WO2000032554A1 - Process for the resolution of tramadol - Google Patents

Process for the resolution of tramadol Download PDF

Info

Publication number
WO2000032554A1
WO2000032554A1 PCT/GB1999/003843 GB9903843W WO0032554A1 WO 2000032554 A1 WO2000032554 A1 WO 2000032554A1 GB 9903843 W GB9903843 W GB 9903843W WO 0032554 A1 WO0032554 A1 WO 0032554A1
Authority
WO
WIPO (PCT)
Prior art keywords
tramadol
single enantiomer
substantially single
salt
resolution
Prior art date
Application number
PCT/GB1999/003843
Other languages
French (fr)
Inventor
Graham Evans
Original Assignee
Darwin Discovery Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Darwin Discovery Limited filed Critical Darwin Discovery Limited
Priority to AT99973014T priority Critical patent/ATE253037T1/en
Priority to DE69912474T priority patent/DE69912474D1/en
Priority to KR1020017006815A priority patent/KR20010112223A/en
Priority to AU11708/00A priority patent/AU747431B2/en
Priority to BR9915868-0A priority patent/BR9915868A/en
Priority to JP2000585196A priority patent/JP2002531429A/en
Priority to CA002353549A priority patent/CA2353549A1/en
Priority to EP99973014A priority patent/EP1135357B1/en
Publication of WO2000032554A1 publication Critical patent/WO2000032554A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/10Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/54Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • C07C217/74Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with rings other than six-membered aromatic rings being part of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • the present invention relates to a process for the manufacture of single enantiomers of tramadol.
  • Tramadol (cis-2-dimethylaminomethyl-l- (3-methoxy- phenyl)-l-cyclohexanol) is a chiral drug substance which is used as a high-potency analgesic agent.
  • tramadol is currently marketed as the racemate only, there has been considerable interest in the physiological properties associated with its individual enantiomers, namely 1S, 2S- (-) -tramadol and lR, 2R- (+) -tramadol, the latter shown below as (1) .
  • lead references to literature on this topic are highlighted in WO-A-9840053. It is possible that further investigations in this field will lead to a better understanding of the pharmacology of tramadol enantiomers, which could in turn allow for improved pharmaceutical compositions to be identified.
  • This invention is based on the discovery that racemic tramadol can be resolved efficiently using the substantially single enantiomers of 0, 0-di-p- toluoyltartaric acid (DTTA) as a revolving agent.
  • This resolving agent may also be used to increase the optical purity of enantio erically-enriched tramadol, i.e. tramadol which is already enriched in one of its two enantiomers.
  • the process of this invention may be carried out under conditions that are generally known to those skilled in the art of classical resolution methods.
  • the resolution process is extremely simple.
  • dissolution of tramadol free base and 0, -di-p-toluoyl-I/- tartaric acid (1 molar equivalent) by warming in ethanol, followed by cooling gave crystallisation in 47% yield (based on racemic tramadol) of a diastereomeric salt enriched in (-) -tramadol, with a de of 97%, corresponding to 97% ee tramadol.
  • This salt was reslurried in ethanol, and then filtered, washed and dried, which resulted in an enhanced de of 99.5%.
  • the present process allows diastereo ericallly pure salts to be isolated in high yield after a single cystallisation from solution. It is surprising that what may be regarded as a small structural difference between O,0-dibenzoyltartaric acid and O,0-di-p-toluoyltartaric acid, i.e. aromatic hydrogen atoms, remote at positions from the chiral centres, replaced by methyl groups, results in such a dramatic improvement in the efficiency of the resolution process.
  • Any suitable solvent may be used to effect the process of the present invention.
  • Preferred solvents are C ⁇ _ 4 alkanols, of which ethanol is especially preferred.
  • both enantiomers of the resolving agent are readily available in quantity, either can be used to effect resolution, depending on the which enantiomer of tramadol is required.
  • O,0-di-p-toluoyl-l/-tartaric acid gives initial crystallisation of a diastereomeric salt enriched in (-) -tramadol, whereas with 0,0-di-p-toluoyl-D- tartaric acid a diastereomeric salt enriched in (+)- tramadol is obtained.
  • the O,0-di-p-toluoyltartaric acid resolving agent can be easily recovered in a state of high purity, such that it can be re-used in one or more subsequent resolution processes.
  • 1 molar equivalent of the 0,0-di-p- toluoyltartaric acid is used relative to racemic tramadol free base.
  • less than 1 molar equivalent may be used, e.g. as little as 0.50 molar equivalent, preferably around 0.5-0.6 molar equivalents, such that the yield of diastereomeric salt obtained on initial crystallisation is comparable to that achieved with 1 equivalent of resolving agent, leaving an excess of tramadol free base in solution.
  • Isolated diastereomeric salts obtained by either method have a 1:1 stoichiometry of resolving agent:tramadol.
  • a substantially single enantiomer typically we mean that one of the enantiomers is present in an excess of at least 70%, preferably at least 90%, and more preferably at least 95%, with respect to its opposite enantiomer, including an optically-pure enantiomer.
  • the present invention is further illustrated by the following examples. Examples
  • Example 1 Resolution of (+/-) -Tramadol with Di-p-toluo ⁇ l- -tartaric acid in ethanol.
  • 57 g of racemic Tramadol hydrochloride (0.190 mol) was taken up in 110 mis of distilled water.
  • To this yellow coloured solution is added 120 ml of dichloromethane, and the reaction mixture stirred at 10°C in a jacketed vessel.
  • a solution of 36% sodium hydroxide 22 ml is added dropwise to the tramadol hydrochloride. After 10 minutes stirring the layers are allowed to separate, and the bottom organic layer removed. The basic aqueous layer is re-extracted with 35 ml of dichloromethane and combined with the first organic layer.
  • (+)-Tramadol-containing salt from Example 1 was cracked using 2.1 equivalents of sodium hydroxide as follows.
  • the (+) -Tramadol. (£)-(-) -DTTA salt 131 g (0.202 mol) in 1 volume of ethanol was taken up in 150 ml of dichloromethane and placed in a jacketed vessel at 10°C.
  • TBME tert-butyl ethylether
  • the white solid was collected by filtration to give 58.3 g (75.4%) of (L) -(-) -DTTA which compared to an authentic sample.
  • 77.3 g of Di-p-toluoyl- -tartaric acid ((£»)-(+) -DTTA) was taken up in 550 ml of ethanol at 70°C in a jacketed vessel.
  • To this solution was added the Tramadol free base in 200 ml of ethanol. A precipitate formed almost immediately.
  • the vessel was gradually cooled to 25°C over several hours to give a fine white solid. Stirring at 25°C was maintained overnight.
  • the resulting copious white solid was collected at the pump, washing with 500 ml of ethanol.
  • Example 5 (+) -Tramadol Hydrochloride preparation from (+) -Tramadol. Di-p-toluyl-D-Tartaric acid salt.
  • Example 6 (-) -Tramadol Hydrochloride preparation from (-) -Tramadol.Di-p-toluoyl- -tartaric acid salt.
  • (+/-) -Tramadol hydrochloride 60 g were suspended in 96 ml of water and treated with 32 g of crushed ice. To this suspension was added 26 ml of 36% sodium hydroxide solution. The mixture was then extracted with dichloromethane 140 ml, followed by re-extraction with a further 40 ml of dichloromethane. The organic layers were combined and dried over magnesium sulphate. The solvent was then removed under vacuum to give the (+/-)- Tramadol free base quantitatively as a yellow oil.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fertilizers (AREA)
  • Glass Compositions (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

A process for preparing a substantially single enantiomer of tramadol, or a pharmaceutically-acceptable salt thereof, proceeds by means of a classical salt resolution using a substantially single enantiomer of o,o-di-p-toluoyltartaric acid as a resolving agent.

Description

PROCESS FOR THE RESOLUTION OF TRAMADOL Field of the Invention
The present invention relates to a process for the manufacture of single enantiomers of tramadol. Background to the Invention
Tramadol (cis-2-dimethylaminomethyl-l- (3-methoxy- phenyl)-l-cyclohexanol) is a chiral drug substance which is used as a high-potency analgesic agent. Although tramadol is currently marketed as the racemate only, there has been considerable interest in the physiological properties associated with its individual enantiomers, namely 1S, 2S- (-) -tramadol and lR, 2R- (+) -tramadol, the latter shown below as (1) . For example, lead references to literature on this topic are highlighted in WO-A-9840053. It is possible that further investigations in this field will lead to a better understanding of the pharmacology of tramadol enantiomers, which could in turn allow for improved pharmaceutical compositions to be identified.
Figure imgf000003_0001
In connection with our own interest in this area, we required an efficient and reliable method for the preparation of individual enantiomers of tramadol. Due to the ready availability of racemic tramadol a classical resolution process, involving separation of diastereomeric salts by selective crystallisation, appeared ideal for this purpose.
Initially, literature procedures for the resolution of tramadol were investigated. In US-A-5723668, it is reported that use of L-(+) -tartaric acid as resolving agent facilitates a highly efficient resolution whereby 49% yield (with respect to racemic base) of a diastereomerically-pure salt of IS, 2S-(-) -tramadol is obtained after a single crystallisation from ethanol solution, by filtration and washing with solvent. However, in our hands, these results could not be reproduced. Typically, following dissolution of racemic tramadol and i-(+)-tartaric acid, we observed crystallisation, but analysis of the isolated salt showed little or no diastereomeric enrichment.
Another resolution process is described in US-A- 3830934, in which 0,0-dibenzoyl-D-tartaric acid is used as resolving agent. Our own investigation of this process indicated that at least three cycles of dissolution- crystallisation-filtration are required in order to obtain salt of >98% de (diastereomeric excess) , corresponding to >98% ee (enantiomeric excess) tramadol free base after cracking. Thus the process may be suitable as a s all- scale preparative method. However, the need for multiple crystallisation cycles with cumulative lowering of yields may render the process unsuitable and economic for operation on a larger scale, e.g. for manufacturing processes. Summary of the Invention
This invention is based on the discovery that racemic tramadol can be resolved efficiently using the substantially single enantiomers of 0, 0-di-p- toluoyltartaric acid (DTTA) as a revolving agent. This resolving agent may also be used to increase the optical purity of enantio erically-enriched tramadol, i.e. tramadol which is already enriched in one of its two enantiomers. Description of the Invention
The process of this invention may be carried out under conditions that are generally known to those skilled in the art of classical resolution methods. The resolution process is extremely simple. In a typical example, dissolution of tramadol free base and 0, -di-p-toluoyl-I/- tartaric acid (1 molar equivalent) by warming in ethanol, followed by cooling, gave crystallisation in 47% yield (based on racemic tramadol) of a diastereomeric salt enriched in (-) -tramadol, with a de of 97%, corresponding to 97% ee tramadol. This salt was reslurried in ethanol, and then filtered, washed and dried, which resulted in an enhanced de of 99.5%. Thus, in contrast to the multiple cystallisation cycles required when 0,0-dibenzoyltartaric acid is used as the resolving agent, the present process allows diastereo ericallly pure salts to be isolated in high yield after a single cystallisation from solution. It is surprising that what may be regarded as a small structural difference between O,0-dibenzoyltartaric acid and O,0-di-p-toluoyltartaric acid, i.e. aromatic hydrogen atoms, remote at positions from the chiral centres, replaced by methyl groups, results in such a dramatic improvement in the efficiency of the resolution process. Any suitable solvent may be used to effect the process of the present invention. Preferred solvents are Cα_4 alkanols, of which ethanol is especially preferred.
Since both enantiomers of the resolving agent are readily available in quantity, either can be used to effect resolution, depending on the which enantiomer of tramadol is required. For example O,0-di-p-toluoyl-l/-tartaric acid gives initial crystallisation of a diastereomeric salt enriched in (-) -tramadol, whereas with 0,0-di-p-toluoyl-D- tartaric acid a diastereomeric salt enriched in (+)- tramadol is obtained. When both enantiomers of tramadol are required, these processes can be combined in a so- called "mirror image" resolution whereby after crystallisation of, say, a diastereomeric salt of (-)- tramadol and θ,0-di-p-toluoyl-.L-tartaric acid, mother liquors remaining are processed to isolate residual tramadol free base enriched in the (+) -enantiomer, which is then purified further by treatment with O,0-di-p-toluoyl- - tartaric acid and crystallisation of the resultant salt.
Other beneficial aspects of the process of the present invention have been identified and these can be summarised as follows:
1. The O,0-di-p-toluoyltartaric acid resolving agent can be easily recovered in a state of high purity, such that it can be re-used in one or more subsequent resolution processes.
2. Typically, 1 molar equivalent of the 0,0-di-p- toluoyltartaric acid is used relative to racemic tramadol free base. However, if desired, less than 1 molar equivalent may be used, e.g. as little as 0.50 molar equivalent, preferably around 0.5-0.6 molar equivalents, such that the yield of diastereomeric salt obtained on initial crystallisation is comparable to that achieved with 1 equivalent of resolving agent, leaving an excess of tramadol free base in solution. Isolated diastereomeric salts obtained by either method have a 1:1 stoichiometry of resolving agent:tramadol.
3. Efficient resolution can be achieved when the feedstock of racemic tramadol is contaminated with isomeric trans-2-dimethylaminomethyl-l- (3-methoxyphenyl) -1-cyclo- hexanol, which may be formed in levels of up to 10-20% during the manufacture of the former.
In the context of this Application, by a substantially single enantiomer typically we mean that one of the enantiomers is present in an excess of at least 70%, preferably at least 90%, and more preferably at least 95%, with respect to its opposite enantiomer, including an optically-pure enantiomer. The present invention is further illustrated by the following examples. Examples
Example 1 - Resolution of (+/-) -Tramadol with Di-p-toluoγl- -tartaric acid in ethanol. 57 g of racemic Tramadol hydrochloride (0.190 mol) was taken up in 110 mis of distilled water. To this yellow coloured solution is added 120 ml of dichloromethane, and the reaction mixture stirred at 10°C in a jacketed vessel. A solution of 36% sodium hydroxide 22 ml is added dropwise to the tramadol hydrochloride. After 10 minutes stirring the layers are allowed to separate, and the bottom organic layer removed. The basic aqueous layer is re-extracted with 35 ml of dichloromethane and combined with the first organic layer. These are then washed with water 100 ml. Concentration of the organic layers under vacuum gives the racemic tramadol free base in quantitative yield (50 g) as a yellow oil. The free base is taken up in 200 ml of ethanol and this solution is added to the Di-p-toluoyl-i- tartaric acid ( (L)-(-)-DTTA) 73.4 g (0.190 mol) in 700 ml of ethanol at 70°C. On cooling to 65°C a precipitate forms. The resolution is gradually cooled to 25°C and left to age over a period of approximately fifteen hours.
The copious white precipitate that formed was collected by filtration, washing with 200 ml of ethanol. This gave after drying 57.8 g (46.8%) of (-) -Tramadol. Di- p-toluoyl-i-tartaric acid with a de of 96.8% (chiral HPLC) . Repetition of the above procedure gave 58.6 g (47.5%) of the same salt with a de of 97.5%. These salts were combined and reslurried in 575 ml of ethanol to give 111.6 g of the (-) -Tramadol containing salt, with a de of >99.5% in 97.0% yield. [α]D 589= -104.9° (C= 1.36, MeOH) . MP =167.5- 168.0°C (DSC). Evaporation of the mother liquors from the two resolutions above gave a slightly coloured oil 131 g (53.1%), of (+)-Tramadol. Di-p-toluoyl- -tartaric acid salt with a de of -89.5%.
Example 2 - Resolution of (+) -enantiomer-enriched Tramadol with Di-p-toluyl-P-tartaric acid in ethanol.
The (+)-Tramadol-containing salt from Example 1 was cracked using 2.1 equivalents of sodium hydroxide as follows. The (+) -Tramadol. (£)-(-) -DTTA salt 131 g (0.202 mol) in 1 volume of ethanol was taken up in 150 ml of dichloromethane and placed in a jacketed vessel at 10°C.
To this yellow coloured solution was added water 300 ml and the mixture stirred. To this mixture was added a solution of 16.8 g sodium hydroxide (0.423 mol) in 200 ml of distilled water dropwise with stirring. The layers were then separated, the bottom organic layer collected. The basic aqueous layer was re-extracted with 150 ml of dichloromethane. The organic layers were combined and washed with water 200 ml before concentrated to dryness. This gave approximately 53 g of Tramadol free base enriched in the (+) -enantiomer as a slightly coloured oil. The basic aqueous layer was acidified with hydrochloric acid to pH = 2.0, and the acidic aqueous solution extracted with 300 ml of tert-butyl ethylether (TBME) . Concentration of the TBME solution gave a slightly coloured oil in quantitative yield. This was taken up in 150 ml of iso- propanol and heated to reflux. To this refluxing solution was added 350 ml of heptane, which effected crystallisation. The crystallisation was left to cool to ambient temperature and age overnight.
The white solid was collected by filtration to give 58.3 g (75.4%) of (L) -(-) -DTTA which compared to an authentic sample. 77.3 g of Di-p-toluoyl- -tartaric acid ((£»)-(+) -DTTA) was taken up in 550 ml of ethanol at 70°C in a jacketed vessel. To this solution was added the Tramadol free base in 200 ml of ethanol. A precipitate formed almost immediately. The vessel was gradually cooled to 25°C over several hours to give a fine white solid. Stirring at 25°C was maintained overnight. The resulting copious white solid was collected at the pump, washing with 500 ml of ethanol. This gave 111.6 g of (+) -Tramadol. Di- p-toluoyl-D-tartaric acid in 85.2% yield, with a de of 97.3%. Reslurrying of this salt from 500 ml of ethanol as above gave 108.5 g of the (-f-)-Tramadol-containing salt, with a de of >99% in 97.8% yield. [ ]D 589= +103.3° (C= 1.15, MeOH) . MP =162.1-167.8°C (DSC).
Example 3 - Resolution of (+/-) -Tramadol with Recovered Di- p-toluoγl-I/-tartaric acid in ethanol.
11.4 g of racemic Tramadol hydrochloride was converted to the racemic tramadol free base in quantitative yield (10 g) as a yellow oil using the same procedure outlined in Example 1. The free base is taken up in 20 ml of ethanol and this solution is added to the Di-p-toluoyl-i-tartaric acid ( (L)-(-)-DTTA) (which was recovered from a previous resolution) 14.7 g (0. 038mol) in 120 ml of ethanol at 70°C. On cooling to 65°C a precipitate forms. The resolution is gradually cooled to 25°C and left to age over a period of approximately fifteen hours.
The copious white precipitate that formed was collected by filtration, washing with 60 ml of ethanol. This gave after drying 11.40 g (46.2%) of (-) -Tramadol. Di-p-toluoyl-i-tartaric acid salt with a de of 96.2% (chiral HPLC) . Evaporation of the mother liquors gave a slightly coloured oil 13.50 g (>55%) , of (+)-Tramadol. Di- p-toluoyl-L-tartaric acid salt with a de of 84.9%.
Example 4 - Resolution of (+/-) -Tramadol with 0.55 equivalents of Di-p-toluoyl- -tartaric acid in ethanol.
11.4 g of racemic Tramadol hydrochloride (0.038 mol) was converted to the racemic tramadol free base in quantitative yield (10 g) as a yellow oil using the same procedure outlined in Example 1. The free base is taken up in 10 ml of ethanol and this solution is added to the Di-p- toluoyl-i-tartaric acid ( (L)-(-)-DTTA) 8.08 g (0.021 mol) 0.55 equivalents plus acetic acid 1.26 g (0.021 mol) in 40 ml of ethanol at 70°C. On cooling to 65°C a seed sample was added which effected crystallisation. The resolution is gradually cooled to 25°C and left to age over a period of approximately fifteen hours.
The copious white precipitate that formed was collected by filtration, washing with 10 ml of ethanol. This gave after drying 7.10 g (39.3%) of (-) -Tramadol. Di- p-toluoyl-D-tartaric acid salt with a de of 97.1% (chiral HPLC) . Evaporation of the mother liquors gave a slightly coloured oil 12.50 g (>61%) , of (+) -Tramadol. Di-p-toluoyl- L-tartaric acid salt with a de of 40.9%.
Example 5 - (+) -Tramadol Hydrochloride preparation from (+) -Tramadol. Di-p-toluyl-D-Tartaric acid salt.
108 g of (+) -Tramadol.Di-p-toluyl-D-Tartaric acid salt obtained above de >99% was cracked according to Example 2, this gave 43 g of (+) -Tramadol free base. This enantiomerically-pure free base was taken up in 475 ml of butan-2-one in a jacketed vessel and set to stir at 20°C. To this solution was added 3.06 ml of distilled water in one go. After this 18.9 g, 22.1 ml of chlorotrimethyl- silane was added via syringe. The reaction was stirred at 20°C overnight. The thus formed white precipitate was collected by filtration, washing with 175 ml of cold butan- 2-one. The white solid was dried under vacuum at 70°C to give 43.2 g (87.3%), ee >99%. []D 589= +34.3° (C= 1.22, MeOH) . MP =172.7-173.9°C.
Example 6 - (-) -Tramadol Hydrochloride preparation from (-) -Tramadol.Di-p-toluoyl- -tartaric acid salt.
Ill g of (-) -Tramadol.Di-p-toluoyl-i-tartaric acid salt obtained above de = >99% was cracked according to Example 2. This gave 45 g of (-) -Tramadol free base. This enantiomerically-pure free base was taken up in 500 ml of butan-2-one in a jacketed vessel and set to stir at 25°C. To this solution was added 3.08 ml of distilled water in one go. After this 22.2 ml of chlorotrimethylsilane was added via syringe. The reaction was stirred at 20°C overnight. The thus formed white precipitate was collected by filtration washing with 200 ml of cold butan-2-one. The white solid was dried under vacuum at 70°C to give 47.0 g (92.0%), ee = >99%. [α]D 589= -34.3° (C= 1.27, MeOH). MP =172.4-173°C.
Example 7 - Attempted resolution of (+/-) -Tramadol with (L) -f+)-tartaric acid
60 g of (+/-) -Tramadol hydrochloride (0.0228 mol) were suspended in 96 ml of water and treated with 32 g of crushed ice. To this suspension was added 26 ml of 36% sodium hydroxide solution. The mixture was then extracted with dichloromethane 140 ml, followed by re-extraction with a further 40 ml of dichloromethane. The organic layers were combined and dried over magnesium sulphate. The solvent was then removed under vacuum to give the (+/-)- Tramadol free base quantitatively as a yellow oil. This was taken up in 48 ml of ethanol and added to a solution of 30g (i)-(-)-tartaric acid (0.0228mol) in 224ml of ethanol. This solution was stirred at 20°C for two hours, and then allowed to stand for 24 hours at 4°C.
After this time a copious amount of white precipitate had formed. This was collected by filtration and washed with 128 ml of cold ethanol. After drying approximately 77.6 g of the solid material had been obtained in 93.9% yield. Analysis by chiral HPLC indicated that this material was essentially racemic.
Further attempts were made to increase the diastereomeric excess by re-suspending in ethanol and stirring overnight at 25°C, this however failed. Likewise hot slurries in ethanol and methanol also did not affect de enhancement.

Claims

Claims
1. A process for preparing a substantially single enantiomer of tramadol, or a pharmaceutically-acceptable salt thereof, which proceeds by means of a classical salt resolution using a substantially single enantiomer of 0, 0- di-p-toluoyltartaric acid as a resolving agent.
2. A process according to claim l for preparing substantially single enantiomer (+) -tramadol, or a pharmaceutically-acceptable salt thereof, which uses 0,0- di-p-toluoyl-I>-tartaric acid as the resolving agent.
3. A process according to claim 1 for preparing substantially single enantiomer (-) -tramadol, or a pharmaceutically-acceptable salt thereof, which uses 0, 0- di-p-toluoyl-i-tartaric acid as the resolving agent.
4. A process for increasing the optical purity of enantiomerically-enriched tramadol, which proceeds by means of a classical salt resolution using a substantially single enantiomer of O,0-di-p-toluoyltartaric acid as a resolving agent.
5. A process according to any preceding claim, which further comprises conversion of the salt obtained by the resolution to the free base form of tramadol, or a pharmaceutically-acceptable salt thereof. 6. A diastereometric salt of substantially single enantiomer tramadol and substantially single enantiomer 0,0-di-p-toluoyltartaric acid.
AMENDED CLAIMS
[received by the International Bureau on 19 April 2000 (19.04.00); original claim 1 amended; new claim 5 added; remaining claims unchanged (1 page)]
1. A process for preparing a substantially single enantiomer of tramadol, or a pharmaceutically-acceptable salt thereof, which proceeds by means of a classical salt resolution of racemic tramadol using a substantially single enantiomer of 0, O-di-p-toluoyltartaric acid as a resolving agent .
2. A process according to claim 1 for preparing substantially single enantiomer (+) -tramadol , or a pharmaceutically-acceptable salt thereof, which uses 0, 0- di-p-toluoyl-D-tartaric acid as the resolving agent.
3. A process according to claim 1 for preparing substantially single enantiomer (-) -tramadol , or a pharmaceutically-acceptable salt thereof, which uses 0, 0- di-p-toluoyl- -tartaric acid as the resolving agent.
4. A process for increasing the optical purity of enantiomerically-enriched tramadol, which proceeds by means of a classical salt resolution using a substantially single enantiomer of O, O-di-p-toluoyltartaric acid as a resolving agent .
5. A process according to any preceding claim, wherein the racemic tramadol is contaminated with trans-2- dimethylaminomethyl-1- (3-methoxyphenyl) -1-cyclohexanol .
6. A process according to any preceding claim, which further comprises conversion of the salt obtained by the resolution to the free base form of tramadol, or a pharmaceutically-acceptable salt thereof.
7. A diastereometric salt of substantially single enantiomer tramadol and substantially single enantiomer O, O-di-p-toluoyltartaric acid.
PCT/GB1999/003843 1998-12-02 1999-11-18 Process for the resolution of tramadol WO2000032554A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AT99973014T ATE253037T1 (en) 1998-12-02 1999-11-18 METHOD FOR THE RACEMAT CLEAVING OF TRAMADOL
DE69912474T DE69912474D1 (en) 1998-12-02 1999-11-18 PROCESS FOR RACEMATING OF TRAMADOL
KR1020017006815A KR20010112223A (en) 1998-12-02 1999-11-18 Process for the Resolution of Tramadol
AU11708/00A AU747431B2 (en) 1998-12-02 1999-11-18 Process for the resolution of tramadol
BR9915868-0A BR9915868A (en) 1998-12-02 1999-11-18 Process for the decomposition of tramadol
JP2000585196A JP2002531429A (en) 1998-12-02 1999-11-18 Methods for Tramadol Splitting
CA002353549A CA2353549A1 (en) 1998-12-02 1999-11-18 Process for the resolution of tramadol
EP99973014A EP1135357B1 (en) 1998-12-02 1999-11-18 Process for the resolution of tramadol

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB9826540.8A GB9826540D0 (en) 1998-12-02 1998-12-02 Process
GB9826540.8 1998-12-02

Publications (1)

Publication Number Publication Date
WO2000032554A1 true WO2000032554A1 (en) 2000-06-08

Family

ID=10843543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB1999/003843 WO2000032554A1 (en) 1998-12-02 1999-11-18 Process for the resolution of tramadol

Country Status (12)

Country Link
US (1) US6323368B1 (en)
EP (1) EP1135357B1 (en)
JP (1) JP2002531429A (en)
KR (1) KR20010112223A (en)
CN (1) CN1329587A (en)
AT (1) ATE253037T1 (en)
AU (1) AU747431B2 (en)
BR (1) BR9915868A (en)
CA (1) CA2353549A1 (en)
DE (1) DE69912474D1 (en)
GB (1) GB9826540D0 (en)
WO (1) WO2000032554A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001083422A1 (en) * 2000-04-28 2001-11-08 Darwin Discovery Limited Process for the separation of the cis trans diastereoisomers of tramadol
US6780891B2 (en) 2001-11-30 2004-08-24 Sepracor Inc. Tramadol analogs and uses thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4357848B2 (en) 2003-02-12 2009-11-04 株式会社リコー SQUARYLIUM METAL CHEL COMPOUND AND OPTICAL RECORDING MEDIUM
JP2007509856A (en) * 2003-10-27 2007-04-19 スミスクライン ビーチャム コーポレーション Enzyme-catalyzed dynamic kinetic resolution method for preparing (+)-(2S, 3S) -2- (3-chlorophenyl) -3,5,5-trimethyl-2-morpholinol, its salts and solvates
GB0325051D0 (en) * 2003-10-27 2003-12-03 Smithkline Beecham Corp New process
WO2006006071A1 (en) * 2004-07-07 2006-01-19 Pfizer Products Inc. Resolution of an aryl-fused azapolycyclic compound
RU2440993C2 (en) * 2004-10-07 2012-01-27 Вайти Фармасьютикл, Инк. Aspartic protease diaminoalkane inhibitors
EP1785412A1 (en) * 2005-11-14 2007-05-16 IPCA Laboratories Limited Tramadol recovery process
TWI411607B (en) * 2005-11-14 2013-10-11 Vitae Pharmaceuticals Inc Aspartic protease inhibitors
CL2007002689A1 (en) * 2006-09-18 2008-04-18 Vitae Pharmaceuticals Inc COMPOUNDS DERIVED FROM PIPERIDIN-1-CARBOXAMIDA, INHIBITORS OF THE RENINE; INTERMEDIARY COMPOUNDS; PHARMACEUTICAL COMPOSITION; AND USE IN THE TREATMENT OF DISEASES SUCH AS HYPERTENSION, CARDIAC INSUFFICIENCY, CARDIAC FIBROSIS, AMONG OTHERS.
WO2008036216A1 (en) * 2006-09-18 2008-03-27 Vitae Pharmaceuticals, Inc. Piperidine derivatives as renin inhibitors
EP2167609A1 (en) * 2007-06-20 2010-03-31 Vitae Pharmaceuticals, Inc. Renin inhibitors
CN101434552B (en) * 2007-11-16 2012-05-23 江苏恒瑞医药股份有限公司 Method for splitting 4,5- dimethoxy-1-(methyl amino methyl)-benzocyclobutane
AR077692A1 (en) * 2009-08-06 2011-09-14 Vitae Pharmaceuticals Inc SALTS OF 2 - ((R) - (3-CHLOROPHENYL) ((R) -1 - ((S) -2- (METHYLAMINE) -3 - ((R) -TETRAHYDRO-2H-PIRAN-3-IL) PROPILCARBAMOIL ) PIPERIDIN -3-IL) METOXI) METHYL ETILCARBAMATE

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3830934A (en) 1967-07-27 1974-08-20 Gruenenthal Chemie Analgesic and antitussive compositions and methods
DE19601745C1 (en) 1996-01-19 1997-10-09 Gruenenthal Gmbh Process for racemate resolution of tramadol

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FRANKUS, E. ET AL: "Über die Isomerentrennung, Strukturaufklärung und pharmakologische Charakterisierung von 1-(m-Methoxyphenyl)-2-(dimethylaminomethyl)-cyclohexan-1-ol", ARZNEIM.-FORSCH. (1978), 28(1A), 114-21 CODEN: ARZNAD;ISSN: 0004-4172, 1978, XP000644506 *
J. JACQUES ET AL.: "Enantiomers, racemates and resolutions", 1991, KRIEGER PUBLISHING COMPANY, MALABAR, FLORIDA (U.S.A), XP002030514, 20422 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001083422A1 (en) * 2000-04-28 2001-11-08 Darwin Discovery Limited Process for the separation of the cis trans diastereoisomers of tramadol
US6780891B2 (en) 2001-11-30 2004-08-24 Sepracor Inc. Tramadol analogs and uses thereof

Also Published As

Publication number Publication date
AU1170800A (en) 2000-06-19
EP1135357A1 (en) 2001-09-26
CA2353549A1 (en) 2000-06-08
KR20010112223A (en) 2001-12-20
AU747431B2 (en) 2002-05-16
CN1329587A (en) 2002-01-02
GB9826540D0 (en) 1999-01-27
EP1135357B1 (en) 2003-10-29
DE69912474D1 (en) 2003-12-04
JP2002531429A (en) 2002-09-24
ATE253037T1 (en) 2003-11-15
US6323368B1 (en) 2001-11-27
BR9915868A (en) 2001-08-21

Similar Documents

Publication Publication Date Title
EP1135357B1 (en) Process for the resolution of tramadol
JP2014074033A (en) Methods for isolating propargylated aminoindanes
US6965051B2 (en) Process for resolution of tamsulosin and compounds, compositions, and processes associated therewith
JPH09216857A (en) Production of antipode of o-demethyltramadol
JPH11505229A (en) Method for producing 4-aryl-piperidine derivatives
AU2002330776A1 (en) Racemic tamsulosin free base and methods of making the same
JPH10507464A (en) Crystallization of levobupivacaine and its analogs
JPH09216858A (en) Optical resolution of racemic tramadol
US20030092773A1 (en) Process for the separation of the cis trans diasteroisomers of tramadol
CA2638499C (en) Method for manufacture of escitalopram
US7390913B2 (en) Process for the preparation of racemic citalopram diol and/or S- or R-citalopram diols and the use of such diols for the preparation of racemic citalopram, R-citalopram and/or S-citalopram
US11091436B2 (en) Process for the separation of optical isomers of racemic 3-alkylpiperidine-carboxylic acid ethyl esters
US7582752B2 (en) Process for the resolution of nefopam
MXPA01005466A (en) Process for the resolution of tramadol
EP3068746B1 (en) Process for the preparation of enantiomerically pure 1-aminoindan
MXPA06004650A (en) New process for preparing an optically pure 2-morphinol derivative.
EP1905758A1 (en) Tamsulosin free base and recovery process thereof
EP1689725A1 (en) Resolution process for preparing (+)-(2s, 3s)-2-(3-chlorophenyl)-3,3,3-trimethyl-2-morpholinol

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99813993.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2000 11708

Country of ref document: AU

Kind code of ref document: A

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999973014

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11708/00

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2353549

Country of ref document: CA

Ref document number: 2353549

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020017006815

Country of ref document: KR

Ref document number: PA/a/2001/005466

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2000 585196

Country of ref document: JP

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1999973014

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020017006815

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 11708/00

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1999973014

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1020017006815

Country of ref document: KR