WO2000019932A1 - System and method for positioning teeth - Google Patents

System and method for positioning teeth Download PDF

Info

Publication number
WO2000019932A1
WO2000019932A1 PCT/US1999/023599 US9923599W WO0019932A1 WO 2000019932 A1 WO2000019932 A1 WO 2000019932A1 US 9923599 W US9923599 W US 9923599W WO 0019932 A1 WO0019932 A1 WO 0019932A1
Authority
WO
WIPO (PCT)
Prior art keywords
teeth
tooth
method
patient
model
Prior art date
Application number
PCT/US1999/023599
Other languages
French (fr)
Other versions
WO2000019932A9 (en
Inventor
Muhammad Ziaullah Khan Chishti
Andrew Beers
Original Assignee
Align Technology, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
Priority to US09/169,036 priority Critical patent/US6450807B1/en
Priority to US09/169,036 priority
Application filed by Align Technology, Inc. filed Critical Align Technology, Inc.
Publication of WO2000019932A1 publication Critical patent/WO2000019932A1/en
Publication of WO2000019932A9 publication Critical patent/WO2000019932A9/en
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22614020&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2000019932(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C7/00Orthodontics, i.e. obtaining or maintaining the desired position of teeth, e.g. by straightening, evening, regulating, separating, or by correcting malocclusions
    • A61C7/002Orthodontic computer assisted systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C11/00Dental articulators, i.e. for simulating movement of the temporo-mandibular joints; Articulation forms or mouldings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C19/00Dental auxiliary appliances
    • A61C19/04Measuring instruments specially adapted for dentistry
    • A61C19/045Measuring instruments specially adapted for dentistry for recording mandibular movement, e.g. face bows
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C7/00Orthodontics, i.e. obtaining or maintaining the desired position of teeth, e.g. by straightening, evening, regulating, separating, or by correcting malocclusions
    • A61C7/08Mouthpiece-type retainers or positioners, e.g. for both the lower and upper arch

Abstract

Methods and apparatus fit a set of upper and lower teeth in a masticatory system by generating a computer representation (300) of the masticatory system and computing an occlusion (306) based on interactions in the computer representation of the masticatory system.

Description

SYSTEM AND METHOD FOR POSITIONING TEETH

BACKGROUND The present invention is related generally to the field of orthodontics, and more particularly to a system and a method for gradually repositioning teeth.

A fundamental objective in orthodontics is to realign a patient's teeth to positions where the teeth function optimally and aesthetically. Typically, appliances such as braces are applied to the teeth of the patient by a treating orthodontist. Each appliance exerts continual forces on the teeth which gradually urge the teeth toward their ideal positions. Over a period of time, the orthodontist adjusts the appliances to move the teeth toward their final destination.

The process of attaching the braces to teeth is tedious and painful. Additionally, each visit to the orthodontist is time consuming and expensive. The process is further complicated by uncertainties in determining a final arrangement for each tooth. Generally, the final tooth arrangement is determined by the treating orthodontist who writes a prescription. Traditionally, the prescription is based on the orthodontist's knowledge and expertise in selecting the intended final position of each tooth and without a precise calculation of forces being exerted on the teeth when they contact each other.

SUMMARY The invention provides a method for fitting a set of upper and lower teeth in a masticatory system of a patient. The method generates a computer representation of the masticatory system of the patient; and determines an occlusion from the computer representation of the masticatory system.

Implementations of the invention include one or more of the following. The occlusion may be a static occlusion, which is determined by modeling an ideal set of teeth; automatically applying the ideal set of teeth to the computer representation of the masticatory system of the patient; and optimizing the position of the patient's teeth to fit the ideal set of teeth. The modeling step may select one or more arch forms specifying the ideal set of teeth. The applying step may include registering a model of the upper and lower teeth with a model of the masticatory system; simulating the motion of the jaws to generate contact data between the upper and lower teeth; and placing the tooth in a final position based on the contact data. The model may be registered using X-ray data, computed tomography data, or data associated with a mechanical model. The simulating step may apply kinematics to the model of the teeth or a constrained motion to the model of the tooth. The placing step may be based on a measure of undesirability to the contacts. The position of the tooth may be determined according to the measure of undesirability, such as by minimizing the measure of undesirability. The measure of undesirability may be a function of one or more of Peer Assessment Rating (PAR) metrics, distance-based metrics and shape- based metrics. The simulating step may provide a library of motions with protrusive motions, lateral motions, or tooth-guided motions. Physical forces may be applied to the patient's jaws. The computer representation of the masticatory system may be updated with new patient data. The new patient data may be used with the old data in applying a final position transform to the second teeth model. The matching step may compare correspondences between the first and second teeth models. The correspondences include feature correspondences. The final position transform may include information from a new prescription.

Other implementations include one or more of the following. The occlusion determining step includes determining one or more indices based on the tooth position; determining an optimality index from the indices; and setting the tooth according to the optimality index. The optimality determining step includes minimizing the optimality index. The indices may be based on a Peer Assessment Rating (PAR) index, a distance metric, or a shape metric. The shape metric may be derived from an arch. The indices may be based on an occlusional index or an orthodontic index. The setting of the teeth may be based on a correspondence of tooth features, including a correspondence of tooth cusps, tooth fossae, or tooth ridges. The optimality index may be optimized using one of simulated annealing technique, hill climbing technique, best-first technique and heuristics technique. The implementation may determine whether a tooth movement reduces the index. The tooth movement may be made along each major axis and may include rotations. The tooth position may be updated if the tooth movement reduces the index. In a second aspect, a computer-implemented apparatus defines a fit between a set of upper and lower teeth in a masticatory system of a patient. The apparatus comprises instructions operable to cause a programmable processor to generate a computer representation of the masticatory system of the patient; and determining an occlusion from the computer representation of the masticatory system.

Implementations of this aspect include one or more of the following. The invention may determine a static occlusion through instructions to model an ideal set of teeth; automatically apply the ideal set of teeth to the computer representation of the masticatory system of the patient; and optimize the position of the patient's teeth to fit the ideal set of teeth. The occlusion determining instruction may also include instructions to: determine one or more indices based on the tooth position; determine an optimality index from the indices; and set the tooth according to the optimality index.

In another aspect, a system for defining a fit between a set of upper and lower teeth in a masticatory system of a patient includes a processor; a display device coupled to the processor; and a data storage device coupled to the processor, the data storage device storing instructions operable to cause the processor to generate a computer representation of the masticatory system of the patient and determine an occlusion from the computer representation of the masticatory system. In another aspect, a system for generating one or more appliances for a patient includes a processor; a display device coupled to the processor; a data storage device coupled to the processor; a scanner coupled to the processor for providing data to model the masticatory system; means for defining a fit between a set of upper and lower teeth in a masticatory system of the patient; and a dental appliance fabrication machine coupled to the processor for generating the appliances in accordance with the fit of the teeth.

Advantages of the invention include one or more of the following. When a prescription or other final designation is provided, a computer model can be generated and manipulated to match the prescription. The prescription may be automatically interpreted in order to generate an image as well as a digital data set representing the final tooth arrangement. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an elevational diagram showing the anatomical relationship of the jaws of a patient.

FIG. 2 A illustrates in more detail the patient's lower jaw and provides a general indication of how teeth may be moved by the methods and apparatus of the present invention.

FIG. 2B illustrates a single tooth from FIG. 2A and defines how tooth movement distances are determined.

FIG. 2C illustrates the jaw of FIG. 2 A together with an incremental position adjustment appliance which has been configured according to the methods and apparatus of the present invention.

FIG. 3 is a block diagram illustrating a process for producing incremental position adjustment appliances.

FIG. 4 is a flow chart illustrating a process for optimizing a final placement of the patient' s teeth.

FIG. 5 is a flow chart illustrating a process for performing functional occlusion on the patient's teeth.

FIG. 6 is a flow chart illustrating an optional process for incorporating midtreatment information to the final placement of the patient's teeth. FIG. 7 is a block diagram illustrating a system for generating appliances in accordance with the present invention.

DESCRIPTION FIG. 1 shows a skull 10 with an upper jaw bone 22 and a lower jaw bone 20. The lower jaw bone 20 hinges at a joint 30 to the skull 10. The joint 30 is called a temporomandibular joint (TMJ). The upper jaw bone 22 is associated with an upper jaw 101, while the lower jaw bone 20 is associated with a lower jaw 100.

A computer model of the jaws 100 and 101 is generated, and a computer simulation models interactions among the teeth on the jaws 100 and 101. The computer simulation allows the system to focus on motions involving contacts between teeth mounted on the jaws. The computer simulation allows the system to render realistic jaw movements which are physically correct when the jaws 100 and 101 contact each other. The model of the jaw places the individual teeth in a treated position. Further, the model can be used to simulate jaw movements including protrusive motions, lateral motions, and "tooth guided" motions where the path of the lower jaw 100 is guided by teeth contacts rather than by anatomical limits of the jaws 100 and 101. Motions are applied to one j aw, but may also be applied to both j aws. Based on the occlusion determination, the final position of the teeth can be ascertained.

Referring now to FIG. 2 A, the lower jaw 100 includes a plurality of teeth 102, for example. At least some of these teeth may be moved from an initial tooth arrangement to a final tooth arrangement. As a frame of reference describing how a tooth may be moved, an arbitrary centerline (CL) may be drawn through the tooth 102. With reference to this centerline (CL), each tooth may be moved in orthogonal directions represented by axes 104, 106, and 108 (where 104 is the centerline). The centerline may be rotated about the axis 108 (root angulation) and the axis 104 (torque) as indicated by arrows 110 and 112, respectively. Additionally, the tooth may be rotated about the centerline, as represented by an arrow 114. Thus, all possible free-form motions of the tooth can be performed.

FIG. 2B shows how the magnitude of any tooth movement may be defined in terms of a maximum linear translation of any point P on a tooth 102. Each point P, will undergo a cumulative translation as that tooth is moved in any of the orthogonal or rotational directions defined in FIG. 2A. That is, while the point will usually follow a nonlinear path, there is a linear distance between any point in the tooth when determined at any two times during the treatment. Thus, an arbitrary point P, may in fact undergo a true side-to-side translation as indicated by arrow d,, while a second arbitration point P2 may travel along an arcuate path, resulting in a final translation d2. Many aspects of the present invention are defined in terms of the maximum permissible movement of a point P, induced on any particular tooth. Such maximum tooth movement, in turn, is defined as the maximum linear translation of that point Pj on the tooth which undergoes the maximum movement for that tooth in any treatment step.

FIG. 2C shows one adjustment appliance 111 which is worn by the patient in order to achieve an incremental repositioning of individual teeth in the jaw as described generally above. The appliance is a polymeric shell having a teeth receiving cavity. This is described in U.S. Application Serial No. 09/169,036, filed October 8, 1998, which claims priority from U.S. Application Serial No. 08/947,080, filed October 8, 1997, which in turn claims priority from provisional application number 06/050,352, filed June 20, 1997 (collectively the "prior applications"), the full disclosures of which are incorporated by reference.

As set forth in the prior applications, each polymeric shell may be configured so that its tooth receiving cavity has a geometry corresponding to an intermediate or final tooth arrangement intended for the appliance. The patient's teeth are repositioned from their initial tooth arrangement to a final tooth arrangement by placing a series of incremental position adjustment appliances over the patient's teeth. The adjustment appliances are generated at the beginning of the treatment, and the patient wears each appliance until the pressure of each appliance on the teeth can no longer be felt. At that point, the patient replaces the current adjustment appliance with the next adjustment appliance in the series until no more appliance remains.

Conveniently, the appliances are generally not affixed to the teeth and the patient may place and replace the appliances at any time during the procedure. The final appliance or several appliances in the series may have a geometry or geometries selected to overcorrect the tooth arrangement, i.e., have a geometry which would (if fully achieved) move individual teeth beyond the tooth arrangement which has been selected as the "final." Such overcorrection may be desirable in order to offset potential relapse after the repositioning method has been terminated, i.e., to permit some movement of individual teeth back toward their precorrected positions. Overcorrection may also be beneficial to speed the rate of correction, i.e., by having an appliance with a geometry that is positioned beyond a desired intermediate or final position, the individual teeth will be shifted toward the position at a greater rate. In such cases, the use of an appliance can be terminated before the teeth reach the positions defined by the appliance.

The polymeric shell 111 can fit over all teeth present in the upper or lower jaw. Often, only certain one(s) of the teeth will be repositioned while others of the teeth will provide a base or an anchor region for holding the appliance 111 in place as the appliance 111 applies a resilient repositioning force against the tooth or teeth to be repositioned. In complex cases, however, multiple teeth may be repositioned at some point during the treatment. In such cases, the teeth which are moved can also serve as a base or anchor region for holding the repositioning appliance.

The polymeric appliance 111 of FIG. 2C may be formed from a thin sheet of a suitable elastomeric polymer, such as Tru-Tain 0.03 in, thermal forming dental material, available from Tru-Tain Plastics, Rochester, Minnesota. Usually, no wires or other means will be provided for holding the appliance in place over the teeth. In some cases, however, it will be desirable or necessary to provide individual anchors on teeth with corresponding receptacles or apertures in the appliance 100 so that the appliance can apply an upward force on the tooth which would not be possible in the absence of such an anchor.

FIG. 3 shows a process 200 for producing the incremental position adjustment appliances for subsequent use by a patient to reposition the patient's teeth. As a first step, an initial digital data set (IDDS) representing an initial tooth arrangement is obtained (step 202). The IDDS may be obtained in a variety of ways. For example, the patient's teeth may be scanned or imaged using X-rays, three dimensional X-rays, computer-aided tomographic images or data sets, or magnetic resonance images, among others. The teeth data may be generated by a destructive scanner, as described in the incorporated-by-reference U.S. Application Serial No. 09/169,036, filed October 8, 1998.

The IDDS is then manipulated using a computer having a suitable graphical user interface (GUI) and software appropriate for viewing and modifying the images. More specific aspects of this process will be described in detail below.

Individual tooth and other components may be segmented or isolated in the model to permit their individual repositioning or removal from the digital model.

After segmenting or isolating the components, the user will often reposition the tooth in the model by following a prescription or other written specification provided by the treating professional. Alternatively, the user may reposition one or more teeth based on a visual appearance or based on rules and algorithms programmed into the computer. Once the user is satisfied, the final teeth arrangement is incorporated into a final digital data set (FDDS) (step 204). The FDDS is used to generate appliances that move the teeth in a specified sequence. First, the centers of each tooth model may be aligned using a number of methods. One method is a standard arch. Then, the teeth models are rotated until their roots are in the proper vertical position. Next, the teeth models are rotated around their vertical axis into the proper orientation. The teeth models are then observed from the side, and translated vertically into their proper vertical position. Finally, the two arches are placed together, and the teeth models moved slightly to ensure that the upper and lower arches properly mesh together. The meshing of the upper and lower arches together is visualized using a collision detection process to highlight the contacting points of the teeth.

Based on both the IDDS and the FDDS, a plurality of intermediate digital data sets (INTDDSs) are defined to correspond to incrementally adjusted appliances (step 206). Finally, a set of incremental position adjustment appliances are produced based on the INTDDs and the FDDS (step 208).

In step 204, final positions for the upper and lower teeth in a masticatory system of a patient are determined by generating a computer representation of the masticatory system. An occlusion of the upper and lower teeth is computed from the computer representation; and a functional occlusion is computed based on interactions in the computer representation of the masticatory system. The occlusion may be determined by generating a set of ideal models of the teeth. Each ideal model in the set of ideal models is an abstract model of idealized teeth placement which is customized to the patient's teeth, as discussed below. After applying the ideal model to the computer representation, and the position of the teeth is optimized to fit the ideal model. The ideal model may be specified by one or more arch forms, or may be specified using various features associated with the teeth.

FIG. 4 illustrates a process 300 which optimizes the final placement of the teeth based on teeth features. First, the process 300 automatically or, with human assistance, identifies various features associated with each tooth to arrive at a model of the teeth (step 302). An ideal model set of teeth is then generated either from casts of the patient's teeth or from patients with a good occlusion (step 303).

From step 302, the process 300 positions the model of the teeth in its approximate final position based on a correspondence of features to the ideal model (step 304). In that step, each tooth model is moved so that its features are aligned to the features of a corresponding tooth in the ideal model. The features may be based on cusps, fossae, ridges, distance-based metrics, or shape-based metrics. Shape-based metrics may be expressed as a function of the patient's arches, among others.

For example, cusp features associated with each tooth may be used. Cusps are pointed projections on the chewing surface of a tooth. In a detection stage, a possible cusp is viewed as an "island" on the surface of the tooth, with the candidate cusp at the highest point on the island. "Highest" is measured with respect to the coordinate system of the model, but could just as easily be measured with respect to the local coordinate system of each tooth. The set of all possible cusps is determined by looking for all local maxima on the tooth model that are within a specified distance of the top of the bounding box of the model. First, the highest point on the model is designated as the first candidate cusp. A plane is passed through this point, perpendicular to the direction along which the height of a point is measured. The plane is then lowered by a small predetermined distance along the Z axis. Next, all vertices connected to the tooth and which are above the plane and on some connected component are associated with the candidate cusp as cusps. This step is also referred to as a flood fill step. From each candidate cusp point, outward flooding is performed, marking each vertex on the model visited in this matter as part of the corresponding candidate cusp. After the flood fill step is complete, every vertex on the model is examined. Any vertex that is above the plane and has not been visited by one of the flood fills is added to the list of candidate cusps. These steps are repeated until the plane is traveled a specified distance.

After the detection stage, the cusp detection process may include a rejection stage where local geometries around each of cusp candidates are analyzed to determine if they possess non-cusp-like features. Cusp candidates that exhibit non- cusp-like features are removed from the list of cusp candidates. Various criteria may be used to identify non-cusp-like features. According to one test, the local curvature of the surface around the cusp candidate is used to determine whether the candidate possesses non-cusp-like features. Alternatively, a measure of smoothness is computed based on the average normal in an area around the candidate cusp. If the average normal deviates from the normal at the cusp by more than a specified amount, the candidate cusp is rejected.

Next, the process 300 computes an orthodontic/occlusion index (step 306). One index which may be used is the PAR (Peer Assessment Rating) index. In addition to PAR, other metrics such as shape-based metrics or distance-based metrics may be used.

The PAR index identifies how far a tooth is from a good occlusion. A score is assigned to various occlusal traits which make up a malocclusion. The individual scores are summed to obtain an overall total, representing the degree a case deviates from normal alignment and occlusion. Normal occlusion and alignment is defined as all anatomical contact points being adjacent, with a good intercuspal mesh between upper and lower buccal teeth, and with nonexcessive overjet and overbite. In PAR, a score of zero would indicate good alignment, and higher scores would indicate increased levels of irregularity. The overall score is recorded on pre- and posttreatment dental casts. The difference between these scores represents the degree of improvement as a result of orthodontic intervention and active treatment. The eleven components of the PAR Index are: upper right segment; upper anterior segment; upper left segment; lower right segment; lower anterior segment; lower left segment; right buccal occlusion; overjet; overbite; centerline; and left buccal occlusion. In addition to the PAR index, other indices may be based on distances of the features on the tooth from their ideal positions or ideal shapes.

From step 306, the process 300 determines whether additional index-reducing movements are possible (step 308). Here, all possible movements are attempted, including small movements along each major axis as well as small movements with minor rotations. An index value is computed after each small movement and the movement with the best result is selected. In this context, the best result is the result that minimizes one or more metrics such as PAR-based metrics, shape-based metrics or distance-based metrics. The optimization may use a number of techniques, including simulated annealing technique, hill climbing technique, best-first technique, Powell method, and heuristics technique, among others. Simulated annealing techniques may be used where the index is temporarily increased so that another path in the search space with a lower minimum may be found. However, by starting with the teeth in an almost ideal position, any decrease in the index should converge to the best result. In step 308, if the index can be optimized by moving the tooth, incremental index-reducing movement inputs are added (step 310) and the process loops back to step 306 to continue computing the orthodontic/occlusion index. Alternatively, in the event that the index cannot be optimized any more, the process 300 exits (step 312). Turning now to FIG. 5, a process 320 for performing functional occlusion is shown. Functional occlusion is a process for determining how well the teeth fit together when the jaws move. The process 320 first acquires tooth/arch jaw registration. This may be done using conventional techniques such as X-ray, a computer tomography, or a mechanical device such as a face bow transfer. After acquiring the registration information, the process 320 places digital dental models of the teeth in a digital articulation simulator (step 324). The articulation simulator allows a subset of jaw movements such as bite-movements to be simulated, as described below.

From step 324, the process 320 simulates jaw motions (step 326). A simplified set of movement physics (kinematics) is applied to the dental models. The process 320 performs a simulation using a simplified set of interacting forces on the jaws 100 and 101 in relation to one another. The simplified physical simulation allows the system to focus on motions involving much contact between the jaws. The physical simulation allows the system to render realistic physically correct jaw movements when the jaws 100 and 101 come into contact with each other.

A range of simulated motion may be supplied using a library of motions. One typical motion supplied by the library is a protrusive motion where the lower jaw 101 is moved forward and backward to bring the front teeth on both jaws into contact with each other. Another motion is a lateral motion found in food chewing. The lateral motion involves moving the jaws 100 and 101 side to side. Other motions that may be supplied in the library include motions that are "tooth guided" where the path of the lower jaw 100 is guided by the teeth in contact with each other.

Next, the process 320 adjusts the final position based on contacts observed during the simulation of motions in step 326 (step 328). The result of the simulation is analyzed, the position of each tooth can be adjusted if contacts associated with that tooth are deemed excessive.

Finally, based on the contact data generated, the process determines whether additional motion simulations need to be done. The motion simulation may be rerun until the contacts associated with each tooth are acceptable to the treating orthodontist. The tooth model manipulation process can be done subjectively, i.e., the user may simply reposition teeth in an aesthetically and/or therapeutically desired manner based on observations of the final position or based on the simulation of contacts. Alternatively, rules and algorithms may be used to assist the user in repositioning the teeth based on the contacts. If the simulation needs to be repeated, the process loops back to step 326 (step 330). Alternatively, the process exits (step 332). FIG. 6 shows an optional process of 340 of incorporating midtreatment information to the final positioning process. First, a digital model incorporating dental information associated with the patient is generated from a scan of the patient's teeth (step 342). The scan may be performed using casts, X-rays or any of the conventional scanning methods. Next, the digital model is segmented into one model for each tooth (step 344).

Each tooth is then matched against a model associated with a prior scan developed at the beginning of the treatment plan (step 346). The matching process is based on matching corresponding points between the current scan and the prior scan of the teeth. In most cases, the teeth segmented from the current scan retain the shapes determined at the beginning of the treatment plan, and the matching process is easy because the models should be similar to each other.

A final position transform is then applied to the new teeth model (step 348). The final position and specification from the prior model is copied to the current model of the patient, and the final position is adjusted based on the new models, the new X-ray information or a new prescription (step 350). Step 350 basically involves rerunning the minimization process 300 (FIG. 4) described previously with the new information, which may be a slight change in the model, a change in the X-ray scan, or a change the prescription. Finally, the process 340 exits (step 352).

FIG. 7 is a simplified block diagram of a data processing system 500. Data processing system 500 typically includes at least one processor 502 which communicates with a number of peripheral devices over bus subsystem 504. These peripheral devices typically include a storage subsystem 506 (memory subsystem 508 and file storage subsystem 514), a set of user interface input and output devices 518, and an interface to outside networks 516, including the public switched telephone network. This interface is shown schematically as "Modems and Network Interface" block 516, and is coupled to corresponding interface devices in other data processing systems over communication network interface 524. Data processing system 500 may include a terminal or a low-end personal computer or a high-end personal computer, workstation or mainframe.

The user interface input devices typically include a keyboard and may further include a pointing device and a scanner. The pointing device may be an indirect pointing device such as a mouse, trackball, touchpad, or graphics tablet, or a direct pointing device such as a touchscreen incorporated into the display. Other types of user interface input devices, such as voice recognition systems, may be used.

User interface output devices may include a printer and a display subsystem, which includes a display controller and a display device coupled to the controller. The display device may be a cathode ray tube (CRT), a flat-panel device such as a liquid crystal display (LCD), or a projection device. The display subsystem may also provide nonvisual display such as audio output.

Storage subsystem 506 maintains the basic programming and data constructs that provide the functionality of the present invention. The software modules discussed above are typically stored in storage subsystem 506. Storage subsystem 506 typically comprises memory subsystem 508 and file storage subsystem 514.

Memory subsystem 508 typically includes a number of memories including a main random access memory (RAM) 510 for storage of instructions and data during program execution and a read only memory (ROM) 512 in which fixed instructions are stored. In the case of Macintosh-compatible personal computers the ROM would include portions of the operating system; in the case of IBM-compatible personal computers, this would include the BIOS (basic input/output system).

File storage subsystem 514 provides persistent (nonvolatile) storage for program and data files, and typically includes at least one hard disk drive and at least one floppy disk drive (with associated removable media). There may also be other devices such as a CD-ROM drive and optical drives (all with their associated removable media). Additionally, the system may include drives of the type with removable media cartridges. The removable media cartridges may, for example be hard disk cartridges, such as those marketed by Syquest and others, and flexible disk cartridges, such as those marketed by Iomega. One or more of the drives may be located at a remote location, such as in a server on a local area network or at a site on the Internet's World Wide Web.

In this context, the term "bus subsystem" is used generically so as to include any mechanism for letting the various components and subsystems communicate with each other as intended. With the exception of the input devices and the display, the other components need not be at the same physical location. Thus, for example, portions of the file storage system could be connected over various local-area or wide-area network media, including telephone lines. Similarly, the input devices and display need not be at the same location as the processor, although it is anticipated that the present invention will most often be implemented in the context of PCS and workstations. Bus subsystem 504 is shown schematically as a single bus, but a typical system has a number of buses such as a local bus and one or more expansion buses (e.g., ADB, SCSI, ISA, EISA, MCA, NuBus, or PCI), as well as serial and parallel ports. Network connections are usually established through a device such as a network adapter on one of these expansion buses or a modem on a serial port. The client computer may be a desktop system or a portable system.

Scanner 520 is responsible for scanning casts of the patient's teeth obtained either from the patient or from an orthodontist and providing the scanned digital data set information to data processing system 500 for further processing. In a distributed environment, scanner 520 may be located at a remote location and communicate scanned digital data set information to data processing system 500 over network interface 524.

Fabrication machine 522 fabricates dental appliances based on intermediate and final data set information received from data processing system 500. In a distributed environment, fabrication machine 522 may be located at a remote location and receive data set information from data processing system 500 over network interface 524.

Various alternatives, modifications, and equivalents may be used in lieu of the above components. Although the final position of the teeth may be determined using computer-aided techniques, a user may move the teeth into their final positions by independently manipulating one or more teeth while satisfying the constraints of the prescription. Additionally, the techniques described here may be implemented in hardware or software, or a combination of the two. The techniques may be implemented in computer programs executing on programmable computers that each includes a processor, a storage medium readable by the processor (including volatile and nonvolatile memory and/or storage elements), and suitable input and output devices. Program code is applied to data entered using an input device to perform the functions described and to generate output information. The output information is applied to one or more output devices.

Each program can be implemented in a high level procedural or object- oriented programming language to operate in conjunction with a computer system. However, the programs can be implemented in assembly or machine language, if desired. In any case, the language may be a compiled or interpreted language.

Each such computer program can be stored on a storage medium or device (e.g., CD-ROM, hard disk or magnetic diskette) that is readable by a general or special purpose programmable computer for configuring and operating the computer when the storage medium or device is read by the computer to perform the procedures described. The system also may be implemented as a computer-readable storage medium, configured with a computer program, where the storage medium so configured causes a computer to operate in a specific and predefined manner.

Further, while the invention has been shown and described with reference to an embodiment thereof, those skilled in the art will understand that the above and other changes in form and detail may be made without departing from the spirit and scope of the following claims.

Claims

WHAT IS CLAIMED IS:
1. A method for fitting a set of upper and lower teeth in a masticatory system of a patient, comprising: generating a computer representation of the masticatory system of the patient; and determining an occlusion from the computer representation of the masticatory system.
2. The method of claim 1 , wherein the occlusion is a static occlusion, further comprising: modeling an ideal set of teeth; automatically applying the ideal set of teeth to the computer representation of the masticatory system of the patient; and optimizing the position of the patient's teeth to fit the ideal set of teeth.
3. The method of claim 2, wherein the modeling step further comprises selecting one or more arch forms specifying the ideal set of teeth.
4. The method of claim 2, wherein the masticatory system includes jaws and wherein the applying step includes: registering a model of the upper and lower teeth with a model of the masticatory system; simulating the motion of the jaws to generate contact data between the upper and lower teeth; and placing a tooth in a final position based on the contact data.
5. The method of claim 4, wherein the model is registered using X-ray data.
6. The method of claim 4, wherein the model is registered using computedtomography data.
7. The method of claim 4, wherein the model is registered using data associated with a mechanical model.
8. The method of claim 4, wherein the simulating step further comprises applying kinematics to the model of the teeth.
9. The method of claim 4, wherein the simulating step further comprises applying a constrained motion to the model of the tooth.
10. The method of claim 4, wherein the placing step is based on a measure of undesirability to the contacts.
11. The method of claim 10, further comprising optimizing the position of the tooth according to the measure of undesirability.
12. The method of claim 11 , further comprising minimizing the measure of undesirability.
13. The method of claim 12, wherein the measure of undesirability is a function of one or more of Peer Assessment Rating (PAR) metrics, distance-based metrics and shape-based metrics.
14. The method of claim 4, wherein the simulating step includes providing a library of motions.
15. The method of claim 14, wherein the library of motions includes a protrusive motion.
16. The method of claim 14, wherein the library of motions includes a lateral motion.
17. The method of claim 14, wherein the library of motions includes tooth- guided motions.
18. The method of claim 4, wherein the simulating step includes applying physical forces to one jaw.
19. The method of claim 4, wherein the placing step further includes updating the computer representation of the masticatory system with new patient data.
20. The method of claim 19, wherein the patient has a first teeth model, further comprising: scanning the teeth of the patient to generate a second teeth model; matching the second teeth model with the first teeth model; applying a final position transform to the second teeth model; and adjusting the position of teeth in the second model based on new information.
21. The method of claim 20, wherein the matching step compares correspondences between the first and second teeth models.
22. The method of claim 21 , wherein the correspondences include feature correspondences.
23. The method of claim 20, wherein the new information includes information from a new prescription.
24. The method of claim 1 , wherein each tooth has a position, wherein the occlusion determining step further comprises: determining one or more indices based on the tooth position; determining an optimality index from the indices; and setting the tooth according to the optimality index.
25. The method of claim 24, wherein the optimality determining step includes minimizing the optimality index.
26. The method of claim 24, wherein the indices are based on a Peer Assessment Rating (PAR) index.
27. The method of claim 24, wherein the indices are based on a distance metric.
28. The method of claim 24, wherein the indices are based on a shape metric.
29. The method of claim 28, wherein the shape metric is derived from an arch.
30. The method of claim 24, wherein the indices are based on an occlusional index.
31. The method of claim 24, wherein the indices are based on an orthodontic index.
32. The method of claim 24, wherein each tooth has one or more features and wherein the setting of the tooth is based on a correspondence of tooth features.
33. The method of claim 24, wherein each tooth has one or more cusps and wherein the setting of the tooth is based on a correspondence of tooth cusps.
34. The method of claim 24, wherein each tooth has one or more fossae and wherein the setting of the tooth is based on a correspondence of tooth fossae.
35. The method of claim 24, wherein each tooth has one or more ridges and wherein the setting of the tooth is based on a correspondence of tooth ridges.
36. The method of claim 24, wherein the optimality index is computed using one of simulated annealing technique, hill climbing technique, best-first technique and heuristics technique.
37. The method of claim 24, further comprising determining whether a tooth movement reduces the index.
38. The method of claim 37, wherein the tooth movement is made along each major axis.
39. The method of claim 37, wherein the tooth movement includes tooth rotations.
40. The method of claim 37, further comprising updating the tooth position if the tooth movement reduces the index.
41. A computer-implemented apparatus for defining a fit between a set of upper and lower teeth in a masticatory system of a patient, the apparatus comprising instructions operable to cause a programmable processor to: generate a computer representation of the masticatory system of the patient; and determine an occlusion from the computer representation of the masticatory system.
42. The apparatus of claim 41 , wherein the occlusion is a static occlusion, further comprising instructions to: model an ideal set of teeth; automatically apply the ideal set of teeth to the computer representation of the masticatory system of the patient; and optimize the position of the patient's teeth to fit the ideal set of teeth.
43. The apparatus of claim 41 , wherein each tooth has a position, wherein the occlusion determining instruction further comprises instructions to: determine one or more indices based on the tooth position; determine an optimality index from the indices; and set the tooth according to the optimality index.
44. A system for defining a fit between a set of upper and lower teeth in a masticatory system of a patient, comprising: a processor; a display device coupled to the processor; and a data storage device coupled to the processor, the data storage device storing instructions operable to cause the processor to: generate a computer representation of the masticatory system of the patient; and determine an occlusion from the computer representation of the masticatory system.
45. The system of claim 44, wherein the occlusion is a static occlusion, further comprising instructions to: model an ideal set of teeth; automatically apply the ideal set of teeth to the computer representation of the masticatory system of the patient; and optimize the position of the patient's teeth to fit the ideal set of teeth.
46. The system of claim 44, wherein each tooth has a position, wherein the occlusion determining instruction further comprises instructions to: determine one or more indices based on the tooth position; determine an optimality index from the indices; and set the tooth according to the optimality index.
47. A system for generating one or more appliances for a patient, comprising: a processor; a display device coupled to the processor; a data storage device coupled to the processor; a scanner coupled to the processor for providing data to model the masticatory system; means for defining a fit between a set of upper and lower teeth in a masticatory system of the patient; and means for fabricating a dental appliance coupled to the processor for generating the appliances in accordance with the fit of the teeth.
48. The system of claim 47, wherein the means for defining a fit further comprises: means for generating a computer representation of the masticatory system of the patient; and means for determining an occlusion from the computer representation of the masticatory system.
PCT/US1999/023599 1997-06-20 1999-10-08 System and method for positioning teeth WO2000019932A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/169,036 US6450807B1 (en) 1997-06-20 1998-10-08 System and method for positioning teeth
US09/169,036 1998-10-08

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE69941932T DE69941932D1 (en) 1998-10-08 1999-10-08 Method and device for designing orthodontic appliances
EP19990954825 EP1178760B1 (en) 1998-10-08 1999-10-08 Method and apparatus for designing orthodontic appliances
JP2000573295A JP3618082B2 (en) 1998-10-08 1999-10-08 System and method for positioning teeth
CA 2346784 CA2346784A1 (en) 1998-10-08 1999-10-08 System and method for positioning teeth
AT99954825T AT454858T (en) 1998-10-08 1999-10-08 Method and device for designing orthodontic devices
AU11081/00A AU1108100A (en) 1998-10-08 1999-10-08 System and method for positioning teeth

Publications (2)

Publication Number Publication Date
WO2000019932A1 true WO2000019932A1 (en) 2000-04-13
WO2000019932A9 WO2000019932A9 (en) 2000-09-14

Family

ID=22614020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/023599 WO2000019932A1 (en) 1997-06-20 1999-10-08 System and method for positioning teeth

Country Status (10)

Country Link
US (6) US6450807B1 (en)
EP (1) EP1178760B1 (en)
JP (1) JP3618082B2 (en)
AR (2) AR022679A1 (en)
AT (1) AT454858T (en)
AU (1) AU1108100A (en)
CA (1) CA2346784A1 (en)
DE (1) DE69941932D1 (en)
ES (1) ES2338286T3 (en)
WO (1) WO2000019932A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002054974A3 (en) * 2000-12-22 2003-01-09 Geodigm Corp Mating parts scanning and registration methods
JP2011156416A (en) * 2000-04-25 2011-08-18 Align Technology Inc System and method for dental treatment planning
EP2604220A4 (en) * 2010-08-10 2015-08-12 Hidefumi Ito Information processing device, information processing method and program

Families Citing this family (153)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5766006A (en) * 1995-06-26 1998-06-16 Murljacic; Maryann Lehmann Tooth shade analyzer system and methods
US6450807B1 (en) 1997-06-20 2002-09-17 Align Technology, Inc. System and method for positioning teeth
US5975893A (en) * 1997-06-20 1999-11-02 Align Technology, Inc. Method and system for incrementally moving teeth
US8496474B2 (en) * 1997-06-20 2013-07-30 Align Technology, Inc. Computer automated development of an orthodontic treatment plan and appliance
JP4230113B2 (en) 1998-11-03 2009-02-25 シェード アナライジング テクノロジーズ インコーポレイテッド Interactive dental treatment network
US8790118B2 (en) * 1998-11-03 2014-07-29 Shade Analyzing Technologies, Inc. Interactive dental restorative network
US6406292B1 (en) 1999-05-13 2002-06-18 Align Technology, Inc. System for determining final position of teeth
US8821158B1 (en) 1999-10-14 2014-09-02 Geodigm Corporation Method and apparatus for matching digital three-dimensional dental models with digital three-dimensional cranio-facial CAT scan records
US7471821B2 (en) * 2000-04-28 2008-12-30 Orametrix, Inc. Method and apparatus for registering a known digital object to scanned 3-D model
US7296996B2 (en) * 1999-11-30 2007-11-20 Orametrix, Inc. Virtual bracket placement and evaluation
US7537586B2 (en) * 2000-02-15 2009-05-26 The Procter & Gamble Company Active change aids for external articles
AU5565501A (en) * 2000-04-25 2001-11-07 Align Technology Inc Treatment analysis systems and methods
US7580846B2 (en) 2001-01-09 2009-08-25 Align Technology, Inc. Method and system for distributing patient referrals
US7347686B2 (en) 2002-01-22 2008-03-25 Geodigm Corporation Method and apparatus using a scanned image for marking bracket locations
US7245750B2 (en) * 2002-01-22 2007-07-17 Geodigm Corporation Method and apparatus for automatically determining the location of individual teeth within electronic model images
US7387511B2 (en) * 2002-01-22 2008-06-17 Geodigm Corporation Method and apparatus using a scanned image for automatically placing bracket in pre-determined locations
US7716024B2 (en) 2002-04-29 2010-05-11 Geodigm Corporation Method and apparatus for electronically generating a color dental occlusion map within electronic model images
US20030220778A1 (en) * 2002-04-29 2003-11-27 Hultgren Bruce Willard Method and apparatus for electronically simulating jaw function within electronic model images
ES2627430T3 (en) 2004-03-04 2017-07-28 Align Technology, Inc. Orthodontic Union Template
US7261533B2 (en) * 2003-10-21 2007-08-28 Align Technology, Inc. Method and apparatus for manufacturing dental aligners
US7354270B2 (en) 2003-12-22 2008-04-08 Align Technology, Inc. Surgical dental appliance
US7412298B2 (en) * 2004-02-13 2008-08-12 Presswood Ronald G Method and system for morphometric analysis of human dental occlusal function and uses thereof
US9492245B2 (en) 2004-02-27 2016-11-15 Align Technology, Inc. Method and system for providing dynamic orthodontic assessment and treatment profiles
US7702492B2 (en) 2004-03-11 2010-04-20 Geodigm Corporation System and method for generating an electronic model for a dental impression having a common coordinate system
US7824346B2 (en) * 2004-03-11 2010-11-02 Geodigm Corporation Determining condyle displacement utilizing electronic models of dental impressions having a common coordinate system
US7481647B2 (en) * 2004-06-14 2009-01-27 Align Technology, Inc. Systems and methods for fabricating 3-D objects
EP1755478B1 (en) * 2004-06-18 2010-09-08 DENTSPLY International Inc. Prescribed orthodontic activators
US20060073433A1 (en) * 2004-06-18 2006-04-06 Anderson Michael C Thermoforming plastic sheets for dental products
JP2008507383A (en) * 2004-07-26 2008-03-13 デンツプライ インターナショナル インコーポレーテッド Orthodontic treatment methods and systems tailored to each individual
US20060141420A1 (en) * 2004-09-14 2006-06-29 Dentsply Research And Development Corp. Notched pontic and system for fabricating dental appliance for use therewith
US20060093993A1 (en) * 2004-11-02 2006-05-04 Huafeng Wen Producing a base for physical dental arch model
US20060093987A1 (en) * 2004-11-02 2006-05-04 Huafeng Wen Producing an adjustable physical dental arch model
US20060099545A1 (en) * 2004-11-08 2006-05-11 3M Innovative Properties Company Methods of orthodontic treatment
US7234936B2 (en) * 2004-11-08 2007-06-26 3M Innovative Properties Company Orthodontic systems with resilient appliances
US6976627B1 (en) 2004-11-12 2005-12-20 Align Technology, Inc. Identification of units in customized production
ES2370405T3 (en) * 2004-11-17 2011-12-15 Dentsply International, Inc. Plastic sheets for thermoconforming of dental products.
US20060127854A1 (en) * 2004-12-14 2006-06-15 Huafeng Wen Image based dentition record digitization
US20060127836A1 (en) * 2004-12-14 2006-06-15 Huafeng Wen Tooth movement tracking system
US20060127852A1 (en) * 2004-12-14 2006-06-15 Huafeng Wen Image based orthodontic treatment viewing system
US7442040B2 (en) * 2005-01-13 2008-10-28 Align Technology, Inc. Template for veneer application
US7374421B2 (en) * 2005-03-31 2008-05-20 Frederick Solomon System and method for improved control of tooth movement with elastic repositioning appliances
US20070026358A1 (en) * 2005-07-26 2007-02-01 Schultz Charles J Two-phase invisible orthodontics
JP4899064B2 (en) 2005-08-19 2012-03-21 国立大学法人 岡山大学 Teeth occlusion correction support device, program, and recording medium
TW200724105A (en) * 2005-12-29 2007-07-01 Pou Yuen Technology Co Ltd Manufacturing method of digital plaster cast
US7746339B2 (en) * 2006-07-14 2010-06-29 Align Technology, Inc. System and method for automatic detection of dental features
US7690917B2 (en) 2006-08-17 2010-04-06 Geodigm Corporation Bracket alignment device
US8038444B2 (en) 2006-08-30 2011-10-18 Align Technology, Inc. Automated treatment staging for teeth
WO2008051129A1 (en) 2006-10-27 2008-05-02 Nobel Biocare Services Ag A dental impression tray for use in obtaining an impression of a dental structure
KR101340971B1 (en) 2006-10-27 2013-12-12 노벨 바이오케어 서비시스 아게 Method and apparatus for obtaining data for a dental component and a physical dental model
WO2008066891A2 (en) * 2006-11-28 2008-06-05 Sensable Technologies, Inc. Systems for haptic design of dental restorations
KR100854634B1 (en) 2006-11-29 2008-08-27 강릉대학교산학협력단 Automatic tooth movement measuring method employing three dimensional reverse engineering technique
EP1982652A1 (en) 2007-04-20 2008-10-22 Medicim NV Method for deriving shape information
US8075306B2 (en) 2007-06-08 2011-12-13 Align Technology, Inc. System and method for detecting deviations during the course of an orthodontic treatment to gradually reposition teeth
EP3158967A1 (en) 2007-06-08 2017-04-26 Align Technology, Inc. Treatment planning and progress tracking system and methods
US8562338B2 (en) 2007-06-08 2013-10-22 Align Technology, Inc. Treatment progress tracking and recalibration
US9060829B2 (en) 2007-06-08 2015-06-23 Align Technology, Inc. Systems and method for management and delivery of orthodontic treatment
US10342638B2 (en) 2007-06-08 2019-07-09 Align Technology, Inc. Treatment planning and progress tracking systems and methods
US20090081604A1 (en) * 2007-09-20 2009-03-26 Coleman Fisher Method for Repositioning Teeth
US7871269B2 (en) * 2007-10-04 2011-01-18 Align Technology, Inc. Injection impression tray
NZ585015A (en) 2007-11-27 2011-10-28 Clearsmile Holdings Pty Ltd A dental appliance elastically deformable to apply a correction force at a base of the crown
CN102083387A (en) 2008-01-23 2011-06-01 森瑟博科技有限公司 Haptically enabled dental modeling system
US8899977B2 (en) 2008-01-29 2014-12-02 Align Technology, Inc. Orthodontic repositioning appliances having improved geometry, methods and systems
GB0807754D0 (en) * 2008-04-29 2008-06-04 Materialise Dental Nv Method to determine the impact of a prposed dental modification on the temporomandobular joint
WO2009140582A2 (en) * 2008-05-16 2009-11-19 Geodigm Corporation Method and apparatus for combining 3d dental scans with other 3d data sets
US9492243B2 (en) 2008-05-23 2016-11-15 Align Technology, Inc. Dental implant positioning
US20100075269A1 (en) * 2008-09-22 2010-03-25 Ortho Organizers, Inc. Accessory mounting clip for orthodontic aligner trays
WO2010059988A1 (en) 2008-11-20 2010-05-27 Align Technology, Inc. Orthodontic systems and methods including parametric attachments
US8936463B2 (en) 2008-11-24 2015-01-20 Align Technology, Inc. Dental appliance with simulated teeth and method for making
US20100291505A1 (en) * 2009-01-23 2010-11-18 Curt Rawley Haptically Enabled Coterminous Production of Prosthetics and Patient Preparations in Medical and Dental Applications
KR101067989B1 (en) 2009-06-30 2011-09-26 이한나 System and Method for Tooth Cosmeticby Using Minimum Tooth Remove and Recording Medium
US8419430B2 (en) * 2009-11-05 2013-04-16 Yan Pogorelsky System and method for incrementally moving teeth
US20110104640A1 (en) * 2009-11-05 2011-05-05 Yan Pogorelsky System and method for aligning teeth
US8491305B2 (en) * 2009-11-05 2013-07-23 Yan Pogorelsky System and method for aligning teeth
US9375303B1 (en) 2010-04-15 2016-06-28 Zimmer, Inc. Methods of ordering and manufacturing orthopedic components
US20110269092A1 (en) 2010-04-30 2011-11-03 Align Technology, Inc. Reinforced aligner hooks
US9241774B2 (en) 2010-04-30 2016-01-26 Align Technology, Inc. Patterned dental positioning appliance
EP2389892A1 (en) * 2010-05-27 2011-11-30 3M Innovative Properties Company A method in the making of a dental restoration
US9700425B1 (en) 2011-03-20 2017-07-11 Nuvasive, Inc. Vertebral body replacement and insertion methods
US9108338B2 (en) 2011-04-13 2015-08-18 Align Technology, Inc. Methods and systems for thermal forming an object
US9403238B2 (en) 2011-09-21 2016-08-02 Align Technology, Inc. Laser cutting
CN103889364A (en) * 2011-09-28 2014-06-25 奥姆科公司 Orthodontic appliance
US8641414B2 (en) 2011-10-10 2014-02-04 Align Technology, Inc. Automatic placement of precision cuts
US9022781B2 (en) 2012-02-15 2015-05-05 Align Technology, Inc. Orthodontic appliances that accommodate incremental and continuous tooth movement, systems and methods
US8594408B2 (en) * 2012-04-17 2013-11-26 Poly Virtual Occlusion, LLC Systems and methods for analyzing dynamic dental occlusions and making dental appliances
US9414897B2 (en) 2012-05-22 2016-08-16 Align Technology, Inc. Adjustment of tooth position in a virtual dental model
CH709323B1 (en) * 2013-01-02 2018-06-29 Geniova Tech S L Removable lingual-vestibular dental alignment device and method of manufacturing the same
EP2981228A4 (en) 2013-04-05 2017-01-04 Cassalia, Benjamin Orthodontic wire alignment system and method
GB201319341D0 (en) 2013-11-01 2013-12-18 Tal Nimrod Orthodontic device
US20150157423A1 (en) * 2013-12-11 2015-06-11 Samuel Charles Muslin Providing non-invasive facial support and facial proportioning
EP3099266A1 (en) 2014-01-31 2016-12-07 Align Technology, Inc. Orthodontic appliances with elastics
US10555792B2 (en) 2014-01-31 2020-02-11 Align Technology, Inc. Direct fabrication of orthodontic appliances with elastics
US10537406B2 (en) 2014-02-21 2020-01-21 Align Technology, Inc. Dental appliance with repositioning jaw elements
US10463823B2 (en) 2014-03-10 2019-11-05 Morpheus Medical Solutions, LLC Facial mask and method of making
US10471703B2 (en) 2014-03-10 2019-11-12 Morpheus Medical Solutions, LLC Facial mask and method of making
US20150265376A1 (en) 2014-03-21 2015-09-24 Align Technology, Inc. Segmented orthodontic appliance with elastics
EP3157459A1 (en) 2014-06-20 2017-04-26 Align Technology, Inc. Elastic-coated orthodontic appliance
CN106572895B (en) 2014-06-20 2020-06-09 阿莱恩技术有限公司 Orthotic with elastic layer
US9675430B2 (en) 2014-08-15 2017-06-13 Align Technology, Inc. Confocal imaging apparatus with curved focal surface
US10449016B2 (en) 2014-09-19 2019-10-22 Align Technology, Inc. Arch adjustment appliance
US9610141B2 (en) 2014-09-19 2017-04-04 Align Technology, Inc. Arch expanding appliance
US9744001B2 (en) 2014-11-13 2017-08-29 Align Technology, Inc. Dental appliance with cavity for an unerupted or erupting tooth
WO2016090476A1 (en) * 2014-12-08 2016-06-16 Claronav Inc. Appliance for dental navigation
EP3240496A4 (en) 2014-12-30 2018-07-18 3M Innovative Properties Company Dental appliance providing exposed occlusal surfaces
US20160193014A1 (en) 2015-01-05 2016-07-07 Align Technology, Inc. Method to modify aligner by modifying tooth position
US10517701B2 (en) 2015-01-13 2019-12-31 Align Technology, Inc. Mandibular advancement and retraction via bone anchoring devices
US10537463B2 (en) 2015-01-13 2020-01-21 Align Technology, Inc. Systems and methods for positioning a patient's mandible in response to sleep apnea status
US10588776B2 (en) 2015-01-13 2020-03-17 Align Technology, Inc. Systems, methods, and devices for applying distributed forces for mandibular advancement
US10504386B2 (en) 2015-01-27 2019-12-10 Align Technology, Inc. Training method and system for oral-cavity-imaging-and-modeling equipment
CA2976592A1 (en) * 2015-02-23 2016-09-01 Align Technology, Inc. Primer aligner stages for lag issue resolution in low-stage clear aligner treatments
US20160310235A1 (en) 2015-04-24 2016-10-27 Align Technology, Inc. Comparative orthodontic treatment planning tool
WO2017007964A1 (en) 2015-07-07 2017-01-12 Align Technology, Inc. Orthodontic appliances with variable properties and integrally formed components
WO2017006178A1 (en) 2015-07-07 2017-01-12 Align Technology, Inc. Systems, apparatuses and methods for substance delivery from dental appliances and for ornamental designs on dental appliances
US20170007365A1 (en) 2015-07-07 2017-01-12 Align Technology, Inc. Direct fabrication of aligners with interproximal force coupling
US20170007360A1 (en) 2015-07-07 2017-01-12 Align Technology, Inc. Systems, apparatuses and methods for dental appliances with integrally formed features
US20170007366A1 (en) 2015-07-07 2017-01-12 Align Technology, Inc. Direct fabrication of aligners for arch expansion
US20170007368A1 (en) 2015-07-07 2017-01-12 Align Technology, Inc. Direct fabrication of attachment templates with adhesive
US10248883B2 (en) 2015-08-20 2019-04-02 Align Technology, Inc. Photograph-based assessment of dental treatments and procedures
US10548690B2 (en) 2015-10-07 2020-02-04 uLab Systems, Inc. Orthodontic planning systems
US10357336B2 (en) 2015-10-07 2019-07-23 uLab Systems, Inc. Systems and methods for fabricating dental appliances or shells
US10335250B2 (en) 2015-10-07 2019-07-02 uLab Systems, Inc. Three-dimensional printed dental appliances using lattices
US10624717B2 (en) 2015-10-07 2020-04-21 Ulab Systems Inc. Tooth modeling system
US10631953B2 (en) 2015-10-07 2020-04-28 uLab Systems, Inc. Three-dimensional printed dental appliances using support structures
CN109069225A (en) 2016-03-28 2018-12-21 阿莱恩技术有限公司 System, method and apparatus for predictable orthodontic treatment
EP3471653A4 (en) 2016-06-17 2019-12-25 Align Technology, Inc. Orthodontic appliance performance monitor
US10470847B2 (en) 2016-06-17 2019-11-12 Align Technology, Inc. Intraoral appliances with sensing
CN107661159A (en) 2016-07-27 2018-02-06 阿莱恩技术有限公司 Intraoral scanner with dental diagnosis ability
US10507087B2 (en) 2016-07-27 2019-12-17 Align Technology, Inc. Methods and apparatuses for forming a three-dimensional volumetric model of a subject's teeth
US10357342B2 (en) 2016-09-21 2019-07-23 uLab Systems, Inc. Digital dental examination and documentation
EP3534832A2 (en) 2016-11-04 2019-09-11 Align Technology, Inc. Methods and apparatuses for dental images
US10548700B2 (en) 2016-12-16 2020-02-04 Align Technology, Inc. Dental appliance etch template
US20180168776A1 (en) 2016-12-19 2018-06-21 Align Technology, Inc. Aligners with enhanced gable bends
US10456043B2 (en) 2017-01-12 2019-10-29 Align Technology, Inc. Compact confocal dental scanning apparatus
US20180263732A1 (en) 2017-03-20 2018-09-20 Align Technology, Inc. Virtually representing an orthodontic treatment outcome using automated detection of facial and dental reference objects
US10613515B2 (en) 2017-03-31 2020-04-07 Align Technology, Inc. Orthodontic appliances including at least partially un-erupted teeth and method of forming them
US10639134B2 (en) 2017-06-26 2020-05-05 Align Technology, Inc. Biosensor performance indicator for intraoral appliances
US20190000593A1 (en) 2017-06-30 2019-01-03 Align Technology, Inc. Devices, systems, and methods for dental arch expansion
CN110996836A (en) 2017-07-27 2020-04-10 阿莱恩技术有限公司 System and method for processing orthodontic appliances by optical coherence tomography
WO2019036514A1 (en) 2017-08-17 2019-02-21 Align Technology, Inc. Systems, methods, and apparatus for correcting malocclusions of teeth
US20190099129A1 (en) 2017-10-04 2019-04-04 Align Technology, Inc. Intraoral appliances for sampling soft-tissue
WO2019089773A1 (en) 2017-10-31 2019-05-09 Align Technology, Inc. Dental appliance having selective occlusal loading and controlled intercuspation
US20190125497A1 (en) 2017-11-01 2019-05-02 Align Technology, Inc. Systems and methods for correcting malocclusions of teeth
US20190175303A1 (en) 2017-11-01 2019-06-13 Align Technology, Inc. Automatic treatment planning
US20190231477A1 (en) 2017-11-30 2019-08-01 Align Technology, Inc. Sensors for monitoring oral appliances
US20190192259A1 (en) 2017-12-15 2019-06-27 Align Technology, Inc. Closed loop adaptive orthodontic treatment methods and apparatuses
US20190231492A1 (en) 2018-01-26 2019-08-01 Align Technology, Inc. Diagnostic intraoral methods and apparatuses
US10413386B2 (en) 2018-01-31 2019-09-17 Won Moon Hybrid orthodontic appliance
EP3564282A1 (en) 2018-05-04 2019-11-06 Align Technology, Inc. Curable composition for use in a high temperature photopolymerisation method on a lithography basis and process for the preparation of cross-linked polymers therefrom
EP3564206A1 (en) 2018-05-04 2019-11-06 Align Technology, Inc. Novel polymerisable monomers and their use as reactive diluents in curable compositions
US20200000551A1 (en) 2018-06-29 2020-01-02 Align Technology, Inc. Providing a simulated outcome of dental treatment on a patient
US20200100864A1 (en) 2018-09-27 2020-04-02 Align Technology, Inc. Aligner damage prediction at weak spots with simulation
US20200130237A1 (en) 2018-10-31 2020-04-30 Align Technology, Inc. Mechanisms to automate removal of aligner from mold
US20200160497A1 (en) 2018-11-16 2020-05-21 Align Technology, Inc. Machine based three-dimensional (3d) object defect detection
EP3666223A1 (en) 2018-12-12 2020-06-17 Align Technology, Inc. Dental attachment placement structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5338198A (en) * 1993-11-22 1994-08-16 Dacim Laboratory Inc. Dental modeling simulator
US5340309A (en) * 1990-09-06 1994-08-23 Robertson James G Apparatus and method for recording jaw motion
US5368478A (en) * 1990-01-19 1994-11-29 Ormco Corporation Method for forming jigs for custom placement of orthodontic appliances on teeth
US5975893A (en) 1997-06-20 1999-11-02 Align Technology, Inc. Method and system for incrementally moving teeth

Family Cites Families (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US615273A (en) * 1898-12-06 Bolt-holder
US2467432A (en) * 1943-07-23 1949-04-19 Harold D Kesling Method of making orthodontic appliances and of positioning teeth
US3407500A (en) 1966-05-06 1968-10-29 Peter C. Kesling Tooth positioner
US3660900A (en) 1969-11-10 1972-05-09 Lawrence F Andrews Method and apparatus for improved orthodontic bracket and arch wire technique
US3600808A (en) * 1970-01-22 1971-08-24 James Jackson Reeve Anterior root-torquing auxiliary wire
US3860803A (en) 1970-08-24 1975-01-14 Diecomp Inc Automatic method and apparatus for fabricating progressive dies
US3683502A (en) 1970-09-14 1972-08-15 Melvin Wallshein Orthodontic systems
US3738005A (en) * 1972-03-22 1973-06-12 M Cohen Method and apparatus for applying orthodontic brackets and the like
US3916526A (en) * 1973-05-10 1975-11-04 Fred Frank Schudy Method and apparatus for orthodontic treatment
US3922786A (en) 1974-01-30 1975-12-02 Joseph L Lavin Method and apparatus for forming and fitting orthodontic appliances
US3983628A (en) * 1975-01-24 1976-10-05 Raul Acevedo Dental articulator, new bite registration guide, and diagnostic procedure associated with stereodont orthodontic study model
US3950851A (en) * 1975-03-05 1976-04-20 Bergersen Earl Olaf Orthodontic positioner and method for improving retention of tooth alignment therewith
US4014096A (en) * 1975-03-25 1977-03-29 Dellinger Eugene L Method and apparatus for orthodontic treatment
JPS573259Y2 (en) 1976-10-21 1982-01-21
JPS5358191A (en) 1976-11-05 1978-05-25 Osamu Yoshii Method of producing dental correction treating instrument using silicon resin material
US4348178A (en) * 1977-01-03 1982-09-07 Kurz Craven H Vibrational orthodontic appliance
US4195046A (en) * 1978-05-04 1980-03-25 Kesling Peter C Method for molding air holes into a tooth positioning and retaining appliance
US4324547A (en) 1978-09-16 1982-04-13 Vishay Intertechnology, Inc. Dentistry technique
US4253828A (en) 1979-04-09 1981-03-03 Coles Donna C Orthodontic appliance
DE2936847A1 (en) * 1979-09-12 1981-03-19 Heitlinger Paul Method for producing dental spare and device for implementing the method
US4575805A (en) * 1980-12-24 1986-03-11 Moermann Werner H Method and apparatus for the fabrication of custom-shaped implants
DE3203937C2 (en) * 1982-02-05 1985-10-03 Luc Dr. 4150 Krefeld De Barrut
FR2525103B1 (en) * 1982-04-14 1985-09-27 Duret Francois Impression taking device by optical means, particularly for the automatic production of prostheses
US4742464A (en) * 1982-04-14 1988-05-03 Francois Duret Method of making a prosthesis, especially a dental prosthesis
US4500294A (en) 1983-10-03 1985-02-19 Epic International Corporation Method and device for detecting dental cavities
US4526540A (en) 1983-12-19 1985-07-02 Dellinger Eugene L Orthodontic apparatus and method for treating malocclusion
US4663720A (en) * 1984-02-21 1987-05-05 Francois Duret Method of and apparatus for making a prosthesis, especially a dental prosthesis
DE3415006A1 (en) * 1984-04-19 1985-11-07 Wolfgang Orthuber Dental process and device for bending and turning a wire piece
US4798534A (en) 1984-08-03 1989-01-17 Great Lakes Orthodontic Laboratories Inc. Method of making a dental appliance
US4575330B1 (en) 1984-08-08 1989-12-19
US4609349A (en) 1984-09-24 1986-09-02 Cain Steve B Active removable orthodontic appliance and method of straightening teeth
US4591341A (en) 1984-10-03 1986-05-27 Andrews Lawrence F Orthodontic positioner and method of manufacturing same
US4664626A (en) 1985-03-19 1987-05-12 Kesling Peter C System for automatically preventing overtipping and/or overuprighting in the begg technique
US4763791A (en) * 1985-06-06 1988-08-16 Excel Dental Studios, Inc. Dental impression supply kit
GB2176402B (en) 1985-06-20 1989-04-19 Craig Med Prod Ltd Wound management appliance for use on the human skin
US4936862A (en) 1986-05-30 1990-06-26 Walker Peter S Method of designing and manufacturing a human joint prosthesis
CH672722A5 (en) * 1986-06-24 1989-12-29 Marco Brandestini
US5125832A (en) 1986-06-26 1992-06-30 Tp Orthodontics, Inc. Bracket for permitting tipping and limiting uprighting
US4676747A (en) 1986-08-06 1987-06-30 Tp Orthodontics, Inc. Torquing auxiliary
US4983334A (en) 1986-08-28 1991-01-08 Loren S. Adell Method of making an orthodontic appliance
JPH0428359Y2 (en) 1986-10-24 1992-07-09
US4755139A (en) 1987-01-29 1988-07-05 Great Lakes Orthodontics, Ltd. Orthodontic anchor appliance and method for teeth positioning and method of constructing the appliance
US4850864A (en) * 1987-03-30 1989-07-25 Diamond Michael K Bracket placing instrument
US4877398A (en) 1987-04-16 1989-10-31 Tp Orthodontics, Inc. Bracket for permitting tipping and limiting uprighting
US4850865A (en) 1987-04-30 1989-07-25 Napolitano John R Orthodontic method and apparatus
US4856991A (en) 1987-05-05 1989-08-15 Great Lakes Orthodontics, Ltd. Orthodontic finishing positioner and method of construction
US5186623A (en) 1987-05-05 1993-02-16 Great Lakes Orthodontics, Ltd. Orthodontic finishing positioner and method of construction
US4836778A (en) * 1987-05-26 1989-06-06 Vexcel Corporation Mandibular motion monitoring system
DE3723555C2 (en) * 1987-07-16 1994-08-11 Steinbichler Hans Process for the production of dentures
NL8702391A (en) * 1987-10-07 1989-05-01 Elephant Edelmetaal Bv Method for manufacturing a dental crown for a teeth preparation using a cad-cam system
US4793803A (en) 1987-10-08 1988-12-27 Martz Martin G Removable tooth positioning appliance and method
US4880380A (en) 1987-10-13 1989-11-14 Martz Martin G Orthodonture appliance which may be manually installed and removed by the patient
US5130064A (en) * 1988-04-18 1992-07-14 3D Systems, Inc. Method of making a three dimensional object by stereolithography
US4936863A (en) * 1988-05-13 1990-06-26 Hofmann Aaron A Hip prosthesis
US4941826A (en) 1988-06-09 1990-07-17 William Loran Apparatus for indirect dental machining
US5100316A (en) * 1988-09-26 1992-03-31 Wildman Alexander J Orthodontic archwire shaping method
US5055039A (en) 1988-10-06 1991-10-08 Great Lakes Orthodontics, Ltd. Orthodontic positioner and methods of making and using same
US4935635A (en) 1988-12-09 1990-06-19 Harra Dale G O System for measuring objects in three dimensions
IL88842A (en) 1988-12-30 1990-07-26 Shafir Aaron Apparatus and method for digitizing the contour of a surface particularly useful for preparing a dental crown
WO1990008505A1 (en) * 1989-01-24 1990-08-09 Dolphin Imaging Systems Inc. Method and apparatus for generating cephalometric images
US5011405A (en) 1989-01-24 1991-04-30 Dolphin Imaging Systems Method for determining orthodontic bracket placement
US4889238A (en) 1989-04-03 1989-12-26 The Procter & Gamble Company Medicament package for increasing compliance with complex therapeutic regimens
US4975052A (en) * 1989-04-18 1990-12-04 William Spencer Orthodontic appliance for reducing tooth rotation
US5184306A (en) * 1989-06-09 1993-02-02 Regents Of The University Of Minnesota Automated high-precision fabrication of objects of complex and unique geometry
US5257203A (en) * 1989-06-09 1993-10-26 Regents Of The University Of Minnesota Method and apparatus for manipulating computer-based representations of objects of complex and unique geometry
US5128870A (en) * 1989-06-09 1992-07-07 Regents Of The University Of Minnesota Automated high-precision fabrication of objects of complex and unique geometry
US5121333A (en) * 1989-06-09 1992-06-09 Regents Of The University Of Minnesota Method and apparatus for manipulating computer-based representations of objects of complex and unique geometry
US5027281A (en) * 1989-06-09 1991-06-25 Regents Of The University Of Minnesota Method and apparatus for scanning and recording of coordinates describing three dimensional objects of complex and unique geometry
JPH039712U (en) 1989-06-20 1991-01-30
FR2652256A1 (en) 1989-09-26 1991-03-29 Jourda Gerard Device for establishing the trace of a removable partial dental plate.
US5533895A (en) 1990-01-19 1996-07-09 Ormco Corporation Orthodontic appliance and group standardized brackets therefor and methods of making, assembling and using appliance to straighten teeth
AU5598894A (en) * 1992-11-09 1994-06-08 Ormco Corporation Custom orthodontic appliance forming method and apparatus
US5474448A (en) 1990-01-19 1995-12-12 Ormco Corporation Low profile orthodontic appliance
US5139419A (en) * 1990-01-19 1992-08-18 Ormco Corporation Method of forming an orthodontic brace
US5395238A (en) 1990-01-19 1995-03-07 Ormco Corporation Method of forming orthodontic brace
US5456600A (en) 1992-11-09 1995-10-10 Ormco Corporation Coordinated orthodontic archwires and method of making same
US5454717A (en) 1990-01-19 1995-10-03 Ormco Corporation Custom orthodontic brackets and bracket forming method and apparatus
US5431562A (en) 1990-01-19 1995-07-11 Ormco Corporation Method and apparatus for designing and forming a custom orthodontic appliance and for the straightening of teeth therewith
US5447432A (en) 1990-01-19 1995-09-05 Ormco Corporation Custom orthodontic archwire forming method and apparatus
US5542842A (en) 1992-11-09 1996-08-06 Ormco Corporation Bracket placement jig assembly and method of placing orthodontic brackets on teeth therewith
US5440326A (en) 1990-03-21 1995-08-08 Gyration, Inc. Gyroscopic pointer
US5562448A (en) 1990-04-10 1996-10-08 Mushabac; David R. Method for facilitating dental diagnosis and treatment
US5452219A (en) 1990-06-11 1995-09-19 Dentsply Research & Development Corp. Method of making a tooth mold
SE468198B (en) 1990-12-12 1992-11-23 Nobelpharma Ab Foerfarande and apparatus foer framstaellning of individually formed as three-dimensional bodies anvaendbara tandersaettningar, prostheses, etc.
US5131844A (en) * 1991-04-08 1992-07-21 Foster-Miller, Inc. Contact digitizer, particularly for dental applications
US5131843A (en) * 1991-05-06 1992-07-21 Ormco Corporation Orthodontic archwire
US5145364A (en) 1991-05-15 1992-09-08 M-B Orthodontics, Inc. Removable orthodontic appliance
EP0521568B1 (en) * 1991-07-05 1996-09-18 Tokyo Gas Co., Ltd. A low-nox gas burner
US5176517A (en) 1991-10-24 1993-01-05 Tru-Tain, Inc. Dental undercut application device and method of use
SE469158B (en) 1991-11-01 1993-05-24 Nobelpharma Ab Dental avkaenningsanordning intended to anvaendas in connection with control of a workshop equipment
US5328362A (en) * 1992-03-11 1994-07-12 Watson Sherman L Soft resilient interocclusal dental appliance, method of forming same and composition for same
US5273429A (en) 1992-04-03 1993-12-28 Foster-Miller, Inc. Method and apparatus for modeling a dental prosthesis
US5384862A (en) * 1992-05-29 1995-01-24 Cimpiter Corporation Radiographic image evaluation apparatus and method
FR2693096B1 (en) 1992-07-06 1994-09-23 Deshayes Marie Josephe Process for modeling the cranial and facial morphology from an x-ray of the skull.
US5528735A (en) 1993-03-23 1996-06-18 Silicon Graphics Inc. Method and apparatus for displaying data within a three-dimensional information landscape
SE501333C2 (en) 1993-05-27 1995-01-16 Sandvik Ab Method for producing ceramic dental restorations
CN1054737C (en) 1993-07-12 2000-07-26 欧索-泰公司 A multi-racial preformed orthodontic treatment appliance
SE501411C2 (en) 1993-07-12 1995-02-06 Nobelpharma Ab Method and apparatus for three-dimensional body usable in the human body
SE501410C2 (en) 1993-07-12 1995-02-06 Nobelpharma Ab Method and device in connection with the preparation of the tooth, bridge, etc.
NL9301308A (en) * 1993-07-26 1995-02-16 Willem Frederick Van Nifterick Method of securing a dental prosthesis to implants in a patient's jawbone and using means thereof.
US5382164A (en) 1993-07-27 1995-01-17 Stern; Sylvan S. Method for making dental restorations and the dental restoration made thereby
US5435902A (en) * 1993-10-01 1995-07-25 Andre, Sr.; Larry E. Method of incremental object fabrication
SE502427C2 (en) * 1994-02-18 1995-10-16 Nobelpharma Ab Method and apparatus utilizing articulator and computer equipment
US5880961A (en) * 1994-08-02 1999-03-09 Crump; Craig D. Appararus and method for creating three-dimensional modeling data from an object
US5621648A (en) 1994-08-02 1997-04-15 Crump; Craig D. Apparatus and method for creating three-dimensional modeling data from an object
SE503498C2 (en) 1994-10-04 1996-06-24 Nobelpharma Ab Method and device for the product intended to be part of the human body and avscanningsanordning for example product
US5549476A (en) 1995-03-27 1996-08-27 Stern; Sylvan S. Method for making dental restorations and the dental restoration made thereby
JP3672966B2 (en) 1995-04-14 2005-07-20 株式会社ユニスン Method and apparatus for creating dental prediction model
US5645421A (en) 1995-04-28 1997-07-08 Great Lakes Orthodontics Ltd. Orthodontic appliance debonder
US5655653A (en) * 1995-07-11 1997-08-12 Minnesota Mining And Manufacturing Company Pouch for orthodontic appliance
AU6239996A (en) 1995-07-21 1997-02-18 Cadent Ltd. Method and system for acquiring three-dimensional teeth image
US5742700A (en) * 1995-08-10 1998-04-21 Logicon, Inc. Quantitative dental caries detection system and method
US6382975B1 (en) * 1997-02-26 2002-05-07 Technique D'usinage Sinlab Inc. Manufacturing a dental implant drill guide and a dental implant superstructure
US5725376A (en) * 1996-02-27 1998-03-10 Poirier; Michel Methods for manufacturing a dental implant drill guide and a dental implant superstructure
US5692894A (en) 1996-04-08 1997-12-02 Raintree Essix, Inc. Thermoformed plastic dental retainer and method of construction
US5799100A (en) 1996-06-03 1998-08-25 University Of South Florida Computer-assisted method and apparatus for analysis of x-ray images using wavelet transforms
US5823778A (en) 1996-06-14 1998-10-20 The United States Of America As Represented By The Secretary Of The Air Force Imaging method for fabricating dental devices
US5725378A (en) * 1996-08-16 1998-03-10 Wang; Hong-Chi Artificial tooth assembly
JPH1075963A (en) * 1996-09-06 1998-03-24 Nikon Corp Method for designing dental prosthetic appliance model and medium recording program for executing the method
AUPO280996A0 (en) * 1996-10-04 1996-10-31 Dentech Investments Pty Ltd Creation and utilization of 3D teeth models
JP2824424B2 (en) * 1996-11-07 1998-11-11 株式会社エフ・エーラボ 3D machining method
US6217334B1 (en) 1997-01-28 2001-04-17 Iris Development Corporation Dental scanning method and apparatus
SE509141C2 (en) 1997-04-10 1998-12-07 Nobel Biocare Ab Arrangements and systems for dental product manufacturing and disclosure
US5957686A (en) 1997-04-29 1999-09-28 Anthony; Wayne L. Incisor block
US5848115A (en) 1997-05-02 1998-12-08 General Electric Company Computed tomography metrology
US5879158A (en) * 1997-05-20 1999-03-09 Doyle; Walter A. Orthodontic bracketing system and method therefor
US5866058A (en) * 1997-05-29 1999-02-02 Stratasys Inc. Method for rapid prototyping of solid models
AU744385B2 (en) * 1997-06-20 2002-02-21 Align Technology, Inc. Method and system for incrementally moving teeth
US6450807B1 (en) 1997-06-20 2002-09-17 Align Technology, Inc. System and method for positioning teeth
US6705863B2 (en) * 1997-06-20 2004-03-16 Align Technology, Inc. Attachment devices and methods for a dental appliance
US6309215B1 (en) 1997-06-20 2001-10-30 Align Technology Inc. Attachment devices and method for a dental applicance
US6152731A (en) 1997-09-22 2000-11-28 3M Innovative Properties Company Methods for use in dental articulation
US5934288A (en) 1998-04-23 1999-08-10 General Electric Company Method and apparatus for displaying 3D ultrasound data using three modes of operation
US5971754A (en) 1998-07-30 1999-10-26 Sondhi; Anoop Indirect bonding method and adhesive for orthodontic treatment
US5964587A (en) 1998-09-16 1999-10-12 Sato; Mikio Bite control point and a method to form a projection on tooth surface
US6183248B1 (en) * 1998-11-30 2001-02-06 Muhammad Chishti System and method for releasing tooth positioning appliances
US6123544A (en) 1998-12-18 2000-09-26 3M Innovative Properties Company Method and apparatus for precise bond placement of orthodontic appliances
US6190165B1 (en) * 1999-03-23 2001-02-20 Ormco Corporation Plastic orthodontic appliance having mechanical bonding base and method of making same
US6406292B1 (en) * 1999-05-13 2002-06-18 Align Technology, Inc. System for determining final position of teeth
US6315553B1 (en) 1999-11-30 2001-11-13 Orametrix, Inc. Method and apparatus for site treatment of an orthodontic patient
US6350120B1 (en) * 1999-11-30 2002-02-26 Orametrix, Inc. Method and apparatus for designing an orthodontic apparatus to provide tooth movement
US6633789B1 (en) * 2000-02-17 2003-10-14 Align Technology, Inc. Effiicient data representation of teeth model
US6463344B1 (en) * 2000-02-17 2002-10-08 Align Technology, Inc. Efficient data representation of teeth model
US6524101B1 (en) * 2000-04-25 2003-02-25 Align Technology, Inc. System and methods for varying elastic modulus appliances
US6572372B1 (en) * 2000-04-25 2003-06-03 Align Technology, Inc. Embedded features and methods of a dental appliance
US6402707B1 (en) * 2000-06-28 2002-06-11 Denupp Corporation Bvi Method and system for real time intra-orally acquiring and registering three-dimensional measurements and images of intra-oral objects and features
US6482298B1 (en) 2000-09-27 2002-11-19 International Business Machines Corporation Apparatus for electroplating alloy films
US6783360B2 (en) * 2000-12-13 2004-08-31 Align Technology, Inc. Systems and methods for positioning teeth
US7104790B2 (en) * 2002-05-31 2006-09-12 Cronauer Edward A Orthodontic appliance with embedded wire for moving teeth and method
CN101553184A (en) * 2006-10-10 2009-10-07 兰伯特·J·斯顿佩尔 Surgical guide for dental implant and methods therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5368478A (en) * 1990-01-19 1994-11-29 Ormco Corporation Method for forming jigs for custom placement of orthodontic appliances on teeth
US5340309A (en) * 1990-09-06 1994-08-23 Robertson James G Apparatus and method for recording jaw motion
US5338198A (en) * 1993-11-22 1994-08-16 Dacim Laboratory Inc. Dental modeling simulator
US5975893A (en) 1997-06-20 1999-11-02 Align Technology, Inc. Method and system for incrementally moving teeth

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1178760A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011156416A (en) * 2000-04-25 2011-08-18 Align Technology Inc System and method for dental treatment planning
WO2002054974A3 (en) * 2000-12-22 2003-01-09 Geodigm Corp Mating parts scanning and registration methods
EP2604220A4 (en) * 2010-08-10 2015-08-12 Hidefumi Ito Information processing device, information processing method and program

Also Published As

Publication number Publication date
US20020119423A1 (en) 2002-08-29
US20040170943A1 (en) 2004-09-02
US6786721B2 (en) 2004-09-07
DE69941932D1 (en) 2010-03-04
CA2346784A1 (en) 2000-04-13
ES2338286T3 (en) 2010-05-05
JP2002526155A (en) 2002-08-20
AU1108100A (en) 2000-04-26
JP3618082B2 (en) 2005-02-09
US8070487B2 (en) 2011-12-06
EP1178760A4 (en) 2006-07-12
US6450807B1 (en) 2002-09-17
US8858227B2 (en) 2014-10-14
US20120225400A1 (en) 2012-09-06
US20080187879A1 (en) 2008-08-07
EP1178760A1 (en) 2002-02-13
AT454858T (en) 2010-01-15
WO2000019932A9 (en) 2000-09-14
US9220579B2 (en) 2015-12-29
EP1178760B1 (en) 2010-01-13
US7331783B2 (en) 2008-02-19
AR022679A1 (en) 2002-09-04
AR024514A1 (en) 2002-10-16
US20130085721A1 (en) 2013-04-04

Similar Documents

Publication Publication Date Title
US10512524B2 (en) Method and system for dental visualization
US20190107932A1 (en) Treatment of teeth by aligners
US20190216580A1 (en) Dynamic virtual articulator for simulating occlusion of teeth
US20190282333A1 (en) Method and system for optimizing dental aligner geometry
US10413385B2 (en) Method and system for providing dynamic orthodontic assessment and treatment profiles
JP5976730B2 (en) Method for extracting shape information
US10307222B2 (en) Orthodontic systems and methods including parametric attachments
US10624716B2 (en) System and method for detecting deviations during the course of an orthodontic treatment to gradually reposition teeth
US9572636B2 (en) Method and system for finding tooth features on a virtual three-dimensional model
US20170100213A1 (en) Method and system for providing dynamic orthodontic assessment and treatment profiles
US9161824B2 (en) Computer automated development of an orthodontic treatment plan and appliance
US10368960B2 (en) Tooth movement measurement by automatic impression matching
JP5959539B2 (en) Orthodontic digital setup
AU2011253781B8 (en) Method and system for incrementally moving teeth
US8152523B2 (en) Method and system for comprehensive evaluation of orthodontic care using unified workstation
US8469705B2 (en) Method and system for integrated orthodontic treatment planning using unified workstation
US8177551B2 (en) Method and system for comprehensive evaluation of orthodontic treatment using unified workstation
US6554611B2 (en) Method and system for incrementally moving teeth
ES2717447T3 (en) Computer-assisted creation of a habitual tooth preparation using facial analysis
US7874837B2 (en) Defining tooth-moving appliances computationally
US8512037B2 (en) Custom orthodontic appliance system and method
US7241142B2 (en) Root-based tooth moving sequencing
US20140067335A1 (en) Custom orthodontic appliance system and method
US10517696B2 (en) Treatment progress tracking and recalibration
US6682346B2 (en) Defining tooth-moving appliances computationally

Legal Events

Date Code Title Description
ENP Entry into the national phase in:

Ref country code: AU

Ref document number: 2000 11081

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
COP Corrected version of pamphlet

Free format text: PAGES 1/8-8/8, DRAWINGS, REPLACED BY NEW PAGES 1/5-5/5; DUE TO LATE TRANSMITTAL BY THE RECEIVING OFFICE

AK Designated states

Kind code of ref document: C2

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: C2

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

ENP Entry into the national phase in:

Ref country code: JP

Ref document number: 2000 573295

Kind code of ref document: A

Format of ref document f/p: F

Ref country code: CA

Ref document number: 2346784

Kind code of ref document: A

Format of ref document f/p: F

Ref document number: 2346784

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1999954825

Country of ref document: EP

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWP Wipo information: published in national office

Ref document number: 1999954825

Country of ref document: EP