520191A (en) * | 1944-06-16 | 1950-08-29 | Automatic Products Co | Refrigerant expansion valve |
US2467519A (en) * | 1945-01-05 | 1949-04-19 | Borghesan Henri | Heating and cooling plant |
US2539062A (en) | 1945-04-05 | 1951-01-23 | Dctroit Lubricator Company | Thermostatic expansion valve |
US2596036A (en) | 1945-05-12 | 1952-05-06 | Alco Valve Co | Hot-gas valve |
US2547070A (en) | 1947-03-26 | 1951-04-03 | A P Controls Corp | Thermostatic expansion valve |
US2511565A (en) * | 1948-03-03 | 1950-06-13 | Detroit Lubricator Co | Refrigeration expansion valve |
US2755025A (en) | 1952-04-18 | 1956-07-17 | Gen Motors Corp | Refrigeration expansion valve apparatus |
US2771092A (en) | 1953-01-23 | 1956-11-20 | Alco Valve Co | Multi-outlet expansion valve |
US2856759A (en) | 1955-09-26 | 1958-10-21 | Gen Motors Corp | Refrigerating evaporative apparatus |
US2922292A (en) | 1956-05-03 | 1960-01-26 | Sporlan Valve Co | Valve assembly for a refrigeration system |
US3007681A (en) | 1957-10-04 | 1961-11-07 | John D Keller | Recuperators |
US2960845A (en) | 1958-01-31 | 1960-11-22 | Sporlan Valve Co | Refrigerant control for systems with variable head pressure |
US3060699A (en) | 1959-10-01 | 1962-10-30 | Alco Valve Co | Condenser pressure regulating system |
US3014351A (en) | 1960-03-16 | 1961-12-26 | Sporlan Valve Co | Refrigeration system and control |
US3150498A (en) | 1962-03-08 | 1964-09-29 | Ray Winther Company | Method and apparatus for defrosting refrigeration systems |
US3194499A (en) | 1962-08-23 | 1965-07-13 | American Radiator & Standard | Thermostatic refrigerant expansion valve |
US3138007A (en) | 1962-09-10 | 1964-06-23 | Hussmann Refrigerator Co | Hot gas defrosting system |
US3257822A (en) | 1964-09-04 | 1966-06-28 | Gen Electric | Air conditioning apparatus for cooling or dehumidifying operation |
US3316731A (en) | 1965-03-01 | 1967-05-02 | Lester K Quick | Temperature responsive modulating control valve for a refrigeration system |
US3343375A (en) | 1965-06-23 | 1967-09-26 | Lester K Quick | Latent heat refrigeration defrosting system |
US3402566A (en) | 1966-04-04 | 1968-09-24 | Sporlan Valve Co | Regulating valve for refrigeration systems |
US3392542A (en) | 1966-10-14 | 1968-07-16 | Larkin Coils Inc | Hot gas defrostable refrigeration system |
US3427819A (en) | 1966-12-22 | 1969-02-18 | Pet Inc | High side defrost and head pressure controls for refrigeration systems |
US3464226A (en) | 1968-02-05 | 1969-09-02 | Kramer Trenton Co | Regenerative refrigeration system with means for controlling compressor discharge |
US3967782A (en) | 1968-06-03 | 1976-07-06 | Gulf & Western Metals Forming Company | Refrigeration expansion valve |
US3520147A (en) | 1968-07-10 | 1970-07-14 | Whirlpool Co | Control circuit |
US3638447A (en) | 1968-09-27 | 1972-02-01 | Hitachi Ltd | Refrigerator with capillary control means |
US3792594A (en) | 1969-09-17 | 1974-02-19 | Kramer Trenton Co | Suction line accumulator |
US3683637A (en) | 1969-10-06 | 1972-08-15 | Hitachi Ltd | Flow control valve |
US3727423A (en) | 1969-12-29 | 1973-04-17 | Evans Mfg Co Jackes | Temperature responsive capacity control device |
US3638444A (en) | 1970-02-12 | 1972-02-01 | Gulf & Western Metals Forming | Hot gas refrigeration defrost structure and method |
US3633378A (en) | 1970-07-15 | 1972-01-11 | Streater Ind Inc | Hot gas defrosting system |
US3631686A (en) | 1970-07-23 | 1972-01-04 | Itt | Multizone air-conditioning system with reheat |
US4398396A (en) | 1970-07-29 | 1983-08-16 | Schmerzler Lawrence J | Motor-driven, expander-compressor transducer |
US3822562A (en) | 1971-04-28 | 1974-07-09 | M Crosby | Refrigeration apparatus, including defrosting means |
US3708998A (en) | 1971-08-05 | 1973-01-09 | Gen Motors Corp | Automatic expansion valve, in line, non-piloted |
US3785163A (en) | 1971-09-13 | 1974-01-15 | Watsco Inc | Refrigerant charging means and method |
US3948060A (en) | 1972-05-24 | 1976-04-06 | Andre Jean Gaspard | Air conditioning system particularly for producing refrigerated air |
US3798920A (en) | 1972-11-02 | 1974-03-26 | Carrier Corp | Air conditioning system with provision for reheating |
US3866427A (en) | 1973-06-28 | 1975-02-18 | Allied Chem | Refrigeration system |
DE2333158A1 (en) | 1973-06-29 | 1975-01-16 | Bosch Siemens Hausgeraete | REFRIGERATOR, IN PARTICULAR CONVECTIVE BY AIR CIRCULATION, COOLED NO-FREEZER |
DK141670C (en) | 1973-08-13 | 1980-10-20 | Danfoss As | THERMOSTATIC EXPANSION VALVE FOR COOLING SYSTEMS |
SE416347B (en) | 1973-12-04 | 1980-12-15 | Knut Bergdahl | SET AND DEVICE FOR DEFROSTING SWITCH EXCHANGE |
US3934424A (en) | 1973-12-07 | 1976-01-27 | Enserch Corporation | Refrigerant expander compressor |
US3967466A (en) | 1974-05-01 | 1976-07-06 | The Rovac Corporation | Air conditioning system having super-saturation for reduced driving requirement |
US3927829A (en) * | 1974-07-05 | 1975-12-23 | Emerson Electric Co | Thermostatic expansion valve |
US3921413A (en) | 1974-11-13 | 1975-11-25 | American Air Filter Co | Air conditioning unit with reheat |
DE2458981C2 (en) | 1974-12-13 | 1985-04-18 | Bosch-Siemens Hausgeräte GmbH, 7000 Stuttgart | Refrigerated cabinets, especially no-frost refrigerators |
US3965693A (en) | 1975-05-02 | 1976-06-29 | General Motors Corporation | Modulated throttling valve |
US4003798A (en) | 1975-06-13 | 1977-01-18 | Mccord James W | Vapor generating and recovering apparatus |
US4151722A (en) | 1975-08-04 | 1979-05-01 | Emhart Industries, Inc. | Automatic defrost control for refrigeration systems |
US4003729A (en) | 1975-11-17 | 1977-01-18 | Carrier Corporation | Air conditioning system having improved dehumidification capabilities |
US4167102A (en) | 1975-12-24 | 1979-09-11 | Emhart Industries, Inc. | Refrigeration system utilizing saturated gaseous refrigerant for defrost purposes |
DE2603682C3 (en) | 1976-01-31 | 1978-07-13 | Danfoss A/S, Nordborg (Daenemark) | Valve arrangement for refrigeration systems |
US4122688A (en) | 1976-07-30 | 1978-10-31 | Hitachi, Ltd. | Refrigerating system |
US4136528A (en) | 1977-01-13 | 1979-01-30 | Mcquay-Perfex Inc. | Refrigeration system subcooling control |
GB1595616A (en) | 1977-01-21 | 1981-08-12 | Hitachi Ltd | Air conditioning system |
US4103508A (en) | 1977-02-04 | 1978-08-01 | Apple Hugh C | Method and apparatus for conditioning air |
NL7701242A (en) | 1977-02-07 | 1978-08-09 | Philips Nv | DEVICE FOR REMOVING MOISTURE FROM A ROOM. |
US4270362A (en) | 1977-04-29 | 1981-06-02 | Liebert Corporation | Control system for an air conditioning system having supplementary, ambient derived cooling |
US4122686A (en) | 1977-06-03 | 1978-10-31 | Gulf & Western Manufacturing Company | Method and apparatus for defrosting a refrigeration system |
US4207749A (en) | 1977-08-29 | 1980-06-17 | Carrier Corporation | Thermal economized refrigeration system |
US4176525A (en) | 1977-12-21 | 1979-12-04 | Wylain, Inc. | Combined environmental and refrigeration system |
US4193270A (en) | 1978-02-27 | 1980-03-18 | Scott Jack D | Refrigeration system with compressor load transfer means |
US4184341A (en) | 1978-04-03 | 1980-01-22 | Pet Incorporated | Suction pressure control system |
US4182133A (en) | 1978-08-02 | 1980-01-08 | Carrier Corporation | Humidity control for a refrigeration system |
US4235079A (en) | 1978-12-29 | 1980-11-25 | Masser Paul S | Vapor compression refrigeration and heat pump apparatus |
US4290480A (en) | 1979-03-08 | 1981-09-22 | Alfred Sulkowski | Environmental control system |
US4302945A (en) | 1979-09-13 | 1981-12-01 | Carrier Corporation | Method for defrosting a refrigeration system |
SE418829B (en) | 1979-11-12 | 1981-06-29 | Volvo Ab | AIR CONDITIONING DEVICE FOR MOTOR VEHICLES |
US4285205A (en) | 1979-12-20 | 1981-08-25 | Martin Leonard I | Refrigerant sub-cooling |
US4328682A (en) | 1980-05-19 | 1982-05-11 | Emhart Industries, Inc. | Head pressure control including means for sensing condition of refrigerant |
US4451273A (en) | 1981-08-25 | 1984-05-29 | Cheng Chen Yen | Distillative freezing process for separating volatile mixtures and apparatuses for use therein |
US4660385A (en) | 1981-11-30 | 1987-04-28 | Institute Of Gas Technology | Frost control for space conditioning |
US4493364A (en) | 1981-11-30 | 1985-01-15 | Institute Of Gas Technology | Frost control for space conditioning |
JPS58146778A (en) * | 1982-02-23 | 1983-09-01 | Matsushita Refrig Co | Heat-reacting valve |
US4596123A (en) | 1982-02-25 | 1986-06-24 | Cooperman Curtis L | Frost-resistant year-round heat pump |
US4583582A (en) | 1982-04-09 | 1986-04-22 | The Charles Stark Draper Laboratory, Inc. | Heat exchanger system |
US4430866A (en) | 1982-09-07 | 1984-02-14 | Emhart Industries, Inc. | Pressure control means for refrigeration systems of the energy conservation type |
DE3327179A1 (en) | 1983-07-28 | 1985-02-07 | Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co KG, 7000 Stuttgart | EVAPORATOR |
US4485642A (en) | 1983-10-03 | 1984-12-04 | Carrier Corporation | Adjustable heat exchanger air bypass for humidity control |
US4947655A (en) | 1984-01-11 | 1990-08-14 | Copeland Corporation | Refrigeration system |
JPS61134545A (en) | 1984-12-01 | 1986-06-21 | 株式会社東芝 | Refrigeration cycle device |
US4606198A (en) | 1985-02-22 | 1986-08-19 | Liebert Corporation | Parallel expansion valve system for energy efficient air conditioning system |
US4621505A (en) | 1985-08-01 | 1986-11-11 | Hussmann Corporation | Flow-through surge receiver |
US4633681A (en) | 1985-08-19 | 1987-01-06 | Webber Robert C | Refrigerant expansion device |
US4888957A (en) | 1985-09-18 | 1989-12-26 | Rheem Manufacturing Company | System and method for refrigeration and heating |
US4779425A (en) | 1986-05-14 | 1988-10-25 | Sanden Corporation | Refrigerating apparatus |
US4724679A (en) * | 1986-07-02 | 1988-02-16 | Reinhard Radermacher | Advanced vapor compression heat pump cycle utilizing non-azeotropic working fluid mixtures |
US4938032A (en) | 1986-07-16 | 1990-07-03 | Mudford Graeme C | Air-conditioning system |
JPS6380169A (en) * | 1986-09-24 | 1988-04-11 | カルソニックカンセイ株式会社 | Laminating type evaporator with expansion valve |
AU597757B2 (en) | 1986-11-24 | 1990-06-07 | Luminis Pty Limited | Air conditioner and method of dehumidifier control |
JPH0762550B2 (en) | 1986-12-26 | 1995-07-05 | 株式会社東芝 | Air conditioner |
US4848100A (en) | 1987-01-27 | 1989-07-18 | Eaton Corporation | Controlling refrigeration |
US4742694A (en) | 1987-04-17 | 1988-05-10 | Nippondenso Co., Ltd. | Refrigerant apparatus |
US5168715A (en) | 1987-07-20 | 1992-12-08 | Nippon Telegraph And Telephone Corp. | Cooling apparatus and control method thereof |
US4854130A (en) | 1987-09-03 | 1989-08-08 | Hoshizaki Electric Co., Ltd. | Refrigerating apparatus |
US4852364A (en) | 1987-10-23 | 1989-08-01 | Sporlan Valve Company | Expansion and check valve combination |
JPH01230966A (en) | 1988-03-10 | 1989-09-14 | Fuji Koki Seisakusho:Kk | Control of refrigerating system and thermostatic expansion valve |
US5195331A (en) | 1988-12-09 | 1993-03-23 | Bernard Zimmern | Method of using a thermal expansion valve device, evaporator and flow control means assembly and refrigerating machine |
US4955205A (en) | 1989-01-27 | 1990-09-11 | Gas Research Institute | Method of conditioning building air |
GB8908338D0 (en) | 1989-04-13 | 1989-06-01 | Motor Panels Coventry Ltd | Control systems for automotive air conditioning systems |
JP2865707B2 (en) | 1989-06-14 | 1999-03-08 | 株式会社日立製作所 | Refrigeration equipment |
EP0411172B1 (en) | 1989-07-31 | 1993-01-20 | KKW Kulmbacher Klimageräte-Werk GmbH | Refrigeration device for a plurality of coolant circuits |
US5058388A (en) | 1989-08-30 | 1991-10-22 | Allan Shaw | Method and means of air conditioning |
US4984433A (en) | 1989-09-26 | 1991-01-15 | Worthington Donald J | Air conditioning apparatus having variable sensible heat ratio |
US4955207A (en) | 1989-09-26 | 1990-09-11 | Mink Clark B | Combination hot water heater-refrigeration assembly |
US5107906A (en) | 1989-10-02 | 1992-04-28 | Swenson Paul F | System for fast-filling compressed natural gas powered vehicles |
US5070707A (en) | 1989-10-06 | 1991-12-10 | H. A. Phillips & Co. | Shockless system and hot gas valve for refrigeration and air conditioning |
DE4010770C1 (en) | 1990-04-04 | 1991-11-21 | Danfoss A/S, Nordborg, Dk | |
US5050393A (en) | 1990-05-23 | 1991-09-24 | Inter-City Products Corporation (U.S.A.) | Refrigeration system with saturation sensor |
US5305610A (en) | 1990-08-28 | 1994-04-26 | Air Products And Chemicals, Inc. | Process and apparatus for producing nitrogen and oxygen |
US5062276A (en) | 1990-09-20 | 1991-11-05 | Electric Power Research Institute, Inc. | Humidity control for variable speed air conditioner |
US5129234A (en) | 1991-01-14 | 1992-07-14 | Lennox Industries Inc. | Humidity control for regulating compressor speed |
US5065591A (en) | 1991-01-28 | 1991-11-19 | Carrier Corporation | Refrigeration temperature control system |
KR930003925B1 (en) | 1991-02-25 | 1993-05-15 | 삼성전자 주식회사 | Automatic control method of separated air conditioners |
US5509272A (en) | 1991-03-08 | 1996-04-23 | Hyde; Robert E. | Apparatus for dehumidifying air in an air-conditioned environment with climate control system |
US5251459A (en) | 1991-05-28 | 1993-10-12 | Emerson Electric Co. | Thermal expansion valve with internal by-pass and check valve |
JP3237187B2 (en) | 1991-06-24 | 2001-12-10 | 株式会社デンソー | Air conditioner |
JPH0518630A (en) | 1991-07-10 | 1993-01-26 | Toshiba Corp | Air conditioner |
US5181552A (en) | 1991-11-12 | 1993-01-26 | Eiermann Kenneth L | Method and apparatus for latent heat extraction |
US5249433A (en) | 1992-03-12 | 1993-10-05 | Niagara Blower Company | Method and apparatus for providing refrigerated air |
US5203175A (en) | 1992-04-20 | 1993-04-20 | Rite-Hite Corporation | Frost control system |
US5253482A (en) | 1992-06-26 | 1993-10-19 | Edi Murway | Heat pump control system |
US5303561A (en) | 1992-10-14 | 1994-04-19 | Copeland Corporation | Control system for heat pump having humidity responsive variable speed fan |
US5231847A (en) | 1992-08-14 | 1993-08-03 | Whirlpool Corporation | Multi-temperature evaporator refrigerator system with variable speed compressor |
US5423480A (en) | 1992-12-18 | 1995-06-13 | Sporlan Valve Company | Dual capacity thermal expansion valve |
US5440894A (en) | 1993-05-05 | 1995-08-15 | Hussmann Corporation | Strategic modular commercial refrigeration |
US5309725A (en) | 1993-07-06 | 1994-05-10 | Cayce James L | System and method for high-efficiency air cooling and dehumidification |
US5408835A (en) | 1993-12-16 | 1995-04-25 | Anderson; J. Hilbert | Apparatus and method for preventing ice from forming on a refrigeration system |
US5544809A (en) | 1993-12-28 | 1996-08-13 | Senercomm, Inc. | Hvac control system and method |
EP0670460B1 (en) | 1994-03-03 | 1999-06-16 | Denso Corporation | Refrigerating apparatus |
JPH07332806A (en) | 1994-04-12 | 1995-12-22 | Nippondenso Co Ltd | Refrigerator |
US5520004A (en) | 1994-06-28 | 1996-05-28 | Jones, Iii; Robert H. | Apparatus and methods for cryogenic treatment of materials |
DE4438917C2 (en) | 1994-11-03 | 1998-01-29 | Danfoss As | Process for defrosting a refrigeration system and control device for carrying out this process |
JP3209868B2 (en) | 1994-11-17 | 2001-09-17 | 株式会社不二工機 | Expansion valve |
US5622055A (en) | 1995-03-22 | 1997-04-22 | Martin Marietta Energy Systems, Inc. | Liquid over-feeding refrigeration system and method with integrated accumulator-expander-heat exchanger |
JP3373326B2 (en) | 1995-04-17 | 2003-02-04 | サンデン株式会社 | Vehicle air conditioner |
US5692387A (en) | 1995-04-28 | 1997-12-02 | Altech Controls Corporation | Liquid cooling of discharge gas |
US5586441A (en) | 1995-05-09 | 1996-12-24 | Russell A Division Of Ardco, Inc. | Heat pipe defrost of evaporator drain |
US5694782A (en) | 1995-06-06 | 1997-12-09 | Alsenz; Richard H. | Reverse flow defrost apparatus and method |
US5598715A (en) | 1995-06-07 | 1997-02-04 | Edmisten; John H. | Central air handling and conditioning apparatus including by-pass dehumidifier |
US5678417A (en) | 1995-06-28 | 1997-10-21 | Kabushiki Kaisha Toshiba | Air conditioning apparatus having dehumidifying operation function |
US5887651A (en) | 1995-07-21 | 1999-03-30 | Honeywell Inc. | Reheat system for reducing excessive humidity in a controlled space |
US5622057A (en) | 1995-08-30 | 1997-04-22 | Carrier Corporation | High latent refrigerant control circuit for air conditioning system |
US5634355A (en) | 1995-08-31 | 1997-06-03 | Praxair Technology, Inc. | Cryogenic system for recovery of volatile compounds |
US5651258A (en) | 1995-10-27 | 1997-07-29 | Heat Controller, Inc. | Air conditioning apparatus having subcooling and hot vapor reheat and associated methods |
KR100393776B1 (en) | 1995-11-14 | 2003-10-11 | 엘지전자 주식회사 | Refrigerating cycle device having two evaporators |
US5689962A (en) | 1996-05-24 | 1997-11-25 | Store Heat And Produce Energy, Inc. | Heat pump systems and methods incorporating subcoolers for conditioning air |
US5706665A (en) | 1996-06-04 | 1998-01-13 | Super S.E.E.R. Systems Inc. | Refrigeration system |
JPH1016542A (en) | 1996-06-28 | 1998-01-20 | Pacific Ind Co Ltd | Receiver having expansion mechanism |
JP3794100B2 (en) | 1996-07-01 | 2006-07-05 | 株式会社デンソー | Expansion valve with integrated solenoid valve |
GB2314915B (en) | 1996-07-05 | 2000-01-26 | Jtl Systems Ltd | Defrost control method and apparatus |
US5839505A (en) | 1996-07-26 | 1998-11-24 | Aaon, Inc. | Dimpled heat exchange tube |
US5743100A (en) | 1996-10-04 | 1998-04-28 | American Standard Inc. | Method for controlling an air conditioning system for optimum humidity control |
US5752390A (en) | 1996-10-25 | 1998-05-19 | Hyde; Robert | Improvements in vapor-compression refrigeration |
US5867998A (en) | 1997-02-10 | 1999-02-09 | Eil Instruments Inc. | Controlling refrigeration |
KR19980068338A (en) | 1997-02-18 | 1998-10-15 | 김광호 | Refrigerant Expansion Device |
KR100225636B1 (en) | 1997-05-20 | 1999-10-15 | 윤종용 | Airconditioner for both cooling and warming |
US5850968A (en) | 1997-07-14 | 1998-12-22 | Jokinen; Teppo K. | Air conditioner with selected ranges of relative humidity and temperature |
US5842352A (en) | 1997-07-25 | 1998-12-01 | Super S.E.E.R. Systems Inc. | Refrigeration system with improved liquid sub-cooling |
US5987916A (en) | 1997-09-19 | 1999-11-23 | Egbert; Mark | System for supermarket refrigeration having reduced refrigerant charge |
DE19743734C2 (en) | 1997-10-02 | 2000-08-10 | Linde Ag | Refrigeration system |
US6185958B1 (en) | 1999-11-02 | 2001-02-13 | Xdx, Llc | Vapor compression system and method |
US6155075A (en) | 1999-03-18 | 2000-12-05 | Lennox Manufacturing Inc. | Evaporator with enhanced refrigerant distribution |
-
2000
- 2000-01-11 CZ CZ20012526A patent/CZ301186B6/en not_active IP Right Cessation
- 2000-01-11 EP EP00903243A patent/EP1144922B1/en not_active Expired - Lifetime
- 2000-01-11 AT AT00903243T patent/ATE366397T1/en not_active IP Right Cessation
- 2000-01-11 CN CN00804946A patent/CN1343296A/en active Pending
- 2000-01-11 CA CA002358461A patent/CA2358461C/en not_active Expired - Lifetime
- 2000-01-11 JP JP2000593897A patent/JP4610742B2/en not_active Expired - Fee Related
- 2000-01-11 MX MXPA01007080A patent/MXPA01007080A/en active IP Right Grant
- 2000-01-11 BR BRPI0007811-5A patent/BR0007811B1/en not_active IP Right Cessation
- 2000-01-11 IL IL14414800A patent/IL144148A0/en unknown
- 2000-01-11 DE DE60035409T patent/DE60035409T2/en not_active Expired - Lifetime
- 2000-01-11 AU AU25019/00A patent/AU759907B2/en not_active Expired
- 2000-01-11 WO PCT/US2000/000663 patent/WO2000042363A1/en active IP Right Grant
- 2000-05-26 US US10/129,339 patent/US6951117B1/en not_active Expired - Lifetime
-
2001
- 2001-07-10 US US09/902,900 patent/US6581398B2/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2707868A (en) * | 1951-06-29 | 1955-05-10 | Goodman William | Refrigerating system, including a mixing valve |
US2944411A (en) * | 1955-06-10 | 1960-07-12 | Carrier Corp | Refrigeration system control |
EP0355180A2 (en) * | 1988-08-17 | 1990-02-28 | Nippon Telegraph And Telephone Corporation | Cooling apparatus and control method |
WO1993006422A1 (en) * | 1991-09-19 | 1993-04-01 | Mayer Holdings S.A. | Thermal inter-cooler |
WO1995003515A1 (en) * | 1993-07-26 | 1995-02-02 | Hiross International Corporation B.V. | Evaporator device with a piping provided with ribs |
DE19752259A1 (en) * | 1996-12-09 | 1998-06-10 | Valeo Climatisation | Motor vehicle coolant circulation with air-conditioning loop and heating loop |
Also Published As
Publication number | Publication date |
---|---|
AU759907B2 (en) | 2003-05-01 |
CA2358461C (en) | 2008-10-14 |
DE60035409D1 (en) | 2007-08-16 |
JP4610742B2 (en) | 2011-01-12 |
AU2501900A (en) | 2000-08-01 |
ATE366397T1 (en) | 2007-07-15 |
IL144148A0 (en) | 2002-05-23 |
DE60035409T2 (en) | 2008-03-06 |
EP1144922A1 (en) | 2001-10-17 |
MXPA01007080A (en) | 2005-07-01 |
JP2002535589A (en) | 2002-10-22 |
CA2358461A1 (en) | 2000-07-20 |
BR0007811A (en) | 2002-04-23 |
US6951117B1 (en) | 2005-10-04 |
CN1343296A (en) | 2002-04-03 |
CZ301186B6 (en) | 2009-12-02 |
BR0007811B1 (en) | 2009-01-13 |
EP1144922B1 (en) | 2007-07-04 |
CZ20012526A3 (en) | 2002-07-17 |
US20020053218A1 (en) | 2002-05-09 |
US6581398B2 (en) | 2003-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6393851B1 (en) | Vapor compression system | |
CA2358461C (en) | Vapor compression system and method | |
US6185958B1 (en) | Vapor compression system and method | |
US20070220911A1 (en) | Vapor compression system and method for controlling conditions in ambient surroundings | |
CN101688698B (en) | Refrigerant vapor compression system with flash tank economizer | |
CN101688696A (en) | Refrigerant vapor compression system and method of transcritical operation | |
CN102388279A (en) | Refrigerant vapor compression system with hot gas bypass | |
US6751970B2 (en) | Vapor compression system and method | |
JP2010249493A (en) | Vapor compression device and method | |
KR100766157B1 (en) | Vapor compression system and method | |
Vaitkus et al. | Experimental investigation of transport refrigerator with eutectic plate evaporator and economizer with intermediate heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 00804946.7 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US US US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 144148 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 25019/00 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: IN/PCT/2001/963/CHE Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2358461 Country of ref document: CA Ref document number: 2358461 Country of ref document: CA Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09902900 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: PV2001-2526 Country of ref document: CZ Ref document number: PA/a/2001/007080 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 2000 593897 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020017008808 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2000903243 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2000903243 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1020017008808 Country of ref document: KR |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWP | Wipo information: published in national office |
Ref document number: PV2001-2526 Country of ref document: CZ |
|
WWG | Wipo information: grant in national office |
Ref document number: 25019/00 Country of ref document: AU |
|
WWG | Wipo information: grant in national office |
Ref document number: 2000903243 Country of ref document: EP |