WO2000017175A1 - INHIBITORS OF p38 - Google Patents

INHIBITORS OF p38 Download PDF

Info

Publication number
WO2000017175A1
WO2000017175A1 PCT/US1999/021337 US9921337W WO0017175A1 WO 2000017175 A1 WO2000017175 A1 WO 2000017175A1 US 9921337 W US9921337 W US 9921337W WO 0017175 A1 WO0017175 A1 WO 0017175A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound according
disease
independently selected
treat
phenyl
Prior art date
Application number
PCT/US1999/021337
Other languages
French (fr)
Inventor
Francesco Salituro
Guy Bemis
John Cochran
Original Assignee
Vertex Pharmaceuticals Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vertex Pharmaceuticals Incorporated filed Critical Vertex Pharmaceuticals Incorporated
Priority to EP99949690A priority Critical patent/EP1114039A1/en
Priority to AU62514/99A priority patent/AU762245B2/en
Priority to JP2000574085A priority patent/JP2002526482A/en
Priority to CA002337755A priority patent/CA2337755C/en
Publication of WO2000017175A1 publication Critical patent/WO2000017175A1/en
Priority to US09/809,854 priority patent/US6509363B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/66Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/88Nitrogen atoms, e.g. allantoin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/30Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D263/34Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D263/48Nitrogen atoms not forming part of a nitro radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/32Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D277/38Nitrogen atoms
    • C07D277/44Acylated amino or imino radicals
    • C07D277/48Acylated amino or imino radicals by radicals derived from carbonic acid, or sulfur or nitrogen analogues thereof, e.g. carbonylguanidines

Definitions

  • the present invention relates to inhibitors of p38, a mammalian protein kinase is involved in cell proliferation, cell death and response to extracellular stimuli.
  • the invention also relates to methods for producing these inhibitors.
  • the invention also provides pharmaceutical compositions comprising the inhibitors of the invention and methods of utilizing those compositions in the treatment and prevention of various disorders.
  • MAPK mitogen-activated protein kinases
  • p38 also known as cytokihe suppressive anti-inflammatory drug binding protein (CSBP) and RK, is isolated from murine pre-B cells that are transfected with the lipopolysaccharide (LPS) receptor, CD14, and induced with LPS.
  • LPS lipopolysaccharide
  • p38 has since been isolated and sequenced, as has the cD ⁇ A encoding it in humans and mouse.
  • Activation of p38 has been observed in cells stimulated by stress, such as treatment of lipopolysaccharides (LPS) , UN, anisomycin, or osmotic shock, and by treatment with cytokines, such as IL-1 and T ⁇ F.
  • stress such as treatment of lipopolysaccharides (LPS) , UN, anisomycin, or osmotic shock
  • cytokines such as IL-1 and T ⁇ F.
  • IL-1 and T ⁇ F stimulate the production of other proinflammatory cytokines such as IL-6 and IL-8 and have been implicated in acute and chronic inflammatory diseases and in post- enopausal osteoporosis [R. B. Kimble et al . , Endocrinol., 136, pp. 3054-61 (1995)].
  • p38 along with other MAPKs, have a role in mediating cellular response to inflammatory stimuli, such as leukocyte accumulation, macrophage/monocyte activation, tissue resorption, fever, acute phase responses and neutrophilia.
  • MAPKs such as p38
  • MAPKs have been implicated in cancer, thrombin-induced platelet aggregation, immunodeficiency disorders, autoimmune diseases, cell death, allergies, osteoporosis and neurodegenerative disorders.
  • Inhibitors of p38 have been implicated in the area of pain management through inhibition of prostaglandin endoperoxide synthase-2 induction.
  • the present invention addresses this problem by providing compounds that demonstrate strong and specific inhibition of p38.
  • each of Qi and Q 2 are independently selected from 5-6 membered aromatic carbocyclic or heterocyclic ring systems, or 8-10 membered bicyclic ring systems comprising aromatic carbocyclic rings, aromatic heterocyclic rings or a combination of an aromatic carbocyclic ring and an aromatic heterocyclic ring.
  • Qi is selected from a 5-6 membered aromatic carbocyclic or heterocyclic ring system, or an 8-10 membered bicyclic ring system comprising aromatic carbocyclic rings, aromatic heterocyclic rings or a combination of an aromatic carbocyclic ring and an aromatic heterocyclic ring
  • Q 2 is selected from H, C0 2 R' , CON(R')?, or a (C ⁇ C 4 ) branched or straight-chain alkyl optionally containing 1-3 substituents independently selected from A, T-C(0)R', OP0 3 H 2 , NR' 2 , N(R') t , OR', C0 2 R' , C0N(R') 2 , or S0 2 N(R 2 ) 2 .
  • the rings that make up Qi are optionally substituted with 1 to 4 substituents , each of which is independently selected from halo; C 1 -C 4 alkyl optionally containing 1-3 substituents independently selected from A, T-C(0)R', 0P0 3 H 2 , NR' 2 , NR' 2 , OR', C0 2 R' or CONR' 2 ; 0- (Ci-C; ) -alkyl optionally containing 1-3 substituents independently selected from A, T-C(0)R', OP0 3 H 2 , NR' 2 , NR%, OR', C0 2 R' or C0NR' 2 ; NR' 2 ; 0CF 3 ; CF 3 ; N0 2 ; C0 2 R' ; CONR' ; SR' ; S(0 2 )N(R') 2 ; SCF 3 ; CN; N(R')C(0)R 4 ; N(R' )C(0)OR 4 ; N (
  • A is selected from the groups:
  • T is either 0 or NH.
  • G is either NH 2 or OH.
  • R' is selected from hydrogen, (C1-C3) -alkyl; (C 2 -C-,)--alkenyl or alkynyl; phenyl or phenyl substituted with 1 to 3 substituents independently selected from halo, methoxy, cyano, nitro, amino, hydroxy, methyl or ethyl .
  • R 3 is selected from 5-6 membered aromatic carbocyclic or heterocyclic ring systems.
  • R 4 is (C 1 -C 4 ) -alkyl optionally substituted with N(R' , OR', C0 2 R' , CON(R') 2 , or S0 2 N(R 2 ) 2 ; a 5-6 membered carbocyclic or heterocyclic ring system optionally substituted with a (C1-C4) branched or straight-chain alkyl group, N(R') 2 , OR', C0 2 R' , CON(R') 2 , or S0 2 N(R 2 ) 2 ; or a (C1-C4) -alkyl optionally substituted with the 5-6 membered carbocyclic or heterocyclic ring system optionally substituted as described immediately above.
  • R 2 is selected from hydrogen, (C1-C3) -alkyl, or (C1-C3) -alkenyl; each optionally substituted with -N(R') 2 , -OR', SR' , -C(0)-N(R' ) 2 , -S (0 2 )-N(R' ) 2 , -C(0)-OR', or R 3 .
  • X is selected from 0, S, NR or C(R) 2 .
  • Y is CR or N.
  • Z is CH or N.
  • n is 0 or 1.
  • Each R is independently selected from hydrogen, -R 2 , -N(R 2 ) 2 , -OR 2 , SR 2 , -C (0) -N (R 2 ) 2 , -S (0 2 ) -N (R 2 ) 2 , or
  • the invention provides pharmaceutical compositions comprising the p38 inhibitors of this invention.
  • These compositions may be utilized in methods for treating or preventing a variety of disorders, such as cancer, inflammatory diseases, autoimmune diseases, destructive bone disorders, proliferative disorders, infectious diseases, viral diseases and neurodegenerative and neurological diseases.
  • These compositions are also useful in methods for preventing cell death and hyperplasia and therefore may be used to treat or prevent reperfusion/ischemia in stroke, heart attacks, and organ hypoxia.
  • the compositions are also useful in methods for preventing thrombin-induced platelet aggregation. Each of these above-described methods is also part of the present invention.
  • compounds of the instant invention may act as Jnk3 inhibitors.
  • Jnk3 is a MAP kinase involved in nervous system development, maintenance and repair, and may be important for stress- induced neuronal apoptosis in the central nervous system (Yang et al., Nature 389: 865-870, 1997). These compounds may be used to formuate pharmaceutical compositions that can be used for methods of treating Jnk3-mediated neurological diseases.
  • heterocyclyl refers to a stable 5-6 membered monocyclic heterocyclic ring or 8-10 membered bicyclic heterocyclic ring which is either saturated or unsaturated, and which may be optionally benzofused if monocyclic.
  • Each heterocycle consists of one or more carbon atoms and from one to four heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur.
  • nitrogen and sulfur heteroatoms include any oxidized form of nitrogen and sulfur, and the quaternized form of any basic nitrogen.
  • a heterocyclyl radical may be attached at any endocyclic carbon or heteroatom that results in the creation of a stable structure.
  • Examples of such groups include imidazolyl, imidazolinoyl, imidazolidinyl, quinolyl, isoqinolyl, indolyl, indazolyl, indazolinolyl, perhydropyridazyl, pyridazyl, pyridyl, pyrrolyl, pyrrolinyl, pyrrolidinyl, pyrazolyl, pyrazinyl, quinoxolyl, piperidinyl, pyranyl, pyrazolinyl, piperazinyl, pyrimidinyl, pyridazinyl, morpholinyl, thiamorpholinyl, furyl, thienyl, triazolyl, thiazolyl, - carbolinyl, tetrazolyl, thiazolidinyl, benzofuranoyl, thiamorpholinyl sulfone, oxazolyl, be
  • carbocyclyl or “carbocycle” refers to a stable 5-6 membered monocyclic carbocyclic ring or 8-10 membered bicyclic carbocyclic ring which is either saturated or unsaturated, and which may be optionally benzofused if monocyclic.
  • pharmaceutically acceptable salts refers' to compounds according to the invention used in the form of salts derived from inorganic or organic acids and bases.
  • acid salts for example, are the following: acetate, adipate, alginate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, citrate, camphorate, camphorsulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, flucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, aleate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, oxalate, pamoate, pectianate, persulfate, phenylproprionate, picrate, pivalate, propionate, succinate, tartrate, thio
  • Salts derived from appropriate bases include alkali metal (e.g. sodium), alkaline earth metal (e.g., magnesium), ammonium and NW 4 + (wherein W is C ⁇ _ 4 alkyl).
  • alkali metal e.g. sodium
  • alkaline earth metal e.g., magnesium
  • ammonium e.g., ammonium
  • NW 4 + wherein W is C ⁇ _ 4 alkyl
  • Physiologically acceptable salts of a hydrogen atom or an amino group include salts or organic carboxylic acids such as acetic, lactic, tartaric, malic, isethionic, lactobionic and succinic acids; organic sulfonic acids such as methanesulfonic, ethanesulfonic, benzenesulfonic and p-toluenesulfonic acids and inorganic acids such as hydrochloric, sulfuric, phosphoric and sulfamic acids.
  • organic carboxylic acids such as acetic, lactic, tartaric, malic, isethionic, lactobionic and succinic acids
  • organic sulfonic acids such as methanesulfonic, ethanesulfonic, benzenesulfonic and p-toluenesulfonic acids
  • inorganic acids such as hydrochloric, sulfuric, phosphoric and sulfamic acids.
  • Physiologically acceptable salts of a compound with a hydroxy group include the anion of said compound in combination with a suitable cation such as Na + , NH 4 + , and NW 4 + (wherein W is a C1-4 alkyl group) .
  • salts include salts of organic carboxylic acids such as ascorbic, acetic, citric, lactic, tartaric, malic, maleic, isothionic, lactobionic, p-aminobenzoic and succinic acids; organic sulphonic acids such as methanesulphonic, ethanesulphonic, benzenesulphonic and p-toluenesulphonic acids and inorganic acids such as hydrochloric, sulphuric, phosphoric, sulphamic and pyrophosphoric acids .
  • salts of the compounds according to the invention will be pharmaceutically acceptable. However, salts of acids and bases that are not pharmaceutically acceptable may also find use, for example, in the preparation or purification of a pharmaceutically acceptable compound.
  • Preferred salts include salts formed from hydrochloric, sulfuric, acetic, succinic, citric and ascorbic acids.
  • chemically feasible refers to a connectivity of atoms such that the chemical valency of each atom is satisfied. For example, an oxygen atom with two bonds and a carbon atom with four bonds are chemically feasible.
  • tautomerization refers to the phenomenon wherein a proton of one atom of a molecule shifts to another atom. See, Jerry March, Advanced Organic Chemistry: Reactions, Mechanisms and Structures, Fourth Edition, John Wiley & Sons, pages 69-74 (1992) .
  • tautomer refers to the compounds produced by the proton shift.
  • the present invention provides inhibitors of p38 having the general formulae:
  • each of Qi and Q 2 are independently selected from 5-6 membered aromatic carbocyclic or heterocyclic ring systems, or 8-10 membered bicyclic ring systems comprising aromatic carbocyclic rings, aromatic heterocyclic rings or a combination of an aromatic carbocyclic ring and an aromatic heterocyclic ring.
  • Qi is selected from a 5-6 membered aromatic carbocyclic or heterocyclic ring system, or an 8-10 membered bicyclic ring system comprising aromatic carbocyclic rings, aromatic heterocyclic rings or a combination of an aromatic carbocyclic ring and an aromatic heterocyclic ring
  • Q 2 is selected from H, C0 2 R' , CON(R') 2 , or a (C 1 -C 4 ) branched or straight-chain alkyl optionally containing 1-3 substituents independently selected from A, T-C(0)R', OP0 3 H 2 , NR' 2 , N(R') 2 , OR', C0 2 R' , C0N(R') 2 , or S0 2 N(R 2 ) 2 .
  • the rings that make up Qi are optionally substituted with 1 to 4 substituents, each of which is independently selected from halo; C 1 -C 4 alkyl optionally containing 1-3 substituents independently selected from A, T-C(0)R', 0P0 3 H 2 , NR' 2 , NR' 2 , OR', C0 2 R' or CONR' 2 ; 0- (C1-C4) -alkyl optionally containing 1-3 substituents independently selected from A, T-C(0)R', OP0 3 H 2 , NR' 2 ,
  • A is selected from the groups:
  • T is either 0 or NH.
  • G is either NH 2 or OH.
  • R' is selected from hydrogen, (C1-C3) -alkyl;
  • R 3 is selected from 5-6 membered aromatic carbocyclic or heterocyclic ring systems.
  • R 4 is (C1-C 4 ) -alkyl optionally substituted with N(R' )-, OR', C0 2 R' , CON(R') 2 , or S0 2 N(R 2 ) 2 ; a 5-6 membered carbocyclic or heterocyclic ring system optionally substituted with a (d-C 4 ) branched or straight-chain alkyl group, N(R') 2 , OR', C0 2 R' , CON(R') 2 , or S0 2 N(R 2 ) 2 ; or a (Ci-C 4 ) -alkyl optionally substituted with the 5-6 membered carbocyclic or heterocyclic ring system optionally substituted as described immediately above.
  • R 2 is selected from hydrogen, (C1-C3) -alkyl, or (C1-C3) -alkenyl; each optionally substituted with -N(R') 2 , -OR', SR' , -C(O) -N(R' ) 2 , -S (0 2 )-N(R' ) 2 , -C(0)-OR', o R 3 .
  • X is selected from 0, S, NR or C(R) 2 .
  • Y is CR or N.
  • Z is CH or N.
  • n is 0 or 1.
  • Each R is independently selected from hydrogen, -R 2 , -N(R 2 ) 2 , -OR 2 , SR 2 , -C(0)-N(R 2 ) 2 , -S (0 2 ) -N (R 2 ) 2 , or -C(0)-0R 2 , wherein two adjacent R are optionally bound to one another and, together with each Y to which they are respectively bound, form a 4-8 membered carbocyclic or heterocyclic ring.
  • the compounds of the present invention may exist as tautomers .
  • Such tautomers may be transient or isolatable as a stable product.
  • These tautomers are envisioned within the scope of the invention.
  • These compounds are also p38 inhibitors and fall within the scope of the present invention.
  • Qi is selected from phenyl or pyridyl containing 1 to 3 substituents, wherein at least one of said substituents is in the ortho position and said substituents are independently selected from chloro, fluoro, bromo, -CH, -OCH 3 , -OH, -CF 3 , -OCF3, -0(CH 2 ) 2 CH 3 , NH 2 , 3,4- methylenedioxy, -N(CH 3 ) 2 , -NH-S (0) 2 -phenyl, -NH-C (0) 0-CH 2 - 4-pyridine, -NH-C (0) CH 2 -morpholine, -NH-C (0) CH 2 -N (CH 3 ) 2, -NH-C (0) CH 2 -piperazine, -NH-C (0) CH 2 -pyrrolidine, -NH-C (0) C (0) -morpholine, -NH-C (0) C (0) -piperazine
  • Qi is selected from 2-fluoro-6- trifluoromethylphenyl; 2, 6-difluorophenyl; 2,6- dichlorophenyl; 2-chloro-4-hydroxyphenyl; 2-chloro-4- aminophenyl; 2, 6-dichloro-4-aminophenyl; 2, 6-dichloro-3- aminophenyl; 2, 6-dimethyl-4-hydroxyphenyl; 2-methoxy-3, 5- dichloro-4-pyridyl; 2-chloro-4,5 methylenedioxy phenyl; or 2-chloro-4- (N-2-morpholino-acetamido) phenyl .
  • Q2 is phenyl or pyridyl containing 0 to 3 substituents, wherein each substituent is independently selected from chloro, fluoro, bromo, methyl, ethyl, isopropyl, -OCH 3 , -OH, -NH 2 , -CF 3 , -OCF3, -SCH 3 , -OCH3, -C(0)OH, -C(0)OCH 3 , -CH 2 NH 2 , -N(CH 3 ) 2 , -CH 2 -pyrrolidine and -CH 2 OH.
  • Q 2 is selected from phenyl; 2-isopropylphenyl; 3,4- dimethylphenyl; 2-ethylphenyl; 3-fluorophenyl; 2- methylphenyl; 3-chloro-4-fluorophenyl; 3-chlorophenyl; 2- carbomethoxylphenyl; 2-carboxyphenyl; 2-methyl-4- chlorophenyl; 2-bromophenyl; 2-pyridyl; 2- methylenehydroxyphenyl; 4-fluorophenyl; 2-methyl-4- fluorophenyl; 2-chloro-4-fluorphenyl; 2, 4-difluorophenyl; 2-hydroxy-4-fluorphenyl or 2-methylenehydroxy-4- fluorophenyl .
  • compounds of the instant invention may be Jnk3 inhibitors.
  • n is 1.
  • Jnk3 inhibitors may be formulated into pharmaceutical compositions for administration to animals or humans. These compositions can be used for methods of treating Jnk3-med ⁇ ated neurological diseases.
  • the present invention provides methods of producing the above- identified compounds of formulae I and II.
  • step 1 of scheme 1 an aniline is converted to a urea, thiourea, or guanidme using, respectively, cyanic acid, thiocyanic acid, or lH-pyrazole-1- carboxamidme.
  • the three different functionalities can be obtained from any number of other reagents that are well known in the art.
  • the urea, thiourea, or guanidme is condensed with an ⁇ - chloro or -bromoketone in refluxing ethanol to obtain the ox ' azole, thiazole, or imidazole respectively.
  • step 3 the amine is acylated to provide the corresponding urea.
  • a similar synthesis scheme can be used for the production of compounds of formula II.
  • other synthesis schemes known in the art can be used to produce the compounds of formulae I and II.
  • vi tro assays include assays that determine inhibition of either the kinase activity or ATPase activity of activated p38. Alternate in vi tro assays quantitate the ability of the inhibitor to bind to p38 and may be measured either by radiolabelling the inhibitor prior to binding, isolating the inhibitor/p38 complex and determining the amount of radiolabel bound, or by running a competition experiment where new inhibitors are incubated with p38 bound to known radioligands .
  • Cell culture assays of the inhibitory effect of the compounds of this invention may be used to determine the amounts of TNF, IL-1, IL-6 or IL-8 produced in whole blood or cell fractions thereof in cells treated with inhibitor as compared to cells treated with negative controls. Level of these cytokines may be determined through the use of commercially available ELISAs.
  • An in vi vo assay useful for determining the inhibitory activity of the p38 inhibitors of this invention is the suppression of hind paw edema in rats with Mycobacteri um butyri cum-induced adjuvant arthritis. This is described in J.C. Boehm et al . , J. Med. Chem. , 39, pp: 3929-37 (1996), the disclosure of which is herein incorporated by reference.
  • the p38 inhibitors of this invention may also be assayed in animal models of arthritis, bone resorption, endotoxin shock and immune function, as described in A. M. Badger et al., J. Pharmacol. Experimental Therapeutics, 279, pp.
  • the p38 inhibitors or pharmaceutical salts thereof may be formulated into pharmaceutical compositions for administration to animals or humans.
  • These pharmaceutical compositions which comprise an amount of p38 inhibitor effective to treat or prevent a p38-mediated condition and a pharmaceutically acceptable carrier, are another embodiment of the present invention.
  • p38-mediated condition means any disease or other deleterious condition in which p38 is known to play a role. This includes conditions caused by IL-1, TNF, IL-6 or IL-8 overproduction. Such conditions include, without limitation, inflammatory diseases, autoimmune diseases, destructive bone disorders, proliferative disorders, infectious diseases, neurodegenerative diseases, allergies, reperfusion/ischemia in stroke, heart attacks, angiogenic disorders, organ hypoxia, vascular hyperplasia, cardiac hypertrophy, thrombin-induced platelet aggregation, and conditions associated with prostaglandin endoperoxidase synthase-2. Inflammatory diseases which may be treated or prevented include, but are not limited to, acute pancreatitis, chronic pancreatitis, asthma, allergies, and adult respiratory distress syndrome.
  • Autoimmune diseases which may be treated or prevented include, but are not limited to, glomerulonephritis, rheumatoid arthritis, systemic lupus erythematosus, scleroderma, chronic thyroiditis, Graves' disease, autoimmune gastritis, diabetes, autoimmune hemolytic anemia, autoimmune neutropenia, thrombocytopenia, atopic dermatitis, chronic active hepatitis, yasthenia gravis, multiple sclerosis, inflammatory bowel disease, ulcerative colitis, Crohn' s disease, psoriasis, and graft vs. host disease.
  • Destructive bone disorders which may be treated or prevented include, but are not limited to, osteoporosis, osteoarthritis and multiple myeloma-related bone disorder.
  • Proliferative diseases which may be treated or prevented include, but are not limited to, acute myelogenous leukemia, chronic myelogenous leukemia, metastatic melanoma, Kaposi's sarcoma, and multiple myeloma .
  • Angiogenic disorders which may be treated or prevented include solid tumors, ocular neovasculization, infantile haemangiomas .
  • Infectious diseases which may be treated or prevented include, but are not limited to, sepsis, septic shock, and Shigellosis.
  • Viral diseases which may be treated or prevented include, but are not limited to, acute hepatitis infection (including hepatitis A, hepatitis B and hepatitis C) , HIV infection and CMV retinitis.
  • Neurodegenerative and neurological diseases which may oe treated or prevented by the compounds of this invention which inhibit p38 or Jnk3 include, but are not limited to, Alzheimer's disease, Parkinson's disease, cerebral ischemias, epilepsy or neurodegenerative disease caused by traumatic injury.
  • p38-med ⁇ ated conditions also include lschemia/reperfusion m stroke, heart attacks, myocardial ischemia, organ hypoxia, vascular hyperplasia, cardiac hypertrophy, and thrombin-mduced platelet aggregation.
  • p38 inhibitors m this invention are also capable of inhibiting the expression of mducible pro-inflammatory proteins such as prostaglandm endoperoxide synthase-2 (PGHS-2), also referred to as cyclooxygenase-2 (COX-2) . Therefore, other "p38-med ⁇ ated conditions” are edema, analgesia, fever and pain, such as neuromuscular pain, headache, pain caused by cancer, dental pain and arthritis pain.
  • the diseases that may be treated or prevented by the p38 inhibitors of this invention may also be conveniently grouped by the cytokme (IL-1, TNF, IL-6, IL-8) that is believed to be responsible for the disease.
  • an IL-1-med ⁇ ated disease or condition includes rheumatoid arthritis, osteoarthritis, stroke, endotoxemia and/or toxic shock syndrome, inflammatory reaction induced by endotoxin, inflammatory bowel disease, tuberculosis, atherosclerosis, muscle degeneration, cachexia, psoriatic arthritis, Reiter' s syndrome, gout, traumatic arthritis, rubella arthritis, acute synovitis, diabetes, pancreatic ⁇ -cell disease and Alzheimer's disease.
  • TNF-mediated diseases or conditions include rheumatoid arthritis, rheumatoid spondylitis, osteoarthritis, gouty arthritis and other arthritic conditions, sepsis, septic shock, endotoxic shock, gram negative sepsis, toxic shock syndrome, adult respiratory distress syndrome, cerebral malaria, chronic pulmonary inflammatory disease, silicosis, pulmonary sarcoisosis, bone resorption diseases, reperfusion injury, graft vs. host reaction, allograft rejections, fever and myalgias due to infection, cachexia secondary to infection, AIDS, ARC or malignancy, keloid formation, scar tissue formation, Crohn' s disease, ulcerative colitis or pyresis.
  • TNF-mediated diseases also include viral infections, such as HIV, CMV, influenza and herpes; and veterinary viral infections, such as lentivirus infections, including, but not limited to, equine infectious anemia virus, caprine arthritis virus, visna virus or maedi virus; or retrovirus infections, including feline immunodeficiency virus, bovine immunodeficiency virus, or canine immunodeficiency virus.
  • viral infections such as HIV, CMV, influenza and herpes
  • veterinary viral infections such as lentivirus infections, including, but not limited to, equine infectious anemia virus, caprine arthritis virus, visna virus or maedi virus
  • retrovirus infections including feline immunodeficiency virus, bovine immunodeficiency virus, or canine immunodeficiency virus.
  • IL-8 mediated diseases or conditions include diseases characterized by massive neutrophil infiltration, such as psoriasis, inflammatory bowel disease, asthma, cardiac and renal reperfusion injury, adult respiratory distress syndrome, thrombosis and glomerulonephritis .
  • the compounds of this invention may be used topically to treat or prevent conditions caused or exacerbated by IL-1 or TNF.
  • Such conditions include inflamed joints, eczema, psoriasis, inflammatory skin conditions such as sunburn, inflammatory eye conditions such as conjunctivitis, pyresis, pain, and other conditions associated with inflammation.
  • compositions to treat or prevent the above-identified disorders.
  • Pharmaceutically acceptable salts of the compounds of this invention include those derived from pharmaceutically acceptable inorganic and organic acids and bases.
  • suitable acid salts include acetate, adipate, alginate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, citrate, camphorate, camphorsulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptanoate, glycerophosphate, glycolate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, malonate, methanesulfonate, 2- naphthalenesulfonate, nicotinate, nitrate, oxalate, palmoate, pe
  • Salts derived from appropriate bases include alkali metal (e.g., sodium and potassium), alkaline earth metal (e.g., magnesium), ammonium and N- (C 1 - 4 alkyl) 4+ salts.
  • alkali metal e.g., sodium and potassium
  • alkaline earth metal e.g., magnesium
  • ammonium e.g., ammonium
  • N- (C 1 - 4 alkyl) 4+ salts e.g., sodium and potassium
  • Pharmaceutically acceptable carriers that may be used in these pharmaceutical compositions include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat.
  • ion exchangers alumina, aluminum stearate, lecithin
  • serum proteins such as human serum albumin
  • buffer substances such as phosphates, glycine, sorb
  • compositions of the present invention may be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir.
  • parenteral as used herein includes subcutaneous, intravenous, intramuscular, intra-articular, intra-synovial, intrasternal, intrathecal, intrahepatic, intralesional and intracranial injection or infusion techniques.
  • the compositions are administered orally, intraperitoneally or intravenously.
  • Sterile injectable forms of the compositions of this invention may be aqueous or oleaginous suspension. These suspensions may be formulated according to techniques known in the art using suitable dispersing or wetting agents and suspending agents.
  • the sterile mjecrable preparation may also be a sterile mjectable solution or suspension m a non-toxic parenterally- acceptable diluent or solvent, for example as a solution m 1, 3-butaned ⁇ ol .
  • the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution.
  • sterile, fixed oils are conventionally employed as a solvent or suspending medium.
  • any bland fixed oil may be employed including synthetic mono- or di-glyce ⁇ des .
  • Fatty acids such as oleic acid and its glyceride derivatives are useful m the preparation of injectables, as are natural pharmaceutically- acceptable oils, such as olive oil or castor oil, especially m their polyoxyethylated versions.
  • These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant, such as carboxymethyl cellulose or similar dispersing agents which are commonly used m the formulation of pharmaceutically acceptable dosage forms including emulsions and suspensions.
  • Other commonly used surfactants such as Tweens, Spans and other emulsifying agents or bioavailability enhancers which are commonly used in the manufacture of pharmaceutically acceptable solid, liquid, or other dosage forms may also be used for the purposes of formulation.
  • compositions of this invention may be orally administered m any orally acceptable dosage form including, but not limited to, capsules, tablets, aqueous suspensions or solutions.
  • carriers that are commonly used include lactose and corn starch.
  • Lubricating agents such as magnesium stearate, are also typically added.
  • useful diluents include lactose and dried corn starch.
  • aqueous suspensions are required for oral use, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening, flavoring or coloring agents may also be added.
  • the pharmaceutical compositions of this invention may be administered in the form of suppositories for rectal administration. These can be prepared by mixing the agent with a suitable non- lr ⁇ tatmg excipient which is solid at room temperature but liquid at rectal temperature and therefore will melt m the rectum to release the drug. Such materials include cocoa butter, beeswax and polyethylene glycols.
  • the pharmaceutical compositions of this invention may also be administered topically, especially when the target of treatment includes areas or organs readily accessible by topical application, including diseases of the eye, the skin, or the lower intestinal tract. Suitable topical formulations are readily prepared for each of these areas or organs.
  • Topical application for the lower intestinal tract can be effected m a rectal suppository formulation (see above) or m a suitable enema formulation. Topically-transdermal patches may also be used.
  • the pharmaceutical compositions may be formulated m a suitable ointment containing the active component suspended or dissolved m one or more carriers.
  • Carriers for topical administration of the compounds of this invention include, but are not limited to, mineral oil, liquid petrolatum, white petrolatum, propylene glycol, polyoxyethylene, polyoxypropylene compound, emulsifying wax and water.
  • the pharmaceutical compositions can be formulated in a suitable lotion or cream containing the active components suspended or dissolved in one or more pharmaceutically acceptable carriers.
  • Suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water.
  • the pharmaceutical compositions may be formulated as micronized suspensions in isotonic, pH adjusted sterile saline, or, preferably, as solutions in isotonic, pH adjusted sterile saline, either with or without a preservative such as benzylalkonium chloride.
  • the pharmaceutical compositions may be formulated in an ointment such as petrolatum.
  • compositions of this invention may also be administered by nasal aerosol or inhalation.
  • Such compositions are prepared according to techniques well known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other conventional solubilizing or dispersing agents.
  • compositions should be formulated so that a dosage of between 0.01 - 100 g/kg body weight/day of the inhibitor can be administered to a patient receiving these compositions .
  • a specific dosage and treatment regimen for any particular patient will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, rate of excretion, drug combination, and the judgment of the treating physician and the severity of the particular disease being treated.
  • the amount of inhibitor will also depend upon the particular compound m the composition.
  • the invention provides methods for treating or preventing a p38- mediated condition comprising the step of administering to a patient one of the above-described pharmaceutical compositions.
  • patient means an animal, preferably a human.
  • that method is used to treat or prevent a condition selected from inflammatory diseases, autoimmune diseases, destructive bone disorders, proliferative disorders, infectious diseases, degenerative diseases, allergies, reperfusion/ischemia m stroke, heart attacks, angiogenic disorders, organ hypoxia, vascular hyperplasia, cardiac hypertrophy, and thrombin-mduced platelet aggregation.
  • a condition selected from inflammatory diseases, autoimmune diseases, destructive bone disorders, proliferative disorders, infectious diseases, degenerative diseases, allergies, reperfusion/ischemia m stroke, heart attacks, angiogenic disorders, organ hypoxia, vascular hyperplasia, cardiac hypertrophy, and thrombin-mduced platelet aggregation.
  • the inhibitors of this invention are used to treat or prevent an IL-1, IL-6, IL-8 or TNF-mediated disease or condition. Such conditions are described above.
  • additional drugs which are normally administered to treat or prevent that condition may be administered together with the inhibitors of this invention.
  • additional drugs which are normally administered to treat or prevent that condition may be administered together with the inhibitors of this invention.
  • chemotherapeutic agents or other anti-proliferative agents may be combined with the p38 inhibitors of this invention to treat proliferative diseases.
  • those additional agents may be administered separately, as part of a multiple dosage regimen, from the p38 inhibitor-containing composition.
  • those agents may be part of a single dosage form, mixed together with the p38 inhibitor in a single composition.
  • the organic extract was dried in MgS0 4 and filtered over a plug of silica gel.
  • the plug was eluted with CH 2 C1 2 to remove a small amount of nonpolar impurities.
  • An elution with 25% EtOAc in CH 2 C1 2 and evaporation of the filtrate in vacuo produced 8.12 g, a 61% yield, of the thiourea as a clear, colorless oil.
  • the baculovirus transfer vector, pVL-(His)6- p38 was constructed by subcloning a Xbal-BamHI fragment of pET15b- (His) 6-p38 into the complementary sites in plasmid pVL1392 (Pharmingen) .
  • the plasmid pVL- (His) 6-p38 directed the synthesis of a recombinant protein consisting of a 23- residue peptide (MGSSHHHHHHSSGLVPRGSHMLE, where LVPRGS represents a thrombin cleavage site) fused in frame to the N-terminus of p38, as confirmed by DNA sequencing and by N-terminal sequencing of the expressed protein.
  • Monolayer culture of Spodoptera frugiperda (Sf9) insect cells (ATCC) was maintained in TNM-FH medium (Gibco BRL) supplemented with 10% fetal bovine serum in a T-flask at
  • Sf9 cells in log phase were co-transfected with linear viral DNA of Autographa califonica nuclear polyhedrosis virus (Pharmingen) and transfer vector pVL- (His) 6-p38 using Lipofectin (Invitrogen).
  • the individual recombinant baculovirus clones were purified by plaque assay using 1% low melting agarose.
  • the resin was settled by centrifugation at 500 x g for 5 minutes and gently washed batchwise with Buffer A.
  • the resin was slurried and poured into a column (approx. 2.6 x 5.0 cm) and washed with Buffer A + 5 mM imidazole.
  • the (His) 6 -p38 was eluted with Buffer A + 100 mM imidazole and subsequently dialyzed overnight at 4°C against 2 liters of Buffer B, (50 mM HEPES, pH 7.5, 25 mM ⁇ -glycerophosphate, 5% glycerol, 2mM DTT) .
  • Buffer B 50 mM HEPES, pH 7.5, 25 mM ⁇ -glycerophosphate, 5% glycerol, 2mM DTT
  • the His 6 tag was removed by addition of at 1.5 units thrombin (Calbiochem) per mg of p38 and incubation at 20°C for 2-3 hours.
  • the thrombin was quenched by addition of 0.2 mM PMSF and then the entire sample was loaded onto a 2 ml benzamidine agarose (American International Chemical) column.
  • the flow through fraction was directly loaded onto a 2.6 x 5.0 cm Q-Sepharose (Pharmacia) column previously equilibrated in Buffer B + 0.2 mM PMSF.
  • the p38 was eluted with a 20 column volume linear gradient to 0.6M NaCl in Buffer B.
  • the eluted protein peak was pooled and dialyzed overnight at 4°C vs.
  • Buffer C 50 mM HEPES pH 7.5, 5° glycerol, 50 mM NaCl, 2 mM DTT, 0.2 mM PMSF
  • the ⁇ ialyzed protein was concentrated m a Centriprep (Amicon) to 3-4 ml and applied to a 2.6 x 100 cm Sephacryl S-100HR (Pharmacia) column.
  • the protein was eluted at a flow rate of 35 ml/hr.
  • the mam peak was pooled, adjusted to 20 mM DTT, concentrated to 10-80 mgs/ml and frozen m aliquots at -70°C or used immediately.
  • EXAMPLE 4 Activation of p38 p38 was activated by combining 0.5 mg/ml p38 with 0.005 mg/ml DD-double mutant MKK6 in Buffer B + lOmM MgC12, 2mM ATP, 0.2mM Na2V04 for 30 minutes at 20°C. The activation mixture was then loaded onto a 1.0 x 10 cm MonoQ column (Pharmacia) and eluted with a linear 20 column volume gradient to 1.0 M NaCl m Buffer B. The activated p38 eluted after the ADP and ATP. The activated p38 peak was pooled and dialyzed against buffer B + 0.2mM Na2V04 to remove the NaCl.
  • the dialyzed protein was adjusted to 1.1M potassium phosphate by addition of a 4.0M stock solution and loaded onto a 1.0 x 10 cm HIC (Ram Hydropore) column previously equilibrated m Buffer D (10% glycerol, 20mM ⁇ - glycerophosphate, 2. OmM DTT) + 1.1MK2HP04.
  • Buffer D 10% glycerol, 20mM ⁇ - glycerophosphate, 2. OmM DTT
  • the protein was eluted with a 20 column volume linear gradient to Buffer D + 50mM K2HP04.
  • the double phosphorylated p38 eluted as the mam peak and was pooled for dialysis against Buffer B + 0.2mM Na2V04.
  • the activated p38 was stored at -70°C.
  • EGF receptor peptide KRELVEPLTPSGEAPNQALLR, a phosphoryl acceptor in p38-catalyzed kinase reaction
  • KRELVEPLTPSGEAPNQALLR a phosphoryl acceptor in p38-catalyzed kinase reaction
  • the kinase reaction is initiated with ATP (100 uM) and the vials are incubated at 30°C. After 30 minutes, the reactions are quenched with equal volume of 10% trifluoroacetic acid (TFA) .
  • TFA trifluoroacetic acid
  • the phosphorylated peptide is quantified by HPLC analysis. Separation of phosphorylated peptide from the unphosphorylated peptide is achieved on a reverse phase column (Deltapak, 5 urn, C18 100D, part no. 011795) with a binary gradient of water and acteonitrile, each containing 0.1% TFA. IC50 (concentration of inhibitor yielding 50% inhibition) is determined by plotting the % activity remaining against inhibitor concentration.
  • ADP from ATP Separation of ADP from ATP is achieved on a reversed phase column (Supelcosil, LC-18, 3 ⁇ m, part no. 5-8985) using a binary solvent gradient of following composition: Solvent A - 0.1 M phosphate buffer containing 8 mM tetrabutylammonium hydrogen sulfate (Sigma Chemical Co., catalogue no. T-7158), Solvent B - Solvent A with 30% methanol.
  • Inhibitors are serially diluted m DMSO from a 20 mM stock. At least 6 serial dilutions are prepared. Then 4x inhibitor stocks are prepared by adding 4 ⁇ l of an inhibitor dilution to 1 ml of RPMI1640 medium/10% fetal bovine serum. The 4x inhibitor stocks contained inhibitor at concentrations of 80 ⁇ M, 32 ⁇ M, 12.8 ⁇ M, 5.12 ⁇ M, 2.048 ⁇ M, 0.819 ⁇ M, 0.328 ⁇ M, 0.131 ⁇ M, 0.052 ⁇ M, 0.021 ⁇ M etc. The 4x inhibitor stocks are pre-warmed at 37°C until use.
  • Fresh human blood buffy cells are separated from other cells in a Vacutainer CPT from Becton & Dickinson (containing 4 ml blood and enough DPBS without Mg 2+ /Ca 2+ to fill the tube) by centrifugation at 1500 x g for 15 min.
  • Peripheral blood mononuclear cells (PBMCs) which are located on top of the gradient in the
  • Vacutainer are removed and washed twice with RPMI1640 medium/10% fetal bovine serum.
  • PBMCs are collected by centrifugation at 500 x g for 10 min. The total cell number is determined using a Neubauer Cell Chamber and the cells are adjusted to a concentration of 4.8 x 10 6 cells/ml in cell culture medium (RPMI1640 supplemented with 10% fetal bovine serum) .
  • whole blood containing an anticoagulant is used directly in the assay.
  • 100 ⁇ l of cell suspension or whole blood is placed in each well of a 96-well cell culture plate.
  • 50 ⁇ l of the 4x inhibitor stock to the cells is added.
  • 50 ⁇ l of a lipopolysaccharide (LPS) working stock solution (16 ng/ml in cell culture medium) is added to give a final concentration of 4 ng/ml LPS in the assay.
  • the total assay volume of the vehicle control is also adjusted to 200 ⁇ l by adding 50 ⁇ l cell culture medium.
  • the PBMC cells or whole blood are then incubated overnight (for 12-15 hours) at 37° C/5% C02 in a humidified atmosphere.
  • IL-lb R & D Systems, Quantikine kits, #DBL50
  • TNF- ⁇ BioSource, #KHC3012
  • IL-6 Endogen, #EH2-IL6
  • IL-8 Endogen, #EH2-IL8
  • the ELISA data are used to generate dose-response curves from which IC50 values are derived.
  • p38 inhibitors of this invention will inhibit phosphorylation of EGF receptor peptide, and the production of IL-1, TNF and IL-6, as well as IL-8 in LPS- stimulated PBMCs or in whole blood.
  • This assay is carried out on PBMCs exactly the same as above except that 50 ⁇ l of an IL-lb working stock solution (2 ng/ml in cell culture medium) is added to the assay instead of the (LPS) working stock solution.
  • Cell culture supernatants are harvested as described above and analyzed by ELISA for levels of IL-6 (Endogen, #EH2-IL6) and IL-8 (Endogen, #EH2-IL8) according to the instructions of the manufacturer.
  • the ELISA data are used to generate dose-response curves from which IC50 values are derived.
  • PBMCs Human peripheral mononuclear cells
  • PGHS-2 Prostaglandin Endoperoxide Synthase-2
  • PBMCs Human peripheral mononuclear cells
  • 15 x 10° cells are seeded in a 6-well tissue culture dish containing RPMI 1640 supplemented with 10% fetal bovine serum, 50U/ml penicillin, 50 ⁇ g/ml streptomycin, and 2 mM L-glutamine.
  • An inhibitor of the instant invention is added at 0.2, 2.0 and 20 ⁇ M final concentrations in DMSO.
  • LPS is added at a final concentration of 4 ng/ml to induce enzyme expression.
  • the final culture volume is 10 ml/well .
  • the cells are harvested by scraping and subsequent centrifugation, then the supernatant is removed, and the cells are washed twice in ice-cold DPBS (Dulbecco's phosphate buffered saline, BioWhittaker) .
  • the cells are lysed on ice for 10 min in 50 ⁇ l cold lysis buffer (20 mM Tris-HCl, pH 7.2, 150 mM NaCl, 1% Triton-X-100, 1% deoxycholic acid, 0.1% SDS, 1 mM EDTA, 2% aprotinin (Sigma) , 10 ⁇ g/ml pepstatin, 10 ⁇ g/ml leupeptin, 2 mM PMSF, 1 mM benzamidine, 1 mM DTT) containing 1 ⁇ l Benzonase (DNAse from Merck) .
  • the protein concentration of each sample is determined using the BCA assay (Pierce) and bovine serum albumin as a standard.
  • each sample is adjusted to 1 mg/ml with cold lysis buffer.
  • 2xSDS PAGE loading buffer is added to 100 ⁇ l lysate and the sample is boiled for 5 min.
  • Proteins (30 ⁇ g/lane) are size- fractionated on 4-20% SDS PAGE gradient gels (Novex) and subsequently transferred onto nitrocellulose membrane by electrophoretic means for 2 hours at 100 mA in Towbin transfer buffer (25 mM Tris, 192 mM glycine) containing 20% ethanol.
  • the membrane is pretreated for 1 hour at room temperature with blocking buffer (5% non-fat dry milk in DPBS supplemented with 0.1% Tween-20) and washed 3 times in DPBS/0.1% Tween-20.
  • the membrane is incubated overnight at 4 ⁇ C with a 1: 250 dilution of monoclonal anti-COX-2 antibody (Transduction Laboratories) in blocking buffer. After 3 washes in DPBS/0.1% Tween-20, the membrane is incubated with a 1:1000 dilution of horseradish peroxidase-conjugated sheep antiserum to mouse Ig (Amersham) in blocking buffer for 1 h at room temperature. Then the membrane is washed again 3 times in DPBS/0.1% Tween-20 and an ECL detection system

Abstract

The present invention provides inhibitors of p38 having general formulae (I and II), wherein: X is selected from O, S, NR or C(R)2; Y is CR or N; Z is CH or N; M is C=O, CHOH, or CH2; n is 0 or 1; Q1 is selected from a 5-6 membered aromatic carbocyclic or heterocyclic ring system, or an 8-10 membered bicyclic ring system comprising aromatic carbocyclic rings, aromatic heterocyclic rings or a combination of an aromatic carbocyclic ring and an aromatic heterocyclic ring, and Q2 is selected from H, CO7R', CON(R')2, or a (C1-c4) branched or straight-chain alkyl optionally containing 1-3 substituents independently selected from A, T-C(O)R', OPO3H2, NR'2, N(R'), OR', CO2R', CON(R')2, or SO2N(R2)2; or a 5-6 membered aromatic carbocyclic or heterocyclic ring system, or an 8-10 membered bicyclic ring system comprising aromatic carbocyclic rings, aromatic heterocyclic rings or a combination of an aromatic carbocyclic ring and an aromatic heterocyclic ring.

Description

INHIBITORS OF p38
TECHNIC7ΛL FIELD OF INVENTION The present invention relates to inhibitors of p38, a mammalian protein kinase is involved in cell proliferation, cell death and response to extracellular stimuli. The invention also relates to methods for producing these inhibitors. The invention also provides pharmaceutical compositions comprising the inhibitors of the invention and methods of utilizing those compositions in the treatment and prevention of various disorders.
BACKGROUND OF THE INVENTION
Protein kinases are involved in various cellular responses to extracellular signals. Recently, a family of mitogen-activated protein kinases (MAPK) has been discovered. Members of this family are Ser/Thr kinases that activate their substrates by phosphorylation [B. Stein et al., /Ann. Rep. Med. Chem., 31, pp. 289-98 (1996) ] . MAPKs are themselves activated by a variety of signals including growth factors, cytokines, UN radiation, and stress-inducing agents.
One particularly interesting MAPK is p38. p38, also known as cytokihe suppressive anti-inflammatory drug binding protein (CSBP) and RK, is isolated from murine pre-B cells that are transfected with the lipopolysaccharide (LPS) receptor, CD14, and induced with LPS. p38 has since been isolated and sequenced, as has the cDΝA encoding it in humans and mouse. Activation of p38 has been observed in cells stimulated by stress, such as treatment of lipopolysaccharides (LPS) , UN, anisomycin, or osmotic shock, and by treatment with cytokines, such as IL-1 and TΝF.
Inhibition of p38 kinase leads to a blockade in the production of both IL-1 and TΝF. IL-1 and TΝF stimulate the production of other proinflammatory cytokines such as IL-6 and IL-8 and have been implicated in acute and chronic inflammatory diseases and in post- enopausal osteoporosis [R. B. Kimble et al . , Endocrinol., 136, pp. 3054-61 (1995)].
Based upon this finding it is believed that p38, along with other MAPKs, have a role in mediating cellular response to inflammatory stimuli, such as leukocyte accumulation, macrophage/monocyte activation, tissue resorption, fever, acute phase responses and neutrophilia. In addition, MAPKs, such as p38, have been implicated in cancer, thrombin-induced platelet aggregation, immunodeficiency disorders, autoimmune diseases, cell death, allergies, osteoporosis and neurodegenerative disorders. Inhibitors of p38 have been implicated in the area of pain management through inhibition of prostaglandin endoperoxide synthase-2 induction. Other diseases associated with IL-1, IL-6, IL-8 or TΝF overproduction are set forth in WO 96/21654. Others have already begun trying to develop drugs that specifically inhibit MAPKs. For example, PCT publication WO 95/31451 describes pyrazole compounds that inhibit MAPKs, and, in particular, p38. However, the efficacy of these inhibitors in vivo is still being investigated.
Accordingly, there is still a great need to develop other potent, p38-specific inhibitors that are useful m treating various conditions associated with p38 activation.
SUMMARY OF THE INVENTION
The present invention addresses this problem by providing compounds that demonstrate strong and specific inhibition of p38.
These compounds have the general formulae:
Figure imgf000005_0001
or pharmaceutically acceptable salts thereof, wherein each of Qi and Q2 are independently selected from 5-6 membered aromatic carbocyclic or heterocyclic ring systems, or 8-10 membered bicyclic ring systems comprising aromatic carbocyclic rings, aromatic heterocyclic rings or a combination of an aromatic carbocyclic ring and an aromatic heterocyclic ring.
Alternatively, Qi is selected from a 5-6 membered aromatic carbocyclic or heterocyclic ring system, or an 8-10 membered bicyclic ring system comprising aromatic carbocyclic rings, aromatic heterocyclic rings or a combination of an aromatic carbocyclic ring and an aromatic heterocyclic ring, and Q2 is selected from H, C02R' , CON(R')?, or a (Cι~C4) branched or straight-chain alkyl optionally containing 1-3 substituents independently selected from A, T-C(0)R', OP03H2, NR'2, N(R')t, OR', C02R' , C0N(R')2, or S02N(R2)2.
The rings that make up Qi are optionally substituted with 1 to 4 substituents , each of which is independently selected from halo; C1-C4 alkyl optionally containing 1-3 substituents independently selected from A, T-C(0)R', 0P03H2, NR'2, NR'2, OR', C02R' or CONR'2; 0- (Ci-C; ) -alkyl optionally containing 1-3 substituents independently selected from A, T-C(0)R', OP03H2, NR'2, NR%, OR', C02R' or C0NR'2; NR'2; 0CF3; CF3; N02; C02R' ; CONR' ; SR' ; S(02)N(R')2; SCF3; CN; N(R')C(0)R4; N(R' )C(0)OR4; N (R' ) C (0) C (0) R4; N (R' ) S (02) R4; N(R')R4; N(R4)2; OR4; OC(0)R4; 0P(0)3H2; or N=C-N(R')2.
When Q2 is a ring system, the rings that make up Q2 are optionally substituted with up to 4 substituents, each of which is independently selected from halo; Cι-C4 straight or branched alkyl optionally containing 1-3 substitutents independently selected from A, T-C(0)R', OPO3H2, NR'2, OR', C02R' , S(02)N(R')2, N=C-N(R')2, R3, or C0NR' ; 0- (C1-C3) -alkyl; O- (C1-C4) -alkyl optionally containing 1-3 substituents independently selected from A, T-C(0)R', OPO3H2, NR'2, NR'2, OR', C02R' , S(02)N(R')2, N=C-N(R')2, R3, or C0NR'2; NR'2; 0CF3; CF3; N02; C02R' ; CONR'; R3; OR3; NR3; SR3; C(0)R3; C(0)N(R')R3; C(0)OR3 SR' ; S(02)N(R')2; SCF3; N=C-N(R')2; or CN.
A is selected from the groups:
Figure imgf000006_0001
T is either 0 or NH. G is either NH2 or OH. R' is selected from hydrogen, (C1-C3) -alkyl; (C2-C-,)--alkenyl or alkynyl; phenyl or phenyl substituted with 1 to 3 substituents independently selected from halo, methoxy, cyano, nitro, amino, hydroxy, methyl or ethyl .
R3 is selected from 5-6 membered aromatic carbocyclic or heterocyclic ring systems.
R4 is (C1-C4) -alkyl optionally substituted with N(R' , OR', C02R' , CON(R')2, or S02N(R2)2; a 5-6 membered carbocyclic or heterocyclic ring system optionally substituted with a (C1-C4) branched or straight-chain alkyl group, N(R')2, OR', C02R' , CON(R')2, or S02N(R2)2; or a (C1-C4) -alkyl optionally substituted with the 5-6 membered carbocyclic or heterocyclic ring system optionally substituted as described immediately above.
R2 is selected from hydrogen, (C1-C3) -alkyl, or (C1-C3) -alkenyl; each optionally substituted with -N(R')2, -OR', SR' , -C(0)-N(R' )2, -S (02)-N(R' )2, -C(0)-OR', or R3.
X is selected from 0, S, NR or C(R)2. Y is CR or N.
Z is CH or N.
M is C=0, CHOH, or CH2. n is 0 or 1.
Each R is independently selected from hydrogen, -R2, -N(R2)2, -OR2, SR2, -C (0) -N (R2) 2, -S (02) -N (R2) 2, or
-C(0)-OR2, wherein two adjacent R are optionally bound to one another and, together with each Y to which they are respectively bound, form a 4-8 membered carbocyclic or heterocyclic ring. In another embodiment, the invention provides pharmaceutical compositions comprising the p38 inhibitors of this invention. These compositions may be utilized in methods for treating or preventing a variety of disorders, such as cancer, inflammatory diseases, autoimmune diseases, destructive bone disorders, proliferative disorders, infectious diseases, viral diseases and neurodegenerative and neurological diseases. These compositions are also useful in methods for preventing cell death and hyperplasia and therefore may be used to treat or prevent reperfusion/ischemia in stroke, heart attacks, and organ hypoxia. The compositions are also useful in methods for preventing thrombin-induced platelet aggregation. Each of these above-described methods is also part of the present invention.
In another embodiment, compounds of the instant invention may act as Jnk3 inhibitors. Jnk3 is a MAP kinase involved in nervous system development, maintenance and repair, and may be important for stress- induced neuronal apoptosis in the central nervous system (Yang et al., Nature 389: 865-870, 1997). These compounds may be used to formuate pharmaceutical compositions that can be used for methods of treating Jnk3-mediated neurological diseases.
DETAILED DESCRIPTION OF THE INVENTION
In order that the invention herein described may be more fully understood, the following detailed description is set forth. In the description, the following terms are employed:
The term "heterocyclyl" or "heterocycle" refers to a stable 5-6 membered monocyclic heterocyclic ring or 8-10 membered bicyclic heterocyclic ring which is either saturated or unsaturated, and which may be optionally benzofused if monocyclic. Each heterocycle consists of one or more carbon atoms and from one to four heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur. As used herein, the terms "nitrogen and sulfur heteroatoms" include any oxidized form of nitrogen and sulfur, and the quaternized form of any basic nitrogen. A heterocyclyl radical may be attached at any endocyclic carbon or heteroatom that results in the creation of a stable structure. Examples of such groups include imidazolyl, imidazolinoyl, imidazolidinyl, quinolyl, isoqinolyl, indolyl, indazolyl, indazolinolyl, perhydropyridazyl, pyridazyl, pyridyl, pyrrolyl, pyrrolinyl, pyrrolidinyl, pyrazolyl, pyrazinyl, quinoxolyl, piperidinyl, pyranyl, pyrazolinyl, piperazinyl, pyrimidinyl, pyridazinyl, morpholinyl, thiamorpholinyl, furyl, thienyl, triazolyl, thiazolyl, - carbolinyl, tetrazolyl, thiazolidinyl, benzofuranoyl, thiamorpholinyl sulfone, oxazolyl, benzoxazolyl, oxopiperidinyl, oxopyrrolidinyl, oxoazepinyl, azepinyl, isoxozolyl, isothiazolyl, furazanyl, tetrahydropyranyl, tetrahydrofuranyl, thiazolyl, thiadiazoyl, dioxolyl, dioxinyl, oxathiolyl, benzodioxolyl, dithiolyl, thiophenyl, tetrahydrothiophenyl, sulfolanyl, dioxanyl, dioxolanyl, tetahydrofurodihydrofuranyl, tetrahydropyranodihydrofuranyl, dihydropyranyl, tetradyrofurofuranyl and tetrahydropyranofuranyl .
The term "carbocyclyl" or "carbocycle" refers to a stable 5-6 membered monocyclic carbocyclic ring or 8-10 membered bicyclic carbocyclic ring which is either saturated or unsaturated, and which may be optionally benzofused if monocyclic. The term "pharmaceutically acceptable salts" refers' to compounds according to the invention used in the form of salts derived from inorganic or organic acids and bases. Included among acid salts, for example, are the following: acetate, adipate, alginate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, citrate, camphorate, camphorsulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, flucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, aleate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, oxalate, pamoate, pectianate, persulfate, phenylproprionate, picrate, pivalate, propionate, succinate, tartrate, thiocyanate, tosylate and undecanoate .
Salts derived from appropriate bases include alkali metal (e.g. sodium), alkaline earth metal (e.g., magnesium), ammonium and NW4 + (wherein W is Cι_4 alkyl).
Physiologically acceptable salts of a hydrogen atom or an amino group include salts or organic carboxylic acids such as acetic, lactic, tartaric, malic, isethionic, lactobionic and succinic acids; organic sulfonic acids such as methanesulfonic, ethanesulfonic, benzenesulfonic and p-toluenesulfonic acids and inorganic acids such as hydrochloric, sulfuric, phosphoric and sulfamic acids. Physiologically acceptable salts of a compound with a hydroxy group include the anion of said compound in combination with a suitable cation such as Na+, NH4 +, and NW4 + (wherein W is a C1-4 alkyl group) . Pharmaceutically acceptable salts include salts of organic carboxylic acids such as ascorbic, acetic, citric, lactic, tartaric, malic, maleic, isothionic, lactobionic, p-aminobenzoic and succinic acids; organic sulphonic acids such as methanesulphonic, ethanesulphonic, benzenesulphonic and p-toluenesulphonic acids and inorganic acids such as hydrochloric, sulphuric, phosphoric, sulphamic and pyrophosphoric acids . For therapeutic use, salts of the compounds according to the invention will be pharmaceutically acceptable. However, salts of acids and bases that are not pharmaceutically acceptable may also find use, for example, in the preparation or purification of a pharmaceutically acceptable compound.
Preferred salts include salts formed from hydrochloric, sulfuric, acetic, succinic, citric and ascorbic acids.
The term "chemically feasible" refers to a connectivity of atoms such that the chemical valency of each atom is satisfied. For example, an oxygen atom with two bonds and a carbon atom with four bonds are chemically feasible.
The term "tautomerization" refers to the phenomenon wherein a proton of one atom of a molecule shifts to another atom. See, Jerry March, Advanced Organic Chemistry: Reactions, Mechanisms and Structures, Fourth Edition, John Wiley & Sons, pages 69-74 (1992) . The term "tautomer" refers to the compounds produced by the proton shift.
The present invention provides inhibitors of p38 having the general formulae:
S U B S T I T U T E S H ETT^RULE 26)
Figure imgf000012_0001
or pharmaceutically acceptable salts thereof, wherein each of Qi and Q2 are independently selected from 5-6 membered aromatic carbocyclic or heterocyclic ring systems, or 8-10 membered bicyclic ring systems comprising aromatic carbocyclic rings, aromatic heterocyclic rings or a combination of an aromatic carbocyclic ring and an aromatic heterocyclic ring. Alternatively, Qi is selected from a 5-6 membered aromatic carbocyclic or heterocyclic ring system, or an 8-10 membered bicyclic ring system comprising aromatic carbocyclic rings, aromatic heterocyclic rings or a combination of an aromatic carbocyclic ring and an aromatic heterocyclic ring, and Q2 is selected from H, C02R' , CON(R')2, or a (C1-C4) branched or straight-chain alkyl optionally containing 1-3 substituents independently selected from A, T-C(0)R', OP03H2, NR'2, N(R')2, OR', C02R' , C0N(R')2, or S02N(R2)2.
The rings that make up Qi are optionally substituted with 1 to 4 substituents, each of which is independently selected from halo; C1-C4 alkyl optionally containing 1-3 substituents independently selected from A, T-C(0)R', 0P03H2, NR'2, NR'2, OR', C02R' or CONR'2; 0- (C1-C4) -alkyl optionally containing 1-3 substituents independently selected from A, T-C(0)R', OP03H2, NR'2,
OR', C02R' or CONR'2; NR'2; OCF3; CF3; N02; C02R' ; CONR'; SR' ; S(02)N(R')2; SCF3; CN; N(R')C(0)R4; N (R' ) C (0) OR4; N(R' )C(0)C(0)R'; N (R' ) S (02) R4 ; N(R')R4; N(R4)2; OR4
OC(0)R4; OP(0)3H,; or N=C-N(R')2.
When Q2 is a ring system, the rings that make up Q2 are optionally substituted with up to 4 substituents, each of which is independently selected from halo; Cι~C4 straight or branched alkyl optionally containing 1-3 substituents independently selected from A, T-C(0)R', 0P03H2, NR'2, OR', C02R' , S(02)N(R')2, N=C-N(R')2, R3, or CONR'-.; 0- (Cι-C3) -alkyl; 0- (C1-C4) -alkyl optionally containing 1-3 substituents independently selected from A, T-C(0)R', OP03H2, NR'2, NR'2, OR', C02R' , S(02)N(R')2,
N=C-N(R')2, R3, or CONR'2; NR'2; OCF3; CF3; N02; C02R' ; CONR'; R3; OR3; NR3; SR3; C(0)R3; C(0)N(R')R3; C(0)OR3; SR' S(02)N(R')2; SCF3; N=C-N(R')2; or CN.
A is selected from the groups:
Figure imgf000013_0001
T is either 0 or NH. G is either NH2 or OH. R' is selected from hydrogen, (C1-C3) -alkyl;
(C2-C5) -alkenyl or alkynyl; phenyl or phenyl substituted with 1 to 3 substituents independently selected from halo, methoxy, cyano, nitro, amino, hydroxy, methyl or ethyl . R3 is selected from 5-6 membered aromatic carbocyclic or heterocyclic ring systems. R4 is (C1-C4) -alkyl optionally substituted with N(R' )-, OR', C02R' , CON(R')2, or S02N(R2)2; a 5-6 membered carbocyclic or heterocyclic ring system optionally substituted with a (d-C4) branched or straight-chain alkyl group, N(R')2, OR', C02R' , CON(R')2, or S02N(R2)2; or a (Ci-C4) -alkyl optionally substituted with the 5-6 membered carbocyclic or heterocyclic ring system optionally substituted as described immediately above.
R2 is selected from hydrogen, (C1-C3) -alkyl, or (C1-C3) -alkenyl; each optionally substituted with -N(R')2, -OR', SR' , -C(O) -N(R' )2, -S (02)-N(R' )2, -C(0)-OR', o R3.
X is selected from 0, S, NR or C(R)2.
Y is CR or N.
Z is CH or N. M is C=0, CHOH, or CH2. n is 0 or 1.
Each R is independently selected from hydrogen, -R2, -N(R2)2, -OR2, SR2, -C(0)-N(R2)2, -S (02) -N (R2) 2 , or -C(0)-0R2, wherein two adjacent R are optionally bound to one another and, together with each Y to which they are respectively bound, form a 4-8 membered carbocyclic or heterocyclic ring.
It will be apparent to one of skill in the art that the compounds of the present invention may exist as tautomers . Such tautomers may be transient or isolatable as a stable product. These tautomers are envisioned within the scope of the invention. These compounds are also p38 inhibitors and fall within the scope of the present invention. According to another preferred embodiment, Qi is selected from phenyl or pyridyl containing 1 to 3 substituents, wherein at least one of said substituents is in the ortho position and said substituents are independently selected from chloro, fluoro, bromo, -CH, -OCH3, -OH, -CF3, -OCF3, -0(CH2)2CH3, NH2, 3,4- methylenedioxy, -N(CH3)2, -NH-S (0) 2-phenyl, -NH-C (0) 0-CH2- 4-pyridine, -NH-C (0) CH2-morpholine, -NH-C (0) CH2-N (CH3) 2, -NH-C (0) CH2-piperazine, -NH-C (0) CH2-pyrrolidine, -NH-C (0) C (0) -morpholine, -NH-C (0) C (0) -piperazine, -NH-C(0)C(0)-pyrrolidine, -O-C (0) CH2-N (CH3) 2, or -0-(CH2)2-N(CH3)2.
Even more preferred are phenyl or pyridyl containing at least 2 of the above-indicated substituents both being in the ortho position.
Some specific examples of preferred Qi are:
Figure imgf000015_0001
Figure imgf000016_0001
Figure imgf000017_0001
Figure imgf000018_0001
Most preferably, Qi is selected from 2-fluoro-6- trifluoromethylphenyl; 2, 6-difluorophenyl; 2,6- dichlorophenyl; 2-chloro-4-hydroxyphenyl; 2-chloro-4- aminophenyl; 2, 6-dichloro-4-aminophenyl; 2, 6-dichloro-3- aminophenyl; 2, 6-dimethyl-4-hydroxyphenyl; 2-methoxy-3, 5- dichloro-4-pyridyl; 2-chloro-4,5 methylenedioxy phenyl; or 2-chloro-4- (N-2-morpholino-acetamido) phenyl .
According to a preferred embodiment, Q2 is phenyl or pyridyl containing 0 to 3 substituents, wherein each substituent is independently selected from chloro, fluoro, bromo, methyl, ethyl, isopropyl, -OCH3, -OH, -NH2, -CF3, -OCF3, -SCH3, -OCH3, -C(0)OH, -C(0)OCH3, -CH2NH2, -N(CH3)2, -CH2-pyrrolidine and -CH2OH.
Some specific examples of preferred Q2 are:
Figure imgf000018_0002
Figure imgf000019_0001
Figure imgf000020_0001
Figure imgf000021_0001
unsubstituted 2-pyridyl or unsubstituted phenyl.
Most preferred are compounds wherein Q2 is selected from phenyl; 2-isopropylphenyl; 3,4- dimethylphenyl; 2-ethylphenyl; 3-fluorophenyl; 2- methylphenyl; 3-chloro-4-fluorophenyl; 3-chlorophenyl; 2- carbomethoxylphenyl; 2-carboxyphenyl; 2-methyl-4- chlorophenyl; 2-bromophenyl; 2-pyridyl; 2- methylenehydroxyphenyl; 4-fluorophenyl; 2-methyl-4- fluorophenyl; 2-chloro-4-fluorphenyl; 2, 4-difluorophenyl; 2-hydroxy-4-fluorphenyl or 2-methylenehydroxy-4- fluorophenyl .
Some preferred embodiments are provided in Tables 1 to 3 below:
Table 1. Formula I compounds: X
Figure imgf000022_0001
s u B s T i T u T E ΓSΉ EΈ Γ (RULE 26) Table 2. Formula I compounds: X = 0
Figure imgf000023_0001
Table 3. Formula I compounds: X=NR
Figure imgf000024_0001
In another embodiment, compounds of the instant invention may be Jnk3 inhibitors. In a preferred embodiment for Jnk3 inhibitors, n is 1. Jnk3 inhibitors may be formulated into pharmaceutical compositions for administration to animals or humans. These compositions can be used for methods of treating Jnk3-medιated neurological diseases.
According to another embodiment, the present invention provides methods of producing the above- identified compounds of formulae I and II.
A representative full synthesis scheme for the inhibitors of this invention of formula I where Z is N, X is 0, S, or NR, and Y is CR is depicted below:
Figure imgf000025_0001
In step 1 of scheme 1, an aniline is converted to a urea, thiourea, or guanidme using, respectively, cyanic acid, thiocyanic acid, or lH-pyrazole-1- carboxamidme. Alternatively, the three different functionalities can be obtained from any number of other reagents that are well known in the art. In step 2, the urea, thiourea, or guanidme is condensed with an α- chloro or -bromoketone in refluxing ethanol to obtain the ox'azole, thiazole, or imidazole respectively. In step 3, the amine is acylated to provide the corresponding urea. A similar synthesis scheme can be used for the production of compounds of formula II. In addition, other synthesis schemes known in the art can be used to produce the compounds of formulae I and II.
The activity of the p38 inhibitors of this invention may be assayed in vi tro, in vivo or in a cell line. In vi tro assays include assays that determine inhibition of either the kinase activity or ATPase activity of activated p38. Alternate in vi tro assays quantitate the ability of the inhibitor to bind to p38 and may be measured either by radiolabelling the inhibitor prior to binding, isolating the inhibitor/p38 complex and determining the amount of radiolabel bound, or by running a competition experiment where new inhibitors are incubated with p38 bound to known radioligands .
Cell culture assays of the inhibitory effect of the compounds of this invention may be used to determine the amounts of TNF, IL-1, IL-6 or IL-8 produced in whole blood or cell fractions thereof in cells treated with inhibitor as compared to cells treated with negative controls. Level of these cytokines may be determined through the use of commercially available ELISAs.
An in vi vo assay useful for determining the inhibitory activity of the p38 inhibitors of this invention is the suppression of hind paw edema in rats with Mycobacteri um butyri cum-induced adjuvant arthritis. This is described in J.C. Boehm et al . , J. Med. Chem. , 39, pp: 3929-37 (1996), the disclosure of which is herein incorporated by reference. The p38 inhibitors of this invention may also be assayed in animal models of arthritis, bone resorption, endotoxin shock and immune function, as described in A. M. Badger et al., J. Pharmacol. Experimental Therapeutics, 279, pp. 1453-61 (1996), the disclosure of which is herein incorporated by reference . The p38 inhibitors or pharmaceutical salts thereof may be formulated into pharmaceutical compositions for administration to animals or humans. These pharmaceutical compositions, which comprise an amount of p38 inhibitor effective to treat or prevent a p38-mediated condition and a pharmaceutically acceptable carrier, are another embodiment of the present invention.
The term "p38-mediated condition", as used herein means any disease or other deleterious condition in which p38 is known to play a role. This includes conditions caused by IL-1, TNF, IL-6 or IL-8 overproduction. Such conditions include, without limitation, inflammatory diseases, autoimmune diseases, destructive bone disorders, proliferative disorders, infectious diseases, neurodegenerative diseases, allergies, reperfusion/ischemia in stroke, heart attacks, angiogenic disorders, organ hypoxia, vascular hyperplasia, cardiac hypertrophy, thrombin-induced platelet aggregation, and conditions associated with prostaglandin endoperoxidase synthase-2. Inflammatory diseases which may be treated or prevented include, but are not limited to, acute pancreatitis, chronic pancreatitis, asthma, allergies, and adult respiratory distress syndrome.
Autoimmune diseases which may be treated or prevented include, but are not limited to, glomerulonephritis, rheumatoid arthritis, systemic lupus erythematosus, scleroderma, chronic thyroiditis, Graves' disease, autoimmune gastritis, diabetes, autoimmune hemolytic anemia, autoimmune neutropenia, thrombocytopenia, atopic dermatitis, chronic active hepatitis, yasthenia gravis, multiple sclerosis, inflammatory bowel disease, ulcerative colitis, Crohn' s disease, psoriasis, and graft vs. host disease.
Destructive bone disorders which may be treated or prevented include, but are not limited to, osteoporosis, osteoarthritis and multiple myeloma-related bone disorder.
Proliferative diseases which may be treated or prevented include, but are not limited to, acute myelogenous leukemia, chronic myelogenous leukemia, metastatic melanoma, Kaposi's sarcoma, and multiple myeloma .
Angiogenic disorders which may be treated or prevented include solid tumors, ocular neovasculization, infantile haemangiomas . Infectious diseases which may be treated or prevented include, but are not limited to, sepsis, septic shock, and Shigellosis.
Viral diseases which may be treated or prevented include, but are not limited to, acute hepatitis infection (including hepatitis A, hepatitis B and hepatitis C) , HIV infection and CMV retinitis. Neurodegenerative and neurological diseases which may oe treated or prevented by the compounds of this invention which inhibit p38 or Jnk3 include, but are not limited to, Alzheimer's disease, Parkinson's disease, cerebral ischemias, epilepsy or neurodegenerative disease caused by traumatic injury.
"p38-medιated conditions" also include lschemia/reperfusion m stroke, heart attacks, myocardial ischemia, organ hypoxia, vascular hyperplasia, cardiac hypertrophy, and thrombin-mduced platelet aggregation. In addition, p38 inhibitors m this invention are also capable of inhibiting the expression of mducible pro-inflammatory proteins such as prostaglandm endoperoxide synthase-2 (PGHS-2), also referred to as cyclooxygenase-2 (COX-2) . Therefore, other "p38-medιated conditions" are edema, analgesia, fever and pain, such as neuromuscular pain, headache, pain caused by cancer, dental pain and arthritis pain.
The diseases that may be treated or prevented by the p38 inhibitors of this invention may also be conveniently grouped by the cytokme (IL-1, TNF, IL-6, IL-8) that is believed to be responsible for the disease.
Thus, an IL-1-medιated disease or condition includes rheumatoid arthritis, osteoarthritis, stroke, endotoxemia and/or toxic shock syndrome, inflammatory reaction induced by endotoxin, inflammatory bowel disease, tuberculosis, atherosclerosis, muscle degeneration, cachexia, psoriatic arthritis, Reiter' s syndrome, gout, traumatic arthritis, rubella arthritis, acute synovitis, diabetes, pancreatic β-cell disease and Alzheimer's disease. TNF-mediated diseases or conditions include rheumatoid arthritis, rheumatoid spondylitis, osteoarthritis, gouty arthritis and other arthritic conditions, sepsis, septic shock, endotoxic shock, gram negative sepsis, toxic shock syndrome, adult respiratory distress syndrome, cerebral malaria, chronic pulmonary inflammatory disease, silicosis, pulmonary sarcoisosis, bone resorption diseases, reperfusion injury, graft vs. host reaction, allograft rejections, fever and myalgias due to infection, cachexia secondary to infection, AIDS, ARC or malignancy, keloid formation, scar tissue formation, Crohn' s disease, ulcerative colitis or pyresis. TNF-mediated diseases also include viral infections, such as HIV, CMV, influenza and herpes; and veterinary viral infections, such as lentivirus infections, including, but not limited to, equine infectious anemia virus, caprine arthritis virus, visna virus or maedi virus; or retrovirus infections, including feline immunodeficiency virus, bovine immunodeficiency virus, or canine immunodeficiency virus.
IL-8 mediated diseases or conditions include diseases characterized by massive neutrophil infiltration, such as psoriasis, inflammatory bowel disease, asthma, cardiac and renal reperfusion injury, adult respiratory distress syndrome, thrombosis and glomerulonephritis .
In addition, the compounds of this invention may be used topically to treat or prevent conditions caused or exacerbated by IL-1 or TNF. Such conditions include inflamed joints, eczema, psoriasis, inflammatory skin conditions such as sunburn, inflammatory eye conditions such as conjunctivitis, pyresis, pain, and other conditions associated with inflammation.
In addition to the compounds of this invention, pharmaceutically acceptable salts of the compounds of this invention may also be employed in compositions to treat or prevent the above-identified disorders.
Pharmaceutically acceptable salts of the compounds of this invention include those derived from pharmaceutically acceptable inorganic and organic acids and bases. Examples of suitable acid salts include acetate, adipate, alginate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, citrate, camphorate, camphorsulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptanoate, glycerophosphate, glycolate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, malonate, methanesulfonate, 2- naphthalenesulfonate, nicotinate, nitrate, oxalate, palmoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, salicylate, succinate, sulfate, tartrate, thiocyanate, tosylate and undecanoate. Other acids, such as oxalic, while not in themselves pharmaceutically acceptable, may be employed in the preparation of salts useful as intermediates in obtaining the compounds of the invention and their pharmaceutically acceptable acid addition salts. Salts derived from appropriate bases include alkali metal (e.g., sodium and potassium), alkaline earth metal (e.g., magnesium), ammonium and N- (C1-4 alkyl) 4+ salts. This invention also envisions the quaternization of any basic nitrogen-containing groups of the compounds disclosed herein. Water or oil-soluble or dispersible products may be obtained by such quaternization.
Pharmaceutically acceptable carriers that may be used in these pharmaceutical compositions include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat.
The compositions of the present invention may be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir. The term "parenteral" as used herein includes subcutaneous, intravenous, intramuscular, intra-articular, intra-synovial, intrasternal, intrathecal, intrahepatic, intralesional and intracranial injection or infusion techniques. Preferably, the compositions are administered orally, intraperitoneally or intravenously.
Sterile injectable forms of the compositions of this invention may be aqueous or oleaginous suspension. These suspensions may be formulated according to techniques known in the art using suitable dispersing or wetting agents and suspending agents. The sterile mjecrable preparation may also be a sterile mjectable solution or suspension m a non-toxic parenterally- acceptable diluent or solvent, for example as a solution m 1, 3-butanedιol . Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil may be employed including synthetic mono- or di-glyceπdes . Fatty acids, such as oleic acid and its glyceride derivatives are useful m the preparation of injectables, as are natural pharmaceutically- acceptable oils, such as olive oil or castor oil, especially m their polyoxyethylated versions. These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant, such as carboxymethyl cellulose or similar dispersing agents which are commonly used m the formulation of pharmaceutically acceptable dosage forms including emulsions and suspensions. Other commonly used surfactants, such as Tweens, Spans and other emulsifying agents or bioavailability enhancers which are commonly used in the manufacture of pharmaceutically acceptable solid, liquid, or other dosage forms may also be used for the purposes of formulation.
The pharmaceutical compositions of this invention may be orally administered m any orally acceptable dosage form including, but not limited to, capsules, tablets, aqueous suspensions or solutions. In the case of tablets for oral use, carriers that are commonly used include lactose and corn starch. Lubricating agents, such as magnesium stearate, are also typically added. For oral administration m a capsule form, useful diluents include lactose and dried corn starch. When aqueous suspensions are required for oral use, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening, flavoring or coloring agents may also be added.
Alternatively, the pharmaceutical compositions of this invention may be administered in the form of suppositories for rectal administration. These can be prepared by mixing the agent with a suitable non- lrπtatmg excipient which is solid at room temperature but liquid at rectal temperature and therefore will melt m the rectum to release the drug. Such materials include cocoa butter, beeswax and polyethylene glycols. The pharmaceutical compositions of this invention may also be administered topically, especially when the target of treatment includes areas or organs readily accessible by topical application, including diseases of the eye, the skin, or the lower intestinal tract. Suitable topical formulations are readily prepared for each of these areas or organs.
Topical application for the lower intestinal tract can be effected m a rectal suppository formulation (see above) or m a suitable enema formulation. Topically-transdermal patches may also be used.
For topical applications, the pharmaceutical compositions may be formulated m a suitable ointment containing the active component suspended or dissolved m one or more carriers. Carriers for topical administration of the compounds of this invention include, but are not limited to, mineral oil, liquid petrolatum, white petrolatum, propylene glycol, polyoxyethylene, polyoxypropylene compound, emulsifying wax and water. Alternatively, the pharmaceutical compositions can be formulated in a suitable lotion or cream containing the active components suspended or dissolved in one or more pharmaceutically acceptable carriers. Suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water. For ophthalmic use, the pharmaceutical compositions may be formulated as micronized suspensions in isotonic, pH adjusted sterile saline, or, preferably, as solutions in isotonic, pH adjusted sterile saline, either with or without a preservative such as benzylalkonium chloride. Alternatively, for ophthalmic uses, the pharmaceutical compositions may be formulated in an ointment such as petrolatum.
The pharmaceutical compositions of this invention may also be administered by nasal aerosol or inhalation. Such compositions are prepared according to techniques well known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other conventional solubilizing or dispersing agents.
The amount of inhibitor that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host treated, the particular mode of administration. Preferably, the compositions should be formulated so that a dosage of between 0.01 - 100 g/kg body weight/day of the inhibitor can be administered to a patient receiving these compositions .
It should also be understood that a specific dosage and treatment regimen for any particular patient will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, rate of excretion, drug combination, and the judgment of the treating physician and the severity of the particular disease being treated. The amount of inhibitor will also depend upon the particular compound m the composition.
According to another embodiment, the invention provides methods for treating or preventing a p38- mediated condition comprising the step of administering to a patient one of the above-described pharmaceutical compositions. The term "patient", as used herein, means an animal, preferably a human.
Preferably, that method is used to treat or prevent a condition selected from inflammatory diseases, autoimmune diseases, destructive bone disorders, proliferative disorders, infectious diseases, degenerative diseases, allergies, reperfusion/ischemia m stroke, heart attacks, angiogenic disorders, organ hypoxia, vascular hyperplasia, cardiac hypertrophy, and thrombin-mduced platelet aggregation.
According to another embodiment, the inhibitors of this invention are used to treat or prevent an IL-1, IL-6, IL-8 or TNF-mediated disease or condition. Such conditions are described above.
Depending upon the particular p38-medιated condition to be treated or prevented, additional drugs, which are normally administered to treat or prevent that condition may be administered together with the inhibitors of this invention. For example, chemotherapeutic agents or other anti-proliferative agents may be combined with the p38 inhibitors of this invention to treat proliferative diseases.
Those additional agents may be administered separately, as part of a multiple dosage regimen, from the p38 inhibitor-containing composition. Alternatively, those agents may be part of a single dosage form, mixed together with the p38 inhibitor in a single composition.
In order that the invention described herein may be more fully understood, the following examples are set forth. It should be understood that these examples are for illustrative purposes only and are not to be construed as limiting this invention in any manner.
An example of the synthesis of a thiazole of formula I is set forth in the following example.
EXAMPLE 1
Synthesis of p38 Inhibitor Compound
Figure imgf000037_0001
In a 250 mL round-bottomed flask, 9.95 g (60.2 mmol) of 2, 6-dichloroaniline was dissolved in 50 mL of anhydrous C6H6. 8.0 g (82.3 mmol) of potassium isothiocyanate was added to the light brown solution of 2, 6-dichloroaniline . 20 mL (130 mmol) trifluoroacetic acid was added, which produced an exotherm and a darkening of the mixture. The reaction was heated to reflux until the aniline was not observed by CH2C1 thin layer chromatography (TLC) analysis. The light yellow mixture was poured into H20 and extracted with CH2C12. The organic extract was dried in MgS04 and filtered over a plug of silica gel. The plug was eluted with CH2C12 to remove a small amount of nonpolar impurities. An elution with 25% EtOAc in CH2C12 and evaporation of the filtrate in vacuo produced 8.12 g, a 61% yield, of the thiourea as a clear, colorless oil.
B, Synthesis of the Thiazole
Figure imgf000038_0001
In a 100 L round-bottomed flask, 1.04 g (4.70 mmol) of 2, 6-dichlorophenyl thiourea made in Example 1A was dissolved in 25 mL of EtOH. 1.01 g (4.51 mmol) of commercially available 2-bromo-4' -fluoroacetophenone was added to the clear colorless solution of thiourea. The solution was heated to reflux until the starting materials were not observed by TLC (CH2C12) analysis. The light yellow liquid was cooled and the solvent was evaporated in vacuo to afford a yellow solid. The material was recrystallized from 1, 2-dichloroethane- acetone to afford 1.06 g, a 70% yield, of the thiazole as a white solid.
C. Synthesis of the Urea
Figure imgf000039_0001
In a 25 mL round-bottomed flask, 371.4 mg (1.09 mmol) of the thiourea produced in example IB was dissolved in 7 L of 20% w/w phosgene in toluene. The suspension was heated to reflux until all of the solid thiourea was dissolved. The solution was cooled and 5 mL of 2.0M NH3 in MeOH was added, which precipitated a white solid. The mixture was stirred overnight, poured into water and extracted with CH2C12. The organic extract was dried in MgS04 and evaporated in vacuo to afford the urea as a white solid.
EXAMPLE 2
Cloning of p38 Kinase in Insect Cells Two splice variants of human p38 kinase, CSBP1 and CSBP2, have been identified. Specific oligonucleotide primers were used to amplify the coding region of CSBP2 cDNA using a HeLa cell library (Stratagene) as a template. The polymerase chain reaction product was cloned into the pET-15b vector (Novagen). The baculovirus transfer vector, pVL-(His)6- p38 was constructed by subcloning a Xbal-BamHI fragment of pET15b- (His) 6-p38 into the complementary sites in plasmid pVL1392 (Pharmingen) .
The plasmid pVL- (His) 6-p38 directed the synthesis of a recombinant protein consisting of a 23- residue peptide (MGSSHHHHHHSSGLVPRGSHMLE, where LVPRGS represents a thrombin cleavage site) fused in frame to the N-terminus of p38, as confirmed by DNA sequencing and by N-terminal sequencing of the expressed protein. Monolayer culture of Spodoptera frugiperda (Sf9) insect cells (ATCC) was maintained in TNM-FH medium (Gibco BRL) supplemented with 10% fetal bovine serum in a T-flask at
27 C. Sf9 cells in log phase were co-transfected with linear viral DNA of Autographa califonica nuclear polyhedrosis virus (Pharmingen) and transfer vector pVL- (His) 6-p38 using Lipofectin (Invitrogen). The individual recombinant baculovirus clones were purified by plaque assay using 1% low melting agarose.
EXAMPLE 3 Expression and Purification of Recombinant p38 Kinase Trichoplusia ni (Tn-368) High-Five™ cells (Invitrogen) were grown in suspension in Excel-405 protein free medium (JRH Bioscience) in a shaker flask at
27°C. Cells at a density of 1.5 X 106 cells/ml were infected with the recombinant baculovirus described above at a multiplicity of infection of 5. The expression level of recombinant p38 was monitored by immunoblotting using a rabbit anti-p38 antibody (Santa Cruz Biotechnology) . The cell mass was harvested 72 hours after infection when the expression level of p38 reached its maximum. Frozen cell paste from cells expressing the
(His) ..-tagged p38 was thawed in 5 volumes of Buffer A (50 mM NaH2P04 pH 8.0, 200 mM NaCl, 2mM β-Mercaptoethanol, 10% Glycerol and 0.2 mM PMSF) . After mechanical disruption of the cells in a microfluidizer, the lysate was centrifuged at 30,000 x g for 30 minutes. The supernatant was incubated batchwise for 3-5 hours at 4°C with Talon™ (Clontech) metal affinity resin at a ratio of 1 ml of resin per 2-4 mgs of expected p38. The resin was settled by centrifugation at 500 x g for 5 minutes and gently washed batchwise with Buffer A. The resin was slurried and poured into a column (approx. 2.6 x 5.0 cm) and washed with Buffer A + 5 mM imidazole.
The (His)6-p38 was eluted with Buffer A + 100 mM imidazole and subsequently dialyzed overnight at 4°C against 2 liters of Buffer B, (50 mM HEPES, pH 7.5, 25 mM β-glycerophosphate, 5% glycerol, 2mM DTT) . The His6 tag was removed by addition of at 1.5 units thrombin (Calbiochem) per mg of p38 and incubation at 20°C for 2-3 hours. The thrombin was quenched by addition of 0.2 mM PMSF and then the entire sample was loaded onto a 2 ml benzamidine agarose (American International Chemical) column.
The flow through fraction was directly loaded onto a 2.6 x 5.0 cm Q-Sepharose (Pharmacia) column previously equilibrated in Buffer B + 0.2 mM PMSF. The p38 was eluted with a 20 column volume linear gradient to 0.6M NaCl in Buffer B. The eluted protein peak was pooled and dialyzed overnight at 4°C vs. Buffer C (50 mM HEPES pH 7.5, 5° glycerol, 50 mM NaCl, 2 mM DTT, 0.2 mM PMSF) .
The αialyzed protein was concentrated m a Centriprep (Amicon) to 3-4 ml and applied to a 2.6 x 100 cm Sephacryl S-100HR (Pharmacia) column. The protein was eluted at a flow rate of 35 ml/hr. The mam peak was pooled, adjusted to 20 mM DTT, concentrated to 10-80 mgs/ml and frozen m aliquots at -70°C or used immediately.
EXAMPLE 4 Activation of p38 p38 was activated by combining 0.5 mg/ml p38 with 0.005 mg/ml DD-double mutant MKK6 in Buffer B + lOmM MgC12, 2mM ATP, 0.2mM Na2V04 for 30 minutes at 20°C. The activation mixture was then loaded onto a 1.0 x 10 cm MonoQ column (Pharmacia) and eluted with a linear 20 column volume gradient to 1.0 M NaCl m Buffer B. The activated p38 eluted after the ADP and ATP. The activated p38 peak was pooled and dialyzed against buffer B + 0.2mM Na2V04 to remove the NaCl. The dialyzed protein was adjusted to 1.1M potassium phosphate by addition of a 4.0M stock solution and loaded onto a 1.0 x 10 cm HIC (Ram Hydropore) column previously equilibrated m Buffer D (10% glycerol, 20mM β- glycerophosphate, 2. OmM DTT) + 1.1MK2HP04. The protein was eluted with a 20 column volume linear gradient to Buffer D + 50mM K2HP04. The double phosphorylated p38 eluted as the mam peak and was pooled for dialysis against Buffer B + 0.2mM Na2V04. The activated p38 was stored at -70°C. EXAMPLE 5 P38 Inhibition Assays A. Inhibition of Phosphorylation of EGF Receptor Peptide This assay is carried out in the presence of 10 mM MgC12, 25 mM β-glycerophosphate, 10% glycerol and 100 mM HEPES buffer at pH 7.6. For a typical IC50 determination, a stock solution is prepared containing all of the above components and activated p38 (5 nM) . The stock solution is aliquotted into vials. A fixed volume of DMSO or inhibitor in DMSO (final concentration of DMSO in reaction is 5%) is introduced to each vial, mixed and incubated for 15 minutes at room temperature. EGF receptor peptide, KRELVEPLTPSGEAPNQALLR, a phosphoryl acceptor in p38-catalyzed kinase reaction, is added to each vial to a final concentration of 200 μM. The kinase reaction is initiated with ATP (100 uM) and the vials are incubated at 30°C. After 30 minutes, the reactions are quenched with equal volume of 10% trifluoroacetic acid (TFA) .
The phosphorylated peptide is quantified by HPLC analysis. Separation of phosphorylated peptide from the unphosphorylated peptide is achieved on a reverse phase column (Deltapak, 5 urn, C18 100D, part no. 011795) with a binary gradient of water and acteonitrile, each containing 0.1% TFA. IC50 (concentration of inhibitor yielding 50% inhibition) is determined by plotting the % activity remaining against inhibitor concentration.
B. Inhibition of ATPase Activity This assay is carried out in the presence of 10 mM MgC12, 25 mM β-glycerophosphate, 10% glycerol and 100 M HEPES buffer at pH 7.6. For a typical Ki determination, the Km for ATP m the ATPase activity of activated p38 reaction is determined m the absence of inhibitor and m the presence of two concentrations of inhibitor. Ki is determined from the rate data as a function of inhibitor and ATP concentrations. A stock solution is prepared containing all of the above components and activated p38 (60 nM) . The stock solution is aliquotted into vials. A fixed volume of DMSO or inhibitor m DMSO (final concentration of DMSO reaction is 2.5o) is introduced to each vial, mixed and mcuoated for 15 minutes at room temperature. The reaction is initiated by adding various concentrations of
ATP and then incubated at 30°C. After 30 minutes, the reactions are quenched with 50 μl of EDTA (0.1 M, final concentration), pH 8.0. The product of p38 ATPase activity, ADP, is quantified by HPLC analysis.
Separation of ADP from ATP is achieved on a reversed phase column (Supelcosil, LC-18, 3 μm, part no. 5-8985) using a binary solvent gradient of following composition: Solvent A - 0.1 M phosphate buffer containing 8 mM tetrabutylammonium hydrogen sulfate (Sigma Chemical Co., catalogue no. T-7158), Solvent B - Solvent A with 30% methanol.
C. Inhibition of IL-1, TNF, IL-6 and IL-! Production m LPS-Stimulated PBMCs
Inhibitors are serially diluted m DMSO from a 20 mM stock. At least 6 serial dilutions are prepared. Then 4x inhibitor stocks are prepared by adding 4 μl of an inhibitor dilution to 1 ml of RPMI1640 medium/10% fetal bovine serum. The 4x inhibitor stocks contained inhibitor at concentrations of 80 μM, 32 μM, 12.8 μM, 5.12 μM, 2.048 μM, 0.819 μM, 0.328 μM, 0.131 μM, 0.052 μM, 0.021 μM etc. The 4x inhibitor stocks are pre-warmed at 37°C until use. Fresh human blood buffy cells are separated from other cells in a Vacutainer CPT from Becton & Dickinson (containing 4 ml blood and enough DPBS without Mg2+/Ca2+ to fill the tube) by centrifugation at 1500 x g for 15 min. Peripheral blood mononuclear cells (PBMCs) , which are located on top of the gradient in the
Vacutainer, are removed and washed twice with RPMI1640 medium/10% fetal bovine serum. PBMCs are collected by centrifugation at 500 x g for 10 min. The total cell number is determined using a Neubauer Cell Chamber and the cells are adjusted to a concentration of 4.8 x 106 cells/ml in cell culture medium (RPMI1640 supplemented with 10% fetal bovine serum) .
Alternatively, whole blood containing an anticoagulant is used directly in the assay. 100 μl of cell suspension or whole blood is placed in each well of a 96-well cell culture plate. Then, 50 μl of the 4x inhibitor stock to the cells is added. Finally, 50 μl of a lipopolysaccharide (LPS) working stock solution (16 ng/ml in cell culture medium) is added to give a final concentration of 4 ng/ml LPS in the assay. The total assay volume of the vehicle control is also adjusted to 200 μl by adding 50 μl cell culture medium. The PBMC cells or whole blood are then incubated overnight (for 12-15 hours) at 37° C/5% C02 in a humidified atmosphere. The next day the cells are mixed on a shaker for 3-5 minutes before centrifugation at 500 x g for 5 minutes. Cell culture supernatants are harvested and analyzed by ELISA for levels of IL-lb (R & D Systems, Quantikine kits, #DBL50), TNF-α (BioSource, #KHC3012), IL-6 (Endogen, #EH2-IL6) and IL-8 (Endogen, #EH2-IL8) according to the instructions of the manufacturer. The ELISA data are used to generate dose-response curves from which IC50 values are derived. p38 inhibitors of this invention will inhibit phosphorylation of EGF receptor peptide, and the production of IL-1, TNF and IL-6, as well as IL-8 in LPS- stimulated PBMCs or in whole blood.
D. Inhibition of IL-6 and IL-8 Production in IL-1-Stimulated PBMCs
This assay is carried out on PBMCs exactly the same as above except that 50 μl of an IL-lb working stock solution (2 ng/ml in cell culture medium) is added to the assay instead of the (LPS) working stock solution. Cell culture supernatants are harvested as described above and analyzed by ELISA for levels of IL-6 (Endogen, #EH2-IL6) and IL-8 (Endogen, #EH2-IL8) according to the instructions of the manufacturer. The ELISA data are used to generate dose-response curves from which IC50 values are derived.
E. Inhibition of LPS-Induced Prostaglandin Endoperoxide Synthase-2 (PGHS-2, or COX-2) Induction In PBMCs Human peripheral mononuclear cells (PBMCs) are isolated from fresh human blood buffy coats by centrifugation in a Vacutainer CPT (Becton & Dickinson) . 15 x 10° cells are seeded in a 6-well tissue culture dish containing RPMI 1640 supplemented with 10% fetal bovine serum, 50U/ml penicillin, 50 μg/ml streptomycin, and 2 mM L-glutamine. An inhibitor of the instant invention is added at 0.2, 2.0 and 20 μM final concentrations in DMSO. Then, LPS is added at a final concentration of 4 ng/ml to induce enzyme expression. The final culture volume is 10 ml/well .
After overnight incubation at 37°C, 5% C02, the cells are harvested by scraping and subsequent centrifugation, then the supernatant is removed, and the cells are washed twice in ice-cold DPBS (Dulbecco's phosphate buffered saline, BioWhittaker) . The cells are lysed on ice for 10 min in 50 μl cold lysis buffer (20 mM Tris-HCl, pH 7.2, 150 mM NaCl, 1% Triton-X-100, 1% deoxycholic acid, 0.1% SDS, 1 mM EDTA, 2% aprotinin (Sigma) , 10 μg/ml pepstatin, 10 μg/ml leupeptin, 2 mM PMSF, 1 mM benzamidine, 1 mM DTT) containing 1 μl Benzonase (DNAse from Merck) . The protein concentration of each sample is determined using the BCA assay (Pierce) and bovine serum albumin as a standard. Then the protein concentration of each sample is adjusted to 1 mg/ml with cold lysis buffer. To 100 μl lysate an equal volume of 2xSDS PAGE loading buffer is added and the sample is boiled for 5 min. Proteins (30 μg/lane) are size- fractionated on 4-20% SDS PAGE gradient gels (Novex) and subsequently transferred onto nitrocellulose membrane by electrophoretic means for 2 hours at 100 mA in Towbin transfer buffer (25 mM Tris, 192 mM glycine) containing 20% ethanol. The membrane is pretreated for 1 hour at room temperature with blocking buffer (5% non-fat dry milk in DPBS supplemented with 0.1% Tween-20) and washed 3 times in DPBS/0.1% Tween-20. The membrane is incubated overnight at 4υC with a 1: 250 dilution of monoclonal anti-COX-2 antibody (Transduction Laboratories) in blocking buffer. After 3 washes in DPBS/0.1% Tween-20, the membrane is incubated with a 1:1000 dilution of horseradish peroxidase-conjugated sheep antiserum to mouse Ig (Amersham) in blocking buffer for 1 h at room temperature. Then the membrane is washed again 3 times in DPBS/0.1% Tween-20 and an ECL detection system
(SuperSignal™ CL-HRP Substrate System, Pierce) is used to determine the levels of expression of COX-2.
While we have hereinbefore presented a number of embodiments of this invention, it is apparent that our basic construction can be altered to provide other embodiments which utilize the methods of this invention.

Claims

We claim:
A compound having the formula:
Figure imgf000049_0001
wherein: each of Qi and Q2 are independently selected from 5-6 membered aromatic carbocyclic or heterocyclic ring systems, or 8-10 membered bicyclic ring systems comprising aromatic carbocyclic rings, aromatic heterocyclic rings or a combination of an aromatic carbocyclic ring and an aromatic heterocyclic ring; or wherein:
Qi is selected from a 5-6 membered aromatic carbocyclic or heterocyclic ring system, or an 8-10 membered bicyclic ring system comprising aromatic carbocyclic rings, aromatic heterocyclic rings or a combination of an aromatic carbocyclic ring and an aromatic heterocyclic ring, and Q2 is selected from H, C02R' , CON(R')2, or a (C╬╣-C4) branched or straight-chain alkyl optionally containing 1-3 substituents independently selected from A, T-C(0)R', OP03H2, NR'2, N(R').;, OR', C02R' , CON(R')2/ or S02N(R2)2; wherein:
Qi is optionally substituted with 1 to 4 substituents, each of which is independently selected fro halo; Ci-C.i alkyl optionally containing 1-3 substituents independently selected from A,
T-C(0)R', OPO3H , NR'2, NR'2, OR', C02R' or CONR'.:; 0- (C╬╣~
C4) -alkyl optionally containing 1-3 substituents independently selected from A, T-C(0)R', OP03H2, NR'2,
NR' , OR', C02R' or CONR'2; NR'2; 0CF3; CF3; N02; C02R' ;
CONR'; SR' ; S(02)N(R')2; SCF3; CN; N(R')C(0)R4;
N(R' )C(0)OR4; N (R' ) C (0) C (0) R4; N (R' ) S (02) R4; N(R')R4;
N(R4).; OR4; 0C(0)R4; 0P(0)3H2; or N=C-N(R')2; and wherein:
Q2, when a ring system, is optionally substituted with up to 4 substituents, each of which is independently selected from halo; C1-C4 straight or branched alkyl optionally containing 1-3 substituents independently selected from A, T-C(0)R', OP03H2, NR'2, OR', C02R' , S(02)N(R')2, N=C-N(R')2, R3, or C0NR'2; 0- (Ci- C3) -alkyl; O- (Ci-C4 ) -alkyl optionally containing 1-3 substituents independently selected from A, T-C(0)R', OPO3H , NR'2, NR'2, OR', C02R' , S(02)N(R')2, N=C-N(R')2, R3, or C0NR':; NR',; 0CF3; CF3; N02; C02R' ; CONR'; R3; OR3; NR3; SR3; C(0)R3; C(0)N(R')R3; C(0)0R3; SR' ; S(02)N(R')2; SCF3; N=C-N(R' )2; or CN; wherein A is selected from the groups
Figure imgf000050_0001
T is either 0 or NH; and G is either NH2 or OH; wherein R' is selected from hydrogen, (C1-C3)- alkyl;- (C2-C3) -alkenyl or alkynyl; phenyl or phenyl substituted with 1 to 3 substituents independently selected from halo, methoxy, cyano, nitro, amino, hydroxy, methyl or ethyl; wherein R3 is selected from 5-6 membered aromatic carbocyclic or heterocyclic ring systems; wherein R4 is (C1-C4) -alkyl optionally substituted with N(R' ) 2, OR', C02R' , CON(R')2, or S02N(R2)2; a 5-6 membered carbocyclic or heterocyclic ring system optionally substituted with a (C1-C4) branched or straight-chain alkyl group, N(R')2, OR', C02R' , CON(R')2, or S02N(R2)2; or a (C1-C4 ) -alkyl optionally substituted with the 5-6 membered carbocyclic or heterocyclic ring system optionally substituted with a (C1-C4) branched or straight-chain alkyl group, N(R')2, OR', C02R' , CON(R')2, or S02N(R2)2; wherein R2 is selected from hydrogen, (C1-C3)- alkyl, or (C1-C3) -alkenyl; each optionally substituted with -N(R')2, -OR', SR' , -C(0)-N(R' )2, -S (02) -N (R' ) 2, - C(0)-0R' , or R3; wherein X is selected from 0, S, NR or C(R)2; wherein Y is CR or N; wherein Z is CH or N; wherein M is C=0, CHOH, or CH2; wherein n is 0 or 1; wherein each R is independently selected from hydrogen, -R2, -N(R2)2, -OR2, SR2, -C (0) -N (R2) 2, -S(02)- N(R )2, or -C(0)-0R2, wherein two adjacent R are optionally bound to one another and, together with each Y to which they are respectively bound, form a 4-8 membered carbocyclic or heterocyclic ring; and pharmaceutically acceptable salts thereof.
2. The compound according to claim 1, wherein Qi is selected from phenyl or pyridyl containing 1 to 3 substituents independently selected from chloro, fluoro, bromo, -CH3, -0CH3, -OH, -CF3, -OCF3, -0(CH2)2CH3, NH2, 3,4- ethylenedioxy, -N(CH3)2, -NH-S (0) 2-phenyl, -NH-C (0) 0-CH2- 4-pyridine, -NH-C (0) CH2-morpholine, -NH-C (0) CH2-N (CH3) 2, -NH-C (O) CH2-piperazine, -NH-C (0) CH2-pyrrolidine,
-NH-C (O) C (0) -morpholine, -NH-C (0) C (0) -piperazine, -NH-C (O)C(O) -pyrrolidine, -O-C (0) CH2-N (CH3) 2, or -0- (CH2) 2-N (CH3) ? and wherein at least one of said substituents is in the ortho position.
3. The compound according to claim 2, wherein Qi contains at least two substituents, both of which are in the ortho position.
4. The compound according to claim 2, wherein Qi is selected from:
Figure imgf000052_0001
Figure imgf000053_0001
Figure imgf000054_0001
Figure imgf000055_0001
5. The compound according to claim 4, wherein Qi is selected from 2-fluoro-6-trifluoromethylphenyl; 2,6- difluorophenyl; 2, 6-dichlorophenyl; 2-chloro-4- hydroxyphenyl; 2-chloro-4-aminophenyl; 2, 6-dichloro-4- aminophenyl; 2, 6-dichloro-3-aminophenyl; 2, 6-dimethyl-4- hydroxyphenyl; 2-methoxy-3, 5-dichloro-4-pyridyl; 2- chloro-4,5 methylenedioxy phenyl or 2-chloro-4- (N-2- morpholino-acetamido) phenyl .
6. The compound according to claim 1, wherein Q2 is selected from phenyl or pyridyl and wherein Q2 optionally contains up to 3 substituents, each of which is independently selected from chloro, fluoro, bromo, methyl, ethyl, isopropyl, -OCH3, -OH, -NH2, -CF3, -0CF3, -SCH3, -OCH3, -C(0)OH, -C(0)OCH3, -CH2NH2, -N(CH3)2, -CH2-pyrrolidine and -CH2OH.
7. The compound according to claim 6, wherein, Q2 is selected from:
Figure imgf000056_0001
Figure imgf000057_0001
Figure imgf000058_0001
unsubstituted 2-pyridyl or unsubstituted phenyl .
8. The compound according to claim 7, wherein Q2 is selected from phenyl; 2-isopropylphenyl; 3,4- dimethylphenyl; 2-ethylphenyl; 3-fluorophenyl; 2- methylphenyl; 3-chloro-4-fluorophenyl; 3-chlorophenyl; 2- carbomethoxylphenyl; 2-carboxyphenyl; 2-methyl-4- chlorophenyl; 2-bromophenyl; 2-pyridyl; 2- methylenehydroxyphenyl; 4-fluorophenyl; 2-methyl-4- fluorophenyl; 2-chloro-4-fluorphenyl; 2, 4-difluorophenyl;
2-hydroxy-4-fluorphenyl or 2-methylenehydroxy-4- fluorophenyl .
9. The compound according to claim 1, wherein
X is S
10. The compound according to claim 1, wherein
X is 0.
11. The compound according to claim 1, wherein
X is NR.
12. The compound according to claim 1, wherein Y is CR and wherein said R is H.
13. The compound according to claim 1, wherein said compound is selected from any one of the compounds 1 to 12 depicted in Table 1.
14. The compound according to claim 1, wherein said compound is selected from any one of the compounds 13 to 24 depicted in Table 2.
15. The compound according to claim 1, wherein said compound is selected from any one of the compounds 25 to 36 depicted in Table 3.
16. The compound according to claim 1, wherein said compound is:
Figure imgf000060_0001
17. A composition comprising a compound according to any one of claims 1 to 16 and a pharmaceutically acceptable carrier.
18. A method of treating or preventing inflammatory diseases, autoimmune diseases, destructive bone disorders, proliferative disorders, infectious diseases, neurodegenerative diseases, allergies, reperfusion/ischemia in stroke, heart attacks, angiogenic disorders, organ hypoxia, vascular hyperplasia, cardiac hypertrophy, thrombin-induced platelet aggregation or conditions associated with prostaglandin endoperoxidase synthase-2 in a patient, said method comprising administering to said patient a composition according to claim 17 in an amount effective to inhibit p38.
19. The method according to claim 18, wherein said method is used to treat or prevent an inflammatory disease selected from acute pancreatitis, chronic pancreatitis, asthma, allergies, or adult respiratory distress syndrome.
20. The method according to claim 18, wherein said method is used to treat or prevent an autoimmune disease selected from glomerulonephritis, rheumatoid arthritis, systemic lupus erythematosus, scleroderma, chronic thyroiditis, Graves' disease, autoimmune gastritis, diabetes, autoimmune hemolytic anemia, autoimmune neutropenia, thrombocytopenia, atopic dermatitis, chronic active hepatitis, myasthenia gravis, multiple sclerosis, inflammatory bowel disease, ulcerative colitis, Crohn' s disease, psoriasis, or graft vs. host disease.
21. The method according to claim 18, wherein said method is used to treat or prevent a destructive bone disorders selected from osteoarthritis, osteoporosis or multiple myeloma-related bone disorder.
22. The method according to claim 18, wherein said method is used to treat or prevent a proliferative disease selected from acute myelogenous leukemia, chronic myelogenous leukemia, metastatic melanoma, Kaposi's sarcoma, or multiple myeloma.
23. The method according to claim 18, wherein said method is used to treat or prevent an infectious disease selected from sepsis, septic shock, or Shigellosis .
24. The method according to claim 18, wherein said method is used to treat or prevent a viral disease selected from acute hepatitis infection, HIV infection or CMV retinitis.
25. The method according to claim 18, wherein said method is used to treat or prevent a neurodegenerative disease selected from Alzheimer' s disease, Parkinson's disease, cerebral ischemia or neurodegenerative disease caused by traumatic injury.
26. The method according to claim 18, wherein said method is used to treat or prevent ischemia/reperfusion in stroke or myocardial ischemia, renal ischemia, heart attacks, organ hypoxia or thrombin- induced platelet aggregation.
27. The method according to claim 18, wherein said method is used to treat or prevent a condition associated with prostaglandin endoperoxide synthase-2 selected from edema, fever, analgesia or pain.
28. The method according to claim 27, wherein said pain is selected from neuromuscular pain, headache, cancer pain, dental pain or arthritis pain.
29. The method according to claim 18, wherein said method is used to treat or prevent an angiogenic disorder selected from solid tumors, ocular neovasculization, or infantile haemangiomas .
PCT/US1999/021337 1998-09-18 1999-09-16 INHIBITORS OF p38 WO2000017175A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP99949690A EP1114039A1 (en) 1998-09-18 1999-09-16 INHIBITORS OF p38
AU62514/99A AU762245B2 (en) 1998-09-18 1999-09-16 Inhibitors of p38
JP2000574085A JP2002526482A (en) 1998-09-18 1999-09-16 inhibitors of p38
CA002337755A CA2337755C (en) 1998-09-18 1999-09-16 Inhibitors of p38
US09/809,854 US6509363B2 (en) 1998-09-18 2001-03-16 Heterocyclic inhibitors of p38

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10097298P 1998-09-18 1998-09-18
US60/100,972 1998-09-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/809,854 Continuation US6509363B2 (en) 1998-09-18 2001-03-16 Heterocyclic inhibitors of p38

Publications (1)

Publication Number Publication Date
WO2000017175A1 true WO2000017175A1 (en) 2000-03-30

Family

ID=22282466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/021337 WO2000017175A1 (en) 1998-09-18 1999-09-16 INHIBITORS OF p38

Country Status (6)

Country Link
US (1) US6509363B2 (en)
EP (1) EP1114039A1 (en)
JP (1) JP2002526482A (en)
AU (1) AU762245B2 (en)
CA (1) CA2337755C (en)
WO (1) WO2000017175A1 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001064674A1 (en) * 2000-03-01 2001-09-07 Janssen Pharmaceutica N.V. 2,4-disubstituted thiazolyl derivatives
WO2003033457A1 (en) * 2001-10-17 2003-04-24 Glaxo Group Limited Biphenyl-derivatives as p38-kinase inhibitors
WO2003033482A1 (en) * 2001-10-17 2003-04-24 Glaxo Group Limited Oxadiazolyl-biphenylcarboxamides and their use as p38 kinase inhibitors
US6596746B1 (en) 1999-04-15 2003-07-22 Bristol-Myers Squibb Company Cyclic protein tyrosine kinase inhibitors
WO2003062233A1 (en) * 2002-01-18 2003-07-31 Yamanouchi Pharmaceutical Co., Ltd. 2-acylaminothiazole derivative or salt thereof
US6706717B2 (en) 2000-12-21 2004-03-16 Bristol-Myers Squibb Company Thiazolyl inhibitors of Tec family tyrosine kinases
US6720346B2 (en) 2001-07-06 2004-04-13 Agouron Pharmaceuticals, Inc. Thiazole benzamide derivatives and pharmaceutical compositions for inhibiting cell proliferation
WO2004072038A1 (en) 2003-02-10 2004-08-26 Vertex Pharmaceuticals Incorporated Processes for the preparation of n-heteroaryl-n-aryl-amines by reacting an n-aryl carbamic acid ester with a halo-heteroaryl and analogous processes
JP2005523338A (en) * 2002-04-23 2005-08-04 ブリストル−マイヤーズ スクイブ カンパニー Pyrrotriazine aniline compounds useful as kinase inhibitors
EP1707205A2 (en) 2002-07-09 2006-10-04 Boehringer Ingelheim Pharma GmbH & Co. KG Pharmaceutical compositions of anticholinergics and p38 kinase inhibitors in the treatment of respiratory diseases
US7125875B2 (en) 1999-04-15 2006-10-24 Bristol-Myers Squibb Company Cyclic protein tyrosine kinase inhibitors
US7220764B2 (en) * 2002-06-17 2007-05-22 The Pennsylvania State University Research Foundation Sphingosine kinase inhibitors
US7301021B2 (en) 1997-07-02 2007-11-27 Smithkline Beecham Corporation Substituted imidazole compounds
WO2008142031A1 (en) 2007-05-18 2008-11-27 Institut Curie P38alpha as a therapeutic target in bladder carcinoma
EP2036891A2 (en) 2001-06-11 2009-03-18 Vertex Pharmaceuticals Incorporated Isoquinoline inhibitors of P38
EP2116245A2 (en) 2004-08-07 2009-11-11 Boehringer Ingelheim International GmbH EGFR kinase inhibitor combinations for treating respiratory and gastrointestinal disorders
US7838541B2 (en) 2002-02-11 2010-11-23 Bayer Healthcare, Llc Aryl ureas with angiogenesis inhibiting activity
US7897623B2 (en) 1999-01-13 2011-03-01 Bayer Healthcare Llc ω-carboxyl aryl substituted diphenyl ureas as p38 kinase inhibitors
EP2384751A1 (en) 2004-12-24 2011-11-09 Boehringer Ingelheim International Gmbh Medicaments for the treatment or prevention of fibrotic diseases
CN102348690A (en) * 2009-02-13 2012-02-08 沃泰克斯药物股份有限公司 Processes for producing phenyl-6-(1-(phenyl)ureido)nicotinamides)
US8124630B2 (en) 1999-01-13 2012-02-28 Bayer Healthcare Llc ω-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors
US8507499B2 (en) 2010-12-06 2013-08-13 Confluence Life Sciences, Inc. Substituted indole/indazole-pyrimidinyl compounds
US8563558B2 (en) 2010-12-06 2013-10-22 Confluence Life Sciences, Inc. Substituted pyridine urea compounds
US8637553B2 (en) 2003-07-23 2014-01-28 Bayer Healthcare Llc Fluoro substituted omega-carboxyaryl diphenyl urea for the treatment and prevention of diseases and conditions
US8796250B2 (en) 2003-05-20 2014-08-05 Bayer Healthcare Llc Diaryl ureas for diseases mediated by PDGFR
EP2843049A1 (en) * 2012-04-27 2015-03-04 Keio University Neuronal differentiation promoter
US9056110B2 (en) 2011-12-06 2015-06-16 Confluence Life Sciences, Inc. Substituted pyrimidinone-phenyl-pyrimidinyl compounds
US9115089B2 (en) 2013-06-07 2015-08-25 Confluence Life Sciences, Inc. Methyl/fluoro-pyridinyl-methoxy substituted pyridinone-pyridinyl compounds and fluoro-pyrimidinyl-methoxy substituted pyridinone-pyridinyl compounds
US9181188B2 (en) 2002-02-11 2015-11-10 Bayer Healthcare Llc Aryl ureas as kinase inhibitors
US9359300B2 (en) 2010-12-06 2016-06-07 Confluence Life Sciences, Inc. Methyl/difluorophenyl-methoxy substituted pyridinone-pyridinyl compounds, methyl-pyridinyl-methoxy substituted pyridinone-pyridinyl compounds, and methyl-pyrimidinyl-methoxy substituted pyridinone-pyridinyl compounds
US9365547B2 (en) 2010-12-06 2016-06-14 Confluence Life Sciences Inc. Substituted pyridinone-pyridinyl compounds
WO2017075274A1 (en) 2015-10-27 2017-05-04 Children's Hospital Medical Center Use of mapk inhibitors to reduce loss of hematopoietic stem cells during ex vivo culture and/or genetic manipulation
US10342786B2 (en) 2017-10-05 2019-07-09 Fulcrum Therapeutics, Inc. P38 kinase inhibitors reduce DUX4 and downstream gene expression for the treatment of FSHD
US11291659B2 (en) 2017-10-05 2022-04-05 Fulcrum Therapeutics, Inc. P38 kinase inhibitors reduce DUX4 and downstream gene expression for the treatment of FSHD
WO2022195579A1 (en) 2021-03-15 2022-09-22 Saul Yedgar Hyaluronic acid-conjugated dipalmitoyl phosphatidyl ethanolamine in combination with non-steroidal anti-inflammatory drugs (nsaids) for treating or alleviating inflammatory diseases
US11452713B2 (en) 2016-02-29 2022-09-27 University Of Florida Research Foundation, Incorporated Chemotherapeutic methods for treating low-proliferative disseminated tumor cells
US11844801B2 (en) 2020-03-27 2023-12-19 Aclaris Therapeutics, Inc. Oral compositions of MK2 pathway inhibitor for treatment of immune conditions

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2221426T3 (en) * 1998-08-20 2004-12-16 Smithkline Beecham Corporation NEW SUBSTITUTED TRIAZOL COMPOUNDS.
US6759410B1 (en) * 1999-11-23 2004-07-06 Smithline Beecham Corporation 3,4-dihydro-(1H)-quinazolin-2-ones and their use as CSBP/p38 kinase inhibitors
US7235551B2 (en) * 2000-03-02 2007-06-26 Smithkline Beecham Corporation 1,5-disubstituted-3,4-dihydro-1h-pyrimido[4,5-d]pyrimidin-2-one compounds and their use in treating csbp/p38 kinase mediated diseases
PE20020506A1 (en) * 2000-08-22 2002-07-09 Glaxo Group Ltd PIRAZOLE DERIVATIVES FUSED AS PROTEIN KINASE INHIBITORS
CA2426654C (en) * 2000-10-23 2010-12-21 Smithkline Beecham Corporation 2,4,8-trisubstituted-8h-pyrido[2,3-d}pyrimidin-7-one compounds
GB0124941D0 (en) * 2001-10-17 2001-12-05 Glaxo Group Ltd Chemical compounds
GB0124931D0 (en) * 2001-10-17 2001-12-05 Glaxo Group Ltd Chemical compounds
GB0124936D0 (en) * 2001-10-17 2001-12-05 Glaxo Group Ltd Chemical compounds
GB0124938D0 (en) * 2001-10-17 2001-12-05 Glaxo Group Ltd Chemical compounds
GB0124933D0 (en) * 2001-10-17 2001-12-05 Glaxo Group Ltd Chemical compounds
GB0124939D0 (en) * 2001-10-17 2001-12-05 Glaxo Group Ltd Chemical compounds
MXPA04007838A (en) 2002-02-12 2004-10-15 Smithkline Beecham Corp Nicotinamide derivates useful as p38 inhibitors.
GB0217757D0 (en) 2002-07-31 2002-09-11 Glaxo Group Ltd Novel compounds
GB0308186D0 (en) * 2003-04-09 2003-05-14 Smithkline Beecham Corp Novel compounds
GB0308185D0 (en) * 2003-04-09 2003-05-14 Smithkline Beecham Corp Novel compounds
GB0308201D0 (en) * 2003-04-09 2003-05-14 Smithkline Beecham Corp Novel compounds
BRPI0410905A (en) * 2003-06-03 2006-06-27 Novartis Ag p-38 inhibitors
GB0318814D0 (en) * 2003-08-11 2003-09-10 Smithkline Beecham Corp Novel compounds
WO2005030091A2 (en) * 2003-09-25 2005-04-07 Scios Inc. Stents and intra-luminal prostheses containing map kinase inhibitors
WO2005032551A1 (en) * 2003-09-30 2005-04-14 Scios Inc. TREATMENT OF CARDIOVASCULAR DISEASE WITH INHIBITORS OF p38 KINASE
GB0402143D0 (en) * 2004-01-30 2004-03-03 Smithkline Beecham Corp Novel compounds
US20080051416A1 (en) * 2004-10-05 2008-02-28 Smithkline Beecham Corporation Novel Compounds
PE20061351A1 (en) 2005-03-25 2007-01-14 Glaxo Group Ltd 8H-PYRID [2,3-d] PYRIMIDIN-7-ONA 2,4,8-TRISUSTITUTED COMPOUNDS AS CSBP / RK / p38 KINASE INHIBITORS
MX2007012951A (en) * 2005-03-25 2008-01-11 Glaxo Group Ltd Process for preparing pyrido[2,3-d]pyrimidin-7-one and 3,4-dihydropyrimido[4,5-d]pyrimidin-2(1h)-one derivatives.
AP2358A (en) * 2005-05-09 2012-01-30 Achillion Pharmaceuticals Inc Thiazole compounds and methods of use.
US20090074676A1 (en) * 2005-05-23 2009-03-19 Smithkline Beecham Corporation Inhibition of p38 MAPK For Treatment Of Obesity
GB0512429D0 (en) * 2005-06-17 2005-07-27 Smithkline Beecham Corp Novel compound
IL169855A (en) * 2005-07-25 2014-05-28 Elta Systems Ltd System and method for enabling determination of a position of a receiver
AU2006272978B2 (en) 2005-07-26 2012-06-07 Bial - Portela & Ca, S.A. Nitrocatechol derivatives as COMT inhibitors
CA2645072A1 (en) * 2006-03-08 2007-09-13 Achillion Pharmaceuticals, Inc. Substituted aminothiazole derivatives with anti-hcv activity
EP1845097A1 (en) * 2006-04-10 2007-10-17 Portela & Ca., S.A. Oxadiazole derivatives as COMT inhibitors
CA2660283C (en) * 2006-08-08 2014-11-18 Akarx, Inc. 2-acylaminothiazole compositions and methods for increasing blood platlelet levels in humans
RU2518483C2 (en) 2007-01-31 2014-06-10 Биал-Портела Энд Ка, С.А. Comt inhibitor dosage regimen
WO2008114119A2 (en) * 2007-03-20 2008-09-25 Cadila Pharmaceuticals Limited P38 inhibitors
JP2010528019A (en) * 2007-05-22 2010-08-19 アキリオン ファーマシューティカルズ,インコーポレーテッド Heteroaryl substituted thiazole
WO2009108077A2 (en) * 2008-02-28 2009-09-03 Bial - Portela & Ca., S.A. Pharmaceutical composition for poorly soluble drugs
JP2011514380A (en) 2008-03-17 2011-05-06 バイアル−ポルテラ アンド シーエー,エス.エー. 5- [3- (2,5-dichloro-4,6-dimethyl-1-oxy-pyridin-3-yl) [1,2,4] oxadiazol-5-yl] -3-nitrobenzene-1, 2-Diol crystal form
US8106209B2 (en) * 2008-06-06 2012-01-31 Achillion Pharmaceuticals, Inc. Substituted aminothiazole prodrugs of compounds with anti-HCV activity
US8906677B2 (en) 2008-12-17 2014-12-09 The Scripps Research Institute Generation and maintenance of stem cells
BRPI1014865B1 (en) 2009-04-01 2020-03-17 Bial - Portela & C.A., S.A. Composition comprising granules comprising 2,5-dichloro-3- (5- (3,4-dihydroxy-5-nitrophenyl) - 1,2,4-oxadiazol-3-yl) - 4,6-dimethylpyridine 1-oxide and pharmaceutical formulation
AU2010231962B2 (en) * 2009-04-01 2015-05-21 Bial - Portela & Ca., S.A. Pharmaceutical formulations comprising nitrocatechol derivatives and methods of making the same
JP2013501811A (en) * 2009-08-14 2013-01-17 エーザイ インコーポレーテッド Use of E5501 to stimulate platelet production
US20140045900A1 (en) 2011-02-11 2014-02-13 Bial-Portela & Ca, S.A. Administration regime for nitrocatechols
SI2791134T1 (en) 2011-12-13 2020-01-31 Bial - Portela & Ca S.A. Chemical compound useful as intermediate for preparing a catechol-o-methyltransferase inhibitor
RU2017120184A (en) 2014-11-28 2018-12-28 БИАЛ - ПОРТЕЛА ЭНД Ка, С.А. DRUGS TO DELAY THE COURSE OF PARKINSON'S DISEASE
US10889548B2 (en) 2018-03-26 2021-01-12 Clear Creek Bio, Inc. Compositions and methods for inhibiting dihydroorotate dehydrogenase
RU2709496C1 (en) * 2019-08-01 2019-12-18 Марат Феликсович Фазылов Method of producing avatrombopag

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE896809C (en) * 1951-04-14 1953-11-16 Hoechst Ag Process for the preparation of thiazolyl-aryl-acetic esters
EP0424021A1 (en) * 1989-10-19 1991-04-24 Pfizer Limited Antimuscarinic bronchodilators
WO1998027098A1 (en) * 1996-12-18 1998-06-25 Vertex Pharmaceuticals Incorporated SUBSTITUTED NITROGEN CONTAINING HETEROCYCLES AS INHIBITORS OF p38 PROTEIN KINASE

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE897406C (en) * 1951-08-05 1953-11-19 Hoechst Ag Process for the preparation of pyrazolone compounds

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE896809C (en) * 1951-04-14 1953-11-16 Hoechst Ag Process for the preparation of thiazolyl-aryl-acetic esters
EP0424021A1 (en) * 1989-10-19 1991-04-24 Pfizer Limited Antimuscarinic bronchodilators
WO1998027098A1 (en) * 1996-12-18 1998-06-25 Vertex Pharmaceuticals Incorporated SUBSTITUTED NITROGEN CONTAINING HETEROCYCLES AS INHIBITORS OF p38 PROTEIN KINASE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HANSON G J: "inhibitors of p38 kinase", EXPERT OPINION ON THERAPEUTIC PATENTS, vol. 7, no. 7, 1997, pages 729 - 733, XP002086152, ISSN: 1354-3776 *

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7301021B2 (en) 1997-07-02 2007-11-27 Smithkline Beecham Corporation Substituted imidazole compounds
US8124630B2 (en) 1999-01-13 2012-02-28 Bayer Healthcare Llc ω-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors
US8841330B2 (en) 1999-01-13 2014-09-23 Bayer Healthcare Llc Omega-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors
US7897623B2 (en) 1999-01-13 2011-03-01 Bayer Healthcare Llc ω-carboxyl aryl substituted diphenyl ureas as p38 kinase inhibitors
US6979694B2 (en) 1999-04-15 2005-12-27 Bristol-Myers Squibb Company Cyclic protein tyrosine kinase inhibitors
US8993567B2 (en) 1999-04-15 2015-03-31 Bristol-Myers Squibb Company Cyclic protein tyrosine kinase inhibitors
US6596746B1 (en) 1999-04-15 2003-07-22 Bristol-Myers Squibb Company Cyclic protein tyrosine kinase inhibitors
US9382219B2 (en) 1999-04-15 2016-07-05 Bristol-Myers Squibb Company Cyclic protein tyrosine kinase inhibitors
US8716323B2 (en) 1999-04-15 2014-05-06 Bristol-Myers Squibb Company Cyclic protein tyrosine kinase inhibitors
US7189854B2 (en) 1999-04-15 2007-03-13 Bristol-Myers Squibb Company Cyclic protein tyrosine kinase inhibitors
US7125875B2 (en) 1999-04-15 2006-10-24 Bristol-Myers Squibb Company Cyclic protein tyrosine kinase inhibitors
US7153856B2 (en) 1999-04-15 2006-12-26 Bristol-Myers Squibb Company Cyclic protein tyrosine kinase inhibitors
US7091223B2 (en) 1999-04-15 2006-08-15 Bristol-Myers Squibb Company Cyclic protein tyrosine kinase inhibitors
WO2001064674A1 (en) * 2000-03-01 2001-09-07 Janssen Pharmaceutica N.V. 2,4-disubstituted thiazolyl derivatives
US7893280B2 (en) 2000-03-01 2011-02-22 Janssen Pharmaceutica Nv 2,4-disubstituted thiazolyl derivatives
US7105550B2 (en) 2000-03-01 2006-09-12 Christopher Love 2,4-disubstituted thiazolyl derivatives
US7241781B2 (en) 2000-12-21 2007-07-10 Bristol-Myers Squibb Company Thiazolyl inhibitors of Tec family tyrosine kinases
US7037926B2 (en) 2000-12-21 2006-05-02 Bristol-Myers Squibb Company Thiazolyl inhibitors of Tec family tyrosine kinases
US6958336B2 (en) 2000-12-21 2005-10-25 Bristol-Myers Squibb Company Thiazolyl inhibitors of Tec family tyrosine kinases
US6956045B2 (en) 2000-12-21 2005-10-18 Bristol-Myers Squibb Company Thiazolyl inhibitors of Tec family tyrosine kinases
US6706717B2 (en) 2000-12-21 2004-03-16 Bristol-Myers Squibb Company Thiazolyl inhibitors of Tec family tyrosine kinases
US6953795B2 (en) 2000-12-21 2005-10-11 Bristol-Myers Squibb Company Thiazolyl inhibitors of Tec family tyrosine kinases
EP2036891A2 (en) 2001-06-11 2009-03-18 Vertex Pharmaceuticals Incorporated Isoquinoline inhibitors of P38
US6720346B2 (en) 2001-07-06 2004-04-13 Agouron Pharmaceuticals, Inc. Thiazole benzamide derivatives and pharmaceutical compositions for inhibiting cell proliferation
US7183297B2 (en) 2001-10-17 2007-02-27 Glaxo Group Limited Biphenyl-derivatives as p38-kinase inhibitors
WO2003033457A1 (en) * 2001-10-17 2003-04-24 Glaxo Group Limited Biphenyl-derivatives as p38-kinase inhibitors
WO2003033482A1 (en) * 2001-10-17 2003-04-24 Glaxo Group Limited Oxadiazolyl-biphenylcarboxamides and their use as p38 kinase inhibitors
US8338429B2 (en) 2002-01-18 2012-12-25 Astellas Pharma, Inc. 2-acylaminothiazole derivative or salt thereof
WO2003062233A1 (en) * 2002-01-18 2003-07-31 Yamanouchi Pharmaceutical Co., Ltd. 2-acylaminothiazole derivative or salt thereof
US8765764B2 (en) 2002-01-18 2014-07-01 Astellas Pharma, Inc. 2-acylaminothiazole derivative or salt thereof
US7638536B2 (en) 2002-01-18 2009-12-29 Astellas Pharma Inc. 2-Acylaminothiazole derivative or salt thereof
JP2008111001A (en) * 2002-01-18 2008-05-15 Astellas Pharma Inc 2-acylaminothiazole derivative or salt thereof
US7838541B2 (en) 2002-02-11 2010-11-23 Bayer Healthcare, Llc Aryl ureas with angiogenesis inhibiting activity
US9181188B2 (en) 2002-02-11 2015-11-10 Bayer Healthcare Llc Aryl ureas as kinase inhibitors
US8242147B2 (en) 2002-02-11 2012-08-14 Bayer Healthcare Llc Aryl ureas with angiogenisis inhibiting activity
US8618141B2 (en) 2002-02-11 2013-12-31 Bayer Healthcare Llc Aryl ureas with angiogenesis inhibiting activity
JP4669225B2 (en) * 2002-04-23 2011-04-13 ブリストル−マイヤーズ スクイブ カンパニー Pyrrotriazine aniline compounds useful as kinase inhibitors
JP2010132673A (en) * 2002-04-23 2010-06-17 Bristol Myers Squibb Co Pyrrolotriazine aniline compound useful as kinase inhibitor
JP2005523338A (en) * 2002-04-23 2005-08-04 ブリストル−マイヤーズ スクイブ カンパニー Pyrrotriazine aniline compounds useful as kinase inhibitors
US7220764B2 (en) * 2002-06-17 2007-05-22 The Pennsylvania State University Research Foundation Sphingosine kinase inhibitors
EP1707205A2 (en) 2002-07-09 2006-10-04 Boehringer Ingelheim Pharma GmbH & Co. KG Pharmaceutical compositions of anticholinergics and p38 kinase inhibitors in the treatment of respiratory diseases
EP2562158A1 (en) 2003-02-10 2013-02-27 Vertex Pharmaceuticals Incorporated Processes for the preparation of n-heteroaryl-N-aryl-amines by reacting an N-aryl carbamic acid ester with a halo-heteroaryl and analogous processes
WO2004072038A1 (en) 2003-02-10 2004-08-26 Vertex Pharmaceuticals Incorporated Processes for the preparation of n-heteroaryl-n-aryl-amines by reacting an n-aryl carbamic acid ester with a halo-heteroaryl and analogous processes
US8796250B2 (en) 2003-05-20 2014-08-05 Bayer Healthcare Llc Diaryl ureas for diseases mediated by PDGFR
US8637553B2 (en) 2003-07-23 2014-01-28 Bayer Healthcare Llc Fluoro substituted omega-carboxyaryl diphenyl urea for the treatment and prevention of diseases and conditions
EP2116245A2 (en) 2004-08-07 2009-11-11 Boehringer Ingelheim International GmbH EGFR kinase inhibitor combinations for treating respiratory and gastrointestinal disorders
EP2384751A1 (en) 2004-12-24 2011-11-09 Boehringer Ingelheim International Gmbh Medicaments for the treatment or prevention of fibrotic diseases
EP2878297A1 (en) 2004-12-24 2015-06-03 Boehringer Ingelheim International GmbH Medicaments for the treatment or prevention of fibrotic diseases
WO2008142031A1 (en) 2007-05-18 2008-11-27 Institut Curie P38alpha as a therapeutic target in bladder carcinoma
CN102348690A (en) * 2009-02-13 2012-02-08 沃泰克斯药物股份有限公司 Processes for producing phenyl-6-(1-(phenyl)ureido)nicotinamides)
US9365547B2 (en) 2010-12-06 2016-06-14 Confluence Life Sciences Inc. Substituted pyridinone-pyridinyl compounds
EP3469907A1 (en) 2010-12-06 2019-04-17 Aclaris Therapeutics, Inc. Substituted pyridinone-pyridinyl compounds
US8507499B2 (en) 2010-12-06 2013-08-13 Confluence Life Sciences, Inc. Substituted indole/indazole-pyrimidinyl compounds
US8563558B2 (en) 2010-12-06 2013-10-22 Confluence Life Sciences, Inc. Substituted pyridine urea compounds
US9365546B2 (en) 2010-12-06 2016-06-14 Confluence Life Sciences Inc. Substituted pyridinone-pyridinyl compounds
US9359300B2 (en) 2010-12-06 2016-06-07 Confluence Life Sciences, Inc. Methyl/difluorophenyl-methoxy substituted pyridinone-pyridinyl compounds, methyl-pyridinyl-methoxy substituted pyridinone-pyridinyl compounds, and methyl-pyrimidinyl-methoxy substituted pyridinone-pyridinyl compounds
US9056110B2 (en) 2011-12-06 2015-06-16 Confluence Life Sciences, Inc. Substituted pyrimidinone-phenyl-pyrimidinyl compounds
EP2843049A4 (en) * 2012-04-27 2015-04-22 Univ Keio Neuronal differentiation promoter
EP2843049A1 (en) * 2012-04-27 2015-03-04 Keio University Neuronal differentiation promoter
EP3845529A1 (en) 2013-06-07 2021-07-07 Aclaris Therapeutics, Inc. Methyl/fluoro-pyridinyl-methoxy substituted pyridinone-pyridinyl compounds and fluoro-pyrimidinyl-methoxy substituted pyridinone-pyridinyl compounds
US9636333B2 (en) 2013-06-07 2017-05-02 Confluence Life Sciences, Inc. Methyl/fluoro-pyridinyl-methoxy substituted pyridinone-pyridinyl compounds and fluoro-pyrimidinyl-methoxy substituted pyridinone-pyridinyl compounds
US9115089B2 (en) 2013-06-07 2015-08-25 Confluence Life Sciences, Inc. Methyl/fluoro-pyridinyl-methoxy substituted pyridinone-pyridinyl compounds and fluoro-pyrimidinyl-methoxy substituted pyridinone-pyridinyl compounds
WO2017075274A1 (en) 2015-10-27 2017-05-04 Children's Hospital Medical Center Use of mapk inhibitors to reduce loss of hematopoietic stem cells during ex vivo culture and/or genetic manipulation
US11452713B2 (en) 2016-02-29 2022-09-27 University Of Florida Research Foundation, Incorporated Chemotherapeutic methods for treating low-proliferative disseminated tumor cells
US10537560B2 (en) 2017-10-05 2020-01-21 Fulcrum Therapeutics. Inc. P38 kinase inhibitors reduce DUX4 and downstream gene expression for the treatment of FSHD
US11291659B2 (en) 2017-10-05 2022-04-05 Fulcrum Therapeutics, Inc. P38 kinase inhibitors reduce DUX4 and downstream gene expression for the treatment of FSHD
US10342786B2 (en) 2017-10-05 2019-07-09 Fulcrum Therapeutics, Inc. P38 kinase inhibitors reduce DUX4 and downstream gene expression for the treatment of FSHD
US11479770B2 (en) 2017-10-05 2022-10-25 Fulcrum Therapeutics, Inc. Use of p38 inhibitors to reduce expression of DUX4
US11844801B2 (en) 2020-03-27 2023-12-19 Aclaris Therapeutics, Inc. Oral compositions of MK2 pathway inhibitor for treatment of immune conditions
WO2022195579A1 (en) 2021-03-15 2022-09-22 Saul Yedgar Hyaluronic acid-conjugated dipalmitoyl phosphatidyl ethanolamine in combination with non-steroidal anti-inflammatory drugs (nsaids) for treating or alleviating inflammatory diseases

Also Published As

Publication number Publication date
CA2337755C (en) 2008-07-29
CA2337755A1 (en) 2000-03-30
US20020016471A1 (en) 2002-02-07
AU6251499A (en) 2000-04-10
US6509363B2 (en) 2003-01-21
AU762245B2 (en) 2003-06-19
JP2002526482A (en) 2002-08-20
EP1114039A1 (en) 2001-07-11

Similar Documents

Publication Publication Date Title
US6509363B2 (en) Heterocyclic inhibitors of p38
US6800626B2 (en) Inhibitors of p38
US6635644B2 (en) Inhibitors of p38
US6632945B2 (en) Inhibitors of P38
US7919513B2 (en) Inhibitors of p38
WO1998027098A1 (en) SUBSTITUTED NITROGEN CONTAINING HETEROCYCLES AS INHIBITORS OF p38 PROTEIN KINASE
AU2001283237A1 (en) Pyridine derivatives as inhibitors of p38
AU2001247700A1 (en) Inhibitors of p38
AU2007200477B2 (en) Inhibitors of p38
EP1277740A1 (en) Inhibitors of p38
IL130349A (en) P38 kinase-inhibiting diaryl-substituted condensed pyrimidinone derivatives and pharmaceutical compositions containing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2337755

Country of ref document: CA

Ref country code: CA

Ref document number: 2337755

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 62514/99

Country of ref document: AU

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 574085

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09809854

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999949690

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999949690

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 62514/99

Country of ref document: AU